WO2016092728A1 - Heat-curable silicone composition, die bond material comprising composition, and optical semiconductor device using cured article of die bond material - Google Patents

Heat-curable silicone composition, die bond material comprising composition, and optical semiconductor device using cured article of die bond material Download PDF

Info

Publication number
WO2016092728A1
WO2016092728A1 PCT/JP2015/005250 JP2015005250W WO2016092728A1 WO 2016092728 A1 WO2016092728 A1 WO 2016092728A1 JP 2015005250 W JP2015005250 W JP 2015005250W WO 2016092728 A1 WO2016092728 A1 WO 2016092728A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
group
parts
silicone composition
mass
Prior art date
Application number
PCT/JP2015/005250
Other languages
French (fr)
Japanese (ja)
Inventor
諭 小内
利之 小材
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020177015519A priority Critical patent/KR101947621B1/en
Priority to CN201580065668.7A priority patent/CN107001769B/en
Publication of WO2016092728A1 publication Critical patent/WO2016092728A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a thermosetting silicone composition, a die bond material comprising the composition, and an optical semiconductor device using the cured product of the die bond material.
  • an optical semiconductor element such as a light emitting diode (LED) has an excellent characteristic of low power consumption, it is increasingly applied to an optical semiconductor device for outdoor lighting or automobile use.
  • an optical semiconductor device light emitted from an optical semiconductor light emitting element that generally emits blue light, near ultraviolet light, or ultraviolet light is wavelength-converted by a phosphor that is a wavelength conversion material so that a pseudo white color can be obtained.
  • a phosphor that is a wavelength conversion material so that a pseudo white color can be obtained.
  • the optical semiconductor element is bonded and fixed to the housing using a die bond material.
  • a die bond material composition for an optical semiconductor element a bisphenol A type epoxy resin excellent in adhesiveness and mechanical strength and an epoxy resin having no UV absorption, for example, a hydrogenated bisphenol A type epoxy resin or an alicyclic epoxy resin And compositions containing a curing agent and a curing catalyst have been frequently used.
  • a bisphenol A type epoxy resin excellent in adhesiveness and mechanical strength and an epoxy resin having no UV absorption for example, a hydrogenated bisphenol A type epoxy resin or an alicyclic epoxy resin
  • compositions containing a curing agent and a curing catalyst have been frequently used.
  • the luminance and output of the LED element increase, there are problems of discoloration and cracking of the adhesive layer due to ultraviolet light, heat, etc. from the LED element.
  • a resin in which an epoxy group is introduced into a silicone resin that does not absorb UV and gives a flexible cured product is known.
  • a cyclic ether such as a glycidyl group or an epoxycyclohexyl group.
  • Silicone resin having at least one containing group silicone resin having at least one containing group (Patent Document 1), silicone copolymer resin having at least one alicyclic epoxy-containing group in the molecule, bifunctional silicone having at least one glycidyl-containing group in the molecule
  • Patent Document 2 a combination of an alicyclic epoxy-modified silicone resin and an alicyclic epoxy resin
  • the present invention has been made in view of the above problems, and a thermosetting silicone composition that provides a cured product having high transparency, excellent adhesive strength and workability, and having heat resistance, light resistance, and crack resistance.
  • the purpose is to provide.
  • it aims at providing the die-bonding material which consists of this composition.
  • R 1 is a hydrogen atom, a phenyl group or a halogenated phenyl group
  • R 2 is a hydrogen atom
  • a thermosetting silicone composition is provided.
  • thermosetting silicone composition can give a cured product having high transparency, excellent adhesive strength and workability, and excellent heat resistance, light resistance and crack resistance.
  • Z 1 is preferably —R 4 —, and Z 2 is preferably an oxygen atom.
  • Z 1 of the organopolysiloxane of component (A) is —R 4 —O— or —R 4 (CH 3 ) 2 Si—O—, and Z 2 is substituted or unsubstituted and is the same or different. It is preferably a divalent organic group having 1 to 10 carbon atoms.
  • thermosetting silicone composition If it is such a thermosetting silicone composition, the free radicals generated when the component (B) decomposes and the component (A) react effectively, have excellent adhesive strength and workability, and are heat resistant. A cured product having excellent light resistance and crack resistance can be obtained.
  • the organopolysiloxane of the component (A) preferably has at least one structure represented by the following general formula (2) in the molecule. (In the formula, m, R 1 , R 2 , R 3 and R 4 are the same as above.)
  • the free radicals generated when the component (B) decomposes and the component (A) react more effectively have excellent adhesive strength and workability, and are heat resistant.
  • a cured product having excellent light resistance and crack resistance can be obtained.
  • thermosetting silicone composition If it is such a thermosetting silicone composition, the free radical generated when the component (B) is decomposed reacts more effectively with the component (A), and the organic acid generated from the component (B)
  • the epoxy group of (C) component reacts effectively, and the hardened
  • the 2 mm-thick cured product obtained by curing the thermosetting silicone composition has a total light transmittance of 80% or more and a haze value of 20% or less.
  • thermosetting silicone composition makes the cured product of the composition more transparent.
  • the present invention provides a die bond material characterized by comprising the heat-curable silicone composition of the present invention.
  • Such a die bond material can be suitably used as a die bond material for mounting an LED chip on a wiring board.
  • the present invention provides an optical semiconductor device characterized by having a cured product obtained by curing the die bond material of the present invention.
  • the heat-curable silicone composition of the present invention can give a cured product having high transparency, excellent adhesive strength and workability, and excellent heat resistance, light resistance and crack resistance. Therefore, an optical semiconductor device using a cured product obtained by curing a die bond material made of the thermosetting silicone composition of the present invention has heat resistance, light resistance, and crack resistance.
  • the heat-curable silicone composition of the present invention can give a cured product (transparent cured product) having excellent transparency, adhesive strength and workability, and having heat resistance, light resistance, crack resistance and discoloration resistance.
  • the die bond material which consists of a thermosetting silicone composition of this invention can be used suitably as a die bond material for mounting an LED chip on a wiring board.
  • curing this die-bonding material will have heat resistance, light resistance, and crack resistance.
  • thermosetting silicone composition that provides a cured product having high transparency, excellent adhesive strength and workability, and having heat resistance, light resistance, and crack resistance.
  • a highly reliable optical semiconductor that can provide a cured product having high transparency, excellent adhesive strength and workability, and excellent heat resistance, light resistance, and crack resistance. The present inventors have found that an apparatus can be provided and have arrived at the present invention.
  • the organopolysiloxane of component (A) is an organopolysiloxane having at least one structure represented by the following general formula (1) in the molecule.
  • m is any one of 0, 1, 2;
  • R 1 is a hydrogen atom, a phenyl group or a halogenated phenyl group;
  • R 2 is a hydrogen atom or a methyl group; and
  • R 3 is substituted or unsubstituted and is the same or
  • Z 1 is —R 4 —, —R 4 —O—, —R 4 (CH 3 ) 2 Si—O— (R 4 is substituted or non-substituted)
  • Z 2 is an oxygen atom or a substituted or unsubstituted divalent organic group having 1 to 10 carbon atoms that may be the same or different.
  • Organic group.
  • Z 1 is —R 4 —
  • Z 2 is an oxygen atom
  • Z 1 is —R 4 —O—
  • —R 4 (CH 3 ) 2 Si—O— wherein Z 2 is a substituted or unsubstituted divalent organic group having 1 to 10 carbon atoms, which may be the same or different, are preferable. If it is such a thermosetting silicone composition containing the component (A), the free radicals generated when the component (B) decomposes and the component (A) react effectively, resulting in adhesive strength and workability. A cured product having excellent heat resistance, light resistance and crack resistance can be obtained.
  • thermosetting silicone composition containing the component (A)
  • the free radical generated when the component (B) decomposes and the component (A) react more effectively
  • the component (B) The organic acid generated from the epoxy group reacts effectively with the epoxy group of the component (C), and a cured product having excellent adhesive strength and workability and excellent heat resistance, light resistance and crack resistance can be obtained.
  • the organopolysiloxane of component (A) has at least one structure represented by the following general formula (2) in the molecule. If such a thermosetting silicone composition containing the component (A), the free radical generated when the component (B) is decomposed reacts more effectively with the component (A), and the adhesive strength and workability are improved. And a cured product excellent in heat resistance, light resistance and crack resistance can be obtained. (In the formula, m, R 1 , R 2 , R 3 and R 4 are the same as above.)
  • the 2 mm-thick cured product obtained by curing the thermosetting silicone composition of the present invention has a total light transmittance of 80% or more and a haze value of 20% or less.
  • the component (A) organopolysiloxane is preferably a liquid or solid branched or three-dimensional network-structured organopolysiloxane having a viscosity at 25 ° C. of 10 mPa ⁇ s or more.
  • the substituted or unsubstituted monovalent organic group which may be the same or different and bonded to the silicon atom represented by R 3 usually has 1 to 12 carbon atoms, preferably about 1 to 8 carbon atoms.
  • the divalent organic group which may be the same or different in substituted or unsubstituted represented by R 4 is specifically carbon such as methylene group, ethylene group, propylene group and butylene group.
  • Examples thereof include divalent hydrocarbon groups such as an alkylene group having 1 to 10 atoms, and an alkylene group having 1 to 3 carbon atoms is preferable.
  • component (A) examples are organopolysiloxanes.
  • Me represents a methyl group.
  • This component may be a single component or may be used in combination with other components.
  • the group corresponding to R 3 in the above formula (1) exemplifies the case of a methyl group, but other groups (substituted or unsubstituted, the same or different carbon number 1 To a monovalent organic group of ⁇ 12).
  • a reactive diluent containing silicone or a reactive diluent not containing silicone as shown below is added to the component (A). I can do it.
  • the reactive diluent containing silicone include organopolysiloxanes represented by the following formulas (3) to (7). (In the following formula, Me represents a methyl group.) This component may be a single component or a combination of other components.
  • organohydrogensilane shown below, (In the formula, m, R 1 , R 2 , R 3 and Z 1 are the same as above.)
  • Siloxane may be hydrosilylated in the presence of a chloroplatinic acid catalyst, and a method suitable for the present invention can be produced by this method, but the synthesis method is not limited to the above.
  • the organopolysiloxane containing an aliphatic unsaturated group can be produced by a known method such as (co) hydrolysis condensation of an alkoxysilane containing an organoalkoxysilane having an aliphatic unsaturated group. It may be used.
  • Reactive diluents that do not contain silicone include (meth) acrylates as represented by H 2 C ⁇ CGCO 2 R 5 , where G is hydrogen, halogen, 1 to 4 carbon atoms R 5 is any one of an alkyl group having 1 to 16 carbon atoms, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkaryl group, an aralkyl group, and an aryl group; Any of these can be optionally substituted with silicon, oxygen, halogen, carbonyl, hydroxyl, ester, carboxylic acid, urea, urethane, carbamate, amine, amide, sulfur, sulfonate, sulfone, and the like.
  • Particularly desirable (meth) acrylates as reactive diluents include bisphenol-A di (meth) acrylates such as polyethylene glycol di (meth) acrylate, ethoxylated bisphenol-A (meth) acrylate ("EBIPA” or "EBIPMA”).
  • bisphenol-A di (meth) acrylates such as polyethylene glycol di (meth) acrylate, ethoxylated bisphenol-A (meth) acrylate (“EBIPA” or "EBIPMA”).
  • the addition amount is preferably in the range of 0.01 to 30% by mass, and more preferably in the range of 0.05 to 10% by mass.
  • the heat curable silicone composition of the present invention may also include other components that modify the cured or uncured properties as desired in a particular application.
  • it can include an adhesion promoter such as (meth) acryloxypropyltrimethoxysilane, trialkyl- or triallyl-isocyanurate, vinyltrimethoxysilane, and the like, preferably in an amount up to about 20% by weight.
  • Other optional ingredients include non- (meth) acrylic silicone diluents or plasticizers, preferably including up to about 30% by weight.
  • Non- (meth) acryl silicones include trimethylsilyl-terminated oil having a viscosity of 100 to 500 mPa ⁇ s, and silicone rubber.
  • Non- (meth) acryl silicones may contain co-curable groups such as vinyl groups.
  • the organic peroxide containing at least one selected from diacyl peroxide and peroxyester as component (B) is crosslinked by adding heat treatment to the heat-curable silicone composition of the present invention into a desired shape. It is a component blended for curing by reaction, and is appropriately selected depending on the intended connection temperature, connection time, pot life and the like.
  • the organic peroxide preferably has a half-life temperature of 40 ° C. or more and a half-life temperature of 1 minute is 200 ° C. or less. It is more preferable that the temperature for 10 hours is 60 ° C. or higher and the temperature for half-life of 1 minute is 180 ° C. or lower.
  • hydrocarbon groups bonded to silicon atoms in the component (A) or vinyl groups and allyl in the component (A) by free radicals generated by thermal decomposition of the component (B) organic peroxide A bonding reaction between alkenyl groups such as a group occurs to form a crosslinked cured product.
  • an organic acid having a carboxyl group is generated as a part of the decomposition product of the component (B)
  • the organic acid acts as a cross-linking agent that reacts with the epoxy group of the component (C) described later, and is stronger.
  • a crosslinked structure can be formed.
  • diacyl peroxide examples include isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, succinic peroxide , Benzoylperoxytoluene and benzoyl peroxide.
  • peroxyesters examples include cumyl peroxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, t -Hexylperoxyneodecanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis ( 2-ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethyl Hexanoate, t-butylperoxyisobutyrate, 1,1-bis (t-butylperoxy) cycle Hexane
  • organic peroxides include dialkyl peroxides, peroxydicarbonates, peroxyketals, hydroperoxides, silyl peroxides, and the like. These organic peroxides can also be used in combination with an organic peroxide containing one or more selected from the diacyl peroxides and peroxyesters of the component (B).
  • dialkyl peroxide examples include ⁇ , ⁇ ′-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane and t -Butylcumyl peroxide.
  • peroxydicarbonate examples include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, di-2-ethoxymethoxyperoxydicarbonate, Bis (2-ethylhexylperoxy) dicarbonate, dimethoxybutylperoxydicarbonate and bis (3-methyl-3-methoxybutylperoxy) dicarbonate can be mentioned.
  • peroxyketals examples include 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis ( t-Butylperoxy) -3,3,5-trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane and 2,2-bis (t-butylperoxy) decane.
  • hydroperoxide examples include diisopropylbenzene hydroperoxide and cumene hydroperoxide.
  • silyl peroxide examples include t-butyltrimethylsilyl peroxide, bis (t-butyl) dimethylsilyl peroxide, t-butyltrivinylsilyl peroxide, bis (t-butyl) divinylsilyl peroxide, tris (t- Examples include butyl) vinylsilyl peroxide, t-butyltriallylsilyl peroxide, bis (t-butyl) diallylsilyl peroxide, and tris (t-butyl) allylsilyl peroxide.
  • the amount of component (B) added is 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the total amount of organopolysiloxane of component (A).
  • the addition amount is less than 0.1 parts by mass, the reaction does not proceed sufficiently, and the desired hardness of the cured product may not be obtained. If it exceeds 20 parts by mass, the desired physical properties after curing, that is, sufficient heat resistance, light resistance, crack resistance may not be obtained, and coloring may occur, The light transmittance is reduced, causing discoloration.
  • the heat-curable silicone composition of the present invention contains a silane compound containing an epoxy group or a siloxane compound containing an epoxy group as the component (C). These compounds may contain one or more epoxy groups in the molecule.
  • the term “containing an epoxy group” means that an epoxy group may be included in at least a part of the group. Good.
  • the component (C) since the component (C) has an organic acid having a carboxyl group as part of the decomposition product of the component (B) as described above, the organic acid reacts with the epoxy group of the component (C). It is important because it acts as a crosslinking agent and is added for the purpose of forming a stronger crosslinked structure.
  • the epoxy group is not particularly limited, and examples thereof include a glycidyl group and an epoxycyclohexyl group. More specifically, for example, 2,3-epoxypropyl group, 3,4-epoxybutyl group, 4,5-epoxypentyl group, 2-glycidoxyethyl group, 3-glycidoxypropyl group, 4- A glycidoxybutyl group etc. are mentioned.
  • the component (C) is not particularly limited as long as it is a silane compound or a siloxane compound having one or more epoxy-containing groups in the molecule.
  • a silane coupling agent containing an epoxy group and a hydrolysis condensate thereof are exemplified.
  • the silane coupling agent containing an epoxy group and its hydrolysis condensate include silane compounds such as glycidoxypropyltrimethoxysilane and glycidoxypropyltriethoxysilane, and their hydrolysis condensates.
  • examples of the siloxane compound containing an epoxy group include those shown below, but the siloxane compound can be used without being limited thereto.
  • the heat-curable silicone composition of the present invention has high transparency after curing, excellent heat resistance and light resistance due to heat generation and light emission of the optical semiconductor element, and repeated thermal shock. However, tough characteristics, that is, crack resistance can be obtained.
  • the amount of component (C) added is 0.1 to 20 parts by weight, preferably 0.5 to 15 parts by weight, based on 100 parts by weight of the total amount of component (A).
  • the addition amount is less than 0.1 parts by mass, desired physical properties after curing, that is, sufficient heat resistance, light resistance, and crack resistance may not be obtained.
  • the amount exceeds 20 parts by mass, the reaction does not proceed sufficiently and unreacted epoxy groups remain in the cured product, which may cause discoloration.
  • antioxidants such as 2,6-di-t-butyl-4-methylphenol are used in the present invention. It can mix
  • light stabilizers such as a hindered amine stabilizer, can also be mix
  • thermosetting silicone composition of the present invention For the purpose of improving the strength of the thermosetting silicone composition of the present invention, adjusting viscosity, imparting thixotropy, etc., an inorganic filler such as fumed silica or nano alumina may be further blended. As needed, you may mix
  • a solvent or the like for the purpose of improving workability.
  • the type of the solvent is not particularly limited, and a solvent that dissolves the heat-curable silicone composition before curing, disperses the inorganic filler and the like, and provides a uniform die-bonding material or adhesive is used. can do. What is necessary is just to adjust suitably the mixture ratio of this solvent according to the working conditions, environment, use time, etc. which use a die-bonding material. Two or more solvents may be used in combination. Examples of such a solvent include butyl carbitol acetate, carbitol acetate, methyl ethyl ketone, ⁇ -terpineol, and cellosolve acetate.
  • the heat-curable silicone composition of the present invention may contain an adhesion-imparting agent for improving the adhesiveness.
  • adhesion-imparting agent examples include silane coupling agents other than the component (C) and hydrolysis condensates thereof.
  • silane coupling agents other than the component (C) (meth) acrylic group-containing silane coupling agents, isocyanate group-containing silane coupling agents, isocyanurate group-containing silane coupling agents, amino group-containing silane coupling agents, mercapto
  • silane coupling agents other than the component (C) (meth) acrylic group-containing silane coupling agents, isocyanate group-containing silane coupling agents, isocyanurate group-containing silane coupling agents, amino group-containing silane coupling agents, mercapto
  • examples thereof include known groups such as a group-containing silane coupling agent, and preferably 0.1 to 20 parts by mass, more preferably 0.3 to 10 parts by mass with respect to 100 parts by mass of the total amount of the component
  • the heat-curable silicone composition of the present invention can be produced by mixing the above-described components using a known mixing method such as a mixer or a roll.
  • the thermosetting silicone composition of the present invention has a viscosity of 10 to 1,000,000 mPa ⁇ s, particularly 100 to 1,000, measured at 23 ° C. using a rotational viscometer, for example, an E type viscometer. 1,000 mPa ⁇ s is preferable.
  • the heat-curable silicone composition of the present invention can be cured by a known curing method under known curing conditions. Specifically, the composition can be cured by heating at 80 to 200 ° C., preferably 100 to 160 ° C. The heating time may be about 0.5 minutes to 5 hours, particularly about 1 minute to 3 hours. It can be selected as appropriate from the balance of working conditions, productivity, light emitting element and housing heat resistance.
  • thermosetting silicone composition of the present invention can be suitably used for fixing an LED chip to a package. Moreover, it can use suitably also for optical semiconductor elements, such as an organic electroluminescent element (organic EL), a laser diode, and an LED array.
  • organic EL organic electroluminescent element
  • laser diode a laser diode
  • LED array an LED array
  • the present invention provides a die-bonding material that is composed of the heat-curable silicone composition of the present invention and can be used for connecting a semiconductor element to a wiring board.
  • the heat-curable silicone composition of the present invention can give a cured product having high transparency, excellent adhesive strength and workability, and excellent heat resistance, light resistance and crack resistance. Therefore, if it is a die-bonding material consisting of the said thermosetting silicone composition, it can be conveniently used as a die-bonding material for mounting an LED chip on a wiring board.
  • a method for applying the die bond material is not particularly limited, and examples thereof include spin coating, printing, and compression molding.
  • the thickness of the die bond material may be appropriately selected, and is usually 5 to 50 ⁇ m, particularly 10 to 30 ⁇ m. For example, it can be easily applied by discharging at a temperature of 23 ° C. and a pressure of 0.5 to 5 kgf / cm 2 using a dispensing device. Further, by using a stamping device, a predetermined amount of die bond material can be easily transferred to the substrate.
  • the mounting method of the optical semiconductor element is not particularly limited, and examples thereof include a die bonder.
  • Factors that determine the thickness of the die bond material include the pressure of the optical semiconductor element, the pressure bonding time, and the pressure bonding temperature in addition to the viscosity of the die bond material. These conditions may be appropriately selected according to the outer shape of the optical semiconductor element and the target die bond material thickness, and the pressure bonding load is generally 1 gf or more and 1 kgf or less. Preferably they are 10 gf or more and 100 gf or less. If the pressure bonding load is 1 gf or more, the die bond material can be sufficiently bonded.
  • the crimping time may be appropriately selected in consideration of the productivity of the process, and generally exceeds 0 msec and is 1 sec or less. Preferably, it is 1 msec or more and 30 msec. 1 sec or less is preferable in terms of productivity.
  • compression-bonding temperature Although what is necessary is just to follow the operating temperature range of die-bonding material, Generally it is preferable in it being 15 to 100 degreeC. If there is no heating equipment on the die bonder crimping stage, it can be used in the temperature range near room temperature.
  • the present invention provides an optical semiconductor device having a cured product obtained by curing the die bond material of the present invention.
  • the optical semiconductor device of the present invention has a cured product obtained by curing the die bond material made of the thermosetting silicone composition of the present invention, it has heat resistance, light resistance and crack resistance.
  • the optical semiconductor device of the present invention can be manufactured by applying a die bonding material made of the thermosetting silicone composition of the present invention to a substrate and then die-bonding an optical semiconductor element according to a conventionally known method.
  • FIG. 1 is a cross-sectional view showing an example of an optical semiconductor device having a cured product obtained by curing a die bond material made of the thermosetting silicone composition of the present invention.
  • the optical semiconductor device shown in FIG. 1 has a cured product obtained by curing the die bond material 5 made of the thermosetting silicone composition of the present invention on the first lead electrode 3 of the housing 1 of the package substrate.
  • the optical semiconductor element 2 is mounted on the cured product.
  • the electrode of the optical semiconductor element 2 is electrically connected to the first lead electrode 3 by a gold wire 6.
  • the electrode of the optical semiconductor element 2 is electrically connected to the second lead electrode 4 by a gold wire 7.
  • the optical semiconductor element 2 is sealed with a sealing resin 8.
  • the die bond material 5 made of the thermosetting silicone composition of the present invention is quantitatively transferred onto the first lead electrode 3 of the housing 1 of the package substrate, and the optical semiconductor element 2 is mounted thereon.
  • the die bond material 5 is heated and cured.
  • the electrode of the optical semiconductor element 2 and the first lead electrode 3 are electrically connected using a gold wire 6, and the electrode of the optical semiconductor element 2 and the second lead electrode 4 are electrically connected using a gold wire 7.
  • the package substrate can be sealed by applying the sealing resin 8 quantitatively and curing the applied sealing resin under a known curing condition by a known curing method.
  • the optical semiconductor device having a cured product obtained by curing the die bonding material of the present invention include an LED, a semiconductor laser, a photodiode, a phototransistor, a solar cell, and a CCD.
  • Polysiloxane (In the following formula, Me represents a methyl group.)
  • Table 1 shows the blending amounts of component (A) in Preparation Examples 1 to 3.
  • Component (B) (B-1) Di- (3-methylbenzoyl) peroxide, Benzoyl (3-methylbenzoyl) peroxide and Dibenzol peroxide (trade name: Nyper BMT-K40, manufactured by NOF Corporation) were used as the diacyl peroxide.
  • dialkyl peroxide (B-3) As the dialkyl peroxide, t-Butyl cumyl peroxide (trade name: Perbutyl C, manufactured by NOF Corporation) was used as it was.
  • Component (C) (C-1) Reactive silicone oil (trade name: X-22-343, manufactured by Shin-Etsu Chemical Co., Ltd.) containing an epoxy group in the side chain was used as it was.
  • C-2 As a silane compound containing an epoxy group, glycidoxypropyltrimethoxysilane (trade name: KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) was used as it was.
  • silane compound not containing an epoxy group 3-methacryloxypropyltrimethoxysilane (trade name: KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) was used as it was.
  • Example 1 100 parts by weight of the silicone composition obtained in Preparation Example 1 as the component (A), 10 parts by weight of the component (B-1) as the component (B), 4 parts by weight of the component (C-1) as the component (C), and the reinforcing material 7 parts by mass of fumed silica (product name Leoroseal DM-30S, manufactured by Tokuyama Corporation) was mixed, kneaded with three rolls, and degassed under reduced pressure to produce a resin composition.
  • fumed silica product name Leoroseal DM-30S, manufactured by Tokuyama Corporation
  • Example 2 100 parts by weight of the silicone composition obtained in Preparation Example 2 as component (A), 10 parts by weight of (B-1) as component (B), 4 parts by weight of (C-1) as component (C), and as a reinforcing material 7 parts by mass of fumed silica (product name Leoroseal DM-30S, manufactured by Tokuyama Corporation) was mixed, kneaded with three rolls, and degassed under reduced pressure to produce a resin composition.
  • fumed silica product name Leoroseal DM-30S, manufactured by Tokuyama Corporation
  • Example 3 100 parts by weight of the silicone composition obtained in Preparation Example 3 as the component (A), 10 parts by weight of the component (B-1) as the component (B), 4 parts by weight of the component (C-1) as the component (C), and the reinforcing material 7 parts by mass of fumed silica (product name Leoroseal DM-30S, manufactured by Tokuyama Corporation) was mixed, kneaded with three rolls, and degassed under reduced pressure to produce a resin composition.
  • fumed silica product name Leoroseal DM-30S, manufactured by Tokuyama Corporation
  • Example 4 100 parts by weight of the silicone composition obtained in Preparation Example 1 as component (A), 5 parts by weight of (B-2) as component (B), 4 parts by weight of (C-1) as component (C), and as a reinforcing material 7 parts by mass of fumed silica (product name Leoroseal DM-30S, manufactured by Tokuyama Corporation) was mixed, kneaded with three rolls, and degassed under reduced pressure to produce a resin composition.
  • fumed silica product name Leoroseal DM-30S, manufactured by Tokuyama Corporation
  • Example 5 100 parts by weight of the silicone composition obtained in Preparation Example 1 as component (A), 5 parts by weight of (B-2) as component (B), 4 parts by weight of (C-2) as component (C), and as a reinforcing material 7 parts by mass of fumed silica (product name Leoroseal DM-30S, manufactured by Tokuyama Corporation) was mixed, kneaded with three rolls, and degassed under reduced pressure to produce a resin composition.
  • fumed silica product name Leoroseal DM-30S, manufactured by Tokuyama Corporation
  • Example 6 100 parts by weight of the silicone composition obtained in Preparation Example 1 as the component (A), 10 parts by weight of the component (B-1) as the component (B), 5 parts by weight of the component (C-3) as the component (C), and the reinforcing material 7 parts by mass of fumed silica (product name Leoroseal DM-30S, manufactured by Tokuyama Corporation) was mixed, kneaded with three rolls, and degassed under reduced pressure to produce a resin composition.
  • fumed silica product name Leoroseal DM-30S, manufactured by Tokuyama Corporation
  • Comparative Example 1 100 parts by weight of the silicone composition obtained in Preparation Example 1 as component (A), 5 parts by weight of (B-3) as component (B), 4 parts by weight of (C-1) as component (C), and as a reinforcing material 7 parts by mass of fumed silica (product name Leoroseal DM-30S, manufactured by Tokuyama Corporation) was mixed, kneaded with three rolls, and degassed under reduced pressure to produce a resin composition.
  • fumed silica product name Leoroseal DM-30S, manufactured by Tokuyama Corporation
  • Comparative Example 2 100 parts by weight of the silicone composition obtained in Preparation Example 1 as component (A), 5 parts by weight of (B-1) as component (B), 4 parts by weight of (C-4) as component (C), and as a reinforcing material 7 parts by mass of fumed silica (product name Leoroseal DM-30S, manufactured by Tokuyama Corporation) was mixed, kneaded with three rolls, and degassed under reduced pressure to produce a resin composition.
  • fumed silica product name Leoroseal DM-30S, manufactured by Tokuyama Corporation
  • Comparative Example 3 100 parts by weight of the silicone composition obtained in Preparation Example 1 as component (A), 5 parts by weight of component (B-1) as component (B), no component (C) added, and fumed silica (product) 7 parts by mass of Reoroseal DM-30S (manufactured by Tokuyama Corporation) were mixed, kneaded with three rolls, and degassed under reduced pressure to produce a resin composition.
  • an LED package substrate As an LED package substrate, an LED package substrate [SMD5050 (I-CHIUN) having a concave portion for placing an optical semiconductor element and having a silver-plated first lead electrode and a second lead electrode on its bottom is provided. PRECISION INDUSTRY CO., Ltd., resin part PPA (polyphthalamide))], and BXCD33 manufactured by Bridgegelux were prepared as optical semiconductor elements.
  • each die bond material shown in the examples and comparative examples is quantitatively transferred by stamping to the silver-plated first lead electrode of the package substrate, and an optical semiconductor element is formed thereon. Equipped with.
  • the mounting conditions of the optical semiconductor element at this time were a pressure bonding time of 13 msec and a pressure bonding load of 60 gf, and were performed in an environment at room temperature of 25 ° C. without using a heating device.
  • the package substrate was put into an oven, and each die bond material was heated and cured (Examples 1 to 6, Comparative Examples 2 to 4 were 150 ° C. for 4 hours, Comparative Example 1 was 170 ° C. for 1 hour).
  • the electrode of the optical semiconductor element and the first lead electrode are electrically connected using a gold wire (FA 25 ⁇ m manufactured by Tanaka Denshi Kogyo Co., Ltd.), and the electrode of the optical semiconductor element and the second lead electrode are connected to the gold wire ( Electrical connection was made using Tanaka Denshi Kogyo's FA (25 ⁇ m).
  • a gold wire FA 25 ⁇ m manufactured by Tanaka Denshi Kogyo Co., Ltd.
  • the electrode of the optical semiconductor element and the second lead electrode are connected to the gold wire
  • Electrical connection was made using Tanaka Denshi Kogyo's FA (25 ⁇ m).
  • optical semiconductor packages having different die-bonding materials were produced and used for the following tests.
  • [High temperature lighting test] 10 of the optical semiconductor packages filled with the sealing material obtained by the above method were turned on at 150 mA current for 1000 hours at a high temperature (85 ° C.), and then the optical semiconductor element and the optical semiconductor element were placed.
  • the number of optical semiconductor packages in which the appearance abnormality occurred was determined by observing with a microscope whether there was any adhesion failure such as peeling from the bottom of the recess, whether cracks occurred, and whether the adhesive layer around the optical semiconductor element was discolored. I counted.
  • thermosetting silicone composition satisfying the scope of the present invention was used as the die bond material, all were high as can be seen from the results of total light transmittance and haze. It was possible to obtain a transparent cured product, no cracks were generated after the temperature cycle test, and lighting was possible in all packages. In the high temperature lighting test, the composition did not change in appearance, and lighting was possible in all packages. Furthermore, as a result of die shear measurement, it was found that an optical semiconductor device having high adhesive strength and high reliability can be manufactured.
  • Comparative Example 1 in which the component (B) is a silicone resin composition that does not satisfy the scope of the present invention, the transparency from the results of the total light transmittance and haze was good. However, sufficient curing was not achieved and a good cured product could not be obtained. For this reason, cracks occurred in the temperature cycle test and the high temperature lighting test, and sufficient adhesive strength was not obtained in the die shear measurement test.
  • Comparative Example 2 where the component (C) is a silicone resin composition that does not satisfy the scope of the present invention, the transparency from the results of the total light transmittance and haze was good, but the heat curing step of the die bond material is sufficient. The cured product was not cured and a good cured product could not be obtained. For this reason, cracks occurred in the temperature cycle test and the high temperature lighting test, and sufficient adhesive strength was not obtained in the die shear measurement test.
  • Comparative Example 4 in which a general silicone resin was used as a die bond material, as can be seen from the results of total light transmittance and haze, it was not a highly transparent cured product. There was no generation of cracks after the temperature cycle test, and lighting was possible in all packages. In the high temperature lighting test, the resin composition did not change in appearance, and lighting was possible in all packages. On the other hand, as a result of die shear measurement, the adhesive strength was lower than that of the present invention.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Led Device Packages (AREA)
  • Die Bonding (AREA)
  • Epoxy Resins (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

The present invention pertains to a heat-curable silicone composition containing: (A) 100 parts by mass of an organopolysiloxane having at least one structure represented by general formula (1) per molecule thereof; (B) 0.1-20 parts by mass of an organic peroxide containing one or more types selected from diacyl peroxide and peroxy ester, relative to 100 parts by mass of the total (A) component content; and (C) 0.1-20 parts by mass of a silane compound containing an epoxy group or a siloxane compound containing an epoxy group, relative to 100 parts by mass of the total (A) component content. As a result, the provided heat-curable silicone composition achieves a cured article having high transparency, exhibiting excellent adhesive strength and workability, and having heat resistance, light resistance and cracking resistance.

Description

加熱硬化型シリコーン組成物、該組成物からなるダイボンド材及び該ダイボンド材の硬化物を用いた光半導体装置Heat-curable silicone composition, die-bonding material comprising the composition, and optical semiconductor device using a cured product of the die-bonding material
 本発明は、加熱硬化型シリコーン組成物、該組成物からなるダイボンド材及び該ダイボンド材の硬化物を用いた光半導体装置に関する。 The present invention relates to a thermosetting silicone composition, a die bond material comprising the composition, and an optical semiconductor device using the cured product of the die bond material.
 発光ダイオード(LED)などの光半導体素子は電力消費量が少ないという優れた特性を有するため、屋外照明用途や自動車用途の光半導体デバイスへの適用が増えてきている。このような光半導体デバイスは、一般に青色光、近紫外光あるいは紫外光を発光する光半導体発光素子から発する光を、波長変換材料である蛍光体によって波長変換して疑似白色が得られるようにした発光装置である。このような光半導体デバイス中、光半導体素子はダイボンド材を用いて筐体に接着・固定されている。 Since an optical semiconductor element such as a light emitting diode (LED) has an excellent characteristic of low power consumption, it is increasingly applied to an optical semiconductor device for outdoor lighting or automobile use. In such an optical semiconductor device, light emitted from an optical semiconductor light emitting element that generally emits blue light, near ultraviolet light, or ultraviolet light is wavelength-converted by a phosphor that is a wavelength conversion material so that a pseudo white color can be obtained. A light emitting device. In such an optical semiconductor device, the optical semiconductor element is bonded and fixed to the housing using a die bond material.
 光半導体素子用ダイボンド材組成物としては、従来、接着性や機械的強度に優れるビスフェノールA型エポキシ樹脂と、UV吸収の無いエポキシ樹脂、例えば、水添ビスフェノールA型エポキシ樹脂或いは脂環式エポキシ樹脂と、硬化剤および硬化触媒を含む組成物が多用されてきた。しかしながら、LED素子の輝度及び出力が高くなるのに伴い、LED素子からの紫外光、熱等によって、接着層の変色及びクラックの問題が起きている。 Conventionally, as a die bond material composition for an optical semiconductor element, a bisphenol A type epoxy resin excellent in adhesiveness and mechanical strength and an epoxy resin having no UV absorption, for example, a hydrogenated bisphenol A type epoxy resin or an alicyclic epoxy resin And compositions containing a curing agent and a curing catalyst have been frequently used. However, as the luminance and output of the LED element increase, there are problems of discoloration and cracking of the adhesive layer due to ultraviolet light, heat, etc. from the LED element.
 これらの問題を解決するものとして、UV吸収が無く且つ可撓性のある硬化物を与えるシリコーン樹脂にエポキシ基を導入した樹脂が知られており、例えば、グリシジル基、エポキシシクロヘキシル基等の環状エーテル含有基を1個以上有するシリコーン樹脂(特許文献1)や、分子内に脂環式エポキシ含有基を1個以上有するシリコーン共重合体樹脂、分子内にグリシジル含有基を1個以上有する2官能シリコーン樹脂を併用したもの(特許文献2)、更に、脂環式エポキシ変性シリコーン樹脂と脂環式エポキシ樹脂を併用したもの(特許文献3)などが報告されている。しかしながら、これらのいずれも硬化剤として、酸無水物やアミン系化合物を用いており、一般にこのような硬化剤を使用した場合、硬化剤はエポキシ当量に併せた配合部数を添加する必要がある。従って、樹脂硬化物中に、架橋構造に由来する光吸収性を有する有機官能基を多く残す結果となり、従来よりも効率が高くなったLED素子からの光、熱に長期間曝されることによって、クラックや、変色が発生するなどの点で、満足の行くものではなく、改良が求められている。 As a solution to these problems, a resin in which an epoxy group is introduced into a silicone resin that does not absorb UV and gives a flexible cured product is known. For example, a cyclic ether such as a glycidyl group or an epoxycyclohexyl group. Silicone resin having at least one containing group (Patent Document 1), silicone copolymer resin having at least one alicyclic epoxy-containing group in the molecule, bifunctional silicone having at least one glycidyl-containing group in the molecule A combination of a resin (Patent Document 2) and a combination of an alicyclic epoxy-modified silicone resin and an alicyclic epoxy resin (Patent Document 3) have been reported. However, all of these use acid anhydrides or amine compounds as the curing agent. In general, when such a curing agent is used, the curing agent needs to be added in an amount equivalent to the epoxy equivalent. Therefore, it results in leaving many organic functional groups having a light absorption property derived from the cross-linked structure in the cured resin, and by being exposed to light and heat from the LED element having higher efficiency than before, for a long time. However, it is not satisfactory in terms of cracks and discoloration, and improvements are required.
特開2008-45088号公報JP 2008-45088 A 特開2008-202036号公報JP 2008-202036 A 特開2011-109058号公報JP 2011-109058 A
 本発明は上記問題点に鑑みてなされたもので、透明性が高く、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性を有する硬化物を与える加熱硬化型シリコーン組成物を提供することを目的とする。また、該組成物からなるダイボンド材を提供することを目的とする。さらに、該ダイボンド材で光半導体素子をダイボンディングした光半導体装置を提供することを目的とする。 The present invention has been made in view of the above problems, and a thermosetting silicone composition that provides a cured product having high transparency, excellent adhesive strength and workability, and having heat resistance, light resistance, and crack resistance. The purpose is to provide. Moreover, it aims at providing the die-bonding material which consists of this composition. It is another object of the present invention to provide an optical semiconductor device in which an optical semiconductor element is die-bonded with the die bond material.
 上記目的を達成するために、本発明では、(A) 下記一般式(1)で表される構造を分子中に少なくとも1つ有するオルガノポリシロキサン:100質量部、
Figure JPOXMLDOC01-appb-C000001
[式中、mは0,1,2のいずれかであり、Rは水素原子、フェニル基又はハロゲン化フェニル基、Rは水素原子又はメチル基、Rは置換又は非置換で同一又は異なってもよい炭素数1~12の1価の有機基、Zは-R-、-R-O-、-R(CHSi-O-(Rは置換又は非置換で同一又は異なってもよい炭素数1~10の2価の有機基)のいずれか、Zは酸素原子又は置換若しくは非置換で同一若しくは異なってもよい炭素数1~10の2価の有機基である。]
(B)ジアシルパーオキサイド、パーオキシエステルから選ばれる1種以上を含む有機過酸化物:前記(A)成分の合計量100質量部に対して、0.1~20質量部、
(C)エポキシ基を含有するシラン化合物又はエポキシ基を含有するシロキサン化合物:前記(A)成分の合計量100質量部に対して、0.1~20質量部
を含有するものであることを特徴とする加熱硬化型シリコーン組成物を提供する。
In order to achieve the above object, in the present invention, (A) organopolysiloxane having at least one structure represented by the following general formula (1) in the molecule: 100 parts by mass,
Figure JPOXMLDOC01-appb-C000001
[Wherein, m is any one of 0, 1, 2; R 1 is a hydrogen atom, a phenyl group or a halogenated phenyl group; R 2 is a hydrogen atom or a methyl group; and R 3 is substituted or unsubstituted and is the same or A monovalent organic group having 1 to 12 carbon atoms which may be different, Z 1 is —R 4 —, —R 4 —O—, —R 4 (CH 3 ) 2 Si—O— (R 4 is substituted or non-substituted) Z 2 is an oxygen atom or a substituted or unsubstituted divalent organic group having 1 to 10 carbon atoms that may be the same or different. Organic group. ]
(B) Organic peroxide containing one or more selected from diacyl peroxide and peroxyester: 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of component (A),
(C) Epoxy group-containing silane compound or epoxy group-containing siloxane compound: characterized in that it contains 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of component (A). A thermosetting silicone composition is provided.
 このような加熱硬化型シリコーン組成物であれば、透明性が高く、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を与えることができる。 Such a thermosetting silicone composition can give a cured product having high transparency, excellent adhesive strength and workability, and excellent heat resistance, light resistance and crack resistance.
 また、前記(A)成分のオルガノポリシロキサンのZが-R-であり、前記Zが酸素原子であることが好ましい。 In the organopolysiloxane of the component (A), Z 1 is preferably —R 4 —, and Z 2 is preferably an oxygen atom.
 また、前記(A)成分のオルガノポリシロキサンのZが-R-O-又は、-R(CHSi-O-であり、前記Zが置換又は非置換で同一又は異なってもよい炭素数1~10の2価の有機基であることが好ましい。 Further, Z 1 of the organopolysiloxane of component (A) is —R 4 —O— or —R 4 (CH 3 ) 2 Si—O—, and Z 2 is substituted or unsubstituted and is the same or different. It is preferably a divalent organic group having 1 to 10 carbon atoms.
 このような加熱硬化型シリコーン組成物であれば、(B)成分が分解する際に発生するフリーラジカルと(A)成分が効果的に反応し、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を得ることができる。 If it is such a thermosetting silicone composition, the free radicals generated when the component (B) decomposes and the component (A) react effectively, have excellent adhesive strength and workability, and are heat resistant. A cured product having excellent light resistance and crack resistance can be obtained.
 また、前記(A)成分のオルガノポリシロキサンが、下記一般式(2)で表される構造を分子中に少なくとも1つ有するものであることが好ましい。
Figure JPOXMLDOC01-appb-C000002
(式中、m、R、R、R、Rは上記と同様である。)
The organopolysiloxane of the component (A) preferably has at least one structure represented by the following general formula (2) in the molecule.
Figure JPOXMLDOC01-appb-C000002
(In the formula, m, R 1 , R 2 , R 3 and R 4 are the same as above.)
 このような加熱硬化型シリコーン組成物であれば、(B)成分が分解する際に発生するフリーラジカルと(A)成分がより効果的に反応し、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を得ることができる。 With such a heat-curable silicone composition, the free radicals generated when the component (B) decomposes and the component (A) react more effectively, have excellent adhesive strength and workability, and are heat resistant. A cured product having excellent light resistance and crack resistance can be obtained.
 また、前記(A)成分のオルガノポリシロキサン中に、0.1mol%以上の(SiO)単位を有することが好ましい。 Moreover, it is preferable to have 0.1 mol% or more of (SiO 2 ) units in the organopolysiloxane of the component (A).
 このような加熱硬化型シリコーン組成物であれば、(B)成分が分解する際に発生するフリーラジカルと(A)成分が更に効果的に反応し、更に(B)成分から発生する有機酸と(C)成分のエポキシ基が効果的に反応し、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を得ることができる。 If it is such a thermosetting silicone composition, the free radical generated when the component (B) is decomposed reacts more effectively with the component (A), and the organic acid generated from the component (B) The epoxy group of (C) component reacts effectively, and the hardened | cured material excellent in adhesive strength and workability | operativity, and excellent in heat resistance, light resistance, and crack resistance can be obtained.
 また、前記加熱硬化型シリコーン組成物を硬化して得られる2mm厚の硬化物の全光線透過率が80%以上であり、かつヘイズ値が20%以下であることが好ましい。 Further, it is preferable that the 2 mm-thick cured product obtained by curing the thermosetting silicone composition has a total light transmittance of 80% or more and a haze value of 20% or less.
 このような加熱硬化型シリコーン組成物であれば、該組成物の硬化物の透明性がより高くなる。 Such a thermosetting silicone composition makes the cured product of the composition more transparent.
 更に本発明では、上記本発明の加熱硬化型シリコーン組成物からなるものであることを特徴とするダイボンド材を提供する。 Furthermore, the present invention provides a die bond material characterized by comprising the heat-curable silicone composition of the present invention.
 このようなダイボンド材であれば、LEDチップを配線板に搭載するためのダイボンド材として好適に用いることができる。 Such a die bond material can be suitably used as a die bond material for mounting an LED chip on a wiring board.
 更に本発明では、上記本発明のダイボンド材を硬化して得られる硬化物を有するものであることを特徴とする光半導体装置を提供する。 Furthermore, the present invention provides an optical semiconductor device characterized by having a cured product obtained by curing the die bond material of the present invention.
 本発明の加熱硬化型シリコーン組成物は、透明性が高く、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を与えることができる。そのため、本発明の加熱硬化型シリコーン組成物からなるダイボンド材を硬化して得られる硬化物を用いた光半導体装置は、耐熱性、耐光性及び耐クラック性を有するものとなる。 The heat-curable silicone composition of the present invention can give a cured product having high transparency, excellent adhesive strength and workability, and excellent heat resistance, light resistance and crack resistance. Therefore, an optical semiconductor device using a cured product obtained by curing a die bond material made of the thermosetting silicone composition of the present invention has heat resistance, light resistance, and crack resistance.
 本発明の加熱硬化型シリコーン組成物は、透明性、接着強度及び作業性に優れ、かつ耐熱性、耐光性、耐クラック性及び耐変色性を有する硬化物(透明硬化物)を与えることができる。そのため、本発明の加熱硬化型シリコーン組成物からなるダイボンド材は、LEDチップを配線板に搭載するためのダイボンド材として好適に用いることができる。また、該ダイボンド材を硬化して得られる硬化物を用いた光半導体装置は、耐熱性、耐光性及び耐クラック性を有するものとなる。 The heat-curable silicone composition of the present invention can give a cured product (transparent cured product) having excellent transparency, adhesive strength and workability, and having heat resistance, light resistance, crack resistance and discoloration resistance. . Therefore, the die bond material which consists of a thermosetting silicone composition of this invention can be used suitably as a die bond material for mounting an LED chip on a wiring board. Moreover, the optical semiconductor device using the hardened | cured material obtained by hardening | curing this die-bonding material will have heat resistance, light resistance, and crack resistance.
本発明の加熱硬化型シリコーン組成物からなるダイボンド材を硬化して得られる硬化物を有する光半導体装置の一例を示す断面図である。It is sectional drawing which shows an example of the optical semiconductor device which has a hardened | cured material obtained by hardening | curing the die-bonding material which consists of a thermosetting silicone composition of this invention.
 以下、本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail.
 上記のように、透明性が高く、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性を有する硬化物を与える加熱硬化型シリコーン組成物が求められている。 As described above, there is a need for a thermosetting silicone composition that provides a cured product having high transparency, excellent adhesive strength and workability, and having heat resistance, light resistance, and crack resistance.
 本発明者らは、上記目的を達成するために鋭意検討を行った。その結果、(A) 下記一般式(1)で表される構造を分子中に少なくとも1つ有するオルガノポリシロキサン:100質量部、
Figure JPOXMLDOC01-appb-C000003
[式中、mは0,1,2のいずれかであり、Rは水素原子、フェニル基又はハロゲン化フェニル基、Rは水素原子又はメチル基、Rは置換又は非置換で同一又は異なってもよい炭素数1~12の1価の有機基、Zは-R-、-R-O-、-R(CHSi-O-(Rは置換又は非置換で同一又は異なってもよい炭素数1~10の2価の有機基)のいずれか、Zは酸素原子又は置換若しくは非置換で同一若しくは異なってもよい炭素数1~10の2価の有機基である。]
(B)ジアシルパーオキサイド、パーオキシエステルから選ばれる1種以上を含む有機過酸化物:前記(A)成分の合計量100質量部に対して、0.1~20質量部、
(C)エポキシ基を含有するシラン化合物又はエポキシ基を含有するシロキサン化合物:前記(A)成分の合計量100質量部に対して、0.1~20質量部
を含有するものであることを特徴とする加熱硬化型シリコーン組成物が、透明性が高く、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を与えることができ、信頼性の高い光半導体装置を提供できることを見出し本発明に至った。
The present inventors have intensively studied to achieve the above object. As a result, (A) organopolysiloxane having at least one structure represented by the following general formula (1) in the molecule: 100 parts by mass;
Figure JPOXMLDOC01-appb-C000003
[Wherein, m is any one of 0, 1, 2; R 1 is a hydrogen atom, a phenyl group or a halogenated phenyl group; R 2 is a hydrogen atom or a methyl group; and R 3 is substituted or unsubstituted and is the same or A monovalent organic group having 1 to 12 carbon atoms which may be different, Z 1 is —R 4 —, —R 4 —O—, —R 4 (CH 3 ) 2 Si—O— (R 4 is substituted or non-substituted) Z 2 is an oxygen atom or a substituted or unsubstituted divalent organic group having 1 to 10 carbon atoms that may be the same or different. Organic group. ]
(B) Organic peroxide containing one or more selected from diacyl peroxide and peroxyester: 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of component (A),
(C) Epoxy group-containing silane compound or epoxy group-containing siloxane compound: characterized in that it contains 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of component (A). A highly reliable optical semiconductor that can provide a cured product having high transparency, excellent adhesive strength and workability, and excellent heat resistance, light resistance, and crack resistance. The present inventors have found that an apparatus can be provided and have arrived at the present invention.
 以下、本発明についてより具体的に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described more specifically, but the present invention is not limited to this.
[(A)オルガノポリシロキサン]
 (A)成分のオルガノポリシロキサンは、下記一般式(1)で表される構造を分子中に少なくとも1つ有するオルガノポリシロキサンである。
Figure JPOXMLDOC01-appb-C000004
[式中、mは0,1,2のいずれかであり、Rは水素原子、フェニル基又はハロゲン化フェニル基、Rは水素原子又はメチル基、Rは置換又は非置換で同一又は異なってもよい炭素数1~12の1価の有機基、Zは-R-、-R-O-、-R(CHSi-O-(Rは置換又は非置換で同一又は異なってもよい炭素数1~10の2価の有機基)のいずれか、Zは酸素原子又は置換若しくは非置換で同一若しくは異なってもよい炭素数1~10の2価の有機基である。]
[(A) Organopolysiloxane]
The organopolysiloxane of component (A) is an organopolysiloxane having at least one structure represented by the following general formula (1) in the molecule.
Figure JPOXMLDOC01-appb-C000004
[Wherein, m is any one of 0, 1, 2; R 1 is a hydrogen atom, a phenyl group or a halogenated phenyl group; R 2 is a hydrogen atom or a methyl group; and R 3 is substituted or unsubstituted and is the same or A monovalent organic group having 1 to 12 carbon atoms which may be different, Z 1 is —R 4 —, —R 4 —O—, —R 4 (CH 3 ) 2 Si—O— (R 4 is substituted or non-substituted) Z 2 is an oxygen atom or a substituted or unsubstituted divalent organic group having 1 to 10 carbon atoms that may be the same or different. Organic group. ]
 (A)成分のオルガノポリシロキサン中の、Z、Zの組み合わせとしては、Zが-R-であり、Zが酸素原子であるものや、Zが-R-O-又は、-R(CHSi-O-であり、Zが置換又は非置換で同一又は異なってもよい炭素数1~10の2価の有機基であるものが好ましい。このような(A)成分を含む加熱硬化型シリコーン組成物であれば、(B)成分が分解する際に発生するフリーラジカルと(A)成分が効果的に反応し、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を得ることができる。 As the combination of Z 1 and Z 2 in the organopolysiloxane of component (A), Z 1 is —R 4 —, Z 2 is an oxygen atom, or Z 1 is —R 4 —O—. Alternatively, —R 4 (CH 3 ) 2 Si—O—, wherein Z 2 is a substituted or unsubstituted divalent organic group having 1 to 10 carbon atoms, which may be the same or different, are preferable. If it is such a thermosetting silicone composition containing the component (A), the free radicals generated when the component (B) decomposes and the component (A) react effectively, resulting in adhesive strength and workability. A cured product having excellent heat resistance, light resistance and crack resistance can be obtained.
 また、(A)成分のオルガノポリシロキサン中に、0.1mol%以上の(SiO)単位を有することが好ましい。このような(A)成分を含む加熱硬化型シリコーン組成物であれば、(B)成分が分解する際に発生するフリーラジカルと(A)成分が更に効果的に反応し、更に(B)成分から発生する有機酸と(C)成分のエポキシ基が効果的に反応し、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を得ることができる。 Moreover, it is preferable to have 0.1 mol% or more of (SiO 2 ) units in the organopolysiloxane of component (A). In the case of such a thermosetting silicone composition containing the component (A), the free radical generated when the component (B) decomposes and the component (A) react more effectively, and the component (B) The organic acid generated from the epoxy group reacts effectively with the epoxy group of the component (C), and a cured product having excellent adhesive strength and workability and excellent heat resistance, light resistance and crack resistance can be obtained.
 更に、(A)成分のオルガノポリシロキサンが、下記一般式(2)で表される構造を分子中に少なくとも1つ有するものであることが好ましい。このような(A)成分を含む加熱硬化型シリコーン組成物であれば、(B)成分が分解する際に発生するフリーラジカルと(A)成分がより効果的に反応し、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を得ることができる。
Figure JPOXMLDOC01-appb-C000005
(式中、m、R、R、R、Rは上記と同様である。)
Furthermore, it is preferable that the organopolysiloxane of component (A) has at least one structure represented by the following general formula (2) in the molecule. If such a thermosetting silicone composition containing the component (A), the free radical generated when the component (B) is decomposed reacts more effectively with the component (A), and the adhesive strength and workability are improved. And a cured product excellent in heat resistance, light resistance and crack resistance can be obtained.
Figure JPOXMLDOC01-appb-C000005
(In the formula, m, R 1 , R 2 , R 3 and R 4 are the same as above.)
 また、本発明の加熱硬化型シリコーン組成物を硬化して得られる2mm厚の硬化物の全光線透過率が80%以上であり、かつヘイズ値が20%以下であることが好ましい。このような加熱硬化型シリコーン組成物であれば、該組成物の硬化物の透明性がより高くなる。なお、ヘイズ値は、(ヘイズ値(%))=(拡散光透過率)/(全光線透過率)×100で定義されるものである。 Moreover, it is preferable that the 2 mm-thick cured product obtained by curing the thermosetting silicone composition of the present invention has a total light transmittance of 80% or more and a haze value of 20% or less. With such a heat-curable silicone composition, the transparency of the cured product of the composition becomes higher. The haze value is defined by (haze value (%)) = (diffuse light transmittance) / (total light transmittance) × 100.
 (A)成分のオルガノポリシロキサンは、25℃での粘度が10mPa・s以上の液状又は固体の分岐状又は三次元網状構造のオルガノポリシロキサンであることが好ましい。 The component (A) organopolysiloxane is preferably a liquid or solid branched or three-dimensional network-structured organopolysiloxane having a viscosity at 25 ° C. of 10 mPa · s or more.
 上記式(1)において、Rで示されるケイ素原子に結合した置換又は非置換で同一又は異なってもよい1価の有機基としては、通常、炭素数1~12、好ましくは1~8程度の炭化水素基が挙げられ、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基、オクテニル基等のアルケニル基や、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基等のハロゲン置換アルキル基やシアノエチル基等が挙げられる。 In the above formula (1), the substituted or unsubstituted monovalent organic group which may be the same or different and bonded to the silicon atom represented by R 3 usually has 1 to 12 carbon atoms, preferably about 1 to 8 carbon atoms. Specifically, a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, Nonyl group, alkyl group such as decyl group, aryl group such as phenyl group, tolyl group, xylyl group, naphthyl group, aralkyl group such as benzyl group, phenylethyl group, phenylpropyl group, vinyl group, allyl group, propenyl group, Alkenyl groups such as isopropenyl group, butenyl group, hexenyl group, cyclohexenyl group, octenyl group and the hydrogen atom of these groups Some or all of them substituted with halogen atoms such as fluorine, bromine and chlorine, cyano groups, etc., for example, halogen-substituted alkyl groups such as chloromethyl group, chloropropyl group, bromoethyl group, trifluoropropyl group, cyanoethyl group, etc. Can be mentioned.
 上記式(1)において、Rで示される置換又は非置換で同一又は異なってもよい2価の有機基としては、具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基等の炭素原子数1~10のアルキレン基などの2価炭化水素基が例示され、炭素原子数1~3のアルキレン基が好ましい。 In the above formula (1), the divalent organic group which may be the same or different in substituted or unsubstituted represented by R 4 is specifically carbon such as methylene group, ethylene group, propylene group and butylene group. Examples thereof include divalent hydrocarbon groups such as an alkylene group having 1 to 10 atoms, and an alkylene group having 1 to 3 carbon atoms is preferable.
 以下に(A)成分のオルガノポリシロキサンを例示する。(下記式において、Meはメチル基を示す。)この成分は単一成分でも、他の成分と併用でも良い。また、下記式において、上記式(1)中のRに相当する基が、メチル基の場合を例示しているが、その他の基(置換又は非置換で同一又は異なってもよい炭素数1~12の1価の有機基)にも変更できる。 Examples of the component (A) are organopolysiloxanes. (In the following formula, Me represents a methyl group.) This component may be a single component or may be used in combination with other components. In the following formula, the group corresponding to R 3 in the above formula (1) exemplifies the case of a methyl group, but other groups (substituted or unsubstituted, the same or different carbon number 1 To a monovalent organic group of ˜12).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 下記式に示す、MA単位、M単位、Q単位が、MA:M:Q=1:4:6の割合で含まれ、分子量がポリスチレン換算の重量平均分子量で、5000であるオルガノポリシロキサン。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
An organopolysiloxane containing MA units, M units, and Q units represented by the following formula in a ratio of MA: M: Q = 1: 4: 6 and having a molecular weight of 5000 in terms of polystyrene-reduced weight average molecular weight.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 下記式に示す、MA-D単位、D単位、T単位が、MA-D:D:T=2:6:7の割合で含まれ、分子量がポリスチレン換算の重量平均分子量で、3500であるオルガノポリシロキサン。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Organo, which has MA-D units, D units, and T units in a ratio of MA-D: D: T = 2: 6: 7, and has a molecular weight of 3500 in terms of polystyrene in terms of polystyrene. Polysiloxane.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 (A)成分には、組成物の粘度や硬化物の硬度を調整する等の目的で、以下に示すようなシリコーンを含む反応性希釈剤や、シリコーンを含まない反応性希釈剤を添加することが出来る。 For the purpose of adjusting the viscosity of the composition and the hardness of the cured product, a reactive diluent containing silicone or a reactive diluent not containing silicone as shown below is added to the component (A). I can do it.
 シリコーンを含む反応性希釈剤の具体的な例としては、下記式(3)~(7)で示されるオルガノポリシロキサンが挙げられる。(下記式において、Meはメチル基を示す。)この成分は単一でも、他の成分と併用でも良い。 Specific examples of the reactive diluent containing silicone include organopolysiloxanes represented by the following formulas (3) to (7). (In the following formula, Me represents a methyl group.) This component may be a single component or a combination of other components.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
(式中、pは18、qは180である。)
Figure JPOXMLDOC01-appb-C000016
(Wherein p is 18 and q is 180)
Figure JPOXMLDOC01-appb-C000017
(式中、p’は20、qは180である。)
Figure JPOXMLDOC01-appb-C000017
(In the formula, p ′ is 20 and q is 180.)
Figure JPOXMLDOC01-appb-C000018
(式中、pは18、qは180である。)
Figure JPOXMLDOC01-appb-C000018
(Wherein p is 18 and q is 180)
 このような(A)成分の合成方法としては、例えば下記に示すオルガノハイドロジェンシラン、
Figure JPOXMLDOC01-appb-C000019
(式中、m、R、R、R、Zは上記と同様である。)
好ましくは下式に示す化合物、
Figure JPOXMLDOC01-appb-C000020
(式中、m、R、R、R、Z、Zは上記と同様である。)
より具体的には、1,3-ビス(3-メタクリロキシプロピル)テトラメチルジシロキサンと1,1,3,3-テトラメチルジシロキサンを酸触媒存在下で平衡化反応する事によって得られる(3-メタクリロキシプロピル)-1,1,3,3-テトラメチルジシロキサンと、脂肪族不飽和基(例えば、エチレン性不飽和基、及びアセチレン性不飽和基が挙げられる。)を含むオルガノポリシロキサンとを、塩化白金酸触媒存在下でヒドロシリル化反応させるとよく、この方法で本発明に好適なものを製造することができるが、前記の合成方法に制限されるものではない。また、脂肪族不飽和基を含むオルガノポリシロキサンは、脂肪族不飽和基を有するオルガノアルコキシシランを含むアルコキシシランの(共)加水分解縮合など公知の方法で製造することができ、市販のものを用いても良い。
As a synthesis method of such a component (A), for example, organohydrogensilane shown below,
Figure JPOXMLDOC01-appb-C000019
(In the formula, m, R 1 , R 2 , R 3 and Z 1 are the same as above.)
Preferably, a compound represented by the following formula:
Figure JPOXMLDOC01-appb-C000020
(In the formula, m, R 1 , R 2 , R 3 , Z 1 and Z 2 are the same as above.)
More specifically, it can be obtained by equilibrating 1,3-bis (3-methacryloxypropyl) tetramethyldisiloxane and 1,1,3,3-tetramethyldisiloxane in the presence of an acid catalyst ( 3-methacryloxypropyl) -1,1,3,3-tetramethyldisiloxane and an organopolyester containing an aliphatic unsaturated group (for example, an ethylenically unsaturated group and an acetylenically unsaturated group). Siloxane may be hydrosilylated in the presence of a chloroplatinic acid catalyst, and a method suitable for the present invention can be produced by this method, but the synthesis method is not limited to the above. The organopolysiloxane containing an aliphatic unsaturated group can be produced by a known method such as (co) hydrolysis condensation of an alkoxysilane containing an organoalkoxysilane having an aliphatic unsaturated group. It may be used.
 シリコーンを含まない反応性希釈剤としては、HC=CGCOによって示されるような(メタ)アクリレート類があり、上記式中、Gは、水素、ハロゲン、炭素原子1~4個のアルキル基のいずれかであり;Rは、1~16個の炭素原子を有するアルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルカリル基、アラルキル基、アリール基のいずれかから選ばれ、これらのいずれかは、必要に応じ、ケイ素、酸素、ハロゲン、カルボニル、ヒドロキシル、エステル、カルボン酸、尿素、ウレタン、カルバメート、アミン、アミド、イオウ、スルホネート、スルホン等で置換し得る。 Reactive diluents that do not contain silicone include (meth) acrylates as represented by H 2 C═CGCO 2 R 5 , where G is hydrogen, halogen, 1 to 4 carbon atoms R 5 is any one of an alkyl group having 1 to 16 carbon atoms, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkaryl group, an aralkyl group, and an aryl group; Any of these can be optionally substituted with silicon, oxygen, halogen, carbonyl, hydroxyl, ester, carboxylic acid, urea, urethane, carbamate, amine, amide, sulfur, sulfonate, sulfone, and the like.
 反応性希釈剤としてとりわけ望ましい(メタ)アクリレート類としては、ポリエチレングリコールジ(メタ)アクリレート、エトキシ化ビスフェノール-A(メタ)アクリレート(″EBIPA″又は″EBIPMA″)のようなビスフェノール-Aジ(メタ)アクリレート、テトラヒドロフラン(メタ)アクリレート及びジ(メタ)アクリレート、シトロネリルアクリレート及びシトロネリルメタクリレート、ヒドロキシプロピル(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート(″HDDA″又は″HDDMA″)、トリメチロールプロパントリ(メタ)アクリレート、テトラヒドロジシクロペンタジエニル(メタ)アクリレート、エトキシ化トリメチロールプロパントリアクリレート(″ETTA″)、トリエチレングリコールジアクリレート及びトリエチレングリコールジメタクリレート(″TRIEGMA″)、イソボルニルアクリレート及びイソボルニルメタクリレート、に相応するアクリレートエステルがある。もちろん、これらの(メタ)アクリレート類の組合せも反応性希釈剤として使用できる。 Particularly desirable (meth) acrylates as reactive diluents include bisphenol-A di (meth) acrylates such as polyethylene glycol di (meth) acrylate, ethoxylated bisphenol-A (meth) acrylate ("EBIPA" or "EBIPMA"). ) Acrylate, tetrahydrofuran (meth) acrylate and di (meth) acrylate, citronellyl acrylate and citronellyl methacrylate, hydroxypropyl (meth) acrylate, hexanediol di (meth) acrylate ("HDDA" or "HDDMA"), trimethylolpropane Tri (meth) acrylate, tetrahydrodicyclopentadienyl (meth) acrylate, ethoxylated trimethylolpropane triacrylate ("ETTA"), triethyl Glycol diacrylate and triethylene glycol dimethacrylate ( "TRIEGMA"), isobornyl acrylate and isobornyl methacrylate, acrylate esters corresponding to. Of course, combinations of these (meth) acrylates can also be used as reactive diluents.
 反応性希釈剤を添加する場合の添加量としては、0.01~30質量%の範囲が好ましく、0.05~10質量%の範囲がより好ましい。 In the case of adding a reactive diluent, the addition amount is preferably in the range of 0.01 to 30% by mass, and more preferably in the range of 0.05 to 10% by mass.
 本発明の加熱硬化型シリコーン組成物は、特定の用途において所望されるような硬化又は未硬化特性を改変させる他の成分も含ませ得る。例えば、(メタ)アクリロキシプロピルトリメトキシシラン、トリアルキル-又はトリアリル-イソシアヌレート、ビニルトリメトキシシラン等のような接着促進剤を含むことができ、約20質量%までの量含むことが好ましい。他の任意成分は、非(メタ)アクリルシリコーン希釈剤又は可塑剤が挙げられ、約30質量%までの量含むことが好ましい。非(メタ)アクリルシリコーン類としては、100~500mPa・sの粘度を有するトリメチルシリル末端化オイル、及びシリコーンゴムが挙げられる。非(メタ)アクリルシリコーン類は、ビニル基のような共硬化性基を含み得る。 The heat curable silicone composition of the present invention may also include other components that modify the cured or uncured properties as desired in a particular application. For example, it can include an adhesion promoter such as (meth) acryloxypropyltrimethoxysilane, trialkyl- or triallyl-isocyanurate, vinyltrimethoxysilane, and the like, preferably in an amount up to about 20% by weight. Other optional ingredients include non- (meth) acrylic silicone diluents or plasticizers, preferably including up to about 30% by weight. Non- (meth) acryl silicones include trimethylsilyl-terminated oil having a viscosity of 100 to 500 mPa · s, and silicone rubber. Non- (meth) acryl silicones may contain co-curable groups such as vinyl groups.
[(B)有機過酸化物]
 (B)成分のジアシルパーオキサイド、パーオキシエステルから選ばれる1種以上を含む有機過酸化物は、本発明の加熱硬化型シリコーン組成物を所望の形状に成形した後に、加熱処理を加えて架橋反応により硬化させるために配合される成分であり、目的とする接続温度、接続時間、ポットライフ等により適宜選択する。
[(B) Organic peroxide]
The organic peroxide containing at least one selected from diacyl peroxide and peroxyester as component (B) is crosslinked by adding heat treatment to the heat-curable silicone composition of the present invention into a desired shape. It is a component blended for curing by reaction, and is appropriately selected depending on the intended connection temperature, connection time, pot life and the like.
 有機過酸化物は、高い反応性と長いポットライフを両立する観点から、半減期10時間の温度が40℃以上、かつ、半減期1分の温度が200℃以下であることが好ましく、半減期10時間の温度が60℃以上、かつ、半減期1分の温度が180℃以下であることがより好ましい。 From the viewpoint of achieving both high reactivity and a long pot life, the organic peroxide preferably has a half-life temperature of 40 ° C. or more and a half-life temperature of 1 minute is 200 ° C. or less. It is more preferable that the temperature for 10 hours is 60 ° C. or higher and the temperature for half-life of 1 minute is 180 ° C. or lower.
 この場合、(B)成分の有機過酸化物の熱分解によって生じるフリーラジカルによって、上記(A)成分中のケイ素原子に結合した炭化水素基同士、又は上記(A)成分中のビニル基、アリル基等のアルケニル基同士の結合反応が生じて架橋硬化物とすることができる。更に、(B)成分の分解生成物の一部としてカルボキシル基を有する有機酸が発生するため、該有機酸が後述の(C)成分のエポキシ基と反応する架橋剤として作用し、より強固な架橋構造を形成することが可能となる。 In this case, hydrocarbon groups bonded to silicon atoms in the component (A) or vinyl groups and allyl in the component (A) by free radicals generated by thermal decomposition of the component (B) organic peroxide. A bonding reaction between alkenyl groups such as a group occurs to form a crosslinked cured product. Furthermore, since an organic acid having a carboxyl group is generated as a part of the decomposition product of the component (B), the organic acid acts as a cross-linking agent that reacts with the epoxy group of the component (C) described later, and is stronger. A crosslinked structure can be formed.
 ジアシルパーオキサイドとしては、例えば、イソブチルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシニックパーオキサイド、ベンゾイルパーオキシトルエン及びベンゾイルパーオキサイドが挙げられる。 Examples of the diacyl peroxide include isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, succinic peroxide , Benzoylperoxytoluene and benzoyl peroxide.
 パーオキシエステルとしては、例えば、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノネート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノネート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ビス(m-トルオイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、t-ブチルパーオキシアセテート及びビス(t-ブチルパーオキシ)ヘキサヒドロテレフタレートが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。 Examples of peroxyesters include cumyl peroxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, t -Hexylperoxyneodecanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis ( 2-ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethyl Hexanoate, t-butylperoxyisobutyrate, 1,1-bis (t-butylperoxy) cycle Hexane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxy-3,5,5-trimethylhexanonate, t-butylperoxylaurate, 2,5-dimethyl-2,5-bis (m- Toluoylperoxy) hexane, t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexyl monocarbonate, t-hexylperoxybenzoate, t-butylperoxyacetate and bis (t-butylperoxy) Hexahydroterephthalate is mentioned. These are used singly or in combination of two or more.
 その他の有機過酸化物としては、ジアルキルパーオキサイド、パーオキシジカーボネート、パーオキシケタール、ハイドロパーオキサイド、シリルパーオキサイド等が挙げられる。これらの有機過酸化物を上記(B)成分のジアシルパーオキサイド、パーオキシエステルから選ばれる1種以上を含む有機過酸化物と組み合わせて使用することもできる。 Other organic peroxides include dialkyl peroxides, peroxydicarbonates, peroxyketals, hydroperoxides, silyl peroxides, and the like. These organic peroxides can also be used in combination with an organic peroxide containing one or more selected from the diacyl peroxides and peroxyesters of the component (B).
 ジアルキルパーオキサイドとしては、例えば、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン及びt-ブチルクミルパーオキサイドが挙げられる。 Examples of the dialkyl peroxide include α, α′-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane and t -Butylcumyl peroxide.
 パーオキシジカーボネートとしては、例えば、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシメトキシパーオキシジカーボネート、ビス(2-エチルヘキシルパーオキシ)ジカーボネート、ジメトキシブチルパーオキシジカーボネート及びビス(3-メチル-3-メトキシブチルパーオキシ)ジカーボネートが挙げられる。 Examples of peroxydicarbonate include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, di-2-ethoxymethoxyperoxydicarbonate, Bis (2-ethylhexylperoxy) dicarbonate, dimethoxybutylperoxydicarbonate and bis (3-methyl-3-methoxybutylperoxy) dicarbonate can be mentioned.
 パーオキシケタールとしては、例えば、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-(t-ブチルパーオキシ)シクロドデカン及び2,2-ビス(t-ブチルパーオキシ)デカンが挙げられる。 Examples of peroxyketals include 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis ( t-Butylperoxy) -3,3,5-trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane and 2,2-bis (t-butylperoxy) decane.
 ハイドロパーオキサイドとしては、例えば、ジイソプロピルベンゼンハイドロパーオキサイド及びクメンハイドロパーオキサイドが挙げられる。 Examples of the hydroperoxide include diisopropylbenzene hydroperoxide and cumene hydroperoxide.
 シリルパーオキサイドとしては、例えば、t-ブチルトリメチルシリルパーオキサイド、ビス(t-ブチル)ジメチルシリルパーオキサイド、t-ブチルトリビニルシリルパーオキサイド、ビス(t-ブチル)ジビニルシリルパーオキサイド、トリス(t-ブチル)ビニルシリルパーオキサイド、t-ブチルトリアリルシリルパーオキサイド、ビス(t-ブチル)ジアリルシリルパーオキサイド及びトリス(t-ブチル)アリルシリルパーオキサイドが挙げられる。 Examples of the silyl peroxide include t-butyltrimethylsilyl peroxide, bis (t-butyl) dimethylsilyl peroxide, t-butyltrivinylsilyl peroxide, bis (t-butyl) divinylsilyl peroxide, tris (t- Examples include butyl) vinylsilyl peroxide, t-butyltriallylsilyl peroxide, bis (t-butyl) diallylsilyl peroxide, and tris (t-butyl) allylsilyl peroxide.
 (B)成分の添加量は、(A)成分のオルガノポリシロキサン合計量100質量部に対して、0.1~20質量部、好ましくは0.5~10質量部である。添加量が、0.1質量部未満の場合、反応が十分に進行せず、目的とする硬化物の硬度が得られない恐れがある。20質量部を超える場合、所望とする硬化後の物性、すなわち十分な耐熱性、耐光性、耐クラック性が得られない恐れがあることに加え、着色が発生する恐れがあり、硬化物の全光線透過率が低下し、変色の原因となる。 The amount of component (B) added is 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the total amount of organopolysiloxane of component (A). When the addition amount is less than 0.1 parts by mass, the reaction does not proceed sufficiently, and the desired hardness of the cured product may not be obtained. If it exceeds 20 parts by mass, the desired physical properties after curing, that is, sufficient heat resistance, light resistance, crack resistance may not be obtained, and coloring may occur, The light transmittance is reduced, causing discoloration.
[(C)エポキシ基を含有するシラン化合物又はエポキシ基を含有するシロキサン化合物]
 本発明の加熱硬化型シリコーン組成物は、(C)成分としてエポキシ基を含有するシラン化合物又はエポキシ基を含有するシロキサン化合物を含有する。これらの化合物は、分子内に1個以上のエポキシ基を含有すればよい。本明細書において、エポキシ基を含有するとは、エポキシ基を少なくとも基の一部に含んでいればよく、例えば、アルキル基、アルキルエーテル基等の他の官能基とエポキシ基を含有していてもよい。
[(C) Epoxy group-containing silane compound or epoxy group-containing siloxane compound]
The heat-curable silicone composition of the present invention contains a silane compound containing an epoxy group or a siloxane compound containing an epoxy group as the component (C). These compounds may contain one or more epoxy groups in the molecule. In this specification, the term “containing an epoxy group” means that an epoxy group may be included in at least a part of the group. Good.
 本発明において、(C)成分は、前述の通り(B)成分の分解生成物の一部としてカルボキシル基を有する有機酸が発生するため、該有機酸が(C)成分のエポキシ基と反応する架橋剤として作用し、より強固な架橋構造を形成する目的として添加されるものであり重要である。 In the present invention, since the component (C) has an organic acid having a carboxyl group as part of the decomposition product of the component (B) as described above, the organic acid reacts with the epoxy group of the component (C). It is important because it acts as a crosslinking agent and is added for the purpose of forming a stronger crosslinked structure.
 (C)成分において、エポキシ基としては特に限定されず、例えば、グリシジル基、エポキシシクロヘキシル基等が挙げられる。より具体的には、例えば、2,3-エポキシプロピル基、3,4-エポキシブチル基、4,5-エポキシペンチル基、2-グリシドキシエチル基、3-グリシドキシプロピル基、4-グリシドキシブチル基等が挙げられる。 In the component (C), the epoxy group is not particularly limited, and examples thereof include a glycidyl group and an epoxycyclohexyl group. More specifically, for example, 2,3-epoxypropyl group, 3,4-epoxybutyl group, 4,5-epoxypentyl group, 2-glycidoxyethyl group, 3-glycidoxypropyl group, 4- A glycidoxybutyl group etc. are mentioned.
 (C)成分としては、分子内に1個以上のエポキシ含有基を有するシラン化合物又はシロキサン化合物であれば特に限定されない。例えば、エポキシ基を含有するシランカップリング剤やその加水分解縮合物等が例示される。エポキシ基を含有するシランカップリング剤やその加水分解縮合物としては、グリシドキシプロピルトリメトキシシラン、グリシドキシプロピルトリエトキシシラン等のシラン化合物やその加水分解縮合物等を挙げることができる。 The component (C) is not particularly limited as long as it is a silane compound or a siloxane compound having one or more epoxy-containing groups in the molecule. For example, a silane coupling agent containing an epoxy group and a hydrolysis condensate thereof are exemplified. Examples of the silane coupling agent containing an epoxy group and its hydrolysis condensate include silane compounds such as glycidoxypropyltrimethoxysilane and glycidoxypropyltriethoxysilane, and their hydrolysis condensates.
 (C)成分のうち、エポキシ基を含有するシロキサン化合物としては、下記に示すものを挙げることができるが、これらに限定されず用いることができる。 Among the components (C), examples of the siloxane compound containing an epoxy group include those shown below, but the siloxane compound can be used without being limited thereto.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 (C)成分を含有することで、本発明の加熱硬化型シリコーン組成物は、硬化後の透過性が高く、光半導体素子の発熱や発光による耐熱性及び耐光性に優れるとともに、繰り返しの熱衝撃に対しても強靭な特性、すなわち耐クラック性を得ることができる。 By containing the component (C), the heat-curable silicone composition of the present invention has high transparency after curing, excellent heat resistance and light resistance due to heat generation and light emission of the optical semiconductor element, and repeated thermal shock. However, tough characteristics, that is, crack resistance can be obtained.
 (C)成分の添加量は、前記(A)成分の合計量100質量部に対して、0.1~20質量部、好ましくは0.5~15質量部である。添加量が、0.1質量部未満の場合、所望とする硬化後の物性、すなわち十分な耐熱性、耐光性、耐クラック性が得られない恐れがある。20質量部を超える場合、反応が十分に進行せず、未反応のエポキシ基が硬化物中に残存するため、変色の原因となりうる恐れがある。 The amount of component (C) added is 0.1 to 20 parts by weight, preferably 0.5 to 15 parts by weight, based on 100 parts by weight of the total amount of component (A). When the addition amount is less than 0.1 parts by mass, desired physical properties after curing, that is, sufficient heat resistance, light resistance, and crack resistance may not be obtained. When the amount exceeds 20 parts by mass, the reaction does not proceed sufficiently and unreacted epoxy groups remain in the cured product, which may cause discoloration.
[(D)その他の成分]
 組成物の透明性を更に維持し、硬化物の着色、酸化劣化等の発生を抑えるために、2,6-ジ-t-ブチル-4-メチルフェノール等の従来公知の酸化防止剤を本発明の加熱硬化型シリコーン組成物に配合することができる。また、光劣化に対する抵抗性を付与するために、ヒンダードアミン系安定剤等の光安定剤を本発明の加熱硬化型シリコーン組成物に配合することもできる。
[(D) Other ingredients]
In order to further maintain the transparency of the composition and suppress the occurrence of coloring and oxidative deterioration of the cured product, conventionally known antioxidants such as 2,6-di-t-butyl-4-methylphenol are used in the present invention. It can mix | blend with the following thermosetting silicone composition. Moreover, in order to provide the resistance with respect to photodegradation, light stabilizers, such as a hindered amine stabilizer, can also be mix | blended with the heat-curable silicone composition of this invention.
 本発明の加熱硬化型シリコーン組成物の強度を向上、粘度調整、チキソ性付与等を目的として、更に、ヒュームドシリカ、ナノアルミナ等の無機質充填剤を配合してもよい。必要に応じて、本発明の加熱硬化型シリコーン組成物に、染料、顔料、難燃剤等を配合してもよい。 For the purpose of improving the strength of the thermosetting silicone composition of the present invention, adjusting viscosity, imparting thixotropy, etc., an inorganic filler such as fumed silica or nano alumina may be further blended. As needed, you may mix | blend dye, a pigment, a flame retardant, etc. with the thermosetting silicone composition of this invention.
 また、作業性を改善する目的で溶剤等を添加して使用することも可能である。溶剤の種類は特に制限されるものでなく、硬化前の加熱硬化型シリコーン組成物を溶解し、前記無機質充填剤等を良好に分散させ、均一なダイボンド材あるいは接着剤等を提供できる溶剤を使用することができる。該溶剤の配合割合はダイボンド材等を使用する作業条件、環境、使用時間等に応じて適宜調整すればよい。溶剤は2種以上を併用してもよい。このような溶剤としては、ブチルカルビトールアセテート、カルビトールアセテート、メチルエチルケトン、α-テルピネオール、及びセロソルブアセテート等が挙げられる。 Also, it is possible to add a solvent or the like for the purpose of improving workability. The type of the solvent is not particularly limited, and a solvent that dissolves the heat-curable silicone composition before curing, disperses the inorganic filler and the like, and provides a uniform die-bonding material or adhesive is used. can do. What is necessary is just to adjust suitably the mixture ratio of this solvent according to the working conditions, environment, use time, etc. which use a die-bonding material. Two or more solvents may be used in combination. Examples of such a solvent include butyl carbitol acetate, carbitol acetate, methyl ethyl ketone, α-terpineol, and cellosolve acetate.
 また、本発明の加熱硬化型シリコーン組成物は、その接着性を向上させるための接着付与剤を含有してもよい。この接着付与剤としては、上記(C)成分以外のシランカップリング剤やその加水分解縮合物等が例示される。(C)成分以外のシランカップリング剤としては、(メタ)アクリル基含有シランカップリング剤、イソシアネート基含有シランカップリング剤、イソシアヌレート基含有シランカップリング剤、アミノ基含有シランカップリング剤、メルカプト基含有シランカップリング剤等公知のものが例示され、前記(A)成分の合計量100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.3~10質量部用いることができる。 Further, the heat-curable silicone composition of the present invention may contain an adhesion-imparting agent for improving the adhesiveness. Examples of the adhesion-imparting agent include silane coupling agents other than the component (C) and hydrolysis condensates thereof. As silane coupling agents other than the component (C), (meth) acrylic group-containing silane coupling agents, isocyanate group-containing silane coupling agents, isocyanurate group-containing silane coupling agents, amino group-containing silane coupling agents, mercapto Examples thereof include known groups such as a group-containing silane coupling agent, and preferably 0.1 to 20 parts by mass, more preferably 0.3 to 10 parts by mass with respect to 100 parts by mass of the total amount of the component (A). be able to.
 本発明の加熱硬化型シリコーン組成物は、上記各成分を、公知の混合方法、例えば、ミキサー、ロール等を用いて混合することによって製造することができる。また、本発明の加熱硬化型シリコーン組成物は、回転粘度計、例えば、E型粘度計を用いて23℃で測定した粘度が10~1,000,000mPa・s、特には100~1,000,000mPa・sであることが好ましい。 The heat-curable silicone composition of the present invention can be produced by mixing the above-described components using a known mixing method such as a mixer or a roll. The thermosetting silicone composition of the present invention has a viscosity of 10 to 1,000,000 mPa · s, particularly 100 to 1,000, measured at 23 ° C. using a rotational viscometer, for example, an E type viscometer. 1,000 mPa · s is preferable.
 本発明の加熱硬化型シリコーン組成物は、公知の硬化条件下で公知の硬化方法により硬化させることができる。具体的には、通常、80~200℃、好ましくは100~160℃で加熱することにより、該組成物を硬化させることができる。加熱時間は、0.5分~5時間程度、特に1分~3時間程度でよい。作業条件、生産性、発光素子及び筐体耐熱性とのバランスから適宜選定することができる。 The heat-curable silicone composition of the present invention can be cured by a known curing method under known curing conditions. Specifically, the composition can be cured by heating at 80 to 200 ° C., preferably 100 to 160 ° C. The heating time may be about 0.5 minutes to 5 hours, particularly about 1 minute to 3 hours. It can be selected as appropriate from the balance of working conditions, productivity, light emitting element and housing heat resistance.
 本発明の加熱硬化型シリコーン組成物は、LEDチップをパッケージに固定するために好適に用いることができる。また、その他有機電界発光素子(有機EL)、レーザーダイオード、及びLEDアレイ等の光半導体素子にも好適に用いることができる。 The thermosetting silicone composition of the present invention can be suitably used for fixing an LED chip to a package. Moreover, it can use suitably also for optical semiconductor elements, such as an organic electroluminescent element (organic EL), a laser diode, and an LED array.
 更に本発明では、上記本発明の加熱硬化型シリコーン組成物からなるものであり、半導体素子を配線板に接続するために使用することができるダイボンド材を提供する。 Furthermore, the present invention provides a die-bonding material that is composed of the heat-curable silicone composition of the present invention and can be used for connecting a semiconductor element to a wiring board.
 本発明の加熱硬化型シリコーン組成物は、透明性が高く、接着強度及び作業性に優れ、かつ耐熱性、耐光性及び耐クラック性に優れた硬化物を与えることができる。従って、上記加熱硬化型シリコーン組成物からなるダイボンド材であれば、LEDチップを配線板に搭載するためのダイボンド材として好適に用いることができる。 The heat-curable silicone composition of the present invention can give a cured product having high transparency, excellent adhesive strength and workability, and excellent heat resistance, light resistance and crack resistance. Therefore, if it is a die-bonding material consisting of the said thermosetting silicone composition, it can be conveniently used as a die-bonding material for mounting an LED chip on a wiring board.
 ダイボンド材を塗布する方法は特に制限されず、例えば、スピンコーティング、印刷、及び圧縮成形等が挙げられる。ダイボンド材の厚みは適宜選択すればよく、通常5~50μm、特には10~30μmである。例えば、ディスペンス装置を用いて23℃の温度、0.5~5kgf/cmの圧力で吐出することで容易に塗布ができる。また、スタンピング装置を用いることで、所定の量のダイボンド材を基板に転写することでも容易にできる。 A method for applying the die bond material is not particularly limited, and examples thereof include spin coating, printing, and compression molding. The thickness of the die bond material may be appropriately selected, and is usually 5 to 50 μm, particularly 10 to 30 μm. For example, it can be easily applied by discharging at a temperature of 23 ° C. and a pressure of 0.5 to 5 kgf / cm 2 using a dispensing device. Further, by using a stamping device, a predetermined amount of die bond material can be easily transferred to the substrate.
 光半導体素子の搭載方法は特に制限されず、例えば、ダイボンダーが挙げられる。ダイボンド材の厚みを決定する要素は、前述のダイボンド材の粘度に加え、光半導体素子の圧着荷重、圧着時間、圧着温度が挙げられる。これら条件は、光半導体素子の外形形状、目的とするダイボンド材厚みに応じて適宜選択すればよく、圧着荷重は一般的に1gf以上1kgf以下である。好ましくは10gf以上100gf以下である。1gf以上の圧着荷重であれば、ダイボンド材を十分に圧着することができる。また1kgf以下の圧着荷重を用いれば、光半導体素子表面の発光層にダメージを与えることがない。圧着時間は工程の生産性との兼ね合いで適宜選択すればよく、一般的に0msecを超え1sec以下である。好ましくは1msec以上30msecである。1sec以下であれば生産性の点で好ましい。圧着温度は特に制限はなく、ダイボンド材の使用温度範囲に従えばよいが、一般的に15℃以上100℃以下であると好ましい。ダイボンダーの圧着ステージに加温設備が無い場合は室温付近での温度帯で使用すればよい。15℃以上であれば、ダイボンド材の粘度が高くなりすぎないため十分に圧着することができる。100℃以下であれば、ダイボンド材の硬化が始まることがないため、目的とするダイボンド材の厚さに到達することができる。 The mounting method of the optical semiconductor element is not particularly limited, and examples thereof include a die bonder. Factors that determine the thickness of the die bond material include the pressure of the optical semiconductor element, the pressure bonding time, and the pressure bonding temperature in addition to the viscosity of the die bond material. These conditions may be appropriately selected according to the outer shape of the optical semiconductor element and the target die bond material thickness, and the pressure bonding load is generally 1 gf or more and 1 kgf or less. Preferably they are 10 gf or more and 100 gf or less. If the pressure bonding load is 1 gf or more, the die bond material can be sufficiently bonded. Further, if a pressure bonding load of 1 kgf or less is used, the light emitting layer on the surface of the optical semiconductor element is not damaged. The crimping time may be appropriately selected in consideration of the productivity of the process, and generally exceeds 0 msec and is 1 sec or less. Preferably, it is 1 msec or more and 30 msec. 1 sec or less is preferable in terms of productivity. There is no restriction | limiting in particular in the crimping | compression-bonding temperature, Although what is necessary is just to follow the operating temperature range of die-bonding material, Generally it is preferable in it being 15 to 100 degreeC. If there is no heating equipment on the die bonder crimping stage, it can be used in the temperature range near room temperature. If it is 15 degreeC or more, since the viscosity of a die-bonding material does not become high too much, it can fully crimp. If it is 100 degrees C or less, since hardening of a die-bonding material will not start, the thickness of the target die-bonding material can be reached | attained.
 更に本発明では、上記本発明のダイボンド材を硬化して得られる硬化物を有するものである光半導体装置を提供する。 Furthermore, the present invention provides an optical semiconductor device having a cured product obtained by curing the die bond material of the present invention.
 本発明の光半導体装置は、本発明の加熱硬化型シリコーン組成物からなるダイボンド材を硬化して得られる硬化物を有するため、耐熱性、耐光性及び耐クラック性を有するものとなる。 Since the optical semiconductor device of the present invention has a cured product obtained by curing the die bond material made of the thermosetting silicone composition of the present invention, it has heat resistance, light resistance and crack resistance.
 本発明の光半導体装置は、本発明の加熱硬化型シリコーン組成物からなるダイボンド材を基板に塗布した後、従来公知の方法に従い光半導体素子をダイボンディングすることにより製造することができる。 The optical semiconductor device of the present invention can be manufactured by applying a die bonding material made of the thermosetting silicone composition of the present invention to a substrate and then die-bonding an optical semiconductor element according to a conventionally known method.
 以下、本発明の光半導体装置の一態様について図面を参照して説明する。図1は、本発明の加熱硬化型シリコーン組成物からなるダイボンド材を硬化して得られる硬化物を有する光半導体装置の一例を示す断面図である。図1に示す光半導体装置は、パッケージ基板の筐体1の第1のリード電極3上に、本発明の加熱硬化型シリコーン組成物からなるダイボンド材5を硬化して得られる硬化物を有し、この硬化物の上に光半導体素子2が搭載されたものである。この光半導体素子2の電極は、金線6によって第1のリード電極3と電気的に接続されている。また、この光半導体素子2の電極は、金線7によって第2のリード電極4と電気的に接続されている。また、この光半導体素子2は、封止樹脂8で封止されている。 Hereinafter, an aspect of the optical semiconductor device of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an example of an optical semiconductor device having a cured product obtained by curing a die bond material made of the thermosetting silicone composition of the present invention. The optical semiconductor device shown in FIG. 1 has a cured product obtained by curing the die bond material 5 made of the thermosetting silicone composition of the present invention on the first lead electrode 3 of the housing 1 of the package substrate. The optical semiconductor element 2 is mounted on the cured product. The electrode of the optical semiconductor element 2 is electrically connected to the first lead electrode 3 by a gold wire 6. The electrode of the optical semiconductor element 2 is electrically connected to the second lead electrode 4 by a gold wire 7. The optical semiconductor element 2 is sealed with a sealing resin 8.
 図1の光半導体装置の製造方法としては、以下の方法を例示できる。
 まず、パッケージ基板の筐体1の第1のリード電極3上に、本発明の加熱硬化型シリコーン組成物からなるダイボンド材5を定量転写し、その上に光半導体素子2を搭載する。次に、ダイボンド材5を加熱硬化させる。次に、光半導体素子2の電極と第1のリード電極3を金線6を用いて電気的に接続し、光半導体素子2の電極と第2のリード電極4を金線7を用いて電気的に接続し、光半導体素子2が搭載されたパッケージ基板を得る。次いで、封止樹脂8を定量塗布し、塗布された封止樹脂を公知の硬化条件下で公知の硬化方法により、硬化させることによってパッケージ基板を封止することができる。本発明のダイボンド材を硬化して得られる硬化物を有する光半導体デバイスとしては、例えば、LED、半導体レーザー、フォトダイオード、フォトトランジスタ、太陽電池、CCD等が挙げられる。
As a method for manufacturing the optical semiconductor device of FIG. 1, the following method can be exemplified.
First, the die bond material 5 made of the thermosetting silicone composition of the present invention is quantitatively transferred onto the first lead electrode 3 of the housing 1 of the package substrate, and the optical semiconductor element 2 is mounted thereon. Next, the die bond material 5 is heated and cured. Next, the electrode of the optical semiconductor element 2 and the first lead electrode 3 are electrically connected using a gold wire 6, and the electrode of the optical semiconductor element 2 and the second lead electrode 4 are electrically connected using a gold wire 7. To obtain a package substrate on which the optical semiconductor element 2 is mounted. Next, the package substrate can be sealed by applying the sealing resin 8 quantitatively and curing the applied sealing resin under a known curing condition by a known curing method. Examples of the optical semiconductor device having a cured product obtained by curing the die bonding material of the present invention include an LED, a semiconductor laser, a photodiode, a phototransistor, a solar cell, and a CCD.
 以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。(下記式において、Meはメチル基を示す。) Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not limited to the following Example. (In the following formula, Me represents a methyl group.)
〔調製例〕
(調製例1~3)
 下記成分を撹拌混合し、表1に示す組成のシリコーン組成物を調製した。
[Preparation Example]
(Preparation Examples 1 to 3)
The following components were stirred and mixed to prepare a silicone composition having the composition shown in Table 1.
[(A)成分]
(A-1)
 下記式に示す、MA単位、M単位、Q単位が、MA:M:Q=1:4:6の割合で含まれ、分子量がポリスチレン換算の重量平均分子量で、5000であるオルガノポリシロキサン。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
[(A) component]
(A-1)
An organopolysiloxane containing MA units, M units, and Q units represented by the following formula in a ratio of MA: M: Q = 1: 4: 6 and having a molecular weight of 5000 in terms of polystyrene-reduced weight average molecular weight.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
(A-2)
 下記式に示すオルガノポリシロキサン。(下記式において、Meはメチル基を示す。)
Figure JPOXMLDOC01-appb-C000029
(A-2)
Organopolysiloxane represented by the following formula. (In the following formula, Me represents a methyl group.)
Figure JPOXMLDOC01-appb-C000029
(A-3)
 下記式に示す、MA-D単位、D単位、T単位が、MA-D:D:T=2:6:7の割合で含まれ、分子量がポリスチレン換算の重量平均分子量で、3500であるオルガノポリシロキサン。(下記式において、Meはメチル基を示す。)
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
(A-3)
Organo, which has MA-D units, D units, and T units in a ratio of MA-D: D: T = 2: 6: 7, and has a molecular weight of 3500 in terms of polystyrene in terms of polystyrene. Polysiloxane. (In the following formula, Me represents a methyl group.)
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 調製例1~3の(A)成分の配合量を、表1に示す。 Table 1 shows the blending amounts of component (A) in Preparation Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[(B)成分]
(B-1)
 ジアシルパーオキサイドとしてDi-(3-methylbenzoyl)peroxide, Benzoyl(3-methylbenzoyl)peroxide and Dibenzol peroxide(商品名:ナイパーBMT-K40、日本油脂株式会社製)をそのまま用いた。
[Component (B)]
(B-1)
Di- (3-methylbenzoyl) peroxide, Benzoyl (3-methylbenzoyl) peroxide and Dibenzol peroxide (trade name: Nyper BMT-K40, manufactured by NOF Corporation) were used as the diacyl peroxide.
(B-2)
 パーオキシエステルとしてt-Butyl peroxy-2-ethylhexanoate(商品名:パーブチルO、日本油脂株式会社製)をそのまま用いた。
(B-2)
As the peroxyester, t-Butyl peroxide-2-ethylhexanoate (trade name: Perbutyl O, manufactured by NOF Corporation) was used as it was.
(B-3)
 ジアルキルパーオキサイドとしてt-Butyl cumyl peroxide(商品名:パーブチルC、日本油脂株式会社製)をそのまま用いた。
(B-3)
As the dialkyl peroxide, t-Butyl cumyl peroxide (trade name: Perbutyl C, manufactured by NOF Corporation) was used as it was.
[(C)成分]
(C-1)
 側鎖にエポキシ基を含有する反応性シリコーンオイル(商品名:X-22-343、信越化学工業株式会社製)をそのまま用いた。
[Component (C)]
(C-1)
Reactive silicone oil (trade name: X-22-343, manufactured by Shin-Etsu Chemical Co., Ltd.) containing an epoxy group in the side chain was used as it was.
(C-2)
 エポキシ基を含有するシラン化合物として、グリシドキシプロピルトリメトキシシラン(商品名:KBM-403、信越化学工業株式会社製)をそのまま用いた。
(C-2)
As a silane compound containing an epoxy group, glycidoxypropyltrimethoxysilane (trade name: KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) was used as it was.
(C-3)
 エポキシ基を含有するシロキサン化合物として、下記式に示す、2,4,6,8-テトラメチル‐2,4,6,8-テトラキス[β-(3,4エポキシシクロヘキシル)エチル]シクロテトラシロキサン(商品名:X-40-2670、信越化学工業株式会社製)をそのまま用いた。
Figure JPOXMLDOC01-appb-C000033
(C-3)
As a siloxane compound containing an epoxy group, 2,4,6,8-tetramethyl-2,4,6,8-tetrakis [β- (3,4-epoxycyclohexyl) ethyl] cyclotetrasiloxane represented by the following formula ( Trade name: X-40-2670, manufactured by Shin-Etsu Chemical Co., Ltd.) was used as it was.
Figure JPOXMLDOC01-appb-C000033
(C-4)
 エポキシ基を含有しないシラン化合物として、3-メタクリロキシプロピルトリメトキシシラン(商品名:KBM-503、信越化学工業株式会社製)をそのまま用いた。
(C-4)
As the silane compound not containing an epoxy group, 3-methacryloxypropyltrimethoxysilane (trade name: KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) was used as it was.
[実施例1~6]
(実施例1)
 (A)成分として調製例1で得られたシリコーン組成物100質量部、(B)成分として(B-1)10質量部、(C)成分として(C-1)4質量部、補強材として煙霧質シリカ(製品名レオロシールDM-30S、トクヤマ社製)7質量部を混合し、さらに三本ロールで混練処理を行い、減圧脱泡して樹脂組成物を製造した。
[Examples 1 to 6]
(Example 1)
100 parts by weight of the silicone composition obtained in Preparation Example 1 as the component (A), 10 parts by weight of the component (B-1) as the component (B), 4 parts by weight of the component (C-1) as the component (C), and the reinforcing material 7 parts by mass of fumed silica (product name Leoroseal DM-30S, manufactured by Tokuyama Corporation) was mixed, kneaded with three rolls, and degassed under reduced pressure to produce a resin composition.
(実施例2)
 (A)成分として調製例2で得られたシリコーン組成物100質量部、(B)成分として(B-1)10質量部、(C)成分として(C-1)4質量部、補強材として煙霧質シリカ(製品名レオロシールDM-30S、トクヤマ社製)7質量部を混合し、さらに三本ロールで混練処理を行い、減圧脱泡して樹脂組成物を製造した。
(Example 2)
100 parts by weight of the silicone composition obtained in Preparation Example 2 as component (A), 10 parts by weight of (B-1) as component (B), 4 parts by weight of (C-1) as component (C), and as a reinforcing material 7 parts by mass of fumed silica (product name Leoroseal DM-30S, manufactured by Tokuyama Corporation) was mixed, kneaded with three rolls, and degassed under reduced pressure to produce a resin composition.
(実施例3)
 (A)成分として調製例3で得られたシリコーン組成物100質量部、(B)成分として(B-1)10質量部、(C)成分として(C-1)4質量部、補強材として煙霧質シリカ(製品名レオロシールDM-30S、トクヤマ社製)7質量部を混合し、さらに三本ロールで混練処理を行い、減圧脱泡して樹脂組成物を製造した。
(Example 3)
100 parts by weight of the silicone composition obtained in Preparation Example 3 as the component (A), 10 parts by weight of the component (B-1) as the component (B), 4 parts by weight of the component (C-1) as the component (C), and the reinforcing material 7 parts by mass of fumed silica (product name Leoroseal DM-30S, manufactured by Tokuyama Corporation) was mixed, kneaded with three rolls, and degassed under reduced pressure to produce a resin composition.
(実施例4)
 (A)成分として調製例1で得られたシリコーン組成物100質量部、(B)成分として(B-2)5質量部、(C)成分として(C-1)4質量部、補強材として煙霧質シリカ(製品名レオロシールDM-30S、トクヤマ社製)7質量部を混合し、さらに三本ロールで混練処理を行い、減圧脱泡して樹脂組成物を製造した。
Example 4
100 parts by weight of the silicone composition obtained in Preparation Example 1 as component (A), 5 parts by weight of (B-2) as component (B), 4 parts by weight of (C-1) as component (C), and as a reinforcing material 7 parts by mass of fumed silica (product name Leoroseal DM-30S, manufactured by Tokuyama Corporation) was mixed, kneaded with three rolls, and degassed under reduced pressure to produce a resin composition.
(実施例5)
 (A)成分として調製例1で得られたシリコーン組成物100質量部、(B)成分として(B-2)5質量部、(C)成分として(C-2)4質量部、補強材として煙霧質シリカ(製品名レオロシールDM-30S、トクヤマ社製)7質量部を混合し、さらに三本ロールで混練処理を行い、減圧脱泡して樹脂組成物を製造した。
(Example 5)
100 parts by weight of the silicone composition obtained in Preparation Example 1 as component (A), 5 parts by weight of (B-2) as component (B), 4 parts by weight of (C-2) as component (C), and as a reinforcing material 7 parts by mass of fumed silica (product name Leoroseal DM-30S, manufactured by Tokuyama Corporation) was mixed, kneaded with three rolls, and degassed under reduced pressure to produce a resin composition.
(実施例6)
 (A)成分として調製例1で得られたシリコーン組成物100質量部、(B)成分として(B-1)10質量部、(C)成分として(C-3)5質量部、補強材として煙霧質シリカ(製品名レオロシールDM-30S、トクヤマ社製)7質量部を混合し、さらに三本ロールで混練処理を行い、減圧脱泡して樹脂組成物を製造した。
(Example 6)
100 parts by weight of the silicone composition obtained in Preparation Example 1 as the component (A), 10 parts by weight of the component (B-1) as the component (B), 5 parts by weight of the component (C-3) as the component (C), and the reinforcing material 7 parts by mass of fumed silica (product name Leoroseal DM-30S, manufactured by Tokuyama Corporation) was mixed, kneaded with three rolls, and degassed under reduced pressure to produce a resin composition.
[比較例1~4]
(比較例1)
 (A)成分として調製例1で得られたシリコーン組成物100質量部、(B)成分として(B-3)5質量部、(C)成分として(C-1)4質量部、補強材として煙霧質シリカ(製品名レオロシールDM-30S、トクヤマ社製)7質量部を混合し、さらに三本ロールで混練処理を行い、減圧脱泡して樹脂組成物を製造した。
[Comparative Examples 1 to 4]
(Comparative Example 1)
100 parts by weight of the silicone composition obtained in Preparation Example 1 as component (A), 5 parts by weight of (B-3) as component (B), 4 parts by weight of (C-1) as component (C), and as a reinforcing material 7 parts by mass of fumed silica (product name Leoroseal DM-30S, manufactured by Tokuyama Corporation) was mixed, kneaded with three rolls, and degassed under reduced pressure to produce a resin composition.
(比較例2)
 (A)成分として調製例1で得られたシリコーン組成物100質量部、(B)成分として(B-1)5質量部、(C)成分として(C-4)4質量部、補強材として煙霧質シリカ(製品名レオロシールDM-30S、トクヤマ社製)7質量部を混合し、さらに三本ロールで混練処理を行い、減圧脱泡して樹脂組成物を製造した。
(Comparative Example 2)
100 parts by weight of the silicone composition obtained in Preparation Example 1 as component (A), 5 parts by weight of (B-1) as component (B), 4 parts by weight of (C-4) as component (C), and as a reinforcing material 7 parts by mass of fumed silica (product name Leoroseal DM-30S, manufactured by Tokuyama Corporation) was mixed, kneaded with three rolls, and degassed under reduced pressure to produce a resin composition.
(比較例3)
 (A)成分として調製例1で得られたシリコーン組成物100質量部、(B)成分として(B-1)5質量部、(C)成分は添加せず、補強材として煙霧質シリカ(製品名レオロシールDM-30S、トクヤマ社製)7質量部を混合し、さらに三本ロールで混練処理を行い、減圧脱泡して樹脂組成物を製造した。
(Comparative Example 3)
100 parts by weight of the silicone composition obtained in Preparation Example 1 as component (A), 5 parts by weight of component (B-1) as component (B), no component (C) added, and fumed silica (product) 7 parts by mass of Reoroseal DM-30S (manufactured by Tokuyama Corporation) were mixed, kneaded with three rolls, and degassed under reduced pressure to produce a resin composition.
[比較例4]
 平均組成式:MVi300Viのシリコーンオイル35質量部、
M単位とMVi単位とQ単位とから構成され、MVi単位に対するM単位のモル比が6.25であり、Q単位に対するM単位とMVi単位との合計のモル比が0.8であるシリコーンレジン65質量部、
平均構造式:MD 80Mで表されるメチルハイドロジェンシロキサン8質量部、
塩化白金酸/1,3-ジビニルテトラメチルジシロキサン錯体を白金原子含有量として1質量%含有するトルエン溶液0.06質量部、
エチニルシクロヘキサノール0.05質量部、
γ-グリシドキシプロピルトリメトキシシラン3質量部、
及び補強材として煙霧質シリカ(製品名レオロシールDM-30S、トクヤマ社製)7質量部を混合し、さらに三本ロールで混練処理を行い、減圧脱泡してシリコーンダイボンド材を調製した。
 なお、上記のシリコーンダイボンド材において、各成分の平均組成を示す記号は以下の通りの単位を示す。
  M:(CHSiO1/2
  MVi:(CH=CH)(CHSiO1/2
  D:(CH)HSiO2/2
  D:(CHSiO2/2
  Q:SiO4/2
[Comparative Example 4]
Average composition formula: 35 parts by mass of M Vi D 300 M Vi silicone oil,
Is composed of a M units and M Vi units and Q units, is 6.25 molar ratio of M units to M Vi units, in a molar ratio of the sum of M units and M Vi units to Q units is 0.8 65 parts by mass of a certain silicone resin,
Average structural formula: 8 parts by mass of methyl hydrogen siloxane represented by MD H 80 M,
0.06 parts by mass of a toluene solution containing 1% by mass of a chloroplatinic acid / 1,3-divinyltetramethyldisiloxane complex as a platinum atom content,
0.05 parts by mass of ethynylcyclohexanol,
3 parts by mass of γ-glycidoxypropyltrimethoxysilane,
In addition, 7 parts by mass of fumed silica (product name: Leoroseal DM-30S, manufactured by Tokuyama Co., Ltd.) as a reinforcing material was mixed, kneaded with three rolls, and degassed under reduced pressure to prepare a silicone die bond material.
In addition, in said silicone die-bonding material, the symbol which shows the average composition of each component shows the following units.
M: (CH 3 ) 3 SiO 1/2
M Vi : (CH 2 ═CH) (CH 3 ) 2 SiO 1/2
D H: (CH 3) HSiO 2/2
D: (CH 3 ) 2 SiO 2/2
Q: SiO 4/2
 実施例、比較例の組成物について、以下の諸特性を測定した。結果を表2に示す。 The following characteristics were measured for the compositions of Examples and Comparative Examples. The results are shown in Table 2.
[ヘイズ測定、及び全光線透過率の測定]
 日本電色工業社製 ヘイズメーターNDH-5000SPを用いてヘイズ、及び全光線透過率の測定を行った。上記の条件で混合した試料を、2mm厚のセルに流し込み、所定の条件(実施例1~6、比較例2~4は150℃、4時間、比較例1は170℃、1時間)で加熱硬化を行い、表面が清浄な2mm厚の硬化物を得、これを測定部にセットし測定した。3度の測定におけるヘイズ値、全光線透過率の平均値を求めた。
[Measurement of haze and total light transmittance]
Using a haze meter NDH-5000SP manufactured by Nippon Denshoku Industries Co., Ltd., haze and total light transmittance were measured. The sample mixed under the above conditions is poured into a 2 mm-thick cell and heated under predetermined conditions (Examples 1 to 6, Comparative Examples 2 to 4 are 150 ° C. for 4 hours, Comparative Example 1 is 170 ° C. for 1 hour). Curing was performed to obtain a 2 mm thick cured product with a clean surface, which was set in a measuring section and measured. The haze value in 3 times measurement and the average value of total light transmittance were calculated | required.
[光半導体パッケージの作製]
 LED用パッケージ基板として、光半導体素子を載置する凹部を有し、その底部に銀メッキされた第1のリード電極と第2のリード電極が設けられたLED用パッケージ基板[SMD5050(I-CHIUN PRECISION INDUSTRY CO.,社製、樹脂部PPA(ポリフタルアミド))]、光半導体素子として、Bridgelux社製 BXCD33を、それぞれ用意した。
[Production of optical semiconductor package]
As an LED package substrate, an LED package substrate [SMD5050 (I-CHIUN) having a concave portion for placing an optical semiconductor element and having a silver-plated first lead electrode and a second lead electrode on its bottom is provided. PRECISION INDUSTRY CO., Ltd., resin part PPA (polyphthalamide))], and BXCD33 manufactured by Bridgegelux were prepared as optical semiconductor elements.
 ダイボンダー(ASM社製 AD-830)を用いて、パッケージ基板の銀メッキされた第1のリード電極に、実施例及び比較例に示す各ダイボンド材をスタンピングにより定量転写し、その上に光半導体素子を搭載した。このときの光半導体素子の搭載条件は、圧着時間13msec、圧着荷重60gfであり、加温装置を用いず室温25℃の環境で行った。次に、パッケージ基板をオーブンに投入し各ダイボンド材を加熱硬化させた(実施例1~6、比較例2~4は150℃、4時間、比較例1は170℃、1時間)。次に、光半導体素子の電極と第1のリード電極を金ワイヤー(田中電子工業社製 FA 25μm)を用いて電気的に接続し、光半導体素子の電極と第2のリード電極を金ワイヤー(田中電子工業社製 FA 25μm)を用いて電気的に接続した。これにより、光半導体素子が搭載されたLED用パッケージ基板各1枚(パッケージ数にして120個)を得た。 Using a die bonder (AD-830 manufactured by ASM), each die bond material shown in the examples and comparative examples is quantitatively transferred by stamping to the silver-plated first lead electrode of the package substrate, and an optical semiconductor element is formed thereon. Equipped with. The mounting conditions of the optical semiconductor element at this time were a pressure bonding time of 13 msec and a pressure bonding load of 60 gf, and were performed in an environment at room temperature of 25 ° C. without using a heating device. Next, the package substrate was put into an oven, and each die bond material was heated and cured (Examples 1 to 6, Comparative Examples 2 to 4 were 150 ° C. for 4 hours, Comparative Example 1 was 170 ° C. for 1 hour). Next, the electrode of the optical semiconductor element and the first lead electrode are electrically connected using a gold wire (FA 25 μm manufactured by Tanaka Denshi Kogyo Co., Ltd.), and the electrode of the optical semiconductor element and the second lead electrode are connected to the gold wire ( Electrical connection was made using Tanaka Denshi Kogyo's FA (25 μm). As a result, one LED package substrate (120 in number of packages) on which the optical semiconductor elements were mounted was obtained.
 次いで、上記で得られた光半導体素子が搭載されたLED用パッケージ基板1枚の半分(パッケージ数にして60個)を採取し、ディスペンス装置(武蔵エンジニアリング製、SuperΣ CM II)を用いて、シリコーン封止材(製品名:KER2500、信越化学工業株式会社製)を定量塗布し、150℃、4時間で封止材の加熱硬化を行った。 Next, half of the LED package substrate on which the optical semiconductor element obtained above is mounted (60 in number of packages) is collected, and silicone is used using a dispensing device (Super Σ CM II, manufactured by Musashi Engineering). A sealing material (product name: KER2500, manufactured by Shin-Etsu Chemical Co., Ltd.) was quantitatively applied, and the sealing material was heated and cured at 150 ° C. for 4 hours.
 上記のようにして、ダイボンド材の異なる光半導体パッケージを作製し、以下の試験に用いた。 As described above, optical semiconductor packages having different die-bonding materials were produced and used for the following tests.
[温度サイクル試験]
 上記の方法で得られた封止材が充填された光半導体パッケージのうち10個を、温度サイクル試験(-40℃~125℃、各20分間を1000サイクル)に用い、顕微鏡で、試験後の光半導体パッケージの接着材部のクラックの有無を観察し、クラックが発生した光半導体パッケージの数を数えた。
[Temperature cycle test]
Ten of the optical semiconductor packages filled with the sealing material obtained by the above method were used for a temperature cycle test (−40 ° C. to 125 ° C., 1000 cycles for 20 minutes each), and were examined with a microscope. The presence or absence of cracks in the adhesive portion of the optical semiconductor package was observed, and the number of optical semiconductor packages in which cracks occurred was counted.
[高温点灯試験]
 上記の方法で得られた封止材が充填された光半導体パッケージのうち10個を、高温下(85℃)で、150mA通電、1000時間点灯した後、光半導体素子と光半導体素子を載置する凹部の底部との間の剥離等の接着不良の有無、クラック発生の有無、及び光半導体素子周りの接着層の変色の有無を顕微鏡で観察し、外観異常が発生した光半導体パッケージの数を数えた。
[High temperature lighting test]
10 of the optical semiconductor packages filled with the sealing material obtained by the above method were turned on at 150 mA current for 1000 hours at a high temperature (85 ° C.), and then the optical semiconductor element and the optical semiconductor element were placed. The number of optical semiconductor packages in which the appearance abnormality occurred was determined by observing with a microscope whether there was any adhesion failure such as peeling from the bottom of the recess, whether cracks occurred, and whether the adhesive layer around the optical semiconductor element was discolored. I counted.
[ダイシェア試験]
 上記の方法で得られた封止材を充填しなかった光半導体パッケージのうち10個を、25℃の室内でボンドテスター(Dage社製 Series4000)を用いてダイシェア強度の測定を行い、得られた測定値の平均値をMPaで示した。
[Die share test]
Ten of the optical semiconductor packages not filled with the sealing material obtained by the above method were measured by measuring the die shear strength using a bond tester (Series 4000 manufactured by Dage) in a room at 25 ° C. The average value of the measured values was shown in MPa.
 得られた結果を表2に示す。 Table 2 shows the results obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本発明の範囲を満たす加熱硬化型シリコーン組成物をダイボンド材として用いた実施例1~実施例6では、いずれも全光線透過率、ヘイズの結果からもわかるように高透明な硬化物を得ることが可能であり、温度サイクル試験後のクラックの発生がなく、すべてのパッケージで点灯可能であった。また、高温点灯試験でも組成物に外観の変化はなく、すべてのパッケージで点灯可能であった。更に、ダイシェア測定の結果、接着力が高く信頼性の高い光半導体デバイスを製造できることがわかった。 As shown in Table 2, in Examples 1 to 6 in which the thermosetting silicone composition satisfying the scope of the present invention was used as the die bond material, all were high as can be seen from the results of total light transmittance and haze. It was possible to obtain a transparent cured product, no cracks were generated after the temperature cycle test, and lighting was possible in all packages. In the high temperature lighting test, the composition did not change in appearance, and lighting was possible in all packages. Furthermore, as a result of die shear measurement, it was found that an optical semiconductor device having high adhesive strength and high reliability can be manufactured.
 一方、(B)成分が本発明の範囲を満たさないシリコーン樹脂組成物である比較例1では、全光線透過率、ヘイズの結果からの透明性は良好であったが、ダイボンド材の加熱硬化工程で十分な硬化がなされず良好な硬化物が得られなかった。このため、温度サイクル試験、高温点灯試験ではクラックが入り、ダイシェア測定試験でも十分な接着強度が得られなかった。 On the other hand, in Comparative Example 1 in which the component (B) is a silicone resin composition that does not satisfy the scope of the present invention, the transparency from the results of the total light transmittance and haze was good. However, sufficient curing was not achieved and a good cured product could not be obtained. For this reason, cracks occurred in the temperature cycle test and the high temperature lighting test, and sufficient adhesive strength was not obtained in the die shear measurement test.
 (C)成分が本発明の範囲を満たさないシリコーン樹脂組成物である比較例2では、全光線透過率、ヘイズの結果からの透明性は良好であったが、ダイボンド材の加熱硬化工程で十分な硬化がなされず良好な硬化物が得られなかった。このため、温度サイクル試験、高温点灯試験ではクラックが入り、ダイシェア測定試験でも十分な接着強度が得られなかった。 In Comparative Example 2 where the component (C) is a silicone resin composition that does not satisfy the scope of the present invention, the transparency from the results of the total light transmittance and haze was good, but the heat curing step of the die bond material is sufficient. The cured product was not cured and a good cured product could not be obtained. For this reason, cracks occurred in the temperature cycle test and the high temperature lighting test, and sufficient adhesive strength was not obtained in the die shear measurement test.
 (C)成分を添加しない配合となる比較例3では、全光線透過率、ヘイズの結果からの透明性は良好であり、ダイボンド材の加熱硬化工程で十分な硬化がなされたが、クラックが入りやすいものであった。このため、温度サイクル試験、高温点灯試験でわずかな確率でクラックが入り、ダイシェア測定試験でも十分な接着強度が得られなかった。 (C) In Comparative Example 3 in which the component is not added, the transparency from the results of the total light transmittance and haze is good and sufficient curing was performed in the heat curing step of the die bond material, but cracks occurred. It was easy. For this reason, cracks occurred with a slight probability in the temperature cycle test and the high temperature lighting test, and sufficient adhesive strength was not obtained in the die shear measurement test.
 一般的なシリコーン樹脂をダイボンド材として用いた比較例4では、全光線透過率、ヘイズの結果からわかるように、高透明な硬化物とは言えないものであった。温度サイクル試験後のクラックの発生がなく、すべてのパッケージで点灯可能であり、また、高温点灯試験でも樹脂組成物に外観の変化はなく、すべてのパッケージで点灯可能であった。一方で、ダイシェア測定の結果、接着力は本発明のものと比較して低いものであった。 In Comparative Example 4 in which a general silicone resin was used as a die bond material, as can be seen from the results of total light transmittance and haze, it was not a highly transparent cured product. There was no generation of cracks after the temperature cycle test, and lighting was possible in all packages. In the high temperature lighting test, the resin composition did not change in appearance, and lighting was possible in all packages. On the other hand, as a result of die shear measurement, the adhesive strength was lower than that of the present invention.
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Claims (8)

  1.  (A) 下記一般式(1)で表される構造を分子中に少なくとも1つ有するオルガノポリシロキサン:100質量部、
    Figure JPOXMLDOC01-appb-C000034
    [式中、mは0,1,2のいずれかであり、Rは水素原子、フェニル基又はハロゲン化フェニル基、Rは水素原子又はメチル基、Rは置換又は非置換で同一又は異なってもよい炭素数1~12の1価の有機基、Zは-R-、-R-O-、-R(CHSi-O-(Rは置換又は非置換で同一又は異なってもよい炭素数1~10の2価の有機基)のいずれか、Zは酸素原子又は置換若しくは非置換で同一若しくは異なってもよい炭素数1~10の2価の有機基である。]
    (B)ジアシルパーオキサイド、パーオキシエステルから選ばれる1種以上を含む有機過酸化物:前記(A)成分の合計量100質量部に対して、0.1~20質量部、
    (C)エポキシ基を含有するシラン化合物又はエポキシ基を含有するシロキサン化合物:前記(A)成分の合計量100質量部に対して、0.1~20質量部
    を含有するものであることを特徴とする加熱硬化型シリコーン組成物。
    (A) Organopolysiloxane having at least one structure represented by the following general formula (1) in the molecule: 100 parts by mass
    Figure JPOXMLDOC01-appb-C000034
    [Wherein, m is any one of 0, 1, 2; R 1 is a hydrogen atom, a phenyl group or a halogenated phenyl group; R 2 is a hydrogen atom or a methyl group; and R 3 is substituted or unsubstituted and is the same or A monovalent organic group having 1 to 12 carbon atoms which may be different, Z 1 is —R 4 —, —R 4 —O—, —R 4 (CH 3 ) 2 Si—O— (R 4 is substituted or non-substituted) Z 2 is an oxygen atom or a substituted or unsubstituted divalent organic group having 1 to 10 carbon atoms that may be the same or different. Organic group. ]
    (B) Organic peroxide containing one or more selected from diacyl peroxide and peroxyester: 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of component (A),
    (C) Epoxy group-containing silane compound or epoxy group-containing siloxane compound: characterized in that it contains 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of component (A). A heat-curable silicone composition.
  2.  前記(A)成分のオルガノポリシロキサンのZが-R-であり、前記Zが酸素原子であることを特徴とする請求項1に記載の加熱硬化型シリコーン組成物。 2. The thermosetting silicone composition according to claim 1, wherein Z 1 of the organopolysiloxane of component (A) is —R 4 —, and Z 2 is an oxygen atom.
  3.  前記(A)成分のオルガノポリシロキサンのZが-R-O-又は、-R(CHSi-O-であり、前記Zが置換又は非置換で同一又は異なってもよい炭素数1~10の2価の有機基であることを特徴とする請求項1に記載の加熱硬化型シリコーン組成物。 In the component (A), the organopolysiloxane Z 1 may be —R 4 —O— or —R 4 (CH 3 ) 2 Si—O—, and the Z 2 may be the same or different, substituted or unsubstituted. 2. The thermosetting silicone composition according to claim 1, which is a good divalent organic group having 1 to 10 carbon atoms.
  4.  前記(A)成分のオルガノポリシロキサンが、下記一般式(2)で表される構造を分子中に少なくとも1つ有するものであることを特徴とする請求項1から請求項3のいずれか1項に記載の加熱硬化型シリコーン組成物。
    Figure JPOXMLDOC01-appb-C000035
    (式中、m、R、R、R、Rは上記と同様である。)
    The organopolysiloxane of the component (A) has at least one structure represented by the following general formula (2) in the molecule. The heat-curable silicone composition described in 1.
    Figure JPOXMLDOC01-appb-C000035
    (In the formula, m, R 1 , R 2 , R 3 and R 4 are the same as above.)
  5.  前記(A)成分のオルガノポリシロキサン中に、0.1mol%以上の(SiO)単位を有することを特徴とする請求項1から請求項4のいずれか1項に記載の加熱硬化型シリコーン組成物。 The thermosetting silicone composition according to any one of claims 1 to 4, wherein the organopolysiloxane of the component (A) has 0.1 mol% or more of (SiO 2 ) units. object.
  6.  前記加熱硬化型シリコーン組成物を硬化して得られる2mm厚の硬化物の全光線透過率が80%以上であり、かつヘイズ値が20%以下であることを特徴とする請求項1から請求項5のいずれか1項に記載の加熱硬化型シリコーン組成物。 The total light transmittance of a cured product having a thickness of 2 mm obtained by curing the thermosetting silicone composition is 80% or more and a haze value is 20% or less. 6. The thermosetting silicone composition according to any one of 5 above.
  7.  請求項1から請求項6のいずれか1項に記載の加熱硬化型シリコーン組成物からなるものであることを特徴とするダイボンド材。 A die-bonding material comprising the thermosetting silicone composition according to any one of claims 1 to 6.
  8.  請求項7に記載のダイボンド材を硬化して得られる硬化物を有するものであることを特徴とする光半導体装置。 An optical semiconductor device comprising a cured product obtained by curing the die bond material according to claim 7.
PCT/JP2015/005250 2014-12-08 2015-10-19 Heat-curable silicone composition, die bond material comprising composition, and optical semiconductor device using cured article of die bond material WO2016092728A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177015519A KR101947621B1 (en) 2014-12-08 2015-10-19 Heat-curable silicone composition, die bond material comprising composition, and optical semiconductor device using cured article of die bond material
CN201580065668.7A CN107001769B (en) 2014-12-08 2015-10-19 The optical semiconductor device of heat-curing type silicon oxygen composition, the die bond material that the composition is constituted and the solidfied material with the die bond material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-247516 2014-12-08
JP2014247516A JP6272747B2 (en) 2014-12-08 2014-12-08 Heat-curable silicone composition, die-bonding material comprising the composition, and optical semiconductor device using a cured product of the die-bonding material

Publications (1)

Publication Number Publication Date
WO2016092728A1 true WO2016092728A1 (en) 2016-06-16

Family

ID=56106969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005250 WO2016092728A1 (en) 2014-12-08 2015-10-19 Heat-curable silicone composition, die bond material comprising composition, and optical semiconductor device using cured article of die bond material

Country Status (6)

Country Link
JP (1) JP6272747B2 (en)
KR (1) KR101947621B1 (en)
CN (1) CN107001769B (en)
MY (1) MY179707A (en)
TW (1) TWI606093B (en)
WO (1) WO2016092728A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108070261A (en) * 2016-11-08 2018-05-25 信越化学工业株式会社 Heat-curing type silica composition, die bond material and optical semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7352334B2 (en) * 2017-09-19 2023-09-28 三洋化成工業株式会社 Active energy ray curable composition
CN111601853B (en) * 2018-01-15 2022-05-13 信越化学工业株式会社 Silicone composition
JP7172805B2 (en) * 2019-04-02 2022-11-16 信越化学工業株式会社 Addition-curable silicone adhesive composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210845A (en) * 2007-02-23 2008-09-11 Yokohama Rubber Co Ltd:The Sealing material composition for light-emitting element, cured object thereof and light-emitting element sealing body
JP2010013572A (en) * 2008-07-04 2010-01-21 Nippon Kayaku Co Ltd Photosensitive resin composition and antireflection film
JP2012107127A (en) * 2010-11-17 2012-06-07 Yokohama Rubber Co Ltd:The Silicone resin composition, silicone-resin-containing structure obtained by using the same and optical semiconductor element sealed body
JP2012211235A (en) * 2011-03-31 2012-11-01 Asahi Kasei Chemicals Corp Organopolysiloxane and thermosetting resin composition using the same, sealant for optical semiconductor, die-bonding material for optical semiconductor
JP2015172173A (en) * 2013-08-29 2015-10-01 旭化成株式会社 Resin composition for light reflector, light reflector, reflector for optical semiconductor component, and optical semiconductor component

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5015571B2 (en) * 2006-01-12 2012-08-29 信越化学工業株式会社 UV curable silicone composition for light emitting diode element
TWI437047B (en) * 2006-01-12 2014-05-11 Shinetsu Chemical Co Ultraviolet-curable silicone composition for light emitting diode element
JP4563977B2 (en) * 2006-09-22 2010-10-20 信越化学工業株式会社 Heat-curable silicone composition and light-emitting diode device using the same
EP2878634B1 (en) * 2012-07-27 2017-10-04 LG Chem, Ltd. Curable composition
JP2014031394A (en) * 2012-08-01 2014-02-20 Shin Etsu Chem Co Ltd Addition curable silicone composition, and semiconductor apparatus comprising semiconductor element coated with cured material of said composition
JP6096087B2 (en) * 2012-12-21 2017-03-15 信越化学工業株式会社 Curable silicone resin composition, cured product thereof and optical semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210845A (en) * 2007-02-23 2008-09-11 Yokohama Rubber Co Ltd:The Sealing material composition for light-emitting element, cured object thereof and light-emitting element sealing body
JP2010013572A (en) * 2008-07-04 2010-01-21 Nippon Kayaku Co Ltd Photosensitive resin composition and antireflection film
JP2012107127A (en) * 2010-11-17 2012-06-07 Yokohama Rubber Co Ltd:The Silicone resin composition, silicone-resin-containing structure obtained by using the same and optical semiconductor element sealed body
JP2012211235A (en) * 2011-03-31 2012-11-01 Asahi Kasei Chemicals Corp Organopolysiloxane and thermosetting resin composition using the same, sealant for optical semiconductor, die-bonding material for optical semiconductor
JP2015172173A (en) * 2013-08-29 2015-10-01 旭化成株式会社 Resin composition for light reflector, light reflector, reflector for optical semiconductor component, and optical semiconductor component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108070261A (en) * 2016-11-08 2018-05-25 信越化学工业株式会社 Heat-curing type silica composition, die bond material and optical semiconductor device

Also Published As

Publication number Publication date
TW201631040A (en) 2016-09-01
KR101947621B1 (en) 2019-02-14
MY179707A (en) 2020-11-11
KR20170092571A (en) 2017-08-11
CN107001769B (en) 2019-07-09
JP6272747B2 (en) 2018-01-31
TWI606093B (en) 2017-11-21
JP2016108456A (en) 2016-06-20
CN107001769A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
JP4586967B2 (en) Light emitting semiconductor coating protective material and light emitting semiconductor device
JP5505991B2 (en) High adhesion silicone resin composition and optical semiconductor device using the composition
JP6622171B2 (en) Heat curable silicone composition, die bond material and optical semiconductor device
JP5170471B2 (en) Low gas permeable silicone resin composition and optical semiconductor device
JP4684835B2 (en) Method for reducing surface tackiness of cured silicone rubber, liquid silicone rubber composition for semiconductor encapsulation, silicone rubber encapsulated semiconductor device, and method for producing the semiconductor device
JP6277974B2 (en) Addition-curable silicone resin composition and die attach material for optical semiconductor devices
JPWO2006077667A1 (en) Silicone composition for sealing light emitting device and light emitting device
JP2009173789A (en) Silicone composition for photosemiconductor encapsulation, and photosemiconductor device using it
WO2016092728A1 (en) Heat-curable silicone composition, die bond material comprising composition, and optical semiconductor device using cured article of die bond material
JP6884458B2 (en) Curable organopolysiloxane compositions and semiconductor devices
CN110268019B (en) Curable silicone composition
KR102340593B1 (en) Transparent resin composition, adhesive comprising composition, die bond material comprising composition, conductive connection method using composition, and optical semiconductor device obtained using method
KR101657528B1 (en) Heat-curable conductive silicone composition, conductive adhesive comprising the composition, conductive die-bonding material comprising the composition, and optical semiconductor device having cured product of the die-bonding material
JP7296748B2 (en) Resin composition for wafer-level optical semiconductor device, and optical semiconductor device
US20240043623A1 (en) Curable silicone composition and cured product therefrom
TWI752226B (en) Curable polysiloxane composition, optical semiconductor element encapsulation material and optical semiconductor device
JP2016183215A (en) Silicone resin composition, silicone resin cured product, and optical semiconductor element sealing body
WO2015083446A1 (en) Addition curing type silicone resin composition, cured addition-curing-type silicone resin, and sealed photosemiconductor element
JP2013047354A (en) Self-adhesive polyorganosiloxane composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177015519

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866606

Country of ref document: EP

Kind code of ref document: A1