WO2016093334A1 - Net-shaped object with excellent high-temperature durability - Google Patents

Net-shaped object with excellent high-temperature durability Download PDF

Info

Publication number
WO2016093334A1
WO2016093334A1 PCT/JP2015/084745 JP2015084745W WO2016093334A1 WO 2016093334 A1 WO2016093334 A1 WO 2016093334A1 JP 2015084745 W JP2015084745 W JP 2015084745W WO 2016093334 A1 WO2016093334 A1 WO 2016093334A1
Authority
WO
WIPO (PCT)
Prior art keywords
network structure
block copolymer
less
thermoplastic elastomer
thickness
Prior art date
Application number
PCT/JP2015/084745
Other languages
French (fr)
Japanese (ja)
Inventor
章文 安井
小淵 信一
洋行 涌井
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2016563743A priority Critical patent/JPWO2016093334A1/en
Publication of WO2016093334A1 publication Critical patent/WO2016093334A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/03Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random

Definitions

  • the present invention is a heat-resistant and durable office chair, furniture, sofa, bed pad, mattress, vehicle seats such as trains, automobiles, motorcycles, strollers, child seats, floor mats, collision and pinching prevention members, etc.
  • the present invention relates to a network structure suitable for a shock absorbing mat or the like.
  • Patent Documents 1 and 2 disclose a network structure using a polyester-based thermoplastic elastomer and a manufacturing method thereof. This is excellent in that it can solve problems such as moisture permeability and water permeability derived from polyurethane, air permeability, heat storage, VOC caused by unreacted chemicals, generation of toxic gas during combustion, and difficulty in recycling. These network structures are derived from polyester thermoplastic elastomers and are excellent in high resilience, and are widely used as high resilience cushions.
  • Patent Document 3 discloses a low-repulsion network structure using ⁇ -olefin. This is being widely used as a network structure excellent in low resilience and low temperature characteristics. However, in recent years, it has become difficult to simultaneously achieve high cushion performance and durability performance required by users. In particular, the lack of heat resistance and moist heat resistance due to the use of ⁇ -olefin as a raw material has been a major bottleneck.
  • Patent Documents 4 and 5 disclose a network structure excellent in thermal dimensional stability and a manufacturing method thereof. This is aimed at dimensional stability at 40 ° C., and an example in which a compression residual strain at 40 ° C. is 5 to 15% using a general ⁇ -olefin is disclosed.
  • the present invention has been made against the background of the above-described prior art. Even in a network structure using a polyolefin-based thermoplastic elastomer, it has a predetermined hardness, and remains under compression even at high temperature and high humidity. It is an object of the present invention to provide a network structure having a small distortion and suitable for uses such as a cushion.
  • the present invention is as follows.
  • a network structure having a three-dimensional random loop joint structure composed of a continuous polyolefin-based thermoplastic elastomer composed of an olefin block copolymer having a fiber diameter of 0.1 to 3.0 mm.
  • a network structure having a three-dimensional random loop joining structure composed of a continuous line of a polyolefin-based thermoplastic elastomer composed of an olefin block copolymer having a fiber diameter of 0.1 to 3.0 mm.
  • the olefin block copolymer is an ethylene / ⁇ -olefin block copolymer.
  • the ethylene / ⁇ -olefin block copolymer is a block copolymer containing 50 to 95 mol% of ethylene and 5 to 50 mol% of an ⁇ -olefin having 3 or more carbon atoms. .
  • a network structure having a small compressive residual strain can be obtained even under high temperature and high humidity heat.
  • This net-like structure has an effect that the compressive residual strain is small even in an environment where the temperature becomes high in summer, such as a train, an automobile, a two-wheeled vehicle and the like, and in an environment where the humidity is high due to the influence of sweat generated by passengers. Furthermore, even in an environment where the temperature becomes high due to electric blankets, heaters, hot water bottles, and the like used in winter, and in an environment where the humidity is high such as in a bed, there is an effect that the compressive residual strain is small.
  • the network structure of the present invention needs to use a continuous polyolefin-based thermoplastic elastomer composed of an olefin block copolymer. Cushioning properties can be obtained by using the characteristics of the network structure constituted by the continuous linear body and the rubber elasticity of the resin that is the material of the continuous linear body.
  • the compression residual strain is small under high temperature and high humidity heat. It is possible to obtain a network structure having high durability (sag resistance).
  • the “olefin block copolymer” in the present invention is a multi-block or segment copolymer, and two or more chemically different regions or segments (also referred to as “blocks”) joined linearly. ), I.e., polymers containing chemically distinct units attached to the polymerized ethylene functional group at ends rather than in a pendant or graft fashion.
  • the polyolefin-based thermoplastic elastomer composed of the olefin block copolymer that is the material of the network structure of the present invention is preferably a multi-block copolymer composed of ethylene / ⁇ -olefin, and ethylene and a carbon number of 3 or more. Those obtained by copolymerizing ⁇ -olefins are preferred.
  • examples of the ⁇ -olefin having 3 or more carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, -Decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, etc.
  • the ratio of the ethylene / ⁇ -olefin multiblock copolymer in the present invention to the ethylene and ⁇ -olefin having 3 or more carbon atoms is 50 to 95 mol% of ethylene and 5 ⁇ -olefin having 3 or more carbon atoms. It is preferably in the range of ⁇ 50 mol%, more preferably in the range of 70 to 95 mol% of ethylene and 5 to 30 mol% of ⁇ -olefin having 3 or more carbon atoms.
  • a polymer compound is elastomeric because a hard segment and a soft segment are present in a polymer chain.
  • ethylene plays a role of a hard segment
  • ⁇ -olefin having 3 or more carbon atoms plays a role of a soft segment. Therefore, when the ratio of ethylene is less than 50 mol%, the number of hard segments is small, so that the rubber elasticity recovery performance is lowered.
  • the ratio of ethylene is more preferably 70 mol% or more, further preferably 75 mol% or more, and particularly preferably 80 mol% or more.
  • the ratio of ethylene exceeds 95 mol%, since there are few soft segments, elastomeric properties are hardly exhibited and cushion performance is inferior.
  • the ratio of ethylene is more preferably 93 mol% or less, still more preferably 90 mol% or less.
  • the density of the polyolefin-based thermoplastic elastomer comprising the olefin block copolymer constituting the network structure of the present invention is preferably 0.84 to 0.94 g / cm 3 , and 0.85 to 0.92 g / m. 3 is more preferable, and 0.86 to 0.90 g / m 3 is more preferable.
  • the density exceeds 0.94 g / cm 3 , it indicates that there are too many hard segment portions in the resin, the cushion performance is inferior, the density is high, and the network structure itself becomes heavy.
  • the density is less than 0.84 g / m 3 , it indicates that the hard segment for exhibiting the elastomeric property of the polyethylene-based thermoplastic elastomer made of the olefin block copolymer is insufficient, and the recovery performance by rubber elasticity. Decreases.
  • the melting point of the polyolefin-based thermoplastic elastomer comprising the olefin block copolymer constituting the network structure of the present invention is preferably 90 ° C or higher, more preferably 100 ° C or higher, further preferably 110 ° C or higher, 115 ° C. The above is particularly preferable, and 120 ° C. or higher is most preferable. In this invention, that melting
  • the specific heat of the polyolefin-based thermoplastic elastomer comprising the olefin block copolymer constituting the network structure of the present invention is preferably 2.26 J / g ⁇ ° C. or more, more preferably 2.28 J / g ⁇ ° C. or more. More preferably 2.30 J / g ⁇ ° C. or higher.
  • a specific heat of 2.26 J / g ⁇ ° C. or more in a polyolefin-based thermoplastic elastomer composed of an olefin block copolymer indicates that the crystal structure of the hard segment is sufficiently present in the resin.
  • the upper limit of the specific heat is not particularly limited, but in the case of a polyethylene thermoplastic elastomer made of an olefin block copolymer, the specific heat is usually 2.50 J / g ⁇ ° C. or less.
  • the melt flow rate (hereinafter referred to as “MFR”) at 190 ° C. of the polyolefin-based thermoplastic elastomer comprising the olefin block copolymer constituting the network structure of the present invention is preferably 2 to 20 g / min. 3 to 18 g / min is more preferable, and 4 to 16 g / min is even more preferable.
  • MFR at 190 ° C. exceeds 20 g / min in a polyolefin-based thermoplastic elastomer composed of an olefin block copolymer, the solidification rate of the resin by cooling becomes slow, and it becomes difficult to form a network structure.
  • the MFR at 190 ° C. is less than 2 g / min, the discharge linear velocity of the resin during spinning becomes low, it becomes difficult for the continuous linear body to draw a loop, and a network structure cannot be obtained.
  • a multi-block copolymer made of ethylene / ⁇ -olefin as the polyolefin-based thermoplastic elastomer made of the olefin block copolymer constituting the network structure of the present invention. Then, the connecting chain length of the main chain is shortened, the crystal structure is hardly formed, and the durability is lowered.
  • One method for obtaining this multi-block copolymer is a method of copolymerizing ethylene and ⁇ -olefin using a chain shuttling reaction catalyst.
  • the multi-block copolymer composed of ethylene / ⁇ -olefin constituting the network structure of the present invention contains a crystalline phase, an amorphous phase, and an interfacial phase in a predetermined range.
  • the contents of the crystalline phase, the amorphous phase and the interfacial phase can be measured using a pulsed NMR method. From the result of the relaxation time obtained by the pulse NMR method, the separation of the crystalline phase, the amorphous phase and the interfacial phase and the respective amounts can be defined.
  • a method for analyzing the relationship between the physical properties, the phase separation structure, and the composition from the analysis result of the pulse NMR method is known.
  • the free induction decay (FID) signal obtained by the pulse NMR method can be divided into three components by subtracting in order from the component having the long spin-spin relaxation time T2 by the least square method and separating the waveforms.
  • a component having a long relaxation time is a component having a large mobility and an amorphous phase
  • a component having a short relaxation time is a component having a small mobility and a crystal phase
  • a component having a middle relaxation time is an interface phase.
  • the amount of each component can be determined using a calculation formula using a Gaussian function and a Lorentzian function (for example, “phase separation structure analysis of polyurethane resin by solid-state NMR (high-resolution NMR and pulsed NMR)” (DIC Technical Review No. .12, pp. 7-12, 2006)).
  • the measurement method of the pulse NMR method in the present invention will be described in detail as follows. First, a sample of a 1 mm diameter glass tube packed with a network structure sample cut to about 1 to 2 mm square to a height of 1 to 2 cm is placed in a magnetic field, and the macroscopic magnetization after applying a high frequency pulsed magnetic field. When the relaxation behavior is measured, a free induction decay (FID) signal is obtained as shown in FIG. 1 (horizontal axis: time ( ⁇ sec), vertical axis: free induction decay signal). The initial value of the obtained FID signal is proportional to the number of protons in the measurement sample, and when the measurement sample has three components, the FID signal appears as the sum of response signals of the three components.
  • FID free induction decay
  • each component contained in the sample has a difference in mobility, the speed of decay of the response signal differs among the components, and the spin-spin relaxation time T2 differs.
  • the spin-spin relaxation time T2 differs.
  • the amorphous phase is a component having a large molecular mobility
  • the crystal phase is a component having a small molecular mobility
  • an intermediate component is an interface phase.
  • spin-spin relaxation time (T2) is used as an index of molecular mobility, and a larger value indicates higher mobility.
  • T2 decreases, and conversely, the amorphous phase T2 increases.
  • the reason why the spin-spin relaxation time T2 is a measure of molecular mobility can be understood from the relationship between the correlation time ⁇ c of molecular motion and T2. It is known that ⁇ c represents an average time for a molecule in a certain motion state to undergo molecular collision, and the value of T2 is shortened in inverse proportion to the increase in ⁇ c. This indicates that T2 becomes shorter as the molecular mobility decreases.
  • the “component amount (phase amount)” is the ratio (mass%) of each phase, and the lower the amorphous phase T2 and the lower the amorphous phase ratio, the harder the resin. Further, the smaller the interfacial phase, the more clearly the crystal phase and the amorphous phase are separated from each other, and the elastic property is less likely to cause strain. Conversely, the greater the interfacial phase, the less the phase separation between the crystalline phase and the amorphous phase, and the delayed elastic characteristic.
  • the relaxation time of the crystal phase is preferably 11.4 ⁇ s or less, more preferably 11.2 ⁇ s or less, and 11.0 ⁇ m. The following is more preferable.
  • the relaxation time of the crystal phase being greater than 11.4 ⁇ s indicates that the crystal phase structure is insufficient.
  • the lower limit is not particularly limited, but is usually 1.0 ⁇ s or more for a multiblock copolymer composed of ethylene / ⁇ -olefin.
  • the interfacial phase fraction is preferably 40% by mass or less, more preferably 35% by mass or less, and 30% by mass. The following is more preferable.
  • the interface phase is the interface between the hard segment and the soft segment.
  • the small fraction of the interface phase means that the interface between the hard segment and the soft segment is clear and the number of interfaces between the hard segment and the soft segment is small. It is shown that.
  • the resin has a density within a predetermined range, that is, a resin having a crystal structure, and has an interface phase between a hard segment and a soft segment.
  • the resin having a small ratio indicates that the crystal structure has a sufficiently large size as compared with the resin having a large interphase ratio. As a result, it is considered to have a high melting point and a large specific heat.
  • the lower limit is not particularly limited, but in a multi-block copolymer composed of ethylene / ⁇ -olefin, it is usually 10% by mass or more.
  • the relaxation time of the crystal phase and the interfacial phase ratio can be changed depending on the resin used, and at the same time can be changed by heat treatment. For example, by performing an annealing process on the obtained network structure, the relaxation time of the crystal phase is shortened and the interface phase ratio is decreased.
  • polystyrene-based thermoplastic elastomers such as styrene isoprene copolymers, styrene-butadiene copolymers, and those Polymer modifiers such as hydrogenated copolymers can be blended.
  • phthalate ester-based, trimellitic acid ester-based, fatty acid-based, epoxy-based, adipic acid ester-based, polyester-based plasticizers known hindered phenol-based, sulfur-based, phosphorus-based, amine-based antioxidants, Reactions such as hindered amine, triazole, benzophenone, benzoate, nickel, salicyl and other light stabilizers, antistatic agents, peroxides and other molecular modifiers, epoxy compounds, isocyanate compounds, carbodiimide compounds, etc.
  • Group-containing compounds, metal deactivators, organic and inorganic nucleating agents, neutralizing agents, antacids, antibacterial agents, fluorescent brighteners, fillers, flame retardants, flame retardant aids, organic and inorganic Of pigments can be added. It is also effective to increase the molecular weight of the thermoplastic resin in order to improve heat resistance and sag resistance.
  • the fiber diameter of the continuous linear body constituting the network structure of the present invention is 0.1 to 3.0 mm, preferably 0.2 to 2.5 mm.
  • the fiber diameter is an important factor for the network structure to obtain a soft tactile feel and necessary hardness. If the fiber diameter is small, the hardness required for cushioning properties cannot be maintained, and conversely if the fiber diameter is too large, it becomes too hard. If the fiber diameter is less than 0.1 mm, the denseness and soft touch of the network structure are sufficient, but it is difficult to ensure the required hardness. On the other hand, when the fiber diameter exceeds 3.0 mm, it is easy to ensure the required hardness of the network structure, but the tactile sensation is hard and a stiff feeling becomes remarkable.
  • the apparent density of the network structure of the present invention is an important factor that determines cushioning properties, is designed according to the application, and is 0.005 to 0.20 g / cm 3 , preferably 0.01 to 0.18 g. / Cm 3 , more preferably 0.02 to 0.15 g / cm 3 . Apparent density is not maintained when the hardness required for the cushion of 0.005 g / cm 3 less than the network structure, the network structure exceeds 0.20 g / cm 3 is too hard.
  • the thickness of the network structure of the present invention relates to cushioning properties, preferably 10 mm to 200 mm or less, more preferably 20 to 120 mm. If the thickness is less than 10 mm, the net-like structure is too thin and a feeling of bottoming is felt. If the thickness exceeds 200 mm, it is too thick for use as a cushioning material, and comfort is impaired.
  • the network structure of the present invention has a 70 ° C. compressive residual strain of 30% or less, preferably 27% or less, more preferably 25% or less, still more preferably 20% or less, and particularly preferably 18%. % Or less, and most preferably 15% or less.
  • the lower limit of the 70 ° C. compression residual strain is not particularly limited, but is usually 1% or more.
  • the 70 ° C. compression residual strain means that the network structure is cut into a size of 10 cm ⁇ 10 cm, the thickness is measured (thickness before treatment: a), and the compressed state is 50% of the thickness. After being left in a 70 ° C.
  • the network structure of the present invention has a 50 ° C., 95RH% compressive residual strain of 20% or less, preferably 19% or less, more preferably 18% or less, and even more preferably 15% or less.
  • the lower limit of 50 ° C. and 95 RH% compression residual strain is not particularly limited, but is usually 1% or more.
  • the 50 ° C. and 95 RH% compressive strain in the present invention means that the network structure is cut into a size of 10 cm ⁇ 10 cm, the thickness is measured (thickness before treatment: a), and the compressed state is 50% with respect to this thickness. And then left in an environment of temperature 50 ° C.
  • the network structure of the present invention has a hardness retention after repeated compression of 80,000 times, preferably 68% or more, more preferably 70% or more, still more preferably 72% or more, and particularly preferably 74% or more.
  • the upper limit of the hardness retention after repeated compression for 80,000 times is not particularly limited, but is usually 95% or less.
  • the hardness retention after repeated compression of 80,000 times in the present invention is the hardness retention at 25% compression after 50% constant displacement repeated compression, and the larger this value, the more durable the network structure due to repeated deformation. It can be said that sexuality is difficult to occur.
  • the network structure of the present invention has a 85 ° C., 95 RH% compressive residual strain of 35% or less, preferably 31% or less, more preferably 30% or less, and even more preferably 28% or less. Preferably it is 25% or less.
  • the lower limit of the 80 ° C., 95 RH% compression residual strain is not particularly limited, but is usually 1% or more.
  • 80 ° C. and 95 RH% compressive residual strain means that the network structure is cut into a size of 10 cm ⁇ 10 cm, the thickness is measured (thickness before treatment: a), and the thickness is compressed by 50%.
  • the compressed state After being left in an environment of 80 ° C. and humidity of 95% for 22 hours, the compressed state is released, and cooled at room temperature for 30 minutes, and the thickness is measured again (thickness after treatment: b). ) ⁇ (B) ⁇ / (a) ⁇ 100.
  • 80 °C, 95RH% is considered to be the upper limit temperature / humidity environment used in car seats and vehicle seats in the summer. ). That is, it is an index of the limit of thickness change (sagging) when used in a high temperature and high humidity environment.
  • the 25% compression hardness of the network structure of the present invention is preferably 1.5 to 30 N / ⁇ 50 mm, more preferably 2 to 20 N / ⁇ 50 mm. If the 25% compression hardness is less than 1.5 N / ⁇ 50 mm, the network structure has a low hardness and a feeling of bottoming out. On the other hand, if it exceeds 15 N / ⁇ 50 mm, the network structure has a high hardness, and a preferable cushioning property cannot be obtained.
  • the 65% compression hardness of the network structure of the present invention is preferably 5 N to 30 N / ⁇ 50 mm, more preferably 6 to 25 N / ⁇ 50 mm.
  • the 65% compression hardness is less than 5 N / ⁇ 50 mm, the hardness of the network structure is low and a feeling of bottoming comes out.
  • it exceeds 30 N / ⁇ 50 mm the network structure has a high hardness and a preferable cushioning property cannot be obtained.
  • the hysteresis loss of the network structure of the present invention is preferably 25 to 60%, more preferably 30 to 55%, still more preferably 35 to 55%. If the hysteresis loss exceeds 60%, elasticity cannot be felt. On the other hand, if the amount is less than 25%, the network structure has a too strong recovery force, so that the network structure has a hard feel.
  • a network structure can be obtained by a known method described in JP-A-7-68061.
  • a polyolefin-based thermoplastic elastomer composed of an olefin block copolymer is melted using a melting temperature higher than the melting point of the polyolefin-based thermoplastic elastomer composed of an olefin block copolymer in a range of 20 to 120 ° C., and has a plurality of orifices.
  • a polyolefin-based thermoplastic elastomer composed of an olefin block copolymer is distributed to the nozzle orifice from a multi-row nozzle.
  • a polyolefin-based thermoplastic elastomer composed of an olefin block copolymer melted from the multi-row nozzle is discharged downward, and fused by bringing them into linear contact with each other in a molten state to form a three-dimensional structure.
  • the three-dimensional structure is sandwiched by a take-off net installed in a take-up device, cooled in a cooling tank, then sandwiched by a nip roller, pulled out from the cooling tank, drained, dried, and smoothed on both sides or one side.
  • a structure can be obtained.
  • the polyolefin-based thermoplastic elastomer comprising the olefin block copolymer used in the present invention has a higher melting point than the conventionally used polyolefin-based thermoplastic elastomer, the extrusion temperature during spinning can be set high. . Furthermore, since the specific heat is higher than that of the conventional polyolefin-based thermoplastic elastomer, the continuous linear body forms a loop, and has a larger amount of heat when forming a contact and contact with the adjacent linear shape. It is considered that it is possible to form a stronger contact than before.
  • the spinning temperature is important, and there is an appropriate range depending on the MFR of the resin.
  • the spinning temperature is melting point + 100-140 ° C.
  • the spinning temperature is melting point + 80-100 ° C.
  • the fibers are solidified before forming the contact, and a strong contact cannot be formed.
  • cooling in the water tank is not sufficient, and a network structure cannot be formed.
  • the network structure of the present invention is superior in heat resistance and heat-and-moisture resistance compared to a network structure using a conventional polyolefin-based thermoplastic elastomer, which is thought to be because the contact points between the lines are strong. That is, even when subjected to external force such as compression in a high temperature environment of 70 ° C. or 80 ° C. and 95 RH% in a high temperature and high humidity heat environment, the contact points between the wires are strong, so that the external force is applied to the entire network structure. It will be possible to disperse. For this reason, concentration of stress can be avoided, and it is considered that heat resistance and moisture heat resistance are excellent.
  • the single-hole discharge amount of the polyolefin-based thermoplastic elastomer made of the olefin block copolymer discharged from the orifice of the multi-row nozzle is preferably 0.5 g / min or more, and 0.7 g / Min or more is more preferable, and 1.0 g / min or more is more preferable. If the single-hole discharge rate is less than 0.5 g / min, the continuous linear body becomes too thin to form a network structure, and at the same time, the amount of heat of the linear body itself decreases, It is difficult to form a strong contact.
  • the upper limit of the single-hole discharge amount is not particularly limited as long as the network structure can be formed. However, when the network structure is 7.0 g / min or more, it is difficult to form the network structure because the linear body itself becomes too thick. At the same time, it becomes difficult to cool the formed network structure, and the quality may be deteriorated.
  • the distance between the lowermost nozzle surface and the water surface is preferably 500 mm or less, more preferably 470 mm or less, and even more preferably 450 mm or less. If the air gap is larger than 500 mm, the amount of heat of the linear body itself is reduced and a contact point with the adjacent linear shape is formed, making it difficult to form a strong contact point.
  • the lower limit of the air gap is not particularly limited, but may be shorter as long as the network structure can be formed, but is preferably 100 mm or more. If it is smaller than 100 mm, the number of contact with the adjacent linear shape is reduced, so that it is difficult to form the network structure, and at the same time, it is difficult to cool the formed network structure, which may result in poor quality.
  • the take-up speed of the take-off net is preferably 10.0 m / min or less, more preferably 7.0 m / min or less, and even more preferably 5.0 m / min or less.
  • the take-up speed exceeds 10.0 m / min, the linear shape may not be entangled and a contact may not be formed.
  • the lower limit of the take-up speed is not particularly limited, it may be slow as long as it is a range that forms a network structure, but is preferably 0.3 m / min or more. If it is slower than 0.3 m / min, cooling after the contact is formed becomes slow, and the quality may be inferior.
  • heat treatment may be performed on the network structure obtained by cooling.
  • the heat treatment temperature is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, and further preferably 90 ° C. or higher.
  • the heat treatment is preferably performed at a temperature lower than the melting point of the polyolefin-based thermoplastic elastomer made of the olefin block copolymer, preferably at a temperature 5 ° C. lower than the melting point, more preferably 10 ° C. lower than the melting point.
  • the heat treatment time is preferably 1 minute or longer, more preferably 10 minutes or longer, further preferably 20 minutes or longer, particularly preferably 30 minutes or longer.
  • the heat treatment time is preferably longer, but even if the heat treatment time is longer than a certain time, the heat treatment effect does not increase and conversely causes deterioration of the resin. Therefore, the heat treatment time is preferably within 1 hour.
  • the melting curve preferably has an endothermic peak from room temperature (20 ° C.) to the melting point or lower. There may be two or more endothermic peaks below the melting point, and it may appear as a shoulder depending on the proximity to the melting point and the baseline shape. Those having this endothermic peak have improved heat and humidity resistance as compared with those having no endothermic peak.
  • the amorphous phase is rearranged closer to the interface phase and the interface phase closer to the crystal phase. It can be considered that a more stable interface phase is formed.
  • the network structure of the present invention is a deodorizing antibacterial, deodorizing, antifouling, coloring, aroma, flame retardant in any process to be commercialized, such as a resin manufacturing process, a molding process, a post-processing process, etc. within a range not deteriorating performance Moreover, functions such as moisture absorption and desorption can be imparted.
  • the cross-sectional shape of the continuous linear body constituting the network structure of the present invention is not particularly limited, but a preferable anti-compression property and touch can be imparted by using a hollow cross-section, an atypical cross-section, or a combination thereof.
  • the compression characteristics can be adjusted by the fiber diameter and the modulus of the material used. Specific examples include a method of adjusting the fiber diameter of the continuous linear body, a method of changing the cross-sectional shape of the continuous linear body to an atypical cross section or a hollow cross section, and a method of changing the hardness of the material itself used.
  • the irregular cross section examples include a polygonal cross section such as a triangle, a quadrangle, and a cross shape, a cross sectional shape having protrusions on them, a star shape, a Y shape, a U shape, and a deformed cross section having a plurality of protrusions on them.
  • An anti-compressive property can be provided by using an irregular cross section. The anti-compression property can be adjusted according to the modulus of the material used, and the degree of initial compression stress can be adjusted by increasing the degree of deformation for soft materials, and the degree of sitting can be improved by lowering the degree of deformation for materials with slightly higher modulus. Gives good compressibility.
  • the continuous linear body constituting the network structure into a hollow cross section or an irregular cross section, for example, in the case of a hollow cross section, it is possible to use an orifice that can form a hollow orifice shape.
  • the hollow section is easy to increase the hollowness when the polyolefin-based thermoplastic elastomer composed of the olefin block copolymer used in the network structure has a large ballistic effect, but the hollowness of the orifice is as high as possible when the ballast effect is small. Otherwise, the hollowness of the yarn will not increase, so it is necessary to select the optimum orifice shape depending on the material used.
  • a preferable hollow ratio in the continuous linear body of the present invention is 3 to 80%, more preferably 5 to 60%, and still more preferably 10 to 50%. If the hollowness is less than 3%, the effect of hollowness is insufficient, and if it exceeds 80%, the hollow cross section tends to be deformed when subjected to stress concentration with a large force from the direction perpendicular to the cross section. Hollow crushing occurs, resulting in poor shape retention.
  • the cross-sectional shape is not particularly limited as long as it has a hollow portion, but it is preferable to have a deformed hollow cross-section because the compression resistance is improved.
  • the continuous linear bodies constituting the network structure are combined into a seascore structure and the bonding strength is improved by utilizing the melting point difference.
  • it can be obtained by using a thermoplastic elastomer having a melting point difference of 20 ° C. or more between the thermoplastic elastomer used for the sheath component and the core component and distributing the seascore immediately before the orifice and discharging the thermoplastic elastomer.
  • the difference in melting point between the thermoplastic elastomer used for the sheath component and the core component is more preferably 30 ° C. or more.
  • the spinning temperature when the continuous linear body constituting the network structure is combined with the seascore structure is preferably at least 10 ° C. higher than the melting point of the low melting point component.
  • the network structure of the present invention includes a multilayer structure.
  • the upper surface and the lower layer can be composed of continuous linear bodies having different fiber diameters.
  • the upper layer is composed of a continuous linear body with a small fiber diameter and soft
  • the lower layer is composed of a continuous linear body with a large fiber diameter to give hardness, thereby reducing both soft touch and bottoming feeling.
  • the multi-layered method include a method of stacking network structures and fixing them on the side ground, a method of melting and fixing by heating, a method of bonding with an adhesive, a method of restraining with sewing or a band, and the like.
  • the endothermic peak (melting peak) temperature was determined from an endothermic curve measured from a room temperature using a differential scanning calorimeter Q200 manufactured by TA Instruments, at a heating rate of 20 ° C./min.
  • the sample after the initial thickness measurement was 75 mm of the initial thickness at a speed of 50 mm / min using a compression plate having a diameter of 150 mm and a thickness of 20 mm in an orientex Tensilon RTM250 (using 1 kN load cell) in an environment of 20 ⁇ 2 ° C.
  • the compression plate After compression to%, the compression plate is returned to the original position at the same speed without holding time (first stress-strain curve), and then the same operation (compression and returning) is repeated without holding time (second time) Stress strain curve).
  • Hysteresis loss is determined according to the following equation, with the compression energy (WC) indicated by the second compression stress curve and the compression energy (WC ′) indicated by the second decompression stress curve.
  • Example 1 A nozzle having a cross-section with a triple-bridge hollow forming section with an orifice diameter of 1 mm and an inner diameter of 0.6 mm on a nozzle effective surface having a width direction of 96 mm and a thickness direction width of 31.2 mm.
  • INFUSE D9530.05 manufactured by Dow Chemicals
  • the spinning temperature is set to 240 ° C.
  • the single hole discharge amount was discharged below the nozzle under the condition of 1.0 g / min. Cooling water is arranged at a distance of 18 cm below the nozzle surface, the temperature of the cooling water is 20 ° C., and as a take-up, a take-up device having a stainless steel endless net with a width of 300 mm is partially taken out on the water surface. Arranged. The interval between the conveyors was set to a width of 20 mm in parallel, and a three-dimensional network structure was formed while fusing the discharge line in the melted state to form a loop and fusing the contact portions.
  • Table 1 shows the characteristics of the network structure made of the polyolefin-based thermoplastic elastomer.
  • the resin composition of the resin constituting the network structure is performed by the above-described method by 13 C-NMR measurement at a resonance frequency of 125 MHz, and the molar ratio of ethylene and 1-octene as the resin composition is as follows. It was measured.
  • Determination of the molar ratio of 1-octene copolymerization was determined by the following method.
  • the peak of o-dichlorobenzene used for the solvent is observed in the vicinity of 120 to 140 ppm, and the 13 C peak at the 1st and 2nd positions detected on the lowest magnetic field side is set to 133.1 ppm.
  • a peak detected in the vicinity of 10.0 to 50 ppm is a peak corresponding to 1-octene copolymer polyethylene.
  • the peak of the tertiary carbon is 38.2 to 38.4 ppm and 35.9 to 36.1 ppm
  • the peak of the primary carbon is 14.0 to 14.2 ppm
  • the others are secondary carbon. It corresponds to the peak.
  • the ethylene copolymerization mole ratio was determined by the following formula.
  • Y 100-X (mol%)
  • the resin composition and the copolymerization mol ratio were measured in the same manner.
  • the obtained network structure had a hollow cross section in which the cross-sectional shape of the continuous linear body was circular, the hollowness was 30%, and the fiber diameter was 0.78 mm.
  • the obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in durability particularly under high temperature and high humidity.
  • Example 2 Example 1 was followed except that the annealing temperature was 70 ° C.
  • the properties of the obtained network structure are shown in Table 1.
  • the obtained network structure had a hollow cross section in which the cross-sectional shape of the continuous linear body was circular, the hollowness was 29%, and the fiber diameter was 0.76 mm.
  • the obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in durability particularly under high temperature and high humidity.
  • Example 3 As a polyolefin-based thermoplastic elastomer composed of an olefin block copolymer to be used, 100% by weight of INFUSE D9817.15 (manufactured by Dow Chemicals), which is a multi-block copolymer composed of ethylene / ⁇ -olefin, is used, and the spinning temperature Example 1 was followed except that was 220 ° C.
  • the properties of the obtained network structure are shown in Table 1.
  • the obtained network structure had a hollow cross section in which the cross-sectional shape of the continuous linear body was circular, the hollowness was 25%, and the fiber diameter was 0.68 mm.
  • the obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in durability particularly under high temperature and high humidity.
  • Example 4 Example 3 was followed except that the annealing temperature was 70 ° C.
  • the properties of the obtained network structure are shown in Table 1.
  • the obtained network structure had a hollow cross section in which the cross-sectional shape of the continuous linear body was circular, the hollowness was 24%, and the fiber diameter was 0.65 mm.
  • the obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in durability particularly under high temperature and high humidity.
  • Example 5 As a polyolefin-based thermoplastic elastomer comprising an olefin block copolymer to be used, 100% by weight of INFUSE D9807.15 (manufactured by Dow Chemicals), which is a multi-block copolymer comprising ethylene / ⁇ -olefin, is used, and the spinning temperature Example 1 was followed except that the single-hole discharge amount was changed to the conditions described in Table 1. The properties of the obtained network structure are shown in Table 1. The obtained network structure had a hollow cross section in which the cross-sectional shape of the continuous linear body was circular, the hollowness was 26%, and the fiber diameter was 0.67 mm. The obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in durability particularly under high temperature and high humidity.
  • INFUSE D9807.15 manufactured by Dow Chemicals
  • Example 6 Example 1 was followed except that the spinning temperature was 200 ° C.
  • the properties of the obtained network structure are shown in Table 1.
  • the obtained network structure had a hollow cross section in which the cross-sectional shape of the continuous linear body was circular, the hollowness was 40%, and the fiber diameter was 0.95 mm.
  • the obtained network structure was a network structure having a slightly inferior hardness retention after repeated compression 80,000 times because the contact strength was slightly weakened.
  • Example 1 Example 1 was performed except that 100% by weight of ENGAGE 8401 (manufactured by Dow Chemicals), which is an ethylene / octene random copolymer, was used as the polyolefin-based thermoplastic elastomer to be used, and the spinning temperature was 190 ° C.
  • the properties of the obtained network structure are shown in Table 1.
  • the obtained network structure had a hollow section with a circular cross section of the continuous linear body, had a hollowness of 11%, and a fiber diameter of 0.5 mm.
  • the obtained network structure was a network structure with a large compressive residual strain and poor durability under high temperature and high humidity.
  • Comparative Example 2 Comparative Example 1 was followed except that the heat treatment (annealing) conditions after cooling were changed to the conditions described in Table 1. The properties of the obtained network structure are shown in Table 1. The obtained network structure could not maintain the network structure due to annealing conditions.
  • cooling water is arranged below the nozzle surface 26 cm, and a pair of take-up conveyors with a stainless endless net having a width of 150 cm in parallel with an opening width of 40 mm. Arrange it so that it comes out partly on the water surface, and twist the discharge line in the molten state. 3-dimensional network structure while fusing the contact portion to form a to form a.
  • the both sides of the three-dimensional network structure are sandwiched by a take-up conveyor, drawn into cooling water at a rate of 1.15 m / min and solidified by flattening both sides, and then a speed of 1.1 m / min with a nip roller, that is, a speed ratio of 4 It was taken up at 3%, cut into a predetermined size, and dried and heat treated with hot air at 70 ° C. for 30 minutes to obtain a network structure.
  • the properties of the obtained network structure are shown in Table 1.
  • the cross-sectional shape of the continuous linear body was a hollow cross section, the hollowness was 28%, and the fiber diameter was 1.2 mm.
  • the obtained network structure was a network structure having a large compressive residual strain under high temperature and high humidity and poor durability.
  • Example 1 was followed except that the air gap was 50 cm. Since the air gap was widened, the fiber solidified before forming the contact, and the contact could not be formed, and a network structure could not be obtained.
  • a network structure having a small compressive residual strain can be obtained even under high temperature and high humidity heat.
  • This net-like structure has an effect that the compressive residual strain is small even in an environment where the temperature becomes high in summer, such as a train, an automobile, a two-wheeled vehicle and the like, and in an environment where the humidity is high due to the influence of sweat generated by passengers.
  • the compressive residual strain is small, contributing greatly to the industry. It is.

Abstract

The purpose of the present invention is to provide a net-shaped object which, although being obtained using a polyolefin-based thermoplastic elastomer, has a given hardness, has a reduced compressive residual set even at a high temperature and a high humidity, and is suitable for use in applications such as cushions. The net-shaped object has a three-dimensional, randomly loop-bonded structure configured of continuous filaments of a polyolefin-based thermoplastic elastomer comprising an olefin block copolymer, the filaments having a fiber diameter of 0.1-3.0 mm. The net-shaped object has an apparent density of 0.005-0.20 g/cm3 and a compressive residual set measured at 70°C of 30% or less.

Description

耐熱耐久性に優れた網状構造体Network structure with excellent heat resistance
 本発明は、耐熱性と耐久性に優れたオフィスチェアー、家具、ソファー、ベッドパッド、マットレス、電車・自動車・二輪車・ベビーカー・チャイルドシート等の車両用座席、フロアーマット、衝突や挟まれ防止部材等の衝撃吸収用のマット等に好適な網状構造体に関するものである。 The present invention is a heat-resistant and durable office chair, furniture, sofa, bed pad, mattress, vehicle seats such as trains, automobiles, motorcycles, strollers, child seats, floor mats, collision and pinching prevention members, etc. The present invention relates to a network structure suitable for a shock absorbing mat or the like.
 現在、家具、ベッド等寝具、電車・自動車・二輪車等の車両用座席に用いられるクッション材として、網状構造体が増えつつある。特許文献1および2に、ポリエステル系熱可塑性エラストマーを用いた網状構造体とその製造方法が開示されている。これは、ポリウレタンに由来する透湿透水性、通気性、蓄熱性、未反応薬品によるVOC、燃焼時の有毒ガス発生、リサイクル困難である等の問題を解決することができる点で優れている。これらの網状構造体はポリエステル系熱可塑性エラストマーに由来して高反発性に優れており、高反発クッションとして広く用いられている。 Currently, a net-like structure is increasing as a cushioning material used for furniture, bedding such as beds, and seats for vehicles such as trains, automobiles, and motorcycles. Patent Documents 1 and 2 disclose a network structure using a polyester-based thermoplastic elastomer and a manufacturing method thereof. This is excellent in that it can solve problems such as moisture permeability and water permeability derived from polyurethane, air permeability, heat storage, VOC caused by unreacted chemicals, generation of toxic gas during combustion, and difficulty in recycling. These network structures are derived from polyester thermoplastic elastomers and are excellent in high resilience, and are widely used as high resilience cushions.
 特許文献3には、α-オレフィンを用いた低反発網状構造体が開示されている。これは、低反発性と低温特性に優れた網状構造体として広く用いられつつある。しかしながら、近年ユーザーから要求される高いクッション性能と耐久性能を同時に達成することは難しくなりつつある。特に、素材がα-オレフィンであることによる耐熱性、耐湿熱性の乏しさが非常にネックとなっていた。 Patent Document 3 discloses a low-repulsion network structure using α-olefin. This is being widely used as a network structure excellent in low resilience and low temperature characteristics. However, in recent years, it has become difficult to simultaneously achieve high cushion performance and durability performance required by users. In particular, the lack of heat resistance and moist heat resistance due to the use of α-olefin as a raw material has been a major bottleneck.
 特許文献4および5には、熱寸法安定性に優れた網状構造体とその製法が開示されている。これは40℃下での寸法安定性を目指したものであり、一般的なα-オレフィンを用いて40℃での圧縮残留歪が5~15%の例が開示されている。 Patent Documents 4 and 5 disclose a network structure excellent in thermal dimensional stability and a manufacturing method thereof. This is aimed at dimensional stability at 40 ° C., and an example in which a compression residual strain at 40 ° C. is 5 to 15% using a general α-olefin is disclosed.
特開平7-68061号公報JP 7-68061 A 特開2014-194099号公報JP 2014-194099 A 特開2006-200118号公報JP 2006-200118 A 特許第5459438号公報Japanese Patent No. 5559438 特許第5459439号公報Japanese Patent No. 5559439
 本発明は、上記の従来技術の課題を背景になされたもので、ポリオレフィン系熱可塑性エラストマーを使用した網状構造体においても、所定の硬度を有しつつ、高い温度下、高い湿度下でも圧縮残留歪が小さい、クッション等の用途に好適な網状構造体を提供することを課題とするものである。 The present invention has been made against the background of the above-described prior art. Even in a network structure using a polyolefin-based thermoplastic elastomer, it has a predetermined hardness, and remains under compression even at high temperature and high humidity. It is an object of the present invention to provide a network structure having a small distortion and suitable for uses such as a cushion.
 本発明者らは、上記課題を解決するため鋭意研究した結果、遂に本発明を完成するに到った。すなわち、本発明は以下の通りである。
(1)繊維径が0.1~3.0mmのオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマー連続線状体で構成された三次元ランダムループ接合構造を持つ網状構造体であって、見掛け密度が0.005~0.20g/cmであり、70℃での圧縮残留歪が30%以下である網状構造体。
(2)繊維径が0.1~3.0mmのオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマー連続線状体で構成された三次元ランダムループ接合構造を持つ網状構造体であって、見掛け密度が0.005~0.20g/cmであり、50℃、95%RHでの圧縮残留歪が20%以下である網状構造体。
(3)繊維径が0.1~3.0mmのオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマー連続線状体で構成された三次元ランダムループ接合構造を持つ網状構造体であって、見掛け密度が0.005~0.20g/cmであり、80℃、95%RHでの圧縮残留歪が35%以下である網状構造体。
(4)オレフィンブロック共重合体が、エチレン/α-オレフィンブロック共重合体である(1)~(3)のいずれかに記載の網状構造体。
(5)エチレン/α-オレフィンブロック共重合体が、エチレンを50~95mol%、炭素数3以上のα-オレフィンを5~50mol%含むブロック共重合体である(4)に記載の網状構造体。
(6)α-オレフィンが1-オクテンである(4)または(5)に記載の網状構造体。
(7)網状構造体の厚みが10~200mmであり、25%圧縮時硬度が1.5~30N/φ50mm以下である(1)~(6)のいずれかに記載の網状構造体。
(8)連続線状体の断面形状が中空断面である(1)~(7)のいずれかに記載の網状構造体。
(9)網状構造体を構成する樹脂をパルスNMR法により測定して得られた界面相の比率が40%以下である(1)~(8)のいずれかに記載の網状構造体。
As a result of intensive studies to solve the above problems, the present inventors have finally completed the present invention. That is, the present invention is as follows.
(1) A network structure having a three-dimensional random loop joint structure composed of a continuous polyolefin-based thermoplastic elastomer composed of an olefin block copolymer having a fiber diameter of 0.1 to 3.0 mm. A network structure having a density of 0.005 to 0.20 g / cm 3 and a compressive residual strain at 70 ° C. of 30% or less.
(2) A network structure having a three-dimensional random loop joining structure composed of a continuous line of a polyolefin-based thermoplastic elastomer composed of an olefin block copolymer having a fiber diameter of 0.1 to 3.0 mm. A network structure having a density of 0.005 to 0.20 g / cm 3 and a compressive residual strain of 20% or less at 50 ° C. and 95% RH.
(3) A network structure having a three-dimensional random loop joining structure composed of a continuous line of a polyolefin-based thermoplastic elastomer made of an olefin block copolymer having a fiber diameter of 0.1 to 3.0 mm. A network structure having a density of 0.005 to 0.20 g / cm 3 and a compressive residual strain of 35% or less at 80 ° C. and 95% RH.
(4) The network structure according to any one of (1) to (3), wherein the olefin block copolymer is an ethylene / α-olefin block copolymer.
(5) The network structure according to (4), wherein the ethylene / α-olefin block copolymer is a block copolymer containing 50 to 95 mol% of ethylene and 5 to 50 mol% of an α-olefin having 3 or more carbon atoms. .
(6) The network structure according to (4) or (5), wherein the α-olefin is 1-octene.
(7) The network structure according to any one of (1) to (6), wherein the network structure has a thickness of 10 to 200 mm and a hardness at 25% compression of 1.5 to 30 N / φ50 mm or less.
(8) The network structure according to any one of (1) to (7), wherein the cross-sectional shape of the continuous linear body is a hollow cross section.
(9) The network structure according to any one of (1) to (8), wherein the ratio of the interfacial phase obtained by measuring the resin constituting the network structure by a pulse NMR method is 40% or less.
 本発明により、高温、高湿熱下でも圧縮残留歪が小さい網状構造体を得ることが出来る。この網状構造体は、電車、自動車、二輪車等、特に夏場に高温となる環境であり、かつ乗員等から生じる汗の影響による高湿度になる環境においても、圧縮残留歪が小さいという効果を有する。さらに、冬場に用いられる電気毛布やヒーター、湯たんぽ等によって高温となる環境であり、かつ寝床内等の高湿度になる環境においても、圧縮残留歪が小さいという効果を有する。 According to the present invention, a network structure having a small compressive residual strain can be obtained even under high temperature and high humidity heat. This net-like structure has an effect that the compressive residual strain is small even in an environment where the temperature becomes high in summer, such as a train, an automobile, a two-wheeled vehicle and the like, and in an environment where the humidity is high due to the influence of sweat generated by passengers. Furthermore, even in an environment where the temperature becomes high due to electric blankets, heaters, hot water bottles, and the like used in winter, and in an environment where the humidity is high such as in a bed, there is an effect that the compressive residual strain is small.
パルスNMR法により得られる自由誘導減衰(FID)信号のグラフを例示した図である。It is the figure which illustrated the graph of the free induction decay (FID) signal obtained by a pulse NMR method.
 以下、本発明を詳細に説明する。
 本発明の網状構造体は、オレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマー連続線状体を使用することが必要である。連続線状体で構成される網状構造と、連続線状体の素材である樹脂が有するゴム弾性との特徴を用いることで、クッション性を得ることが出来る。この網状構造体に対し、適切な樹脂、紡糸条件、後処理条件を採用することで、ポリオレフィン系熱可塑性エラストマーからなる網状構造体であっても、高温下、高湿熱下で圧縮残留歪が小さい、高い耐久性(耐へたり性)を持つ網状構造体を得ることが可能となる。また、ポリオレフィン系熱可塑性エラストマーを用いることで、再溶融により再生が可能となるため、リサイクルも容易となる。
 なお、本発明における「オレフィンブロック共重合体」とは、マルチブロックまたはセグメント共重合体であり、線状に接合された2つまたはそれ以上の化学的に異なる領域またはセグメント(「ブロック」ともいう)を含む重合体、すなわち重合されたエチレン官能基に対して、ペンダント的またはグラフト的様式ではなく、末端同士で結合される、化学的に区別される単位を含む重合体をいう。
Hereinafter, the present invention will be described in detail.
The network structure of the present invention needs to use a continuous polyolefin-based thermoplastic elastomer composed of an olefin block copolymer. Cushioning properties can be obtained by using the characteristics of the network structure constituted by the continuous linear body and the rubber elasticity of the resin that is the material of the continuous linear body. By adopting appropriate resin, spinning conditions, and post-treatment conditions for this network structure, even if it is a network structure made of a polyolefin-based thermoplastic elastomer, the compression residual strain is small under high temperature and high humidity heat. It is possible to obtain a network structure having high durability (sag resistance). Further, by using a polyolefin-based thermoplastic elastomer, it becomes possible to regenerate by remelting, and therefore, recycling becomes easy.
The “olefin block copolymer” in the present invention is a multi-block or segment copolymer, and two or more chemically different regions or segments (also referred to as “blocks”) joined linearly. ), I.e., polymers containing chemically distinct units attached to the polymerized ethylene functional group at ends rather than in a pendant or graft fashion.
 本発明の網状構造体の素材であるオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマーとしては、エチレン/α-オレフィンからなるマルチブロック共重合体であることが好ましく、エチレンと炭素数3以上のα-オレフィンを共重合してなるものが好ましい。ここで、炭素数3以上のα-オレフィンとしては、例えばプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセンなどが挙げられ、好ましくは1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセンである。また、これら2種類以上を用いることもできる。 The polyolefin-based thermoplastic elastomer composed of the olefin block copolymer that is the material of the network structure of the present invention is preferably a multi-block copolymer composed of ethylene / α-olefin, and ethylene and a carbon number of 3 or more. Those obtained by copolymerizing α-olefins are preferred. Here, examples of the α-olefin having 3 or more carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, -Decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, etc. -Butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene. Two or more of these can also be used.
 本発明におけるエチレン/α-オレフィンからなるマルチブロック共重合体のエチレンと炭素数が3以上のα-オレフィンの比率としては、エチレンを50~95mol%、炭素数が3以上のα-オレフィンを5~50mol%の範囲であることが好ましく、エチレンを70~95mol%、炭素数が3以上のα-オレフィンを5~30mol%の範囲であることがより好ましい。一般的に高分子化合物がエラストマー性を得るのは、高分子鎖内に、ハードセグメントおよびソフトセグメントが存在するためであることが知られている。本発明のオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマーにおいては、エチレンはハードセグメント、炭素数3以上のα-オレフィンはソフトセグメントの役割を担っていると考えられる。そのため、エチレンの比率が50mol%未満では、ハードセグメントが少ないため、ゴム弾性の回復性能が低下する。エチレンの比率はより好ましくは70mol%以上、さらに好ましくは75mol%以上、特に好ましくは80mol%以上である。一方、エチレンの比率が95mol%を超える場合は、ソフトセグメントが少ないため、エラストマー性が発揮されにくく、クッション性能が劣る。エチレンの比率はより好ましくは93mol%以下、さらに好ましくは90mol%以下である。 The ratio of the ethylene / α-olefin multiblock copolymer in the present invention to the ethylene and α-olefin having 3 or more carbon atoms is 50 to 95 mol% of ethylene and 5 α-olefin having 3 or more carbon atoms. It is preferably in the range of ˜50 mol%, more preferably in the range of 70 to 95 mol% of ethylene and 5 to 30 mol% of α-olefin having 3 or more carbon atoms. In general, it is known that a polymer compound is elastomeric because a hard segment and a soft segment are present in a polymer chain. In the polyolefin-based thermoplastic elastomer comprising the olefin block copolymer of the present invention, it is considered that ethylene plays a role of a hard segment, and α-olefin having 3 or more carbon atoms plays a role of a soft segment. Therefore, when the ratio of ethylene is less than 50 mol%, the number of hard segments is small, so that the rubber elasticity recovery performance is lowered. The ratio of ethylene is more preferably 70 mol% or more, further preferably 75 mol% or more, and particularly preferably 80 mol% or more. On the other hand, when the ratio of ethylene exceeds 95 mol%, since there are few soft segments, elastomeric properties are hardly exhibited and cushion performance is inferior. The ratio of ethylene is more preferably 93 mol% or less, still more preferably 90 mol% or less.
 本発明の網状構造体を構成するオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマーの密度は、0.84~0.94g/cm3であることが好ましく、0.85~0.92g/m3がより好ましく、0.86~0.90g/m3がさらに好ましい。密度が0.94g/cm3を超える場合は、樹脂中のハードセグメント部分が多すぎることを示しており、クッション性能が劣ること、および密度が高く、網状構造体自体が重くなる。密度が0.84g/m3未満であるとオレフィンブロック共重合体からなるポリエチレン系熱可塑性エラストマーのエラストマー性を発揮するためのハードセグメントが不足していることを示しており、ゴム弾性による回復性能が低下する。 The density of the polyolefin-based thermoplastic elastomer comprising the olefin block copolymer constituting the network structure of the present invention is preferably 0.84 to 0.94 g / cm 3 , and 0.85 to 0.92 g / m. 3 is more preferable, and 0.86 to 0.90 g / m 3 is more preferable. When the density exceeds 0.94 g / cm 3 , it indicates that there are too many hard segment portions in the resin, the cushion performance is inferior, the density is high, and the network structure itself becomes heavy. When the density is less than 0.84 g / m 3 , it indicates that the hard segment for exhibiting the elastomeric property of the polyethylene-based thermoplastic elastomer made of the olefin block copolymer is insufficient, and the recovery performance by rubber elasticity. Decreases.
 本発明の網状構造体を構成するオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマーの融点は、90℃以上であることが好ましく、100℃以上がより好ましく、110℃以上がさらに好ましく、115℃以上が特に好ましく、120℃以上が最も好ましい。本発明において、融点が90℃未満であることは、樹脂中のハードセグメントを構成するエチレンの結晶構造が不十分であることを示している。融点の上限は特に限定されないが、オレフィンブロック共重合体からなるポリエチレン系熱可塑性エラストマーでは、通常融点は150℃以下である。 The melting point of the polyolefin-based thermoplastic elastomer comprising the olefin block copolymer constituting the network structure of the present invention is preferably 90 ° C or higher, more preferably 100 ° C or higher, further preferably 110 ° C or higher, 115 ° C. The above is particularly preferable, and 120 ° C. or higher is most preferable. In this invention, that melting | fusing point is less than 90 degreeC has shown that the crystal structure of the ethylene which comprises the hard segment in resin is inadequate. Although the upper limit of melting | fusing point is not specifically limited, Usually, melting | fusing point is 150 degrees C or less in the polyethylene-type thermoplastic elastomer which consists of an olefin block copolymer.
 本発明の網状構造体を構成するオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマーの比熱は、2.26J/g・℃以上であることが好ましく、2.28J/g・℃以上がより好ましく、2.30J/g・℃以上がさらに好ましい。オレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマーにおいて比熱が2.26J/g・℃以上であることは、樹脂中にハードセグメントの結晶構造が十分に存在していることを示している。比熱の上限は特に限定されないが、オレフィンブロック共重合体からなるポリエチレン系熱可塑性エラストマーでは、通常比熱は2.50J/g・℃以下である。 The specific heat of the polyolefin-based thermoplastic elastomer comprising the olefin block copolymer constituting the network structure of the present invention is preferably 2.26 J / g · ° C. or more, more preferably 2.28 J / g · ° C. or more. More preferably 2.30 J / g · ° C. or higher. A specific heat of 2.26 J / g · ° C. or more in a polyolefin-based thermoplastic elastomer composed of an olefin block copolymer indicates that the crystal structure of the hard segment is sufficiently present in the resin. The upper limit of the specific heat is not particularly limited, but in the case of a polyethylene thermoplastic elastomer made of an olefin block copolymer, the specific heat is usually 2.50 J / g · ° C. or less.
 本発明の網状構造体を構成するオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマーの190℃におけるメルトフローレート(以下、「MFR」と言う)は、2~20g/minであることが好ましく、3~18g/minがより好ましく、4~16g/minがさらに好ましい。オレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマーにおいて190℃におけるMFRが20g/minを超えると、冷却による樹脂の固化速度が遅くなり、網状構造体を形成することが困難になる。また、190℃におけるMFRが2g/min未満では紡糸時の樹脂の吐出線速度が低くなり、連続線状体がループを描くことが困難となり、網状構造体が得られなくなる。 The melt flow rate (hereinafter referred to as “MFR”) at 190 ° C. of the polyolefin-based thermoplastic elastomer comprising the olefin block copolymer constituting the network structure of the present invention is preferably 2 to 20 g / min. 3 to 18 g / min is more preferable, and 4 to 16 g / min is even more preferable. When the MFR at 190 ° C. exceeds 20 g / min in a polyolefin-based thermoplastic elastomer composed of an olefin block copolymer, the solidification rate of the resin by cooling becomes slow, and it becomes difficult to form a network structure. On the other hand, when the MFR at 190 ° C. is less than 2 g / min, the discharge linear velocity of the resin during spinning becomes low, it becomes difficult for the continuous linear body to draw a loop, and a network structure cannot be obtained.
 本発明の網状構造体を構成するオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマーとして、エチレン/α-オレフィンからなるマルチブロック共重合体を用いることが好ましいのは、一般的なランダム共重合体では、主鎖の連結鎖長が短くなり、結晶構造が形成されにくく、耐久性が低下する。このマルチブロック共重合体を得る方法の一つとして、チェーンシャトリング反応触媒を用い、エチレンとα-オレフィンを共重合する方法が挙げられる。 It is preferable to use a multi-block copolymer made of ethylene / α-olefin as the polyolefin-based thermoplastic elastomer made of the olefin block copolymer constituting the network structure of the present invention. Then, the connecting chain length of the main chain is shortened, the crystal structure is hardly formed, and the durability is lowered. One method for obtaining this multi-block copolymer is a method of copolymerizing ethylene and α-olefin using a chain shuttling reaction catalyst.
 本発明の網状構造体を構成するエチレン/α-オレフィンからなるマルチブロック共重合体は、結晶相、非晶相および界面相を所定の範囲で含有する。結晶相、非晶相および界面相の含有量はパルスNMR法を用い測定できる。パルスNMR法により得られる緩和時間の結果から、結晶相、非晶相および界面相の分離と、それぞれの量を定義することが出来る。 The multi-block copolymer composed of ethylene / α-olefin constituting the network structure of the present invention contains a crystalline phase, an amorphous phase, and an interfacial phase in a predetermined range. The contents of the crystalline phase, the amorphous phase and the interfacial phase can be measured using a pulsed NMR method. From the result of the relaxation time obtained by the pulse NMR method, the separation of the crystalline phase, the amorphous phase and the interfacial phase and the respective amounts can be defined.
 パルスNMR法のsolid echo(ソリッドエコー)法については、既知のため詳細は省略するが、主にガラス状および結晶性高分子などの緩和時間の短い試料の測定に用いられるものである。デッドタイムを見かけ上除く方法であり、2つの90°パルス(位相を90°変えて)印加する90°x-τ-90°yパルス法で、X軸方向に90°パルスを加えると、デッドタイム後に自由誘導減衰(FID)信号が観測される。FID信号が減衰しない時間τに、第2の90°パルスをy軸方向に加えると,t=2τの時点で磁化の向きがそろってエコーが現れる。得られたエコーは90°パルス後のFID信号に近似することが出来る。 Since the solid echo (solid echo) method of the pulse NMR method is already known, the details are omitted, but it is mainly used for measurement of samples with a short relaxation time such as glassy and crystalline polymers. This is a method that apparently eliminates the dead time. When 90 ° pulse is applied in the X-axis direction using the 90 ° x-τ-90 ° y pulse method in which two 90 ° pulses (with 90 ° phase change) are applied, dead A free induction decay (FID) signal is observed after time. When the second 90 ° pulse is applied in the y-axis direction at time τ when the FID signal does not decay, echoes appear with the magnetization directions aligned at time t = 2τ. The obtained echo can be approximated to the FID signal after the 90 ° pulse.
 パルスNMR法の解析結果から物性と相分離構造と組成との関連を解析する方法は既知である。パルスNMR法で得られる自由誘導減衰(FID)信号を最小二乗法によってスピン-スピン緩和時間T2の長い成分から順に差し引いて、波形分離することにより、3成分に分けることができる。緩和時間の長い成分が運動性の大きな成分であり非晶相として、緩和時間の短い成分が運動性の小さな成分であり結晶相として、緩和時間の中間の成分は界面相であると定義できる。ガウス型関数およびローレンツ型関数による計算式を用いて、各成分の成分量が求められる(例えば、「固体NMR(高分解能NMRとパルスNMR)によるポリウレタン樹脂の相分離構造解析」(DIC Technical Review No.12,pp.7~12,2006)参照)。 A method for analyzing the relationship between the physical properties, the phase separation structure, and the composition from the analysis result of the pulse NMR method is known. The free induction decay (FID) signal obtained by the pulse NMR method can be divided into three components by subtracting in order from the component having the long spin-spin relaxation time T2 by the least square method and separating the waveforms. A component having a long relaxation time is a component having a large mobility and an amorphous phase, a component having a short relaxation time is a component having a small mobility and a crystal phase, and a component having a middle relaxation time is an interface phase. The amount of each component can be determined using a calculation formula using a Gaussian function and a Lorentzian function (for example, “phase separation structure analysis of polyurethane resin by solid-state NMR (high-resolution NMR and pulsed NMR)” (DIC Technical Review No. .12, pp. 7-12, 2006)).
 本発明でのパルスNMR法の測定方法について詳説すると、以下の通りである。まず、直径1cmのガラス管に、1~2mm角程度に刻んだ網状構造体サンプルを1~2cmの高さまで詰めた試料を磁場の中に置き、高周波パルス磁場を加えた後の巨視的磁化の緩和挙動を測定すると、図1に示すように自由誘導減衰(FID)信号が得られる(横軸:時間(μ秒)、縦軸:自由誘導減衰信号)。得られたFID信号の初期値は測定試料中のプロトンの数に比例しており、測定試料に3つの成分がある場合には、FID信号は3成分の応答信号の和として現れる。一方、試料中に含まれる各成分は運動性に差があるため、成分間で応答信号の減衰の速さが異なり、スピン-スピン緩和時間T2が相違する。それにより、最小二乗法により3成分に分けることができ、スピン-スピン緩和時間T2の長い方から順にそれぞれ非晶相(L成分)、界面相(M成分)、結晶相(S成分)となる(図1参照)。非晶相は分子運動性の大きな成分、結晶相は分子運動性の小さな成分であり、その中間の成分が界面相となる。なお、上記パルスNMR法、ソリッドエコー法、スピン-スピン緩和時間T2については、特開2007-238783号(特には段落[0028]~[0033])を参照することができる。 The measurement method of the pulse NMR method in the present invention will be described in detail as follows. First, a sample of a 1 mm diameter glass tube packed with a network structure sample cut to about 1 to 2 mm square to a height of 1 to 2 cm is placed in a magnetic field, and the macroscopic magnetization after applying a high frequency pulsed magnetic field. When the relaxation behavior is measured, a free induction decay (FID) signal is obtained as shown in FIG. 1 (horizontal axis: time (μsec), vertical axis: free induction decay signal). The initial value of the obtained FID signal is proportional to the number of protons in the measurement sample, and when the measurement sample has three components, the FID signal appears as the sum of response signals of the three components. On the other hand, since each component contained in the sample has a difference in mobility, the speed of decay of the response signal differs among the components, and the spin-spin relaxation time T2 differs. As a result, it can be divided into three components by the least square method, and the amorphous phase (L component), the interfacial phase (M component), and the crystalline phase (S component) are arranged in order from the longer spin-spin relaxation time T2. (See FIG. 1). The amorphous phase is a component having a large molecular mobility, the crystal phase is a component having a small molecular mobility, and an intermediate component is an interface phase. Regarding the pulse NMR method, solid echo method, and spin-spin relaxation time T2, JP-A-2007-238783 (particularly, paragraphs [0028] to [0033]) can be referred to.
 「スピン-スピン緩和時間(T2)」は分子運動性の指標として用いられ、数値が大きいほど運動性が高いことを示す。一般に、結晶相は運動性が低いのでT2が小さくなり、逆に非晶相のT2は高くなる。
 スピンースピン緩和時間T2が分子運動性の尺度となる理由は、分子運動の相関時間τcとT2の関係から理解される。τcは、ある運動状態にある分子が分子衝突を起こす平均的な時間を表し、T2の値はτcの増加と逆比例して短くなることが知られている。これは分子運動性が低下するにつれてT2が短くなることを示す。
“Spin-spin relaxation time (T2)” is used as an index of molecular mobility, and a larger value indicates higher mobility. In general, since the crystal phase has low mobility, T2 decreases, and conversely, the amorphous phase T2 increases.
The reason why the spin-spin relaxation time T2 is a measure of molecular mobility can be understood from the relationship between the correlation time τc of molecular motion and T2. It is known that τc represents an average time for a molecule in a certain motion state to undergo molecular collision, and the value of T2 is shortened in inverse proportion to the increase in τc. This indicates that T2 becomes shorter as the molecular mobility decreases.
 「成分量(相量)」とはそれぞれの相の割合(質量%)であり、非晶相のT2が低い程、また、非晶相の割合が低い程、硬い樹脂となる。また、界面相が少ない程、結晶相と非晶相とが明確に相分離した構造となり、歪の起きにくい弾性特性を有する。逆に界面相が多い程、結晶相と非晶相の相分離が明確でない構造となり、遅延弾性特性を有する。 The “component amount (phase amount)” is the ratio (mass%) of each phase, and the lower the amorphous phase T2 and the lower the amorphous phase ratio, the harder the resin. Further, the smaller the interfacial phase, the more clearly the crystal phase and the amorphous phase are separated from each other, and the elastic property is less likely to cause strain. Conversely, the greater the interfacial phase, the less the phase separation between the crystalline phase and the amorphous phase, and the delayed elastic characteristic.
 本発明の網状構造体を構成するエチレン/α-オレフィンからなるマルチブロック共重合体において、結晶相の緩和時間が11.4μs以下であることが好ましく、11.2μs以下がより好ましく、11.0μm以下がさらに好ましい。本発明において、結晶相の緩和時間が11.4μsより大きいことは、結晶相の構造が不十分であることを示している。下限は特に限定されないが、エチレン/α-オレフィンからなるマルチブロック共重合体においては、通常、1.0μs以上である。 In the multiblock copolymer composed of ethylene / α-olefin constituting the network structure of the present invention, the relaxation time of the crystal phase is preferably 11.4 μs or less, more preferably 11.2 μs or less, and 11.0 μm. The following is more preferable. In the present invention, the relaxation time of the crystal phase being greater than 11.4 μs indicates that the crystal phase structure is insufficient. The lower limit is not particularly limited, but is usually 1.0 μs or more for a multiblock copolymer composed of ethylene / α-olefin.
 本発明の網状構造体を構成するエチレン/α-オレフィンからなるマルチブロック共重合体は、界面相の分率が40質量%以下であることが好ましく、35質量%以下がより好ましく、30質量%以下がさらに好ましい。
 界面相とは、ハードセグメントとソフトセグメントの界面であり、界面相の分率が少ないことは、ハードセグメントとソフトセグメントの界面が明確であること、およびハードセグメントとソフトセグメントの界面の数が少ないことを示している。
 本発明の網状構造体を構成するエチレン/α-オレフィンからなるマルチブロック共重合体のように、密度が所定の範囲である、すなわち結晶構造を有する樹脂であり、ハードセグメントとソフトセグメントの界面相の比率が少ない樹脂は、界面相の比率が多い樹脂と比べて、結晶構造が十分な大きさで形成されていることを示している。この結果、高い融点、大きい比熱を有している、と考えられる。下限は特に限定されないが、エチレン/α-オレフィンからなるマルチブロック共重合体においては、通常、10質量%以上である。
In the multi-block copolymer composed of ethylene / α-olefin constituting the network structure of the present invention, the interfacial phase fraction is preferably 40% by mass or less, more preferably 35% by mass or less, and 30% by mass. The following is more preferable.
The interface phase is the interface between the hard segment and the soft segment. The small fraction of the interface phase means that the interface between the hard segment and the soft segment is clear and the number of interfaces between the hard segment and the soft segment is small. It is shown that.
Like the multi-block copolymer composed of ethylene / α-olefin constituting the network structure of the present invention, the resin has a density within a predetermined range, that is, a resin having a crystal structure, and has an interface phase between a hard segment and a soft segment. The resin having a small ratio indicates that the crystal structure has a sufficiently large size as compared with the resin having a large interphase ratio. As a result, it is considered to have a high melting point and a large specific heat. The lower limit is not particularly limited, but in a multi-block copolymer composed of ethylene / α-olefin, it is usually 10% by mass or more.
 結晶相の緩和時間、界面相比率は、使用する樹脂により変更出来ると同時に、熱処理を行うことにより、変更することが出来る。例えば、得られた網状構造体に対してアニーリング処理を行うことで、結晶相の緩和時間は短くなり、界面相比率は少なくなる。 The relaxation time of the crystal phase and the interfacial phase ratio can be changed depending on the resin used, and at the same time can be changed by heat treatment. For example, by performing an annealing process on the obtained network structure, the relaxation time of the crystal phase is shortened and the interface phase ratio is decreased.
 本発明の網状構造体においては、必要に応じ、ポリオレフィン系熱可塑性エラストマー以外に、副材として、ポリブタジエン、ポリイソプレン、スチレン系熱可塑性エラストマーとしてスチレンイソプレン共重合体やスチレンブタジエン共重合体やそれらの水添共重合体などのポリマー改質剤をブレンドすることができる。さらに、フタル酸エステル系、トリメリット酸エステル系、脂肪酸系、エポキシ系、アジピン酸エステル系、ポリエステル系の可塑剤、公知のヒンダードフェノール系、硫黄系、燐系、アミン系の酸化防止剤、ヒンダードアミン系、トリアゾール系、ベンゾフェノン系、ベンゾエート系、ニッケル系、サリチル系などの光安定剤、帯電防止剤、過酸化物などの分子調整剤、エポキシ系化合物、イソシアネート系化合物、カルボジイミド系化合物などの反応基を有する化合物、金属不活性剤、有機及び無機系の核剤、中和剤、制酸剤、防菌剤、蛍光増白剤、充填剤、難燃剤、難燃助剤、有機及び無機系の顔料を添加することができる。また、耐熱耐久性や耐へたり性を向上させるために、熱可塑性樹脂の分子量を上げることも効果的である。 In the network structure of the present invention, if necessary, in addition to the polyolefin-based thermoplastic elastomer, as a secondary material, polybutadiene, polyisoprene, styrene-based thermoplastic elastomers such as styrene isoprene copolymers, styrene-butadiene copolymers, and those Polymer modifiers such as hydrogenated copolymers can be blended. Furthermore, phthalate ester-based, trimellitic acid ester-based, fatty acid-based, epoxy-based, adipic acid ester-based, polyester-based plasticizers, known hindered phenol-based, sulfur-based, phosphorus-based, amine-based antioxidants, Reactions such as hindered amine, triazole, benzophenone, benzoate, nickel, salicyl and other light stabilizers, antistatic agents, peroxides and other molecular modifiers, epoxy compounds, isocyanate compounds, carbodiimide compounds, etc. Group-containing compounds, metal deactivators, organic and inorganic nucleating agents, neutralizing agents, antacids, antibacterial agents, fluorescent brighteners, fillers, flame retardants, flame retardant aids, organic and inorganic Of pigments can be added. It is also effective to increase the molecular weight of the thermoplastic resin in order to improve heat resistance and sag resistance.
 本発明の網状構造体を構成する連続線状体の繊維径は、0.1~3.0mmであり、0.2~2.5mmが好ましい。繊維径は網状構造体がソフトな触感と必要な硬度を得るためには重要な要素である。繊維径が小さいとクッション性に必要な硬度が保てなくなり、逆に繊維径が大きすぎると硬くなり過ぎてしまう。繊維径が0.1mm未満だと網状構造体の緻密性やソフトな触感は十分であるが、必要な硬度を確保することが困難となる。一方、繊維径が3.0mmを超えると網状構造体の必要硬度の確保は容易となるが、触感が硬く、ごわごわした感じが顕著となる。 The fiber diameter of the continuous linear body constituting the network structure of the present invention is 0.1 to 3.0 mm, preferably 0.2 to 2.5 mm. The fiber diameter is an important factor for the network structure to obtain a soft tactile feel and necessary hardness. If the fiber diameter is small, the hardness required for cushioning properties cannot be maintained, and conversely if the fiber diameter is too large, it becomes too hard. If the fiber diameter is less than 0.1 mm, the denseness and soft touch of the network structure are sufficient, but it is difficult to ensure the required hardness. On the other hand, when the fiber diameter exceeds 3.0 mm, it is easy to ensure the required hardness of the network structure, but the tactile sensation is hard and a stiff feeling becomes remarkable.
 本発明の網状構造体の見掛け密度は、クッション性を決める重要な要素であり、用途に応じて設計され、0.005~0.20g/cm3であり、好ましくは0.01~0.18g/cm3、より好ましくは0.02~0.15g/cm3である。見掛け密度が0.005g/cm3より小さいと網状構造体のクッション性に必要な硬度が保てなくなり、0.20g/cm3を越えると網状構造体が硬くなり過ぎてしまう。 The apparent density of the network structure of the present invention is an important factor that determines cushioning properties, is designed according to the application, and is 0.005 to 0.20 g / cm 3 , preferably 0.01 to 0.18 g. / Cm 3 , more preferably 0.02 to 0.15 g / cm 3 . Apparent density is not maintained when the hardness required for the cushion of 0.005 g / cm 3 less than the network structure, the network structure exceeds 0.20 g / cm 3 is too hard.
 本発明の網状構造体の厚みは、クッション性に関わり、10mm~200mm以下が好ましく、20~120mmがより好ましい。厚みが10mm未満では網状構造体が薄すぎて底付き感を感じる。厚みが200mmを超えるとクッション材としての使用には厚過ぎてしまい快適性を損なう。 The thickness of the network structure of the present invention relates to cushioning properties, preferably 10 mm to 200 mm or less, more preferably 20 to 120 mm. If the thickness is less than 10 mm, the net-like structure is too thin and a feeling of bottoming is felt. If the thickness exceeds 200 mm, it is too thick for use as a cushioning material, and comfort is impaired.
 本発明の網状構造体の70℃圧縮残留歪は、30%以下であり、好ましくは27%以下であり、より好ましくは25%以下で有り、さらに好ましくは20%以下であり、特に好ましくは18%以下であり、最も好ましくは15%以下である。70℃圧縮残留歪が30%を超えると、耐久性(耐へたり性)に劣る網状構造体となる。70℃圧縮残留歪の下限値は特に限定されるものではないが、通常1%以上である。
 なお、本発明における70℃圧縮残留歪とは、網状構造体を10cm×10cmの大きさに切断し、厚みを計測(処理前厚み:a)し、この厚みに対して50%圧縮状態にして70℃環境下に22時間放置した後、圧縮状態を開放し室温で30分間冷却して再度厚みを計測(処理後厚み:b)して、式{(a)-(b)}/(a)×100より算出される値である。この値が小さいほど、ヒーターや湯たんぽ等によって高温となる環境において使用しても網状構造体の厚みの減少(へたり)がおこりにくいと言える。つまり、高温環境で使用した際の厚み変化(へたり)の指標である。
The network structure of the present invention has a 70 ° C. compressive residual strain of 30% or less, preferably 27% or less, more preferably 25% or less, still more preferably 20% or less, and particularly preferably 18%. % Or less, and most preferably 15% or less. When the 70 ° C. compressive residual strain exceeds 30%, the network structure is inferior in durability (sag resistance). The lower limit of the 70 ° C. compression residual strain is not particularly limited, but is usually 1% or more.
In the present invention, the 70 ° C. compression residual strain means that the network structure is cut into a size of 10 cm × 10 cm, the thickness is measured (thickness before treatment: a), and the compressed state is 50% of the thickness. After being left in a 70 ° C. environment for 22 hours, the compressed state is released, the mixture is cooled at room temperature for 30 minutes, and the thickness is measured again (post-treatment thickness: b), and the formula {(a)-(b)} / (a ) × 100. It can be said that the smaller this value is, the less the thickness of the network structure is reduced (sagging) even when used in an environment where the temperature is high due to a heater or a hot water bottle. That is, it is an index of thickness change (sagging) when used in a high temperature environment.
 本発明の網状構造体の50℃、95RH%圧縮残留歪は、20%以下であり、好ましくは19%以下であり、より好ましくは18%以下であり、さらに好ましくは15%以下である。50℃、95RH%圧縮残留歪が20%を超えると、耐久性(耐へたり性)に劣る網状構造体となる。50℃、95RH%圧縮残留歪の下限値は特に限定されるものではないが、通常1%以上である。
 なお、本発明における50℃、95RH%圧縮歪とは、網状構造体を10cm×10cmの大きさに切断し、厚みを計測(処理前厚み:a)し、この厚みに対して50%圧縮状態にして温度50℃、湿度95RH%の環境下に22時間放置した後、圧縮状態を開放し室温で30分間冷却して再度厚みを計測(処理後厚み:b)して、式{(a)-(b)}/(a)×100より算出される値である。この値が小さいほど、通常のカーシートや車両用シート、布団内やこたつ内などの、高温で高湿度の環境において使用しても網状構造体の厚みの減少(へたり)がおこりにくいと言える。つまり、暖かく湿度のある環境で使用した際の厚み変化(へたり)の指標である。
The network structure of the present invention has a 50 ° C., 95RH% compressive residual strain of 20% or less, preferably 19% or less, more preferably 18% or less, and even more preferably 15% or less. When the compression residual strain at 50 ° C. and 95 RH% exceeds 20%, the network structure is inferior in durability (sag resistance). The lower limit of 50 ° C. and 95 RH% compression residual strain is not particularly limited, but is usually 1% or more.
The 50 ° C. and 95 RH% compressive strain in the present invention means that the network structure is cut into a size of 10 cm × 10 cm, the thickness is measured (thickness before treatment: a), and the compressed state is 50% with respect to this thickness. And then left in an environment of temperature 50 ° C. and humidity 95RH% for 22 hours, then release the compressed state, cool at room temperature for 30 minutes, and measure the thickness again (thickness after treatment: b), and the formula {(a) -(B)} / (a) × 100. It can be said that the smaller this value is, the less the thickness of the net-like structure is reduced even when used in a high-temperature and high-humidity environment such as a normal car seat, vehicle seat, futon, or kotatsu. . That is, it is an indicator of thickness change (sagging) when used in a warm and humid environment.
 本発明の網状構造体の8万回繰返し圧縮後硬度保持率は、68%以上が好ましく、70%以上がより好ましく、72%以上がさらに好ましく、74%以上が特に好ましい。8万回繰返し圧縮後硬度保持率が68%未満であると、長時間使用により、網状構造体の硬さが低下してしまい、座り心地の変化につながる場合がある。8万回繰返し圧縮後硬度保持率の上限値は特に限定されるものではないが、通常95%以下である。
 なお、本発明における8万回繰返し圧縮後硬度保持率とは、50%定変位繰返し圧縮後の25%圧縮時硬度保持率のことであり、この値が大きいほど繰返し変形による網状構造体の耐久性(へたり)がおこりにくいと言える。
The network structure of the present invention has a hardness retention after repeated compression of 80,000 times, preferably 68% or more, more preferably 70% or more, still more preferably 72% or more, and particularly preferably 74% or more. When the hardness retention after repeated compression 80,000 times is less than 68%, the hardness of the network structure may decrease due to long-term use, which may lead to a change in sitting comfort. The upper limit of the hardness retention after repeated compression for 80,000 times is not particularly limited, but is usually 95% or less.
The hardness retention after repeated compression of 80,000 times in the present invention is the hardness retention at 25% compression after 50% constant displacement repeated compression, and the larger this value, the more durable the network structure due to repeated deformation. It can be said that sexuality is difficult to occur.
 本発明の網状構造体の85℃、95RH%圧縮残留歪は、35%以下であり、好ましくは31%以下であり、より好ましくは30%以下であり、さらに好ましくは28%以下であり、特に好ましくは25%以下である。80℃、95RH%圧縮残留歪が35%を超えると、耐久性(耐へたり性)に劣る網状構造体となる。80℃、95RH%圧縮残留歪の下限値は特に限定されるものではないが、通常1%以上である。
 なお、本発明における80℃、95RH%圧縮残留歪とは、網状構造体を10cm×10cmの大きさに切断し、厚みを計測(処理前厚み:a)し、この厚みに対して50%圧縮状態にして温度80℃、湿度95%の環境下に22時間放置した後、圧縮状態を開放し室温で30分間冷却して再度厚みを計測(処理後厚み:b)して、式{(a)-(b)}/(a)×100より算出される値である。80℃、95RH%は夏場におけるカーシートや車両用シートなどで使用される上限の温度・湿度の環境と考えられ、この値が日常生活下において想定される使用時の、厚みの減少(へたり)の限界値であると言える。つまり、高温で高湿度の環境で使用した際の厚み変化(へたり)の限界の指標である。
The network structure of the present invention has a 85 ° C., 95 RH% compressive residual strain of 35% or less, preferably 31% or less, more preferably 30% or less, and even more preferably 28% or less. Preferably it is 25% or less. When the compression residual strain at 80 ° C. and 95 RH% exceeds 35%, the network structure is inferior in durability (sag resistance). The lower limit of the 80 ° C., 95 RH% compression residual strain is not particularly limited, but is usually 1% or more.
In the present invention, 80 ° C. and 95 RH% compressive residual strain means that the network structure is cut into a size of 10 cm × 10 cm, the thickness is measured (thickness before treatment: a), and the thickness is compressed by 50%. After being left in an environment of 80 ° C. and humidity of 95% for 22 hours, the compressed state is released, and cooled at room temperature for 30 minutes, and the thickness is measured again (thickness after treatment: b). ) − (B)} / (a) × 100. 80 ℃, 95RH% is considered to be the upper limit temperature / humidity environment used in car seats and vehicle seats in the summer. ). That is, it is an index of the limit of thickness change (sagging) when used in a high temperature and high humidity environment.
 本発明の網状構造体の25%圧縮硬度は1.5~30N/φ50mmが好ましく、2~20N/φ50mmがより好ましい。25%圧縮硬度が1.5N/φ50mm未満では網状構造体の硬度が低く、底付き感が出る。また、15N/φ50mmを超えると網状構造体の硬度が高く、好ましいクッション性が得られない。 The 25% compression hardness of the network structure of the present invention is preferably 1.5 to 30 N / φ50 mm, more preferably 2 to 20 N / φ50 mm. If the 25% compression hardness is less than 1.5 N / φ50 mm, the network structure has a low hardness and a feeling of bottoming out. On the other hand, if it exceeds 15 N / φ50 mm, the network structure has a high hardness, and a preferable cushioning property cannot be obtained.
 本発明の網状構造体の65%圧縮硬度は、5N~30N/φ50mmが好ましく、6~25N/φ50mmがよりに好ましい。65%圧縮硬度が5N/φ50mm未満では網状構造体の硬度が低く、底付き感が出る。また、30N/φ50mmを超えると網状構造体の硬度が高く、好ましいクッション性が得られない。 The 65% compression hardness of the network structure of the present invention is preferably 5 N to 30 N / φ50 mm, more preferably 6 to 25 N / φ50 mm. When the 65% compression hardness is less than 5 N / φ50 mm, the hardness of the network structure is low and a feeling of bottoming comes out. On the other hand, if it exceeds 30 N / φ50 mm, the network structure has a high hardness and a preferable cushioning property cannot be obtained.
 本発明の網状構造体のヒステリシスロスは、25~60%が好ましく、30~55%がより好ましく、35~55%がさらに好ましい。ヒステリシスロスが60%を越えると、弾性を感じることができなくなる。また、25%未満であれば網状構造体の回復力が大きすぎるために硬い感触の網状構造体となる。 The hysteresis loss of the network structure of the present invention is preferably 25 to 60%, more preferably 30 to 55%, still more preferably 35 to 55%. If the hysteresis loss exceeds 60%, elasticity cannot be felt. On the other hand, if the amount is less than 25%, the network structure has a too strong recovery force, so that the network structure has a hard feel.
 本発明の網状構造体の製法の一例を述べる。特開平7-68061号公報等に記載された公知の方法で網状構造体は得られる。例えば、オレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマーの融点より20~120℃の範囲で高い溶融温度を用いオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマーを溶融させ、複数のオリフィスを持つ多列ノズルよりオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマーをノズルオリフィスに分配させる。該多列ノズルより溶融されたオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマーを下方に向け吐出させ、溶融状態で互いに線状を接触させることにより融着させ3次元構造を形成させる。3次元構造体は引取り装置に設置された引き取りネットで挟み込み冷却槽で冷却せしめた後、ニップローラーで挟み込むことで冷却槽から引き出し、水切り後、乾燥されて、両面または片面が平滑化した網状構造体を得ることが出来る。片面のみを平滑化させる場合は、傾斜を持つ引き取りネット上に吐出させて、溶融状態で互いに接触させて融着させ3次元構造を形成しつつ引き取りネット面のみ形態を緩和させつつ冷却する方法等を用いることが出来る。 An example of a method for producing the network structure of the present invention will be described. A network structure can be obtained by a known method described in JP-A-7-68061. For example, a polyolefin-based thermoplastic elastomer composed of an olefin block copolymer is melted using a melting temperature higher than the melting point of the polyolefin-based thermoplastic elastomer composed of an olefin block copolymer in a range of 20 to 120 ° C., and has a plurality of orifices. A polyolefin-based thermoplastic elastomer composed of an olefin block copolymer is distributed to the nozzle orifice from a multi-row nozzle. A polyolefin-based thermoplastic elastomer composed of an olefin block copolymer melted from the multi-row nozzle is discharged downward, and fused by bringing them into linear contact with each other in a molten state to form a three-dimensional structure. The three-dimensional structure is sandwiched by a take-off net installed in a take-up device, cooled in a cooling tank, then sandwiched by a nip roller, pulled out from the cooling tank, drained, dried, and smoothed on both sides or one side. A structure can be obtained. When only one side is smoothed, it is discharged on an inclined take-up net, cooled in contact with each other in a molten state to form a three-dimensional structure, and cooled while relaxing the form of only the take-up net surface, etc. Can be used.
 本発明に使用されるオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマーは、従来使用されているポリオレフィン系熱可塑性エラストマーよりも融点が高いため、紡糸する際の押出温度を高く設定することが出来る。さらに比熱も従来のポリオレフィン系熱可塑性エラストマーよりも高いため、連続線状体がループを形成し、隣接する線状と接触、接点を形成する際により多くの熱量を有しており、このことが従来よりも強固な接点を形成することが可能となると考えられる。 Since the polyolefin-based thermoplastic elastomer comprising the olefin block copolymer used in the present invention has a higher melting point than the conventionally used polyolefin-based thermoplastic elastomer, the extrusion temperature during spinning can be set high. . Furthermore, since the specific heat is higher than that of the conventional polyolefin-based thermoplastic elastomer, the continuous linear body forms a loop, and has a larger amount of heat when forming a contact and contact with the adjacent linear shape. It is considered that it is possible to form a stronger contact than before.
 本発明の網状構造体を得るためには、紡糸温度が重要であり、樹脂のMFRに応じて適正な範囲がある。MFR=2~5g/minの樹脂では紡糸温度は融点+100~140℃、MFR=5~10g/minの樹脂では紡糸温度は融点+80~100℃、MFR=10~20g/minの樹脂では紡糸温度は融点+40~80℃が適正な範囲である。適正な範囲より低温で紡糸すると、繊維が接点を形成する前に固まり、強固な接点を形成できない。また、適正な範囲よりも高温で紡糸すると水槽での冷却が十分ではなくなり、網状構造体を形成できなくなる。 In order to obtain the network structure of the present invention, the spinning temperature is important, and there is an appropriate range depending on the MFR of the resin. For resins with MFR = 2-5 g / min, the spinning temperature is melting point + 100-140 ° C. For MFR = 5-10 g / min, the spinning temperature is melting point + 80-100 ° C., for resins with MFR = 10-20 g / min, spinning temperature The melting point +40 to 80 ° C. is an appropriate range. When spinning at a temperature lower than the proper range, the fibers are solidified before forming the contact, and a strong contact cannot be formed. In addition, when spinning at a temperature higher than the proper range, cooling in the water tank is not sufficient, and a network structure cannot be formed.
 本発明の網状構造体は、従来のポリオレフィン系熱可塑性エラストマーを用いた網状構造体よりも耐熱、耐湿熱性に優れるが、これは、線状同士の接点が強固なことが理由と考えられる。すなわち70℃の高温環境下、あるいは80℃、95RH%の高温高湿熱の環境下において圧縮等の外力を受けた際においても、線状同士の接点が強固なため、外力を網状構造体全体に分散することが可能となると考えられる。このため、応力の集中を避けることが出来、耐熱、耐湿熱性能に優れる、と考えられる。 The network structure of the present invention is superior in heat resistance and heat-and-moisture resistance compared to a network structure using a conventional polyolefin-based thermoplastic elastomer, which is thought to be because the contact points between the lines are strong. That is, even when subjected to external force such as compression in a high temperature environment of 70 ° C. or 80 ° C. and 95 RH% in a high temperature and high humidity heat environment, the contact points between the wires are strong, so that the external force is applied to the entire network structure. It will be possible to disperse. For this reason, concentration of stress can be avoided, and it is considered that heat resistance and moisture heat resistance are excellent.
 本発明の網状構造体を得るためには、多列ノズルのオリフィスから吐出させるオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマーの単孔吐出量は0.5g/min以上が好ましく、0.7g/min以上がより好ましく、1.0g/min以上がさらに好ましい。単孔吐出量が0.5g/min未満では連続線状体が細くなりすぎて網状構造体を形成することが困難となると同時に、線状体自体が有する熱量が減少し、隣接する線状との強固な接点が形成されにくくなる。網状構造体が形成できる範囲であれば単孔吐出量の上限は特に限定されないが、7.0g/min以上となると、線状体自身が太くなりすぎるために網状構造体の形成が困難になると同時に、形成された網状構造体の冷却が困難となり、品位が劣る可能性が生じる。 In order to obtain the network structure of the present invention, the single-hole discharge amount of the polyolefin-based thermoplastic elastomer made of the olefin block copolymer discharged from the orifice of the multi-row nozzle is preferably 0.5 g / min or more, and 0.7 g / Min or more is more preferable, and 1.0 g / min or more is more preferable. If the single-hole discharge rate is less than 0.5 g / min, the continuous linear body becomes too thin to form a network structure, and at the same time, the amount of heat of the linear body itself decreases, It is difficult to form a strong contact. The upper limit of the single-hole discharge amount is not particularly limited as long as the network structure can be formed. However, when the network structure is 7.0 g / min or more, it is difficult to form the network structure because the linear body itself becomes too thick. At the same time, it becomes difficult to cool the formed network structure, and the quality may be deteriorated.
 本発明の網状構造体を得るためには、ノズル最下面と水面との距離、いわゆるエアギャップは500mm以下が好ましく、470mm以下がより好ましく、450mm以下がさらに好ましい。エアギャップが500mmより大きいと、線状体自体の熱量が減少してから隣接する線状との接点を形成することになり、強固な接点を形成できにくくなる。エアギャップの下限は特に限定されないが、網状構造体が形成できる範囲であれば短くてもよいが、100mm以上が好ましい。100mmより小さいと、隣接する線状との接触回数が減るために網状構造体の形成が困難になると同時に、形成された網状構造体の冷却が困難となり、品位が劣る可能性が生じる。 In order to obtain the network structure of the present invention, the distance between the lowermost nozzle surface and the water surface, the so-called air gap is preferably 500 mm or less, more preferably 470 mm or less, and even more preferably 450 mm or less. If the air gap is larger than 500 mm, the amount of heat of the linear body itself is reduced and a contact point with the adjacent linear shape is formed, making it difficult to form a strong contact point. The lower limit of the air gap is not particularly limited, but may be shorter as long as the network structure can be formed, but is preferably 100 mm or more. If it is smaller than 100 mm, the number of contact with the adjacent linear shape is reduced, so that it is difficult to form the network structure, and at the same time, it is difficult to cool the formed network structure, which may result in poor quality.
 本発明の網状構造体を得るためには、引き取りネットの引取速度は10.0m/min以下が好ましく、7.0m/min以下がより好ましく、5.0m/min以下がさらに好ましい。引取速度が10.0m/minを超えると、線状が絡み合わず、接点を形成することができない場合がある。引取速度の下限は特に限定されないが、網状構造体を形成する範囲であれば遅くてもよいが、0.3m/min以上が好ましい。0.3m/minより遅いと接点を形成した後の冷却が遅くなり、品位が劣る可能性が生じる。 In order to obtain the network structure of the present invention, the take-up speed of the take-off net is preferably 10.0 m / min or less, more preferably 7.0 m / min or less, and even more preferably 5.0 m / min or less. When the take-up speed exceeds 10.0 m / min, the linear shape may not be entangled and a contact may not be formed. Although the lower limit of the take-up speed is not particularly limited, it may be slow as long as it is a range that forms a network structure, but is preferably 0.3 m / min or more. If it is slower than 0.3 m / min, cooling after the contact is formed becomes slow, and the quality may be inferior.
 本発明の網状構造体を得るための方法の一つとして、冷却して得られた網状構造体に熱処理(アニーリング処理)を行うことも挙げられる。熱処理温度は70℃以上が好ましく、80℃以上がより好ましく、90℃以上がさらに好ましい。熱処理はオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマーの融点以下で行われることが好ましく、融点より5℃低い温度、より好ましくは融点より10℃低い温度で処理することが好ましい。熱処理時間は1分以上が好ましく、10分以上がより好ましく、20分以上がさらに好ましく、30分以上が特に好ましい。熱処理時間は長い方が好ましいが、一定時間以上にしても熱処理の効果が増加せず、逆に樹脂の劣化を引き起こすため、熱処理時間は1時間以内で行うことが好ましい。 As one of the methods for obtaining the network structure of the present invention, heat treatment (annealing process) may be performed on the network structure obtained by cooling. The heat treatment temperature is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, and further preferably 90 ° C. or higher. The heat treatment is preferably performed at a temperature lower than the melting point of the polyolefin-based thermoplastic elastomer made of the olefin block copolymer, preferably at a temperature 5 ° C. lower than the melting point, more preferably 10 ° C. lower than the melting point. The heat treatment time is preferably 1 minute or longer, more preferably 10 minutes or longer, further preferably 20 minutes or longer, particularly preferably 30 minutes or longer. The heat treatment time is preferably longer, but even if the heat treatment time is longer than a certain time, the heat treatment effect does not increase and conversely causes deterioration of the resin. Therefore, the heat treatment time is preferably within 1 hour.
 本発明の網状構造体を構成する連続線状体を、示差走査型熱量計にて測定すると、融解曲線において、室温(20℃)から融点以下に吸熱ピークを有することが好ましい。融点以下の吸熱ピークは2つ以上有する場合もあり、融点との近さやベースライン形状によってはショルダーになって現れる場合もある。この吸熱ピークを有するものは、吸熱ピークを有しないものに比べて耐熱耐湿熱性が向上する。パルスNMR法の測定の結果、および熱処理による耐熱耐湿熱性が見られる現象から考えると、非晶相はより界面相側へ、界面相がより結晶相側へと結晶構造に近い構造に再配列され、より安定な界面相を形成していると考えらえる。 When the continuous linear body constituting the network structure of the present invention is measured with a differential scanning calorimeter, the melting curve preferably has an endothermic peak from room temperature (20 ° C.) to the melting point or lower. There may be two or more endothermic peaks below the melting point, and it may appear as a shoulder depending on the proximity to the melting point and the baseline shape. Those having this endothermic peak have improved heat and humidity resistance as compared with those having no endothermic peak. Considering the measurement results of the pulsed NMR method and the phenomenon of heat and humidity resistance due to heat treatment, the amorphous phase is rearranged closer to the interface phase and the interface phase closer to the crystal phase. It can be considered that a more stable interface phase is formed.
 本発明の網状構造体は、性能を低下させない範囲で樹脂製造工程、成型加工工程、後加工工程等、製品化する任意の工程において、防臭抗菌、消臭、防黴、着色、芳香、難燃、吸放湿等の機能付与を行うことが出来る。 The network structure of the present invention is a deodorizing antibacterial, deodorizing, antifouling, coloring, aroma, flame retardant in any process to be commercialized, such as a resin manufacturing process, a molding process, a post-processing process, etc. within a range not deteriorating performance Moreover, functions such as moisture absorption and desorption can be imparted.
 本発明の網状構造体を構成する連続線状体の断面形状は特には限定されないが、中空断面や異型断面およびそれらの組み合わせとすることで好ましい抗圧縮性やタッチを付与することができる。圧縮特性は繊維径や用いる素材のモジュラスにより調整することが出来る。具体的には、連続線状体の繊維径を調整する方法、連続線状体の断面形状を異型断面や中空断面にする方法、用いる素材自体の硬度を変える方法等が挙げられる。異型断面としては三角形、四角形、十字型等の多辺形断面やそれらに突起を有する断面形状、星型、Y型、U字型およびそれらに突起を複数個有するもの等の異形断面が挙げられる。異形断面とすることで、抗圧縮性を付与できる。抗圧縮性は、用いる素材のモジュラスにより調整して、柔らかい素材では異形度を高くして、初期圧縮応力の勾配を調整できるし、ややモジュラスの高い素材では異形度を低くして座り心地が良好な抗圧縮性を付与する。
 特に中空断面や異型断面を用いた際に、中空率や異型度を高くすると同一の圧縮特性を有する場合であっても、軽量化が可能となる可能性があり、自動車等の座席に用いると省エネルギ-化ができ、布団などの場合は、上げ下ろし時の取扱性が向上するなど、好ましい実施形態である。
The cross-sectional shape of the continuous linear body constituting the network structure of the present invention is not particularly limited, but a preferable anti-compression property and touch can be imparted by using a hollow cross-section, an atypical cross-section, or a combination thereof. The compression characteristics can be adjusted by the fiber diameter and the modulus of the material used. Specific examples include a method of adjusting the fiber diameter of the continuous linear body, a method of changing the cross-sectional shape of the continuous linear body to an atypical cross section or a hollow cross section, and a method of changing the hardness of the material itself used. Examples of the irregular cross section include a polygonal cross section such as a triangle, a quadrangle, and a cross shape, a cross sectional shape having protrusions on them, a star shape, a Y shape, a U shape, and a deformed cross section having a plurality of protrusions on them. . An anti-compressive property can be provided by using an irregular cross section. The anti-compression property can be adjusted according to the modulus of the material used, and the degree of initial compression stress can be adjusted by increasing the degree of deformation for soft materials, and the degree of sitting can be improved by lowering the degree of deformation for materials with slightly higher modulus. Gives good compressibility.
In particular, when using a hollow cross section or an atypical cross section, increasing the hollow ratio or the atypical degree may reduce the weight even if the compression characteristics are the same. In the case of a futon or the like, energy saving can be achieved, and the handling property when raising and lowering is improved.
 網状構造体を構成する連続線状体を中空断面や異形断面とする方法としては、例えば、中空断面とする場合は、オリフィス形状を中空形成できるオリフィスを用いることで可能である。中空断面は網状構造体に使用するオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマーのバラス効果が大きい場合は中空率を高くし易いが、バラス効果が小さいものは、オリフィスの中空率をできるだけ高くしないと糸の中空率は高くならないので、用いる素材により最適なオリフィス形状を選択する必要がある。本発明の連続線状体における好ましい中空率は3~80%であり、より好ましくは5~60%であり、さらに好ましくは10~50%である。中空率が3%未満では、中空の効果が不充分であり、80%を越えると断面と垂直の方向からの大きい力で応力集中を受けた場合中空断面が変形しやすくなり、極端な場合は中空潰れを生じて形態保持性が悪くなる。なお、断面形状は中空部を有していれば特に限定されないが、異形中空断面とすることで抗圧縮性が向上するので好ましい。 As a method of making the continuous linear body constituting the network structure into a hollow cross section or an irregular cross section, for example, in the case of a hollow cross section, it is possible to use an orifice that can form a hollow orifice shape. The hollow section is easy to increase the hollowness when the polyolefin-based thermoplastic elastomer composed of the olefin block copolymer used in the network structure has a large ballistic effect, but the hollowness of the orifice is as high as possible when the ballast effect is small. Otherwise, the hollowness of the yarn will not increase, so it is necessary to select the optimum orifice shape depending on the material used. A preferable hollow ratio in the continuous linear body of the present invention is 3 to 80%, more preferably 5 to 60%, and still more preferably 10 to 50%. If the hollowness is less than 3%, the effect of hollowness is insufficient, and if it exceeds 80%, the hollow cross section tends to be deformed when subjected to stress concentration with a large force from the direction perpendicular to the cross section. Hollow crushing occurs, resulting in poor shape retention. The cross-sectional shape is not particularly limited as long as it has a hollow portion, but it is preferable to have a deformed hollow cross-section because the compression resistance is improved.
 網状構造体を構成する連続線状体をシースコア構造に複合化して、融点差を利用し接合強力向上を狙うのも好ましい実施形態である。この場合は、シース成分とコア成分に使用する熱可塑性エラストマーの融点差が20℃以上の熱可塑性エラストマーを用いて、オリフィス直前でシースコア配分して吐出することで得ることができる。シース成分とコア成分に使用する熱可塑性エラストマーの融点差が30℃以上であることがより好ましい。網状構造体を構成する連続線状体をシースコア構造に複合化する場合の紡糸温度は低融点成分の融点より、少なくとも10℃以上高い温度で行うのが好ましい。 It is also a preferred embodiment in which the continuous linear bodies constituting the network structure are combined into a seascore structure and the bonding strength is improved by utilizing the melting point difference. In this case, it can be obtained by using a thermoplastic elastomer having a melting point difference of 20 ° C. or more between the thermoplastic elastomer used for the sheath component and the core component and distributing the seascore immediately before the orifice and discharging the thermoplastic elastomer. The difference in melting point between the thermoplastic elastomer used for the sheath component and the core component is more preferably 30 ° C. or more. The spinning temperature when the continuous linear body constituting the network structure is combined with the seascore structure is preferably at least 10 ° C. higher than the melting point of the low melting point component.
 本発明の網状構造体は、多層構造のものも包含する。例えば、上面と下層を異なった繊維径の連続線状体で構成することができる。例えば、上層は繊維径の小さい連続線状体で構成しソフトにしつつ、下層は繊維径の大きい連続線状体で構成し硬度を持たせることで、ソフトな触感と底付き感の低減を両立することができる網状構造体とすることも好ましい実施形態である。多層にする方法は、網状構造体同士を積み重ねて側地等で固定する方法、加熱により溶融固着する方法、接着剤で接着する方法や縫製やバンド等で拘束する方法等が挙げられる。 The network structure of the present invention includes a multilayer structure. For example, the upper surface and the lower layer can be composed of continuous linear bodies having different fiber diameters. For example, the upper layer is composed of a continuous linear body with a small fiber diameter and soft, while the lower layer is composed of a continuous linear body with a large fiber diameter to give hardness, thereby reducing both soft touch and bottoming feeling. It is also a preferred embodiment to provide a reticulated structure. Examples of the multi-layered method include a method of stacking network structures and fixing them on the side ground, a method of melting and fixing by heating, a method of bonding with an adhesive, a method of restraining with sewing or a band, and the like.
 以下に、実施例を例示し、本発明を具体的に説明するが、本発明はこれらによって限定されるものではない。なお、実施例中における特性値の測定および評価は下記のように行った。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, the measurement and evaluation of the characteristic value in an Example were performed as follows.
(1)繊維径
 試料を5cm×5cmの大きさに切断し、網状構造体からランダムに線状体を切り出した。採集した線状体の輪切り方向での繊維断面を、光学顕微鏡を適当な倍率で観察することで、繊維径を測定した(n=10の平均値)。
(1) Fiber diameter A sample was cut into a size of 5 cm x 5 cm, and a linear body was randomly cut out from the network structure. The fiber diameter was measured (average value of n = 10) by observing the fiber cross section in the ring cutting direction of the collected linear body with an optical microscope at an appropriate magnification.
(2)中空率
 試料を20cm×20cmの大きさに切断し、その試料よりランダムに20本の線状体を取り出した。線状体を輪切りにし、繊維軸方向に立てた状態でカバーガラスに載せ、光学顕微鏡で輪切り方向の繊維断面を観察し、繊維の外周面積(a)と中空面積(b)を算出した。中空率は次式により算出し、20本の平均値とした。
 (中空率)=(b)/(a)(単位%)
 この際、線状体の断面形状が中空形状のものを中空断面形状線状体と見なし、断面形状が中実断面形状線状体の場合は、中空断面形状線状体のみの平均値を求めた。
(2) Hollow rate A sample was cut into a size of 20 cm × 20 cm, and 20 linear bodies were taken out of the sample at random. The linear body was cut into circles, placed on the cover glass in a state of standing in the fiber axis direction, the fiber cross section in the ring cutting direction was observed with an optical microscope, and the outer peripheral area (a) and the hollow area (b) of the fiber were calculated. The hollow ratio was calculated by the following formula, and the average value of 20 was obtained.
(Hollow ratio) = (b) / (a) (unit%)
At this time, when the cross-sectional shape of the linear body is a hollow cross-sectional shape, the hollow cross-sectional shape linear body is regarded, and when the cross-sectional shape is a solid cross-sectional shape linear body, an average value of only the hollow cross-sectional shape linear body is obtained. It was.
(3)試料厚みおよび見掛け密度
 試料を8cm×10cmの大きさに4サンプル切り出し、無荷重で24時間放置した。その後、高分子計器製FD-80N型測厚器にて面積15cm2の円形測定子を使用し、各サンプル1か所の高さを測定し、その平均値を試料厚みとした。試料重さは、上記試料を電子天秤により計測した。見掛け密度は、試料厚みから体積を求め、試料の重さを体積で除した値で示した。(n=4の平均値)
(3) Sample thickness and apparent density Four samples were cut into a size of 8 cm × 10 cm and left unloaded for 24 hours. Thereafter, a circular measuring probe with an area of 15 cm 2 was used with an FD-80N type thickness gauge manufactured by Kobunshi Keiki Co., Ltd., the height of one sample was measured, and the average value was taken as the sample thickness. The sample weight was measured using an electronic balance. The apparent density was obtained by calculating the volume from the sample thickness and dividing the weight of the sample by the volume. (Average value of n = 4)
(4)融点
 TAインスツルメント社製 示差走査熱量計Q200を使用し、室温から昇温速度20℃/分で測定した吸発熱曲線から吸熱ピーク(融解ピーク)温度を求めた。
(4) Melting point The endothermic peak (melting peak) temperature was determined from an endothermic curve measured from a room temperature using a differential scanning calorimeter Q200 manufactured by TA Instruments, at a heating rate of 20 ° C./min.
(5)比熱
 TAインスツルメント社製 示差走査熱量計Q200を使用し、JIS-K7123 に準拠する方法で求めた。10℃で10min保持した後、10℃/minで70℃まで昇温し、70℃で10min保持し、ベースラインを合わせ、25℃における空のアルミパンとサンプルのヒートフローの差(H)と、25℃における空のアルミパンと基準物質のヒートフローの差(h)およびサンプルの重量(M)と基準物質の重量(m)より以下の式を用いて測定を行った。
 比熱(J/g・℃)=(H/h)×(m/M)×(基準物質の比熱)
基準物質にはα-アルミナを用いて測定を行った。
(5) Specific heat Using a differential scanning calorimeter Q200 manufactured by TA Instruments, the specific heat was obtained by a method based on JIS-K7123. After holding at 10 ° C. for 10 min, the temperature was raised to 70 ° C. at 10 ° C./min, held at 70 ° C. for 10 min, the baseline was adjusted, and the difference in heat flow between the empty aluminum pan and the sample at 25 ° C. (H) From the difference in heat flow between the empty aluminum pan at 25 ° C. and the reference material (h), the weight of the sample (M), and the weight of the reference material (m), the measurement was performed using the following formula.
Specific heat (J / g · ° C.) = (H / h) × (m / M) × (specific heat of reference material)
Measurement was performed using α-alumina as a reference material.
(6)樹脂(レジン)の190℃におけるメルトフローレート(MFR)
 「ASTM D1238」の測定法により、190℃、荷重2160gの条件下で測定を行った。
(6) Melt flow rate (MFR) of resin (resin) at 190 ° C
The measurement was performed under the conditions of 190 ° C. and load of 2160 g by the measurement method of “ASTM D1238”.
(7)樹脂(レジン)の密度
 「ASTM D792」に準拠する方法で測定を行った。
(7) Density of Resin (Resin) Measurement was performed by a method based on “ASTM D792”.
(8)樹脂の組成分析
 共鳴周波数125MHzの13C-NMR測定にて行った。測定装置にはBRUKER製AVANCE500を用い、溶媒には重ベンゼン/o-ジクロロベンゼン(20/80 vol%)を使用した。前述した溶媒に、試料を125℃以上で十分に溶解した後、110℃で測定を行った。積算回数は512回以上、繰り返し時間は1sec以上とした。
(8) Composition analysis of resin It was carried out by 13 C-NMR measurement at a resonance frequency of 125 MHz. BRUKER AVANCE 500 was used as a measuring device, and heavy benzene / o-dichlorobenzene (20/80 vol%) was used as a solvent. The sample was sufficiently dissolved at 125 ° C. or higher in the aforementioned solvent, and then measured at 110 ° C. The number of integrations was 512 times or more, and the repetition time was 1 sec or more.
(9)結晶相の緩和時間
 日本電子製パルスNMR測定装置(JNM-MU25)を用いて測定した。観測核は1H、測定磁場強度は0.58テスラ、観測周波数は25MHz、パルスモードはSolid-Echo法、RPパルス幅(Pw1)は2.0μs、パルス間隔(Pi1)は8.0μs、パルス繰り返し時間は500msで測定を行った。このようにして測定して得られた自動誘導減衰信号を最小二乗法によって長い成分から順に差し引いて3成分で解析を行い、緩和時間の短い成分を結晶相、長い成分を非晶相、中間の成分を界面相であると定義し、結晶相の緩和時間を求めた。
(9) Crystal Phase Relaxation Time Measured using a JEOL pulse NMR measurement device (JNM-MU25). Observation nucleus is 1H, measurement magnetic field strength is 0.58 Tesla, observation frequency is 25 MHz, pulse mode is Solid-Echo method, RP pulse width (Pw1) is 2.0 μs, pulse interval (Pi1) is 8.0 μs, pulse repetition The time was measured at 500 ms. The automatic induction decay signal obtained in this way is subtracted in order from the longest component by the least square method and analyzed with three components. The short relaxation component is the crystalline phase, the long component is the amorphous phase, The component was defined as the interfacial phase, and the relaxation time of the crystal phase was determined.
(10)界面相の分率
 日本電子製パルスNMR測定装置(JNM-MU25)を用いて測定した。観測核は1H、測定磁場強度は0.58テスラ、観測周波数は25MHz、パルスモードはSolid-Echo法、RPパルス幅(Pw1)は2.0μs、パルス間隔(Pi1)は8.0μs、パルス繰り返し時間は500msで測定を行った。このようにして測定して得られた自動誘導減衰信号を最小二乗法によって長い成分から順に差し引いて3成分で解析を行い、緩和時間の短い成分を結晶相、長い成分を非晶相、中間の成分を界面相であると定義し、界面相の分率を求めた。
(10) Fraction of interfacial phase It was measured using a JEOL pulse NMR measurement device (JNM-MU25). Observation nucleus is 1H, measurement magnetic field strength is 0.58 Tesla, observation frequency is 25 MHz, pulse mode is Solid-Echo method, RP pulse width (Pw1) is 2.0 μs, pulse interval (Pi1) is 8.0 μs, pulse repetition The time was measured at 500 ms. The automatic induction decay signal obtained in this way is subtracted in order from the longest component by the least square method and analyzed with three components. The short relaxation component is the crystalline phase, the long component is the amorphous phase, The component was defined as the interfacial phase, and the fraction of the interfacial phase was determined.
(11)25%圧縮時硬度
 試料を8cm×10cmの大きさに切断し、20℃±2℃の環境下に無荷重で24時間放置した後、20℃±2℃の環境下にあるオリエンテック社製テンシロンRTM250(1kNロードセル使用)にてφ50mm、厚み3mmの加圧板を用いて、試料の中心部を10mm/minの速度で圧縮を開始し、荷重が0.3Nになる時の厚みを計測し、硬度計厚みとする。この時の加圧板の位置をゼロ点として、速度100mm/minで硬度計厚みの75%まで圧縮した後、速度100mm/minにて加圧板をゼロ点まで戻す。引き続き速度100mm/minで硬度計厚みの25%まで圧縮し、その際の荷重を25%圧縮時硬度とした:単位N/φ50mm(n=3の平均値)。
(11) Hardness at 25% compression After cutting the sample into a size of 8 cm x 10 cm and leaving it in an environment of 20 ° C ± 2 ° C under no load for 24 hours, Orientec in an environment of 20 ° C ± 2 ° C Using a Tensilon RTM250 (using a 1kN load cell), a compression plate with a diameter of 50mm and a thickness of 3mm is used to start compressing the center of the sample at a speed of 10mm / min, and the thickness is measured when the load reaches 0.3N. And the hardness meter thickness. The position of the pressure plate at this time is taken as the zero point, and after compression to 75% of the hardness meter thickness at a speed of 100 mm / min, the pressure plate is returned to the zero point at a speed of 100 mm / min. Subsequently, compression was performed at a speed of 100 mm / min to 25% of the thickness of the hardness meter, and the load at that time was defined as 25% compression hardness: unit N / φ50 mm (average value of n = 3).
(12)65%圧縮時硬度
 試料を8cm×10cmの大きさに切断し、20℃±2℃の環境下に無荷重で24時間放置した後、20℃±2℃の環境下にあるオリエンテック社製テンシロンRTM250(1kNロードセル使用)にてφ50mm、厚み3mmの加圧板を用いて、試料の中心部を10mm/minの速度で圧縮を開始し、荷重が0.3Nになる時の厚みを計測し、硬度計厚みとする。この時の加圧板の位置をゼロ点として、速度100mm/minで硬度計厚みの75%まで圧縮した後、速度100mm/minにて加圧板をゼロ点まで戻す。引き続き速度100mm/minで硬度計厚みの65%まで圧縮し、その際の荷重を65%圧縮時硬度とした:単位N/φ50mm(n=3の平均値)。
(12) Hardness at 65% compression The sample was cut into a size of 8 cm x 10 cm, left unloaded in an environment of 20 ° C ± 2 ° C for 24 hours, and then Orientec in an environment of 20 ° C ± 2 ° C. Using a Tensilon RTM250 (using a 1kN load cell), a compression plate with a diameter of 50mm and a thickness of 3mm is used to start compressing the center of the sample at a speed of 10mm / min, and the thickness is measured when the load reaches 0.3N. And the hardness meter thickness. The position of the pressure plate at this time is taken as the zero point, and after compression to 75% of the hardness meter thickness at a speed of 100 mm / min, the pressure plate is returned to the zero point at a speed of 100 mm / min. Subsequently, it was compressed to 65% of the thickness of the hardness meter at a speed of 100 mm / min, and the load at that time was defined as 65% hardness at the time of compression: unit N / φ50 mm (average value of n = 3).
(13)ヒステリシスロス
 試料を20cm×20cmの大きさに切断し、20±2℃の環境下に無荷重で24時間放置した後、20℃±2℃の環境下にあるオリエンテック社製テンシロンRTM250(1kNロードセル使用)にてφ50mm、厚み3mmの加圧板を用いて、試料の中心部を10mm/minの速度で圧縮を開始し、荷重が0.3Nになる時の厚みを計測し、初期厚みとする。初期厚み測定後のサンプルを20±2℃の環境下にあるオリエンテックス社製テンシロンRTM250(1kNロードセル使用)にてφ150mm、厚み20mmの圧縮板を用いて、50mm/minの速度で初期厚みの75%まで圧縮した後、ホールドタイム無しで、同速度で元の位置まで圧縮板を戻し(一回目の応力歪み曲線)、続けてホールドタイム無しで同作業(圧縮と戻し)を繰り返す(二回目の応力歪み曲線)。二回目の圧縮時応力曲線の示す圧縮エネルギー(WC)、二回目の除圧時応力曲線の示す圧縮エネルギー(WC‘)とし、下記式に従ってヒステリシスロスを求める。(n=3の平均値)
 ヒステリシスロス(%)=(WC-WC‘)/WC×100
 WC=∫PdT(0%から75%まで圧縮したときの仕事量)
 WC‘=∫PdT(75%から0%まで除圧したときの仕事量)
(13) Hysteresis loss After cutting a sample into a size of 20 cm × 20 cm and leaving it in an environment of 20 ± 2 ° C. for 24 hours with no load, Tensilon RTM250 manufactured by Orientec Co., Ltd. in an environment of 20 ° C. ± 2 ° C. Using a pressure plate with a diameter of 50 mm and a thickness of 3 mm (using a 1 kN load cell), compression of the center of the sample was started at a speed of 10 mm / min, and the thickness when the load reached 0.3 N was measured. And The sample after the initial thickness measurement was 75 mm of the initial thickness at a speed of 50 mm / min using a compression plate having a diameter of 150 mm and a thickness of 20 mm in an orientex Tensilon RTM250 (using 1 kN load cell) in an environment of 20 ± 2 ° C. After compression to%, the compression plate is returned to the original position at the same speed without holding time (first stress-strain curve), and then the same operation (compression and returning) is repeated without holding time (second time) Stress strain curve). Hysteresis loss is determined according to the following equation, with the compression energy (WC) indicated by the second compression stress curve and the compression energy (WC ′) indicated by the second decompression stress curve. (Average value of n = 3)
Hysteresis loss (%) = (WC−WC ′) / WC × 100
WC = ∫PdT (Work amount when compressed from 0% to 75%)
WC ′ = ∫PdT (Work amount when decompressing from 75% to 0%)
(14)70℃圧縮残留歪
 試料を8cm×10cmの大きさに切断し、(3)に記載の方法で処理前の厚み(a)を測定する。厚みを測定したサンプルを厚み(a)の50%圧縮状態に厚みを保持できる冶具に挟み、温度70℃、湿度23%に設定した乾燥機に入れ、22時間放置する。その後サンプルを取り出し、冷却して圧縮歪みを除き30分後に(3)に記載の方法で厚み(b)を求め、処理前の厚み(a)とから、式{(a)-(b)}/(a)×100より算出する:単位%(n=3の平均値)。
(14) 70 ° C. compression residual strain A sample is cut into a size of 8 cm × 10 cm, and the thickness (a) before treatment is measured by the method described in (3). The sample whose thickness was measured was sandwiched between jigs capable of holding the thickness in a compressed state of 50% of thickness (a), placed in a dryer set at a temperature of 70 ° C. and a humidity of 23%, and left for 22 hours. Thereafter, the sample is taken out, cooled to remove the compressive strain, and 30 minutes later, the thickness (b) is obtained by the method described in (3). From the thickness (a) before treatment, the formula {(a)-(b)} / (A) × 100: unit% (average value of n = 3).
(15)50℃、95RH%圧縮残留歪
 試料を8cm×10cmの大きさに切断し、(3)に記載の方法で処理前の厚み(c)を測定する。厚みを測定したサンプルを厚み(c)を50%圧縮状態に保持できる冶具に挟み、温度50℃、湿度95RH%に設定した恒温恒湿槽に入れ、22時間放置する。その後サンプルを取り出し、冷却して圧縮歪みを除き30分後に(3)に記載の方法で厚み(d)を求め、処理前の厚み(c)とから、式{(c)-(d)}/(c)×100より算出する:単位%(n=3の平均値)。
(15) 50 ° C., 95 RH% compression residual strain A sample is cut into a size of 8 cm × 10 cm, and the thickness (c) before treatment is measured by the method described in (3). The sample whose thickness was measured was sandwiched between jigs capable of maintaining the thickness (c) in a 50% compressed state, placed in a constant temperature and humidity chamber set to a temperature of 50 ° C. and a humidity of 95 RH%, and left for 22 hours. Thereafter, the sample is taken out, cooled to remove the compressive strain, and 30 minutes later, the thickness (d) is obtained by the method described in (3). From the thickness (c) before treatment, the formula {(c)-(d)} / (C) × 100: unit% (average value of n = 3).
(16)85℃、95RH%圧縮残留歪
 試料を8cm×10cmの大きさに切断し、(3)に記載の方法で処理前の厚み(c)を測定する。厚みを測定したサンプルを厚み(e)を50%圧縮状態に保持できる冶具に挟み、温度80℃、湿度95RH%に設定した恒温恒湿槽に入れ、22時間放置する。その後サンプルを取り出し、冷却して圧縮歪みを除き30分後に(3)に記載の方法で厚み(f)を求め、処理前の厚み(e)とから、式{(e)-(f)}/(e)×100より算出する:単位%(n=3の平均値)。
(16) 85 ° C., 95 RH% compression residual strain A sample is cut into a size of 8 cm × 10 cm, and the thickness (c) before treatment is measured by the method described in (3). The sample whose thickness is measured is sandwiched between jigs capable of maintaining the thickness (e) in a 50% compressed state, placed in a constant temperature and humidity chamber set to a temperature of 80 ° C. and a humidity of 95 RH%, and left for 22 hours. Thereafter, the sample is taken out, cooled to remove the compressive strain, and after 30 minutes, the thickness (f) is obtained by the method described in (3). From the thickness (e) before the treatment, the formula {(e)-(f)} / (E) × 100: unit% (average value of n = 3).
(17)8万回繰返し圧縮後硬度保持率
 試料を30cm×30cmの大きさに切断し、(3)に記載の方法で処理前の厚みを測定する。厚みを測定したサンプルの25%圧縮時硬度を(11)に記載の方法で測定し、その値を処理前荷重(g)とする。その後、25%圧縮時硬度を測定したサンプルを、安田精機製作所のフォームラバー繰返し圧縮試験機で、20℃±2℃環境下にて30cm×30cm、厚み20mmの加圧板の間に挟み、処理前の厚みの50%の厚みまで1Hzのサイクルで圧縮回復を8万回繰り返す。8万回繰返し圧縮後の試料をフォームラバー繰返し圧縮試験機から取り出し、30分静置後、25%圧縮時硬度を(11)に記載の方法で測定し、その値を処理後荷重(h)とする。式(h)/(g)×100より8万回繰返し圧縮後硬度保持率を算出する:単位%(n=3の平均値)。
(17) Hardness retention after repeated compression 80,000 times The sample is cut into a size of 30 cm × 30 cm, and the thickness before treatment is measured by the method described in (3). The 25% compression hardness of the sample whose thickness was measured was measured by the method described in (11), and the value was defined as the pre-treatment load (g). Thereafter, the sample whose hardness at 25% compression was measured was sandwiched between pressure plates of 30 cm × 30 cm and thickness 20 mm under a 20 ° C. ± 2 ° C. environment using a foam rubber repeated compression tester manufactured by Yasuda Seiki Seisakusho. The compression recovery is repeated 80,000 times in a cycle of 1 Hz up to 50% of the thickness. A sample after 80,000 repeated compressions is taken out from the foam rubber repeated compression tester, left to stand for 30 minutes, and then the 25% hardness at the time of compression is measured by the method described in (11). And The hardness retention after repeated compression 80,000 times is calculated from the formula (h) / (g) × 100: unit% (average value of n = 3).
[実施例1]
 幅方向96mm、厚み方向の幅31.2mmのノズル有効面にオリフィスの形状は外径1mm、内径0.6mmのトリプルブリッジ中空形成性断面としたオリフィスを孔間ピッチ6mmの千鳥配列としたノズルを用いた。オレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマーとしてエチレン/α-オレフィンからなるマルチブロック共重合体であるINFUSE D9530.05(ダウ・ケミカルズ社製)を100重量%使用し、紡糸温度240℃にて、単孔吐出量を1.0g/minとなる条件でノズル下方に吐出させた。ノズル面下18cmの距離に冷却水を配し、冷却水の温度を20℃とし、引き取りとしては、幅300mmのステンレス製エンドレスネットを有する引き取り装置を、コンベアの一部が水面上に一部出るように配した。コンベアの間隔は平行に幅20mmとし、溶融状態の吐出線状を曲がりくねらせル-プを形成して接触部分を融着させつつ3次元網状構造を形成させた。3次元網状構造体の両面を引き取りコンベアで挟み込みつつ、引き取り速度を0.75m/minで冷却水中へ引込み固化させ、両面をフラット化した後、所定の大きさに切断し、105℃熱風にて30分間アニーリング処理した。得られたポリオレフィン系熱可塑性エラストマーからなる網状構造体の特性を表1に示す。
 なお、網状構造体を構成する樹脂の樹脂組成は、上記に記載の共鳴周波数125MHzの13C-NMR測定による方法にて行い、樹脂組成であるエチレンと1-オクテンのmol比率は以下の方法で測定した。
 1-オクテンの共重合mol比率の決定は、以下の方法で決定した。
 溶媒に使用したo-ジクロロベンゼンのピークは120~140ppm付近に観測されるが、その内一番低磁場側に検出される1,2位の13Cピークを133.1ppmとする。その際、10.0~50ppm付近に検出されるピークが1-オクテン共重合ポリエチレンに対応するピークである。さらに、その内、3級炭素のピークが38.2~38.4ppmおよび35.9~36.1ppmに、1級炭素のピークが14.0~14.2ppmに、それ以外は2級炭素のピークに該当する。解析には、3級炭素のピーク(積分値の和=Aとする)と2級炭素のピーク(積分値の和=Bとする)を用い、以下の式で1-オク
テン共重合mol比率(下式のX)を算出した。
  A×100/{A+(B-A×6)/2}=X(mol%)
エチレンの共重合mol比率は以下の式により求めた。
  Y=100-X(mol%)
 以下の実施例においても、同様にして樹脂組成、共重合mol比率を測定した。
 得られた網状構造体は、連続線状体の断面形状が円形の中空断面で中空率が30%、繊維径が0.78mmであった。得られた網状構造体は、本発明の要件を満たし、特に高温、高湿下での耐久性に優れた網状構造体であった。
[Example 1]
A nozzle having a cross-section with a triple-bridge hollow forming section with an orifice diameter of 1 mm and an inner diameter of 0.6 mm on a nozzle effective surface having a width direction of 96 mm and a thickness direction width of 31.2 mm. Using. 100% by weight of INFUSE D9530.05 (manufactured by Dow Chemicals), which is a multi-block copolymer made of ethylene / α-olefin, is used as a polyolefin-based thermoplastic elastomer made of an olefin block copolymer, and the spinning temperature is set to 240 ° C. Thus, the single hole discharge amount was discharged below the nozzle under the condition of 1.0 g / min. Cooling water is arranged at a distance of 18 cm below the nozzle surface, the temperature of the cooling water is 20 ° C., and as a take-up, a take-up device having a stainless steel endless net with a width of 300 mm is partially taken out on the water surface. Arranged. The interval between the conveyors was set to a width of 20 mm in parallel, and a three-dimensional network structure was formed while fusing the discharge line in the melted state to form a loop and fusing the contact portions. While sandwiching both sides of the three-dimensional network structure with a take-up conveyor, draw it into cooling water at a take-up speed of 0.75 m / min and solidify it, flatten both sides, cut into a predetermined size, and hot air at 105 ° C Annealing was performed for 30 minutes. Table 1 shows the characteristics of the network structure made of the polyolefin-based thermoplastic elastomer.
The resin composition of the resin constituting the network structure is performed by the above-described method by 13 C-NMR measurement at a resonance frequency of 125 MHz, and the molar ratio of ethylene and 1-octene as the resin composition is as follows. It was measured.
Determination of the molar ratio of 1-octene copolymerization was determined by the following method.
The peak of o-dichlorobenzene used for the solvent is observed in the vicinity of 120 to 140 ppm, and the 13 C peak at the 1st and 2nd positions detected on the lowest magnetic field side is set to 133.1 ppm. At that time, a peak detected in the vicinity of 10.0 to 50 ppm is a peak corresponding to 1-octene copolymer polyethylene. Among them, the peak of the tertiary carbon is 38.2 to 38.4 ppm and 35.9 to 36.1 ppm, the peak of the primary carbon is 14.0 to 14.2 ppm, and the others are secondary carbon. It corresponds to the peak. In the analysis, a tertiary carbon peak (sum of integrated values = A) and a secondary carbon peak (sum of integrated values = B) are used, and a 1-octene copolymer mol ratio ( X) of the following formula was calculated.
A × 100 / {A + (BA−6) / 2} = X (mol%)
The ethylene copolymerization mole ratio was determined by the following formula.
Y = 100-X (mol%)
Also in the following examples, the resin composition and the copolymerization mol ratio were measured in the same manner.
The obtained network structure had a hollow cross section in which the cross-sectional shape of the continuous linear body was circular, the hollowness was 30%, and the fiber diameter was 0.78 mm. The obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in durability particularly under high temperature and high humidity.
[実施例2]
 アニーリング温度を70℃にした以外は実施例1に従った。得られた網状構造体の特性を表1に示す。
 得られた網状構造体は、連続線状体の断面形状が円形の中空断面で中空率が29%、繊維径が0.76mmであった。得られた網状構造体は、本発明の要件を満たし、特に高温、高湿下での耐久性に優れた網状構造体であった。
[Example 2]
Example 1 was followed except that the annealing temperature was 70 ° C. The properties of the obtained network structure are shown in Table 1.
The obtained network structure had a hollow cross section in which the cross-sectional shape of the continuous linear body was circular, the hollowness was 29%, and the fiber diameter was 0.76 mm. The obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in durability particularly under high temperature and high humidity.
[実施例3]
 使用するオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマーとして、エチレン/α-オレフィンからなるマルチブロック共重合体であるINFUSE D9817.15(ダウ・ケミカルズ社製)を100重量%使用し、紡糸温度を220℃とした以外は実施例1に従った。得られた網状構造体の特性を表1に示す。
 得られた網状構造体は、連続線状体の断面形状が円形の中空断面で中空率が25%、繊維径が0.68mmであった。得られた網状構造体は、本発明の要件を満たし、特に高温、高湿下での耐久性に優れた網状構造体であった。
[Example 3]
As a polyolefin-based thermoplastic elastomer composed of an olefin block copolymer to be used, 100% by weight of INFUSE D9817.15 (manufactured by Dow Chemicals), which is a multi-block copolymer composed of ethylene / α-olefin, is used, and the spinning temperature Example 1 was followed except that was 220 ° C. The properties of the obtained network structure are shown in Table 1.
The obtained network structure had a hollow cross section in which the cross-sectional shape of the continuous linear body was circular, the hollowness was 25%, and the fiber diameter was 0.68 mm. The obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in durability particularly under high temperature and high humidity.
[実施例4]
 アニーリング温度を70℃にした以外は実施例3に従った。得られた網状構造体の特性を表1に示す。
 得られた網状構造体は、連続線状体の断面形状が円形の中空断面で中空率が24%、繊維径が0.65mmであった。得られた網状構造体は、本発明の要件を満たし、特に高温、高湿下での耐久性に優れた網状構造体であった。
[Example 4]
Example 3 was followed except that the annealing temperature was 70 ° C. The properties of the obtained network structure are shown in Table 1.
The obtained network structure had a hollow cross section in which the cross-sectional shape of the continuous linear body was circular, the hollowness was 24%, and the fiber diameter was 0.65 mm. The obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in durability particularly under high temperature and high humidity.
[実施例5]
 使用するオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマーとして、エチレン/α-オレフィンからなるマルチブロック共重合体であるINFUSE D9807.15(ダウ・ケミカルズ社製)を100重量%使用し、紡糸温度、単孔吐出量を表1に記載した条件に変更した以外は実施例1に従った。得られた網状構造体の特性を表1に示す。
 得られた網状構造体は、連続線状体の断面形状が円形の中空断面で中空率が26%、繊維径が0.67mmであった。得られた網状構造体は、本発明の要件を満たし、特に高温、高湿下での耐久性に優れた網状構造体であった。
[Example 5]
As a polyolefin-based thermoplastic elastomer comprising an olefin block copolymer to be used, 100% by weight of INFUSE D9807.15 (manufactured by Dow Chemicals), which is a multi-block copolymer comprising ethylene / α-olefin, is used, and the spinning temperature Example 1 was followed except that the single-hole discharge amount was changed to the conditions described in Table 1. The properties of the obtained network structure are shown in Table 1.
The obtained network structure had a hollow cross section in which the cross-sectional shape of the continuous linear body was circular, the hollowness was 26%, and the fiber diameter was 0.67 mm. The obtained network structure satisfied the requirements of the present invention, and was a network structure excellent in durability particularly under high temperature and high humidity.
[実施例6]
 紡糸温度を200℃にした以外は実施例1に従った。得られた網状構造体の特性を表1に示す。
 得られた網状構造体は、連続線状体の断面形状が円形の中空断面で中空率が40%、繊維径が0.95mmであった。得られた網状構造体は、接点強度が若干弱くなるため、8万回繰返し圧縮後硬度保持率が少し劣る網状構造体であった。
[Example 6]
Example 1 was followed except that the spinning temperature was 200 ° C. The properties of the obtained network structure are shown in Table 1.
The obtained network structure had a hollow cross section in which the cross-sectional shape of the continuous linear body was circular, the hollowness was 40%, and the fiber diameter was 0.95 mm. The obtained network structure was a network structure having a slightly inferior hardness retention after repeated compression 80,000 times because the contact strength was slightly weakened.
[比較例1]
 使用するポリオレフィン系熱可塑性エラストマーとして、エチレン/オクテンランダム共重合体であるENGAGE 8401(ダウ・ケミカルズ社製)を100重量%使用し、紡糸温度を190℃とした以外は実施例1に従った。得られた網状構造体の特性を表1に示す。
 得られた網状構造体は、連続線状体の断面形状が円形の中空断面で中空率が11%、繊維径が0.5mmであった。得られた網状構造体は、圧縮残留歪が大きく、高温、高湿下での耐久性が悪い網状構造体であった。
[Comparative Example 1]
Example 1 was performed except that 100% by weight of ENGAGE 8401 (manufactured by Dow Chemicals), which is an ethylene / octene random copolymer, was used as the polyolefin-based thermoplastic elastomer to be used, and the spinning temperature was 190 ° C. The properties of the obtained network structure are shown in Table 1.
The obtained network structure had a hollow section with a circular cross section of the continuous linear body, had a hollowness of 11%, and a fiber diameter of 0.5 mm. The obtained network structure was a network structure with a large compressive residual strain and poor durability under high temperature and high humidity.
[比較例2]
 冷却後の熱処理(アニーリング)の条件を表1に記載した条件に変更した以外は比較例1に従った。得られた網状構造体の特性を表1に示す。
 得られた網状構造体は、アニール時の条件により網状構造を維持できなかった。
[Comparative Example 2]
Comparative Example 1 was followed except that the heat treatment (annealing) conditions after cooling were changed to the conditions described in Table 1. The properties of the obtained network structure are shown in Table 1.
The obtained network structure could not maintain the network structure due to annealing conditions.
[比較例3]
 幅方向1050mm、厚み方向の幅50mmのノズル有効面にオリフィスの形状は外径2mm、内径1.6mmでトリプルブリッジの中空形成性断面としたオリフィスを孔間ピッチ5mmの千鳥配列としたノズルに、ポリオレフィン系熱可塑性エラストマーとしてメタロセン化合物を触媒として共重合されたエチレン/ヘキセンランダム共重合体であるニポロン(登録商標)-Z7P55A(東ソー株式会社製)を100重量%使用し、紡糸温度210℃にて、単孔当たり2.0g/minの速度でノズル下方に吐出させ、ノズル面26cm下に冷却水を配し、幅150cmのステンレス製エンドレスネットを平行に開口幅40mm間隔で一対の引取りコンベアを水面上に一部出るように配して、該溶融状態の吐出線状を曲がりくねらせループを形成して接触部分を融着させつつ3次元網状構造を形成させた。3次元網状構造体の両面を引取りコンベアで挟み込みつつ毎分1.15mの速度で冷却水中へ引込み固化させ両面をフラット化した後、ニップローラーで毎分1.1mの速度、すなわち速度比率4.3%で引き取り、所定の大きさに切断して70℃熱風にて30分間乾燥熱処理して、網状構造体を得た。得られた網状構造体の特性を表1に示す。
 得られた網状構造体は、連続線状体の断面形状が中空断面で中空率が28%、繊維径が1.2mmであった。得られた網状構造体は、高温、高湿下での圧縮残留歪が大きく、耐久性が悪い網状構造体であった。
[Comparative Example 3]
In the nozzle effective surface of the width direction 1050mm, width direction width 50mm nozzle to the nozzle which made the orifice shape the outer diameter 2mm, the inner diameter 1.6mm, the orifice which made the triple bridge hollow formation cross section with the hole pitch 5mm staggered arrangement, 100% by weight of Nipolon (registered trademark) -Z7P55A (manufactured by Tosoh Corporation), an ethylene / hexene random copolymer copolymerized with a metallocene compound as a catalyst as a polyolefin-based thermoplastic elastomer, at a spinning temperature of 210 ° C. In addition, it is discharged below the nozzle at a speed of 2.0 g / min per single hole, cooling water is arranged below the nozzle surface 26 cm, and a pair of take-up conveyors with a stainless endless net having a width of 150 cm in parallel with an opening width of 40 mm. Arrange it so that it comes out partly on the water surface, and twist the discharge line in the molten state. 3-dimensional network structure while fusing the contact portion to form a to form a. The both sides of the three-dimensional network structure are sandwiched by a take-up conveyor, drawn into cooling water at a rate of 1.15 m / min and solidified by flattening both sides, and then a speed of 1.1 m / min with a nip roller, that is, a speed ratio of 4 It was taken up at 3%, cut into a predetermined size, and dried and heat treated with hot air at 70 ° C. for 30 minutes to obtain a network structure. The properties of the obtained network structure are shown in Table 1.
In the obtained network structure, the cross-sectional shape of the continuous linear body was a hollow cross section, the hollowness was 28%, and the fiber diameter was 1.2 mm. The obtained network structure was a network structure having a large compressive residual strain under high temperature and high humidity and poor durability.
[比較例4]
 エアギャップを50cmにした以外は実施例1に従った。エアギャップを広くしたため、繊維が接点を形成する前に固化し、接点を形成できず、網状構造体を得ることができなかった。
[Comparative Example 4]
Example 1 was followed except that the air gap was 50 cm. Since the air gap was widened, the fiber solidified before forming the contact, and the contact could not be formed, and a network structure could not be obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明により、高温、高湿熱下でも圧縮残留歪が小さい網状構造体を得ることが出来る。この網状構造体は、電車、自動車、二輪車等、特に夏場に高温となる環境であり、かつ乗員等から生じる汗の影響による高湿度になる環境においても、圧縮残留歪が小さいという効果を有する。さらに、冬場に用いられる電気毛布やヒーター、湯たんぽ等によって高温となる環境であり、かつ寝床内等の高湿度になる環境においても、圧縮残留歪が小さいという効果を有し、産業への寄与大である。
 
According to the present invention, a network structure having a small compressive residual strain can be obtained even under high temperature and high humidity heat. This net-like structure has an effect that the compressive residual strain is small even in an environment where the temperature becomes high in summer, such as a train, an automobile, a two-wheeled vehicle and the like, and in an environment where the humidity is high due to the influence of sweat generated by passengers. Furthermore, even in an environment where the temperature is high due to electric blankets, heaters, hot water bottles, etc. used in the winter, and in an environment where the humidity is high such as in a bed, it has the effect that the compressive residual strain is small, contributing greatly to the industry. It is.

Claims (9)

  1.  繊維径が0.1~3.0mmのオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマー連続線状体で構成された三次元ランダムループ接合構造を持つ網状構造体であって、見掛け密度が0.005~0.20g/cmであり、70℃での圧縮残留歪が30%以下である網状構造体。 A network structure having a three-dimensional random loop joining structure made of a continuous polyolefin-based thermoplastic elastomer composed of an olefin block copolymer having a fiber diameter of 0.1 to 3.0 mm, and having an apparent density of 0 A network structure having 0.005 to 0.20 g / cm 3 and a compressive residual strain at 70 ° C. of 30% or less.
  2.  繊維径が0.1~3.0mmのオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマー連続線状体で構成された三次元ランダムループ接合構造を持つ網状構造体であって、見掛け密度が0.005~0.20g/cmであり、50℃、95%RHでの圧縮残留歪が20%以下である網状構造体。 A network structure having a three-dimensional random loop joining structure made of a continuous polyolefin-based thermoplastic elastomer composed of an olefin block copolymer having a fiber diameter of 0.1 to 3.0 mm, and having an apparent density of 0 A network structure of 0.005 to 0.20 g / cm 3 and a compressive residual strain at 50 ° C. and 95% RH of 20% or less.
  3.  繊維径が0.1~3.0mmのオレフィンブロック共重合体からなるポリオレフィン系熱可塑性エラストマー連続線状体で構成された三次元ランダムループ接合構造を持つ網状構造体であって、見掛け密度が0.005~0.20g/cmであり、80℃、95%RHでの圧縮残留歪が35%以下である網状構造体。 A network structure having a three-dimensional random loop joining structure made of a continuous polyolefin-based thermoplastic elastomer composed of an olefin block copolymer having a fiber diameter of 0.1 to 3.0 mm, and having an apparent density of 0 A network structure having 0.005 to 0.20 g / cm 3 and a compressive residual strain of 35% or less at 80 ° C. and 95% RH.
  4.  オレフィンブロック共重合体が、エチレン/α-オレフィンブロック共重合体である請求項1~3のいずれかに記載の網状構造体。 The network structure according to any one of claims 1 to 3, wherein the olefin block copolymer is an ethylene / α-olefin block copolymer.
  5.  エチレン/α-オレフィンブロック共重合体が、エチレンを50~95mol%、炭素数3以上のα-オレフィンを5~50mol%含むブロック共重合体である請求項4に記載の網状構造体。 The network structure according to claim 4, wherein the ethylene / α-olefin block copolymer is a block copolymer containing 50 to 95 mol% of ethylene and 5 to 50 mol% of an α-olefin having 3 or more carbon atoms.
  6.  α-オレフィンが1-オクテンである請求項4または5に記載の網状構造体。 The network structure according to claim 4 or 5, wherein the α-olefin is 1-octene.
  7.  網状構造体の厚みが10~200mmであり、25%圧縮時硬度が1.5~30N/φ50mm以下である請求項1~6のいずれかに記載の網状構造体。 The network structure according to any one of claims 1 to 6, wherein the network structure has a thickness of 10 to 200 mm and a hardness at 25% compression of 1.5 to 30 N / φ50 mm or less.
  8.  連続線状体の断面形状が中空断面である請求項1~7のいずれかに記載の網状構造体。 The network structure according to any one of claims 1 to 7, wherein a cross-sectional shape of the continuous linear body is a hollow cross section.
  9.  網状構造体を構成する樹脂をパルスNMR法により測定して得られた界面相の比率が40%以下である請求項1~8のいずれかに記載の網状構造体。
     
    The network structure according to any one of claims 1 to 8, wherein the ratio of the interface phase obtained by measuring the resin constituting the network structure by a pulse NMR method is 40% or less.
PCT/JP2015/084745 2014-12-12 2015-12-11 Net-shaped object with excellent high-temperature durability WO2016093334A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016563743A JPWO2016093334A1 (en) 2014-12-12 2015-12-11 Network structure with excellent heat resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-252025 2014-12-12
JP2014252025 2014-12-12

Publications (1)

Publication Number Publication Date
WO2016093334A1 true WO2016093334A1 (en) 2016-06-16

Family

ID=56107511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084745 WO2016093334A1 (en) 2014-12-12 2015-12-11 Net-shaped object with excellent high-temperature durability

Country Status (3)

Country Link
JP (2) JPWO2016093334A1 (en)
TW (1) TWI684605B (en)
WO (1) WO2016093334A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095998A (en) * 2016-12-13 2018-06-21 株式会社エアウィーヴマニュファクチャリング Reticular structure and manufacturing method thereof
WO2020111110A1 (en) * 2018-11-29 2020-06-04 東洋紡株式会社 Net-shaped structure body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7399899B2 (en) 2021-01-19 2023-12-18 美津濃株式会社 jumping exercise mat

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768061A (en) * 1993-02-26 1995-03-14 Toyobo Co Ltd Net-work structure for cushion and its manufacture
JP2002266223A (en) * 2001-03-15 2002-09-18 Toyobo Co Ltd Three-dimensional netted structure
JP2008545066A (en) * 2005-03-17 2008-12-11 ダウ グローバル テクノロジーズ インコーポレイティド Three-dimensional random loop structures made from ethylene / α-olefin copolymers and uses thereof
JP2013076199A (en) * 2011-09-16 2013-04-25 Toyobo Co Ltd Elastic net-like structure excellent in quietness and hardness
JP2013091862A (en) * 2011-10-24 2013-05-16 Toyobo Co Ltd Net-like structure
JP5459438B1 (en) * 2013-11-18 2014-04-02 東洋紡株式会社 Network structure with excellent thermal dimensional stability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768061A (en) * 1993-02-26 1995-03-14 Toyobo Co Ltd Net-work structure for cushion and its manufacture
JP2002266223A (en) * 2001-03-15 2002-09-18 Toyobo Co Ltd Three-dimensional netted structure
JP2008545066A (en) * 2005-03-17 2008-12-11 ダウ グローバル テクノロジーズ インコーポレイティド Three-dimensional random loop structures made from ethylene / α-olefin copolymers and uses thereof
JP2013076199A (en) * 2011-09-16 2013-04-25 Toyobo Co Ltd Elastic net-like structure excellent in quietness and hardness
JP2013091862A (en) * 2011-10-24 2013-05-16 Toyobo Co Ltd Net-like structure
JP5459438B1 (en) * 2013-11-18 2014-04-02 東洋紡株式会社 Network structure with excellent thermal dimensional stability

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095998A (en) * 2016-12-13 2018-06-21 株式会社エアウィーヴマニュファクチャリング Reticular structure and manufacturing method thereof
WO2020111110A1 (en) * 2018-11-29 2020-06-04 東洋紡株式会社 Net-shaped structure body
TWI720710B (en) * 2018-11-29 2021-03-01 日商東洋紡股份有限公司 Mesh structure
JP6863537B2 (en) * 2018-11-29 2021-04-21 東洋紡株式会社 Reticulated structure
KR20210076130A (en) * 2018-11-29 2021-06-23 도요보 가부시키가이샤 network structure
KR102473434B1 (en) 2018-11-29 2022-12-05 도요보 가부시키가이샤 reticular structure

Also Published As

Publication number Publication date
TWI684605B (en) 2020-02-11
JPWO2016093334A1 (en) 2017-09-21
JP2020204143A (en) 2020-12-24
TW201636378A (en) 2016-10-16

Similar Documents

Publication Publication Date Title
TWI650459B (en) Elastic reticular structure having excellent quietness and light-weight properties
JP2020204143A (en) Network structure excellent in heat-resistant durability
JP5454733B1 (en) Network structure with excellent compression durability
KR102468540B1 (en) Reticulated structure with excellent low resilience
TW201516208A (en) Reticular structure having excellent compression durability
JP5454734B1 (en) Network structure with excellent compression durability
JP6718848B2 (en) Reticulated structure
KR102288683B1 (en) Net-like structure
JP5978674B2 (en) Elastic network structure with high vibration absorption
JP5966472B2 (en) Elastic network structure with high vibration absorption
CN113166995B (en) Net-shaped structure
JP6318825B2 (en) Lightweight network structure
JP6217780B2 (en) Network structure
WO2016175294A1 (en) Net-like structure
JP6350578B2 (en) Network structure
JP6311918B2 (en) Network structure with excellent compression durability
JP6786773B2 (en) Manufacturing method of reticulated structure molded product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563743

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15867139

Country of ref document: EP

Kind code of ref document: A1