WO2016093415A1 - 거리 측정 장치 및 거리 측정 방법 - Google Patents

거리 측정 장치 및 거리 측정 방법 Download PDF

Info

Publication number
WO2016093415A1
WO2016093415A1 PCT/KR2014/012671 KR2014012671W WO2016093415A1 WO 2016093415 A1 WO2016093415 A1 WO 2016093415A1 KR 2014012671 W KR2014012671 W KR 2014012671W WO 2016093415 A1 WO2016093415 A1 WO 2016093415A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
light source
beams
distance
sub
Prior art date
Application number
PCT/KR2014/012671
Other languages
English (en)
French (fr)
Inventor
정영대
Original Assignee
한화테크윈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화테크윈 주식회사 filed Critical 한화테크윈 주식회사
Publication of WO2016093415A1 publication Critical patent/WO2016093415A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/04Details
    • G01S3/08Means for reducing polarisation errors, e.g. by use of Adcock or spaced loop antenna systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only

Definitions

  • the present invention relates to a distance measuring device and a distance measuring method, and more particularly, to a two-dimensional distance measuring device and a distance measuring method using a laser.
  • a method using light is widely used to measure a distance to a subject, and a method of measuring distance using light includes a triangulation method, a time of flight (TOF) method, and a phase difference (phase difference). -shift).
  • TOF time of flight
  • phase difference phase difference
  • the triangulation method is a method of measuring the distance by using a triangulation method
  • the TOF method is to calculate the distance using the difference between the time that the light is emitted from the distance measuring device and the time that the light is reflected back from the subject to the distance measuring device It is a way.
  • the method using the phase difference is a method of calculating the distance from the phase difference between the reference light and the light reflected from the subject and returned to the distance measuring device by irradiating light having a constant frequency to the subject.
  • the conventional distance measuring method using a laser beam has a problem that only a distance to one point of a subject can be measured at a time.
  • the present invention has been made to solve various problems including the above problems, and an object thereof is to provide a distance measuring device and a distance measuring method capable of precisely measuring a two-dimensional distance of a subject.
  • these problems are illustrative, and the scope of the present invention is not limited thereby.
  • a light source for irradiating a laser beam
  • An optical system disposed in front of the light source and dividing the laser beam emitted from the light source into a plurality of beams two-dimensionally arranged;
  • a photographing apparatus including an optical axis inclined at a predetermined angle with respect to the optical axis of the light source, and including an image sensor receiving a plurality of beams reflected from the subject.
  • a distance measuring device including a light source and an optical system disposed in front of the light source, and split the laser beam emitted from the light source into a plurality of beams arranged two-dimensionally, Irradiating a plurality of laser beams emitted from the light source and split by the optical system to a subject; Receiving light reflected from the subject using an image sensor inclined at a predetermined angle with respect to an optical axis of the light source; And calculating a distance of the subject based on the positions of the plurality of laser beams received by the image sensor.
  • FIG. 1 is a configuration diagram schematically showing a distance measuring device according to an embodiment of the present invention.
  • FIG. 2A and 2B illustrate beam spot changes in a focal plane and changes in a beam path by an optical system according to an exemplary embodiment included in the distance measuring apparatus of FIG. 1, respectively.
  • FIG. 3 is an enlarged view of an image sensor included in the distance measuring apparatus of FIG. 1.
  • FIG. 4 is a conceptual diagram illustrating a distance measuring method according to an embodiment using the distance measuring device of FIG. 1.
  • FIG. 5 is a flowchart sequentially illustrating a distance measuring method according to an exemplary embodiment.
  • a light source for irradiating a laser beam
  • An optical system disposed in front of the light source and dividing the laser beam emitted from the light source into a plurality of beams two-dimensionally arranged;
  • a photographing apparatus including an optical axis inclined at a predetermined angle with respect to the optical axis of the light source, and including an image sensor receiving a plurality of beams reflected from the subject.
  • the plurality of beams are arranged in a matrix form, and may be arranged at substantially equal intervals from each other.
  • the optical system may be a diffractive beam splitter including a diffractive optical element for dividing the incident beam into a plurality of laser beams and a focusing lens for focusing the plurality of laser beams, respectively.
  • the predetermined angle may be about 20 degrees to about 70 degrees.
  • the display apparatus may further include a processor including a calculator configured to calculate a distance of the subject based on positions of the plurality of laser beams received by the image sensor, and a memory configured to store a reference position of the subject. .
  • the image sensor may include a plurality of sub-regions arranged two-dimensionally and receiving each of the plurality of beams reflected by the subject, wherein the sub-regions each include a plurality of pixels. Can be.
  • the calculator may calculate a distance of the subject based on a position in each of the sub-areas of the beam reflected by the subject received in each of the sub-areas.
  • the processor may restore the three-dimensional shape of the subject based on the calculated distance of the subject.
  • a distance measuring device including a light source and an optical system disposed in front of the light source, and split the laser beam emitted from the light source into a plurality of beams arranged two-dimensionally, Irradiating a plurality of laser beams emitted from the light source and split by the optical system to a subject; Receiving light reflected from the subject using an image sensor inclined at a predetermined angle with respect to an optical axis of the light source; And calculating a distance of the subject based on the positions of the plurality of laser beams received by the image sensor.
  • the plurality of beams are arranged in a matrix form, and may be arranged at substantially equal intervals from each other.
  • the optical system may be a diffractive beam splitter including a diffractive optical element for dividing the incident beam into a plurality of laser beams and a focusing lens for focusing the plurality of laser beams, respectively.
  • the predetermined angle may be about 20 degrees to about 70 degrees.
  • the image sensor may include a plurality of sub-regions arranged two-dimensionally and receiving each of the plurality of beams reflected by the subject, wherein the sub-regions may be configured of a plurality of pixels, respectively. have.
  • the calculating of the distance of the subject may include calculating a distance of the subject based on a position of each of the sub-areas of the beam reflected by the subject received in each of the sub-areas. It may include the step.
  • the method may further include restoring a three-dimensional shape of the subject based on the calculated distance of the subject.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are only used to distinguish one component from another.
  • FIG. 1 is a block diagram schematically illustrating a distance measuring device according to an embodiment of the present invention
  • FIGS. 2A and 2B are beams by the optical system 20 according to an embodiment included in the distance measuring device of FIG. 1, respectively. Changes in path and beam spot in the focal plane are shown.
  • a distance measuring device includes a light source 10 for irradiating a laser beam, a laser beam disposed in front of the light source 10, and emitted from the light source 10.
  • An optical system 20 for dividing the beam into a plurality of beams two-dimensionally disposed, and an optical axis OA2 inclined at a predetermined angle ⁇ with respect to the optical axis OA1 of the light source 10.
  • a photographing apparatus 30 including an image sensor 31 for receiving a plurality of beams reflected from the plurality of beams.
  • the light source 10 may emit a laser beam having a very narrow wavelength region and the laser beam may have an infrared wavelength region, but the present invention is not limited thereto.
  • the laser beam emitted from the light source 10 may be incident on the optical system 20, and may be divided into a plurality of beams two-dimensionally arranged by the optical system 20.
  • the optical system 20 may be a diffractive beam splitter.
  • the optical system 20 may include a diffractive optical element 21 and a plurality of beams that split an incident beam into a plurality of beams. It may include a focusing lens 22 for focusing each.
  • the optical system 20 may divide the incident beam Bi into a plurality of beams Bs, and each of the divided beams may have the same optical characteristics as the incident beam. That is, the beam size, polarization and phase may be the same.
  • the optical system 20 may form a beam array of various types according to the diffraction pattern of the diffractive optical element 21.
  • the optical system 20 may generate a plurality of beams Bs arranged in a matrix form in the focal plane FP, and the plurality of beams may be spaced at the same distance d from each other. Can be arranged.
  • the plurality of beams Bs arranged in a matrix form may be irradiated onto the subject 40, respectively.
  • the subject 40 is represented as one object, the present invention is not limited thereto, and the subject 40 may be a plurality of objects or backgrounds to be measured.
  • FIG. 2B illustrates 25 beams to be arranged in a matrix of 5 ⁇ 5, the present invention is not limited thereto, and the number of divided beams is smaller than 25 depending on the diffraction pattern of the diffractive optical element 21. Or greater than 25, and the spacing d between the beams may also have various values.
  • an optical element such as a collimator and / or a beam expander may be further disposed between the light source 10 and the optical system 20.
  • the photographing apparatus 30 may include an image sensor 31 for receiving a plurality of beams reflected from the subject 40, and the photographing apparatus 30 is disposed spaced apart from the light source 10 by a predetermined distance (a). Can be.
  • the optical axis OA2 of the photographing apparatus 30 may be inclined at a predetermined angle ⁇ with respect to the optical axis OA1 of the light source 10, and the angle ⁇ may be about 20 degrees to about 70 degrees. have.
  • the angle ⁇ is less than about 20 degrees, since the position of the subject 40 to be measured is too far from the light source 10 and the photographing apparatus 30, the laser irradiated to the subject 40 by surrounding interference or the like. The beam may be reflected and difficult to reach the imaging device 30. When the angle ⁇ exceeds about 70 degrees, the photographing range may be too narrow.
  • the distance measuring apparatus may include a calculator 52 that calculates a distance of the subject 40 based on the positions of the plurality of laser beams received by the image sensor 31, and a memory 52 that stores the reference position. It may further include a processing unit 50 including). Detailed description thereof will be described later.
  • FIG. 3 is an enlarged view of an image sensor included in the distance measuring apparatus of FIG. 1
  • FIG. 4 is a conceptual diagram illustrating a distance measuring method according to an exemplary embodiment using the distance measuring apparatus of FIG. 1.
  • the image sensor 31 may be a two-dimensional solid-state image sensor such as a charge-coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS). 1 may include a plurality of sub-regions SA for receiving each of the plurality of beams reflected by FIG. 1, and each of the plurality of sub-regions SA may include a plurality of pixels P.
  • CCD charge-coupled device
  • CMOS complementary metal-oxide-semiconductor
  • Each of the sub-regions SA may receive one of a plurality of beams, and the position of the beams received in the sub-regions SA may be located at a position where the beam of the subject 40 is reflected. Therefore, it may vary within the sub area SA.
  • the number and width of the sub-regions SA may be determined according to the number, spacing, and range of the subject 40 to be measured.
  • the sub-region SA may be divided according to an embodiment. Only one beam can be received.
  • FIG. 4 illustrates the beams received in the sub-region SA according to the position of the subject 40 (FIG. 1), that is, the distance from the light source 10 to one point of the subject 40 (FIG. 1). Indicates a location.
  • one beam of a plurality of beams irradiated to the subject 40 (FIG. 1) will be described, and the distance can be determined in the same manner for each of the plurality of beams.
  • the distance D A from the light source 10 to the A position may be determined by Equation 1 below.
  • a represents a distance between the light source 10 and the photographing apparatus 30, and ⁇ 1 represents a line connecting the light source 10 and the photographing apparatus 30, and a line connecting the photographing apparatus 30 and the A position. It represents the angle to form.
  • the distance from the light source 10 to the A position may correspond to a reference position, and the reference position may be stored in advance in the memory 52 (FIG. 1).
  • the distance D B from the light source 10 to the B position may be determined by Equation 2 below.
  • ⁇ 1 + ⁇ 2 represents an angle formed by a line connecting the light source 10 and the imaging device 30 and a line connecting the imaging device 30 and the B position.
  • the ⁇ 2 may be correspond to the angle of view of the photographing device 30, if the distance to the position A (D A) with a pre-known, it is possible to calculate ⁇ 1 therefrom, a, ⁇ 1 and previously known ⁇ From 2 the B position can be determined.
  • the light reflected at the A position and the light reflected at the B position may be received at both outermost pixels of the sub area SA, and the sub area SA may be photographed from the A position to the B position. have.
  • the T position which is an arbitrary position between the A position and the B position
  • the T position can be calculated from the position of the beam received in the subregion SA by the following equation.
  • NOTP represents the total number of pixels in one row included in the sub area SA
  • NOP represents the number of pixels from the first pixel P1 to the pixel on which the beam is received.
  • the distance D T for any T position is determined by counting only the number of pixels from the first pixel P1 to the pixel on which the beam is received. Can be calculated
  • the calculation of the distance D T may be performed by the calculation unit 51 (FIG. 1) included in the processing unit 50 (FIG. 1), and the reference position stored in the memory 52 (FIG. 2), that is, the A position. Data on the distance to D A is available.
  • the above-described calculation may be performed for each of the plurality of sub areas SA, and the processing unit 50 (FIG. 1) may determine two-dimensional distance information of the subject 40 (FIG. 1) obtained in each sub area SA. The three-dimensional shape of the subject 40 (FIG. 1) can be restored.
  • a process of matching the positions of the respective sub areas SA and the subject 40 may be performed, and then the three-dimensional shape may be restored according to the matching data.
  • FIG. 5 is a flowchart sequentially illustrating a distance measuring method according to an exemplary embodiment.
  • a distance measuring method includes a plurality of two-dimensionally arranged light sources 10 and laser beams disposed in front of the light sources 10 and emitted from the light sources 10. Irradiating a plurality of laser beams emitted from the light source 10 and split by the optical system 20 to the subject by using the distance measuring device including the optical system 20 splitting into two beams (S110) and the optical axis ( OA2 is inclined at a predetermined angle ⁇ with respect to the optical axis OA1 of the light source 10, and the light reflected from the subject 40 is collected using the photographing apparatus 30 including the image sensor 31.
  • the light source 10 may emit a laser beam having a very narrow wavelength region, and the laser beam emitted from the light source 10 may be incident on the optical system 20.
  • Light incident on the optical system 20 may be divided into a plurality of beams two-dimensionally arranged by the optical system 20.
  • the optical system 20 may be a diffractive beam splitter.
  • the optical system 20 may include a diffractive optical element 21 (FIG. 2A) for dividing an incident beam into a plurality of beams. It may include a focusing lens 22 (FIG. 2A) for focusing each of the plurality of beams.
  • the photographing apparatus 30 may include an image sensor 31 for receiving a plurality of beams reflected from the subject 40, and the photographing apparatus 30 is disposed spaced apart from the light source 10 by a predetermined distance (a). Can be.
  • the optical axis OA2 of the photographing apparatus 30 may be inclined at a predetermined angle ⁇ with respect to the optical axis OA1 of the light source 10, and the angle ⁇ may be about 20 degrees to about 70 degrees. have.
  • the angle ⁇ is less than about 20 degrees, since the position of the subject 40 to be measured is too far from the light source 10 and the photographing apparatus 30, the laser irradiated to the subject 40 by surrounding interference or the like. The beam may be reflected and difficult to reach the imaging device 30. When the angle ⁇ exceeds about 70 degrees, the photographing range may be too narrow.
  • the image sensor 31 may be a two-dimensional solid-state image sensor, and may include a plurality of sub-regions SA (FIG. 3) that are two-dimensionally arranged and receive each of the plurality of beams reflected by the subject 40.
  • Each of the plurality of sub areas SA may include a plurality of pixels P (FIG. 3).
  • Each of the sub-regions SA may receive one beam among a plurality of beams, and the position of the beams received at the sub-regions SA (refer to FIG. 3) is a point at which the beam of the subject 40 is reflected. Depending on the position of the sub-region (SA, Figure 3) may vary.
  • the number and width of the sub-regions SA may be determined according to the number, spacing, and range of the subject 40 to be measured.
  • the sub-regions may include one sub-region. Only one beam may be received at (SA, FIG. 3).
  • Step S140 Computing the distance of the subject 40 (S130), the position of each of the sub-regions SA of the beam reflected by the subject 40 received in each of the plurality of sub-regions SA (FIG. 3).
  • Comprising a step of calculating the distance of the subject 40 the distance measuring method according to an embodiment, restoring the three-dimensional shape of the subject 40 based on the calculated distance of the subject 40 Step S140 may be further included.
  • the distance measuring apparatus and the distance measuring method according to the exemplary embodiments may precisely measure the two-dimensional distance of the subject with a simple configuration, and may restore the three-dimensional shape of the subject from this.
  • At least one of the embodiments of the present invention can be used for a distance measuring device and a distance measuring method.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

본 발명의 일 실시예에 따르면, 레이저 빔을 조사하는 광원; 상기 광원의 전방에 배치되며, 상기 광원으로부터 방출된 레이저 빔을 이차원적으로 배치된 복수 개의 빔으로 분할하는 광학계; 및 상기 광원의 광축에 대하여 소정의 각도로 기울어져 있는 광축을 포함하며, 상기 피사체로부터 반사된 복수 개의 빔을 수광하는 이미지 센서를 포함하는 촬영 장치;를 포함하는, 거리 측정 장치를 개시한다.

Description

거리 측정 장치 및 거리 측정 방법
본 발명은 거리 측정 장치 및 거리 측정 방법에 관한 것으로, 상세하게는 레이저를 이용한 2차원 거리 측정 장치 및 거리 측정 방법에 관한 것이다.
일반적으로, 피사체까지의 거리를 측정하기 위하여 광을 이용하는 방식이 널리 이용되고 있으며, 광을 이용하여 거리를 측정하는 방식에는, 삼각측량(triangulation) 방식, TOF(Time of Flight) 방식, 위상차(phase-shift)를 이용한 방식 등이 있다.
삼각측량 방식은 삼각측량법을 이용하여 거리를 측정하는 방법이며, TOF 방식은 거리 측정 장치로부터 광을 방출한 시간과 피사체로부터 반사되어 거리 측정 장치로 광이 되돌아온 시간의 차이를 이용하여 거리를 계산하는 방법이다. 위상차를 이용한 방식은 일정한 주파수를 가진 광을 피사체에 조사하여, 기준광과 피사체로부터 반사되어 거리 측정 장치로 되돌아온 광 사이의 위상차로부터 거리를 계산하는 방법이다.
또한, 거리 측정의 정확도를 높이기 위해, 레이저광을 이용한 거리 측정 방법에 대한 연구가 이루어지고 있다.
그러나, 종래의 레이저광을 이용한 거리 측정 방법은, 한번에 피사체의 일 점(point)에 대한 거리만을 측정할 수 있다는 문제가 있었다.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 피사체의 2차원 거리를 정밀하게 측정할 수 있는 거리 측정 장치 및 거리 측정 방법을 제공하는 것을 목적으로 한다. 그러나, 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.
본 발명의 일 실시예에 따르면, 레이저 빔을 조사하는 광원; 상기 광원의 전방에 배치되며, 상기 광원으로부터 방출된 레이저 빔을 이차원적으로 배치된 복수 개의 빔으로 분할하는 광학계; 및 상기 광원의 광축에 대하여 소정의 각도로 기울어져 있는 광축을 포함하며, 상기 피사체로부터 반사된 복수 개의 빔을 수광하는 이미지 센서를 포함하는 촬영 장치;를 포함하는, 거리 측정 장치를 개시한다.
본 발명의 다른 실시예에 따르면, 광원과, 상기 광원의 전방에 배치되며, 상기 광원으로부터 방출된 레이저빔을 이차원적으로 배치된 복수 개의 빔으로 분할하는 광학계를 포함하는 거리 측정 장치를 이용하여, 상기 광원으로부터 방출되어, 상기 광학계에서 의해 분할된 복수 개의 레이저 빔을 피사체에 조사하는 단계; 상기 피사체로부터 반사된 광을, 상기 광원의 광축에 대하여 소정의 각도로 기울어져 있는 이미지 센서를 이용하여 수광하는 단계; 및 상기 이미지 센서에 수광된, 상기 복수 개의 레이저 빔의 위치를 기반으로 상기 피사체의 거리를 계산하는 단계;를 포함하는, 거리 측정 방법을 개시한다.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 피사체의 2차원 거리를 정밀하게 측정할 수 있는 거리 측정 장치 및 거리 측정 방법을 제공할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 거리 측정 장치를 개략적으로 나타낸 구성도이다.
도 2a 및 도 2b는 각각 도 1의 거리 측정 장치에 포함된 일 실시예에 따른 광학계에 의한 빔 경로의 변화 및 초점 평면에서의 빔 스팟을 나타낸 것이다.
도 3은 도 1의 거리 측정 장치에 포함된 이미지 센서를 확대하여 나타낸 것이다.
도 4는 도 1의 거리 측정 장치를 이용한 일 실시예에 따른 거리 측정 방법을 나타낸 개념도이다.
도 5는 일 실시예에 따른 거리 측정 방법을 순차적으로 나타낸 순서도이다.
본 발명의 일 실시예에 따르면, 레이저 빔을 조사하는 광원; 상기 광원의 전방에 배치되며, 상기 광원으로부터 방출된 레이저 빔을 이차원적으로 배치된 복수 개의 빔으로 분할하는 광학계; 및 상기 광원의 광축에 대하여 소정의 각도로 기울어져 있는 광축을 포함하며, 상기 피사체로부터 반사된 복수 개의 빔을 수광하는 이미지 센서를 포함하는 촬영 장치;를 포함하는, 거리 측정 장치를 개시한다.
일 실시예에 있어서, 상기 복수 개의 빔은 행렬 형태로 배열되며, 서로 실질적으로 동일한 간격으로 배치될 수 있다.
일 실시예에 있어서, 상기 광학계는, 입사된 빔을 복수 개의 레이저 빔으로 분할하는 회절 광학 소자 및 상기 복수 개의 레이저 빔을 각각 집속시키는 집속 렌즈를 포함하는 회절 빔 스플리터(diffractive beam splitter)일 수 있다.
일 실시예에 있어서, 상기 소정의 각도는 약 20도 내지 약 70도일 수 있다.
일 실시예에 있어서, 상기 이미지 센서에 수광된 복수 개의 레이저 빔의 위치를 기반으로 상기 피사체의 거리를 계산하는 계산부 및 상기 피사체의 기준 위치를 저장하는 메모리를 포함하는 처리부를 더 포함할 수 있다.
일 실시예에 있어서, 상기 이미지 센서는, 이차원적으로 배열되며 상기 피사체에 의해 반사된 상기 복수 개의 빔 각각을 수광하는 복수 개의 서브 영역들을 포함하며, 상기 서브 영역들은 각각 복수 개의 픽셀들로 구성될 수 있다.
일 실시예에 있어서, 상기 계산부는, 상기 서브 영역들 각각에 수광된 상기 피사체에 의해 반사된 빔의, 상기 서브 영역들 각각에서의 위치를 기반으로 상기 피사체의 거리를 계산할 수 있다.
일 실시예에 있어서, 상기 처리부는, 계산된 상기 피사체의 거리를 기반으로 상기 피사체의 삼차원 형상을 복원할 수 있다.
본 발명의 다른 실시예에 따르면, 광원과, 상기 광원의 전방에 배치되며, 상기 광원으로부터 방출된 레이저빔을 이차원적으로 배치된 복수 개의 빔으로 분할하는 광학계를 포함하는 거리 측정 장치를 이용하여, 상기 광원으로부터 방출되어, 상기 광학계에서 의해 분할된 복수 개의 레이저 빔을 피사체에 조사하는 단계; 상기 피사체로부터 반사된 광을, 상기 광원의 광축에 대하여 소정의 각도로 기울어져 있는 이미지 센서를 이용하여 수광하는 단계; 및 상기 이미지 센서에 수광된, 상기 복수 개의 레이저 빔의 위치를 기반으로 상기 피사체의 거리를 계산하는 단계;를 포함하는, 거리 측정 방법을 개시한다.
일 실시예에 있어서, 상기 복수 개의 빔은 행렬 형태로 배열되며, 서로 실질적으로 동일한 간격으로 배치될 수 있다.
일 실시예에 있어서, 상기 광학계는, 입사된 빔을 복수 개의 레이저 빔으로 분할하는 회절 광학 소자 및 상기 복수 개의 레이저 빔을 각각 집속시키는 집속 렌즈를 포함하는 회절 빔 스플리터(diffractive beam splitter)일 수 있다.
일 실시예에 있어서, 상기 소정의 각도는 약 20도 내지 약 70도일 수 있다.
일 실시예에 있어서, 상기 이미지 센서는, 이차원적으로 배열되며 상기 피사체에 의해 반사된 상기 복수 개의 빔 각각을 수광하는 복수 개의 서브 영역들을 포함하며, 상기 서브 영역들은 각각 복수 개의 픽셀로 구성될 수 있다.
일 실시예에 있어서, 상기 피사체의 거리를 계산하는 단계는, 상기 서브 영역들 각각에 수광된 상기 피사체에 의해 반사된 빔의, 상기 서브 영역들 각각에서의 위치를 기반으로 상기 피사체의 거리를 계산하는 단계를 포함할 수 있다.
일 실시예에 있어서, 계산된 상기 피사체의 거리를 기반으로, 상기 피사체의 삼차원 형상을 복원하는 단계를 더 포함할 수 있다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
이하의 실시예에서, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
이하의 실시예에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 이하의 실시예에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.
도 1은 본 발명의 일 실시예에 따른 거리 측정 장치를 개략적으로 나타낸 구성도이고, 도 2a 및 도 2b는 각각 도 1의 거리 측정 장치에 포함된 일 실시예에 따른 광학계(20)에 의한 빔 경로의 변화 및 초점 평면에서의 빔 스팟을 나타낸 것이다.
도 1, 도 2a 및 도 2b를 참조하면, 일 실시예에 따른 거리 측정 장치는, 레이저 빔을 조사하는 광원(10), 광원(10)의 전방에 배치되며 광원(10)으로부터 방출된 레이저 빔을 이차원적으로 배치된 복수 개의 빔으로 분할하는 광학계(20), 및 광원(10)의 광축(OA1)에 대하여 소정의 각도(θ)로 기울어져 있는 광축(OA2)을 포함하며, 피사체(40)로부터 반사된 복수 개의 빔을 수광하는 이미지 센서(31)를 포함하는 촬영 장치(30)를 포함한다.
상기 광원(10)은 매우 좁은 파장 영역을 갖는 레이저 빔을 방출할 수 있으며 레이저 빔은 적외선 파장 영역을 갖을 수 있으나, 본 발명은 이에 제한되지 않는다.
상기 광원(10)으로부터 방출된 레이저 빔은 광학계(20)에 입사될 수 있으며, 광학계(20)에 의해 이차원적으로 배치된 복수 개의 빔으로 분할될 수 있다. 상기 광학계(20)는 회절 빔 스플리터(diffractive beam splitter)일 수 있으며, 일 실시예에 따르면, 상기 광학계(20)는 입사된 빔을 복수 개의 빔으로 분할하는 회절 광학 소자(21) 및 복수 개의 빔 각각을 집속시키는 집속 렌즈(22)를 포함할 수 있다.
상기 광학계(20)는, 입사된 빔(Bi)을 복수 개의 빔(Bs)으로 나눌 수 있으며, 나뉘어진 각각의 빔은 입사된 빔과 광 특성이 동일할 수 있다. 즉, 빔의 크기, 편광 및 위상 등이 동일할 수 있다.
상기 광학계(20)는 회절 광학 소자(21)의 회절 패턴에 따라, 다양한 형태의 빔 어레이를 형성할 수 있다. 도 2b를 참조하면, 일 실시예에 따른 광학계(20)는 초점 평면(FP)에서 행렬 형태로 배열된 복수 개의 빔(Bs)을 생성할 수 있으며, 복수 개의 빔은 서로 동일한 간격(d)으로 배치될 수 있다. 행렬 형태로 배열된 복수 개의 빔(Bs)은 각각 피사체(40)에 조사될 수 있다. 도 1에서는, 피사체(40)를 하나의 사물로 표현하였지만, 본 발명은 이에 제한되지 않으며 상기 피사체(40)는 측정하고자 하는 복수 개의 사물 또는 배경 등일 수 있다.
도 2b에서는, 5×5의 행렬 형태로 배열될 25개의 빔을 예시하고 있지만, 본 발명은 이에 한정되지 않으며, 분할된 빔의 수는 회절 광학 소자(21)의 회절 패턴에 따라 25개보다 작거나 25개보다 클 수 있으며, 빔 사이의 간격(d) 또한 다양한 값을 가질 수 있다.
도시하진 않았지만, 광원(10)과 광학계(20) 사이에는 콜리메이터 및/또는 빔 익스펜서 등의 광학 소자가 더 배치될 수 있다.
상기 촬영 장치(30)는 피사체(40)로부터 반사된 복수 개의 빔을 수광하는 이미지 센서(31)를 포함할 수 있으며, 촬영 장치(30)는 광원(10)과 소정 간격(a) 이격되어 배치될 수 있다. 상기 촬영 장치(30)의 광축(OA2)은 광원(10)의 광축(OA1)에 대하여 소정의 각도(θ)로 기울어져 있을 수 있으며, 상기 각도(θ)는 약 20도 내지 약 70도일 수 있다.
상기 각도(θ)가 약 20도 미만인 경우, 측정하고자 하는 피사체(40)의 위치가 광원(10) 및 촬영 장치(30)로부터 너무 멀어지므로, 주변의 간섭 등에 의해 피사체(40)에 조사된 레이저 빔이 반사되어 촬영 장치(30)에 도달하기 어려울 수 있다. 상기 각도(θ)가 약 70도를 초과하는 경우, 촬영 범위가 지나치게 좁아질 수 있다.
일 실시예에 따른 거리 측정 장치는, 이미지 센서(31)에 수광된 복수 개의 레이저 빔의 위치를 기반으로 피사체(40)의 거리를 계산하는 계산부(51) 및 기준 위치를 저장하는 메모리(52)를 포함하는 처리부(50)를 더 포함할 수 있다. 이에 대한 구체적인 설명은 후술한다.
도 3은 도 1의 거리 측정 장치에 포함된 이미지 센서를 확대하여 나타낸 것이고, 도 4는 도 1의 거리 측정 장치를 이용한 일 실시예에 따른 거리 측정 방법을 나타낸 개념도이다.
도 3을 참조하면, 상기 이미지 센서(31)는, CCD(charge-coupled device) 또는 CMOS(complementary metal-oxide-semiconductor) 등의 이차원 고체 이미지 센서일 수 있으며, 이차원적으로 배열되며 피사체(40, 도 1)에 의해 반사된 복수 개의 빔 각각을 수광하는 복수 개의 서브 영역(SA)을 포함할 수 있으며, 복수 개의 서브 영역(SA)은 각각 복수 개의 픽셀(P)로 구성될 수 있다.
상기 서브 영역(SA)은 각각 복수 개의 빔 중 하나의 빔을 수광할 수 있으며, 서브 영역(SA)에 수광된 빔의 위치는 피사체(40, 도 1)의 상기 빔이 반사된 점의 위치에 따라 서브 영역(SA) 내에서 달라질 수 있다.
상기 서브 영역(SA)의 수 및 넓이는 분할된 복수 개의 빔의 수, 간격 및 측정하고자 하는 피사체(40)의 범위에 따라 정해질 수 있으며, 일 실시예에 따르면, 하나의 서브 영역(SA)에는 하나의 빔 만이 수광될 수 있다.
도 4를 참조하면, 도 4는 피사체(40, 도 1)의 위치, 즉 광원(10)으로부터 피사체(40, 도 1)의 일 점까지의 거리에 따른 서브 영역(SA)에서 수광된 빔의 위치를 나타낸다. 이하에서는, 피사체(40, 도 1)에 조사된 복수 개의 빔 중 하나의 빔에 관하여 설명하며, 복수 개의 빔 각각에 대해서도 동일한 방식으로 거리가 결정될 수 있다.
피사체(40, 도 1)의 일 점이 A 위치에 배치되어 있을 때, A 위치로부터 반사된 광은, 서브 영역(SA)의 제1 픽셀(P1)에 수광될 수 있다. 반대로, 서브 영역(SA)의 제1 픽셀(P1)에 광이 수광되는 경우, 피사체(40, 도 1)의 일 점이 A 위치에 배치되어 있다는 것을 알 수 있다.
광원(10)으로부터 A 위치까지의 거리(DA)는 하기 식 1에 의해 결정될 수 있다.
< 식 1 >
DA = a×tan(φ1)
여기서, a는 광원(10)과 촬영 장치(30) 사이의 거리를 나타내며, φ1은 광원(10)과 촬영 장치(30)를 연결한 선과 촬영 장치(30)와 A 위치를 연결한 선이 이루는 각도를 나타낸다.
상기 광원(10)으로부터 A 위치까지의 거리는, 기준 위치에 대응될 수 있으며, 상기 기준 위치는 메모리(52, 도 1)에 미리 저장될 수 있다.
피사체(40, 도 1)의 일 점이 B 위치에 배치되어 있을 때, B 위치로부터 반사된 광은, 서브 영역(SA)의 제10 픽셀(P10)에 수광될 수 있다. 반대로, 서브 영역(SA)의 제10 픽셀(P10)에 광이 수광되는 경우, 피사체(40, 도 1)의 일 점이 B 위치에 배치되어 있다는 것을 알 수 있다.
광원(10)으로부터 B 위치까지의 거리(DB)는 하기 식 2에 의해 결정될 수 있다.
< 식 2 >
DB = a×tan(φ12)
여기서, φ12는 광원(10)과 촬영 장치(30)를 연결한 선과 촬영 장치(30)와 B 위치를 연결한 선이 이루는 각도를 나타낸다.
상기 φ2는 촬영 장치(30)의 화각에 대응될 수 있으며, A 위치까지의 거리(DA)와 a가 미리 알려진 경우, 이로부터 φ1를 계산할 수 있으며, a, φ1 및 미리 알려진 φ2로부터 B 위치가 결정될 수 있다. 상기 A 위치에서 반사된 광 및 B 위치에서 반사된 광은, 각각 서브 영역(SA)의 양 최외곽 픽셀에 수광될 수 있으며, 상기 서브 영역(SA)은 A 위치에서부터 B 위치까지 촬영이 가능할 수 있다.
A 위치와 B 위치 사이의 임의의 위치인 T 위치에 대하여, 서브 영역(SA)에 수광된 빔의 위치로부터 T 위치를 하기 식 3에 의해 계산할 수 있다.
< 식 3 >
DT = a×tan[{(φ12)/(NOTP)}×NOP]
여기서, NOTP는 서브 영역(SA)에 포함된 일 행의 전체 픽셀수를 나타내며, NOP은 제1 픽셀(P1)로부터 빔이 수광된 픽셀까지의 픽셀 수를 나타낸다.
상기 a, φ12 및 전체 픽셀수는 미리 정해진 값이므로, 제1 픽셀(P1)로부터 빔이 수광된 픽셀까지의 픽셀 수만을 카운팅함으로써, 임의의 T 위치에 대한 거리(DT)를 계산할 수 있다.
상기 거리(DT)의 계산은 처리부(50, 도 1)에 포함된 계산부(51, 도 1)에서 수행될 수 있으며, 계산 시 메모리(52, 도 2)에 저장된 기준 위치, 즉 A 위치까지의 거리(DA)에 대한 데이터를 이용할 수 있다.
상술한 계산은, 복수 개의 서브 영역(SA)에 대하여 각각 수행될 수 있으며, 처리부(50, 도 1)는 각각의 서브 영역(SA)에서 얻어진 피사체(40, 도 1)에 대한 이차원 거리 정보를 취합하여, 피사체(40, 도 1)의 삼차원 형상을 복원할 수 있다.
상기 이차원 거리 정보를 취합할 때 각각의 서브 영역(SA)과 피사체(40, 도 1)의 위치를 매칭시키는 과정을 수행한 후, 매칭 데이터에 따라 삼차원 형상을 복원할 수 있다.
도 5는 일 실시예에 따른 거리 측정 방법을 순차적으로 나타낸 순서도이다.
도 1 및 도 5를 참조하면, 일 실시예에 따른 거리 측정 방법은, 광원(10)과, 광원(10)의 전방에 배치되며 광원(10)으로부터 방출된 레이저빔을 이차원적으로 배치된 복수 개의 빔으로 분할하는 광학계(20)를 포함하는 거리 측정 장치를 이용하여, 광원(10)으로부터 방출되어 광학계(20)에서 의해 분할된 복수 개의 레이저 빔을 피사체에 조사하는 단계(S110), 광축(OA2)이 광원(10)의 광축(OA1)에 대하여 소정의 각도(θ)로 기울어져 있으며 이미지 센서(31)를 포함하는 촬영 장치(30)를 이용하여, 피사체(40)로부터 반사된 광을 수광하는 단계(S120), 이미지 센서(31)에 수광된, 복수 개의 레이저 빔의 위치를 기반으로 피사체(40)의 거리를 계산하는 단계(S130)를 포함할 수 있다.
상기 광원(10)은 매우 좁은 파장 영역을 갖는 레이저 빔을 방출할 수 있으며, 광원(10)으로부터 방출된 레이저 빔은 광학계(20)에 입사될 수 있다. 광학계(20)에 입사된 광은, 광학계(20)에 의해 이차원적으로 배치된 복수 개의 빔으로 분할될 수 있다. 상기 광학계(20)는 회절 빔 스플리터(diffractive beam splitter)일 수 있으며, 일 실시예에 따르면, 상기 광학계(20)는 입사된 빔을 복수 개의 빔으로 분할하는 회절 광학 소자(21, 도 2a) 및 복수 개의 빔 각각을 집속시키는 집속 렌즈(22, 도 2a)를 포함할 수 있다.
상기 촬영 장치(30)는 피사체(40)로부터 반사된 복수 개의 빔을 수광하는 이미지 센서(31)를 포함할 수 있으며, 촬영 장치(30)는 광원(10)과 소정 간격(a) 이격되어 배치될 수 있다. 상기 촬영 장치(30)의 광축(OA2)은 광원(10)의 광축(OA1)에 대하여 소정의 각도(θ)로 기울어져 있을 수 있으며, 상기 각도(θ)는 약 20도 내지 약 70도일 수 있다.
상기 각도(θ)가 약 20도 미만인 경우, 측정하고자 하는 피사체(40)의 위치가 광원(10) 및 촬영 장치(30)로부터 너무 멀어지므로, 주변의 간섭 등에 의해 피사체(40)에 조사된 레이저 빔이 반사되어 촬영 장치(30)에 도달하기 어려울 수 있다. 상기 각도(θ)가 약 70도를 초과하는 경우, 촬영 범위가 지나치게 좁아질 수 있다.
상기 이미지 센서(31)는, 이차원 고체 이미지 센서일 수 있으며, 이차원적으로 배열되며 피사체(40)에 의해 반사된 복수 개의 빔 각각을 수광하는 복수 개의 서브 영역(SA, 도 3)을 포함할 수 있으며, 복수 개의 서브 영역(SA, 도 3)은 각각 복수 개의 픽셀(P, 도 3)로 구성될 수 있다.
상기 서브 영역(SA, 도 3)은 각각 복수 개의 빔 중 하나의 빔을 수광할 수 있으며, 서브 영역(SA, 도 3)에 수광된 빔의 위치는 피사체(40)의 상기 빔이 반사된 점의 위치에 따라 서브 영역(SA, 도 3) 내에서 달라질 수 있다.
상기 서브 영역(SA, 도 3)의 수 및 넓이는 분할된 복수 개의 빔의 수, 간격 및 측정하고자 하는 피사체(40)의 범위에 따라 정해질 수 있으며, 일 실시예에 따르면, 하나의 서브 영역(SA, 도 3)에는 하나의 빔 만이 수광될 수 있다.
상기 피사체(40)의 거리를 계산하는 단계(S130)는, 복수 개의 서브 영역(SA, 도 3) 각각에 수광된 피사체(40)에 의해 반사된 빔의, 서브 영역(SA) 각각에서의 위치를 기반으로 피사체(40)의 거리를 계산하는 단계를 포함할 수 있으며, 일 실시예에 따른 거리 측정 방법은, 계산된 피사체(40)의 거리를 기반으로 피사체(40)의 삼차원 형상을 복원하는 단계(S140)를 더 포함할 수 있다.
상기 피사체(40)의 거리를 계산하는 구체적인 방법은, 도 4를 이용하여 설명하였으므로, 이하에서는 이에 대한 설명을 생략한다.
상술한 바와 같이, 일 실시예들에 따른 거리 측정 장치 및 거리 측정 방법은 간이한 구성으로 피사체의 2차원 거리를 정밀하게 측정할 수 있으며, 이로부터 피사체의 3차원 형상을 복원할 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
본 발명의 실시예 중 적어도 하나는, 거리 측정 장치 및 거리 측정 방법에 이용할 수 있다.

Claims (15)

  1. 레이저 빔을 조사하는 광원;
    상기 광원의 전방에 배치되며, 상기 광원으로부터 방출된 레이저 빔을 이차원적으로 배치된 복수 개의 빔으로 분할하는 광학계; 및
    광축이 상기 광원의 광축에 대하여 소정의 각도로 기울어져 있으며, 상기 피사체로부터 반사된 복수 개의 빔을 수광하는 이미지 센서를 포함하는 촬영 장치;를 포함하는, 거리 측정 장치.
  2. 제1 항에 있어서,
    상기 복수 개의 빔은 행렬 형태로 배열되며, 서로 실질적으로 동일한 간격으로 배치된, 거리 측정 장치.
  3. 제1 항에 있어서,
    상기 광학계는, 입사된 빔을 복수 개의 레이저 빔으로 분할하는 회절 광학 소자 및 상기 복수 개의 레이저 빔을 각각 집속시키는 집속 렌즈를 포함하는 회절 빔 스플리터(diffractive beam splitter)인, 거리 측정 장치.
  4. 제1 항에 있어서,
    상기 소정의 각도는 약 20도 내지 약 70도인, 거리 측정 장치.
  5. 제1 항에 있어서,
    상기 이미지 센서에 수광된 복수 개의 레이저 빔의 위치를 기반으로 상기 피사체의 거리를 계산하는 계산부 및 상기 피사체의 기준 위치를 저장하는 메모리를 포함하는 처리부를 더 포함하는, 거리 측정 장치.
  6. 제5 항에 있어서,
    상기 이미지 센서는, 이차원적으로 배열되며 상기 피사체에 의해 반사된 상기 복수 개의 빔 각각을 수광하는 복수 개의 서브 영역들을 포함하며,
    상기 서브 영역들은 각각 복수 개의 픽셀들로 구성된, 거리 측정 장치.
  7. 제6 항에 있어서,
    상기 계산부는,
    상기 서브 영역들 각각에 수광된 상기 피사체에 의해 반사된 빔의, 상기 서브 영역들 각각에서의 위치를 기반으로 상기 피사체의 거리를 계산하는, 거리 측정 장치.
  8. 제7 항에 있어서,
    상기 처리부는, 계산된 상기 피사체의 거리를 기반으로 상기 피사체의 삼차원 형상을 복원하는, 거리 측정 장치.
  9. 광원과, 상기 광원의 전방에 배치되며, 상기 광원으로부터 방출된 레이저빔을 이차원적으로 배치된 복수 개의 빔으로 분할하는 광학계를 포함하는 거리 측정 장치를 이용하여,
    상기 광원으로부터 방출되어, 상기 광학계에서 의해 분할된 복수 개의 레이저 빔을 피사체에 조사하는 단계;
    광축이 상기 광원의 광축에 대하여 소정의 각도로 기울어져 있으며 이미지 센서를 포함하는 촬영 장치를 이용하여, 상기 피사체로부터 반사된 광을 수광하는 단계; 및
    상기 이미지 센서에 수광된, 상기 복수 개의 레이저 빔의 위치를 기반으로 상기 피사체의 거리를 계산하는 단계;를 포함하는, 거리 측정 방법.
  10. 제9 항에 있어서,
    상기 복수 개의 빔은 행렬 형태로 배열되며, 서로 실질적으로 동일한 간격으로 배치된, 거리 측정 방법.
  11. 제9 항에 있어서,
    상기 광학계는, 입사된 빔을 복수 개의 레이저 빔으로 분할하는 회절 광학 소자 및 상기 복수 개의 레이저 빔을 각각 집속시키는 집속 렌즈를 포함하는 회절 빔 스플리터(diffractive beam splitter)인, 거리 측정 방법.
  12. 제9 항에 있어서,
    상기 소정의 각도는 약 20도 내지 약 70도인, 거리 측정 방법.
  13. 제9 항에 있어서,
    상기 이미지 센서는, 이차원적으로 배열되며 상기 피사체에 의해 반사된 상기 복수 개의 빔 각각을 수광하는 복수 개의 서브 영역들을 포함하며,
    상기 서브 영역들은 각각 복수 개의 픽셀로 구성된, 거리 측정 방법.
  14. 제13 항에 있어서,
    상기 피사체의 거리를 계산하는 단계는,
    상기 서브 영역들 각각에 수광된 상기 피사체에 의해 반사된 빔의, 상기 서브 영역들 각각에서의 위치를 기반으로 상기 피사체의 거리를 계산하는 단계를 포함하는, 거리 측정 방법.
  15. 제14 항에 있어서,
    계산된 상기 피사체의 거리를 기반으로, 상기 피사체의 삼차원 형상을 복원하는 단계를 더 포함하는, 거리 측정 방법.
PCT/KR2014/012671 2014-12-09 2014-12-23 거리 측정 장치 및 거리 측정 방법 WO2016093415A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0175878 2014-12-09
KR1020140175878A KR20160069806A (ko) 2014-12-09 2014-12-09 거리 측정 장치 및 거리 측정 방법

Publications (1)

Publication Number Publication Date
WO2016093415A1 true WO2016093415A1 (ko) 2016-06-16

Family

ID=56107581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012671 WO2016093415A1 (ko) 2014-12-09 2014-12-23 거리 측정 장치 및 거리 측정 방법

Country Status (2)

Country Link
KR (1) KR20160069806A (ko)
WO (1) WO2016093415A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110285788A (zh) * 2018-03-19 2019-09-27 深圳光峰科技股份有限公司 ToF相机及衍射光学元件的设计方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102087081B1 (ko) * 2017-09-13 2020-03-10 네이버랩스 주식회사 영상센서 방식 라이다의 측정거리 향상을 위한 광 집속 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424556A (en) * 1993-11-30 1995-06-13 Honeywell Inc. Gradient reflector location sensing system
US20040145722A1 (en) * 1998-05-25 2004-07-29 Kenya Uomori Range finder device and camera
US20050206872A1 (en) * 2004-03-17 2005-09-22 Asia Optical Co., Inc. Optical system for laser range finder
US20110013173A1 (en) * 2007-06-25 2011-01-20 Yin-Long Luo Laser range finding device and distance measurement method thereof
US20140118718A1 (en) * 2012-10-31 2014-05-01 The Boeing Company Modulated Laser Range Finder and Method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424556A (en) * 1993-11-30 1995-06-13 Honeywell Inc. Gradient reflector location sensing system
US20040145722A1 (en) * 1998-05-25 2004-07-29 Kenya Uomori Range finder device and camera
US20050206872A1 (en) * 2004-03-17 2005-09-22 Asia Optical Co., Inc. Optical system for laser range finder
US20110013173A1 (en) * 2007-06-25 2011-01-20 Yin-Long Luo Laser range finding device and distance measurement method thereof
US20140118718A1 (en) * 2012-10-31 2014-05-01 The Boeing Company Modulated Laser Range Finder and Method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110285788A (zh) * 2018-03-19 2019-09-27 深圳光峰科技股份有限公司 ToF相机及衍射光学元件的设计方法

Also Published As

Publication number Publication date
KR20160069806A (ko) 2016-06-17

Similar Documents

Publication Publication Date Title
KR102166372B1 (ko) 옵티컬 트래킹 시스템 및 옵티컬 트래킹 방법
WO2011087337A2 (ko) 기판 검사장치
WO2015178542A1 (ko) 카메라 파라미터 측정 장치 및 그 방법
CN106028024A (zh) 用于测量光学成像系统的成像性质的装置和方法
CN108195305B (zh) 一种双目检测系统及其深度检测方法
WO2015080480A1 (ko) 웨이퍼 영상 검사 장치
WO2017195984A1 (ko) 3차원 스캐닝 장치 및 방법
JP6214271B2 (ja) 距離検出装置、撮像装置、距離検出方法、プログラム及び記録媒体
CN111768486B (zh) 基于旋转折射片的单目摄像机三维重建方法、系统
JPWO2013005244A1 (ja) 3次元相対座標計測装置およびその方法
US11375888B2 (en) Intraoral three-dimensional scanning system based on stereo vision using a monocular camera
WO2015102280A1 (ko) 스테레오 카메라 장치 및 그의 렉티피케이션 방법
WO2014112782A1 (ko) 트랙킹 시스템 및 이를 이용한 트랙킹 방법
WO2016093415A1 (ko) 거리 측정 장치 및 거리 측정 방법
WO2018186507A1 (ko) 가정된 캘리브레이션 모델 없이 측정된 데이터를 이용하여 캘리브레이션을 수행하는 방법 및 상기 방법을 수행하는 3차원 스캐너 캘리브레이션 시스템
WO2012148025A1 (ko) 복수의 카메라를 이용한 3차원 물체 검출장치 및 방법
WO2019139441A1 (ko) 영상 처리 장치 및 방법
WO2011071313A2 (ko) 텍스쳐 영상과 깊이 영상을 추출하는 장치 및 방법
WO2015115770A1 (ko) 캘리브레이션 장치 및 카메라 시스템
CN110662013B (zh) 摄像装置、图像处理方法和存储介质
US9781397B2 (en) Projector and projector system
Lin et al. Real-time low-cost omni-directional stereo vision via bi-polar spherical cameras
JP2013015519A (ja) 3次元相対座標計測装置およびその方法
KR20190134426A (ko) 트리오 영상장치를 통한 태양광 모듈 열화상 촬영 시스템
WO2014046325A1 (ko) 3차원 계측 시스템 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907911

Country of ref document: EP

Kind code of ref document: A1