WO2016090620A1 - 模块化可扩展的n2×n2波长和空间全光路由器 - Google Patents

模块化可扩展的n2×n2波长和空间全光路由器 Download PDF

Info

Publication number
WO2016090620A1
WO2016090620A1 PCT/CN2014/093648 CN2014093648W WO2016090620A1 WO 2016090620 A1 WO2016090620 A1 WO 2016090620A1 CN 2014093648 W CN2014093648 W CN 2014093648W WO 2016090620 A1 WO2016090620 A1 WO 2016090620A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
wavelength
router
spatial
wavelength conversion
Prior art date
Application number
PCT/CN2014/093648
Other languages
English (en)
French (fr)
Inventor
武英晨
何建军
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to PCT/CN2014/093648 priority Critical patent/WO2016090620A1/zh
Publication of WO2016090620A1 publication Critical patent/WO2016090620A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means

Definitions

  • the present invention relates to fiber optic communication all-optical routing technology, and more particularly to a modular and scalable N 2 ⁇ N 2 wavelength and space all-optical router.
  • optical fiber communication technology After the birth and successful application of optical fiber, optical fiber communication technology has developed rapidly, and the invention of WDM communication method has greatly improved the bandwidth of optical fiber communication.
  • the rapid increase of optical fiber communication data directly puts higher requirements on each processing node in the optical communication network, and the all-optical communication network becomes the development direction of the future optical communication network.
  • Wavelength-based optical signal packet forwarding is an important way of signal routing in WDM optical networks.
  • the mainstream technology mostly adopts the optical-electric-optical wavelength conversion and routing processing method, and its advantage is that the technology is relatively mature, and the timing, regeneration, and shaping functions can be realized, but this scheme introduces photoelectric conversion and clock extraction.
  • Need a lot of high-cost optoelectronic instruments with high cost and high power consumption, opaque signal bit rate and signal format, signal processing speed has "electronic bottleneck” problem, does not meet all-optical network "high data throughput, high signal processing bandwidth, low energy consumption "The development requirements.”
  • the Glimmerglass Intelligent Optical System available at www.glimmerglass.com .
  • the biggest drawback of this structure is that the channel switching time is long, up to the order of milliseconds, and is only applicable to the case where the duration of continuous communication between a pair of nodes is on the order of seconds.
  • All-optical routing does not require electrical domain processing to directly convert information from one optical wavelength to another, and is forwarded by optical passive devices to achieve routing purposes.
  • Optical routers in WDM systems mainly include modules such as optical demultiplexing, wavelength conversion, optical multiplexing, and optical routing.
  • modules such as optical demultiplexing, wavelength conversion, optical multiplexing, and optical routing.
  • the all-optical routers currently proposed mainly include optical switches, passive arrayed waveguide grating devices, and semiconductor optical amplifier (SOA) wavelength conversion.
  • SOA semiconductor optical amplifier
  • "Multi-path Routing in an Monolithically Integrated 4 ⁇ 4Broadcast and Select WDM Cross-connection", ECOC, September 18-22, 2011, InP PHOTONICS (Mo.2. LeSaleve) reports an all-optical crossover based on SOA optical switches
  • the structure implements a 4x4 optical signal cross-connect.
  • the all-optical routing mode is mainly composed of a broadcast selection module and a wavelength selection module 2.
  • the optical signals of the four input ports are respectively input to the input ports of each arrayed waveguide grating (AWG) through a cascaded multimode interference coupler (MMI).
  • AWG arrayed waveguide grating
  • MMI cascaded multimode interference coupler
  • the SOA current on each output port of the wavelength selection module AWG is adjusted, and the wavelength of each signal on the cascaded MMI connected later can be determined, thereby controlling the wavelength of each channel on the output end of the entire routing chip.
  • pp. 641-650 discloses an optical routing method based on SOA wavelength conversion. In this way, the original signal is transferred to the new wavelength emitted by the tunable laser through the cross modulation of the SOA, and then forwarded to the corresponding channel by the AWGR.
  • this type of structure has limited forwarding capability, and no signal exchange between multiple fibers is proposed at the optical network level.
  • the all-optical routing structure described above cannot fully implement the function of wavelength conversion and port transparent forwarding of all-optical routing in an optical network, and the scalability of the system is not good enough.
  • the invention comprises a first spatial light router, at least two sets of wavelength conversion and routing modules and a second spatial light router; the input port of the first spatial light router is connected to N single-mode input fibers; the output port of the first spatial light router is The group wavelength conversion and routing module is connected to the input port of the second spatial optical router, and each group of optical signals of different wavelengths is transmitted to the corresponding input ports of the second spatial optical router through wavelength conversion processing; the second spatial optical router will be wavelength-dependent Each set of optical signals of different wavelengths output by the conversion and routing module is transmitted to respective output ports of the second spatial optical router; the second spatial optical router output port is connected to N single-mode output optical fibers; the first spatial optical router and the second space
  • the optical router mirror works, so that the wavelength of each optical signal in each optical fiber output by the second spatial optical router is the same as the wavelength of each optical signal in the input optical fiber corresponding to each of the first spatial optical routers; N single-mode input optical fibers and A spatial light router or a second spatial light router with N single mode output lights
  • a router that includes two sets of wavelength conversion and routing modules another set of wavelength conversion and routing modules are connected between the N single mode input fibers and the first spatial optical router or between the second spatial optical router and the N single mode output fibers
  • the channel or optical signal is wavelength converted and transmitted through another set of wavelength conversion and routing modules.
  • a router comprising three sets of wavelength conversion and routing modules: in addition to a set of wavelength conversion and routing modules between the output port of the first spatial optical router and the second spatial optical router, N single mode input fibers and first spatial light
  • a set of wavelength conversion and routing modules are connected between the routers and between the second spatial optical router and the N single-mode output fibers.
  • wavelength conversion and routing modules connected between the second spatial optical router and the N single-mode output fibers, and the optical signals of the output ports of the second spatial optical routers through another set of wavelength conversion and routing modules
  • the wavelength conversion process is reloaded on any of the channels in the output port.
  • the wavelength conversion and routing module includes an optical demultiplexer, N first wavelength converters, a third spatial light router, N second wavelength converters, and an optical multiplexer connected in sequence; each of the first spatial optical routers
  • the optical signal of the output port of the circuit is first decomposed into a single-wavelength signal by an optical demultiplexer, and each single-wavelength signal is transmitted to a third spatial optical router through a respective first wavelength converter, and the third spatial optical router performs a single-wavelength signal.
  • the second wavelength converter is wavelength-converted and then transmitted to the optical multiplexer.
  • the optical multiplexer combines the individual single-wavelength signals into one optical signal and outputs the same to the second spatial optical router.
  • the first wavelength converter or the second wavelength converter comprises an optical filter structure.
  • the first wavelength converter and the second wavelength converter do not include an optical filter structure, and the third spatial optical router has different channel spacings from the first spatial optical router and the second spatial optical router, so that the single mode input optical fiber And the wavelength of the optical signal transmitted in the single mode output fiber does not match the transmission spectrum of the third spatial light router to filter out the wavelength conversion pre-light signal in the first wavelength converter and the second wavelength converter.
  • the optical demultiplexer is a 1 ⁇ N optical demultiplexer, which uses an arrayed waveguide grating (AWG) or a diffraction etched grating (EDG).
  • AMG arrayed waveguide grating
  • EDG diffraction etched grating
  • the optical multiplexer is an N ⁇ 1 optical multiplexer, which uses an arrayed waveguide grating (AWG), an diffraction etched grating (EDG) or a multimode interference coupler (MMI).
  • AMG arrayed waveguide grating
  • EDG diffraction etched grating
  • MMI multimode interference coupler
  • the first spatial light router or the second spatial light router is a cyclic arrayed waveguide grating (AWGR) or a cyclic diffraction etched grating (EDGR).
  • AWGR cyclic arrayed waveguide grating
  • EDGR cyclic diffraction etched grating
  • the third spatial light router is a cyclic arrayed waveguide grating (AWGR) or a cyclic diffraction etched grating (EDGR).
  • AWGR cyclic arrayed waveguide grating
  • EDGR cyclic diffraction etched grating
  • the first wavelength converter or the second wavelength converter is a wavelength conversion structure that uses a nonlinear effect of a semiconductor optical amplifier (SOA) to load a wavelength optical signal onto another DC laser of a different wavelength.
  • SOA semiconductor optical amplifier
  • the first spatial optical router, the second spatial optical router, and the wavelength conversion and routing module are all or partially integrated on the same chip.
  • the invention is based on the designed wavelength conversion and routing module, has excellent expansibility, reduces the design difficulty of all-optical routing, and has the effect of spatial routing and wavelength conversion, and can realize the wavelength between the N 2 channels at the input end. Any exchange of ports.
  • the logic of the invention is clear, and the function of wavelength conversion and forwarding of signals in all-optical routing can be completely realized, and the signal format of the light is completely transparent.
  • Figure 1 is a schematic view of the structure of the present invention.
  • FIG. 2 is a schematic structural view of a wavelength conversion and routing module of the present invention.
  • FIG 3 is a schematic diagram of a routing path of a first spatial optical router of the present invention.
  • FIG. 4 is a schematic diagram of a routing path of a second spatial optical router of the present invention.
  • FIG. 5 is a schematic diagram of a routing table of a third spatial optical router according to the present invention.
  • Figure 6 is an illustration of the operation mode of the all-optical routing of the present invention.
  • Fig. 7 is a schematic view showing another structure of the present invention.
  • Figure 8 is a schematic view showing another structure of the present invention.
  • Figure 9 is a schematic diagram of an optical demultiplexer of an embodiment.
  • Figure 10 is a schematic diagram of an optical multiplexer of an embodiment.
  • Figure 11 is a block diagram showing the structure of a first wavelength converter of the embodiment.
  • Figure 12 is a structural diagram of a second wavelength converter of the embodiment.
  • Fig. 13 is a diagram showing the principle and effect of the wavelength converter signal conversion of the embodiment.
  • Figure 14 is a schematic diagram of a spatial light router of an embodiment.
  • 15 is a schematic diagram of a transmission spectrum of a first input port of a third spatial light router of an embodiment.
  • A wavelength conversion and routing module, 3, first spatial optical router, 4, optical demultiplexer, 5, first wavelength converter, 6, third spatial optical router, 7, second wavelength converter 8, optical multiplexer, 9, second spatial optical router, L1, L2, ... LN is the serial number of the single-mode input fiber, L1', L2', ... LN' is the serial number of the single-mode output fiber, 10, tunable Laser, 11, nonlinear optical amplifier, 12, delay waveguide, 13, linear optical amplifier, 14, phase modulator.
  • the entire router includes a first spatial optical router 3 , at least two sets of wavelength conversion and routing modules A and a second spatial optical router 9 ; the input port of the first spatial optical router 3 is connected to N single-mode input optical fibers. Each optical signal multiplexed in the single mode input fiber is routed to a corresponding output port of the first spatial optical router 3; the output port of the first spatial optical router 3 passes through a set of wavelength conversion and routing module A and the second spatial light The input port of the router 9 is connected, and each set of optical signals of different wavelengths is transmitted to the corresponding input ports of the second spatial optical router 9 through wavelength conversion processing; the second spatial optical router 9 outputs each of the wavelength conversion and routing modules A.
  • the optical signals of different wavelengths are transmitted to the corresponding output ports of the second spatial optical routers 9; the output ports of the second spatial optical router 9 are connected to the N single-mode output optical fibers, and the output optical signals are transmitted to the respective single-mode output optical fibers;
  • the first spatial light router 3 and the second spatial light router 9 mirror work so that each of the optical fibers output by the second spatial light router 9
  • the wavelengths of the optical signals are identical to the wavelengths of the respective optical signals in the input fibers corresponding to the respective first spatial optical routers 3.
  • a set of wavelength conversion and routing module A is connected between the N single-mode input fibers and the first spatial optical router 3, and the single-mode input optical fiber is restored by another set of wavelength conversion and routing module A.
  • Each channel in each of the used optical signals is subjected to wavelength conversion processing and transmitted to the first spatial light router 3.
  • a pair of wavelength conversion and routing modules A are connected between the second spatial optical router 9 and the N single-mode output fibers, and the second spatial optical router 9 is connected through another set of wavelength conversion and routing modules A.
  • the optical signals of the respective output ports are reloaded on any of the output ports of the path by wavelength conversion processing.
  • a set of wavelength conversion and routing modules A are connected between the N single mode input fibers and the first spatial optical router 3 and between the second spatial optical router 9 and the N single mode output fibers.
  • the number of wavelength conversion and routing modules A in each group of wavelength conversion and routing module A is the same as the number of single-mode input fibers.
  • each wavelength conversion and routing module A in the router of the present invention has the same design, including optical demultiplexers 4, N first wavelength converters 5, and third spatial optical routers 6, N connected in sequence.
  • the second wavelength converter 7 and the optical multiplexer 8 are responsible for wavelength conversion and routing of a set of N wavelength optical signals of one output port of the spatial optical router 3.
  • the optical signal of each output port of the first spatial optical router 3 is first decomposed into a single wavelength signal by the optical demultiplexer 4, and each single wavelength signal is transmitted to the third through the respective first wavelength converter 5.
  • the third spatial light router 6 spatially routes the single-wavelength signal, and then transmits the wavelength to the optical multiplexer 8 through the second wavelength converter 7, and the optical multiplexer 8 transmits each single-wavelength signal.
  • the combination is an optical signal output to the second spatial light router 9.
  • the first wavelength converter 5 or the second wavelength converter 7 comprises an optical filter structure, and the optical filter structure of the first wavelength converter 5 or the second wavelength converter 7 filters out the pre-conversion optical signal.
  • the output ports of the first wavelength converter 5 and the second wavelength converter 7 have both the original optical signal and The converted optical signal.
  • the third spatial light router 6 is identical in design to the first spatial light router 3 and the second spatial light router 9, the original optical signal is routed to an output port of the 3, and the interference is routed to the converted optical signal output by the port.
  • the third spatial optical router 6 is different from the first spatial optical router 3 and the second spatial optical router 9.
  • the channel spacing is such that the wavelength of the optical signal transmitted in the single mode input fiber and the single mode output fiber does not match the transmission spectrum (ie, the transmission spectrum) of the third spatial light router 6.
  • the channel spacing between the third spatial optical router 6 and the first spatial optical router 3 and the second spatial optical router 9 is deviated, so that the original optical signal cannot pass through the third spatial light.
  • Router 6 The original optical signal enters the first wavelength converter 5, loads the signal to a new set of wavelengths, and matches the channel of the third spatial optical router 6, ie, performs channel switching using a different set of wavelengths in the wavelength conversion and routing module A.
  • the optical signal demultiplexed by the optical demultiplexer 4 is transferred to a set of light of different wavelength intervals by the first wavelength converter 5, through the third spatial light router 6, After the second wavelength converter 7, the optical signal that is spatially routed by the third spatial optical router 6 is re-converted to a wavelength that conforms to the channel spacing of the second spatial optical router 9, and the transmission is continued.
  • the optical demultiplexer 4 is a 1 ⁇ N optical demultiplexer, which is an optical passive device designed for single-ended input and N-port single-wavelength output according to the wavelength interval of N channels in the input optical fiber, and preferably adopts an array.
  • the optical multiplexer 8 is an N ⁇ 1 optical multiplexer, which combines N input single-wavelength optical signals into a single-port output optical passive device, preferably using an arrayed waveguide grating AWG, a diffraction etched grating EDG or multimode interference coupling. MMI.
  • the first spatial light router 3, the second spatial light router 9 and the third spatial light router 6 may be the same or different, and a cyclic arrayed waveguide grating AWGR or a cyclic diffraction etched grating EDGR may be employed.
  • the structure of the first wavelength converter 5 or the second wavelength converter 7 may be the same or different, specifically, using a nonlinear effect of the semiconductor optical amplifier SOA to load one wavelength of the optical signal to another DC laser of a different wavelength.
  • the wavelength conversion structure on the top may be the same or different, specifically, using a nonlinear effect of the semiconductor optical amplifier SOA to load one wavelength of the optical signal to another DC laser of a different wavelength.
  • the first wavelength converter 5 or the second wavelength converter 7 can adopt the structure shown in FIG. 9, including the tunable laser 10, the nonlinear optical amplifier 11 and the delay waveguide 12, and the tunable laser 10
  • the detected light and the signal light are connected to the input end of the nonlinear optical amplifier 11 via a waveguide, and the output ends of the nonlinear optical amplifier 11 are respectively connected to the optical waveguide and the delay waveguide 12 to output signals.
  • the first wavelength converter 5 or the second wavelength converter 7 may adopt a structure as shown in FIG. 10, including a tunable laser 10, a nonlinear optical amplifier 11, a delay waveguide 12, a linear optical amplifier 13, and phase modulation.
  • the signal light is divided into two paths, which are respectively connected to the input ends of the respective linear optical amplifiers 13 through the optical waveguide and the delay waveguide 12, and the tunable laser 10 emits two paths of detection light, and the outputs of the two linear optical amplifiers 13 are respectively
  • the output end of the corresponding tunable laser 10 is coupled by a coupler, and the signals of the output ends of the two linear optical amplifiers 13 are respectively coupled with the two paths of the probe light of the tunable laser 10 to form two optical signals and then connected to the respective nonlinear lights.
  • the output of one of the two nonlinear optical amplifiers 11 is connected to the phase modulator 14 and coupled to the output of the other nonlinear optical amplifier 11 to output a final optical signal.
  • the tunable laser described above is a tunable semiconductor laser
  • the nonlinear optical amplifier 11 employs a nonlinear optical amplifier
  • the linear optical amplifier 13 employs a linear semiconductor optical amplifier.
  • the N of the present invention is a positive integer. When necessary, it is only necessary to increase the number of input and output fibers, and correspondingly increase the number of three spatial optical routers 3, 6, and 9 and the number of wavelength conversion and routing modules A, wherein wavelength conversion and Routing module A has the same structure and design.
  • the working principle of the present invention is as follows:
  • the same signal wavelength subscripts appearing in the figure represent the same wavelength.
  • a set of optical signal wavelength matrices transmitted in the input fiber is as shown in Equation 1.
  • the first digit i of the subscript represents the fiber serial number
  • the second digit j represents the channel number.
  • ⁇ 12 represents the second channel wavelength of the first input fiber.
  • the first spatial light router 3 and the second spatial light router 9 are identical in design and mirrored, and are AWGR or EDGR passive devices having the same free spectral range ⁇ FSR and the same channel spacing ⁇ v, and each optical fiber input signal wavelength range. And the wavelength interval matches.
  • the routing path of the first spatial optical router 3 is as shown in FIG. After routing, the output port wavelength matrix is as shown in Equation 2, where each row represents the wavelength of a corresponding output port of the spatial optical router:
  • the routing path of the second spatial optical router 9 is as shown in FIG. 4.
  • the wavelength matrix input by each port is as shown in Equation 2:
  • the first wavelength converter 5 and the second wavelength converter 7 based on the tunable laser, SOA and MZI can realize wavelength conversion covering a wide band, that is, the input optical signal can be loaded in the tunable
  • the laser can output light of any wavelength.
  • the third spatial light router 6 is designed to have different working wavelengths from the first spatial optical router 3 and the second spatial optical router 9, and the original optical signal passes through the third. After the space light router 6, there is a large attenuation.
  • the original optical signal is loaded on a new set of wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 , ... ⁇ N that match 3 .
  • the routing table of the third spatial optical router 6 is as shown in FIG. 5. After the third spatial optical router 6 forwards, the converted optical signal enters the second wavelength conversion at the corresponding port. At this time, the converted wavelength should meet the requirements of the second spatial optical router 9. Similarly, the optical signal before the conversion passes.
  • the second spatial light router 9 also has a large loss, avoiding crosstalk between channels.
  • each input optical fiber is connected to a wavelength conversion and routing module A, and the ⁇ N1 and ⁇ N3 exchanges in the input optical fiber LN are taken as an example.
  • ⁇ N1 and ⁇ N3 are demultiplexed into the first and third channels, respectively. Converting ⁇ N1 to ⁇ 3 , ⁇ N3 is converted to ⁇ 3 , and through the third spatial light router in the wavelength conversion and routing module, respectively, the third and first channels of the second wavelength conversion are converted into ⁇ N1 , ⁇ N3 , after multiplexing, outputs the signal exchange within the fiber.
  • the same logical channel refers to the wavelength of the same output port of the first spatial optical router 3 that is forwarded directly through the first spatial optical router 3 in different optical fibers, that is, each row of the matrix in Equation 2 is a set of the same logical channel.
  • ⁇ 11 and ⁇ 22 exchange as an example, as shown in FIG. 6, first, ⁇ 11 and ⁇ 22 are converted from the input fibers L1 and L2 through the first group of wavelengths between the N single-mode input fibers and the first spatial light router 3, respectively.
  • the routing module is maintained as ⁇ 11 , ⁇ 22 , and sent to the first and second input ports of the first spatial optical router 3, and is routed into the second between the first spatial optical router 3 and the second spatial optical router 9
  • the first of the group wavelength conversion and routing modules In the second group of wavelength conversion and routing modules between the first spatial light router 3 and the second spatial light router 9, ⁇ 11 is converted to ⁇ 2 by the first wavelength, and is forwarded through the third spatial optical router 6 to enter the The second wavelength is converted to the second channel, and the wavelength is converted to ⁇ 22 .
  • ⁇ 22 is converted to ⁇ 2 by the first wavelength, and is forwarded by the third spatial light router 6, and ⁇ 2 enters the second wavelength conversion first channel, and then the wavelength is converted to ⁇ 11 .
  • ⁇ 11 and ⁇ 22 are multiplexed by the multiplexer 8, they enter the second spatial light router 9 and are respectively forwarded to the first and second output ports.
  • the complete exchange of ⁇ 11 in the input fiber L1 and the ⁇ 22 port in the input fiber L2 with the wavelength is completed.
  • each first spatial optical router 3 contains the same logical channel from each input optical fiber, any channel in the input optical fiber can complete the port with the same logical channel corresponding to another optical fiber. Complete exchange with wavelength.
  • ⁇ 11 and ⁇ 22 can be converted again to any one of the output fibers L1' and L2', respectively. channel.
  • ⁇ 11 is to be converted to the third channel ⁇ 13 of the output fiber L1 ′ according to the routing table of the third spatial light router 6 , as shown in FIG. 5 , ⁇ 11 is in the second spatial optical router 9 and N single-mode output fibers.
  • the third group of wavelength conversion and routing modules after the first wavelength conversion, it is converted to ⁇ 3 , routed, and then converted to ⁇ 13 by the second wavelength conversion, and enters the output fiber L1 ′. So far, the entire process of routing any one of any input fiber to any channel of an output fiber is completed.
  • the exchange of ⁇ 12 in the input fiber L1 with ⁇ 22 in the input fiber L2 is as shown in FIG. 6.
  • ⁇ 12 and ⁇ 22 are transmitted from the input fibers L1 and L2 through the first group of wavelength conversion and routing modules, respectively, to ⁇ 12 and ⁇ 22 , and are sent to the first and second input ports of the first spatial optical router 3
  • the route enters the second and first of the second set of wavelength conversion and routing modules.
  • the first wavelength of ⁇ 22 is converted to ⁇ 2 , and is forwarded by the third spatial optical router 6 , and ⁇ 2 enters the second wavelength conversion first channel, and then the wavelength is converted to ⁇ 11 .
  • the second spatial light router 9 After being multiplexed by the multiplexer 8, the second spatial light router 9 is entered. Similarly, after the first wavelength conversion, ⁇ 12 loads its signal at ⁇ 4 , routes it to the third channel of the second wavelength conversion, and then loads the signal at ⁇ 23 . ⁇ 11 and ⁇ 23 are forwarded through the second spatial light router 9 to the first and second output ports, respectively.
  • ⁇ 12 in the input fiber L1 is converted into ⁇ 23 channel in the second output port of the second spatial optical router 9, and ⁇ 22 is converted into the first input fiber L2.
  • the ⁇ 11 channel in the first output port of the second spatial light router 9 has inconsistent wavelengths before and after routing.
  • ⁇ 23 and ⁇ 11 can be converted again into any one of the output fibers L2 ′ and L1 ′.
  • ⁇ 23 is to be converted to the second channel ⁇ 22 of the output fiber L2 ′, and the complete exchange of the input fiber to the output fiber port and the wavelength is completed, according to the routing table of the third spatial light router 6 , as shown in FIG. 5 , ⁇ 23 is In the third group of wavelength conversion and routing modules, after the first wavelength conversion, the signal is converted to ⁇ 4 , routed, and then converted to ⁇ 22 by the second wavelength conversion, and enters the output fiber L2 ′.
  • the invention can be realized by using a fiber-optic connection building system with various functional modules, and can also be implemented on a chip by active passive integration technology, including multiple epitaxy or quantum well hybrid process monolithic integration based on III-V wafer. , III-V and SOI precise bonding and integration.
  • the first spatial light router 3, the second spatial light router 9 and the wavelength conversion and routing module A may all be integrated on the same chip.
  • each wavelength converter 5 can be integrated into one device, after the array, through the optical fiber and the third spatial optical router 6, the multiplexer 8.
  • Other devices such as demultiplexer 4 are connected and extended to the entire wavelength conversion and routing module.
  • the wavelength conversion and routing module is also optically connected to the first spatial optical router 3 and the second spatial optical router 9.
  • another embodiment of the present invention is the same as the above, and includes a group of wavelength conversion and routing modules A and a first spatial optical router connected between the N single-mode input fibers and the first spatial optical router 3. 3.
  • another embodiment of the present invention is the same as the above, including a first spatial light router 3 and a second spatial light router 9 connected between the first spatial light router 3 and the second spatial light router 9 .
  • a set of wavelength conversion and routing module A and a set of wavelength conversion and routing module A connected between the second spatial optical router 9 and the N single-mode output fibers this structure can realize the wavelength and port of each channel between the optical fibers Exchange freely.
  • the optical demultiplexer 4 adopts an AWG structure as shown in FIG. 9. A set of optical signals having different wavelengths is input to the demultiplexer input port, and is divided into N channels through the AWG device, and is output from the demultiplexer output port.
  • the optical multiplexer 8 adopts an AWG structure as shown in FIG. 10, and N ports of the multiplexer input port respectively input optical signals of different wavelengths, and are integrated into one channel through the AWG, and output from the multiplexer output port.
  • the two wavelength converters 5, 7 can be selected to adopt the structure shown in Figs.
  • the tunable laser 10 can obtain a direct current laser by means of current injection or thermal tuning. As shown in FIG. 11, the probe light and the signal light emitted by the tunable laser 10 enter the nonlinear optical amplifier 11 together, and the two are modulated by nonlinear cross-over, and the probe light will load the signal. Due to the limitation of carrier lifetime of semiconductor devices, the signal intensity and phase of the probe light may change with the change of the signal light during high-speed cross modulation. For example, a quantum well structure semiconductor chip has a carrier lifetime of about several nanoseconds ns, which obviously cannot meet the cross modulation response requirement of 10 GHz and above.
  • the probe light passes through the upper and lower arms of different lengths, and reaches the output port with a time difference of ⁇ t.
  • FIG. 13A there is a phase difference between the two paths of detection light at this time.
  • the phase information is converted into intensity information to improve the signal quality, as shown in Fig. 13B.
  • the structure shown in Fig. 12 is that the incident signal light is first split into two paths, and the lower path is passed through the delay waveguide 12 so that the two maintain a time difference ⁇ t, and the two signals are balanced by the linear amplifier 13.
  • the probe light emitted by the 10 is also divided into two paths, which are respectively coupled to the upper arm and the lower arm signal light to enter the nonlinear amplifier 11. Similarly, the cross modulation of the probe light and the signal light occurs in 11 , and the phase difference of the probe light of the upper and lower arms is optimized by the phase adjuster 14 As shown in Figure 13, a better detection optical signal output is obtained.
  • the upper and lower arm signal delays ⁇ t provided by the delay waveguide 14 are determined according to the signal rate. If the input signal is a 10 Gbit/s return-to-zero code, then ⁇ t is approximately 0.05 ns. If the phase difference between the upper and lower arm detection optical signals is 180°, the extinction can be completely interfered to achieve the maximum extinction ratio.
  • the three spatial light routers 3, 6, and 9 are a cyclically etched diffraction grating EDGR that can route the wavelength input to each port on the left to the corresponding output port.
  • ⁇ 11 and ⁇ 22 in FIG. 6 when the system is 4 input fibers, and there are 4 channels in each input fiber, that is, 4 ⁇ 4, each channel in the input fiber passes through the first spatial optical router.
  • FIG. 15 is an example of a first input port transmission spectrum of the third spatial light router 6.
  • ⁇ 11 and ⁇ 2 simultaneously enter the first input port of the third spatial light router 6, but since ⁇ 11 does not meet the operating conditions of the third spatial light router 6, there is a loss of more than 28 dB, and ⁇ 2 has only about 2 dB loss. , greatly reducing the impact of the original optical signal ⁇ 11 on the subsequent routing process.
  • ⁇ 2 is output at the second output port of the third spatial light router 6.
  • the routing bandwidth of the present invention is primarily limited by the dynamic response bandwidth of active devices, including semiconductor optical amplifiers and tunable lasers.
  • the wavelength switching response time of a wavelength tunable laser directly determines the wavelength-based optical signal packet forwarding response time.
  • t c is the channel routing path processing time and t switch is the channel switching time of the tunable laser in the wavelength converter.
  • the total response time t tot also reflects the optical packet queue delay and thus determines the minimum time interval required between adjacent two optical signal data queues in a channel.
  • the electrical injection tuning channel switching time is about 500 ps.
  • t c can be estimated to be 0.5 ns.
  • the SOA-based monolithic integrated wavelength conversion structure can perform wavelength conversion from 10 Gb/s to 40 Gb/s.
  • the response time t tot of the system will not cause signal congestion, that is, the all-optical router is expected to complete N 2 ⁇ 40Gb/s data routing.
  • the present invention enjoys greater bandwidth than conventional optical-electrical-optical routers and existing optical routing structures, and can perform optical data processing and switching at higher bit rates.
  • the maximum number of routing channels that the present invention can assume is N 2 , that is, N input fibers, and the number of channels in each fiber is ⁇ N.
  • N 2 The maximum number of routing channels that the present invention can assume
  • ⁇ N the number of channels in each fiber.
  • the AWG devices at both the optical demultiplexer 4 and the optical multiplexer 8 can also be replaced by an etched diffraction grating EDG or a multimode interference coupler MMI, and the EDGR at the three spatial optical routers 3, 6, and 9. Devices can also be replaced with AWGR devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种模块化可扩展的N2×N2波长和空间全光路由器。第一空间光路由器连接单模输入光纤,第一空间光路由器经波长转换及路由模块与第二空间光路由器连接;第二空间光路由器连接单模输出光纤;单模输入光纤和第一空间光路由器之间或者第二空间光路由器与单模输出光纤之间或者上述两种情况均接有波长转换及路由模块。本发明用于波分复用光纤通信系统中,可完成光纤内各个信道的任意交换及光纤间各信道的任意交换,并完成波长转换;并能通过对波长转换及路由模块的级联和线性增加,增加路由信道数目、实现更完整的路由功能。整个路由结构可以通过平面光波导技术实现集成。

Description

模块化可扩展的N2×N2波长和空间全光路由器 技术领域
本发明涉及光纤通信全光路由技术,尤其是涉及一种模块化可扩展的N2×N2波长和空间全光路由器。
背景技术
在光纤诞生并成功应用以后,光纤通信技术迅猛发展,WDM通信方式的发明使得光纤通信带宽大大提高。光纤通信数据的急速增大直接对光通信网络中的各处理节点提出了更高要求,全光通信网络成为未来光通信网络的发展方向。
以波长为依据的光信号包转发是WDM光网络中信号路由的一个重要方式。目前的主流技术多采用光-电-光波长转换及路由的处理方式,它的优点是技术上较成熟,可实现定时、再生、整形功能,但这种方案由于引入了光电变换和时钟提取,需要很多高成本、高功耗的高速光电仪器,对信号比特率和信号格式不透明,信号处理速度存在“电子瓶颈”问题,不符合全光网络“高数据吞吐量,高信号处理带宽,低能耗”的发展要求。还有一种基于微电子机械系统开关(MEMS-Switches)的路由结构,已经有支持32输入/输出端口交换的商用器件报道“Glimmerglass Intelligent Optical System,”数据表可在www.glimmerglass.com获取。但是这种结构的最大缺陷是信道切换时间长,达毫秒量级,只适用于一对结点间持续通信时间长度在秒量级的情况。
全光路由不需要经过电域处理,直接将信息从一个光波长转换到另一个光波长,通过光无源器件的转发,达到路由目的。WDM系统光路由器中主要有光解复用、波长转换、光复用、光路由等模块。全光路由不存在“电子瓶颈”问题,带宽巨大,对信号速率和格式透明,且单片集成的全光路由芯片能耗更将比光-电-光路由大大降低。
目前提出的全光路由器主要有光开关、无源阵列波导光栅器件和基于半导体光放大器(SOA)波长转换两种。“Multi-path Routing in an Monolithically Integrated 4×4Broadcast and Select WDM Cross-connection”,ECOC,September18-22,2011,InP PHOTONICS(Mo.2.LeSaleve)报道了一种基于SOA光开关的全光交叉互连,该结构实现了4×4光信号交叉互连。这种全光路由方式主要由广播选择模块与波长选择模块2部分组成。在广播选择模块中,4个输入端口的光信号通过级联多模干涉耦合器(MMI)分别输入到每一个阵列波导光栅(AWG)的输入端口。在进入AWG之前,每一路上都有SOA开关,通过调节 SOA注入的电流,来控制每一路的通断。经过4个循环4×4阵列波导光栅路由器(AWGR)的转发后,信号进入波长选择模块。根据路由表设计,调节波长选择模块AWG各输出端口上SOA电流,可以决定之后连接的级联MMI上各路信号的波长,进而可以达到控制整个路由芯片输出端上每一路的波长。但是,此方法只能进行不同输入端口光信号的转发,而不能将原信号转移到另一波长上,而且随着输入信号通道数目N的增加,需要相应增加至N个循环N×N AWGR以及2N个SOA开关。同时,每一路输入信号都要经过级联MMI扩展至N个输出端口,整个路由系统单侧引脚数目为N2个,会大大增加器件尺寸及功耗。这种芯片结构十分不利于信道数目的扩展,增加一路信号,整个芯片的设计都要变化,且器件设计难度大大增加。“An 8x8InP Monolithic Tunable Optical Router(MOTOR)Packet Forwarding Chip”,Journal of Lightwave Technology,Vol.28,Issue 4,pp.641-650公开了一种基于SOA波长转换的光路由方式。这种方式通过将原信号经过SOA的交叉调制作用转移到可调谐激光器发出的新波长上,再用AWGR转发到对应信道。但是,这种结构转发能力有限,没有在光网络层面提出多光纤之间的信号交换。
上述全光路由结构均不能完整实现光网络中全光路由的波长转换及端口透明转发的功能需求,并且系统的扩展性不够好。
发明内容
针对现有技术的不足,本发明的目的在于提出一种模块化可扩展的N2×N2波长和空间全光路由器。
本发明采用的技术方案是:
本发明包括第一空间光路由器、至少两组波长转换及路由模块及第二空间光路由器;第一空间光路由器的输入端口连接N根单模输入光纤;第一空间光路由器的输出端口经一组波长转换及路由模块与第二空间光路由器的输入端口连接,将每组不同波长的光信号经过波长转换处理传送到第二空间光路由器各自对应的输入端口中;第二空间光路由器将由波长转换及路由模块输出的每组不同波长的光信号传送到第二空间光路由器各自对应的输出端口;第二空间光路由器输出端口连接N根单模输出光纤;第一空间光路由器和第二空间光路由器镜像工作,使得由第二空间光路由器输出的每路光纤中的各个光信号波长与第一空间光路由器各自对应的输入光纤中的各个光信号波长一致;N根单模输入光纤和第一空间光路由器之间或者第二空间光路由器与N根单模输出光纤之间连接有另一组波长转换及路由模块,或者N根单模输入光纤和第一空间光路由器之间与第二空间光路由器与N根单模输出光纤之间均连接有波长转换及路由模块,通过波长转换及路由模块将信道或者光信号进行波长转换处理并传送。
包括两组波长转换及路由模块的路由器:另一组波长转换及路由模块连接在N根单模输入光纤和第一空间光路由器之间或者第二空间光路由器与N根单模输出光纤之间,通过另一组波长转换及路由模块将信道或者光信号进行波长转换处理并传送。
包括三组波长转换及路由模块的路由器:除了包括第一空间光路由器的输出端口与第二空间光路由器之间的一组波长转换及路由模块以外,N根单模输入光纤和第一空间光路由器之间以及第二空间光路由器与N根单模输出光纤之间均连接有一组波长转换及路由模块。
所述的N根单模输入光纤和第一空间光路由器之间连接的一组波长转换及路由模块,通过另一组波长转换及路由模块将单模输入光纤中复用的各个光信号内的各信道进行波长转换处理传送到第一空间光路由器中。
所述的第二空间光路由器与N根单模输出光纤之间连接的一组波长转换及路由模块,通过另一组波长转换及路由模块将第二空间光路由器各路输出端口的光信号经波长转换处理重新加载在该路输出端口中的任意信道上。
所述的波长转换及路由模块包括依次连接的光解复用器、N个第一波长转换器、第三空间光路由器、N个第二波长转换器和光复用器;第一空间光路由器每路输出端口的光信号先经过光解复用器分解为单波长信号,各个单波长信号经各自的第一波长转换器传输到第三空间光路由器中,第三空间光路由器对单波长信号进行空间路由后再经第二波长转换器波长转换后传送到光复用器,光复用器将各个单波长信号合并为一路光信号输出到第二空间光路由器。
所述的第一波长转换器或者第二波长转换器包括光滤波器结构。
所述的第一波长转换器及第二波长转换器中不包括光滤波器结构,第三空间光路由器与第一空间光路由器、第二空间光路由器具有不同的信道间隔,使得单模输入光纤及单模输出光纤中所传输的光信号的波长与第三空间光路由器的传输光谱不匹配,以将第一波长转换器和第二波长转换器中波长转换前光信号滤除。
所述的光解复用器为1×N光解复用器,采用阵列波导光栅(AWG)或衍射刻蚀光栅(EDG)。
所述的光复用器为N×1光复用器,采用阵列波导光栅(AWG)、衍射刻蚀光栅(EDG)或多模干涉耦合器(MMI)。
所述的第一空间光路由器或第二空间光路由器为循环阵列波导光栅(AWGR)或循环衍射刻蚀光栅(EDGR)。
所述的第三空间光路由器为循环阵列波导光栅(AWGR)或循环衍射刻蚀光栅(EDGR)。
所述的第一波长转换器或第二波长转换器为利用半导体光放大器(SOA)的非线性效应将一波长的光信号加载在另一个不同波长的直流激光上的波长转换结构。
所述的第一空间光路由器、第二空间光路由器和波长转换及路由模块全部或部分集成在同一芯片上。
本发明的有益效果是:
本发明基于设计的波长转换及路由模块,有极好的拓展性,降低了全光路由的设计难度,同时具有空间路由和波长转换的效果,可以实现输入端一共N2个信道之间波长与端口的任意交换。本发明逻辑清晰,可以完整实现全光路由中信号波长转换、转发的功能,并对光的信号格式完全透明。
附图说明
图1是本发明的结构示意图。
图2是本发明波长转换及路由模块的结构示意图。
图3是本发明第一空间光路由器路由路径示意图。
图4是本发明第二空间光路由器路由路径示意图。
图5是本发明第三空间光路由器路由表示意图。
图6是本发明全光路由工作方式示例。
图7是本发明的另一种结构示意图。
图8是本发明的另一种结构示意图。
图9是实施例的光解复用器示意图。
图10是实施例的光复用器示意图。
图11是实施例的第一种波长转换器结构图。
图12是实施例的第二种波长转换器结构图。
图13是实施例的波长转换器信号转换原理及效果图。
图14是实施例的空间光路由器示意图。
图15是实施例的第三空间光路由器的第一输入端口透射光谱示意图。
图中:A、波长转换及路由模块,3、第一空间光路由器,4、光解复用器,5、第一波长转换器,6、第三空间光路由器,7、第二波长转换器,8、光复用器,9、第二空间光路由器,L1、L2、…LN为单模输入光纤的序号,L1’、L2’、…LN’为单模输出光纤的序号,10、可调谐激光器,11、非线性光放大器,12、延时波导,13、线性光放大器,14、调相器。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明。
如图1所示,整个路由器包括第一空间光路由器3、至少两组波长转换及路由模块A及第二空间光路由器9;第一空间光路由器3的输入端口连接N根单模输入光纤,将单模输入光纤中复用的各个光信号路由到第一空间光路由器3各自对应的输出端口上;第一空间光路由器3的输出端口经一组波长转换及路由模块A与第二空间光路由器9的输入端口连接,将每组不同波长的光信号经过波长转换处理传送到第二空间光路由器9各自对应的输入端口中;第二空间光路由器9将由波长转换及路由模块A输出的每组不同波长的光信号传送到第二空间光路由器9各自对应的输出端口;第二空间光路由器9输出端口连接N根单模输出光纤,将输出光信号传送到各自对应的单模输出光纤;第一空间光路由器3和第二空间光路由器9镜像工作,使得由第二空间光路由器9输出的每路光纤中的各个光信号波长与第一空间光路由器3各自对应的输入光纤中的各个光信号波长一致。
除了第一空间光路由器3的输出端口与第二空间光路由器9之间的一组波长转换及路由模块A以外,对于另外组的波长转换及路由模块A,有以下三种情况:
1)如图7所示,N根单模输入光纤和第一空间光路由器3之间连接有一组波长转换及路由模块A,通过另一组波长转换及路由模块A将单模输入光纤中复用的各个光信号内的各信道进行波长转换处理传送到第一空间光路由器3中。
2)如图8所示,第二空间光路由器9与N根单模输出光纤之间连接有一组波长转换及路由模块A,通过另一组波长转换及路由模块A将第二空间光路由器9各路输出端口的光信号经波长转换处理重新加载在该路输出端口中的任意信道上。
3)如图1所示,N根单模输入光纤和第一空间光路由器3之间以及第二空间光路由器9与N根单模输出光纤之间均连接有一组波长转换及路由模块A。
每组波长转换及路由模块A中的波长转换及路由模块A数量均与单模输入光纤的根数相同。
如图2所示,本发明路由器中每个波长转换及路由模块A设计均相同,包括依次连接的光解复用器4、N个第一波长转换器5、第三空间光路由器6、N个第二波长转换器7和光复用器8,负责进行空间光路由器3一个输出端口的一组N个波长光信号的波长转换及路由。
如图2所示,第一空间光路由器3每路输出端口的光信号先经过光解复用器4分解为单波长信号,各个单波长信号经各自的第一波长转换器5传输到第三空间光路由器6中,第三空间光路由器6对单波长信号进行空间路由后再经第二波长转换器7波长转换后传送到光复用器8,光复用器8将各个单波长信号 合并为一路光信号输出到第二空间光路由器9。
优选地,第一波长转换器5或者第二波长转换器7包括光滤波器结构,第一波长转换器5或者第二波长转换器7的光滤波器结构将转换前光信号滤除。
优选地,在第一波长转换器5和第二波长转换器7中不包含光滤波器的情况下,第一波长转换器5和第二波长转换器7的输出端口会同时存在原光信号和转换后光信号。如果第三空间光路由器6与第一空间光路由器3、第二空间光路由器9设计相同,则原光信号会路由至3的某一输出端口,干扰路由至该端口输出的转换后光信号。为避免原光信号对转换后光信号串扰,即第三空间光路由器6中每个端口中光信号串扰,第三空间光路由器6与第一空间光路由器3、第二空间光路由器9具有不同的信道间隔,使得单模输入光纤及单模输出光纤中所传输的光信号的波长与第三空间光路由器6的传输光谱(即透射光谱)不匹配。
具体实施时,对于波长转换及路由模块A,使得第三空间光路由器6与第一空间光路由器3、第二空间光路由器9的信道间隔有一定偏差,使原光信号不能通过第三空间光路由器6。原光信号进入第一波长转换器5,使信号加载至一组新的波长,与第三空间光路由器6信道匹配,即在波长转换及路由模块A中采用一组不同波长完成信道交换。在波长转换模块A中,通过第一次波长转换器5,使经光解复用器4解复用后的光信号转移到一组不同波长间隔的光上,通过第三空间光路由器6,再经过第二次波长转换器7,将第三空间光路由器6空间路由后的光信号重新转换至符合第二空间光路由器9信道间隔的波长,继续传输。
光解复用器4为1×N光解复用器,为根据输入光纤内N个信道的波长间隔所设计的单端输入、N个端口单波长输出的光无源器件,优选的采用阵列波导光栅AWG或衍射刻蚀光栅EDG。
光复用器8为N×1光复用器,为N个输入的单波长光信号合并为单端口输出的光无源器件,优选的采用阵列波导光栅AWG、衍射刻蚀光栅EDG或多模干涉耦合器MMI。
优选的第一空间光路由器3、第二空间光路由器9和第三空间光路由器6可相同或者不相同,可采用循环阵列波导光栅AWGR或循环衍射刻蚀光栅EDGR。
所述的第一波长转换器5或第二波长转换器7的结构可相同或者不相同,具体为利用半导体光放大器SOA的非线性效应将一波长的光信号加载在另一个不同波长的直流激光上的波长转换结构。
优选的,第一波长转换器5或第二波长转换器7可采用如图9所示的结构,包括可调谐激光器10、非线性光放大器11和延时波导12,可调谐激光器10发 出的探测光和信号光经波导连接非线性光放大器11输入端,非线性光放大器11的输出端分别连接光波导和延时波导12后输出信号。
优选的,第一波长转换器5或第二波长转换器7可采用如图10所示的结构,包括可调谐激光器10、非线性光放大器11、延时波导12、线性光放大器13和调相器14,信号光分为两路,分别经光波导和延时波导12后连接各自的线性光放大器13输入端,可调谐激光器10发出两路探测光,两个线性光放大器13输出端与各自对应的可调谐激光器10的输出端经耦合器耦合,将两个线性光放大器13输出端的信号与可调谐激光器10的两路探测光分别耦合,形成两路光信号后连接到各自的非线性光放大器11输入端,两路非线性光放大器11的其中一个非线性光放大器11输出端连接调相器14后与另一路的非线性光放大器11的输出端耦合后输出最终的光信号。
上述的可调谐激光器为可调谐的半导体激光器,非线性光放大器11采用非线性光放大器,线性光放大器13采用线性半导体光放大器。
本发明的N为正整数,当需要时,只需增加输入和输出光纤数目,并对应增加三个空间光路由器3、6、9端口数目和波长转换及路由模块A的数目,其中波长转换及路由模块A结构与设计均相同。
以图1、图6所示包含有三组波长转换及路由模块A的路由结构为例,本发明的工作原理如下:
本发明中,图中出现的各信号波长下标一样则代表波长一样。输入光纤中传输的一组光信号波长矩阵如式1。其中下标第一个数字i代表光纤序号,第二个数字j代表信道序号,例如λ12表示第一根输入光纤的第二个信道波长。
Figure PCTCN2014093648-appb-000001
其中,第一空间光路由器3与第二空间光路由器9设计相同,镜像使用,是具有相同自由光谱范围ΔλFSR、相同信道间隔Δv的AWGR或EDGR无源器件,与每根光纤输入信号波长范围及波长间隔相匹配。第一空间光路由器3路由路径如图3。经过路由后,输出端口波长矩阵如式2,其中每一行代表空间光路由器一个对应输出端口的波长:
Figure PCTCN2014093648-appb-000002
第二空间光路由器9路由路径如图4,经过波长转换模块后,每个端口输入的波长矩阵如式2输出端口波长矩阵如式3:
Figure PCTCN2014093648-appb-000003
波长转换及路由模块A中,基于可调谐激光器、SOA与MZI的第一波长转换器5和第二波长转换器7可以实现覆盖很宽波段的波长转换,即能把输入光信号加载在可调谐激光器能输出的任意波长光上。为避免波长转换后光信号与原信号之间串扰,设计第三空间光路由器6,使其与第一空间光路由器3、第二空间光路由器9具有不同的工作波长,原光信号通过第三空间光路由器6后便有很大的衰减。通过第一次波长转换,使原光信号加载在与3匹配的一组新的波长λ123,…λN上。第三空间光路由器6路由表如图5。经过第三空间光路由器6的转发,转换后光信号在对应端口进入第二次波长转换,此时转换后的波长应符合第二空间光路由器9的需要,同理,转换前的光信号通过第二空间光路由器9后也有很大损耗,避免了信道之间的串扰。
下面以几种典型信道交换为例,介绍具体路由过程:
(1)同一光纤中不同信道交换
如果一根光纤内某些信道需要交换,则可以如图6所示,每根输入光纤均连接一个波长转换及路由模块A,以输入光纤LN中的λN1与λN3交换为例,则首先在第一个波长转换及路由模块中,λN1与λN3经解复用分别进入第一、第三通道。将λN1转换至λ3,λN3转换至λ3,经过该波长转换及路由模块中的第三空间光路由器,分别在第二次波长转换的第三、第一通道转换为λN1、λN3,复用后输出,完成了光纤内的信号交换。
(2)不同光纤中,相同逻辑信道交换
相同逻辑信道是指不同光纤中,若直接经过第一空间光路由器3转发,进入第一空间光路由器3的同一个输出端口的波长,即式2中矩阵每一行都是一组相同逻辑信道。以λ11和λ22交换为例,如图6,首先,λ11和λ22分别从输入光纤L1、L2经N根单模输入光纤和第一空间光路由器3之间的第一组波长转换及路 由模块,保持为λ11、λ22,发送至第一空间光路由器3的第一、第二输入端口,经过路由进入第一空间光路由器3与第二空间光路由器9之间的第二组波长转换及路由模块中的第一个。在第一空间光路由器3与第二空间光路由器9之间的第二组波长转换及路由模块中,λ11经第一次波长转换至λ2,经过第三空间光路由器6转发,进入第二次波长转换第二通道,再波长转换至λ22。同理,λ22经第一次波长转换至λ2,经过第三空间光路由器6转发,λ2进入第二次波长转换第一通道,再波长转换至λ11。λ11与λ22经复用器8复用后,进入第二空间光路由器9,分别转发至第一、第二输出端口。则完成输入光纤L1中λ11和输入光纤L2中λ22端口与波长的完全交换。
因为每一个第一空间光路由器3的输出端口都包含来自每一根输入光纤的对应相同逻辑信道,因此,输入光纤中的任一信道均可以与另外一根光纤中对应的相同逻辑信道完成端口与波长的完全交换。
接下来,在第二空间光路由器9与N根单模输出光纤之间的第三组波长转换及路由模块中,λ11和λ22可以再次分别转换至输出光纤L1’与L2’的任意一个信道。比如,λ11要转换至输出光纤L1’的第三信道λ13,则依据第三空间光路由器6的路由表,如图5,λ11在第二空间光路由器9与N根单模输出光纤之间的第三组波长转换及路由模块中,经第一次波长转换,转换至λ3,经过路由,再经第二次波长转换,转换至λ13,进入输出光纤L1’。至此,完成了任一输入光纤中的任一信道路由至某输出光纤的任一信道的全过程。
(3)不同光纤中,不同逻辑信道交换
以输入光纤L1中的λ12与输入光纤L2中的λ22交换为例,如图6。首先,λ12和λ22分别从输入光纤L1、L2经第一组波长转换及路由模块,保持为λ12、λ22,发送至第一空间光路由器3的第一、第二输入端口,经过路由进入第二组波长转换及路由模块中的第二个和第一个。在第二组波长转换及路由模块中,λ22第一次波长转换至λ2,经过第三空间光路由器6转发,λ2进入第二次波长转换第一通道,再波长转换至λ11,经复用器8复用后,进入第二空间光路由器9。同理,λ12经第一次波长转换,将其所载信号加载在λ4,路由至第二次波长转换的第三通道,再将信号加载在λ23。λ11和λ23经过第二空间光路由器9转发分别进入第一、第二输出端口。
与第二种情况下的信道交换不同的是,这种情况下,输入光纤L1中λ12转换为第二空间光路由器9第二输出端口中λ23信道,输入光纤L2中λ22转换为第二空间光路由器9第一输出端口中λ11信道,路由前后波长不一致。
同第二种情况,在第三组波长转换及路由模块中,λ23与λ11可以再次转换为输出光纤L2’与L1’中的任意一个信道。比如,λ23要转换至输出光纤L2’的第二 信道λ22,完成输入光纤到输出光纤端口与波长的完全交换,则依据第三空间光路由器6的路由表,如图5,λ23在第三组波长转换及路由模块中,经第一次波长转换,转换至λ4,经过路由,再经第二次波长转换,转换至λ22,进入输出光纤L2’。
本发明除了可以用各种功能模块通过光纤连接搭建系统实现,还可以通过有源无源集成技术在芯片上实现,其中包括基于III-V晶圆的多次外延或量子阱混杂工艺单片集成、III-V与SOI精确键合混合集成。
本发明包括的所有结构中,第一空间光路由器3、第二空间光路由器9和波长转换及路由模块A均可全部或部分集成在同一芯片上。
其中,部分集成具体可根据器件功能分区域集成,比如波长转换及路由模块A中,每个波长转换器5可以集成为一个器件,阵列后,通过光纤和第三空间光路由器6、复用器8、解复用器4等其它器件连接,扩展为整个波长转换及路由模块。波长转换及路由模块与第一空间光路由器3及第二空间光路由器9之间同样采用光纤连接。
如图7所示,本发明的另一种实施结构原理同上,包括连接在N根单模输入光纤和第一空间光路由器3之间的一组波长转换及路由模块A、第一空间光路由器3、第二空间光路由器9以及连接在第一空间光路由器3与第二空间光路由器9之间的一组波长转换及路由模块A,这种结构可以实现光纤内的N路光信号之间任意交换,完成光信号从输入端口路由至任意输出端口,但无法任意选择输出端口的某一信道。
如图8所示,为本发明的另一种实施结构原理同上,包括第一空间光路由器3、第二空间光路由器9、连接在第一空间光路由器3与第二空间光路由器9之间的一组波长转换及路由模块A以及连接在第二空间光路由器9与N根单模输出光纤之间的一组波长转换及路由模块A,这种结构可以实现光纤间各信道波长及端口的任意交换。
本发明的具体实施过程:
光解复用器4采用如图9所示一种AWG结构,在解复用器输入端口有一组波长不同的光信号,经过AWG器件,分为N路,从解复用器输出端口输出。
光复用器8采用如图10所示一种AWG结构,复用器输入端口处N个端口分别输入不同波长的光信号,经过AWG,合为一路,从复用器输出端口输出。
两个波长转换器5、7选择可采用如图11、图12所示结构。可调谐激光器10可以通过电流注入或热调谐等方式,获得直流激光。如图11所示,可调谐激光器10所发出的探测光和信号光一起进入非线性光放大器11,二者通过非线性交叉调制,探测光将会加载信号。由于半导体器件载流子寿命的限制,在高速 交叉调制时,探测光的信号强度、相位随信号光改变而发生的变化会有拖尾现象。比如量子阱结构半导体芯片,载流子寿命约为几纳秒ns,显然不能满足10GHz及以上交叉调制响应需求。通过延时波导12,使探测光经不同长度上下两臂,以Δt的时间差到达输出端口。如图13A所示,此时两路探测光存在一个相位差
Figure PCTCN2014093648-appb-000004
通过优化相位差
Figure PCTCN2014093648-appb-000005
两束探测光干涉后可以消除原探测光“拖尾”效应,将相位信息转化为强度信息,提高信号质量,如图13B。图12所示结构则是先将入射信号光分成两路,下面一路通过延时波导12使得二者保持时间差Δt,通过线性放大器13使两路信号光功率平衡。10所发出的探测光也分成2路,分别与上臂、下臂信号光耦合为一路后进入非线性放大器11。同样,在11中发生探测光与信号光的交叉调制,再通过调相器14优化调节上下两臂探测光的相位差
Figure PCTCN2014093648-appb-000006
如图13,获得较好的探测光信号输出。
延时波导14的提供的上下两臂信号延时Δt根据信号速率决定。如果输入信号是10Gbit/s归零码,则Δt约为0.05ns。如果上下两臂探测光信号的相位差为180°,则可以完全干涉消光,达到最大消光比。
三个空间光路由器3、6、9如图14所示,为一种循环刻蚀衍射光栅EDGR,可将左边每一端口输入的波长路由至对应输出端口。结合图6中λ11与λ22的交换过程,当本系统为4根输入光纤,每根输入光纤中有4个信道,即4×4时,输入光纤中的各个信道经第一空间光路由器3转发后,进入第一空间光路由器3的第一输出端口的4个光信号波长分别为λ11=1549.64nm,λ22=1550.44nm,λ33=1551.24nm,λ44=1552.04nm。λ11经第一次波长转换,将信号加载在λ2=1550.0nm上。如图15,为第三空间光路由器6的第一输入端口透射谱示例。λ11与λ2同时进入第三空间光路由器6的第一输入端口,但由于λ11不符合第三空间光路由器6的工作条件,所以有28dB以上的损耗,而λ2仅有2dB损耗左右,大大减少了原光信号λ11对后续路由过程的影响。通过转发,λ2在第三空间光路由器6的第二输出端口输出。
本发明的路由带宽主要受有源器件(包括半导体光放大器和可调谐激光器等)的动态响应带宽限制。在WDM系统中,波长可调谐激光器的波长切换响应时间直接决定了以波长为依据的光信号包转发响应时间。以图1、图6所示包含有三组波长转换及路由模块A的路由结构为例,整个路由过程经历了6次波长转换,则系统的典型最长响应时间为:
ttot=6×tswitch+tc
其中,tc为一个通道路由路径处理时间,tswitch为波长转换器中可调谐激光器的信道切换时间。总的响应时间ttot也反映出光数据包队列延时,并因此确定了一个通道中相邻两个光信号数据队列之间所需的最小时间间隔。以V型耦合腔 激光器为例,电注入调谐信道切换时间约500ps。基于目前的超大规模集成电路技术(VLSI technology),tc可估计为0.5ns。基于SOA的单片集成波长转换结构可以完成10Gb/s~40Gb/s的波长转换。在40Gb/s情况下,系统的响应时间ttot不会造成信号拥堵,即本全光路由器预计可以完成N2×40Gb/s的数据路由。由此,本发明相比传统光-电-光路由器及现有光路由结构享有更大的带宽,可完成更高比特率的光数据处理、交换。
本发明所能承担的最大路由信道数目为N2,即N根输入光纤,每根光纤中的信道数目≤N。在增加输入光纤数目时,只需要重新设计三个空间光路由器3、6、9,使其端口数目与输入光纤数目保持一致,同时信道间隔符合入射光信号需要。波长转换及路由模块A中两次波长转换设计不需要更改,只需按照需求线性增加个数即可。
本发明中,光解复用器4和光复用器8两处的AWG器件也可以用刻蚀衍射光栅EDG或多模干涉耦合器MMI替代,三个空间光路由器3、6、9处的EDGR器件也可用AWGR器件替代。
上述实施例用来解释说明本发明,而不是对本发明进行限制。在本发明的精神和权利要求的保护范围内,对本发明做出的任何修改和改变,都落入本发明的保护范围。

Claims (12)

  1. 一种模块化可扩展的N2×N2波长和空间全光路由器,其特征在于:包括第一空间光路由器(3)、至少两组波长转换及路由模块(A)及第二空间光路由器(9);第一空间光路由器(3)的输入端口连接N根单模输入光纤,第一空间光路由器(3)的输出端口经一组波长转换及路由模块(A)与第二空间光路由器(9)的输入端口连接,将每组不同波长的光信号经过波长转换处理传送到第二空间光路由器(9)各自对应的输入端口中,第二空间光路由器(9)将由波长转换及路由模块(A)输出的每组不同波长的光信号传送到第二空间光路由器(9)各自对应的输出端口,第二空间光路由器(9)输出端口连接N根单模输出光纤;第一空间光路由器(3)和第二空间光路由器(9)镜像工作,使得由第二空间光路由器(9)输出的每路光纤中的各个光信号波长与第一空间光路由器(3)各自对应的输入光纤中的各个光信号波长一致;
    N根单模输入光纤和第一空间光路由器(3)之间或者第二空间光路由器(9)与N根单模输出光纤之间连接有另一组波长转换及路由模块(A),或者N根单模输入光纤和第一空间光路由器(3)之间与第二空间光路由器(9)与N根单模输出光纤之间均连接有波长转换及路由模块(A),通过波长转换及路由模块(A)将信道或者光信号进行波长转换处理并传送。
  2. 根据权利要求1所述的一种模块化可扩展的N2×N2波长和空间全光路由器,其特征在于:所述的N根单模输入光纤和第一空间光路由器(3)之间连接的一组波长转换及路由模块(A),通过另一组波长转换及路由模块(A)将单模输入光纤中复用的各个光信号内的各信道进行波长转换处理传送到第一空间光路由器(3)中。
  3. 根据权利要求1所述的一种模块化可扩展的N2×N2波长和空间全光路由器,其特征在于:所述的第二空间光路由器(9)与N根单模输出光纤之间连接的一组波长转换及路由模块(A),通过另一组波长转换及路由模块(A)将第二空间光路由器(9)各路输出端口的光信号经波长转换处理重新加载在该路输出端口中的任意信道上。
  4. 根据权利要求1~3任一所述的一种模块化可扩展的N2×N2波长和空间全光路由器,其特征在于:所述的波长转换及路由模块(A)包括依次连接的光解复用器(4)、N个第一波长转换器(5)、第三空间光路由器(6)、N个第二波长转换器(7)和光复用器(8);第一空间光路由器(3)每路输出端口的光信号先经过光解复用器(4)分解为单波长信号,各个单波长信号经各自的第一 波长转换器(5)传输到第三空间光路由器(6)中,第三空间光路由器(6)对单波长信号进行空间路由后再经第二波长转换器(7)波长转换后传送到光复用器(8),光复用器(8)将各个单波长信号合并为一路光信号输出到第二空间光路由器(9)。
  5. 根据权利要求4所述的一种模块化可扩展的N2×N2波长和空间全光路由器,其特征在于:所述的第一波长转换器(5)或者第二波长转换器(7)包括光滤波器结构。
  6. 根据权利要求4所述的一种模块化可扩展的N2×N2波长和空间全光路由器,其特征在于:
    所述的第一波长转换器(5)及第二波长转换器(7)中不包括光滤波器结构,第三空间光路由器(6)与第一空间光路由器(3)、第二空间光路由器(9)具有不同的信道间隔,使得单模输入光纤及单模输出光纤中所传输的光信号的波长与第三空间光路由器(6)的传输光谱不匹配,以将第一波长转换器(5)和第二波长转换器(7)中波长转换前光信号滤除。
  7. 根据权利要求4所述的一种模块化可扩展的N2×N2波长和空间全光路由器,其特征在于:所述的光解复用器(4)为1×N光解复用器,采用阵列波导光栅或衍射刻蚀光栅。
  8. 根据权利要求4所述的一种模块化可扩展的N2×N2波长和空间全光路由器,其特征在于:所述的光复用器(8)为N×1光复用器,采用阵列波导光栅、衍射刻蚀光栅或多模干涉耦合器。
  9. 根据权利要求1~3任一所述的一种模块化可扩展的N2×N2波长和空间全光路由器,其特征在于:所述的第一空间光路由器(3)或第二空间光路由器(9)为循环阵列波导光栅或循环衍射刻蚀光栅。
  10. 根据权利要求1~3任一所述的一种模块化可扩展的N2×N2波长和空间全光路由器,其特征在于:所述的第三空间光路由器(6)为循环阵列波导光栅或循环衍射刻蚀光栅。
  11. 根据权利要求4所述的一种模块化可扩展的N2×N2波长和空间全光路由器,其特征在于:所述的第一波长转换器(5)或第二波长转换器(7)为利用半导体光放大器的非线性效应将一波长的光信号加载在另一个不同波长的直流激光上的波长转换结构。
  12. 根据权利要求1~3所述的一种模块化可扩展的N2×N2波长和空间全光路由器,其特征在于:所述的第一空间光路由器(3)、第二空间光路由器(9)和波长转换及路由模块(A)全部或部分集成在同一芯片上。
PCT/CN2014/093648 2014-12-12 2014-12-12 模块化可扩展的n2×n2波长和空间全光路由器 WO2016090620A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/093648 WO2016090620A1 (zh) 2014-12-12 2014-12-12 模块化可扩展的n2×n2波长和空间全光路由器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/093648 WO2016090620A1 (zh) 2014-12-12 2014-12-12 模块化可扩展的n2×n2波长和空间全光路由器

Publications (1)

Publication Number Publication Date
WO2016090620A1 true WO2016090620A1 (zh) 2016-06-16

Family

ID=56106488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093648 WO2016090620A1 (zh) 2014-12-12 2014-12-12 模块化可扩展的n2×n2波长和空间全光路由器

Country Status (1)

Country Link
WO (1) WO2016090620A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104317000A (zh) * 2014-10-16 2015-01-28 浙江大学 模块化可扩展的波长和空间全光路由器
CN104317137A (zh) * 2014-10-16 2015-01-28 浙江大学 模块化可扩展的n2×n2波长和空间全光路由器
CN204203497U (zh) * 2014-10-16 2015-03-11 浙江大学 一种模块化可扩展的波长和空间全光路由器
CN204270002U (zh) * 2014-10-16 2015-04-15 浙江大学 一种模块化可扩展的n2×n2波长和空间全光路由器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104317000A (zh) * 2014-10-16 2015-01-28 浙江大学 模块化可扩展的波长和空间全光路由器
CN104317137A (zh) * 2014-10-16 2015-01-28 浙江大学 模块化可扩展的n2×n2波长和空间全光路由器
CN204203497U (zh) * 2014-10-16 2015-03-11 浙江大学 一种模块化可扩展的波长和空间全光路由器
CN204270002U (zh) * 2014-10-16 2015-04-15 浙江大学 一种模块化可扩展的n2×n2波长和空间全光路由器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NICHOLES STEVEN C. ET AL.: "An 8X8 InP Monolithic Tunable Optical Router (MOTOR) Packet Forwarding Chip", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 28, no. 4, 15 February 2010 (2010-02-15), pages 641 *

Similar Documents

Publication Publication Date Title
Borella et al. Optical components for WDM lightwave networks
US9485048B2 (en) Methods and devices for space-time multi-plane optical networks
Lee et al. Silicon photonic switch fabrics in computer communications systems
US7277634B2 (en) Method and apparatus of a semiconductor-based fast intelligent NxN photonic switch module with an optical buffer for WDM networks
EP3357180B1 (en) Optoelectronic switch
US9383516B2 (en) System and method for optical input/output arrays
Williams et al. Integrated optical 2/spl times/2 switch for wavelength multiplexed interconnects
Moralis-Pegios et al. On-chip SOI delay line bank for optical buffers and time slot interchangers
Moralis-Pegios et al. Multicast-enabling optical switch design employing Si buffering and routing elements
EP3433649A1 (en) Optical interconnect having optical splitters and modulators integrated on same chip
CN104317000B (zh) 模块化可扩展的波长和空间全光路由器
Feyisa et al. Compact 8× 8 SoA-based optical WDM space switch in generic INP technology
CN104297853B (zh) 模块化的波长和空间全光路由器
CN204203497U (zh) 一种模块化可扩展的波长和空间全光路由器
CN204203498U (zh) 一种模块化可扩展的全光路由器
CN104317137B (zh) 模块化可扩展的n2×n2波长和空间全光路由器
CN204270002U (zh) 一种模块化可扩展的n2×n2波长和空间全光路由器
Zali et al. Polarization insensitive photonic integrated 1x4 WDM wavelength selective switch for optical networks
WO2016090620A1 (zh) 模块化可扩展的n2×n2波长和空间全光路由器
Williams Integrated semiconductor-optical-amplifier-based switch fabrics for high-capacity interconnects
CN204203499U (zh) 一种模块化的波长和空间全光路由器
WO2016090619A1 (zh) 一种模块化可扩展的波长和空间全光路由器
CN104345391B (zh) 模块化可扩展的全光路由器
Calabretta et al. Photonic integrated WDM cross-connects for telecom and datacom networks
Xiao et al. Experimental demonstration of SiPh Flex-LIONS for bandwidth-reconfigurable optical interconnects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907737

Country of ref document: EP

Kind code of ref document: A1