WO2016090640A1 - Techniques for flexible uplink grant allocation in wireless communications - Google Patents

Techniques for flexible uplink grant allocation in wireless communications Download PDF

Info

Publication number
WO2016090640A1
WO2016090640A1 PCT/CN2014/093725 CN2014093725W WO2016090640A1 WO 2016090640 A1 WO2016090640 A1 WO 2016090640A1 CN 2014093725 W CN2014093725 W CN 2014093725W WO 2016090640 A1 WO2016090640 A1 WO 2016090640A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
subframe
downlink
communications
downlink subframe
Prior art date
Application number
PCT/CN2014/093725
Other languages
French (fr)
Inventor
Tsun Sang CHEONG
Chun Chung Patrick Chan
Alvin Siu Chung NG
Tak Wai Wu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2014/093725 priority Critical patent/WO2016090640A1/en
Publication of WO2016090640A1 publication Critical patent/WO2016090640A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • Described herein are aspects generally related to communication systems, and more particularly, to techniques for allocating uplink resource grants in a wireless communication system.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g. , bandwidth, transmit power) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP Third Generation Partnership Project
  • DL downlink
  • UL uplink
  • MIMO multiple-input multiple-output
  • a user equipment can communicate with an evolved Node B (eNB) over resources configured in time division duplexing (TDD) .
  • LTE defines a plurality of usable TDD subframe configurations that include subframes configured for downlink communications, uplink communications, and/or special subframes configured for switching from downlink to uplink communications.
  • there can be more downlink subframes than uplink subframes and scheduling of uplink resources for an uplink subframe is limited to occurring in certain downlink subframes, which is typically a downlink subframe that occurs at least 4 subframes before the corresponding uplink subframe.
  • constraining uplink resource assignment in this regard may impact operability of these services where there are not enough resources in the single downlink subframe to provide the desired uplink resource assignments for the corresponding uplink subframe.
  • Described herein are various aspects related to methods, apparatus, and computer programs for allowing uplink resource assignment to occur in substantially any downlink subframe that is at least a threshold number of subframes before the corresponding uplink subframe in a time division duplexing (TDD) communication configuration.
  • TDD time division duplexing
  • a plurality of downlink subframes may be used to assign uplink resources in an upcoming uplink subframe, which can allow for additional opportunities to grant uplink resources for the upcoming uplink subframe.
  • FIG. 1 shows a block diagram conceptually illustrating an example of a telecommunications system, in accordance with aspects described herein.
  • FIG. 2 is a diagram illustrating an example of an access network.
  • FIG. 3 is a diagram illustrating an example of a downlink (DL) frame structure in long term evolution (LTE) .
  • DL downlink
  • LTE long term evolution
  • FIG. 4 is a diagram illustrating an example of an uplink (UL) frame structure in LTE.
  • FIG. 5 is a diagram illustrating an example of a radio protocol architecture for the user and control planes.
  • FIG. 6 is a diagram illustrating an example of an evolved Node B and user equipment in an access network.
  • FIG. 7 is a diagram illustrating an example system in accordance with aspects described herein.
  • FIGs. 8-9 are flow charts of example methods of wireless communication.
  • FIG. 10 illustrates an example time division duplexing (TDD) subframe configuration in accordance with aspects described herein.
  • TDD time division duplexing
  • FIG. 11 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
  • processors include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • PLDs programmable logic devices
  • state machines gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • One or more processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc. , whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Combinations of the above should also be included within the scope of computer-readable media.
  • the uplink resources for the uplink subframe can be granted in a plurality of downlink subframes configured for downlink communications and occurring before the uplink subframe.
  • the plurality of downlink subframes can each occur at least a threshold number of subframes before the uplink subframe in the TDD configuration. Granting uplink resources for the uplink subframe by using a plurality of downlink subframes in this regard can allow for increased opportunities and/or capacity in granting the uplink resources than where granting the resources is constrained to occur in a single downlink subframe corresponding to the uplink subframe.
  • the wireless communications system 100 includes a plurality of access points (e.g. , base stations, eNBs, or WLAN access points) 105, a number of user equipment (UEs) 115, and a core network 130.
  • Access points 105 may include a communicating component 602 configured to transmit resource grants (e.g. , for control and/or data uplink communications) to UEs 115 for communicating with the access points 105.
  • the communicating component 602 can also configure one or more UEs 115 for communicating over uplink resources in TDD, as described further herein.
  • UEs 115 can include a communicating component 661 for receiving resource grants from the access points 105, and communicating with the access points 105 over resources indicated in the resource grants.
  • Some of the access points 105 may communicate with the UEs 115 under the control of a base station controller (not shown) , which may be part of the core network 130 or the certain access points 105 (e.g. , base stations or eNBs) in various examples. Access points 105 may communicate control information and/or user data with the core network 130 through backhaul links 132. In examples, the access points 105 may communicate, either directly or indirectly, with each other over backhaul links 134, which may be wired or wireless communication links.
  • the wireless communications system 100 may support operation on multiple carriers (waveform signals of different frequencies) . Multi-carrier transmitters can transmit modulated signals simultaneously on the multiple carriers.
  • each of communication links 125 may be a multi-carrier signal modulated according to the various radio technologies described above.
  • Each modulated signal may be sent on a different carrier and may carry control information (e.g. , reference signals, control channels, etc. ) , overhead information, data, etc.
  • a UE 115 can be configured to communicate with one or more access points 105 over multiple carriers using carrier aggregation (CA) (e.g. , with one access point 105) and/or multiple connectivity (e.g. , with multiple access points 105) .
  • CA carrier aggregation
  • UE 115 can be configured with at least one primary cell (PCell) configured to support uplink and downlink communications between UE 115 and an access point 105.
  • PCell primary cell
  • each of the communication links 125 can have one or more secondary cells (SCell) that can support uplink and/or downlink communications as well.
  • the PCell can be used to communicate at least a control channel
  • SCell can be used to communicate a data channel.
  • the access points 105 may wirelessly communicate with the UEs 115 via one or more access point antennas. Each of the access points 105 sites may provide communication coverage for a respective coverage area 110.
  • access points 105 may be referred to as a base transceiver station, a radio base station, a radio transceiver, a basic service set (BSS) , an extended service set (ESS) , a NodeB, eNodeB, Home NodeB, a Home eNodeB, or some other suitable terminology.
  • the coverage area 110 for a base station may be divided into sectors making up only a portion of the coverage area (not shown) .
  • the wireless communications system 100 may include access points 105 of different types (e.g.
  • the access points 105 may also utilize different radio technologies, such as cellular and/or WLAN radio access technologies (RAT) .
  • RAT radio access technologies
  • the access points 105 may be associated with the same or different access networks or operator deployments.
  • the coverage areas of different access points 105, including the coverage areas of the same or different types of access points 105, utilizing the same or different radio technologies, and/or belonging to the same or different access networks, may overlap.
  • the wireless communications system 100 may be a Heterogeneous LTE/LTE-A network in which different types of access points provide coverage for various geographical regions.
  • each access point 105 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cell.
  • Small cells such as pico cells, femto cells, and/or other types of cells may include low power nodes or LPNs.
  • a macro cell generally covers a relatively large geographic area (e.g.
  • a small cell would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs 115 with service subscriptions with the network provider, for example, and in addition to unrestricted access, may also provide restricted access by UEs 115 having an association with the small cell (e.g. , UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • An eNB for a macro cell may be referred to as a macro eNB.
  • An eNB for a small cell may be referred to as a small cell eNB.
  • An eNB may support one or multiple (e.g. , two, three, four, and the like) cells.
  • the core network 130 may communicate with the eNBs or other access points 105 via backhaul links 132 (e.g. , S1 interface, etc. ) .
  • the access points 105 may also communicate with one another, e.g. , directly or indirectly via backhaul links 134 (e.g. , X2 interface, etc. ) and/or via backhaul links 132 (e.g. , through core network 130) .
  • the wireless communications system 100 may support synchronous or asynchronous operation. For synchronous operation, the access points 105 may have similar frame timing, and transmissions from different access points 105 may be approximately aligned in time.
  • the access points 105 may have different frame timing, and transmissions from different access points 105 may not be aligned in time. Furthermore, transmissions in the first hierarchical layer and second hierarchical layer may or may not be synchronized among access points 105.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • the UEs 115 are dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to by those skilled in the art as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • a UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wearable item such as a watch or glasses, a wireless local loop (WLL) station, or the like.
  • PDA personal digital assistant
  • a UE 115 may be able to communicate with macro eNodeBs, small cell eNodeBs, relays, and the like.
  • a UE 115 may also be able to communicate over different access networks, such as cellular or other WWAN access networks, or WLAN access networks.
  • the communication links 125 shown in wireless communications system 100 may include uplink (UL) transmissions from a UE 115 to an access point 105, and/or downlink (DL) transmissions, from an access point 105 to a UE 115.
  • the downlink transmissions may also be called forward link transmissions while the uplink transmissions may also be called reverse link transmissions.
  • the communication links 125 may carry transmissions of each hierarchical layer which, in some examples, may be multiplexed in the communication links 125.
  • the UEs 115 may be configured to collaboratively communicate with multiple access points 105 through, for example, Multiple Input Multiple Output (MIMO) , carrier aggregation (CA) , Coordinated Multi-Point (CoMP) , multiple connectivity (e.g.
  • MIMO Multiple Input Multiple Output
  • CA carrier aggregation
  • CoMP Coordinated Multi-Point
  • MIMO techniques use multiple antennas on the access points 105 and/or multiple antennas on the UEs 115 to transmit multiple data streams.
  • Carrier aggregation may utilize two or more component carriers on a same or different serving cell for data transmission.
  • CoMP may include techniques for coordination of transmission and reception by a number of access points 105 to improve overall transmission quality for UEs 115 as well as increasing network and spectrum utilization.
  • access points 105 and UEs 115 may utilize carrier aggregation to transmit on multiple carriers.
  • access points 105 and UEs 115 may concurrently transmit in a first hierarchical layer, within a frame, one or more subframes each having a first subframe type using two or more separate carriers.
  • Each carrier may have a bandwidth of, for example, 20 MHz, although other bandwidths may be utilized. For example, if four separate 20 MHz carriers are used in a carrier aggregation scheme in the first hierarchical layer, a single 80 MHz carrier may be used in the second hierarchical layer.
  • the 80 MHz carrier may occupy a portion of the radio frequency spectrum that at least partially overlaps the radio frequency spectrum used by one or more of the four 20 MHz carriers.
  • scalable bandwidth for the second hierarchical layer type may be combined techniques to provide shorter RTTs such as described above, to provide further enhanced data rates.
  • Each of the different operating modes that may be employed by wireless communications system 100 may operate according to frequency division duplexing (FDD) or time division duplexing (TDD) .
  • different hierarchical layers may operate according to different TDD or FDD modes.
  • a first hierarchical layer may operate according to FDD while a second hierarchical layer may operate according to TDD.
  • OFDMA communications signals may be used in the communication links 125 for LTE downlink transmissions for each hierarchical layer
  • SC-FDMA single carrier frequency division multiple access
  • FIG. 2 is a diagram illustrating an example of an access network 200 in an LTE network architecture.
  • the access network 200 is divided into a number of cellular regions (cells) 202.
  • One or more lower power class eNBs 208 may have cellular regions 210 that overlap with one or more of the cells 202.
  • the lower power class eNB 208 may be a small cell (e.g. , home eNB (HeNB) ) , femto cell pico cell, micro cell, or remote radio head (RRH) .
  • the macro eNBs 204 are each assigned to respective cells 202 and are configured to provide an access point to the core network 130 for all the UEs 206 in the cells 202.
  • eNBs 204 and/or small cells 208 may include a communicating component 602 configured to generate and transmit resource grants to UEs 206 for communicating therewith (e.g. , uplink resource grants for uplink subframes in TDD, as described further herein) .
  • UEs 206 may include a communicating component 661 for receiving resource grants from the access points 105, and communicating with the access points 105 over resources indicated in the resource grants.
  • the eNBs 204 are responsible for all radio related functions including radio bearer control, admission control, mobility control, scheduling, security, and connectivity to the serving gateway 116.
  • the modulation and multiple access scheme employed by the access network 200 may vary depending on the particular telecommunications standard being deployed.
  • OFDM may be used on the DL and SC-FDMA may be used on the UL to support both frequency division duplexing (FDD) and time division duplexing (TDD) .
  • FDD frequency division duplexing
  • TDD time division duplexing
  • the various concepts presented herein are well suited for LTE applications. However, these concepts may be readily extended to other telecommunication standards employing other modulation and multiple access techniques. By way of example, these concepts may be extended to Evolution-Data Optimized (EV-DO) or Ultra Mobile Broadband (UMB) .
  • EV-DO Evolution-Data Optimized
  • UMB Ultra Mobile Broadband
  • EV-DO and UMB are air interface standards promulgated by the 3rd Generation Partnership Project 2 (3GPP2) as part of the CDMA2000 family of standards and employs CDMA to provide broadband Internet access to mobile stations. These concepts may also be extended to Universal Terrestrial Radio Access (UTRA) employing Wideband-CDMA (W-CDMA) and other variants of CDMA, such as TD-SCDMA; Global System for Mobile Communications (GSM) employing TDMA; and Evolved UTRA (E-UTRA) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, and Flash-OFDM employing OFDMA.
  • UTRA Universal Terrestrial Radio Access
  • W-CDMA Wideband-CDMA
  • GSM Global System for Mobile Communications
  • E-UTRA Evolved UTRA
  • IEEE 802.11 Wi-Fi
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM employing OFDMA.
  • UTRA, E-UTRA, UMTS, LTE and GSM are described in documents from the 3GPP organization.
  • CDMA2000 and UMB are described in documents from the 3GPP2 organization.
  • the actual wireless communication standard and the multiple access technology employed will depend on the specific application and the overall design constraints imposed on the system.
  • the eNBs 204 may have multiple antennas supporting MIMO technology.
  • MIMO technology enables the eNBs 204 to exploit the spatial domain to support spatial multiplexing, beamforming, and transmit diversity.
  • Spatial multiplexing may be used to transmit different streams of data simultaneously on the same frequency.
  • the data steams may be transmitted to a single UE 206 to increase the data rate or to multiple UEs 206 to increase the overall system capacity. This is achieved by spatially precoding each data stream (i.e. , applying a scaling of an amplitude and a phase) and then transmitting each spatially precoded stream through multiple transmit antennas on the DL.
  • the spatially precoded data streams arrive at the UE (s) 206 with different spatial signatures, which enables each of the UE (s) 206 to recover the one or more data streams destined for that UE 206.
  • each UE 206 transmits a spatially precoded data stream, which enables the eNB 204 to identify the source of each spatially precoded data stream.
  • Beamforming may be used to focus the transmission energy in one or more directions. This may be achieved by spatially precoding the data for transmission through multiple antennas. To achieve good coverage at the edges of the cell, a single stream beamforming transmission may be used in combination with transmit diversity.
  • OFDM is a spread-spectrum technique that modulates data over a number of subcarriers within an OFDM symbol.
  • the subcarriers are spaced apart at precise frequencies. The spacing provides “orthogonality” that enables a receiver to recover the data from the subcarriers.
  • a guard interval e.g. , cyclic prefix
  • the UL may use SC-FDMA in the form of a DFT-spread OFDM signal to compensate for high peak-to-average power ratio (PAPR) .
  • PAPR peak-to-average power ratio
  • FIG. 3 is a diagram 300 illustrating an example of a DL frame structure in LTE.
  • the depicted DL frame structure may be used by communicating component 602 to transmit communications to communicating component 661, including resource grants and/or other control or data signals.
  • a frame (10 ms) may be divided into 10 equally sized sub-frames. Each sub-frame may include two consecutive time slots.
  • a resource grid may be used to represent two time slots, each time slot including a resource element block. The resource grid is divided into multiple resource elements.
  • a resource element block may contain 12 consecutive subcarriers in the frequency domain and, for a normal cyclic prefix in each OFDM symbol, 7 consecutive OFDM symbols in the time domain, or 84 resource elements.
  • a resource element block may contain 6 consecutive OFDM symbols in the time domain and has 72 resource elements.
  • the DL-RS include Cell-specific RS (CRS) (also sometimes called common RS) 302 and UE-specific RS (UE-RS) 304.
  • UE-RS 304 are transmitted only on the resource element blocks upon which the corresponding physical downlink shared channel (PDSCH) is mapped.
  • PDSCH physical downlink shared channel
  • the number of bits carried by each resource element depends on the modulation scheme. Thus, the more resource element blocks that a UE receives and the higher the modulation scheme, the higher the data rate for the UE.
  • FIG. 4 is a diagram 400 illustrating an example of an UL frame structure in LTE.
  • the depicted DL frame structure may be used by communicating component 661 to transmit communications to communicating component 602, which can be based on a grant of resources provided to the communicating component 661.
  • the available resource element blocks for the UL may be partitioned into a data section and a control section.
  • the control section may be formed at the two edges of the system bandwidth and may have a configurable size.
  • the resource element blocks in the control section may be assigned to UEs for transmission of control information.
  • the data section may include all resource element blocks not included in the control section.
  • the UL frame structure results in the data section including contiguous subcarriers, which may allow a single UE to be assigned all of the contiguous subcarriers in the data section.
  • a UE may be assigned resource element blocks 410a, 410b in the control section to transmit control information to an eNB.
  • the UE may also be assigned resource element blocks 420a, 420b in the data section to transmit data to the eNB.
  • the UE may transmit control information in a physical UL control channel (PUCCH) on the assigned resource element blocks in the control section.
  • the UE may transmit only data or both data and control information in a physical UL shared channel (PUSCH) on the assigned resource element blocks in the data section.
  • a UL transmission may span both slots of a subframe and may hop across frequency.
  • a set of resource element blocks may be used to perform initial system access and achieve UL synchronization in a physical random access channel (PRACH) 430.
  • the PRACH 430 carries a random sequence and cannot carry any UL data/signaling
  • Each random access preamble occupies a bandwidth corresponding to six consecutive resource element blocks.
  • the starting frequency is specified by the network. That is, the transmission of the random access preamble is restricted to certain time and frequency resources. There is no frequency hopping for the PRACH.
  • the PRACH attempt is carried in a single subframe (1 ms) or in a sequence of few contiguous subframes and a UE can make only a single PRACH attempt per frame (10 ms) .
  • FIG. 5 is a diagram 500 illustrating an example of a radio protocol architecture for the user and control planes in LTE.
  • the radio protocol architecture for the UE e.g. , used by a communicating component 661
  • the eNB e.g. , used by a communicating component 602
  • Layer 1 Layer 1
  • Layer 2 Layer 2
  • L2 layer is above the physical layer 506 and is responsible for the link between the UE and eNB over the physical layer 506.
  • the L2 layer 508 includes a media access control (MAC) sublayer 510, a radio link control (RLC) sublayer 512, and a packet data convergence protocol (PDCP) 514 sublayer, which are terminated at the eNB on the network side.
  • MAC media access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • the UE may have several upper layers above the L2 layer 508 including a network layer (e.g. , IP layer) that is terminated at the PDN gateway 118 on the network side, and an application layer that is terminated at the other end of the connection (e.g. , far end UE, server, etc. ) .
  • IP layer e.g., IP layer
  • the PDCP sublayer 514 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 514 also provides header compression for upper layer data packets to reduce radio transmission overhead, security by ciphering the data packets, and handover support for UEs between eNBs.
  • the RLC sublayer 512 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to hybrid automatic repeat request (HARQ) .
  • the MAC sublayer 510 provides multiplexing between logical and transport channels.
  • the MAC sublayer 510 is also responsible for allocating the various radio resources (e.g. , resource element blocks) in one cell among the UEs.
  • the MAC sublayer 510 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and eNB is substantially the same for the physical layer 506 and the L2 layer 508 with the exception that there is no header compression function for the control plane.
  • the control plane also includes a radio resource control (RRC) sublayer 516 in Layer 3 (L3 layer) .
  • RRC sublayer 516 is responsible for obtaining radio resources (i.e. , radio bearers) and for configuring the lower layers using RRC signaling between the eNB and the UE.
  • FIG. 6 is a block diagram of an eNB 610 in communication with a UE 650 in an access network.
  • upper layer packets from the core network are provided to a controller/processor 675.
  • the controller/processor 675 implements the functionality of the L2 layer.
  • the controller/processor 675 provides header compression, ciphering, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocations to the UE 650 based on various priority metrics.
  • the controller/processor 675 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 650.
  • the transmit (TX) processor 616 implements various signal processing functions for the L1 layer (i.e. , physical layer) .
  • the signal processing functions includes coding and interleaving to facilitate forward error correction (FEC) at the UE 650 and mapping to signal constellations based on various modulation schemes (e.g. , binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase- shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • FEC forward error correction
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase- shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols are then split into parallel streams. Each stream is then mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g.
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 674 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 650.
  • Each spatial stream is then provided to a different antenna 620 via a separate transmitter 618TX.
  • Each transmitter 618TX modulates an RF carrier with a respective spatial stream for transmission.
  • eNB 610 may include a communicating component 602 configured to generate and transmit resource grants to UE 650 (e.g. , uplink resource grants for uplink subframes in TDD, as described further herein) .
  • communicating component 602 is shown as coupled to controller/processor 675, it is to be appreciated that communicating component 602 can also be coupled to other processors (e.g. , TX processor 616, RX processor 670, etc. ) and/or implemented by the one or more processors 616, 670, 675 to perform actions described herein.
  • each receiver 654RX receives a signal through its respective antenna 652.
  • Each receiver 654RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 656.
  • the RX processor 656 implements various signal processing functions of the L1 layer.
  • the RX processor 656 performs spatial processing on the information to recover any spatial streams destined for the UE 650. If multiple spatial streams are destined for the UE 650, they may be combined by the RX processor 656 into a single OFDM symbol stream.
  • the RX processor 656 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal is recovered and demodulated by determining the most likely signal constellation points transmitted by the eNB 610. These soft decisions may be based on channel estimates computed by the channel estimator 658.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the eNB 610 on the physical channel.
  • the data and control signals are then provided to the controller/processor 659.
  • the controller/processor 659 implements the L2 layer.
  • the controller/processor can be associated with a memory 660 that stores program codes and data.
  • the memory 660 may be referred to as a computer-readable medium.
  • the controller/processor 659 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the core network.
  • the upper layer packets are then provided to a data sink 662, which represents all the protocol layers above the L2 layer.
  • Various control signals may also be provided to the data sink 662 for L3 processing.
  • the controller/processor 659 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
  • UE 650 may include a communicating component 661 configured for receiving resource grants from the access points 105, and communicating with the access points 105 over resources indicated in the resource grants. Though communicating component 661 is shown as coupled to controller/processor 659, it is to be appreciated that communicating component 661 can also be coupled to other processors (e.g. , RX processor 656, TX processor 668, etc. ) and/or implemented by the one or more processors 656, 659, 668 to perform actions described herein.
  • processors e.g., RX processor 656, TX processor 668, etc.
  • a data source 667 is used to provide upper layer packets to the controller/processor 659.
  • the data source 667 represents all protocol layers above the L2 layer.
  • the controller/processor 659 implements the L2 layer for the user plane and the control plane by providing header compression, ciphering, packet segmentation and reordering, and multiplexing between logical and transport channels based on radio resource allocations by the eNB 610.
  • the controller/processor 659 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the eNB 610.
  • Channel estimates derived by a channel estimator 658 from a reference signal or feedback transmitted by the eNB 610 may be used by the TX processor 668 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 668 are provided to different antenna 652 via separate transmitters 654TX. Each transmitter 654TX modulates an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the eNB 610 in a manner similar to that described in connection with the receiver function at the UE 650.
  • Each receiver 618RX receives a signal through its respective antenna 620.
  • Each receiver 618RX recovers information modulated onto an RF carrier and provides the information to a RX processor 670.
  • the RX processor 670 may implement the L1 layer.
  • the controller/processor 675 implements the L2 layer.
  • the controller/processor 675 can be associated with a memory 676 that stores program codes and data.
  • the memory 676 may be referred to as a computer-readable medium.
  • the controller/processor 675 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the UE 650.
  • Upper layer packets from the controller/processor 675 may be provided to the core network.
  • the controller/processor 675 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • FIGs. 7-9 aspects are depicted with reference to one or more components and one or more methods that may perform the actions or functions described herein.
  • the term “component” as used herein may be one of the parts that make up a system, may be hardware or software or some combination thereof, and may be divided into other components.
  • FIGs. 8 and 9 are presented in a particular order and/or as being performed by an example component, it should be understood that the ordering of the actions and the components performing the actions may be varied, depending on the implementation.
  • FIG. 7 illustrates an example system 700 for providing uplink resource grants for an uplink subframe in a plurality of downlink subframes in a TDD configuration.
  • System 700 includes a UE 702 that communicates with an eNB 704 to receive resources for receiving and transmitting communications in the wireless network.
  • UE 702 includes a communicating component 661, as described above, which can facilitate receiving resource grants from eNB 704 and communicating over the granted resources, and eNB 704 includes a communicating component 602 for generating and communicating the resource grants for UE 702 and/or other UEs.
  • Communicating component 661 may include one or more components, which may include a resource grant receiving component 710 for obtaining uplink and/or downlink resource grants from one or more eNBs, and/or an optional feature indicating component 712 for indicating one or more features of the UE 702 to the one or more eNBs.
  • Communicating component 602 may include one or more components, which may include resource granting component 720 for granting uplink and/or downlink resources to one or more UEs, and/or an optional feature indication receiving component 722 for obtaining one or more indications of features of the one or more UEs.
  • eNB 704 and UE 702 can be configured to communicate using a TDD configuration.
  • eNB 704 and/or other components of a related wireless network, can configure the UE 702 to communicate using the TDD configuration.
  • Configuring the UE 702 may include specifying a certain subframe configuration to utilize.
  • the subframe configuration can indicate whether certain subframes occurring in time are uplink subframes, downlink subframes, and/or special subframes during which downlink communications can be switched to uplink communications.
  • the UE 702 and eNB 704 can be substantially synchronized such that the UE 702 and eNB 704 can communicate based on the type of a current subframe (e.g.
  • resource granting component 720 can transmit uplink and/or downlink resource grants to the UE 702 in one or more subframes that are configured for downlink communications in the TDD configuration.
  • the resource grant receiving component 710 can receive the resource grants, where the downlink resource grants correspond to subsequent subframes configured for downlink communications and the uplink resource grants correspond to subsequent subframes configured for uplink communications.
  • Communicating component 661 can thus receive communications from the eNB 704 over resources in the subframes indicated by the downlink resource grants, and can transmit communications to the eNB 704 over resources in the subframes indicated by the uplink resource grants.
  • the eNB 704 provides uplink resource grants to the UE 702 over a subframe configured for downlink communications that is at least a threshold number of subframes in advance of the corresponding subframe that is configured for the uplink communications. This allows the UE 702 time to receive and process the uplink resource grant before the corresponding subframe occurs.
  • This threshold can be configured according to the table below in LTE, for example.
  • DL subframe 2 includes uplink resource grants for the uplink subframe that is 6 subframes after DL subframe 2 (subframe 8)
  • DL subframe 3 includes uplink resource grants for the uplink subframe that is 4 subframes after DL subframe 3 (subframe 7) , and so on.
  • constraining uplink resource grants to occur in this single subframe can hinder services that utilize frequent uplink resource grants, such as voice over LTE.
  • FIG. 8 illustrates an example method 800 for receiving uplink resource grants in a plurality of subframes configured for downlink communications in a TDD configuration.
  • Method 800 includes, at Block 802, receiving, from an eNB, an uplink resource grant for an uplink subframe designated for uplink communications in TDD, wherein the uplink resource grant is received in a first downlink subframe designated for downlink communications, and wherein the first downlink subframe occurs before a second downlink subframe configured for transmitting uplink resource grants for the uplink resource.
  • Resource grant receiving component 710 (FIG.
  • the second downlink subframe can be the subframe that is configured for transmitting uplink resource grants for the uplink subframe in the TDD configuration (e.g. , according to the TDD SA table above in LTE) .
  • One or more additional subframes such as the first downlink subframe occurring before the second downlink subframe, however, can additionally be used to grant uplink resources to provide additional opportunity for granting the uplink resources.
  • resource grant receiving component 710 can be configured to process downlink control channels in the additional subframes to possibly receive uplink resource grants in the additional subframes.
  • resource grant receiving component 710 can receive the uplink resource grant from the eNB 704 in a subframe (the first downlink subframe) occurring before the configured subframe (the second downlink subframe) , which is 4 subframes in advance of the uplink subframe for which the uplink resources are granted.
  • resource grant receiving component 710 may receive the uplink resource grant in substantially any downlink subframe that occurs before the configured subframe (the second downlink subframe) .
  • resource grant receiving component 710 may receive the uplink resource grant in substantially any downlink subframe that is at least a threshold number of subframe before the uplink subframe (e.g. , substantially any downlink subframe that is at least 4 subframes before the uplink subframe in SA2) . This is further depicted in FIG. 10, described below.
  • Method 800 also includes, at Block 804, transmitting uplink communications to the eNB during the uplink subframe designated for uplink communications.
  • Communicating component 661 can transmit the uplink communications to the eNB during the uplink subframe designated for uplink communications.
  • Method 800 can optionally include, at Block 806, reporting a capability of receiving the uplink grant in subframes occurring before subframes configured for providing uplink resource grants to the base station.
  • feature indicating component 712 can report the capability of receiving the uplink grant in subframes occurring before subframes configured for providing uplink resource grants to the base station (e.g. , eNB 704) , which can include reporting the capability in a FGI.
  • Method 800 may also optionally include, at Block 808, determining whether to decode the first downlink subframe for obtaining the uplink resource grant based at least in part on reporting the capability.
  • Resource grant receiving component 710 can determine whether to decode the first downlink subframe for obtaining the uplink resource grant based at least in part on reporting the capability. It is to be appreciated that Blocks 806 and 808 may occur before Block 802, in some examples.
  • FIG. 9 illustrates a method 900 for granting uplink resources for an uplink subframe in a plurality of downlink subframes in a TDD configuration.
  • Method 900 includes, at Block 902, transmitting, to one or more UEs, an uplink resource grant related to an uplink subframe designated for uplink communications in TDD in a first downlink subframe designated for downlink communications.
  • Resource granting component 720 (FIG. 7) can transmit, to the one or more UEs (such as UE 702) , the uplink resource grant related to the uplink subframe designated for uplink communications in TDD in the first downlink subframe designated for downlink communications.
  • Method 900 also includes, at Block 904, transmitting, to one or more other UEs, another uplink resource grant related to the uplink subframe in a second downlink subframe designated for downlink communications, wherein the first downlink subframe occurs before the second downlink subframe.
  • Resource granting component 720 can transmit, to one or more other UEs (not shown in FIG. 7) , the uplink resource grant related to the uplink subframe in the second downlink subframe designated for downlink communications, wherein the first downlink subframe occurs before the second downlink subframe.
  • this can allow for additional opportunities to schedule uplink resources by using more than one downlink subframe to transmit resource grants to a plurality of UEs, and using additional subframes that occur before the second downlink subframe to allow for the UEs to process the uplink resource grants before the corresponding uplink subframe. This is further depicted in FIG. 10 below.
  • feature indicating component 712 can indicate the capability to receive the uplink resource grants in subframes other than the configured subframe (e.g. , in subframes before the configured subframe) in signaling to the eNB 704.
  • feature indicating component 712 can transmit a bit in a feature group indicator (FGI) to the eNB 704 to indicate the capability.
  • FGI feature group indicator
  • Feature indication receiving component 722 can receive the indication from the UE 702, and can accordingly transmit the uplink resource grant to the UE in alternative downlink subframe occurring before a downlink subframe configured for communicating uplink resource grants for the uplink subframe based at least on receiving the indication.
  • method 900 may optionally include, at Block 906, receiving an indication of a capability of the one or more UEs to receive the uplink resource grant in subframes occurring before subframes configured for uplink scheduling information.
  • Feature indication receiving component 722 can receive the indication of the capability of the one or more UEs to receive the uplink resource grant in subframes occurring before subframes configured for uplink scheduling information, as described above.
  • FIG. 10 illustrates an example TDD subframe configuration 1000 in accordance with aspects of the present disclosure.
  • TDD subframe configuration 1000 can correspond to an SA2 TDD subframe configuration in LTE.
  • uplink grants for resources in uplink subframe 7 1002 were only communicated to UEs using a downlink control indicator (DCI0) assigned in a physical downlink control channel (PDCCH) in downlink subframe 3 1004.
  • DCI0 downlink control indicator
  • PDCCH physical downlink control channel
  • an eNB can communicate uplink resource grants for uplink subframe 7 1002 over PDCCH additionally in downlink subframe 0 1006 (e.g.
  • UEs can accordingly receive and processor uplink resource grants for uplink subframe 7 1002 over PDCCH additionally in downlink subframe 0 1006 (e.g. , by using communicating component 661) .
  • substantially any downlink subframe prior to downlink subframe 3 1004 can be used to grant uplink resources for uplink subframe 7 1002 (e.g. , including special subframes where the special subframes include PDCCH resources) , such that a UE has time to process the uplink resource grant before the corresponding uplink subframe occurs.
  • uplink resources can be granted for uplink subframe 2 1010 using PDCCH not only in downlink subframe 8 1012, but also downlink subframe 5 1014.
  • UEs configured to receive the uplink resource grants in the additional downlink subframes can associate the uplink resource grants with the next uplink subframe that is at least a threshold number of subframes from the downlink subframe used to grant the resources (e.g. , 4 subframes in SA2) .
  • a UE can associate uplink resource grants received in downlink subframe 5 1014 with uplink subframe 2 1010 instead of uplink subframe 7 1002, as uplink subframe 7 1002 is not at least 4 subframes from downlink subframe 5 1014.
  • FIG. 10 also indicates a number of control channel elements (CCE) available in each subframe for allocating uplink resources.
  • CCE control channel elements
  • downlink subframe 3 1004 and downlink subframe 8 1012 which are typically used to grant uplink resources, include 84 CCEs for allocating uplink resources.
  • Downlink subframe 0 1006 and downlink subframe 5 1014 which can additionally be used to grant uplink resources, include 88 CCEs for allocating uplink resources.
  • additional opportunities for scheduling uplink resources can be achieved by using additional downlink subframes for scheduling the uplink resources.
  • FIG. 11 is a diagram illustrating an example of a hardware implementation for an apparatus 1100 employing a processing system 1114.
  • the processing system 1114 may be implemented with a bus architecture, represented generally by the bus 1124.
  • the bus 1124 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1114 and the overall design constraints.
  • the bus 1124 links together various circuits including one or more processors and/or hardware modules, represented by the processor 1104, the communicating component 602, communicating component 661 (FIG. 7) , and/or the computer-readable medium 1106.
  • the bus 1124 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • the processing system 1114 may be coupled to a transceiver 1110.
  • the transceiver 1110 is coupled to one or more antennas 1120.
  • the transceiver 1110 provides a means for communicating with various other apparatus over a transmission medium.
  • the transceiver 1110 may be configured to receive resource grants for transmitting a frame structure and/or user data for transmission to one or more eNBs.
  • the processing system 1114 includes a processor 1104 coupled to a computer-readable medium 1106.
  • the processor 1104 is responsible for general processing, including the execution of software stored on the computer-readable medium 1106.
  • the software when executed by the processor 1104, causes the processing system 1114 to perform the various functions described supra for any particular apparatus.
  • the computer-readable medium 1106 may also be used for storing data that is manipulated by the processor 1104 when executing software.
  • the processing system can further include at least one of communicating component 602 (and related components) , communicating component 661 (and its related components) (FIG. 7) , etc. , which can perform actions described above at least with respect to method 800 (FIG. 8) , method 900 (FIG. 9) , etc. , which may be based on the TDD subframe configuration in FIG. 10, for example.
  • the modules/components may be software modules running in the processor 1104, resident/stored in the computer-readable medium 1106, one or more hardware modules coupled to the processor 1104, or some combination thereof.
  • the processing system 1114 may thus be a component of the eNB 610 or UE 650 and may include the memory 676, 660 and/or at least one of the TX processor 616, 668, the RX processor 670, 656, and the controller/processor 675, 659.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure provide methods, apparatus, and computer programs for allowing uplink resource assignment to occur in substantially any downlink subframe that is at least a threshold number of subframes before the corresponding uplink subframe in a time division duplexing (TDD) communication configuration. In an aspect, receiving, from a base station, an uplink resource grant for an uplink subframe designated for uplink communications in time division duplexing (TDD), wherein the uplink resource grant is received in a first downlink subframe designated for downlink communications, and wherein the first downlink subframe occurs before a second downlink subframe configured for transmitting uplink resource grants for the uplink subframe; and transmitting uplink communications to the base station during the uplink subframe designated for uplink communications.

Description

TECHNIQUES FOR FLEXIBLE UPLINK GRANT ALLOCATION IN WIRELESS COMMUNICATIONS
FIELD OF THE DISCLOSURE
Described herein are aspects generally related to communication systems, and more particularly, to techniques for allocating uplink resource grants in a wireless communication system.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g. , bandwidth, transmit power) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example of an emerging telecommunication standard is Long Term Evolution (LTE) . LTE is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by Third Generation Partnership Project (3GPP) . It is designed to better support mobile broadband Internet access by improving spectral efficiency, lower costs, improve services, make use of new spectrum, and better integrate with other open standards using OFDMA on the downlink (DL) , SC-FDMA on the uplink (UL) , and multiple-input multiple-output (MIMO) antenna technology.
In some configurations of wireless communication systems employing LTE, a user equipment (UE) can communicate with an evolved Node B (eNB) over resources configured in time division duplexing (TDD) . LTE defines a plurality of usable TDD subframe configurations that include subframes configured for  downlink communications, uplink communications, and/or special subframes configured for switching from downlink to uplink communications. In some TDD subframe configurations, there can be more downlink subframes than uplink subframes, and scheduling of uplink resources for an uplink subframe is limited to occurring in certain downlink subframes, which is typically a downlink subframe that occurs at least 4 subframes before the corresponding uplink subframe. For services where frequent uplink resource assignments are needed, such as voice over LTE, constraining uplink resource assignment in this regard may impact operability of these services where there are not enough resources in the single downlink subframe to provide the desired uplink resource assignments for the corresponding uplink subframe.
SUMMARY
Described herein are various aspects related to methods, apparatus, and computer programs for allowing uplink resource assignment to occur in substantially any downlink subframe that is at least a threshold number of subframes before the corresponding uplink subframe in a time division duplexing (TDD) communication configuration. For example, a plurality of downlink subframes may be used to assign uplink resources in an upcoming uplink subframe, which can allow for additional opportunities to grant uplink resources for the upcoming uplink subframe.
Various aspects and features of the disclosure are described in further detail below with reference to various examples thereof as shown in the accompanying drawings. While the present disclosure is described below with reference to various examples, it should be understood that the present disclosure is not limited thereto. Those of ordinary skill in the art having access to the teachings herein will recognize additional implementations, modifications, and examples, as well as other fields of use, which are within the scope of the present disclosure as described herein, and with respect to which the present disclosure may be of significant utility.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a block diagram conceptually illustrating an example of a telecommunications system, in accordance with aspects described herein.
FIG. 2 is a diagram illustrating an example of an access network. 
FIG. 3 is a diagram illustrating an example of a downlink (DL) frame structure in long term evolution (LTE) .
FIG. 4 is a diagram illustrating an example of an uplink (UL) frame structure in LTE.
FIG. 5 is a diagram illustrating an example of a radio protocol architecture for the user and control planes.
FIG. 6 is a diagram illustrating an example of an evolved Node B and user equipment in an access network.
FIG. 7 is a diagram illustrating an example system in accordance with aspects described herein.
FIGs. 8-9 are flow charts of example methods of wireless communication.
FIG. 10 illustrates an example time division duplexing (TDD) subframe configuration in accordance with aspects described herein.
FIG. 11 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. 
By way of example, an element, or any portion of an element, or any combination of elements may be implemented with a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc. , whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more aspects, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Combinations of the above should also be included within the scope of computer-readable media.
Described herein are various aspects related to granting uplink resources for an uplink subframe configured for uplink communications in time division duplexing (TDD) communications. The uplink resources for the uplink subframe can be granted in a plurality of downlink subframes configured for downlink communications and occurring before the uplink subframe. For example, the plurality of downlink subframes can each occur at least a threshold number of subframes before the uplink subframe in the TDD configuration. Granting uplink resources for the uplink subframe by using a plurality of downlink subframes in this regard can allow for increased opportunities and/or capacity in granting the uplink  resources than where granting the resources is constrained to occur in a single downlink subframe corresponding to the uplink subframe.
Referring first to FIG. 1, a diagram illustrates an example of a wireless communications system 100, in accordance with aspects described herein. The wireless communications system 100 includes a plurality of access points (e.g. , base stations, eNBs, or WLAN access points) 105, a number of user equipment (UEs) 115, and a core network 130. Access points 105 may include a communicating component 602 configured to transmit resource grants (e.g. , for control and/or data uplink communications) to UEs 115 for communicating with the access points 105. The communicating component 602 can also configure one or more UEs 115 for communicating over uplink resources in TDD, as described further herein. UEs 115 can include a communicating component 661 for receiving resource grants from the access points 105, and communicating with the access points 105 over resources indicated in the resource grants.
Some of the access points 105 may communicate with the UEs 115 under the control of a base station controller (not shown) , which may be part of the core network 130 or the certain access points 105 (e.g. , base stations or eNBs) in various examples. Access points 105 may communicate control information and/or user data with the core network 130 through backhaul links 132. In examples, the access points 105 may communicate, either directly or indirectly, with each other over backhaul links 134, which may be wired or wireless communication links. The wireless communications system 100 may support operation on multiple carriers (waveform signals of different frequencies) . Multi-carrier transmitters can transmit modulated signals simultaneously on the multiple carriers. For example, each of communication links 125 may be a multi-carrier signal modulated according to the various radio technologies described above. Each modulated signal may be sent on a different carrier and may carry control information (e.g. , reference signals, control channels, etc. ) , overhead information, data, etc.
In this regard, a UE 115 can be configured to communicate with one or more access points 105 over multiple carriers using carrier aggregation (CA) (e.g. , with one access point 105) and/or multiple connectivity (e.g. , with multiple access points 105) . In either case, UE 115 can be configured with at least one primary cell (PCell) configured to support uplink and downlink communications between UE 115 and an access point 105. It is to be appreciated that there can be a PCell for each of  communication links 125 between a UE 115 and a given access point 105. In addition, each of the communication links 125 can have one or more secondary cells (SCell) that can support uplink and/or downlink communications as well. In some examples, the PCell can be used to communicate at least a control channel, and the SCell can be used to communicate a data channel.
The access points 105 may wirelessly communicate with the UEs 115 via one or more access point antennas. Each of the access points 105 sites may provide communication coverage for a respective coverage area 110. In some examples, access points 105 may be referred to as a base transceiver station, a radio base station, a radio transceiver, a basic service set (BSS) , an extended service set (ESS) , a NodeB, eNodeB, Home NodeB, a Home eNodeB, or some other suitable terminology. The coverage area 110 for a base station may be divided into sectors making up only a portion of the coverage area (not shown) . The wireless communications system 100 may include access points 105 of different types (e.g. , macro, micro, and/or pico base stations) . The access points 105 may also utilize different radio technologies, such as cellular and/or WLAN radio access technologies (RAT) . The access points 105 may be associated with the same or different access networks or operator deployments. The coverage areas of different access points 105, including the coverage areas of the same or different types of access points 105, utilizing the same or different radio technologies, and/or belonging to the same or different access networks, may overlap.
In LTE/LTE-A network communication systems, the terms evolved Node B (eNodeB or eNB) may be generally used to describe the access points 105. The wireless communications system 100 may be a Heterogeneous LTE/LTE-A network in which different types of access points provide coverage for various geographical regions. For example, each access point 105 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cell. Small cells such as pico cells, femto cells, and/or other types of cells may include low power nodes or LPNs. A macro cell generally covers a relatively large geographic area (e.g. , several kilometers in radius) and may allow unrestricted access by UEs 115 with service subscriptions with the network provider. A small cell would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs 115 with service subscriptions with the network provider, for example, and in addition to unrestricted access, may also provide restricted access by UEs 115 having an  association with the small cell (e.g. , UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . An eNB for a macro cell may be referred to as a macro eNB. An eNB for a small cell may be referred to as a small cell eNB. An eNB may support one or multiple (e.g. , two, three, four, and the like) cells.
The core network 130 may communicate with the eNBs or other access points 105 via backhaul links 132 (e.g. , S1 interface, etc. ) . The access points 105 may also communicate with one another, e.g. , directly or indirectly via backhaul links 134 (e.g. , X2 interface, etc. ) and/or via backhaul links 132 (e.g. , through core network 130) . The wireless communications system 100 may support synchronous or asynchronous operation. For synchronous operation, the access points 105 may have similar frame timing, and transmissions from different access points 105 may be approximately aligned in time. For asynchronous operation, the access points 105 may have different frame timing, and transmissions from different access points 105 may not be aligned in time. Furthermore, transmissions in the first hierarchical layer and second hierarchical layer may or may not be synchronized among access points 105. The techniques described herein may be used for either synchronous or asynchronous operations.
The UEs 115 are dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to by those skilled in the art as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology. A UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wearable item such as a watch or glasses, a wireless local loop (WLL) station, or the like. A UE 115 may be able to communicate with macro eNodeBs, small cell eNodeBs, relays, and the like. A UE 115 may also be able to communicate over different access networks, such as cellular or other WWAN access networks, or WLAN access networks.
The communication links 125 shown in wireless communications system 100 may include uplink (UL) transmissions from a UE 115 to an access point 105, and/or downlink (DL) transmissions, from an access point 105 to a UE 115. The  downlink transmissions may also be called forward link transmissions while the uplink transmissions may also be called reverse link transmissions. The communication links 125 may carry transmissions of each hierarchical layer which, in some examples, may be multiplexed in the communication links 125. The UEs 115 may be configured to collaboratively communicate with multiple access points 105 through, for example, Multiple Input Multiple Output (MIMO) , carrier aggregation (CA) , Coordinated Multi-Point (CoMP) , multiple connectivity (e.g. , CA with each of one or more access points 105) or other schemes. MIMO techniques use multiple antennas on the access points 105 and/or multiple antennas on the UEs 115 to transmit multiple data streams. Carrier aggregation may utilize two or more component carriers on a same or different serving cell for data transmission. CoMP may include techniques for coordination of transmission and reception by a number of access points 105 to improve overall transmission quality for UEs 115 as well as increasing network and spectrum utilization.
As mentioned, in some examples access points 105 and UEs 115 may utilize carrier aggregation to transmit on multiple carriers. In some examples, access points 105 and UEs 115 may concurrently transmit in a first hierarchical layer, within a frame, one or more subframes each having a first subframe type using two or more separate carriers. Each carrier may have a bandwidth of, for example, 20 MHz, although other bandwidths may be utilized. For example, if four separate 20 MHz carriers are used in a carrier aggregation scheme in the first hierarchical layer, a single 80 MHz carrier may be used in the second hierarchical layer. The 80 MHz carrier may occupy a portion of the radio frequency spectrum that at least partially overlaps the radio frequency spectrum used by one or more of the four 20 MHz carriers. In some examples, scalable bandwidth for the second hierarchical layer type may be combined techniques to provide shorter RTTs such as described above, to provide further enhanced data rates.
Each of the different operating modes that may be employed by wireless communications system 100 may operate according to frequency division duplexing (FDD) or time division duplexing (TDD) . In some examples, different hierarchical layers may operate according to different TDD or FDD modes. For example, a first hierarchical layer may operate according to FDD while a second hierarchical layer may operate according to TDD. In some examples, OFDMA communications signals may be used in the communication links 125 for LTE downlink  transmissions for each hierarchical layer, while single carrier frequency division multiple access (SC-FDMA) communications signals may be used in the communication links 125 for LTE uplink transmissions in each hierarchical layer. Additional details regarding implementation of hierarchical layers in a system such as the wireless communications system 100, as well as other features and functions related to communications in such systems, are provided below with reference to the following figures.
FIG. 2 is a diagram illustrating an example of an access network 200 in an LTE network architecture. In this example, the access network 200 is divided into a number of cellular regions (cells) 202. One or more lower power class eNBs 208 may have cellular regions 210 that overlap with one or more of the cells 202. The lower power class eNB 208 may be a small cell (e.g. , home eNB (HeNB) ) , femto cell pico cell, micro cell, or remote radio head (RRH) . The macro eNBs 204 are each assigned to respective cells 202 and are configured to provide an access point to the core network 130 for all the UEs 206 in the cells 202. In an aspect, eNBs 204 and/or small cells 208 may include a communicating component 602 configured to generate and transmit resource grants to UEs 206 for communicating therewith (e.g. , uplink resource grants for uplink subframes in TDD, as described further herein) . UEs 206 may include a communicating component 661 for receiving resource grants from the access points 105, and communicating with the access points 105 over resources indicated in the resource grants. There is no centralized controller shown in this example of an access network 200, but a centralized controller may be used in alternative configurations. The eNBs 204 are responsible for all radio related functions including radio bearer control, admission control, mobility control, scheduling, security, and connectivity to the serving gateway 116.
The modulation and multiple access scheme employed by the access network 200 may vary depending on the particular telecommunications standard being deployed. In LTE applications, OFDM may be used on the DL and SC-FDMA may be used on the UL to support both frequency division duplexing (FDD) and time division duplexing (TDD) . As those skilled in the art will readily appreciate from the detailed description to follow, the various concepts presented herein are well suited for LTE applications. However, these concepts may be readily extended to other telecommunication standards employing other modulation and multiple access techniques. By way of example, these concepts may be extended to Evolution-Data  Optimized (EV-DO) or Ultra Mobile Broadband (UMB) . EV-DO and UMB are air interface standards promulgated by the 3rd Generation Partnership Project 2 (3GPP2) as part of the CDMA2000 family of standards and employs CDMA to provide broadband Internet access to mobile stations. These concepts may also be extended to Universal Terrestrial Radio Access (UTRA) employing Wideband-CDMA (W-CDMA) and other variants of CDMA, such as TD-SCDMA; Global System for Mobile Communications (GSM) employing TDMA; and Evolved UTRA (E-UTRA) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, and Flash-OFDM employing OFDMA. UTRA, E-UTRA, UMTS, LTE and GSM are described in documents from the 3GPP organization. CDMA2000 and UMB are described in documents from the 3GPP2 organization. The actual wireless communication standard and the multiple access technology employed will depend on the specific application and the overall design constraints imposed on the system.
The eNBs 204 may have multiple antennas supporting MIMO technology. The use of MIMO technology enables the eNBs 204 to exploit the spatial domain to support spatial multiplexing, beamforming, and transmit diversity. Spatial multiplexing may be used to transmit different streams of data simultaneously on the same frequency. The data steams may be transmitted to a single UE 206 to increase the data rate or to multiple UEs 206 to increase the overall system capacity. This is achieved by spatially precoding each data stream (i.e. , applying a scaling of an amplitude and a phase) and then transmitting each spatially precoded stream through multiple transmit antennas on the DL. The spatially precoded data streams arrive at the UE (s) 206 with different spatial signatures, which enables each of the UE (s) 206 to recover the one or more data streams destined for that UE 206. On the UL, each UE 206 transmits a spatially precoded data stream, which enables the eNB 204 to identify the source of each spatially precoded data stream.
Spatial multiplexing is generally used when channel conditions are good. When channel conditions are less favorable, beamforming may be used to focus the transmission energy in one or more directions. This may be achieved by spatially precoding the data for transmission through multiple antennas. To achieve good coverage at the edges of the cell, a single stream beamforming transmission may be used in combination with transmit diversity.
In the detailed description that follows, various aspects of an access network will be described with reference to a MIMO system supporting OFDM on the DL.  OFDM is a spread-spectrum technique that modulates data over a number of subcarriers within an OFDM symbol. The subcarriers are spaced apart at precise frequencies. The spacing provides “orthogonality” that enables a receiver to recover the data from the subcarriers. In the time domain, a guard interval (e.g. , cyclic prefix) may be added to each OFDM symbol to combat inter-OFDM-symbol interference. The UL may use SC-FDMA in the form of a DFT-spread OFDM signal to compensate for high peak-to-average power ratio (PAPR) .
FIG. 3 is a diagram 300 illustrating an example of a DL frame structure in LTE. The depicted DL frame structure may be used by communicating component 602 to transmit communications to communicating component 661, including resource grants and/or other control or data signals. A frame (10 ms) may be divided into 10 equally sized sub-frames. Each sub-frame may include two consecutive time slots. A resource grid may be used to represent two time slots, each time slot including a resource element block. The resource grid is divided into multiple resource elements. In LTE, a resource element block may contain 12 consecutive subcarriers in the frequency domain and, for a normal cyclic prefix in each OFDM symbol, 7 consecutive OFDM symbols in the time domain, or 84 resource elements. For an extended cyclic prefix, a resource element block may contain 6 consecutive OFDM symbols in the time domain and has 72 resource elements. Some of the resource elements, as indicated as  R  302, 304, include DL reference signals (DL-RS) . The DL-RS include Cell-specific RS (CRS) (also sometimes called common RS) 302 and UE-specific RS (UE-RS) 304. UE-RS 304 are transmitted only on the resource element blocks upon which the corresponding physical downlink shared channel (PDSCH) is mapped. The number of bits carried by each resource element depends on the modulation scheme. Thus, the more resource element blocks that a UE receives and the higher the modulation scheme, the higher the data rate for the UE.
FIG. 4 is a diagram 400 illustrating an example of an UL frame structure in LTE. The depicted DL frame structure may be used by communicating component 661 to transmit communications to communicating component 602, which can be based on a grant of resources provided to the communicating component 661. The available resource element blocks for the UL may be partitioned into a data section and a control section. The control section may be formed at the two edges of the system bandwidth and may have a configurable size. The resource element blocks in the control section may be assigned to UEs for transmission of control information. The  data section may include all resource element blocks not included in the control section. The UL frame structure results in the data section including contiguous subcarriers, which may allow a single UE to be assigned all of the contiguous subcarriers in the data section.
A UE may be assigned  resource element blocks  410a, 410b in the control section to transmit control information to an eNB. The UE may also be assigned  resource element blocks  420a, 420b in the data section to transmit data to the eNB. The UE may transmit control information in a physical UL control channel (PUCCH) on the assigned resource element blocks in the control section. The UE may transmit only data or both data and control information in a physical UL shared channel (PUSCH) on the assigned resource element blocks in the data section. A UL transmission may span both slots of a subframe and may hop across frequency.
A set of resource element blocks may be used to perform initial system access and achieve UL synchronization in a physical random access channel (PRACH) 430. The PRACH 430 carries a random sequence and cannot carry any UL data/signaling Each random access preamble occupies a bandwidth corresponding to six consecutive resource element blocks. The starting frequency is specified by the network. That is, the transmission of the random access preamble is restricted to certain time and frequency resources. There is no frequency hopping for the PRACH. The PRACH attempt is carried in a single subframe (1 ms) or in a sequence of few contiguous subframes and a UE can make only a single PRACH attempt per frame (10 ms) .
FIG. 5 is a diagram 500 illustrating an example of a radio protocol architecture for the user and control planes in LTE. The radio protocol architecture for the UE (e.g. , used by a communicating component 661) and the eNB (e.g. , used by a communicating component 602) is shown with three layers: Layer 1, Layer 2, and Layer 3. Layer 1 (L1 layer) is the lowest layer and implements various physical layer signal processing functions. The L1 layer will be referred to herein as the physical layer 506. Layer 2 (L2 layer) 508 is above the physical layer 506 and is responsible for the link between the UE and eNB over the physical layer 506.
In the user plane, the L2 layer 508 includes a media access control (MAC) sublayer 510, a radio link control (RLC) sublayer 512, and a packet data convergence protocol (PDCP) 514 sublayer, which are terminated at the eNB on the network side. Although not shown, the UE may have several upper layers above the  L2 layer 508 including a network layer (e.g. , IP layer) that is terminated at the PDN gateway 118 on the network side, and an application layer that is terminated at the other end of the connection (e.g. , far end UE, server, etc. ) .
The PDCP sublayer 514 provides multiplexing between different radio bearers and logical channels. The PDCP sublayer 514 also provides header compression for upper layer data packets to reduce radio transmission overhead, security by ciphering the data packets, and handover support for UEs between eNBs. The RLC sublayer 512 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to hybrid automatic repeat request (HARQ) . The MAC sublayer 510 provides multiplexing between logical and transport channels. The MAC sublayer 510 is also responsible for allocating the various radio resources (e.g. , resource element blocks) in one cell among the UEs. The MAC sublayer 510 is also responsible for HARQ operations.
In the control plane, the radio protocol architecture for the UE and eNB is substantially the same for the physical layer 506 and the L2 layer 508 with the exception that there is no header compression function for the control plane. The control plane also includes a radio resource control (RRC) sublayer 516 in Layer 3 (L3 layer) . The RRC sublayer 516 is responsible for obtaining radio resources (i.e. , radio bearers) and for configuring the lower layers using RRC signaling between the eNB and the UE.
FIG. 6 is a block diagram of an eNB 610 in communication with a UE 650 in an access network. In the DL, upper layer packets from the core network are provided to a controller/processor 675. The controller/processor 675 implements the functionality of the L2 layer. In the DL, the controller/processor 675 provides header compression, ciphering, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocations to the UE 650 based on various priority metrics. The controller/processor 675 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 650.
The transmit (TX) processor 616 implements various signal processing functions for the L1 layer (i.e. , physical layer) . The signal processing functions includes coding and interleaving to facilitate forward error correction (FEC) at the UE 650 and mapping to signal constellations based on various modulation schemes (e.g. , binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase- shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols are then split into parallel streams. Each stream is then mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g. , pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 674 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 650. Each spatial stream is then provided to a different antenna 620 via a separate transmitter 618TX. Each transmitter 618TX modulates an RF carrier with a respective spatial stream for transmission. In addition, eNB 610 may include a communicating component 602 configured to generate and transmit resource grants to UE 650 (e.g. , uplink resource grants for uplink subframes in TDD, as described further herein) . Though communicating component 602 is shown as coupled to controller/processor 675, it is to be appreciated that communicating component 602 can also be coupled to other processors (e.g. , TX processor 616, RX processor 670, etc. ) and/or implemented by the one or  more processors  616, 670, 675 to perform actions described herein.
At the UE 650, each receiver 654RX receives a signal through its respective antenna 652. Each receiver 654RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 656. The RX processor 656 implements various signal processing functions of the L1 layer. The RX processor 656 performs spatial processing on the information to recover any spatial streams destined for the UE 650. If multiple spatial streams are destined for the UE 650, they may be combined by the RX processor 656 into a single OFDM symbol stream. The RX processor 656 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, is recovered and demodulated by determining the most likely signal constellation points transmitted by the eNB 610. These soft decisions may be based on channel estimates computed by the channel estimator 658. The soft decisions are then decoded and deinterleaved to recover the data and control signals  that were originally transmitted by the eNB 610 on the physical channel. The data and control signals are then provided to the controller/processor 659.
The controller/processor 659 implements the L2 layer. The controller/processor can be associated with a memory 660 that stores program codes and data. The memory 660 may be referred to as a computer-readable medium. In the UL, the controller/processor 659 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to a data sink 662, which represents all the protocol layers above the L2 layer. Various control signals may also be provided to the data sink 662 for L3 processing. The controller/processor 659 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations. In addition, UE 650 may include a communicating component 661 configured for receiving resource grants from the access points 105, and communicating with the access points 105 over resources indicated in the resource grants. Though communicating component 661 is shown as coupled to controller/processor 659, it is to be appreciated that communicating component 661 can also be coupled to other processors (e.g. , RX processor 656, TX processor 668, etc. ) and/or implemented by the one or  more processors  656, 659, 668 to perform actions described herein.
In the UL, a data source 667 is used to provide upper layer packets to the controller/processor 659. The data source 667 represents all protocol layers above the L2 layer. Similar to the functionality described in connection with the DL transmission by the eNB 610, the controller/processor 659 implements the L2 layer for the user plane and the control plane by providing header compression, ciphering, packet segmentation and reordering, and multiplexing between logical and transport channels based on radio resource allocations by the eNB 610. The controller/processor 659 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the eNB 610.
Channel estimates derived by a channel estimator 658 from a reference signal or feedback transmitted by the eNB 610 may be used by the TX processor 668 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 668 are provided to different  antenna 652 via separate transmitters 654TX. Each transmitter 654TX modulates an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the eNB 610 in a manner similar to that described in connection with the receiver function at the UE 650. Each receiver 618RX receives a signal through its respective antenna 620. Each receiver 618RX recovers information modulated onto an RF carrier and provides the information to a RX processor 670. The RX processor 670 may implement the L1 layer.
The controller/processor 675 implements the L2 layer. The controller/processor 675 can be associated with a memory 676 that stores program codes and data. The memory 676 may be referred to as a computer-readable medium. In the UL, the controller/processor 675 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the UE 650. Upper layer packets from the controller/processor 675 may be provided to the core network. The controller/processor 675 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Referring to FIGs. 7-9, aspects are depicted with reference to one or more components and one or more methods that may perform the actions or functions described herein. In an aspect, the term “component” as used herein may be one of the parts that make up a system, may be hardware or software or some combination thereof, and may be divided into other components. Although the operations described below in FIGs. 8 and 9 are presented in a particular order and/or as being performed by an example component, it should be understood that the ordering of the actions and the components performing the actions may be varied, depending on the implementation. Moreover, it should be understood that the following actions or functions may be performed by a specially-programmed processor, a processor executing specially-programmed software or computer-readable media, or by any other combination of a hardware component and/or a software component capable of performing the described actions or functions.
FIG. 7 illustrates an example system 700 for providing uplink resource grants for an uplink subframe in a plurality of downlink subframes in a TDD configuration. System 700 includes a UE 702 that communicates with an eNB 704 to receive resources for receiving and transmitting communications in the wireless network. UE 702 includes a communicating component 661, as described above, which can  facilitate receiving resource grants from eNB 704 and communicating over the granted resources, and eNB 704 includes a communicating component 602 for generating and communicating the resource grants for UE 702 and/or other UEs.
Communicating component 661 may include one or more components, which may include a resource grant receiving component 710 for obtaining uplink and/or downlink resource grants from one or more eNBs, and/or an optional feature indicating component 712 for indicating one or more features of the UE 702 to the one or more eNBs. Communicating component 602 may include one or more components, which may include resource granting component 720 for granting uplink and/or downlink resources to one or more UEs, and/or an optional feature indication receiving component 722 for obtaining one or more indications of features of the one or more UEs.
As described, eNB 704 and UE 702 can be configured to communicate using a TDD configuration. For example, eNB 704, and/or other components of a related wireless network, can configure the UE 702 to communicate using the TDD configuration. Configuring the UE 702 may include specifying a certain subframe configuration to utilize. For example, the subframe configuration can indicate whether certain subframes occurring in time are uplink subframes, downlink subframes, and/or special subframes during which downlink communications can be switched to uplink communications. In addition, for example, the UE 702 and eNB 704 can be substantially synchronized such that the UE 702 and eNB 704 can communicate based on the type of a current subframe (e.g. , uplink, downlink, special, etc. ) . Accordingly, resource granting component 720 can transmit uplink and/or downlink resource grants to the UE 702 in one or more subframes that are configured for downlink communications in the TDD configuration. The resource grant receiving component 710 can receive the resource grants, where the downlink resource grants correspond to subsequent subframes configured for downlink communications and the uplink resource grants correspond to subsequent subframes configured for uplink communications. Communicating component 661 can thus receive communications from the eNB 704 over resources in the subframes indicated by the downlink resource grants, and can transmit communications to the eNB 704 over resources in the subframes indicated by the uplink resource grants.
In some subframe assignments (SA) of LTE, such as SA2, the eNB 704 provides uplink resource grants to the UE 702 over a subframe configured for downlink  communications that is at least a threshold number of subframes in advance of the corresponding subframe that is configured for the uplink communications. This allows the UE 702 time to receive and process the uplink resource grant before the corresponding subframe occurs. This threshold can be configured according to the table below in LTE, for example.
Figure PCTCN2014093725-appb-000001
In this table, for TDD SA1, for example, DL subframe 2 includes uplink resource grants for the uplink subframe that is 6 subframes after DL subframe 2 (subframe 8) , and DL subframe 3 includes uplink resource grants for the uplink subframe that is 4 subframes after DL subframe 3 (subframe 7) , and so on. As described, however, constraining uplink resource grants to occur in this single subframe can hinder services that utilize frequent uplink resource grants, such as voice over LTE.
FIG. 8 illustrates an example method 800 for receiving uplink resource grants in a plurality of subframes configured for downlink communications in a TDD configuration. Method 800 includes, at Block 802, receiving, from an eNB, an uplink resource grant for an uplink subframe designated for uplink communications in TDD, wherein the uplink resource grant is received in a first downlink subframe designated for downlink communications, and wherein the first downlink subframe occurs before a second downlink subframe configured for transmitting uplink resource grants for the uplink resource. Resource grant receiving component 710 (FIG. 7) can receive, from the eNB 704, the uplink resource grant for the uplink subframe designated for uplink communications in TDD, wherein the uplink resource grant is received in a first downlink subframe designated for downlink communications, and wherein the first downlink subframe occurs before a second downlink subframe configured for transmitting uplink resource grants for the uplink resource. For example, the second downlink subframe can be the subframe that is  configured for transmitting uplink resource grants for the uplink subframe in the TDD configuration (e.g. , according to the TDD SA table above in LTE) . One or more additional subframes, such as the first downlink subframe occurring before the second downlink subframe, however, can additionally be used to grant uplink resources to provide additional opportunity for granting the uplink resources. In this regard, resource grant receiving component 710 can be configured to process downlink control channels in the additional subframes to possibly receive uplink resource grants in the additional subframes.
In the specific example of SA2 in LTE TDD, resource grant receiving component 710 can receive the uplink resource grant from the eNB 704 in a subframe (the first downlink subframe) occurring before the configured subframe (the second downlink subframe) , which is 4 subframes in advance of the uplink subframe for which the uplink resources are granted. Thus, for example, resource grant receiving component 710 may receive the uplink resource grant in substantially any downlink subframe that occurs before the configured subframe (the second downlink subframe) . In other words, resource grant receiving component 710 may receive the uplink resource grant in substantially any downlink subframe that is at least a threshold number of subframe before the uplink subframe (e.g. , substantially any downlink subframe that is at least 4 subframes before the uplink subframe in SA2) . This is further depicted in FIG. 10, described below.
Method 800 also includes, at Block 804, transmitting uplink communications to the eNB during the uplink subframe designated for uplink communications. Communicating component 661 can transmit the uplink communications to the eNB during the uplink subframe designated for uplink communications.
Method 800 can optionally include, at Block 806, reporting a capability of receiving the uplink grant in subframes occurring before subframes configured for providing uplink resource grants to the base station. As described, feature indicating component 712 can report the capability of receiving the uplink grant in subframes occurring before subframes configured for providing uplink resource grants to the base station (e.g. , eNB 704) , which can include reporting the capability in a FGI.
Method 800 may also optionally include, at Block 808, determining whether to decode the first downlink subframe for obtaining the uplink resource grant based at least in part on reporting the capability. Resource grant receiving component 710 can determine whether to decode the first downlink subframe for obtaining the  uplink resource grant based at least in part on reporting the capability. It is to be appreciated that  Blocks  806 and 808 may occur before Block 802, in some examples.
FIG. 9 illustrates a method 900 for granting uplink resources for an uplink subframe in a plurality of downlink subframes in a TDD configuration. Method 900 includes, at Block 902, transmitting, to one or more UEs, an uplink resource grant related to an uplink subframe designated for uplink communications in TDD in a first downlink subframe designated for downlink communications. Resource granting component 720 (FIG. 7) can transmit, to the one or more UEs (such as UE 702) , the uplink resource grant related to the uplink subframe designated for uplink communications in TDD in the first downlink subframe designated for downlink communications.
Method 900 also includes, at Block 904, transmitting, to one or more other UEs, another uplink resource grant related to the uplink subframe in a second downlink subframe designated for downlink communications, wherein the first downlink subframe occurs before the second downlink subframe. Resource granting component 720 can transmit, to one or more other UEs (not shown in FIG. 7) , the uplink resource grant related to the uplink subframe in the second downlink subframe designated for downlink communications, wherein the first downlink subframe occurs before the second downlink subframe. As described above, this can allow for additional opportunities to schedule uplink resources by using more than one downlink subframe to transmit resource grants to a plurality of UEs, and using additional subframes that occur before the second downlink subframe to allow for the UEs to process the uplink resource grants before the corresponding uplink subframe. This is further depicted in FIG. 10 below.
In addition, in an example, feature indicating component 712 can indicate the capability to receive the uplink resource grants in subframes other than the configured subframe (e.g. , in subframes before the configured subframe) in signaling to the eNB 704. For example, feature indicating component 712 can transmit a bit in a feature group indicator (FGI) to the eNB 704 to indicate the capability. Feature indication receiving component 722 can receive the indication from the UE 702, and can accordingly transmit the uplink resource grant to the UE in alternative downlink subframe occurring before a downlink subframe configured for communicating uplink resource grants for the uplink subframe based at least on receiving the indication.
Thus, in an example, method 900 may optionally include, at Block 906, receiving an indication of a capability of the one or more UEs to receive the uplink resource grant in subframes occurring before subframes configured for uplink scheduling information. Feature indication receiving component 722 can receive the indication of the capability of the one or more UEs to receive the uplink resource grant in subframes occurring before subframes configured for uplink scheduling information, as described above.
FIG. 10 illustrates an example TDD subframe configuration 1000 in accordance with aspects of the present disclosure. TDD subframe configuration 1000 can correspond to an SA2 TDD subframe configuration in LTE. Conventionally, uplink grants for resources in uplink subframe 7 1002 were only communicated to UEs using a downlink control indicator (DCI0) assigned in a physical downlink control channel (PDCCH) in downlink subframe 3 1004. In services that utilize frequent resource allocation, such as voice over LTE, this can limit a number of UEs that can utilize the service, a quality of the service, etc. Accordingly, in examples described herein, an eNB can communicate uplink resource grants for uplink subframe 7 1002 over PDCCH additionally in downlink subframe 0 1006 (e.g. , by using communicating component 602) , and UEs can accordingly receive and processor uplink resource grants for uplink subframe 7 1002 over PDCCH additionally in downlink subframe 0 1006 (e.g. , by using communicating component 661) . It is to be appreciated that substantially any downlink subframe prior to downlink subframe 3 1004 can be used to grant uplink resources for uplink subframe 7 1002 (e.g. , including special subframes where the special subframes include PDCCH resources) , such that a UE has time to process the uplink resource grant before the corresponding uplink subframe occurs.
Similarly, uplink resources can be granted for uplink subframe 2 1010 using PDCCH not only in downlink subframe 8 1012, but also downlink subframe 5 1014. UEs configured to receive the uplink resource grants in the additional downlink subframes (e.g. , subframe 0 1006 and subframe 5 1014) can associate the uplink resource grants with the next uplink subframe that is at least a threshold number of subframes from the downlink subframe used to grant the resources (e.g. , 4 subframes in SA2) . Thus, for example, a UE can associate uplink resource grants received in downlink subframe 5 1014 with uplink subframe 2 1010 instead of  uplink subframe 7 1002, as uplink subframe 7 1002 is not at least 4 subframes from downlink subframe 5 1014.
FIG. 10 also indicates a number of control channel elements (CCE) available in each subframe for allocating uplink resources. For example, downlink subframe 3 1004 and downlink subframe 8 1012, which are typically used to grant uplink resources, include 84 CCEs for allocating uplink resources. Downlink subframe 0 1006 and downlink subframe 5 1014, which can additionally be used to grant uplink resources, include 88 CCEs for allocating uplink resources. Thus, by employing these two additional subframes for granting uplink resources, more than double the opportunities for scheduling uplink resources can be achieved. As described, additional opportunities for scheduling uplink resources can be achieved by using additional downlink subframes for scheduling the uplink resources.
FIG. 11 is a diagram illustrating an example of a hardware implementation for an apparatus 1100 employing a processing system 1114. The processing system 1114 may be implemented with a bus architecture, represented generally by the bus 1124. The bus 1124 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1114 and the overall design constraints. The bus 1124 links together various circuits including one or more processors and/or hardware modules, represented by the processor 1104, the communicating component 602, communicating component 661 (FIG. 7) , and/or the computer-readable medium 1106. The bus 1124 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
The processing system 1114 may be coupled to a transceiver 1110. The transceiver 1110 is coupled to one or more antennas 1120. The transceiver 1110 provides a means for communicating with various other apparatus over a transmission medium. In addition, the transceiver 1110 may be configured to receive resource grants for transmitting a frame structure and/or user data for transmission to one or more eNBs. The processing system 1114 includes a processor 1104 coupled to a computer-readable medium 1106. The processor 1104 is responsible for general processing, including the execution of software stored on the computer-readable medium 1106. The software, when executed by the processor 1104, causes the processing system 1114 to perform the various functions  described supra for any particular apparatus. The computer-readable medium 1106 may also be used for storing data that is manipulated by the processor 1104 when executing software. The processing system can further include at least one of communicating component 602 (and related components) , communicating component 661 (and its related components) (FIG. 7) , etc. , which can perform actions described above at least with respect to method 800 (FIG. 8) , method 900 (FIG. 9) , etc. , which may be based on the TDD subframe configuration in FIG. 10, for example. The modules/components may be software modules running in the processor 1104, resident/stored in the computer-readable medium 1106, one or more hardware modules coupled to the processor 1104, or some combination thereof. The processing system 1114 may thus be a component of the eNB 610 or UE 650 and may include the  memory  676, 660 and/or at least one of the  TX processor  616, 668, the  RX processor  670, 656, and the controller/ processor  675, 659.
It is understood that the specific order or hierarchy of steps in the processes disclosed is an illustration of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the processes may be rearranged. Further, some steps may be combined or omitted. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the term “some” refers to one or more. All structural and functional equivalents to the elements of the various aspects described herein that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”

Claims (14)

  1. A method of wireless communication, comprising:
    receiving, from a base station, an uplink resource grant for an uplink subframe designated for uplink communications in time division duplexing (TDD) , wherein the uplink resource grant is received in a first downlink subframe designated for downlink communications, and wherein the first downlink subframe occurs before a second downlink subframe configured for transmitting uplink resource grants for the uplink subframe; and
    transmitting uplink communications to the base station during the uplink subframe designated for uplink communications.
  2. The method of claim 1, wherein the second downlink subframe occurs four subframes before the uplink subframe.
  3. The method of claim 1, further comprising reporting, to the base station, a capability of receiving the uplink resource grant in subframes occurring before subframes configured for providing uplink resource grants to the base station, wherein receiving the uplink resource grant is based on reporting the capability.
  4. The method of claim 1, wherein the first downlink subframe is a special subframe during which downlink communications are scheduled in a first portion of the special subframe before switching to another uplink subframe.
  5. An apparatus for wireless communication, comprising:
    a resource grant receiving component configured to receive, from a base station, an uplink resource grant for an uplink subframe designated for uplink communications in time division duplexing (TDD) , wherein the uplink resource grant is received in a first downlink subframe designated for downlink communications, and wherein the first downlink subframe occurs before a second downlink subframe configured for transmitting uplink resource grants for the uplink subframe; and
    a communicating component configured to transmit uplink communications to the base station during the uplink subframe designated for uplink communications.
  6. An apparatus for wireless communication, comprising:
    means for receiving, from a base station, an uplink resource grant for an uplink subframe designated for uplink communications in time division duplexing (TDD) , wherein the uplink resource grant is received in a first downlink subframe designated for downlink communications, and wherein the first downlink subframe occurs before a second downlink subframe configured for transmitting uplink resource grants for the uplink subframe; and
    means for transmitting uplink communications to the base station during the uplink subframe designated for uplink communications.
  7. A non-transitory computer-readable medium storing computer executable code for wireless communication, comprising:
    code executable to receive, from a base station, an uplink resource grant for an uplink subframe designated for uplink communications in time division duplexing (TDD) , wherein the uplink resource grant is received in a first downlink subframe designated for downlink communications, and wherein the first downlink subframe occurs before a second downlink subframe configured for transmitting uplink resource grants for the uplink subframe; and
    code executable to transmit uplink communications to the base station during the uplink subframe designated for uplink communications.
  8. A method of wireless communication, comprising:
    transmitting, to one or more user equipment (UE) , an uplink resource grant related to an uplink subframe designated for uplink communications in time division duplexing (TDD) in a first downlink subframe designated for downlink communications; and
    transmitting, to one or more other UEs, another uplink resource grant related to the uplink subframe in a second downlink subframe designated for downlink communications,
    wherein the first downlink subframe occurs before the second downlink subframe.
  9. The method of claim 8, wherein the second downlink subframe occurs four subframes before the uplink subframe.
  10. The method of claim 8, further comprising receiving, from the UE, an indication of a capability of the one or more UEs to receive the uplink resource grant in subframes occurring before subframes configured for uplink scheduling information, wherein transmitting the uplink resource grant to the one or more UEs is based at least in part on the indication.
  11. The method of claim 8, wherein the first downlink subframe is a special subframe during which downlink communications are scheduled in a first portion of the special subframe before switching to another uplink subframe.
  12. An apparatus for wireless communication, comprising:
    a resource granting component configured to:
    transmit, to one or more user equipment (UE) , an uplink resource grant related to an uplink subframe designated for uplink communications in time division duplexing (TDD) in a first downlink subframe designated for downlink communications, and
    transmit, to one or more other UEs, another uplink resource grant related to the uplink subframe in a second downlink subframe designated for downlink communications,
    wherein the first downlink subframe occurs before the second downlink subframe.
  13. An apparatus for wireless communication, comprising:
    means for transmitting, to one or more user equipment (UE) , an uplink resource grant related to an uplink subframe designated for uplink communications in time division duplexing (TDD) in a first downlink subframe designated for downlink communications; and
    means for transmitting, to one or more other UEs, another uplink resource grant related to the uplink subframe in a second downlink subframe designated for downlink communications,
    wherein the first downlink subframe occurs before the second downlink subframe.
  14. A non-transitory computer-readable medium storing computer executable code for wireless communication, comprising:
    code executable to transmit, to one or more user equipment (UE) , an uplink resource grant related to an uplink subframe designated for uplink communications in time division duplexing (TDD) in a first downlink subframe designated for downlink communications; and
    code executable to transmit, to one or more other UEs, another uplink resource grant related to the uplink subframe in a second downlink subframe designated for downlink communications,
    wherein the first downlink subframe occurs before the second downlink subframe.
PCT/CN2014/093725 2014-12-12 2014-12-12 Techniques for flexible uplink grant allocation in wireless communications WO2016090640A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/093725 WO2016090640A1 (en) 2014-12-12 2014-12-12 Techniques for flexible uplink grant allocation in wireless communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/093725 WO2016090640A1 (en) 2014-12-12 2014-12-12 Techniques for flexible uplink grant allocation in wireless communications

Publications (1)

Publication Number Publication Date
WO2016090640A1 true WO2016090640A1 (en) 2016-06-16

Family

ID=56106508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093725 WO2016090640A1 (en) 2014-12-12 2014-12-12 Techniques for flexible uplink grant allocation in wireless communications

Country Status (1)

Country Link
WO (1) WO2016090640A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013023686A1 (en) * 2011-08-15 2013-02-21 Nokia Siemens Networks Oy Scheduling in a communication system capable of using muted or almost blank subframes
CN102970761A (en) * 2011-09-01 2013-03-13 华为技术有限公司 Data transmission method and user device
CN103546411A (en) * 2012-07-09 2014-01-29 中兴通讯股份有限公司 Uplink authorization message transmitting method, authorization message indicating method and base station
WO2014196616A1 (en) * 2013-06-04 2014-12-11 Nec Corporation Dl scheduling and harq-ack feedback for dl transmissions in flexible-tdd systems without and with cross-subframe scheduling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013023686A1 (en) * 2011-08-15 2013-02-21 Nokia Siemens Networks Oy Scheduling in a communication system capable of using muted or almost blank subframes
CN102970761A (en) * 2011-09-01 2013-03-13 华为技术有限公司 Data transmission method and user device
CN103546411A (en) * 2012-07-09 2014-01-29 中兴通讯股份有限公司 Uplink authorization message transmitting method, authorization message indicating method and base station
WO2014196616A1 (en) * 2013-06-04 2014-12-11 Nec Corporation Dl scheduling and harq-ack feedback for dl transmissions in flexible-tdd systems without and with cross-subframe scheduling

Similar Documents

Publication Publication Date Title
US20200214019A1 (en) Prioritizing colliding transmissions in lte and ultra-low latency lte communications
EP3207749B1 (en) Scheduling request modes for enhanced component carriers
EP3202206B1 (en) Uplink channel with low latency
EP3739987B1 (en) Techniques for managing a resource pool in wireless communications
US10462713B2 (en) Techniques for handover procedure management
CN106716904B (en) Ultra-low delay lte downlink frame structure
US10735155B2 (en) Rate matching around reference signals in wireless communications
EP3216288B1 (en) Uplink control resource allocation for dynamic time-division duplex systems
US10405334B2 (en) Techniques for switching between downlink and uplink communications
US10182452B2 (en) Techniques for communicating feedback in low latency wireless communications
EP2984777B1 (en) Methods and apparatus for employing multiple subframe configurations for harq operations
US10021685B2 (en) Techniques for allocating resources in low latency wireless communications
US9750048B2 (en) Feedback signal management for low latency wireless communications
WO2016095132A1 (en) Techniques for configuring feedback transmission in wireless communications
WO2016090640A1 (en) Techniques for flexible uplink grant allocation in wireless communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907719

Country of ref document: EP

Kind code of ref document: A1