WO2016091254A1 - Procédé de réduction de balourds aérodynamiques d'éoliennes - Google Patents

Procédé de réduction de balourds aérodynamiques d'éoliennes Download PDF

Info

Publication number
WO2016091254A1
WO2016091254A1 PCT/DE2015/100527 DE2015100527W WO2016091254A1 WO 2016091254 A1 WO2016091254 A1 WO 2016091254A1 DE 2015100527 W DE2015100527 W DE 2015100527W WO 2016091254 A1 WO2016091254 A1 WO 2016091254A1
Authority
WO
WIPO (PCT)
Prior art keywords
pitch
blade
rotor
angle
vibration
Prior art date
Application number
PCT/DE2015/100527
Other languages
German (de)
English (en)
Inventor
Mathias Hillmann
Thomas Rische
Erik Miersch
Sirko Bartholomay
Burkhard Cerbe
Original Assignee
Cp.Max Rotortechnik Gmbh & Co.Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102014118258.8A external-priority patent/DE102014118258A1/de
Application filed by Cp.Max Rotortechnik Gmbh & Co.Kg filed Critical Cp.Max Rotortechnik Gmbh & Co.Kg
Priority to DE112015005527.4T priority Critical patent/DE112015005527A5/de
Publication of WO2016091254A1 publication Critical patent/WO2016091254A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/30Commissioning, e.g. inspection, testing or final adjustment before releasing for production
    • F03D13/35Balancing static or dynamic imbalances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0296Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce noise emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • F05B2260/966Preventing, counteracting or reducing vibration or noise by correcting static or dynamic imbalance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a method for reducing aerodynamic imbalances of wind turbines.
  • Wind turbines also referred to as wind power converters or wind turbines
  • the rotor is crucial for the mechanical efficiency of the wind turbine.
  • the present invention is a design of a known wind turbine with horizontal rotor axis, in particular with three-blade rotor.
  • an application of the present invention can also be made for designs with more rotor blades or even two leaves.
  • the rotor blades of modern wind turbines have aerodynamically carefully optimized wings, which not only maximize the efficiency and thus the energy yield, but at the same time minimize the noise.
  • the wings consist of perpendicular to the blade axis arranged profiles, which are each rotated by a twisting angle.
  • the invention relates to wind power plants which have an adjustment mechanism of the rotor blades about their respective longitudinal axis (pitch mechanism).
  • a rotor blade is constantly adjusted in operation by the plant control to an optimum pitch angle to ensure the necessary torque.
  • An important investigation, which is the basis for the correct setting in operation, is the measurement of the blade pitch.
  • the pitch angle of 0 ° is specified at standstill of the system control. The angle measured in this state will be referred to as the blade pitch. If this angle deviates from the manufacturer's specification, this is called an absolute error of the blade pitch angle. If the blade pitch angles of the individual rotor blades differ from one another, this is a relative error or a deviation in the synchronous position.
  • the state of the art is to set the rotor blades of a wind turbine as optimally as possible synchronously: By a correspondingly optimal synchronous position of the rotor blades of a wind turbine with respect to the zero degree Blateinstellwinkel the occurrence of an axial unbalance vibration is prevented. So far, rotor blades are adjusted by means of a marking scale in the flange area. In some cases, the setting of the rotor blades is also measured separately (usually photometrically or by means of a laser method). According to the guideline of Germanischer Lloyd (2010), the synchronicity of the three rotor blades of a wind turbine must be in the range of +/- 0.3 ° (total 0.6 °). It is believed that this accuracy is sufficient to prevent the occurrence of significant aerodynamic imbalances. However, this method is based on the assumption that the deviation of the zero grade blade angle adjustment is the dominant cause for aerodynamic imbalances.
  • the theoretical maximum of the achievable power is the Betz power factor. This value is 59.3%.
  • Wind turbines that meet the state of the art already achieve values of about 50%, so that the physically possible is largely exhausted.
  • the further optimization aims u.a. It is to largely eliminate inhomogeneities in circulation, ie mass-related or even aerodynamic imbalances of the rotor. It is therefore an effort of the experts to recognize, to take exclusively influence on the rotor, to bring the rotor blades in an optimal position and thus to achieve the vibration-free concentricity with maximum energy yield.
  • the low-vibration concentricity of the rotor requires both low aerodynamic imbalances, ie axial and radial vibrations, as well as low mass-related (usually radial) imbalances.
  • the mass imbalance is determined by the well-known, cross-disciplinary expertise by a series of measurements, consisting of a primitive course and a test run with mounted on the rotor, known in place and size test mass. The result is the size and location of a required balance weight.
  • Mass imbalances lead in particular to a radial oscillation, ie perpendicular to the rotor axis. Aerodynamic imbalances, caused by different pitch angles of the rotor blades, twisting errors, profile deviations, pitch errors, defective flow elements or damage to the blade surface, lead to axial, torsional but also to lateral (radial) excitations of the gondola tower vibrations. Mass or aerodynamic imbalances can lead to increased wear of all components of a wind turbine. In addition, incorrectly adjusted blade angles can ultimately lead to losses in the production of electrical energy. While the mass imbalance is therefore well manageable in practice, the aerodynamic imbalance, the cause of which are different contributions of the individual blades to the torque of the rotor, still causes problems and must be reduced by matching the individual powers of the rotor blades to each other.
  • Laser methods go have been described, for example, in the previously mentioned documents DE 10 2008 013 392 B4 and DE 100 32 314 C1. These methods are based on measuring the tracking of all three blades and then calculating the respective blade angles from the measured data.
  • the document US 2012 0 183 399 A1 proposes to carry out an initial measurement and then to adjust a rotor blade, which leads to a defined aerodynamic imbalance, and to determine the result obtained by the adjustment by means of a test measurement. Adjustment and test measurement are performed at least twice in order to be able to determine empirically from the results in a numerical method or according to a table of values, how an adjustment of the rotor blades must ultimately be carried out in order to reduce the aerodynamic imbalance. This process is inaccurate and at the same time complex, because to achieve an adequate accuracy in the reduction of the aerodynamic unbalance, a multiplicity of measuring cycles becomes necessary.
  • Object of the present invention is therefore to provide a method by which the absolute pitch adjustment and the synchronous position of the rotor blades of a wind turbine optimizes and at the same time vibrations in the radial and axial directions can be minimized.
  • the object is also to offer a particularly simple and quickly feasible method for reducing aerodynamic imbalance.
  • the object is achieved by a method for reducing an aerodynamic imbalance of a wind turbine.
  • an initial axial vibration of a rotor of the wind turbine is determined, the original axial vibration has a vibration amplitude ä X and a phase angle ⁇ ⁇ at rotational frequency (1 P).
  • 1 P means the first order of a Order spectrum, related to the rotor speed.
  • An order analysis in the present case is to be understood as the analysis of the vibrations of rotating machinery.
  • the energy content of the vibration is not plotted against the frequency but above the order.
  • the order is a multiple of the speed. For example, a motor turns at 3000 revolutions per minute, which corresponds to a mains frequency of 50 hertz for a two-pole AC or three-phase motor.
  • the first order is then at 50 Hz, the second order at 100 Hz, the third at 150 Hz, etc.
  • the determined oscillation amplitude of the axial oscillation of a rotor of the wind turbine is thus a 1 P oscillation amplitude for X.
  • the vibration measurement is performed with the rotor rotating, preferably at a constant speed.
  • an aerodynamic imbalance defined with regard to location and size is produced by adjusting a blade pitch angle of at least one rotor blade resulting in a total blade pitch change a pitchi test and resulting phase angle ⁇ (apitcn, test) as a test condition.
  • the subsequent method step is thus the determination of a necessary blade pitch change a pit ch, corr and a phase angle (p corr at which the blade pitch change a pitch: corr is to be corrected to correct the original aerodynamic imbalance, including a vectorial mapping of the blade pitch angle change a pit.
  • the adjustment of a plurality of rotor blades can also be advantageous if an optimization with regard to efficiency and concentricity can thereby be achieved.
  • an equally good result can be achieved in the concentricity by either one or more blades are adjusted.
  • phase angle change (location where the blade pitch change must be made)
  • cp (a 0 °, pitch, test) + ⁇ (a U r, axAarier, ax)
  • a further embodiment of the method additionally provides a documenting vibration measurement before the vibration measurement in the original state and the correction of the blade angle settings.
  • the corrected blade position usually results in an optimal efficiency of the rotor, so that the wind, the maximum amount of energy can be removed. But at least there is a clearly defined blade angle adjustment of all rotor blades after the correction of the blade angle adjustment. From this defined blade angle setting should be assumed to compensate for any remaining aerodynamic imbalances, in order to deviate as little as possible from the optimal setting and thus have to accept the smallest possible loss of efficiency due to necessary corrections of the blade position.
  • the analysis of the actual leaf position in all alternative methods requiring such an analysis is preferably carried out by a photometric analysis on the one hand or a distance measurement between at least one point on each rotor blade and a fixed point on the wind turbine or in the vicinity thereof.
  • the rotor blade is photographically recorded at a standstill, preferably with the tip down, while a profile marked at a certain point or prominent points are imaged.
  • Another possible type of analysis is the distance measurement between at least one point on each rotor blade and a fixed point on the wind turbine, such as the tower or the nacelle or any other suitable fixed point in the vicinity of the wind turbine.
  • the distance measurement itself is carried out a known manner with a measuring beam, such as by means of ultrasound or, more preferably, laser beam.
  • the sheet passing the measuring beam is scanned in its profile and the result is recorded for comparison.
  • Further suitable types of analysis of the actual leaf position according to the invention are provided.
  • This adjustment is based on an analysis of the blade angle settings of all rotor blades, with changes of at least one blade angle setting which test a Bacblatteinstellwinkel Sung a pitchi and a resultant phase angle ⁇ p (a P uch).
  • the upstream documenting vibration measurement is unnecessary and also eliminates the correction of the blade angle settings of all rotor blades lt - but without sacrificing an optimal correction of the aerodynamic imbalance. Since, according to this variant of the method, there is also clarity about the blade angle adjustment of each rotor blade, this can be taken into account in the correction of the aerodynamic imbalance and the blade position can be corrected so that existing misalignments are simultaneously corrected towards an absolute blade angle adjustment.
  • an axial vibration is determined in the vibration measurement in the original state and the vibration measurement in the test state.
  • a measurement is simple and feasible with cost-effective measurement technology.
  • the vibration measurement in the original state and / or the vibration measurement in the test state are performed as a combined vibration measurement, wherein at least one radial and one axial vibration are determined.
  • it can be determined whether there is additionally a mass-related imbalance after correction of the aerodynamic imbalance. This would then have to be determined and eliminated in a conventional way. This is preferably done by attaching a test mass to remedy after calculating the location and size of the imbalance by a balancing mass.
  • the method according to the invention is carried out as an on-site maintenance or repair.
  • this method is in a particularly advantageous manner but also independently of the software or control of the wind turbine possible.
  • the prerequisite for the automated variant of the method according to the invention described below is thus that the blade pitch (zero degree angle or offset) of the system via the controller is automatically adjustable and not manually-mechanically by service teams on site.
  • the setting for the low-vibration state can be used as a starting point to correct ground imbalances.
  • this state is the optimal starting point for optimizing performance.
  • the blade angles can then be adjusted in the total offset and the resulting power curve thereby optimized.
  • the method according to the invention for the removal of aerodynamic imbalances is to be integrated automatically into the control of a system.
  • the system adjusted by their adjusting devices during operation, or in a short stop or in the spinning mode, at least one blade pitch (zero-degree angle or offset) by a predetermined amount. This amount is at least so large that a changed vibration property can be determined.
  • the wind turbine measures again in the same operating state as under 1. the axial gondola vibrations (test measurement). 4. From the result of the original run and the test run, a taring pointer and tare value are determined, which makes it possible to determine the position (phase angle) of the blade pitch change and its amount. This must be set to run the plant low vibration. 5. The phase amount of 4. can be between two sheets and the pitch angle change can then be divided mathematically into two sheets. (The calculation in section 4 and 5 corresponds to the calculation according to the manual procedure.) 6. The blade angles can be adjusted in total by the plant control to achieve the optimum power generation. This can be done by iterative adjustment and in each case measurement of the power curve.
  • the process corresponds to the manual process, but using or setting up appropriate sensors and actuators of the wind turbine, which at least detect vibrations and allows adjustment of at least the leaf position of all leaves.
  • the tower damping can be determined. This allows determination of the position of the mass imbalance (static moment) after measuring the radial oscillation amplitude.
  • This method is automated according to the invention in a suitable manner, preferably integrated into the plant control.
  • Fig. 1 schematic representation of axial, radial and torsional Turmanregulation; Presentation and state of the art in the removal of imbalances;
  • FIG. 2 shows a schematic phasor diagram showing settings and measured values with their symbols as well as their relationship to one another
  • FIG. 3 is a schematic representation of a graph of a nominal power curve and power curves for absolute blade pitch errors
  • FIG. 4 shows a schematic representation of a diagram of a power curve of a wind energy plant before and after the blade angle correction; and 5 shows a schematic representation of a method sequence of an embodiment of the method according to the invention.
  • Mass imbalances lead in particular to a radial oscillation, ie perpendicular to the rotor axis, as shown in FIG. 1.
  • mass imbalances unless otherwise defined by the manufacturer, are based on a permissible deviation of 0.5% from the mean static moment of the rotor blade set.
  • Aerodynamic imbalances caused by different angles of rotation of the rotor blades, twisting errors, profile deviation, pitch errors, defective flow elements or damage to the blade surface, lead to axial, torsional but also to lateral (radial) excitations of the gondola tower vibrations, as also shown in FIG ,
  • a photometric method may be mentioned which is based on the marking of a specific radius position, photography thereof and the evaluation of the acquired images by means of a special CAD software. It is also possible to use another photometric method in which prominent points on the leaf surface are analyzed.
  • the limit value for the optimal adjustment of rotor blades to each other should not exceed ⁇ 0.3 °, as specified by German Fischer Lloyd (see German Fischer Lloyd, Rules and Guidelines Industrial Services, Guideline for the Certification of Wind Turbines, 2010.).
  • the sheet pitch change Since the location of the sheet pitch change is not necessarily at the position of a sheet, the sheet pitch change must be converted to the sheets: ⁇ Xo °, corr> -120 °, corr> 120 °, corr
  • FIG. 3 shows a schematic representation of a graph of a nominal power curve 30 and power curves 31, 32 for absolute blade pitch errors.
  • the effects on the output power of a wind turbine can be seen, which occur depending on the wind speed and the direction of the misalignment. For example, with an adjustment to "stall" (power curve 31, dotted line) at each wind speed, there is a drop in power compared to the rated power, which even increases at higher wind speeds. Point line) especially power losses at lower wind speeds.
  • FIG. 4 shows a schematic representation of a diagram of a power curve of a wind energy plant before and after the blade angle correction.
  • Dashed line 33 shows a blade angle of 0.8 ° after stall (before correction)
  • dotted line 34 a blade angle of 0.0 ° (after correction).
  • FIG. 5 shows a schematic illustration of a method sequence of an embodiment of the method according to the invention corresponding to the sequence of the method steps of the following exemplary embodiment.
  • the goal is to minimize the radial and axial tower-gondola vibration of a wind turbine as well as to set the absolute blade angles to optimize the power curve.
  • Step I (reference numeral 11): A measurement of the rotor vibrations 20 is carried out during operation of the wind energy plant. The following results (amplitudes) are determined:
  • Step II First, the measurement of the blade angle position takes place according to a known method. As a reference profile, the profile along the rotor blade is selected, at which the torsion angle is 0 °. The optimum setting angle at this profile cut would be 0.00 °. (Alternatively, any other radial position with a known corresponding twist angle could be selected.) The following results are obtained:
  • Sheet III angle -0,30 ° Step III (reference 13): All three blades are adjusted to the nominal optimum angle (0.00 °).
  • Step IV (Reference 14): A measurement of the rotor vibrations 21 during operation of the wind turbine is again carried out. The following results (amplitudes) are determined:
  • Step V (reference numeral 15): From the two vibration measurements carried out, the angle correction values are determined by observing the vibration vectors at which a minimum of the axial vibrations occurs:
  • Step VI (reference 16): The rotor blades are adjusted with the determined correction angles.
  • Step VII (Reference 17): For optional validation of the new setting, a third measurement of the rotor vibrations 22 is made during operation of the wind turbine. The following results (amplitudes) are determined:
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the power curve before and after the blade angle correction is considered.
  • Step I There is a measurement of the blade pitch:
  • Step II I The blade pitch of the 3 rotor blades are adjusted to the nominal target angle:
  • Step IV A new measurement of the rotor vibrations is carried out:
  • Step V From the measured values, the required correction of the blade pitch angle is determined using the described method in order to achieve a low axial vibration level:
  • Step VI A final measurement of the rotor vibrations is carried out: axial vibration amplitude 1, 53 mm / s 2

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

L'invention concerne un procédé de réduction d'un balourd aérodynamique d'une éolienne, lorsque le rotor est en rotation, ledit procédé consistant à : déterminer, dans le cadre d'une mesure de vibration à l'état d'origine, une vibration axiale d'origine d'un rotor (2) présentant une amplitude de vibration âur,ax et un angle de phase φυr,ax, puis, par réglage d'un angle d'attaque d'au moins une pale de rotor (7), provoquer un balourd aérodynamique, dont l'emplacement et la valeur sont définis, avec une variation d'angle d'attaque de pale globale résultante αpitch,test et un angle de phase résultant φ(αpitch,test); réaliser ensuite une seule nouvelle mesure de vibration à l'état de test, pour déterminer une vibration axiale présentant une amplitude de vibration âtest,ax et un angle de phase φtest,ax >, permettant, en tenant compte de la vibration axiale d'origine, de déterminer un indice de tarage axial présentant une valeur ẑtarier,ax et une variation de phase Δφ et une valeur de tare tarn, et déterminer ensuite une variation d'angle d'attaque de pale requise αpitch,korr et un angle de phase φkorr, selon lequel la variation d'angle d'attaque de pale αpitch,korr doit être effectuée, pour corriger le balourd aérodynamique d'origine, et réaliser une affectation vectorielle de la variation d'angle d'attaque de pale αpitch,korr à au moins une pale de rotor (7).
PCT/DE2015/100527 2014-12-09 2015-12-09 Procédé de réduction de balourds aérodynamiques d'éoliennes WO2016091254A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112015005527.4T DE112015005527A5 (de) 2014-12-09 2015-12-09 Verfahren zur Reduktion von aerodynamischen Unwuchten von Windenergieanlagen

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102014118258.8A DE102014118258A1 (de) 2014-12-09 2014-12-09 Verfahren zur Reduktion von aerodynamischen Unwuchten von Windenergieanlagen
DE102014118258.8 2014-12-09
DE102015107651 2015-05-15
DE102015107651.9 2015-05-15

Publications (1)

Publication Number Publication Date
WO2016091254A1 true WO2016091254A1 (fr) 2016-06-16

Family

ID=55521311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2015/100527 WO2016091254A1 (fr) 2014-12-09 2015-12-09 Procédé de réduction de balourds aérodynamiques d'éoliennes

Country Status (2)

Country Link
DE (1) DE112015005527A5 (fr)
WO (1) WO2016091254A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019115283A1 (fr) * 2017-12-14 2019-06-20 Gamesa Innovation & Technology, S.L. Procédé de commande pour commander une éolienne et éolienne comprenant des moyens de commande configurés pour effectuer le procédé de commande
CN110594105A (zh) * 2019-09-27 2019-12-20 扬州大学 适用于风洞试验的小功率风力机气动特性测量装置
CN113217296A (zh) * 2021-03-08 2021-08-06 明阳智慧能源集团股份公司 一种风电机组风轮不平衡的检测和修正方法
CN113959722A (zh) * 2021-10-28 2022-01-21 南京航空航天大学 基于音轮的扭矩-桨距-相角-转速集成测量装置及方法
EP4321751A1 (fr) * 2022-08-09 2024-02-14 Wobben Properties GmbH Procédé de détermination d'un défaut d'orientation d'une pale de rotor d'une éolienne

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112431717B (zh) * 2020-11-23 2021-11-26 山东科技大学 一种小型风力机叶片统一变桨系统及变桨方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19628073C1 (de) 1996-07-12 1997-09-18 Aerodyn Energiesysteme Gmbh Verfahren zur Justierung der Blattwinkel einer Windkraftanlage
DE10032314C1 (de) 2000-07-04 2001-12-13 Aloys Wobben Verfahren zur Bestimmung des Winkels eines Rotorblatts einer Windenergieanlage
EP1978246A1 (fr) * 2007-04-04 2008-10-08 Siemens Aktiengesellschaft Procédé pour réduire un déséquilibre dans un rotor d'éolienne et dispositif pour réaliser le procédé
US20090035136A1 (en) 2006-06-19 2009-02-05 General Electric Company Methods and apparatus for balancing a rotor
DE102008013392A1 (de) 2008-03-10 2009-09-17 Christoph Lucks Verfahren zum Erfassen des Spurlaufes der Rotorblätter einer Windkraftanlage
WO2009129617A1 (fr) 2008-04-24 2009-10-29 Mike Jeffrey Procédé et système pour déterminer un déséquilibre de rotor d'éolienne
US20120183399A1 (en) 2011-01-19 2012-07-19 Hamilton Sundstrand Corporation Method and apparatus for balancing wind turbines
US8360722B2 (en) 2010-05-28 2013-01-29 General Electric Company Method and system for validating wind turbine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19628073C1 (de) 1996-07-12 1997-09-18 Aerodyn Energiesysteme Gmbh Verfahren zur Justierung der Blattwinkel einer Windkraftanlage
DE10032314C1 (de) 2000-07-04 2001-12-13 Aloys Wobben Verfahren zur Bestimmung des Winkels eines Rotorblatts einer Windenergieanlage
US20090035136A1 (en) 2006-06-19 2009-02-05 General Electric Company Methods and apparatus for balancing a rotor
EP1978246A1 (fr) * 2007-04-04 2008-10-08 Siemens Aktiengesellschaft Procédé pour réduire un déséquilibre dans un rotor d'éolienne et dispositif pour réaliser le procédé
DE102008013392A1 (de) 2008-03-10 2009-09-17 Christoph Lucks Verfahren zum Erfassen des Spurlaufes der Rotorblätter einer Windkraftanlage
WO2009129617A1 (fr) 2008-04-24 2009-10-29 Mike Jeffrey Procédé et système pour déterminer un déséquilibre de rotor d'éolienne
US8360722B2 (en) 2010-05-28 2013-01-29 General Electric Company Method and system for validating wind turbine
US20120183399A1 (en) 2011-01-19 2012-07-19 Hamilton Sundstrand Corporation Method and apparatus for balancing wind turbines

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CASELITZ P ET AL: "Rotor condition monitoring for improved operational safety of offshore wind energy converters", JOURNAL OF SOLAR ENERGY ENGINEERING, ASME INTERNATIONAL, US, vol. 127, no. 2, 1 May 2005 (2005-05-01), pages 253 - 261, XP008084934, ISSN: 0199-6231, DOI: 10.1115/1.1850485 *
GERMANISCHER LLOYD: "Ru/es and Guidelines Industrial Services", GUIDELINE FOR THE CERTIFICATION OF WIND TURBINES, 2010

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019115283A1 (fr) * 2017-12-14 2019-06-20 Gamesa Innovation & Technology, S.L. Procédé de commande pour commander une éolienne et éolienne comprenant des moyens de commande configurés pour effectuer le procédé de commande
CN111433453A (zh) * 2017-12-14 2020-07-17 西门子歌美飒可再生能源创新与技术有限公司 用于控制风力涡轮机的控制方法以及包括被配置用于施行所述控制方法的控制装置的风力涡轮机
CN111433453B (zh) * 2017-12-14 2022-07-26 西门子歌美飒可再生能源创新与技术有限公司 用于控制风力涡轮机的控制方法以及包括被配置用于施行所述控制方法的控制装置的风力涡轮机
CN110594105A (zh) * 2019-09-27 2019-12-20 扬州大学 适用于风洞试验的小功率风力机气动特性测量装置
CN110594105B (zh) * 2019-09-27 2020-08-11 扬州大学 适用于风洞试验的小功率风力机气动特性测量装置
CN113217296A (zh) * 2021-03-08 2021-08-06 明阳智慧能源集团股份公司 一种风电机组风轮不平衡的检测和修正方法
CN113959722A (zh) * 2021-10-28 2022-01-21 南京航空航天大学 基于音轮的扭矩-桨距-相角-转速集成测量装置及方法
EP4321751A1 (fr) * 2022-08-09 2024-02-14 Wobben Properties GmbH Procédé de détermination d'un défaut d'orientation d'une pale de rotor d'une éolienne

Also Published As

Publication number Publication date
DE112015005527A5 (de) 2017-08-17

Similar Documents

Publication Publication Date Title
WO2016091254A1 (fr) Procédé de réduction de balourds aérodynamiques d'éoliennes
DE69919910T2 (de) Methode zur regelung einer windkraftanlage sowie entsprechende windkraftanlage
DE102007026995C5 (de) Drehzahlbestimmung
DE19739164B4 (de) Windenergieanlage
EP3420226B1 (fr) Procédé pour déterminer une vitesse du vent équivalente
DE102010017777A1 (de) Verfahren und Vorrichtung zum Steuern der Umfangsgeschwindigkeit an Rotorflügelspitzen
EP3548737B1 (fr) Éolienne et procédé permettant de faire fonctionner une éolienne
DE112010002632T5 (de) Verfahren zum Auswuchten einer Windenergieanlage
EP2547905B1 (fr) Procede pour faire fonctionner une eolienne
DE102014225637A1 (de) Verfahren und Vorrichtung zum Überwachen einer Windenergieanlage
DE19739162A1 (de) Windenergieanlage
WO2019134793A1 (fr) Fonctionnement d'une éolienne en cas de tempête
DE102011083178A1 (de) Verfahren zum Betrieb einer Windenergieanlage
WO2015132187A1 (fr) Procédé et dispositif servant à régler une pale de rotor pour une éolienne
DE102016124703A1 (de) Verfahren zum Betrieb einer Windenergieanlage sowie Einrichtung zum Steuern und/oder Regeln einer Windenergieanlage und entsprechende Windenergieanlage mit einem Rotor und einem über den Rotor angetriebenen Generator zur Erzeugung einer elektrischen Leistung
DE102008012956B4 (de) Blattwinkelverstellratengrenzwertanpassung
WO2019138132A1 (fr) Procédé de commande d'une éolienne et éolienne
DE19628073C1 (de) Verfahren zur Justierung der Blattwinkel einer Windkraftanlage
WO2016091933A1 (fr) Procédé et dispositif pour surveiller une éolienne
DE102010027229A1 (de) Verfahren und Vorrichtung zur Bereitstellung eines Abstellwinkel-Korrektursignals für ein vorbestimmtes Rotorblatt eier Windkraftanlage
DE102014118258A1 (de) Verfahren zur Reduktion von aerodynamischen Unwuchten von Windenergieanlagen
DE102013204492A1 (de) Verfahren und System zur Überwachung einer Einzelblattverstellung einer Windenergieanlage
DE102012024272A1 (de) Verfahren und Vorrichtung zum Verringern eines Rotors einer Windenergieanlage belastenden Nickmoments
EP3492735B1 (fr) Procédé et dispositif de détermination d'une force statique d'un rotor d'une éolienne
DE102018130636A1 (de) Verfahren zum Betreiben einer Windenergieanlage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841040

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015005527

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112015005527

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15841040

Country of ref document: EP

Kind code of ref document: A1