WO2016093085A1 - Magnetic resonance imaging apparatus and method for controlling operation of refrigerator - Google Patents

Magnetic resonance imaging apparatus and method for controlling operation of refrigerator Download PDF

Info

Publication number
WO2016093085A1
WO2016093085A1 PCT/JP2015/083409 JP2015083409W WO2016093085A1 WO 2016093085 A1 WO2016093085 A1 WO 2016093085A1 JP 2015083409 W JP2015083409 W JP 2015083409W WO 2016093085 A1 WO2016093085 A1 WO 2016093085A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
refrigerator
unit
magnetic resonance
pulse sequence
Prior art date
Application number
PCT/JP2015/083409
Other languages
French (fr)
Japanese (ja)
Inventor
津田 宗孝
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2016563616A priority Critical patent/JPWO2016093085A1/en
Publication of WO2016093085A1 publication Critical patent/WO2016093085A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor

Definitions

  • the present invention relates to a magnetic resonance imaging (hereinafter referred to as MRI) apparatus, and more particularly to an MRI apparatus that achieves a high magnetic field intensity using a superconducting magnet and obtains a high-definition diagnostic image.
  • MRI magnetic resonance imaging
  • the MRI apparatus has a stronger nuclear magnetic resonance signal intensity in proportion to the magnetic field intensity. Therefore, a superconducting magnet that can generate a strong magnetic field is often used as the magnetic field generating means.
  • an MRI apparatus having a magnetic field strength of 1 Tesla to 3 Tesla is used for diagnosis in medical facilities.
  • the superconducting magnet has a structure in which a superconducting coil that has been formed into a coil after processing a NbTi superconducting material into a wire is cooled to a critical temperature of 10 Kelvin temperature ( ⁇ 263 ° C.) or lower. In the cooled superconducting coil, a permanent current having a target value flows and generates a magnetic field.
  • the superconducting magnet has a structure in which the superconducting coil is housed in a cryostat having excellent heat insulation characteristics in order to keep the superconducting coil below the critical temperature.
  • the space around the superconducting coil in the cryostat is filled with liquid helium.
  • the cryostat has an excellent heat insulating structure, the liquid helium with a small heat of vaporization is vaporized by a slight conduction heat or radiant heat from the room temperature outside the cryostat and released into the atmosphere. For this reason, in order to operate an MRI apparatus using a superconducting magnet, it is necessary to periodically replenish liquid helium.
  • a superconducting magnet that incorporates a refrigerator into a cryostat, cools and condenses the vaporized helium gas in the refrigerator, and reuses it as liquid helium is the mainstream of current MRI systems. It has become.
  • a heater is disposed inside a cryostat in which a refrigerator is incorporated, and a weak current is supplied. By controlling the amount of weak current, the amount of helium gas cooled and condensed by the refrigerator matches the amount of helium gas evaporated from liquid helium, the pressure in the cryostat is kept constant, and the magnetic field is stabilized.
  • Patent Document 1 discloses a superconducting magnet that controls the frequency of electric power supplied to a motor that drives a refrigerator in accordance with the pressure in the helium vessel of the superconducting magnet to adjust the cooling capacity. Thereby, without using a heater, the evaporation of the refrigerant of the superconducting magnet and the liquefaction by the refrigerator are equalized, and the pressure of the helium container (vessel) of the superconducting magnet is made constant.
  • the MRI apparatus is required to have a high magnetic field free from errors in the time axis direction and the space axis direction in order to be able to display high-definition images.
  • the inventor measured the error magnetic field in the time axis direction of the superconducting magnet with high accuracy, and found that the periodic error magnetic field accompanying the operation of the refrigerator is about 5 nanotesla. It is considered that the main cause of the error magnetic field is that mechanical vibration accompanying the operation of the refrigerator is transmitted to the superconducting magnet and that the movement of the magnetic regenerator used in the refrigerator disturbs the magnetic field. In a high-definition image, this slight error magnetic field causes blurring of the outline of the diagnostic image and a false image.
  • the refrigerator Since the refrigerator is driven by a synchronous motor that rotates in synchronization with a commercial power source, a periodic error magnetic field is generated.
  • the nuclear magnetic resonance (hereinafter referred to as NMR) signal of the subject is regularly modulated due to this error magnetic field, and sideband images are formed on both sides of the original image. May occur.
  • Patent Document 1 does not consider the error magnetic field accompanying the driving of the refrigerator at all.
  • An object of the present invention is to suppress image degradation caused by an error magnetic field in the time axis direction caused by a superconducting magnet refrigerator.
  • the MRI apparatus of the present invention has the following configuration. That is, the MRI apparatus includes a superconducting magnet that generates a static magnetic field in an imaging space, a gradient magnetic field generator that applies a gradient magnetic field pulse to the imaging space, a high-frequency magnetic field generator that irradiates the imaging space with a high-frequency magnetic field pulse, and an imaging space A detection unit for detecting a nuclear magnetic resonance signal from the subject arranged in the head, a gradient magnetic field generation unit, and a control unit for controlling the operation of the high-frequency magnetic field generation unit to execute a predetermined pulse sequence.
  • the superconducting magnet includes a refrigerator, and the refrigerator includes a movable part for realizing cooling and a drive part for operating the movable part.
  • the control unit controls the driving unit to operate the movable unit of the refrigerator at a period synchronized with the pulse sequence repetition time (TR) at least during execution of the pulse sequence.
  • the operation control method for a refrigerator of the present invention includes a superconducting magnet that includes a refrigerator and generates a static magnetic field in an imaging space, and a control unit that executes a predetermined pulse sequence for detecting a nuclear magnetic resonance signal from a subject.
  • the refrigerator is a method for controlling the operation of a refrigerator in a magnetic resonance imaging apparatus having a movable part for realizing cooling and a drive part for operating the movable part, and at least during execution of a pulse sequence Has a step of controlling the drive unit so as to operate the movable unit of the refrigerator in a cycle synchronized with the repetition time (TR) of the pulse sequence.
  • the present invention it is possible to suppress image deterioration due to an error magnetic field in the time axis direction caused by a superconducting magnet refrigerator.
  • FIG. 2 is a cross-sectional view of an open superconducting magnet used in the MRI apparatus of FIG.
  • the graph which shows the measurement result of the error magnetic field of a superconducting magnet.
  • the flowchart which shows the control operation of the refrigerator by the computer of an MRI apparatus.
  • the timing chart figure which shows the imaging
  • FIG. 2 is a cross-sectional view of a conduction cooling type open superconducting magnet used in the MRI apparatus of FIG.
  • FIG. 1 shows the overall configuration of the MRI apparatus
  • FIG. 2 shows the structure of the superconducting magnet.
  • a superconducting magnet 103 that generates a uniform static magnetic field in the imaging space 102, a gradient magnetic field generator (106, 107) that applies one or more gradient magnetic field pulses to the imaging space 102, and an imaging space 102
  • a high-frequency magnetic field generator (108, 109) for irradiating a high-frequency magnetic field pulse; a detection unit (110, 111) for detecting a nuclear magnetic resonance signal from the subject 101 arranged in the imaging space 102; and a gradient magnetic field generator ( 106, 107) and a control unit (112) for controlling the operation of the high-frequency magnetic field generation unit (108, 109) to execute a predetermined pulse sequence.
  • the superconducting magnet 103 is described as an example in which it has an open structure as shown in FIG. 1, but it is of course possible to have other shapes such as a cylindrical shape.
  • the superconducting magnet 103 having an open structure includes a pair of cryostats 104 and connecting columns 105 disposed above and below an imaging space (hereinafter referred to as an inspection space) 102.
  • a superconducting coil 202 is incorporated in the cryostat 104.
  • the superconducting magnet 103 having the structure of FIG. 1 can provide an open inspection environment because the front (y axis) and the left and right (x axis) of the inspection space 102 are not blocked.
  • a permanent current of 450 amperes flows through the superconducting coil 202 in the cryostat 104, and a uniform 1.2 Tesla magnetic field can be generated in the examination space 102 by this permanent current.
  • the internal space of the cryostat 104 is filled with liquid helium 203 as a refrigerant as shown in FIG.
  • a refrigerator 105 is incorporated in the cryostat 104 disposed on the upper side. The refrigerator 105 reuses the vaporized helium gas as a liquid refrigerant in the cryostat 104 by recondensing it into liquid helium.
  • a gradient coil assembly 106 is attached to the examination space 102 side of the cryostat 104.
  • the gradient coil assembly 106 can generate a magnetic field gradient in the examination space 102 along three axial directions orthogonal to each other.
  • three types of coils (not shown) of x, y, and z are laminated to form a disk shape. Due to this disc shape, the open characteristics of the inspection space 102 are maintained.
  • a three-channel gradient magnetic field power source 107 that can independently apply a current is connected to the x coil, y coil, and z coil of the gradient coil assembly 106.
  • the functions of the gradient coil assembly 106 and the gradient magnetic field power source 107 are, for example, that when a positive current is applied to the z coil, the z coil attached to the upper cryostat 104 is in the same direction as the magnetic flux generated by the superconducting magnet 103. A magnetic flux along a certain + z axis is generated and superimposed on the magnetic field of the superconducting magnet 103, and the magnetic field strength of the examination space 102 is increased.
  • the z coil attached to the lower cryostat 104 generates a magnetic flux along the ⁇ z axis in the direction opposite to the magnetic flux generated by the superconducting magnet 103, and weakens the magnetic field strength of the examination space 102.
  • a magnetic field gradient in which the magnetic field strength increases from bottom to top along the z axis of the examination space 102 can be created.
  • the x coil changes the magnetic flux density generated by the superconducting magnet 103 along the x axis, and generates a magnetic field gradient along the x axis of the examination space 102.
  • the y coil generates a magnetic field that gradients along the y axis of the examination space 102.
  • a pair of high-frequency transmitter coils 108 are attached to the cryostat 104 on the inspection space 102 side.
  • the high-frequency transmitter coil 108 has a planar shape so as to maintain an open examination space 102.
  • a high frequency power amplifier 109 is connected to the high frequency transmitter coil 108.
  • the high frequency transmitter coil 108 has a coil circuit configured to generate a magnetic flux parallel to the xy plane of the examination space 102.
  • This coil circuit is configured to match the output impedance of the high-frequency power amplifier 109. For this reason, when a high frequency current of 51 megahertz causing proton nuclear spin to cause NMR phenomenon with a magnetic field intensity of 1.2 Tesla, for example, is applied from the high frequency power amplifier 109 to the high frequency transmitter coil 108, magnetic flux is generated in the examination space 102 on the xy plane. A high-frequency magnetic field that is parallel and rotates at 51 MHz is generated.
  • the high-frequency receiver coil 110 that detects precession of proton nuclear spin that has caused an NMR phenomenon as an NMR signal by electromagnetic induction.
  • the high frequency receiver coil 110 is attached in the vicinity of the examination site of the subject 101.
  • the high frequency receiver coil 110 like the high frequency transmitter coil 108, is tuned to a frequency of 51 megahertz.
  • the high-frequency receiver coil 110 has a different shape for each examination site so that it is mounted as close as possible to the examination site of the subject 101. Are prepared and selected according to the examination site. In FIG. 1, a high-frequency receiver coil 110 for the abdomen is used.
  • the signal processing unit 111 is connected to the high frequency receiver coil 110, and the output signal of the high frequency receiver coil 110 is input to the signal processing unit 111. In the signal processing unit 111, NMR signal amplification, detection, and analog / digital conversion are performed.
  • a computer 112 is connected to the signal processing unit 111. The computer 112 reconstructs the NMR signal converted into the digital electrical signal into an image suitable for diagnosis, and causes the display device 114 to display the reconstructed image. In addition, the computer 112 records the NMR signal and the reconstructed image in the storage device 113.
  • a sequence controller 116 is connected to the computer 112.
  • the sequence controller 116 controls the operations of the gradient magnetic field power source 107, the high frequency power source 109, and the signal processing unit 111 based on the selected shooting mode program.
  • the sequence controller 116 has an interface function between the computer 112 and these units, and not only controls the operation of each unit but also has a function of monitoring the NMR signal and the operation state of the unit.
  • the structure of the superconducting magnet 103 will be described with reference to FIG.
  • the superconducting magnet 103 having an open structure will be described, but a cylindrical superconducting magnet or the like that generates a magnetic field strength of 1.5 to 3 Tesla can be similarly configured except for the shape.
  • the upper cryostat 104 is shown in FIG. 2, the lower cryostat 104 has a vertically symmetrical structure with respect to the upper cryostat 104 except for the portion where the refrigerator 105 is incorporated.
  • the superconducting coil 202 is wound around a coil bobbin 201 made of stainless steel and disposed in a helium vessel 204 filled with liquid helium 203.
  • a vacuum vessel 205 is disposed outside the helium vessel 204, and a vacuum layer 206 is formed in the gap between the vacuum vessel 205 and the helium vessel 204.
  • the helium vessel 204 is fixed to the vacuum vessel 205 by a plurality of supports 207.
  • the helium vessel 204 and the vacuum vessel 205 are made of, for example, 8 mm thick stainless steel so as to sufficiently withstand the electromagnetic force applied to the superconducting coil 202 or the like.
  • the support 207 is made of carbon fiber or FRP (fiber reinforced plastic) in order to reduce the conduction heat transferred from the vacuum vessel 205 to the helium vessel 204 as much as possible.
  • a radiation shield plate 208 and a super insulator 209 are arranged so as to surround the helium vessel 204 with a predetermined interval from the helium vessel 204.
  • the radiation shield plate 208 is made of, for example, an aluminum plate having a thickness of 5 mm, and is in contact with the refrigerator 105 through a plurality of copper mesh wires 213. As a result, the radiation shield plate 208 is cooled to a temperature of about 50 Kelvin and realizes a function of reducing radiant heat to the helium vessel 204.
  • the super insulator 209 has a structure in which several tens of specular sheets each having an aluminum vapor deposited thin film are laminated on a polyethylene film, and is attached to the outer surface of the radiation shield plate 208 to reduce radiant heat.
  • a refrigerator 105 is mounted on the vacuum vessel 205 of the upper cryostat 104.
  • the refrigerator 105 includes a first cooling unit 210 having a 50 Kelvin temperature, a second cooling unit 211 having a 4 Kelvin temperature, and a motor driving unit 212.
  • a first displacer (movable part) packed with a cold storage agent of copper and lead and a second displacer (movable part) packed with a cold storage agent of a horobium alloy are arranged inside the refrigerator 105.
  • These movable parts are driven by a motor drive part 212 and reciprocate in the vertical direction in the example of FIG.
  • Two valves for injecting and discharging the refrigerant gas in conjunction with the reciprocating motion are arranged in the motor driving unit 212.
  • the refrigerant gas repeats adiabatic expansion and absorbs heat from the respective regenerators. Thereby, cooling is implement
  • ⁇ Mechanical vibration is generated in the refrigerator 105 due to the reciprocating motion of the displacer and the expansion of the high-pressure refrigerant gas. Since the first cooling unit 210 of the refrigerator 105 is connected to the radiation shield plate 208 by a plurality of copper mesh wires 213, the vibration of the first cooling unit 210 is transmitted to the radiation shield plate 208 and vibrates. As the radiation shield plate 208 vibrates in the changing region of the magnetic flux density generated by the superconducting coil 202, an eddy current as a demagnetizing field is induced in the radiation shield plate 208.
  • the radiation shield plate 208 has a plurality of slits (not visible in the figure).
  • the second cooling unit 211 is installed in the upper space of the helium vessel 204 to directly cool the vaporized helium gas.
  • a copper heat exchanger 214 is incorporated at the tip of the second cooling unit 211 so as to increase the contact area with the helium gas, efficiently cooling the helium gas and condensing it into liquid helium.
  • the condensed liquid helium is united with the liquid layer of liquid helium 203 by natural fall.
  • the superconducting magnet 103 realizes the complete circulation of helium: heat penetration into the helium vessel 204 ⁇ vaporization of liquid helium ⁇ cooling of helium gas with a refrigerator ⁇ reuse as liquid helium.
  • the reciprocating motion of the displacer and the suction, expansion and exhaust operations of the high-pressure refrigerant gas are performed by a synchronous motor and a drive mechanism (both not visible in the figure) of the motor drive unit 212.
  • the AC power for driving the synchronous motor is supplied from the drive power supply unit 118.
  • the superconducting magnet 103 incorporates a plurality of sensors for monitoring its operating state.
  • a pressure sensor 215 is incorporated in the upper part of the helium container 204.
  • the pressure sensor 215 can indirectly measure the ratio of liquid helium to be vaporized and helium gas to be liquefied by utilizing the fact that the volume ratio of liquid helium to 4 Kelvin helium gas is about 10 times. That is, the cooling capacity of the second cooling unit 211 of the refrigerator 105 with respect to the amount of heat transferred to the helium container 204 can be known.
  • a temperature sensor 216 is attached to the radiation shield plate 208.
  • the temperature sensor 216 can indirectly measure the cooling capacity of the first cooling unit 210 of the refrigerator 105, and is a material for determining whether or not the refrigerator 105 needs to be maintained.
  • the sensor 217 is a sensor that detects the numerical level of liquid helium.
  • the computer 112 and the sequence controller 116 have a function for monitoring the cooling state of the superconducting magnet 103 and controlling the cooling capacity of the refrigerator 105.
  • a magnet monitoring unit 117 is connected to the sensors 215, 216, and 217 described above, and output signals from the sensors 215, 216, and 217 are input to the computer 112 via the magnet monitoring unit 117 and the sequence controller 116.
  • the computer 112 determines whether the values of the sensors 215, 216, and 217 are within an appropriate range, and controls the drive power supply unit 118 that supplies an alternating current to the refrigerator 105 and the compressor unit 119 that supplies compressed gas. .
  • the computer 112 detects that the pressure of the cryostat 104 is increasing from the signal of the pressure sensor 215 and determines that the rate of vaporization of liquid helium is higher than the rate of condensation of helium gas.
  • the frequency of the electric power that the drive power supply unit 118 outputs to the refrigerator 105 is increased.
  • the drive power supply unit 118 includes an inverter circuit 118a and a delay circuit 118b.
  • the inverter circuit 118a can modulate the frequency of the AC power to be output within a predetermined range under the control of the computer 112 and the sequence controller 116. Can be adjusted.
  • the delay circuit 118b delays the phase of the modulated frequency AC power output from the inverter circuit 118a to a predetermined value under the control of the computer 112 and the sequence controller 116.
  • FIG. 3 shows the result of the inventor measuring the error magnetic field at the center of the examination space 102 with high accuracy.
  • the error magnetic field is almost a sine wave, the amplitude is about ⁇ 6 nanotesla, and the frequency is about 60 hertz.
  • Such a magnetic field error is caused by mechanical vibration accompanying the reciprocating motion of the displacer of the refrigerator 105, or the ferromagnetic regenerator of the second cooling unit 211 of the refrigerator 105 moves up and down with respect to the superconducting coil 202. This is due to the disturbance of the magnetic field.
  • the movable part of the refrigerator is operated in a cycle synchronized with the repetition time (TR) of the pulse sequence.
  • the display of the refrigerator 105 is synchronized with either the gradient magnetic field in the imaging pulse sequence or the application timing of the high-frequency magnetic field, regardless of the signals of the various sensors of the superconducting magnet 103. Operate the sir. As a result, the influence of magnetic field errors can be reduced, and NMR signals can be detected in substantially the same magnetic field, so that a highly accurate image can be reconstructed.
  • the operation of the refrigerator 105 is controlled based on the values of various sensors of the superconducting magnet 103 as described above. For example, the frequency of the AC power supplied to the refrigerator 105 is controlled so that the pressure in the helium vessel 204 is constant. Further, when the computer 112 and the sequence controller 116 are stopped, such as at night, the operation of the refrigerator 105 is appropriately controlled by the self-control function of the magnet monitoring unit 117.
  • the computer 112 operates as follows when the built-in CPU reads and executes the program stored in the built-in memory.
  • the power of the MRI apparatus is turned on and the apparatus is activated (step 601). Since the computer 112 and the sequence controller 116 are stopped before the start-up, the operation of the refrigerator 105 is appropriately controlled by the self-control function of the magnet monitoring unit 117 (self-mode).
  • the computer 112 switches the operation of the refrigerator 105 from the self mode to the sequence mode in which the drive power supply unit 118 is operated by the control signal of the sequence controller 116 (step 602).
  • the computer 112 measures the value of the pressure sensor 215 of the helium vessel 204 indicating the cooling state of the superconducting magnet 103 (step 603), and the inverter circuit 118a
  • the frequency is set (step 604). For example, when it is determined that the pressure tends to increase, the frequency of the AC power supplied from the inverter circuit 118a to the motor drive unit 212 is increased, and the frequency of the reciprocating movement of the displacer is increased to increase the cooling capacity. In addition, when it is determined that the pressure tends to decrease, the frequency of the AC power to be supplied is lowered to reduce the cooling capacity.
  • the computer 112 determines whether or not the operator has instructed the start of inspection (imaging) (step 605). If the start of the inspection has not been instructed, the computer 112 returns to step 603, The control of 604 is repeated. If the start of inspection is instructed, the process proceeds to step 606, where the frequency of the inverter circuit 118a and the delay amount of the delay circuit 118b are set according to the parameters of the imaging pulse sequence (step 606).
  • the operation in which the computer 112 sets the frequency and the delay amount in step 606 will be described by taking the case where the imaging pulse sequence is a gradient echo sequence as an example.
  • FIG. 5 is a diagram showing the imaging pulse sequence and the voltage waveform of the AC power supplied to the motor drive unit 212 of the refrigerator 105, and the horizontal axis is time.
  • a high frequency magnetic field 402 having a frequency corresponding to the magnitude of the magnetic field at the position of the cross section in a state where a gradient magnetic field 401 orthogonal to the cross section is applied.
  • the body axis of the subject 101 coincides with the y axis, and a gradient magnetic field in the y direction is applied as the gradient magnetic field 401 for slicing in order to set a cross section perpendicular to the y direction as the slice plane.
  • the slicing gradient magnetic field 401 is applied in a pulse shape with an intensity of 10 millitesla / meter.
  • this slicing gradient magnetic field 401 changes the magnetic field strength along the body axis (y-axis) of the subject 101, resulting in a frequency deviation in the NMR phenomenon of 4.28 kHz per centimeter.
  • a high frequency power modulated in a Gaussian shape so as to have a band of 2.14 kilohertz at the center frequency is supplied to the high frequency transmitter coil 108.
  • the high frequency magnetic field 402 of the center frequency and band is applied together with the slicing gradient magnetic field 401.
  • the cross-section is excited using gradient magnetic field pulses 403 and 404 in two axes orthogonal to the body axis, here in the front-rear direction (z-axis) and in the left-right direction (x-axis). Encode the position of two spins in the precession of the nuclear spin.
  • a phase encoding gradient magnetic field 403 having an intensity of 0.06 millitesla / meter is applied, and frequency modulation is applied to the precession of nuclear spins along the z-axis.
  • the high-frequency receiver coil 110 receives the NMR signal 405 in a state where, for example, a gradient magnetic field 404 for frequency encoding of 30 millitesla / meter is applied.
  • the signal processing unit 111 sets a sampling window of 1.6 milliseconds and samples 512 points of NMR signals output from the high-frequency receiver coil 110 at intervals of 1.3 microseconds. This 1.3 microsecond interval samples the maximum frequency (for example, 160.5 kHz) of the NMR signal determined by the gradient magnetic field strength G and FOV magnitude F of the frequency encoding gradient magnetic field 404 and the number of data points P according to the Nyquist theorem. This is the interval set for the purpose.
  • a predetermined repetition time (TR) has elapsed from the first slice gradient magnetic field 401, again, with the pulse applied to the slice gradient magnetic field 401, applying a high frequency magnetic field 402 having the same center frequency and band, Excites the nuclear spin of the same cross section of the examination site. Then, a z-axis phase encoding gradient magnetic field 406 is applied.
  • the gradient magnetic field 406 for phase encoding has a strength of, for example, 0.12 millitesla / meter, and applies frequency modulation corresponding to twice the encoded amount along the z axis to the precession of the nuclear spin.
  • the NMR signal 407 is sampled in a state where a frequency encoding gradient magnetic field 404 of 30 millitesla / meter is applied.
  • the sequence from period A to period C is repeated 512 times while changing the amount of change in the z-axis phase encoding gradient magnetic field by, for example, 0.06 millitesla / meter.
  • the repetition time (TR) is set to 100 milliseconds as an example.
  • the repetition time (TR) is one of parameters that influence the tissue contrast of the examination result image, and is a value determined by the operator's selection.
  • the sequence controller 116 operates the gradient magnetic field power source 107, the high frequency power amplifier 109, and the signal processing unit 111 to realize the imaging pulse sequence of FIG.
  • step 606 the computer 112 controls the inverter circuit 118a of the drive power supply unit 118 via the sequence controller 116, and AC power having a period synchronized with the repetition time (TR) is transferred from the inverter circuit 118a to the motor drive unit 212.
  • AC power having a period of n times TR or 1 / n times (where n is an integer) is generated by the inverter circuit 118 a and supplied to the motor driving unit 212.
  • an AC voltage 408 having a cycle for example, one cycle of 20 milliseconds
  • a repetition time (TR) of the imaging pulse sequence for example, 100 milliseconds
  • the displacer of the refrigerator 105 reciprocates at a period synchronized with the repetition time (TR), so the period of the error magnetic field generated due to the mechanical vibration of the refrigerator 105 is also the repetition time (TR). Synchronize.
  • the sampling window in which the signal processing unit 111 detects the NMR signal is set at the same cycle as the repetition time (TR). For this reason, the period of the error magnetic field generated due to the mechanical vibration of the refrigerator 105 is synchronized with TR, so that the sampling window (1.6 milliseconds) that is a period for detecting the NMR signal is synchronized with TR. Synchronizes with the period of the error magnetic field. Therefore, the magnitude of the error magnetic field at the time when the sampling window is set for each TR becomes constant, and the NMR signal can be detected without being affected by the change in the error magnetic field.
  • the NMR signals (405, 407,...) Projected at 512 points are determined. ..) Is similarly superimposed with the magnetic field change due to the operation of the refrigerator 105. Therefore, no phase error occurs between the matrix data, and a high-resolution tomographic image of the examination site can be obtained by performing a Fourier analysis on the matrix data.
  • step 607 it is determined whether to wait until another imaging pulse sequence is executed or to stop the MRI apparatus (step 608). In the case of standby, the cooling state of the superconducting magnet is checked, and the process returns to step 603 to enter a loop for operating the refrigerator 105 with an appropriate cooling capacity according to the output of the pressure sensor 215.
  • the operation of the refrigerator 105 is switched to the self mode (step 609), and then the MRI apparatus is turned off and finished (step 610).
  • the magnet monitoring unit 117 outputs a control signal to the inverter circuit 118a based on the signal from the pressure sensor 215 to control the frequency of the AC power, and cools the superconducting magnet 103 by continuous operation.
  • the superconducting magnet 103 can be stably cooled even during the time when the computer 112 and the sequence controller 116 are stopped, such as at night.
  • the period of the AC voltage 408 supplied to the motor drive unit 212 of the refrigerator 105 is desirably set to a sufficiently large value with respect to the sampling window (1.6 milliseconds). For example, it is preferably 4 times or more of the sampling window, and particularly preferably 10 times or more. This is because if the period of the AC voltage 408 is not sufficiently large with respect to the value of the sampling window, the error magnetic field changes during sampling in the sampling window, so that the NMR signal is affected by the error magnetic field. .
  • the sampling window is set between 1 ms and 6 ms in a general FOV. The voltage period can be easily set to a value sufficiently larger than the sampling window.
  • the gradient echo sequence is described as an example, but the other imaging sequences are similarly operated by operating the movable part of the refrigerator in synchronization with the selected repetition time (TR). A high-definition tomographic image can be obtained.
  • step 606 the period of the AC voltage 408 supplied to the refrigerator 105 is synchronized with the repetition time (TR), and the error magnetic field having the same magnitude is applied at the timing of the sampling window of the NMR signal.
  • the delay circuit 118b by delaying the phase of the AC voltage 408 by the delay circuit 118b, the influence of the error magnetic field is further suppressed, and a high-definition tomographic image can be obtained.
  • the computer 112 controls the delay value set in the delay circuit 118b, so that the sampling window always has a peak of the sine wave of the error magnetic field.
  • the position (maximum value) 31 is always coincident with the valley position (minimum value) 32, or the peak position 31 or the valley position 32 is included.
  • the NMR signal can be detected with a more uniform magnetic field strength. Shooting can be performed.
  • the computer 112 controls the delay circuit 118b so that the error magnetic field is the error magnetic field. It is desirable that the sampling window is located at a point passing through the center of intensity change (zero error magnetic field), that is, at a point 33 where the static magnetic field matches a predetermined static magnetic field intensity. This makes it possible to measure twice the timing, that is, faster than the operating cycle of the refrigerator, compared to the case where the sampling window is always located at the peak or trough position of the sine wave of the error magnetic field. Can do. Therefore, the operation of the refrigerator 105 can be synchronized with the period of the error magnetic field even in the high-speed imaging sequence.
  • TR repetition time
  • the point where the error magnetic field passes through the center of the error magnetic field intensity change (the point where the static magnetic field matches the predetermined static magnetic field intensity) 33 is the point where the error magnetic field change rate is the largest, but the sampling window has an error.
  • an allowable time error of the AC voltage 408 of the drive power supply unit 118 synchronized with the imaging pulse sequence will be described.
  • the degree of influence of the error magnetic field on the image quality varies depending on the type of imaging sequence, but from experience, in the case of an error magnetic field of 1 nanotesla or less, blurring of the outline of the captured image cannot be visually recognized. Therefore, from the characteristics of the error magnetic field in FIG. 3, the operation of the refrigerator 105 and the repetition time (TR) of the imaging pulse sequence may be synchronized with an accuracy of 10 milliseconds or less.
  • a time accuracy of 1 millisecond can be easily achieved with the inverter circuit 118a and the delay circuit 118b configured by general-purpose electric elements that do not take special measures for improving the time accuracy such as temperature control. Therefore, also in this embodiment, signal measurement can be performed under a stable magnetic field strength with an error magnetic field of 1 nanotesla or less.
  • the cooling capacity is adjusted by controlling the frequency of the AC voltage supplied to the refrigerator 105.
  • the present embodiment is not limited to this, and the refrigerator is not limited to this.
  • the cooling output 105 can be compensated by output control of a heater (not shown) arranged in the helium vessel 204 or the like.
  • the refrigerator 105 having a cooling capacity larger than the amount of heat entering this is used, and the second cooling unit 211 of the helium container 204 or the refrigerator 105 is used.
  • a heater 218 may be attached to the heater, and the heat balance may be secured by the amount of heat generated by the heater.
  • a current is applied to the heater 218 from the magnet monitoring unit 117.
  • the cooling capacity of the refrigerator changes according to the repetition period (TR) of the imaging pulse sequence regardless of the heat penetration amount of the helium vessel 204, but the heating value of the heater 218
  • the heater 218 can be used to accurately control the pressure of the helium vessel 204 within an allowable range, so that the magnetic field stability can be further improved. That is, the alternating magnetic field of the gradient magnetic field used for imaging induces an eddy current inside the conductive member constituting the helium vessel 204 and the radiation shield plate 208, and the dielectric heating phenomenon caused by this eddy current causes approximately 200 milliwatts in the helium vessel 204. Heat increase occurs.
  • the gradient coil assembly 106 vibrates due to magnetic drag. Since a large vibration sound is generated by this vibration during MRI imaging, the vibration sound is perceived as noise for the subject in many imaging modes.
  • the refrigerator 105 also generates operating noise, and depending on the subject, the plosive sound “push, push shoe,...” Associated with the volume expansion of the refrigerant gas is better than the mechanical vibration sound of the vertical motion of the displacer. May feel unpleasant noise.
  • the operation sound of the refrigerator 105 is synchronized with the imaging sound accompanying the vibration of the gradient coil assembly 106, and the mask Is done. For this reason, a plosive sound is not felt by the subject. Noise is more frustrating when it is randomly generated from multiple sound sources, regardless of the intensity of the sound, but the present invention, which is unified into one sound, not only improves image quality, but also the subject. It also has the effect of improving the inspection environment.
  • the operator of the MRI apparatus confirms by sound that the operation sound of the refrigerator 105 and the imaging sound of the gradient coil assembly 106 are synchronized, so that the MRI apparatus can be operated without being affected by the error magnetic field. It can be easily confirmed that it is operating. For this reason, when the image captured in this state is blurred, the operator can determine that the cause is not the influence of the error magnetic field but other factors such as the result of the subject moving during the imaging. Therefore, the subject can be alerted and the examination site can be securely fixed, and the examination can be immediately performed again. Thereby, a favorable test result can be obtained. Therefore, there is an effect that not only the quality of inspection can be improved but also the inspection efficiency can be improved.
  • FIG. 6 is a diagram showing a structure of the superconducting magnet 103 with conduction cooling.
  • the superconducting coil 202 is wound around a conductive cooling coil bobbin 301 and directly fixed to the vacuum vessel 205 by a plurality of supports 207.
  • the conductive cooling coil bobbin 301 is made of an aluminum alloy having good heat conduction, has resistance to electromagnetic force applied to the superconducting coil 202, and has a mass for securing a heat storage capacity.
  • the coil bobbin 301 is in thermal contact with the second cooling unit 211 of the refrigerator 105 at the thermal contact point 302.
  • the thermal contact point 302 is sandwiched with an indium metal plate having extremely good thermal conductivity.
  • the radiation shield plate 208 has the same structure as the superconducting magnet 103 in FIG.
  • the plurality of supports 207 are provided with a radiation shield plate 208 and a thermal contact point 303 at an intermediate point close to the vacuum vessel 205, and have a structure that reduces conduction heat transmitted to the conductive cooling coil bobbin 301.
  • a cryogenic temperature sensor 304 for measuring the temperature of the coil bobbin 301 for conduction cooling and a temperature sensor 216 for the radiation shield plate 208 are arranged.
  • the computer 112 measures the value of the temperature sensor 303 of the conductive cooling coil bobbin 301 and sets the frequency of the inverter circuit 118a.

Abstract

The purpose of the present invention is to prevent image degradation due to an error field in the time axis direction caused by a refrigerator of a superconducting magnet. The superconducting magnet includes the refrigerator, the refrigerator is provided with a movable section for providing cooling and a drive section for operating the movable section, and a control section operates the movable section of the refrigerator in cycles synchronized with the repetition time (TR) of a pulse sequence at least during execution of the pulse sequence. This suppresses the influence of an error field caused by operation of the refrigerator, and allows for accurate detection of NMR signals.

Description

磁気共鳴イメージング装置及び冷凍機の運転制御方法Magnetic resonance imaging apparatus and operation control method for refrigerator
 本発明は、磁気共鳴イメージング(Magnetic Resonance Imaging、以下、MRI)装置に係わり、特に、超電導磁石を用いて高い磁場強度を達成し、高精細な診断画像を得るMRI装置に関する。 The present invention relates to a magnetic resonance imaging (hereinafter referred to as MRI) apparatus, and more particularly to an MRI apparatus that achieves a high magnetic field intensity using a superconducting magnet and obtains a high-definition diagnostic image.
 MRI装置は、磁場強度に比例して核磁気共鳴信号強度が強くなる。そのため、強い磁場を発生することができる超電導磁石が磁場発生手段として多く用いられる。例えば、1テスラから3テスラの磁場強度のMRI装置が医療施設で診断に用いられている。 The MRI apparatus has a stronger nuclear magnetic resonance signal intensity in proportion to the magnetic field intensity. Therefore, a superconducting magnet that can generate a strong magnetic field is often used as the magnetic field generating means. For example, an MRI apparatus having a magnetic field strength of 1 Tesla to 3 Tesla is used for diagnosis in medical facilities.
 超電導磁石は、NbTiの超電導材料を線材に加工した後コイル状にした超電導コイルを、臨界温度である10ケルビン温度(-263℃)以下に冷却した構造である。冷却された超電導コイルには、目的の値の永久電流が流れており、磁場を発生する。 The superconducting magnet has a structure in which a superconducting coil that has been formed into a coil after processing a NbTi superconducting material into a wire is cooled to a critical temperature of 10 Kelvin temperature (−263 ° C.) or lower. In the cooled superconducting coil, a permanent current having a target value flows and generates a magnetic field.
 超電導磁石は、超電導コイルを臨界温度以下に維持するため、優れた断熱特性を有するクライオスタット内に超電導コイルを収容した構造である。クライオスタット内の超電導コイルの周囲の空間は、液体ヘリウムで満たされている。クライオスタットが優れた断熱構造であっても、気化熱の小さい液体ヘリウムは、クライオスタットの外側の室温からの僅かな伝導熱や輻射熱で気化し、大気中に放出される。このため、超電導磁石を用いたMRI装置を運用するには定期的に液体ヘリウムを補充することが必要である。 The superconducting magnet has a structure in which the superconducting coil is housed in a cryostat having excellent heat insulation characteristics in order to keep the superconducting coil below the critical temperature. The space around the superconducting coil in the cryostat is filled with liquid helium. Even if the cryostat has an excellent heat insulating structure, the liquid helium with a small heat of vaporization is vaporized by a slight conduction heat or radiant heat from the room temperature outside the cryostat and released into the atmosphere. For this reason, in order to operate an MRI apparatus using a superconducting magnet, it is necessary to periodically replenish liquid helium.
 そこで、液体ヘリウムの補充頻度を低減するために、クライオスタットに冷凍機を組込んで、気化したヘリウムガスを冷凍機で冷却凝縮し、液体ヘリウムとして再利用する超電導磁石が現在のMRI装置の主流となっている。冷凍機が組み込まれたクライオスタットの内部には、一般的にはヒータが配置され、微弱電流が供給される。微弱電流量を制御することにより、冷凍機が冷却凝縮するヘリウムガス量と、液体ヘリウムから気化するヘリウムガス量とを一致させ、クライオスタット内の圧力を一定に保ち、磁場を安定させている。 Therefore, in order to reduce the replenishment frequency of liquid helium, a superconducting magnet that incorporates a refrigerator into a cryostat, cools and condenses the vaporized helium gas in the refrigerator, and reuses it as liquid helium is the mainstream of current MRI systems. It has become. In general, a heater is disposed inside a cryostat in which a refrigerator is incorporated, and a weak current is supplied. By controlling the amount of weak current, the amount of helium gas cooled and condensed by the refrigerator matches the amount of helium gas evaporated from liquid helium, the pressure in the cryostat is kept constant, and the magnetic field is stabilized.
 特許文献1には、冷凍機を駆動するモータに供給する電力の周波数を超電導磁石のヘリウム容器内の圧力に応じて制御し、冷却能力を調整する超電導磁石が開示されている。これにより、ヒータを用いないで、超電導磁石の冷媒の蒸発と冷凍機による液化を均等化させ、超電導磁石のヘリウム容器(ベッセル)の圧力を一定にしている。 Patent Document 1 discloses a superconducting magnet that controls the frequency of electric power supplied to a motor that drives a refrigerator in accordance with the pressure in the helium vessel of the superconducting magnet to adjust the cooling capacity. Thereby, without using a heater, the evaporation of the refrigerant of the superconducting magnet and the liquefaction by the refrigerator are equalized, and the pressure of the helium container (vessel) of the superconducting magnet is made constant.
特開2011-5091号公報JP 2011-5091
 MRI装置は、高精細な画像を表示可能にするために、時間軸方向および空間軸方向の誤差のない高磁場が求められている。発明者が超電導磁石の時間軸方向の誤差磁場を高精度に測定したところ、冷凍機の動作に伴う周期的な誤差磁場が5ナノテスラ程度あることが判明した。誤差磁場の主な原因は、冷凍機の動作に伴う機械振動が超電導磁石に伝わることや、冷凍機に用いられている磁性蓄冷剤の動きが磁場に擾乱を与えるためであると考えられる。高精細の画像では、この僅かな誤差磁場が診断画像の輪郭のボケや擬像の原因となる。冷凍機は商用電源に同期して回転するシンクロナスモータによって駆動されるため、周期的な誤差磁場が発生する。撮影モード(撮影パルスシーケンスのタイミング)によっては、この誤差磁場のために被検体の核磁気共鳴(以下、NMRと称する)信号が規則的に変調され、本来の画像の両脇にサイドバンド画像が生ずることがある。 The MRI apparatus is required to have a high magnetic field free from errors in the time axis direction and the space axis direction in order to be able to display high-definition images. The inventor measured the error magnetic field in the time axis direction of the superconducting magnet with high accuracy, and found that the periodic error magnetic field accompanying the operation of the refrigerator is about 5 nanotesla. It is considered that the main cause of the error magnetic field is that mechanical vibration accompanying the operation of the refrigerator is transmitted to the superconducting magnet and that the movement of the magnetic regenerator used in the refrigerator disturbs the magnetic field. In a high-definition image, this slight error magnetic field causes blurring of the outline of the diagnostic image and a false image. Since the refrigerator is driven by a synchronous motor that rotates in synchronization with a commercial power source, a periodic error magnetic field is generated. Depending on the imaging mode (timing of the imaging pulse sequence), the nuclear magnetic resonance (hereinafter referred to as NMR) signal of the subject is regularly modulated due to this error magnetic field, and sideband images are formed on both sides of the original image. May occur.
 特許文献1には、冷凍機の駆動に伴う誤差磁場については全く考慮されていない。 Patent Document 1 does not consider the error magnetic field accompanying the driving of the refrigerator at all.
 冷凍機の駆動に伴う周期的な誤差磁場による画像劣化を防ぐために、撮像中は冷凍機の運転を一時的に停止する方法が考えらえるが、撮影中の冷凍機の冷却能力が低下し、液体ヘリウムの消費が避けられない。特に、撮影が長時間に及んだ場合は、液体ヘリウムの補充の頻度が増え、補充用の液体ヘリウム経費や補充作業のためのメンテナンス費用もかさむという問題が生じる。また、液体ヘリウムを用いない伝導冷却方式の超電導磁石では、冷凍機を停止すると超電導コイルの温度が上昇し、超電導コイルのクエンチリスクが生じる。 In order to prevent image degradation due to the periodic error magnetic field accompanying the drive of the refrigerator, a method of temporarily stopping the operation of the refrigerator during imaging can be considered, but the cooling capacity of the refrigerator during shooting decreases, The consumption of liquid helium is inevitable. In particular, when shooting takes a long time, the frequency of replenishment of liquid helium increases, and there is a problem that the cost of liquid helium for replenishment and the maintenance cost for replenishment work increase. Also, in a conduction-cooling superconducting magnet that does not use liquid helium, when the refrigerator is stopped, the temperature of the superconducting coil rises, resulting in a quenching risk of the superconducting coil.
 本発明の目的は、超電導磁石の冷凍機に起因して生じる時間軸方向の誤差磁場による画像劣化を抑制することにある。 An object of the present invention is to suppress image degradation caused by an error magnetic field in the time axis direction caused by a superconducting magnet refrigerator.
 上記課題を解決するため、本発明のMRI装置は、以下のような構成としている。すなわち、MRI装置は、撮像空間に静磁場を発生する超電導磁石と、撮像空間に傾斜磁場パルスを印加する傾斜磁場発生部と、撮像空間に高周波磁場パルスを照射する高周波磁場発生部と、撮像空間に配置された被検体からの核磁気共鳴信号を検出する検出部と、傾斜磁場発生部と前記高周波磁場発生部の動作を制御して所定のパルスシーケンスを実行させる制御部とを有する。超電導磁石は、冷凍機を含み、冷凍機は、冷却を実現するための可動部と、可動部を動作させる駆動部とを備える。制御部は、少なくともパルスシーケンスの実行中は、パルスシーケンスの繰り返し時間(TR)に同期した周期で冷凍機の可動部を動作させるように駆動部を制御する。 In order to solve the above problems, the MRI apparatus of the present invention has the following configuration. That is, the MRI apparatus includes a superconducting magnet that generates a static magnetic field in an imaging space, a gradient magnetic field generator that applies a gradient magnetic field pulse to the imaging space, a high-frequency magnetic field generator that irradiates the imaging space with a high-frequency magnetic field pulse, and an imaging space A detection unit for detecting a nuclear magnetic resonance signal from the subject arranged in the head, a gradient magnetic field generation unit, and a control unit for controlling the operation of the high-frequency magnetic field generation unit to execute a predetermined pulse sequence. The superconducting magnet includes a refrigerator, and the refrigerator includes a movable part for realizing cooling and a drive part for operating the movable part. The control unit controls the driving unit to operate the movable unit of the refrigerator at a period synchronized with the pulse sequence repetition time (TR) at least during execution of the pulse sequence.
 また、本発明の冷凍機の運転制御方法は、冷凍機を含んで撮像空間に静磁場を発生する超電導磁石と、被検体から核磁気共鳴信号を検出する所定のパルスシーケンスを実行させる制御部とを有し、冷凍機は、冷却を実現するための可動部と、可動部を動作させる駆動部とを備えた磁気共鳴イメージング装置における冷凍機の運転制御方法であって、少なくともパルスシーケンスの実行中は、パルスシーケンスの繰り返し時間(TR)に同期した周期で冷凍機の可動部を動作させるように駆動部を制御するステップを有することを特徴とする。 Further, the operation control method for a refrigerator of the present invention includes a superconducting magnet that includes a refrigerator and generates a static magnetic field in an imaging space, and a control unit that executes a predetermined pulse sequence for detecting a nuclear magnetic resonance signal from a subject. The refrigerator is a method for controlling the operation of a refrigerator in a magnetic resonance imaging apparatus having a movable part for realizing cooling and a drive part for operating the movable part, and at least during execution of a pulse sequence Has a step of controlling the drive unit so as to operate the movable unit of the refrigerator in a cycle synchronized with the repetition time (TR) of the pulse sequence.
 本発明によれば、超電導磁石の冷凍機に起因して生じる時間軸方向の誤差磁場による画像劣化を抑制することができる。 According to the present invention, it is possible to suppress image deterioration due to an error magnetic field in the time axis direction caused by a superconducting magnet refrigerator.
実施形態の超電導磁石を用いたMRI装置の構成を示すブロック図。The block diagram which shows the structure of the MRI apparatus using the superconducting magnet of embodiment. 図1のMRI装置に用いられる開放型超電導磁石の断面図。FIG. 2 is a cross-sectional view of an open superconducting magnet used in the MRI apparatus of FIG. 超電導磁石の誤差磁場の計測結果を示すグラフ。The graph which shows the measurement result of the error magnetic field of a superconducting magnet. MRI装置のコンピュータによる冷凍機の制御動作を示すフローチャート。The flowchart which shows the control operation of the refrigerator by the computer of an MRI apparatus. 実施形態の撮影パルスシーケンスと、冷凍機へ供給する交流電圧を示すタイミングチャート図。The timing chart figure which shows the imaging | photography pulse sequence of embodiment, and the alternating voltage supplied to a refrigerator. 図1のMRI装置に用いられる伝導冷却型の開放型超電導磁石の断面図。FIG. 2 is a cross-sectional view of a conduction cooling type open superconducting magnet used in the MRI apparatus of FIG.
 以下、本発明の実施形態を添付図面に基づいて説明する。尚、発明の実施形態を説明するための全ての図面において、同一の機能を有するものは同一の符号を付け、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In all the drawings for explaining the embodiments of the invention, those having the same function are given the same reference numerals, and the repeated explanation thereof is omitted.
 <超電導磁石を用いたMRI装置の構成>
 図1、図2を用いて本実施形態の超電導磁石を用いたMRI装置の構成について説明する。図1はMRI装置の全体構成を示し、図2は、超電導磁石の構造を示している。
<Configuration of MRI system using superconducting magnet>
The configuration of the MRI apparatus using the superconducting magnet of the present embodiment will be described with reference to FIGS. FIG. 1 shows the overall configuration of the MRI apparatus, and FIG. 2 shows the structure of the superconducting magnet.
 図1のように、撮像空間102に均一な静磁場を発生する超電導磁石103と、撮像空間102に1以上の傾斜磁場パルスを印加する傾斜磁場発生部(106、107)と、撮像空間102に高周波磁場パルスを照射する高周波磁場発生部(108、109)と、撮像空間102に配置された被検体101からの核磁気共鳴信号を検出する検出部(110,111)と、傾斜磁場発生部(106、107)と高周波磁場発生部(108、109)の動作を制御して所定のパルスシーケンスを実行させる制御部(112)とを有する。 As shown in FIG. 1, a superconducting magnet 103 that generates a uniform static magnetic field in the imaging space 102, a gradient magnetic field generator (106, 107) that applies one or more gradient magnetic field pulses to the imaging space 102, and an imaging space 102 A high-frequency magnetic field generator (108, 109) for irradiating a high-frequency magnetic field pulse; a detection unit (110, 111) for detecting a nuclear magnetic resonance signal from the subject 101 arranged in the imaging space 102; and a gradient magnetic field generator ( 106, 107) and a control unit (112) for controlling the operation of the high-frequency magnetic field generation unit (108, 109) to execute a predetermined pulse sequence.
 超電導磁石103は、ここでは図1のように、開放的な構造を有する場合を例に説明するが、円筒形状等の他の形状にすることももちろん可能である。開放的な構造の超電導磁石103は、撮像空間(以下、検査空間と呼ぶ)102の上下に配置された一対のクライオスタット104と連結柱105とを備えている。クライオスタット104には、超電導コイル202が組込まれている。図1の構造の超電導磁石103は、検査空間102の前方(y軸)と左右(x軸)は、視界が遮られず、開放的な検査環境を提供することができる。 Here, the superconducting magnet 103 is described as an example in which it has an open structure as shown in FIG. 1, but it is of course possible to have other shapes such as a cylindrical shape. The superconducting magnet 103 having an open structure includes a pair of cryostats 104 and connecting columns 105 disposed above and below an imaging space (hereinafter referred to as an inspection space) 102. A superconducting coil 202 is incorporated in the cryostat 104. The superconducting magnet 103 having the structure of FIG. 1 can provide an open inspection environment because the front (y axis) and the left and right (x axis) of the inspection space 102 are not blocked.
 クライオスタット104内の超電導コイル202には、例えば、450アンペアの永久電流が流れ、この永久電流により検査空間102に均一な1.2テスラの磁場を発生することができる。超電導コイル202が安定に超電導状態を維持するため、クライオスタット104の内部空間は、図2のように、冷媒となる液体ヘリウム203で満たされている。上側に配置されるクライオスタット104には、冷凍機105が組込まれている。冷凍機105が、気化したヘリウムガスを冷却して液体ヘリウムに再凝縮することにより、クライオスタット104内で液体冷媒として再利用している。 For example, a permanent current of 450 amperes flows through the superconducting coil 202 in the cryostat 104, and a uniform 1.2 Tesla magnetic field can be generated in the examination space 102 by this permanent current. In order for the superconducting coil 202 to stably maintain the superconducting state, the internal space of the cryostat 104 is filled with liquid helium 203 as a refrigerant as shown in FIG. A refrigerator 105 is incorporated in the cryostat 104 disposed on the upper side. The refrigerator 105 reuses the vaporized helium gas as a liquid refrigerant in the cryostat 104 by recondensing it into liquid helium.
 クライオスタット104の検査空間102側には、傾斜磁場コイル組立体106が取り付けられている。傾斜磁場コイル組立体106は、検査空間102に、互いに直交する3軸方向に沿ってそれぞれ勾配した磁場を発生させることができる。傾斜磁場コイル組立体106には、x、y、zの3種類のコイル(不図示)が積層され、円板形状を成している。この円板形状により、検査空間102の開放的な特性は維持される。傾斜磁場コイル組立体106の、xコイル、yコイル、zコイルには、それぞれに独立して電流が印加できる3チャンネルの傾斜磁場電源107が接続されている。 A gradient coil assembly 106 is attached to the examination space 102 side of the cryostat 104. The gradient coil assembly 106 can generate a magnetic field gradient in the examination space 102 along three axial directions orthogonal to each other. In the gradient coil assembly 106, three types of coils (not shown) of x, y, and z are laminated to form a disk shape. Due to this disc shape, the open characteristics of the inspection space 102 are maintained. To the x coil, y coil, and z coil of the gradient coil assembly 106, a three-channel gradient magnetic field power source 107 that can independently apply a current is connected.
 傾斜磁場コイル組立体106と傾斜磁場電源107の機能は、例えば、プラス電流がzコイルに印加されると、上クライオスタット104に取り付けられたzコイルは、超電導磁石103が発生する磁束と同じ方向である+z軸に沿った磁束を発生して超電導磁石103の磁場に重畳し、検査空間102の磁場強度を強める。 The functions of the gradient coil assembly 106 and the gradient magnetic field power source 107 are, for example, that when a positive current is applied to the z coil, the z coil attached to the upper cryostat 104 is in the same direction as the magnetic flux generated by the superconducting magnet 103. A magnetic flux along a certain + z axis is generated and superimposed on the magnetic field of the superconducting magnet 103, and the magnetic field strength of the examination space 102 is increased.
 一方、下クライオスタット104に取り付けられたzコイルは超電導磁石103の発生する磁束とは反対方向の-z軸に沿った磁束を発生して、検査空間102の磁場強度を弱める。この結果、検査空間102のz軸に沿って下から上に向かって磁場強度が強くなる磁場勾配を作ることができる。
同様に、xコイルは、x軸に沿って超電導磁石103の発生する磁束密度を変化させ、検査空間102のx軸に沿って勾配する磁場を発生する。また、yコイルは、検査空間102のy軸に沿って勾配する磁場を発生する。
On the other hand, the z coil attached to the lower cryostat 104 generates a magnetic flux along the −z axis in the direction opposite to the magnetic flux generated by the superconducting magnet 103, and weakens the magnetic field strength of the examination space 102. As a result, a magnetic field gradient in which the magnetic field strength increases from bottom to top along the z axis of the examination space 102 can be created.
Similarly, the x coil changes the magnetic flux density generated by the superconducting magnet 103 along the x axis, and generates a magnetic field gradient along the x axis of the examination space 102. Further, the y coil generates a magnetic field that gradients along the y axis of the examination space 102.
 更に、クライオスタット104の検査空間102側には、一対の高周波トランスミッターコイル108が取り付けられている。高周波トランスミッターコイル108は、開放的な検査空間102を維持するように、平面形状である。高周波トランスミッターコイル108には、高周波電力アンプ109が接続されている。高周波トランスミッターコイル108は、検査空間102のx-y面に平行な磁束を発生するようにコイル回路が構成されている。 Furthermore, a pair of high-frequency transmitter coils 108 are attached to the cryostat 104 on the inspection space 102 side. The high-frequency transmitter coil 108 has a planar shape so as to maintain an open examination space 102. A high frequency power amplifier 109 is connected to the high frequency transmitter coil 108. The high frequency transmitter coil 108 has a coil circuit configured to generate a magnetic flux parallel to the xy plane of the examination space 102.
 このコイル回路は、高周波電力アンプ109の出力インピーダンスに整合するように構成されている。そのため、高周波電力アンプ109から、例えば1.2テスラの磁場強度でプロトン核スピンがNMR現象を起こす51メガヘルツの高周波電流を高周波トランスミッターコイル108に印加すると、検査空間102には、x-y面に磁束が平行で、51メガヘルツで回転する高周波磁場が発生する。 This coil circuit is configured to match the output impedance of the high-frequency power amplifier 109. For this reason, when a high frequency current of 51 megahertz causing proton nuclear spin to cause NMR phenomenon with a magnetic field intensity of 1.2 Tesla, for example, is applied from the high frequency power amplifier 109 to the high frequency transmitter coil 108, magnetic flux is generated in the examination space 102 on the xy plane. A high-frequency magnetic field that is parallel and rotates at 51 MHz is generated.
 以上説明した、超電導磁石103が発生する例えば1.2テスラの均一な静磁場強度と、傾斜磁場コイル組立体106が発生するx、y、zの磁場勾配と、高周波トランスミッターコイル108が発生する高周波磁場により、検査空間102に配設された被検体101の特定部位のプロトン核スピンは、NMR現象を起こす。 Due to the above-described uniform static magnetic field strength of, for example, 1.2 Tesla generated by the superconducting magnet 103, the magnetic field gradient of x, y, and z generated by the gradient coil assembly 106, and the high-frequency magnetic field generated by the high-frequency transmitter coil 108 The proton nuclear spin at a specific part of the subject 101 arranged in the examination space 102 causes an NMR phenomenon.
 次に、NMR現象を起こしたプロトン核スピンの歳差運動を電磁誘導にてNMR信号として検出する高周波レシーバコイル110について説明する。高周波レシーバコイル110は、被検体101の検査部位近傍に取り付けられる。高周波レシーバコイル110は、高周波トランスミッターコイル108と同様に、51メガヘルツの周波数に同調している。但し、プロトン核スピンの歳差運動を効率よく電気信号に変換するために、被検体101の検査部位にできるだけ近接して装着されるように、高周波レシーバコイル110は検査部位毎に形状の異なるものが用意され、検査部位に応じて選択して使用される。図1では、腹部用の高周波レシーバコイル110が使用されている。 Next, a description will be given of the high-frequency receiver coil 110 that detects precession of proton nuclear spin that has caused an NMR phenomenon as an NMR signal by electromagnetic induction. The high frequency receiver coil 110 is attached in the vicinity of the examination site of the subject 101. The high frequency receiver coil 110, like the high frequency transmitter coil 108, is tuned to a frequency of 51 megahertz. However, in order to efficiently convert the precession of proton nuclear spins into electrical signals, the high-frequency receiver coil 110 has a different shape for each examination site so that it is mounted as close as possible to the examination site of the subject 101. Are prepared and selected according to the examination site. In FIG. 1, a high-frequency receiver coil 110 for the abdomen is used.
 高周波レシーバコイル110には、信号処理ユニット111が接続されており、高周波レシーバコイル110の出力信号は、信号処理ユニット111に入力される。信号処理ユニット111では、NMR信号の増幅、検波、アナログ・デジタル変換の処理が行われる。信号処理ユニット111にはコンピュータ112が接続されている。コンピュータ112は、デジタル電気信号に変換されたNMR信号から診断に好適な画像に再構成し、再構成画像を表示装置114に表示させる。また、コンピュータ112は、NMR信号および再構成画像を記憶装置113に記録する。 The signal processing unit 111 is connected to the high frequency receiver coil 110, and the output signal of the high frequency receiver coil 110 is input to the signal processing unit 111. In the signal processing unit 111, NMR signal amplification, detection, and analog / digital conversion are performed. A computer 112 is connected to the signal processing unit 111. The computer 112 reconstructs the NMR signal converted into the digital electrical signal into an image suitable for diagnosis, and causes the display device 114 to display the reconstructed image. In addition, the computer 112 records the NMR signal and the reconstructed image in the storage device 113.
 診断目的に合った画像を得るためには、被検体101の特定部位からNMR信号を検出できるように、適切なタイミングで傾斜磁場と高周波磁場を印加する必要がある。そのため、コンピュータ112には、種々の撮影モードのプログラムが組込まれ、撮影モードの選択などMRI装置の操作用の入力装置115が接続されている。 In order to obtain an image suitable for the purpose of diagnosis, it is necessary to apply a gradient magnetic field and a high-frequency magnetic field at an appropriate timing so that an NMR signal can be detected from a specific part of the subject 101. Therefore, various imaging mode programs are incorporated in the computer 112, and an input device 115 for operating the MRI apparatus such as selection of the imaging mode is connected.
 また、コンピュータ112には、シーケンスコントローラ116が接続されている。シーケンスコントローラ116は、選択された撮影モードのプログラムに基づき、傾斜磁場電源107と高周波電源109と信号処理ユニット111の動作をコントロールする。このシーケンスコントローラ116は、コンピュータ112とこれらのユニットのインターフェース機能を有し、各ユニットの動作を制御するだけでなく、NMR信号やユニットの動作状態をモニターする機能を有している。 Further, a sequence controller 116 is connected to the computer 112. The sequence controller 116 controls the operations of the gradient magnetic field power source 107, the high frequency power source 109, and the signal processing unit 111 based on the selected shooting mode program. The sequence controller 116 has an interface function between the computer 112 and these units, and not only controls the operation of each unit but also has a function of monitoring the NMR signal and the operation state of the unit.
 <磁石内部構造と冷凍機>
 次に、超電導磁石103の構造について図2を用いて説明する。ここでは、開放的な構造を有する超電導磁石103について説明するが、1.5テスラから3テスラの磁場強度を発生する円筒形状等の超電導磁石であっても形状以外は同様に構成することができる。
なお、図2には、上部のクライオスタット104のみを示しているが、下部のクライオスタット104は、冷凍機105の組込み部分を除いて、上部のクライオスタット104に対して上下対称の構造である。
<Magnet internal structure and refrigerator>
Next, the structure of the superconducting magnet 103 will be described with reference to FIG. Here, the superconducting magnet 103 having an open structure will be described, but a cylindrical superconducting magnet or the like that generates a magnetic field strength of 1.5 to 3 Tesla can be similarly configured except for the shape.
Although only the upper cryostat 104 is shown in FIG. 2, the lower cryostat 104 has a vertically symmetrical structure with respect to the upper cryostat 104 except for the portion where the refrigerator 105 is incorporated.
 図2のように、超電導コイル202は、ステンレススチールで作られたコイルボビン201に巻かれ、液体ヘリウム203を満たしたヘリウム容器204内に配置されている。 As shown in FIG. 2, the superconducting coil 202 is wound around a coil bobbin 201 made of stainless steel and disposed in a helium vessel 204 filled with liquid helium 203.
 ヘリウム容器204の外側には、真空容器205が配置され、真空容器205とヘリウム容器204の間隙には、真空層206が形成されている。ヘリウム容器204は、真空容器205に対して、複数のサポート207によって固定されている。ヘリウム容器204や真空容器205は、超電導コイル202に加わる電磁力等に充分に耐えうるように、例えば8ミリメート厚のステンレススチールで構成されている。サポート207は、真空容器205からヘリウム容器204に伝わる伝導熱を極力減らすためにカーボンファイバーやFRP(繊維強化プラスチック)で構成されている。 A vacuum vessel 205 is disposed outside the helium vessel 204, and a vacuum layer 206 is formed in the gap between the vacuum vessel 205 and the helium vessel 204. The helium vessel 204 is fixed to the vacuum vessel 205 by a plurality of supports 207. The helium vessel 204 and the vacuum vessel 205 are made of, for example, 8 mm thick stainless steel so as to sufficiently withstand the electromagnetic force applied to the superconducting coil 202 or the like. The support 207 is made of carbon fiber or FRP (fiber reinforced plastic) in order to reduce the conduction heat transferred from the vacuum vessel 205 to the helium vessel 204 as much as possible.
 真空層206には、ヘリウム容器204に対して所定の間隔をあけて、ヘリウム容器204を囲むように輻射シールド板208とスーパーインシュレータ209が配置されている。輻射シールド板208は、例えば5ミリメート厚のアルミニウム板で構成され、複数の銅網線213により冷凍機105に接触している。これにより、輻射シールド板208は、約50ケルビン温度に冷却され、ヘリウム容器204への輻射熱を低減する機能を実現している。スーパーインシュレータ209は、ポリエチレンフィルムにアルミウム蒸着薄膜を施した鏡面シートを数十枚積層した構造であり、輻射シールド板208の外表面に貼りつけられ、輻射熱を低減する。 In the vacuum layer 206, a radiation shield plate 208 and a super insulator 209 are arranged so as to surround the helium vessel 204 with a predetermined interval from the helium vessel 204. The radiation shield plate 208 is made of, for example, an aluminum plate having a thickness of 5 mm, and is in contact with the refrigerator 105 through a plurality of copper mesh wires 213. As a result, the radiation shield plate 208 is cooled to a temperature of about 50 Kelvin and realizes a function of reducing radiant heat to the helium vessel 204. The super insulator 209 has a structure in which several tens of specular sheets each having an aluminum vapor deposited thin film are laminated on a polyethylene film, and is attached to the outer surface of the radiation shield plate 208 to reduce radiant heat.
 上部のクライオスタット104の真空容器205の上には、冷凍機105が搭載されている。冷凍機105は、50ケルビン温度の第一冷却部210と4ケルビン温度の第二冷却部211とモータ駆動部212とを有している。図示されていないが、冷凍機105の内部には、銅と鉛の蓄冷剤を詰めた第一ディスプレーサー(可動部)とホロビウム合金の蓄冷剤を詰めた第二ディスプレーサー(可動部)が配置されており、これら可動部は、モータ駆動部212によって駆動され、図2の例では上下方向に往復運動する。この往復運動に連動して冷媒ガスを注入・排出する2つの弁が、モータ駆動部212内に配置されている。第一および第二ディスプレーサーの往復運動に伴って冷媒ガスが断熱膨張を繰り返し、それぞれの蓄冷剤から熱を吸収する。これにより、冷却が実現される。 A refrigerator 105 is mounted on the vacuum vessel 205 of the upper cryostat 104. The refrigerator 105 includes a first cooling unit 210 having a 50 Kelvin temperature, a second cooling unit 211 having a 4 Kelvin temperature, and a motor driving unit 212. Although not shown, inside the refrigerator 105, a first displacer (movable part) packed with a cold storage agent of copper and lead and a second displacer (movable part) packed with a cold storage agent of a horobium alloy are arranged. These movable parts are driven by a motor drive part 212 and reciprocate in the vertical direction in the example of FIG. Two valves for injecting and discharging the refrigerant gas in conjunction with the reciprocating motion are arranged in the motor driving unit 212. As the first and second displacers reciprocate, the refrigerant gas repeats adiabatic expansion and absorbs heat from the respective regenerators. Thereby, cooling is implement | achieved.
 ディスプレーサーの往復運動と高圧の冷媒ガスの膨張により、冷凍機105には機械的振動が生じる。冷凍機105の第一冷却部210は、複数の銅網線213によって輻射シールド板208と接続されているため、第一冷却部210の振動が輻射シールド板208に伝達し振動する。輻射シールド板208が超電導コイル202の発生する磁束密度の変化領域で振動することで、輻射シールド板208には、反磁界となる渦電流が誘起する。 冷凍 Mechanical vibration is generated in the refrigerator 105 due to the reciprocating motion of the displacer and the expansion of the high-pressure refrigerant gas. Since the first cooling unit 210 of the refrigerator 105 is connected to the radiation shield plate 208 by a plurality of copper mesh wires 213, the vibration of the first cooling unit 210 is transmitted to the radiation shield plate 208 and vibrates. As the radiation shield plate 208 vibrates in the changing region of the magnetic flux density generated by the superconducting coil 202, an eddy current as a demagnetizing field is induced in the radiation shield plate 208.
 この渦電流を軽減するために、輻射シールド板208には複数のスリットが設けてある(図では見えない)。 In order to reduce this eddy current, the radiation shield plate 208 has a plurality of slits (not visible in the figure).
 第二冷却部211は、気化ヘリウムガスを直接冷却するため、ヘリウム容器204の上部空間に設置される。第二冷却部211の先端は、ヘリウムガスとの接触面積が多くなるように銅製の熱置換器214が組込まれ、効率よくヘリウムガスを冷却し、液体ヘリウムに凝縮する。凝縮した液体ヘリウムは、自然落下により液体ヘリウム203の液層と一体となる。このように、ヘリウム容器204への熱侵入→液体ヘリウムの気化→冷凍機によるヘリウムガスの冷却→液体ヘリウムとして再利用、というヘリウムの完全循環が、超電導磁石103において実現されている。 The second cooling unit 211 is installed in the upper space of the helium vessel 204 to directly cool the vaporized helium gas. A copper heat exchanger 214 is incorporated at the tip of the second cooling unit 211 so as to increase the contact area with the helium gas, efficiently cooling the helium gas and condensing it into liquid helium. The condensed liquid helium is united with the liquid layer of liquid helium 203 by natural fall. As described above, the superconducting magnet 103 realizes the complete circulation of helium: heat penetration into the helium vessel 204 → vaporization of liquid helium → cooling of helium gas with a refrigerator → reuse as liquid helium.
 ディスプレーサーの往復運動と、高圧冷媒ガスの吸入と膨張と排気の動作は、モータ駆動部212のシンクロナスモータと駆動機構(共に図では見えない)により行われる。このシンクロナスモータの駆動用交流電力は駆動電源ユニット118から供給される。 The reciprocating motion of the displacer and the suction, expansion and exhaust operations of the high-pressure refrigerant gas are performed by a synchronous motor and a drive mechanism (both not visible in the figure) of the motor drive unit 212. The AC power for driving the synchronous motor is supplied from the drive power supply unit 118.
 超電導磁石103には、その運転状態をモニターするための複数のセンサーが組込まれている。ヘリウム容器204の上部には圧力センサー215が組込まれている。この圧力センサー215は、液体ヘリウムと4ケルビンのヘリウムガスの体積比が約10倍であることを利用して、気化する液体ヘリウムと液化するヘリウムガスの割合を間接的に測ることができる。すなわち、ヘリウム容器204に伝えられる熱量に対する、冷凍機105の第二冷却部211の冷却能力を知ることができる。 The superconducting magnet 103 incorporates a plurality of sensors for monitoring its operating state. A pressure sensor 215 is incorporated in the upper part of the helium container 204. The pressure sensor 215 can indirectly measure the ratio of liquid helium to be vaporized and helium gas to be liquefied by utilizing the fact that the volume ratio of liquid helium to 4 Kelvin helium gas is about 10 times. That is, the cooling capacity of the second cooling unit 211 of the refrigerator 105 with respect to the amount of heat transferred to the helium container 204 can be known.
 更に、輻射シールド板208には、温度センサー216が取り付けられている。この温度センサー216は冷凍機105の第一冷却部210の冷却能力を間接的に測定することができ、冷凍機105のメンテナンス要否の判断材料となる。センサー217は、液体ヘリウムの数値レベルを検出するセンサーである。 Furthermore, a temperature sensor 216 is attached to the radiation shield plate 208. The temperature sensor 216 can indirectly measure the cooling capacity of the first cooling unit 210 of the refrigerator 105, and is a material for determining whether or not the refrigerator 105 needs to be maintained. The sensor 217 is a sensor that detects the numerical level of liquid helium.
 コンピュータ112とシーケンスコントローラ116は、超電導磁石103の冷却状態をモニターし、冷凍機105の冷却能力を制御するための機能を有している。上述のセンサー215,216,217には、磁石監視ユニット117が接続されており、各センサー215,216,217の出力信号は、磁石監視ユニット117とシーケンスコントローラ116を介してコンピュータ112に入力される。コンピュータ112は、センサー215,216,217の値が適正範囲であるかを判定して、冷凍機105に交流電流を供給する駆動電源ユニット118と、圧縮ガスを供給する圧縮機ユニット119を制御する。 The computer 112 and the sequence controller 116 have a function for monitoring the cooling state of the superconducting magnet 103 and controlling the cooling capacity of the refrigerator 105. A magnet monitoring unit 117 is connected to the sensors 215, 216, and 217 described above, and output signals from the sensors 215, 216, and 217 are input to the computer 112 via the magnet monitoring unit 117 and the sequence controller 116. . The computer 112 determines whether the values of the sensors 215, 216, and 217 are within an appropriate range, and controls the drive power supply unit 118 that supplies an alternating current to the refrigerator 105 and the compressor unit 119 that supplies compressed gas. .
 例えば、圧力センサー215の信号から、クライオスタット104の圧力が上昇傾向になっていることを検出し、液体ヘリウムの気化する割合がヘリウムガスの凝縮する割合より高いとコンピュータ112が判定した場合は、冷凍機105の冷却能力を高めるため、駆動電源ユニット118が冷凍機105に出力する電力の周波数を増加させる。 For example, if the computer 112 detects that the pressure of the cryostat 104 is increasing from the signal of the pressure sensor 215 and determines that the rate of vaporization of liquid helium is higher than the rate of condensation of helium gas, In order to increase the cooling capacity of the machine 105, the frequency of the electric power that the drive power supply unit 118 outputs to the refrigerator 105 is increased.
 駆動電源ユニット118は、インバータ回路118aと、遅延回路118bとを内蔵している。インバータ回路118aは、出力する交流電力の周波数をコンピュータ112およびシーケンスコントローラ116の制御により、所定の範囲で変調することができるため、冷凍機105に出力する交流電力の周波数を増減して、冷凍能力を調整することができる。一方、遅延回路118bは、インバータ回路118aの出力する変調された周波数の交流電力の位相を、コンピュータ112およびシーケンスコントローラ116の制御により、所定値に遅延させる。 The drive power supply unit 118 includes an inverter circuit 118a and a delay circuit 118b. The inverter circuit 118a can modulate the frequency of the AC power to be output within a predetermined range under the control of the computer 112 and the sequence controller 116. Can be adjusted. On the other hand, the delay circuit 118b delays the phase of the modulated frequency AC power output from the inverter circuit 118a to a predetermined value under the control of the computer 112 and the sequence controller 116.
 ここで、冷凍機105の振動に起因する超電導磁石103の磁場の誤差について説明する。発明者が、検査空間102の中心の誤差磁場を高精度に測定した結果を図3に示す。 Here, the magnetic field error of the superconducting magnet 103 caused by the vibration of the refrigerator 105 will be described. FIG. 3 shows the result of the inventor measuring the error magnetic field at the center of the examination space 102 with high accuracy.
 図3のように、誤差磁場はほぼ正弦波であり、その振幅は±6ナノテスラ程度、周波数は60ヘルツ程度となっている。このような磁場の誤差は、冷凍機105のディスプレーサーの往復運動に伴う機械的振動や、冷凍機105の第二冷却部211の強磁性体の蓄冷剤が超電導コイル202に対して上下運動することによる磁場の擾乱に起因している。 As shown in Fig. 3, the error magnetic field is almost a sine wave, the amplitude is about ± 6 nanotesla, and the frequency is about 60 hertz. Such a magnetic field error is caused by mechanical vibration accompanying the reciprocating motion of the displacer of the refrigerator 105, or the ferromagnetic regenerator of the second cooling unit 211 of the refrigerator 105 moves up and down with respect to the superconducting coil 202. This is due to the disturbance of the magnetic field.
 そこで本実施形態では、少なくともパルスシーケンスの実行中は、パルスシーケンスの繰り返し時間(TR)に同期した周期で冷凍機の可動部を動作させる。言い換えるならば、被検体101の撮像中は、超電導磁石103の各種センサーの信号によらず、撮影パルスシーケンスにおける傾斜磁場のいずれか、もしくは、高周波磁場の印加タイミングに同期させて冷凍機105のディスプレーサーを動作させる。これにより、磁場の誤差の影響を小さくし、ほぼ同じ磁場においてNMR信号を検出することができるため、高精度な画像を再構成できる。 Therefore, in this embodiment, at least during the execution of the pulse sequence, the movable part of the refrigerator is operated in a cycle synchronized with the repetition time (TR) of the pulse sequence. In other words, during imaging of the subject 101, the display of the refrigerator 105 is synchronized with either the gradient magnetic field in the imaging pulse sequence or the application timing of the high-frequency magnetic field, regardless of the signals of the various sensors of the superconducting magnet 103. Operate the sir. As a result, the influence of magnetic field errors can be reduced, and NMR signals can be detected in substantially the same magnetic field, so that a highly accurate image can be reconstructed.
 被検体101の撮影を行っていない時間においては、冷凍機105の動作は、上述したように超電導磁石103の各種センサーの値に基づいて制御する。例えば、ヘリウム容器204の圧力が一定になるように、冷凍機105に供給する交流電力の周波数を制御する。また、夜間などコンピュータ112やシーケンスコントローラ116の停止中には、磁石監視ユニット117のセルフコントロール機能によって冷凍機105の動作は適正に制御する。 During the time when the subject 101 is not imaged, the operation of the refrigerator 105 is controlled based on the values of various sensors of the superconducting magnet 103 as described above. For example, the frequency of the AC power supplied to the refrigerator 105 is controlled so that the pressure in the helium vessel 204 is constant. Further, when the computer 112 and the sequence controller 116 are stopped, such as at night, the operation of the refrigerator 105 is appropriately controlled by the self-control function of the magnet monitoring unit 117.
 以下、本実施形態のMRI装置の冷凍機105について、図4のフローと、図5の撮影パルスシーケンス図を用いて説明する。コンピュータ112は、内蔵されているCPUが、内蔵するメモリに格納されているプログラムを読み込んで実行することにより以下のように動作する。 Hereinafter, the refrigerator 105 of the MRI apparatus of the present embodiment will be described with reference to the flow of FIG. 4 and the imaging pulse sequence diagram of FIG. The computer 112 operates as follows when the built-in CPU reads and executes the program stored in the built-in memory.
 まず、MRI装置の電源をオンにし、装置を起動する(ステップ601)。起動の前には、コンピュータ112やシーケンスコントローラ116が停止しているため、磁石監視ユニット117のセルフコントロール機能によって冷凍機105の動作は適正に制御されている(セルフモード)。MRI装置が起動すると、コンピュータ112は、冷凍機105の運転をセルフモードからシーケンスコントローラ116の制御信号で駆動電源ユニット118を運転するシーケンスモードに切り換える(ステップ602)。ステップ605において検査(撮像)がスタートするまで、コンピュータ112は、超電導磁石103の冷却状態を示すヘリウム容器204の圧力センサー215の値を計測し(ステップ603)、その結果に応じてインバータ回路118aの周波数を設定する(ステップ604)。
例えば、圧力が上昇傾向であると判断した場合には、インバータ回路118aがモータ駆動部212へ供給する交流電力の周波数を高くし、ディスプレーサーの往復移動の周波数を大きくして冷却能力を高める。また、圧力が下降傾向であると判断した場合には、供給する交流電力の周波数を低くし、冷却能力を低下させる。
First, the power of the MRI apparatus is turned on and the apparatus is activated (step 601). Since the computer 112 and the sequence controller 116 are stopped before the start-up, the operation of the refrigerator 105 is appropriately controlled by the self-control function of the magnet monitoring unit 117 (self-mode). When the MRI apparatus is activated, the computer 112 switches the operation of the refrigerator 105 from the self mode to the sequence mode in which the drive power supply unit 118 is operated by the control signal of the sequence controller 116 (step 602). Until the inspection (imaging) starts in step 605, the computer 112 measures the value of the pressure sensor 215 of the helium vessel 204 indicating the cooling state of the superconducting magnet 103 (step 603), and the inverter circuit 118a The frequency is set (step 604).
For example, when it is determined that the pressure tends to increase, the frequency of the AC power supplied from the inverter circuit 118a to the motor drive unit 212 is increased, and the frequency of the reciprocating movement of the displacer is increased to increase the cooling capacity. In addition, when it is determined that the pressure tends to decrease, the frequency of the AC power to be supplied is lowered to reduce the cooling capacity.
 つぎに、コンピュータ112は、検査(撮像)の開始が操作者から指示されたかどうかを判定し(ステップ605)、検査の開始が指示されていない場合には、ステップ603に戻り、上記ステップ603,604の制御を繰り返す。検査の開始が指示されている場合には、ステップ606に進み、撮像パルスシーケンスのパラメータに応じてインバータ回路118aの周波数と遅延回路118bの遅延量を設定する(ステップ606)。以下、ステップ606において、コンピュータ112が周波数と遅延量を設定する動作を、撮像パルスシーケンスがグラジエントエコー・シーケンスである場合を例に説明する。 Next, the computer 112 determines whether or not the operator has instructed the start of inspection (imaging) (step 605). If the start of the inspection has not been instructed, the computer 112 returns to step 603, The control of 604 is repeated. If the start of inspection is instructed, the process proceeds to step 606, where the frequency of the inverter circuit 118a and the delay amount of the delay circuit 118b are set according to the parameters of the imaging pulse sequence (step 606). Hereinafter, the operation in which the computer 112 sets the frequency and the delay amount in step 606 will be described by taking the case where the imaging pulse sequence is a gradient echo sequence as an example.
 図5は、撮影パルスシーケンスと、冷凍機105のモータ駆動部212に供給する交流電力の電圧波形を示す図であり、横軸は、時間である。撮影パルスシーケンスの期間Aにおいて、被検体101の検査部位の断面を特定するため、断面に直交する傾斜磁場401を印加した状態で、断面の位置の磁場の大きさに対応した周波数の高周波磁場402を印加する。図5では、被検体101の体軸がy軸に一致しており、y方向に垂直な断面をスライス面に設定するため、y方向の傾斜磁場をスライス用傾斜磁場401として印加している。例えば、スライス用傾斜磁場401は、10ミリテスラ/メートルの強度でパルス状に印加する。 FIG. 5 is a diagram showing the imaging pulse sequence and the voltage waveform of the AC power supplied to the motor drive unit 212 of the refrigerator 105, and the horizontal axis is time. In the period A of the imaging pulse sequence, in order to specify the cross section of the examination site of the subject 101, a high frequency magnetic field 402 having a frequency corresponding to the magnitude of the magnetic field at the position of the cross section in a state where a gradient magnetic field 401 orthogonal to the cross section is applied. Apply. In FIG. 5, the body axis of the subject 101 coincides with the y axis, and a gradient magnetic field in the y direction is applied as the gradient magnetic field 401 for slicing in order to set a cross section perpendicular to the y direction as the slice plane. For example, the slicing gradient magnetic field 401 is applied in a pulse shape with an intensity of 10 millitesla / meter.
 このスライス用傾斜磁場401の印加により、被検体101の体軸(y軸)に沿って磁場強度が変化し、1センチメートル当たり4.28キロヘルツのNMR現象での周波数偏差が生じる。例えば、磁場中心から3センチ離れた部位(+y軸方向)の断面厚さ5ミリメートルを検査する場合、シーケンスコントロール116の制御信号に従って、高周波電力アンプ109は、51メガヘルツ+4.28×3=12.84キロヘルツの中心周波数で、帯域が2.14キロヘルツを有するようにガウシャン形状に変調された高周波電力を高周波トランスミッターコイル108に供給する。これにより、上記中心周波数および帯域の高周波磁場402が、スライス用傾斜磁場401と共に印加される。 Application of this slicing gradient magnetic field 401 changes the magnetic field strength along the body axis (y-axis) of the subject 101, resulting in a frequency deviation in the NMR phenomenon of 4.28 kHz per centimeter. For example, when inspecting a cross section thickness of 5 millimeters at a location 3 cm away from the center of the magnetic field (in the + y-axis direction), the high frequency power amplifier 109 is 51 MHz + 4.28 × 3 = 12.84 kHz according to the control signal of the sequence control 116. A high frequency power modulated in a Gaussian shape so as to have a band of 2.14 kilohertz at the center frequency is supplied to the high frequency transmitter coil 108. As a result, the high frequency magnetic field 402 of the center frequency and band is applied together with the slicing gradient magnetic field 401.
 次に撮影シーケンスの期間Bと期間Cでは、体軸に直交する2軸、ここでは前後方向(z軸)と左右方向(x軸)の傾斜磁場パルス403,404を使って、断面の励起された核スピンの歳差運動に2軸方向に位置エンコードする。具体的には、期間Bでは、例えば0.06ミリテスラ/メートル強度の位相エンコード用傾斜磁場403を印加して、z軸に沿って核スピンの歳差運動に周波数変調を加える。 Next, in period B and period C of the imaging sequence, the cross-section is excited using gradient magnetic field pulses 403 and 404 in two axes orthogonal to the body axis, here in the front-rear direction (z-axis) and in the left-right direction (x-axis). Encode the position of two spins in the precession of the nuclear spin. Specifically, in period B, for example, a phase encoding gradient magnetic field 403 having an intensity of 0.06 millitesla / meter is applied, and frequency modulation is applied to the precession of nuclear spins along the z-axis.
 次の期間Cで、例えば30ミリテスラ/メートルの周波数エンコード用傾斜磁場404を印加した状態で、NMR信号405を高周波レシーバコイル110が受信する。信号処理ユニット111は、高周波レシーバコイル110の出力するNMR信号を、1.6ミリ秒のサンプリングウインドウを設定し、1.3マイクロ秒の間隔で512点サンプリングする。この1.3マイクロ秒の間隔は、周波数エンコード用傾斜磁場404の傾斜磁場強度GとFOVの大きさFと、データ点数Pとによって決まるNMR信号の最大周波数(例えば160.5kHz)を、ナイキスト定理によりサンプリングするために設定された間隔である。 In the next period C, the high-frequency receiver coil 110 receives the NMR signal 405 in a state where, for example, a gradient magnetic field 404 for frequency encoding of 30 millitesla / meter is applied. The signal processing unit 111 sets a sampling window of 1.6 milliseconds and samples 512 points of NMR signals output from the high-frequency receiver coil 110 at intervals of 1.3 microseconds. This 1.3 microsecond interval samples the maximum frequency (for example, 160.5 kHz) of the NMR signal determined by the gradient magnetic field strength G and FOV magnitude F of the frequency encoding gradient magnetic field 404 and the number of data points P according to the Nyquist theorem. This is the interval set for the purpose.
 最初のスライス用傾斜磁場401から所定の繰り返し時間(TR)が経過したならば、再び、スライス用傾斜磁場401をパルス印加した状態で、同じ中心周波数と帯域を有する高周波磁場402を印加して、同じ検査部位断面の核スピンを励起する。そして、z軸の位相エンコード用傾斜磁場406を印加する。この位相エンコード用傾斜磁場406は、その強度を例えば0.12ミリテスラ/メートルにして、核スピンの歳差運動にz軸に沿って2倍のエンコード量にあたる周波数変調を加える。次に例えば30ミリテスラ/メートルの周波数エンコード用傾斜磁場404を印加した状態で、NMR信号407をサンプリングする。 If a predetermined repetition time (TR) has elapsed from the first slice gradient magnetic field 401, again, with the pulse applied to the slice gradient magnetic field 401, applying a high frequency magnetic field 402 having the same center frequency and band, Excites the nuclear spin of the same cross section of the examination site. Then, a z-axis phase encoding gradient magnetic field 406 is applied. The gradient magnetic field 406 for phase encoding has a strength of, for example, 0.12 millitesla / meter, and applies frequency modulation corresponding to twice the encoded amount along the z axis to the precession of the nuclear spin. Next, for example, the NMR signal 407 is sampled in a state where a frequency encoding gradient magnetic field 404 of 30 millitesla / meter is applied.
 以降の繰り返し時間(TR)ごとに、z軸の位相エンコード用傾斜磁場の変化量を例えば0.06ミリテスラ/メートルずつ変化させながら、期間Aから期間Cまでのシーケンスを512回繰り返す。こうして得られた、512×512のマトリクスデータを二次元フーリェ解析することで、検査部位のz―x面のNMR信号強度の分布を示す画像が得られる。 For each subsequent repetition time (TR), the sequence from period A to period C is repeated 512 times while changing the amount of change in the z-axis phase encoding gradient magnetic field by, for example, 0.06 millitesla / meter. By performing two-dimensional Fourier analysis on the 512 × 512 matrix data obtained in this way, an image showing the distribution of the NMR signal intensity on the zx plane of the examination site can be obtained.
 図5の撮影シーケンスでは、繰り返し時間(TR)は、一例として100ミリ秒に設定されている。繰り返し時間(TR)は、検査結果の画像の組織コントラストを左右するパラメータの一つで、操作者の選択によって定められる値である。この選択に従って、シーケンスコントローラ116は、傾斜磁場電源107と高周波電力アンプ109と信号処理ユニット111を動作させて、図5の撮像パルスシーケンスを実現する。 In the shooting sequence in Fig. 5, the repetition time (TR) is set to 100 milliseconds as an example. The repetition time (TR) is one of parameters that influence the tissue contrast of the examination result image, and is a value determined by the operator's selection. In accordance with this selection, the sequence controller 116 operates the gradient magnetic field power source 107, the high frequency power amplifier 109, and the signal processing unit 111 to realize the imaging pulse sequence of FIG.
 ステップ606においては、コンピュータ112は、シーケンスコントローラ116を介して、駆動電源ユニット118のインバータ回路118aを制御し、繰り返し時間(TR)に同期した周期の交流電力が、インバータ回路118aからモータ駆動部212に供給されるように制御する。具体的には、TRのn倍、もしくは、1/n倍(ただし、nは整数)の周期の交流電力をインバータ回路118aで生成し、モータ駆動部212に供給する。例えば撮像パルスシーケンスの繰り返し時間(TR)(例えば100ミリ秒)に同期した周期(例えば1周期20ミリ秒)の交流電圧408がモータ駆動部212に供給される。これにより、冷凍機105のディスプレーサーは、繰り返し時間(TR)に同期した周期で往復運動するため、冷凍機105の機械的振動に起因して生じる誤差磁場の周期も、繰り返し時間(TR)に同期する。 In step 606, the computer 112 controls the inverter circuit 118a of the drive power supply unit 118 via the sequence controller 116, and AC power having a period synchronized with the repetition time (TR) is transferred from the inverter circuit 118a to the motor drive unit 212. To be supplied to. Specifically, AC power having a period of n times TR or 1 / n times (where n is an integer) is generated by the inverter circuit 118 a and supplied to the motor driving unit 212. For example, an AC voltage 408 having a cycle (for example, one cycle of 20 milliseconds) synchronized with a repetition time (TR) of the imaging pulse sequence (for example, 100 milliseconds) is supplied to the motor driving unit 212. As a result, the displacer of the refrigerator 105 reciprocates at a period synchronized with the repetition time (TR), so the period of the error magnetic field generated due to the mechanical vibration of the refrigerator 105 is also the repetition time (TR). Synchronize.
 信号処理ユニット111がNMR信号を検出するサンプリングウインドウは、繰り返し時間(TR)と同一の周期で設定される。このため、冷凍機105の機械的振動に起因して生じる誤差磁場の周期がTRに同期していることにより、NMR信号を検出する期間であるサンプリングウインドウ(1.6ミリ秒)は、TRに同期した誤差磁場の周期と同期する。よって、TRごとにサンプリングウインドウが設定される時点の誤差磁場の大きさは一定になり、誤差磁場変化の影響を受けることなくNMR信号を検出することができる。 The sampling window in which the signal processing unit 111 detects the NMR signal is set at the same cycle as the repetition time (TR). For this reason, the period of the error magnetic field generated due to the mechanical vibration of the refrigerator 105 is synchronized with TR, so that the sampling window (1.6 milliseconds) that is a period for detecting the NMR signal is synchronized with TR. Synchronizes with the period of the error magnetic field. Therefore, the magnitude of the error magnetic field at the time when the sampling window is set for each TR becomes constant, and the NMR signal can be detected without being affected by the change in the error magnetic field.
 なお、繰り返し時間(TR)に同期した交流電圧408を供給することについて説明したが、NMR信号を検出する際には、周波数エンコード用傾斜磁場404が印加されているので、周波数エンコード用傾斜磁場404に同期する交流電圧408をインバータ回路118aに生成させても同様の効果が得られる。 Although the description has been given of supplying the AC voltage 408 synchronized with the repetition time (TR), since the frequency encoding gradient magnetic field 404 is applied when detecting the NMR signal, the frequency encoding gradient magnetic field 404 is applied. The same effect can be obtained by causing the inverter circuit 118a to generate the AC voltage 408 synchronized with
 このように撮影パルスシーケンスの繰り返し時間(TR)または周波数エンコード用傾斜磁場404に同期させて冷凍機105の駆動電力の周波数を決定することにより、512点でプロジェクションするNMR信号(405、407、……)には、冷凍機105の動作による磁場変化分が同じように重畳されている。よって、マトリクスデータ間の位相誤差が生じなくなるため、このマトリクスデータをフーリェ解析することにより、検査部位の高精細な断層画像が得られる。 Thus, by determining the frequency of the driving power of the refrigerator 105 in synchronization with the repetition time (TR) of the imaging pulse sequence or the frequency encoding gradient magnetic field 404, the NMR signals (405, 407,...) Projected at 512 points are determined. ..) Is similarly superimposed with the magnetic field change due to the operation of the refrigerator 105. Therefore, no phase error occurs between the matrix data, and a high-resolution tomographic image of the examination site can be obtained by performing a Fourier analysis on the matrix data.
 検査(撮像パルスシーケンス)が終了したと判定した場合(ステップ607)、別の撮像パルスシーケンスを実行するまで待機するのか、それともMRI装置を停止させるかの判定を行う(ステップ608)。待機の場合は、超電導磁石の冷却状態をチェックし、ステップ603に戻り、圧力センサー215の出力応じて、適切な冷却能力で冷凍機105の運転を行うループに入る。 If it is determined that the inspection (imaging pulse sequence) is completed (step 607), it is determined whether to wait until another imaging pulse sequence is executed or to stop the MRI apparatus (step 608). In the case of standby, the cooling state of the superconducting magnet is checked, and the process returns to step 603 to enter a loop for operating the refrigerator 105 with an appropriate cooling capacity according to the output of the pressure sensor 215.
 一方、MRI装置を停止させる場合は、冷凍機105の運転をセルフモードに切り替え(ステップ609)、その後、MRI装置の電源をオフにして終了する作業を行う(ステップ610)。セルフモードでは、磁石監視ユニット117は、圧力センサー215の信号を基準としてインバータ回路118aに制御信号を出力して交流電力の周波数を制御し、連続運転により超電導磁石103を冷却する。これにより、夜間などコンピュータ112やシーケンスコントローラ116が停止している時間帯も安定に超電導磁石103の冷却を実施することができる。 On the other hand, when the MRI apparatus is stopped, the operation of the refrigerator 105 is switched to the self mode (step 609), and then the MRI apparatus is turned off and finished (step 610). In the self mode, the magnet monitoring unit 117 outputs a control signal to the inverter circuit 118a based on the signal from the pressure sensor 215 to control the frequency of the AC power, and cools the superconducting magnet 103 by continuous operation. As a result, the superconducting magnet 103 can be stably cooled even during the time when the computer 112 and the sequence controller 116 are stopped, such as at night.
 なお、冷凍機105のモータ駆動部212に供給する交流電圧408の周期は、サンプリングウインドウ(1.6ミリ秒)に対して十分大きい値に設定することが望ましい。例えば、サンプリングウインドウの4倍以上であることが好ましく、特に、10倍以上であることが好ましい。サンプリングウインドウの値に対して、交流電圧408の周期が十分大きくない場合には、サンプリングウインドウにおいてサンプリングしている最中に誤差磁場が変化するため、NMR信号が誤差磁場の影響を受けるためである。サンプリングウインドウは、傾斜磁場強度GとFOVの大きさFとデータ点数Pを考慮すると、一般的なFOVでは、1ミリ秒から6ミリ秒の間に設定されるため、冷凍機105に供給する交流電圧の周期は、サンプリングウインドウよりも十分大きな値に容易に設定できる。 Note that the period of the AC voltage 408 supplied to the motor drive unit 212 of the refrigerator 105 is desirably set to a sufficiently large value with respect to the sampling window (1.6 milliseconds). For example, it is preferably 4 times or more of the sampling window, and particularly preferably 10 times or more. This is because if the period of the AC voltage 408 is not sufficiently large with respect to the value of the sampling window, the error magnetic field changes during sampling in the sampling window, so that the NMR signal is affected by the error magnetic field. . Considering the gradient magnetic field strength G, the FOV size F, and the number of data points P, the sampling window is set between 1 ms and 6 ms in a general FOV. The voltage period can be easily set to a value sufficiently larger than the sampling window.
 なお、図5では、グラジエントエコー・シーケンスを例に説明したが、他の撮影シーケンスについても、同様に選択された繰り返し時間(TR)に同期させて冷凍機の可動部を動作させることにより、同様に高精細な断層画像が得られる。 In FIG. 5, the gradient echo sequence is described as an example, but the other imaging sequences are similarly operated by operating the movable part of the refrigerator in synchronization with the selected repetition time (TR). A high-definition tomographic image can be obtained.
 上述のステップ606では、冷凍機105に供給する交流電圧408の周期を、繰り返し時間(TR)に同期させ、NMR信号のサンプリングウインドウのタイミングで、同じ大きさの誤差磁場が印加されるように構成したが、交流電圧408の位相を遅延回路118bによって遅延させることにより、さらに誤差磁場の影響を抑制して高精細な断層画像が得られる。図3に示したように、誤差磁場の変化は、ほぼ正弦波であるので、コンピュータ112は、遅延回路118bに設定する遅延値を制御することにより、サンプリングウインドウが誤差磁場の正弦波の常に山の位置(極大値)31、あるいは常に谷の位置(極小値)32に一致、もしくは、山の位置31あるいは谷の位置32を含むようにする。 In step 606 described above, the period of the AC voltage 408 supplied to the refrigerator 105 is synchronized with the repetition time (TR), and the error magnetic field having the same magnitude is applied at the timing of the sampling window of the NMR signal. However, by delaying the phase of the AC voltage 408 by the delay circuit 118b, the influence of the error magnetic field is further suppressed, and a high-definition tomographic image can be obtained. As shown in FIG. 3, since the change in the error magnetic field is almost a sine wave, the computer 112 controls the delay value set in the delay circuit 118b, so that the sampling window always has a peak of the sine wave of the error magnetic field. The position (maximum value) 31 is always coincident with the valley position (minimum value) 32, or the peak position 31 or the valley position 32 is included.
 正弦波の山あるいは谷(極値)は、変化率が最も小さいため、このポイントにサンプリングウインドウが一致するように交流電圧408を供給することにより、より均一な磁場強度でNMR信号を検出して撮影を行うことができる。 Since the rate of change of the peak or valley (extreme value) of the sine wave is the smallest, by supplying the AC voltage 408 so that the sampling window coincides with this point, the NMR signal can be detected with a more uniform magnetic field strength. Shooting can be performed.
 なお、冷凍機105に設定可能な動作周期より、繰り返し時間(TR)が高速の撮影パルスシーケンスをステップ606で実行する場合、コンピュータ112は遅延回路118bを制御して、誤差磁場が、誤差磁場の強度変化の中心(誤差磁場ゼロ)を通過するポイント、即ち、静磁場が所定の静磁場強度に一致するポイント33にサンプリングウインドウが位置するようにすることが望ましい。これにより誤差磁場の正弦波の常に山、または、常に谷の位置にサンプリングウインドウが位置するように設定する場合と比較して、2倍のタイミング、すなわち冷凍機の動作周期より高速に計測することができる。よって、高速撮像シーケンスでも、冷凍機105の動作を誤差磁場の周期に同期させることができる。 When an imaging pulse sequence having a repetition time (TR) faster than the operation cycle that can be set in the refrigerator 105 is executed in step 606, the computer 112 controls the delay circuit 118b so that the error magnetic field is the error magnetic field. It is desirable that the sampling window is located at a point passing through the center of intensity change (zero error magnetic field), that is, at a point 33 where the static magnetic field matches a predetermined static magnetic field intensity. This makes it possible to measure twice the timing, that is, faster than the operating cycle of the refrigerator, compared to the case where the sampling window is always located at the peak or trough position of the sine wave of the error magnetic field. Can do. Therefore, the operation of the refrigerator 105 can be synchronized with the period of the error magnetic field even in the high-speed imaging sequence.
 なお、誤差磁場が誤差磁場の強度変化の中心を通過するポイント(静磁場が所定の静磁場強度に一致するポイント)33は、誤差磁場の変化率の最も大きいポイントであるが、サンプリングウインドウを誤差磁場の変化に対して十分短時間に設定することにより、画質の劣化を回避することが可能である。 Note that the point where the error magnetic field passes through the center of the error magnetic field intensity change (the point where the static magnetic field matches the predetermined static magnetic field intensity) 33 is the point where the error magnetic field change rate is the largest, but the sampling window has an error. By setting a sufficiently short time with respect to the change of the magnetic field, it is possible to avoid the deterioration of the image quality.
 ここで、撮影パルスシーケンスと同期させる駆動電源ユニット118の交流電圧408の許容可能な時間的な誤差について説明する。誤差磁場の画質への影響度は、撮影シーケンスに種類によって異なるが、経験上1ナノテスラ以下の誤差磁場の場合、撮影された画像の輪郭のボケは視認できない。そこで、図3の誤差磁場の特性から、10ミリ秒以下の精度で冷凍機105の動作と、撮影パルスシーケンスの繰り返し時間(TR)を同期させればよい。一般的に、温度管理などの特別な時間精度向上策を施さない汎用的な電気素子で構成したインバータ回路118aや遅延回路118bで、1ミリ秒の時間精度は容易に達成できる。よって、本実施の形態においても、誤差磁場1ナノテスラ以下の安定な磁場強度下で信号計測ができる。 Here, an allowable time error of the AC voltage 408 of the drive power supply unit 118 synchronized with the imaging pulse sequence will be described. The degree of influence of the error magnetic field on the image quality varies depending on the type of imaging sequence, but from experience, in the case of an error magnetic field of 1 nanotesla or less, blurring of the outline of the captured image cannot be visually recognized. Therefore, from the characteristics of the error magnetic field in FIG. 3, the operation of the refrigerator 105 and the repetition time (TR) of the imaging pulse sequence may be synchronized with an accuracy of 10 milliseconds or less. In general, a time accuracy of 1 millisecond can be easily achieved with the inverter circuit 118a and the delay circuit 118b configured by general-purpose electric elements that do not take special measures for improving the time accuracy such as temperature control. Therefore, also in this embodiment, signal measurement can be performed under a stable magnetic field strength with an error magnetic field of 1 nanotesla or less.
 上述してきた実施形態ではステップ603,604では、冷凍機105に供給する交流電圧の周波数を制御することにより、冷却能力を調整したが、本実施形態は、これに限られるものではなく、冷凍機105の冷却出力を、ヘリウム容器204内等に配置したヒータ(図示せず)の出力制御で補償することも可能である。 In the embodiment described above, in steps 603 and 604, the cooling capacity is adjusted by controlling the frequency of the AC voltage supplied to the refrigerator 105. However, the present embodiment is not limited to this, and the refrigerator is not limited to this. The cooling output 105 can be compensated by output control of a heater (not shown) arranged in the helium vessel 204 or the like.
 すなわち、ヘリウム容器204に侵入する熱量と、冷凍機105の冷却バランスさせるため、この侵入する熱量より大きな冷却能力を有する冷凍機105を用い、ヘリウム容器204内や冷凍機105の第二冷却部211にヒータ218を取り付け、このヒータの発熱量で熱バランスを確保してもよい。このヒータ218には磁石監視ユニット117から電流が印加される。この構成にした場合、ステップ603,604のみならずステップ606の撮影中においても熱バランスを確保することができる。 That is, in order to balance the amount of heat entering the helium container 204 and the cooling of the refrigerator 105, the refrigerator 105 having a cooling capacity larger than the amount of heat entering this is used, and the second cooling unit 211 of the helium container 204 or the refrigerator 105 is used. A heater 218 may be attached to the heater, and the heat balance may be secured by the amount of heat generated by the heater. A current is applied to the heater 218 from the magnet monitoring unit 117. With this configuration, it is possible to ensure a heat balance not only during steps 603 and 604 but also during shooting in step 606.
 即ち、本実施形態では、撮影中は、ヘリウム容器204の熱侵入量とは関係なく、撮影パルスシーケンスの繰り返し周期(TR)に応じて冷凍機の冷却能力が変化するが、ヒータ218の発熱量を制御することで、熱バランスを確保することができ、撮影中においてもヘリウム容器204の圧力を極めて安定に一定の圧力に維持することができる。結果として、画像の質的向上と安定性を高めることができる。 That is, in this embodiment, during imaging, the cooling capacity of the refrigerator changes according to the repetition period (TR) of the imaging pulse sequence regardless of the heat penetration amount of the helium vessel 204, but the heating value of the heater 218 By controlling the above, it is possible to secure a heat balance, and it is possible to maintain the pressure of the helium vessel 204 at a constant pressure very stably even during imaging. As a result, it is possible to improve the quality and stability of the image.
 また、撮影終了後においても、ヒータ218を用いることにより、ヘリウム容器204の圧力を許容範囲に精度よく制御することができるため、磁場安定度を更に向上させることが可能となった。すなわち、撮影で用いる傾斜磁場の交番磁界は、ヘリウム容器204や輻射シールド板208を構成する導電部材内部で渦電流を誘起し、この渦電流による誘電加熱現象で、ヘリウム容器204内に約200ミリワットの熱増加が生じる。 Further, even after the photographing is finished, the heater 218 can be used to accurately control the pressure of the helium vessel 204 within an allowable range, so that the magnetic field stability can be further improved. That is, the alternating magnetic field of the gradient magnetic field used for imaging induces an eddy current inside the conductive member constituting the helium vessel 204 and the radiation shield plate 208, and the dielectric heating phenomenon caused by this eddy current causes approximately 200 milliwatts in the helium vessel 204. Heat increase occurs.
 このため撮影前後ではヘリウム容器204への誘電加熱現象による熱侵入が生じ、ヘリウム容器204の圧力が急峻に変化する。冷凍機105の冷却能力は、供給する周波数を変化させても急激に変化できず、冷却能力が変化するまで十数分を要する。そのため、急峻な圧力変化は、冷凍機105の冷却能力で補償するのは困難であるが、ヒータ218を併用した場合には、供給電流を制御することにより、瞬時にヒータ218の発熱量を変化させることができるため、ヘリウム容器204の圧力許容範囲を精度よく制御することができる。よって、磁場安定度を更に向上させることが可能となる。 Therefore, before and after photographing, heat intrusion into the helium container 204 occurs due to a dielectric heating phenomenon, and the pressure of the helium container 204 changes sharply. The cooling capacity of the refrigerator 105 cannot be changed rapidly even if the supplied frequency is changed, and it takes more than ten minutes until the cooling capacity changes. For this reason, it is difficult to compensate for a steep pressure change with the cooling capacity of the refrigerator 105, but when the heater 218 is used in combination, the amount of heat generated by the heater 218 changes instantaneously by controlling the supply current. Therefore, the allowable pressure range of the helium vessel 204 can be accurately controlled. Therefore, it is possible to further improve the magnetic field stability.
 また、撮像パルスシーケンスにおいては、超電導磁石103が発生する静磁場空間で傾斜磁場コイルがパルス状の勾配磁場を発生するため、傾斜磁場コイル組立体106が磁気的抗力により振動する。MRIの撮影時には、この振動による大きな振動音が発生するため、多くの撮影モードで振動音は、被検体にとっては騒音と感じられる。一方、冷凍機105も運転音が発生し、被検体によっては、ディスプレーサーの上下運動の機械的振動音より、冷媒ガスの体積膨張に伴う破裂音「プシュー、プシュー、・・・」の方が不快な騒音と感じることがある。 In the imaging pulse sequence, since the gradient coil generates a pulsed gradient magnetic field in the static magnetic field space generated by the superconducting magnet 103, the gradient coil assembly 106 vibrates due to magnetic drag. Since a large vibration sound is generated by this vibration during MRI imaging, the vibration sound is perceived as noise for the subject in many imaging modes. On the other hand, the refrigerator 105 also generates operating noise, and depending on the subject, the plosive sound “push, push shoe,...” Associated with the volume expansion of the refrigerant gas is better than the mechanical vibration sound of the vertical motion of the displacer. May feel unpleasant noise.
 本発明の実施形態のMRI装置によれば、冷凍機105の動作が撮影パルスシーケンスに同期するため、冷凍機105の動作音は傾斜磁場コイル組立体106の振動に伴う撮影音に同期し、マスクされる。このため、破裂音が被検体には感じられなくなる。騒音は音の強弱や高低に関わらず、複数の音発生源からランダムに発生する場合の方が姦しく感じられるものだが、一つの音に統一される本発明は画質向上ばかりでなく、被検体の検査環境を向上する効果も有している。 According to the MRI apparatus of the embodiment of the present invention, since the operation of the refrigerator 105 is synchronized with the imaging pulse sequence, the operation sound of the refrigerator 105 is synchronized with the imaging sound accompanying the vibration of the gradient coil assembly 106, and the mask Is done. For this reason, a plosive sound is not felt by the subject. Noise is more frustrating when it is randomly generated from multiple sound sources, regardless of the intensity of the sound, but the present invention, which is unified into one sound, not only improves image quality, but also the subject. It also has the effect of improving the inspection environment.
 また、MRI装置の操作者は、冷凍機105の動作音と傾斜磁場コイル組立体106の撮影音とが同期していることを音で確認することにより、誤差磁場の影響無い状態でMRI装置が動作していることを、容易に確認することができる。そのため、この状態で撮影した画像にボケが生じていた場合には、誤差磁場の影響ではなく、その原因が撮影中に被検体が動いた結果等他の要因であると操作者は判断できる。よって、被検体に注意喚起することや検査部位の固定を確実にして、直ちに再検査できる。これにより、良好な検査結果を得ることができる。よって、検査の質的向上のみならず、検査効率を向上させることができるという効果がある。 In addition, the operator of the MRI apparatus confirms by sound that the operation sound of the refrigerator 105 and the imaging sound of the gradient coil assembly 106 are synchronized, so that the MRI apparatus can be operated without being affected by the error magnetic field. It can be easily confirmed that it is operating. For this reason, when the image captured in this state is blurred, the operator can determine that the cause is not the influence of the error magnetic field but other factors such as the result of the subject moving during the imaging. Therefore, the subject can be alerted and the examination site can be securely fixed, and the examination can be immediately performed again. Thereby, a favorable test result can be obtained. Therefore, there is an effect that not only the quality of inspection can be improved but also the inspection efficiency can be improved.
 <伝導冷却方式の超電導磁石構造>
 上述してきた実施形態では、図2にように液体冷媒と冷凍機の併用で冷却する超電導磁石103について説明したが、冷凍機による熱伝導で直接コイルを冷却する伝導冷却の超電導磁石についても本発明を適用することが可能である。
<Conductive cooling superconducting magnet structure>
In the embodiment described above, the superconducting magnet 103 that is cooled by the combined use of the liquid refrigerant and the refrigerator has been described as shown in FIG. 2, but the present invention is also applied to the conduction-cooled superconducting magnet that directly cools the coil by heat conduction by the refrigerator. It is possible to apply.
 図6は、伝導冷却の超電導磁石103の構造を示す図である。超電導コイル202は、伝導冷却用コイルボビン301に巻かれ、複数のサポート207により真空容器205に直接固定されている。伝導冷却用コイルボビン301は熱伝導が良好なアルミニウム合金で構成され、超電導コイル202に加わる電磁力に対する耐力を有し、かつ、蓄熱容量を確保するための質量を有している。コイルボビン301は、冷凍機105の第二冷却部211と熱接触点302において熱接触している。この熱接触点302には、熱伝導の極めて良好なインジューム金属板を挟み込まれている。このため、冷凍機105の機械的振動は、超電導コイル202に直接が加わる。これにより、第二冷却部211の磁性蓄冷剤の往復運動による磁場擾乱に加え、超電導コイル202の機械振動によるコイルボビン301の振動磁場が組み合わされた誤差磁場が発生する。 FIG. 6 is a diagram showing a structure of the superconducting magnet 103 with conduction cooling. The superconducting coil 202 is wound around a conductive cooling coil bobbin 301 and directly fixed to the vacuum vessel 205 by a plurality of supports 207. The conductive cooling coil bobbin 301 is made of an aluminum alloy having good heat conduction, has resistance to electromagnetic force applied to the superconducting coil 202, and has a mass for securing a heat storage capacity. The coil bobbin 301 is in thermal contact with the second cooling unit 211 of the refrigerator 105 at the thermal contact point 302. The thermal contact point 302 is sandwiched with an indium metal plate having extremely good thermal conductivity. For this reason, the mechanical vibration of the refrigerator 105 is directly applied to the superconducting coil 202. Thereby, in addition to the magnetic field disturbance due to the reciprocating motion of the magnetic regenerator in the second cooling unit 211, an error magnetic field is generated in which the vibration magnetic field of the coil bobbin 301 due to the mechanical vibration of the superconducting coil 202 is combined.
 輻射シールド板208は図2の超電導磁石103と同じ構造である。複数のサポート207には、真空容器205の近い中間点で輻射シールド板208と熱接触ポイント303が設けられ、伝導冷却用コイルボビン301に伝わる伝導熱を低減する構造になっている。 The radiation shield plate 208 has the same structure as the superconducting magnet 103 in FIG. The plurality of supports 207 are provided with a radiation shield plate 208 and a thermal contact point 303 at an intermediate point close to the vacuum vessel 205, and have a structure that reduces conduction heat transmitted to the conductive cooling coil bobbin 301.
 伝導冷却方式の超電導磁石の運転状態をモニターするためのセンサーとしては、伝導冷却用コイルボビン301の温度を計測する極低温温度センサー304と輻射シールド板208の温度センサー216が配置されている。コンピュータ112は、図4のステップ603、604において、伝導冷却用コイルボビン301の温度センサー303の値を計測して、インバータ回路118aの周波数を設定する。 As sensors for monitoring the operating state of the conduction cooling superconducting magnet, a cryogenic temperature sensor 304 for measuring the temperature of the coil bobbin 301 for conduction cooling and a temperature sensor 216 for the radiation shield plate 208 are arranged. In steps 603 and 604 in FIG. 4, the computer 112 measures the value of the temperature sensor 303 of the conductive cooling coil bobbin 301 and sets the frequency of the inverter circuit 118a.
 他の構成は、上述の実施形態と同様であるので、説明を省略する。 Other configurations are the same as those of the above-described embodiment, and thus description thereof is omitted.
 101 被検体、102 検査空間、103 超電導磁石、104 クライオスタット、105 冷凍機、106 傾斜磁場コイル組立体、107 傾斜磁場電源、108 高周波トランスミッターコイル、109 高周波電力アンプ、110 高周波レシーバコイル、111 信号処理ユニット、112 コンピュータ、116 シーケンスコントローラ、117 磁石監視ユニット、118 駆動電源ユニット、201 コイルボビン、202 超電導コイル、203 液体ヘリウム、204 ヘリウム容器、205 真空容器、206 真空層、207 サポート、208 輻射シールド板、210 第一冷却部、211 第二冷却部、213 銅網線、215 圧力センサー、216 温度センサー、217 センサー、301 伝導冷却用コイルボビン、302 極低温熱コンタクトポイント、304 極低温温度センサー、401 スライス用傾斜磁場、402 高周波磁場、403 位相エンコード用傾斜磁場、404 周波数エンコード用傾斜磁場、405 NMR信号、408 交流電圧 101 subject, 102 test space, 103 superconducting magnet, 104 cryostat, 105 refrigerator, 106 gradient magnetic field coil assembly, 107 gradient magnetic field power supply, 108 high frequency transmitter coil, 109 high frequency power amplifier, 110 high frequency receiver coil, 111 signal processing unit , 112 computer, 116 sequence controller, 117 magnet monitoring unit, 118 drive power supply unit, 201 coil bobbin, 202 superconducting coil, 203 liquid helium, 204 helium vessel, 205 vacuum vessel, 206 vacuum layer, 207 support, 208 radiation shield plate, 210 1st cooling section, 211 2nd cooling section, 213 copper wire, 215 pressure sensor, 216 temperature sensor, 217 sensor, 301 coil cooling coil bobbin, 302 cryogenic thermal contact point, 304 cryogenic temperature sensor, 401 slope for slicing Magnetic field, 402 high frequency magnetic field, 4 03 Gradient magnetic field for phase encoding, 404 Gradient magnetic field for frequency encoding, 405 NMR signal, 408 AC voltage

Claims (9)

  1.  撮像空間に静磁場を発生する超電導磁石と、前記撮像空間に傾斜磁場パルスを印加する傾斜磁場発生部と、前記撮像空間に高周波磁場パルスを照射する高周波磁場発生部と、前記撮像空間に配置された被検体からの核磁気共鳴信号を検出する検出部と、前記傾斜磁場発生部と前記高周波磁場発生部の動作を制御して所定のパルスシーケンスを実行させる制御部とを有し、
     前記超電導磁石は、冷凍機を含み、前記冷凍機は、冷却を実現するための可動部と、前記可動部を動作させる駆動部とを備え、
     前記制御部は、少なくとも前記パルスシーケンスの実行中は、前記パルスシーケンスの繰り返し時間(TR)に同期した周期で前記冷凍機の前記可動部を動作させるように前記駆動部を制御することを特徴とする磁気共鳴イメージング装置。
    A superconducting magnet that generates a static magnetic field in the imaging space, a gradient magnetic field generator that applies a gradient magnetic field pulse to the imaging space, a high-frequency magnetic field generator that irradiates the imaging space with a high-frequency magnetic field pulse, and the imaging space A detection unit that detects a nuclear magnetic resonance signal from the subject, and a control unit that controls operations of the gradient magnetic field generation unit and the high-frequency magnetic field generation unit to execute a predetermined pulse sequence,
    The superconducting magnet includes a refrigerator, and the refrigerator includes a movable part for realizing cooling, and a drive part for operating the movable part,
    The control unit controls the driving unit to operate the movable unit of the refrigerator at a period synchronized with a repetition time (TR) of the pulse sequence at least during execution of the pulse sequence. Magnetic resonance imaging device.
  2.  撮像空間に静磁場を発生する超電導磁石と、前記撮像空間に傾斜磁場パルスを印加する傾斜磁場発生部と、前記撮像空間に高周波磁場パルスを照射する高周波磁場発生部と、前記撮像空間に配置された被検体からの核磁気共鳴信号を検出する検出部と、前記傾斜磁場発生部と前記高周波磁場発生部の動作を制御して所定のパルスシーケンスを実行させる制御部とを有し、
     前記超電導磁石は、冷凍機を含み、前記冷凍機は、冷却を実現するための可動部と、前記可動部を動作させる駆動部とを備え、
     前記制御部は、前記パルスシーケンスの実行中は、前記傾斜磁場パルスのいずれかに同期させて前記冷凍機の前記可動部を動作させるように前記駆動部を制御することを特徴とする磁気共鳴イメージング装置。
    A superconducting magnet that generates a static magnetic field in the imaging space, a gradient magnetic field generator that applies a gradient magnetic field pulse to the imaging space, a high-frequency magnetic field generator that irradiates the imaging space with a high-frequency magnetic field pulse, and the imaging space A detection unit that detects a nuclear magnetic resonance signal from the subject, and a control unit that controls operations of the gradient magnetic field generation unit and the high-frequency magnetic field generation unit to execute a predetermined pulse sequence,
    The superconducting magnet includes a refrigerator, and the refrigerator includes a movable part for realizing cooling, and a drive part for operating the movable part,
    The control unit controls the driving unit to operate the movable unit of the refrigerator in synchronization with one of the gradient magnetic field pulses during execution of the pulse sequence. apparatus.
  3.  請求項1に記載の磁気共鳴イメージング装置であって、前記冷凍機の可動部の動作周期は、前記繰り返し時間(TR)のn倍または1/n倍(ただし、nは正の整数)であることを特徴とする磁気共鳴イメージング装置。 2. The magnetic resonance imaging apparatus according to claim 1, wherein the operation period of the movable part of the refrigerator is n times or 1 / n times (where n is a positive integer) the repetition time (TR). A magnetic resonance imaging apparatus.
  4.  請求項1に記載の磁気共鳴イメージング装置であって、前記制御部は、前記パルスシーケンスにおいて、前記傾斜磁場パルスのいずれかに同期した所定のサンプリングタイミングで前記検出部に前記核磁気共鳴信号を検出させ、
     前記制御部は、前記サンプリングタイミングと、前記冷凍機の前記可動部の動作とを同期させることを特徴とする磁気共鳴イメージング装置。
    2. The magnetic resonance imaging apparatus according to claim 1, wherein the control unit detects the nuclear magnetic resonance signal in the detection unit at a predetermined sampling timing synchronized with any one of the gradient magnetic field pulses in the pulse sequence. Let
    The said control part synchronizes the said sampling timing and operation | movement of the said movable part of the said refrigerator, The magnetic resonance imaging apparatus characterized by the above-mentioned.
  5.  請求項4に記載の磁気共鳴イメージング装置であって、前記制御部は、前記サンプリングタイミングと、前記冷凍機の可動部の動作に伴う前記静磁場の変動が極値になるタイミングとを一致させるように前記冷凍機の可動部を動作させることを特徴とする磁気共鳴イメージング装置。 5. The magnetic resonance imaging apparatus according to claim 4, wherein the control unit matches the sampling timing with a timing at which the fluctuation of the static magnetic field accompanying the operation of the movable unit of the refrigerator becomes an extreme value. And a moving part of the refrigerator is operated.
  6.  請求項4に記載の磁気共鳴イメージング装置であって、前記制御部は、前記サンプリングタイミングと、前記冷凍機の可動部の動作に伴って変動する前記静磁場が所定の静磁場強度に一致するタイミングとを一致させるように前記冷凍機の可動部を動作させることを特徴とする磁気共鳴イメージング装置。 5. The magnetic resonance imaging apparatus according to claim 4, wherein the control unit is configured such that the sampling timing and the static magnetic field that varies with the operation of the movable unit of the refrigerator coincide with a predetermined static magnetic field intensity. The moving part of the refrigerator is operated so as to match with the magnetic resonance imaging apparatus.
  7.  請求項1に記載の磁気共鳴イメージング装置であって、前記超電導磁石は、超電導コイルと、前記超電導コイルと冷媒とを収容するための容器と、前記容器内に配置されたヒーターと、前記ヒーターに電流を供給する電流供給部と、前記容器内の空間の圧力を検出する圧力センサーとをさらに備え、
     前記制御部は、前記パルスシーケンスの実行中に、前記圧力センサーの検出する圧力に応じて前記電流供給部が前記ヒーターに供給する電流を制御することを特徴とする磁気共鳴イメージング装置。
    2. The magnetic resonance imaging apparatus according to claim 1, wherein the superconducting magnet includes a superconducting coil, a container for housing the superconducting coil and a refrigerant, a heater disposed in the container, and the heater. A current supply unit for supplying current; and a pressure sensor for detecting the pressure of the space in the container;
    The said control part controls the electric current which the said electric current supply part supplies to the said heater according to the pressure which the said pressure sensor detects during execution of the said pulse sequence, The magnetic resonance imaging apparatus characterized by the above-mentioned.
  8.  請求項1に記載の磁気共鳴イメージング装置であって、前記制御部は、前記パルスシーケンスの終了後には、前記駆動部が前記可動部を所定の周波数で動作させるモードに切り替えることを特徴とする磁気共鳴イメージング装置。 2. The magnetic resonance imaging apparatus according to claim 1, wherein the control unit switches to a mode in which the driving unit operates the movable unit at a predetermined frequency after completion of the pulse sequence. Resonance imaging device.
  9.  冷凍機を含んで撮像空間に静磁場を発生する超電導磁石と、被検体から核磁気共鳴信号を検出する所定のパルスシーケンスを実行させる制御部とを有し、
     前記冷凍機は、冷却を実現するための可動部と、前記可動部を動作させる駆動部とを備えた磁気共鳴イメージング装置における前記冷凍機の運転制御方法であって、
     少なくとも前記パルスシーケンスの実行中は、前記パルスシーケンスの繰り返し時間(TR)に同期した周期で前記冷凍機の前記可動部を動作させるように前記駆動部を制御するステップを有することを特徴とする冷凍機の運転制御方法。
    A superconducting magnet that generates a static magnetic field in the imaging space including the refrigerator, and a controller that executes a predetermined pulse sequence for detecting a nuclear magnetic resonance signal from the subject,
    The refrigerator is a method for controlling the operation of the refrigerator in a magnetic resonance imaging apparatus comprising a movable part for realizing cooling and a drive part for operating the movable part,
    At least during the execution of the pulse sequence, the step of controlling the drive unit to operate the movable unit of the refrigerator at a period synchronized with a repetition time (TR) of the pulse sequence. Machine operation control method.
PCT/JP2015/083409 2014-12-09 2015-11-27 Magnetic resonance imaging apparatus and method for controlling operation of refrigerator WO2016093085A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016563616A JPWO2016093085A1 (en) 2014-12-09 2015-11-27 Magnetic resonance imaging apparatus and operation control method for refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-248890 2014-12-09
JP2014248890 2014-12-09

Publications (1)

Publication Number Publication Date
WO2016093085A1 true WO2016093085A1 (en) 2016-06-16

Family

ID=56107275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083409 WO2016093085A1 (en) 2014-12-09 2015-11-27 Magnetic resonance imaging apparatus and method for controlling operation of refrigerator

Country Status (2)

Country Link
JP (1) JPWO2016093085A1 (en)
WO (1) WO2016093085A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003579A1 (en) * 2018-06-27 2020-01-02 三菱電機株式会社 Superconducting magnet
CN113273990A (en) * 2020-02-19 2021-08-20 上海联影医疗科技股份有限公司 Magnetic resonance system and control method thereof
US11482358B2 (en) 2018-05-23 2022-10-25 Kabushiki Kaisha Toshiba Control method for superconducting magnet apparatus and superconducting magnet apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000175883A (en) * 1998-12-18 2000-06-27 Natl Food Res Inst Microminiature mri apparatus using superconductive magnet
JP2001218751A (en) * 2000-02-10 2001-08-14 Hitachi Medical Corp Magnetic resonance imaging device
JP2007007393A (en) * 2005-06-27 2007-01-18 General Electric Co <Ge> Apparatus and method for controlling cryocooler by adjusting cooler gas flow oscillating frequency
WO2009150576A1 (en) * 2008-06-10 2009-12-17 Koninklijke Philips Electronics N.V. Cryocooling system for mri providing reduced artifacts caused by vibrations
JP2014054381A (en) * 2012-09-12 2014-03-27 Toshiba Corp Magnetic resonance imaging apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000175883A (en) * 1998-12-18 2000-06-27 Natl Food Res Inst Microminiature mri apparatus using superconductive magnet
JP2001218751A (en) * 2000-02-10 2001-08-14 Hitachi Medical Corp Magnetic resonance imaging device
JP2007007393A (en) * 2005-06-27 2007-01-18 General Electric Co <Ge> Apparatus and method for controlling cryocooler by adjusting cooler gas flow oscillating frequency
WO2009150576A1 (en) * 2008-06-10 2009-12-17 Koninklijke Philips Electronics N.V. Cryocooling system for mri providing reduced artifacts caused by vibrations
JP2014054381A (en) * 2012-09-12 2014-03-27 Toshiba Corp Magnetic resonance imaging apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11482358B2 (en) 2018-05-23 2022-10-25 Kabushiki Kaisha Toshiba Control method for superconducting magnet apparatus and superconducting magnet apparatus
WO2020003579A1 (en) * 2018-06-27 2020-01-02 三菱電機株式会社 Superconducting magnet
JPWO2020003579A1 (en) * 2018-06-27 2021-08-02 三菱電機株式会社 Superconducting magnet
JP7019042B2 (en) 2018-06-27 2022-02-14 三菱電機株式会社 Superconducting magnet
CN113273990A (en) * 2020-02-19 2021-08-20 上海联影医疗科技股份有限公司 Magnetic resonance system and control method thereof
CN113273990B (en) * 2020-02-19 2024-02-27 上海联影医疗科技股份有限公司 Magnetic resonance system and control method thereof

Also Published As

Publication number Publication date
JPWO2016093085A1 (en) 2017-09-14

Similar Documents

Publication Publication Date Title
JP4037272B2 (en) Magnetic resonance imaging apparatus and static magnetic field generator used therefor
JP5960152B2 (en) Magnetic resonance imaging apparatus and operation method thereof
JP4219388B2 (en) Magnetic resonance imaging apparatus and table moving method in magnetic resonance imaging apparatus
JP5004805B2 (en) MRI apparatus using superconducting magnet and its maintenance method
JP3728167B2 (en) Magnetic resonance imaging system
WO2016093085A1 (en) Magnetic resonance imaging apparatus and method for controlling operation of refrigerator
US8893516B2 (en) Magnetic resonance imaging device and method of replacing a cryo-cooler therein
WO2008007574A1 (en) Superconducting magnet, magnetic resonance imaging unit, and method of calculating cooling capacity of cryo-cooler
CN107427257B (en) Magnetic resonance imaging thermometry using proton resonance frequency and T1 measurements
JP2016168265A (en) Magnetic resonance imaging apparatus and operation method thereof
JPH11248810A (en) Nuclear magnetic resonance apparatus
GB2441652A (en) Cryocooler thermal link
US9536649B2 (en) MRI apparatus, operation method thereof, and quenching prevention device
JP2017086701A (en) Magnetic resonance imaging apparatus
GB2467527A (en) Detection of frozen deposits due to air ingress into cryogen vessels by change in resonant frequency of tensioned wire
JP2011110131A (en) Magnetic resonance imaging apparatus
JP4369774B2 (en) Magnetic resonance imaging device using superconducting magnet device
US8694065B2 (en) Cryogenic cooling system with wicking structure
WO2015072301A1 (en) Magnetic resonance imaging apparatus
US11644518B2 (en) Compensation of magnetic field components caused by a periodic motion of a cold head
JP2002017706A (en) Magnetic resonance imaging device with function of measuring magnetic field fluctuation with high accuracy
JP2002221560A (en) Magnetic field generation device
CN117637286A (en) Superconducting magnet and magnetic resonance imaging apparatus
JP2013118969A (en) Magnetic resonance imaging apparatus
Hanneke A New Technique for Measuring Isotopic Impurity Diffusion in Solid Helium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563616

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15868549

Country of ref document: EP

Kind code of ref document: A1