WO2016090551A1 - Composition comprising visible beads - Google Patents

Composition comprising visible beads Download PDF

Info

Publication number
WO2016090551A1
WO2016090551A1 PCT/CN2014/093367 CN2014093367W WO2016090551A1 WO 2016090551 A1 WO2016090551 A1 WO 2016090551A1 CN 2014093367 W CN2014093367 W CN 2014093367W WO 2016090551 A1 WO2016090551 A1 WO 2016090551A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
weight
colorant
core
layer
Prior art date
Application number
PCT/CN2014/093367
Other languages
French (fr)
Inventor
Le SHENG
Saijuan NI
Cyril Lemoine
Lingling Sun
Original Assignee
L'oreal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'oreal filed Critical L'oreal
Priority to PCT/CN2014/093367 priority Critical patent/WO2016090551A1/en
Priority to CN201480084632.9A priority patent/CN107205952A/en
Publication of WO2016090551A1 publication Critical patent/WO2016090551A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/062Oil-in-water emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/345Alcohols containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/347Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/04Preparations containing skin colorants, e.g. pigments for lips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/20Chemical, physico-chemical or functional or structural properties of the composition as a whole
    • A61K2800/26Optical properties
    • A61K2800/262Transparent; Translucent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/42Colour properties
    • A61K2800/43Pigments; Dyes

Definitions

  • the present invention relates to the field of cosmetics. More particularly, it relates to a stable cosmetic composition with an improved hydrating effect with fresh feeling to the skin, after application.
  • cosmetic or dermatological compositions with transparent appearance are more favored by the consumers due to the fresh, hydrating, natural, and caring perceptions they deliver.
  • compositions as described above different types of active principles and pigments, especially entrapped colorants and more particularly pigments-containing microcapsules are already used.
  • hydroxylated diphenylmethane derivatives are known from application US 2007/098655 in compositions in the emulsion form. These hydroxylated diphenylmethane derivatives are described in this patent application as tyrosinase inhibitors which can be used in particular in depigmenting compositions.
  • US8551458 described an emulsion comprising hydroxylated diphenylmethane derivatives, such as 4- (1-phenylethyl) -1, 3-dihydroxybenzene, esters of fatty acid and of polyethylene glycol, additional surfactants chosen from esters of C 16 -C 22 fatty acid and of sorbitan and esters of C 16 -C 22 fatty acid and of glycerol, and polycondensates of ethylene oxide and of propylene oxide.
  • hydroxylated diphenylmethane derivatives such as 4- (1-phenylethyl) -1, 3-dihydroxybenzene
  • esters of fatty acid and of polyethylene glycol such as 4- (1-phenylethyl) -1, 3-dihydroxybenzene
  • additional surfactants chosen from esters of C 16 -C 22 fatty acid and of sorbitan and esters of C 16 -C 22 fatty acid and of glycerol
  • composition as such is not totally satisfying in terms of its skin benefit after application, or furthermore its appearance.
  • Pigments especially entrapped colorants and more particularly pigments-containing microcapsules are already used. They mainly differ through the type of entrapping material (s) and/or the type of encapsulation.
  • s entrapping material
  • WO-A-01/35933 described pigments encapsulated by microcapsules in acrylic acid and/or methacrylic acid polymers or copolymers (commercialized by TAGRA BIOTECHNOLOGIES under the name ); the pigments encapsulated by microspheres in cellulose derivatives, it can be cited for example spheres comprising cellulose, hydroxypropyl methylcellulose, commercialized by the Induchem company under the name the pigments encapsulated by microcapsules in polymers of polyester, polyaminomethacrylate, polyvinylpyrrolidone, hydroxypropylmethylcellulose, shellac types and mixtures thereof, it may be notably cited those described in the application US 2011/0165208 of Biogenics and commercialized under the name by Biogenics
  • double-layer microcapsules do not comprise an uncoloured core as the one of the microcapsules preferably used according to the invention, but rather a colored inner layer containing the aforesaid components which are mixed all together and then granulated.
  • colorant-containing microcapsules it may be difficult to permanently retain the colorant over long periods of time and when subjected to different environments and conditions. This is true of pigments, oil soluble dyes, and water soluble dyes.
  • some microcapsules described in patents and publications have been found to gradually release the colorant, or to "bleed” , over time when tested for prolonged periods at elevated temperatures. Color bleed occurs when a dye or pigment migrates through or off of microspheres/microcapsules through contact with moisture and/or other ingredients in a formulation such as alcohols or glycols, surfactants, silicones, oils, preservatives, salts and other components typically found in cosmetic formulations. Leeching or bleed of the colorant in cosmetic composition can impair the long term visual effect of the cosmetic both in the container and on the substrate.
  • pigment-containing microcapsules may confer a lower covering effect than expected.
  • pigment-containing microcapsules may have some stability issues depending on the cosmetic composition and associated solvents/ingredients.
  • the present invention is intended to provide a composition in form of an oil in water emulsion comprising a dispersed fatty phase and a continuous aqueous phase, with an improved proper hydrating effect on the skin (no sticky or oily feeling) , and meanwhile stable over time and temperature changes.
  • the present invention also aims to provide a composition, in particular a transparent composition.
  • the invention provides a composition in form of an oil-in-water emulsion comprising a dispersed fatty phase and a continuous aqueous phase, comprising solubilizing agent (s) , polyol (s) , hydroxylated diphenylmethane derivative (s) , and microcapsule (s) containing a releasable colorant (s) .
  • Such a composition is stable over time and temperature changes, and possesses an improved hydrating effect on application to the skin. Moreover, it has a pleasant transparent appearance.
  • Figure 1 is a schematic diagram illustrating a typical structure of a color changing microcapsule of a first embodiment of the present invention, wherein A1 represents a core and B1, C1, D1 and E1 being different layers concentrically surrounding said core.
  • Figure 2 is a schematic diagram of the first embodiment of a microcapsule showing the core-shell structure of color-changing microcapsules B as used in Example 1 described below.
  • Figure 3 is a schematic diagram illustrating a typical structure of a microcapsule of a second embodiment of the present invention, wherein A2 represents a colored core, B2, C2, D2 and E2 being different layers concentrically surrounding the core A2, at least one of these surrounding layers being mandatory and including preferably titanium dioxide particles, and the others being optional.
  • Figure 4 is a schematic diagram showing the core-shell structure of color-changing microcapsules of the second embodiment of a microcapsule containing 3 layers: colored core-inner color layer-TiO 2 particle layer.
  • the pigment core included in the right particle of Fig. 4 corresponds to the left particle, which comprises a pigment/lecithin layer (inner color layer) and an inner pigment powder (inner colored core) .
  • Figure 5 is a schematic diagram showing the core-shell structure of color-changing microcapsules of the second embodiment of a microcapsule containing 2 layers: colored core-TiO 2 particle layer.
  • compositions in form of an oil-in-water emulsion comprising a dispersed fatty phase and a continuous aqueous phase, comprising solubilizing agent (s) , polyol (s) , hydroxylated diphenylmethane derivative (s) , and microcapsule (s) containing a releasable colorant (s) .
  • the term "transparent composition” can be understood as a composition which transmits at least 40%of light at a wavelength of 750 nm without scattering it, i.e. a composition in which the scattering angle of the light is less than 5° and is better still about 0°.
  • the transparent composition may transmit at least 50%, especially at least 60%and especially at least 70%of light at a wavelength of 750 nm.
  • the transmission measurement is made with a Cary 300 Scan UV-visible spectrophotometer from the company Varian, according to the following protocol:
  • composition is poured into a square-sided spectrophotometer cuvette with a side length of 10 mm;
  • the light transmitted through the sample of the composition is then measured on the spectrophotometer by scanning wavelengths ranging from 700 nm to 800 nm, the measurement being made in transmission mode;
  • keratin material means the skin (of the body, face and around the eyes) , hair, eyelashes, eyebrows, bodily hair, nails, lips or mucous membranes. In particular it means the skin.
  • composition of the present invention comprises a continuous aqueous phase.
  • the aqueous phase contains water as main component.
  • the amount of water is not limited, and may be from 5%to 99%by weight, preferably from 10%to 95%by weight, and more preferably from 15%to 90%by weight, relative to the total weight of the composition.
  • the aqueous phase may further contain at least one organic solvent, preferably water-miscible organic solvent.
  • organic solvent there may be mentioned, for example, C 1 -C 4 alkanols, such as ethanol and isopropanol; aromatic alcohols such as benzyl alcohol and phenoxyethanol; analogous products thereof; and mixtures thereof.
  • the amount of the organic water-miscible solvent may be less than 10%by weight, preferably 5%by weight or less, and more preferably 1%by weight or less, relative to the total weight of the composition.
  • a composition in accordance with the present invention comprises a dispersed fatty phase.
  • the fatty phase of the invention comprises at least one oil.
  • oil means any fatty substance that is in liquid form at room temperature (20-25°C) and at atmospheric pressure.
  • a composition of the invention may comprise a liquid fatty phase in a content ranging from 0.1%to 90%by weight, in particular from 0.5%to 60%by weight, in particular from 1%to 40%by weight, relative to the total weight of the composition.
  • the fatty phase that is suitable for preparing the cosmetic compositions according to the invention may comprise hydrocarbon-based oils, silicone oils, fluoro oils or non-fluoro oils, or mixtures thereof.
  • the oils may be volatile or non-volatile.
  • They may be of animal, plant, mineral or synthetic origin.
  • non-volatile oil means an oil that remains on the skin or the keratin fibre at room temperature and atmospheric pressure. More specifically, a non-volatile oil has an evaporation rate strictly less than 0.01 mg/cm2/min.
  • evaporation rate 15 g of oil or of oil mixture to be tested are placed in a crystallizing dish 7 cm in diameter, which is placed on a balance in a large chamber of about 0.3 m3 that is temperature-regulated, at a temperature of 25°C, and hygrometry-regulated, at a relative humidity of 50%.
  • the liquid is allowed to evaporate freely, without stirring it, while providing ventilation by means of a fan (Papst-Motoren, reference 8550 N, rotating at 2700 rpm) placed in a vertical position above the crystallizing dish containing said oil or said mixture, the blades being directed towards the crystallizing dish, 20 cm away from the bottom of the crystallizing dish.
  • the mass of oil remaining in the crystallizing dish is measured at regular intervals.
  • the evaporation rates are expressed in mg of oil evaporated per unit of area (cm2) and per unit of time (minutes) .
  • volatile oil means any non-aqueous medium that is capable of evaporating on contact with the skin or the lips in less than one hour, at room temperature and atmospheric pressure.
  • the volatile oil is a cosmetic volatile oil, which is liquid at room temperature. More specifically, a volatile oil has an evaporation rate of between 0.01 and 200 mg/cm2/min, limits included.
  • silicon oil means an oil comprising at least one silicon atom, and especially at least one Si-O group.
  • fluoro oil means an oil comprising at least one fluorine atom.
  • hydrocarbon-based oil means an oil mainly containing hydrogen and carbon atoms.
  • the oils may optionally comprise oxygen, nitrogen, sulfur and/or phosphorus atoms, for example in the form of hydroxyl or acid radicals.
  • composition of the present invention comprises at least one solubilizing agent.
  • the solubilizing agent is understood according to the invention to mean in particular an ingredient which makes it possible (i) either to solubilize or stabilize the said hydroxylated diphenylmethane derivative, or (ii) to solubilize or stabilize the physiologically acceptable medium in which the said hydroxylated diphenylmethane derivative is present.
  • physiologically acceptable medium is understood to mean a medium which is compatible with the skin, including the scalp, the mucous membranes, the eyes and/or the hair.
  • the solubilizing agent is selected from the group consisting of polyoxyalkylene ether of alkyl alcohols, polyalkylene glycols of saturated or unsaturated fatty acid, optionally hydrogenated, and any mixture thereof.
  • polyoxylakylene ether of alkyl alcohols may be chosen from polyoxyethylene ether and/or polyoxypropylene ether of alkyl alcohols, or a mixture thereof.
  • the solubilizing agent is preferably polyoxyethylene ether and/or polyoxypropylene ether of C 1 -C 34 , more preferably C 1 -C 30 , even more preferably C 4 -C 24 alcohol, or a mixture thereof.
  • Mentions may be made of, for example, PPG-5-ceteth-20, PPG-6-decyltetradeceth-30, PPG-26-buteth-26, or a mixture thereof.
  • solubilizing agents of the present invention may also be chosen from polyalkylene glycols of saturated or unsaturated fatty acid, optionally hydrogenated, or its mixture.
  • the solubilizing agent is a polyalkylene glocols of castor oil, optionally hydrogenated, or its mixture.
  • Mentions may be made of oxyethylenated castor oils such as PEG-40 castor oil, PEG-60 castor oil, preferably hydrogenated, or a mixture thereof.
  • solubilizing agents such as PPG-6 decyltetradeceth-30 sold under the name Nikkol Pen-4630 by the company Nikkol, oxyethylenated (40 EO) hydrogenated castor oil sold as a mixture with oxypropylenated (26 PO) oxyethylenated (26 EO) butyl alcohol in water under the reference Solubilisant LRI by LCW, the polyoxyl 40 hydrogenated castor oil sold under the name Cremophore RH 40, the PEG-60 hydrogenated castor oil sold under the name Eumulgin Co 60 by the company Cognis (BASF) , or a mixture thereof.
  • solubilizing agents such as PPG-6 decyltetradeceth-30 sold under the name Nikkol Pen-4630 by the company Nikkol, oxyethylenated (40 EO) hydrogenated castor oil sold as a mixture with oxypropylenated (26 PO) oxyethylenated (26 EO) butyl
  • the composition comprises the solubilizing agent ranging from 0.1%to 25%by weight, preferably from 0.5%to 15%by weight, more preferably from 0.5%to 5%by weight, relative to the total weight of the composition.
  • composition of the present invention comprises at least one polyol.
  • a single type of polyol may be used, but two or more different types of polyol may be used in combination.
  • polyol here means an alcohol having two or more hydroxy groups, and does not encompass a saccharide or a derivative thereof.
  • the derivative of a saccharide includes a sugar alcohol which is obtained by reducing one or more carbonyl groups of a saccharide, as well as a saccharide or a sugar alcohol in which the hydrogen atom or atoms in one or more hydroxy groups thereof has or have been replaced with at least one substituent such as an alkyl group, a hydroxyalkyl group, an alkoxy group, an acylgroup or a carbonyl group.
  • the polyol may be a C 2 -C 12 polyol, preferably a C 2-9 polyol, containing at least 2 hydroxy groups, and preferably 2 to 5 hydroxy groups.
  • the polyol may be a natural or synthetic polyol.
  • the polyol may have a linear, branched or cyclic molecular structure.
  • the polyol may be selected from the group consisting of glycerins and glycols, more preferably propylene glycol, butylene glycol, pentylene glycol, hexylene glycol, dipropylene glycol, diethylene glycol, ethylhexylglycerine, caprylyl glycol, glycol ethers, preferably mono-, di-or tripropylene glycol of alkyl (C 1 -C 4 ) ether or mono-, di-or triethylene glycol of alkyl (C 1 -C 4 ) ether, and mixtures thereof.
  • glycerins and glycols more preferably propylene glycol, butylene glycol, pentylene glycol, hexylene glycol, dipropylene glycol, diethylene glycol, ethylhexylglycerine, caprylyl glycol, glycol ethers, preferably mono-, di-or tripropylene glycol of alkyl (
  • the polyol is chosen from glycerins, butylene glycol, dipropylene glycol, caprylyl glycol, or a mixture thereof.
  • the polyol may be present in an amount less than or equal to 20%by weight, preferably from 0.01%to 20%by weight, more preferably from 1%to 15%by weight, relative to the total weight of the composition.
  • composition of the present invention comprises at least one hydroxylated diphenylmethane derivative.
  • hydroxylated diphenylmethane derivatives which can be used in the compositions of the invention are described in application WO2004/105736.
  • -R 1 is chosen from a hydrogen atom, a methyl group, a saturated or unsaturated, linear or branched alkyl chain having from 2 to 4 carbon atoms, an-OH group, and a halogen,
  • -R 2 is chosen from a hydrogen atom, a methyl group, a saturated or unsaturated linear or branched alkyl chain having from 2 to 5 carbon atoms,
  • -R 3 is chosen from a methyl group or a saturated or unsaturated linear or branched alkyl chain having from 2 to 5 carbon atoms,
  • R 4 and R 5 are, independently of each other, chosen from a hydrogen atom, a methyl group, a saturated or unsaturated linear or branched alkyl chain having from 2 to 5 carbon atoms, an-OH group or a halogen.
  • The-OH, R 1 , R 4 and R 5 groups may be at the ortho, meta or para position with respect to the bond formed with the carbon linking the two aromatic rings to each other.
  • R 1 , R 2 , R 4 and R 5 denote a hydrogen atom
  • -the-OH groups are at the ortho and para positions with respect to the bond formed with the carbon linking the two aromatic rings to each other.
  • Such a compound is marketed under the name 377 or BIO 377 by the company SYMRISE.
  • the composition comprises, in an aqueous phase, at least one hydroxylated diphenylmethane derivative of formula (II)
  • the hydroxylated diphenyl methane derivative of formula (I) is present in the composition of the present invention ranging from 0.01%to 3%by weight relative to the total weight of the composition, in particular from 0.05%to 1%by weight, relative to the total weight of the composition.
  • composition of the present invention comprises at least one microcapsule containing a releasable colorant.
  • microcapsule refers to a spherical microcapsule containing at least one layered coating entrapping at least one colorant and surrounding a core chemically different from the coating. Microcapsules are distinct from microspheres, which consist of a spherical homogeneous matrix.
  • the “at least one layered coating” is a multilayered coating preferably an organic multilayered coating.
  • multilayered microcapsule refers to a microcapsule consisting of a core surrounded by a coating based on one or more inner layer (s) and one outer layer.
  • the one or more inner layer (s) forming the multilayered coating of the multilayered microcapsule and the single outer layer of the microcapsule may be formed of the same or different wall-forming organic compound (s) .
  • the microcapsule contains a core also called an “inner core” surrounded by a coating based on one or more layer (s) .
  • the microcapsule is a ‘multilayered’ microcapsule, containing at least one inner layer and one outer layer.
  • the one or more inner layer (s) forming the multi-layer coating of the multilayered microcapsule and the single outer layer of the microcapsule may be formed of the same or different wall-forming organic compound (s) .
  • the inner layer and the outer layer are formed of the same wall-forming organic compounds, and the core is then surrounded by one layer coating.
  • the outer layer does not contain any colorant. In another embodiment, the outer layer contains at least one colorant.
  • wall-forming organic compound refers to an organic compound or a combination of two or more different organic compounds as defined herein, which form a component of the layer (s) of the microcapsules.
  • the ‘wall-forming organic compound’ contains at least one polymer.
  • encapsulated colorant (s) may be present in the composition of the present invention in an amount in active matter of encapsulated pigments ranging from 0.5%to 20%by weight, in particular from 1%to 15%by weight, and more particularly from 2%to 12%by weight, relative to the total weight of the composition.
  • microcapsules will be integrated in the cosmetic formula generally at the latest stages of the formulation and after filtering stages if any, to avoid the microcapsules being broken.
  • the microcapsules are added and mixed uniformly at temperatures under 50°C. They are mixed gently with a paddle rather than a homogenizer.
  • the microcapsules may have the ability of being more easily breakable in contact with aqueous phase, preferably in contact with hydrophilic agent (s) (e.g., water, polyols, glycols, alcohols) .
  • hydrophilic agent e.g., water, polyols, glycols, alcohols
  • the microcapsules may advantageously swell in contact with such hydrophilic agent (s) as defined hereunder.
  • the microcapsules are advantageously deformable when applied on a keratin material and consequently provide a soft feeling to the user. Furthermore, their small size contributes to not creating any discomfort or unfavourable feeling when applied.
  • microcapsules are soft enough to rupture upon very slight rubbing or pressing of the skin in order to release their content but, nevertheless, are durable enough to avoid destruction of the coating during manufacture and storage of the corresponding composition.
  • microcapsule allows the use of regular equipment for the preparation of the compositions of the present invention because substantially no coloring of the apparatus occurs during the manufacturing process.
  • the microcapsules are of particular interest since they can mask the original color of the encapsulated colorants, increase the stability of these colorants against degradation, and prevent undesirable release of the encapsulated colorants into the composition during the manufacturing process and prolonged storage.
  • the microcapsule is present in the composition of the invention ranging from 0.1%to 10%by weight, preferably from 0.5%to 5%by weight, relative to the total weight of the composition.
  • the microcapsules have average particle sizes of less than 800 ⁇ m, more preferably less than about 400 ⁇ m, advantageously from 1 ⁇ m to 300 ⁇ m, in particular from 5 ⁇ m to 200 ⁇ m, and more particularly from 10 ⁇ m to 100 ⁇ m in diameter.
  • microcapsules containing releasable colorant (s) are multilayered microcapsules.
  • the microcapsules contain:
  • -a core preferably uncolored core, containing, preferably consisting of, one organic material
  • the layered coating containing at least one polymer, and at least one colorant.
  • the layered coating contains at least one binder.
  • the microcapsule contains at least two layers, preferably at least one organic colored inner layer and one organic outer layer of different color from that of the organic colored inner layer.
  • the core contains at least one monosaccharide or its derivatives as the organic material, in particular a monosaccharide-polyol advantageously selected from the group consisting of mannitol, erythritol, xylitol, sorbitol and mixtures thereof, preferably mannitol.
  • a monosaccharide-polyol advantageously selected from the group consisting of mannitol, erythritol, xylitol, sorbitol and mixtures thereof, preferably mannitol.
  • the layered coating surrounding the core contains at least one hydrophilic polymer (s) selected from the group consisting of polysaccharides and derivatives thereof, preferably the ones including one type of ose or several type of ose (s) , preferably several type of ose (s) including at least D-glucose units, in particular starch and derivatives, cellulose or its derivatives, and more preferably starch and derivatives.
  • hydrophilic polymer selected from the group consisting of polysaccharides and derivatives thereof, preferably the ones including one type of ose or several type of ose (s) , preferably several type of ose (s) including at least D-glucose units, in particular starch and derivatives, cellulose or its derivatives, and more preferably starch and derivatives.
  • the microcapsule includes at least one lipid-based material, preferably with amphiphilic properties such as lecithins and in particular hydrogenated lecithin.
  • the core represents from 10%to 90%by weight, preferably 20%to 80%by weight, more preferably from 30%to 70%by weight, and still more preferably from 40%to 60%by weight, relative to the total weight of the microcapsule.
  • the colorant (s) represent from 20%to 90%, preferably from 30%to 80%, and in particular from 50%to 75%by weight relative to the microcapsule.
  • microcapsule contains at least:
  • -an inner core made of monosaccharide-polyol, preferably mannitol,
  • hydrophilic polymer preferably selected from polysaccharide or its derivatives, and more preferably from starch or derivatives, and advantageously at least one lipid based material, preferably an amphiphilic compound, and more preferably a phospholipid, even more preferably phosphoacylglycerol such as hydrogenated lecithin.
  • each layer from the microcapsule contains at least one specific colorant or a specific blend of colorant (s) .
  • the outer layer from the microcapsule contains at least one specific colorant or a specific blend of colorant (s) .
  • the colorants are pigments, preferably selected from the group consisting of metallic oxides.
  • one layer from the microcapsule contains iron oxides and titanium dioxide (TiO 2 ) as colorants.
  • one layer from the microcapsule only contains TiO 2 as a colorant.
  • composition of the present invention may further contain from 0.1%to 70%by weight relative to the weight of the composition, of additional cosmetic ingredient (s) selected from volatile and non-volatile silicon or hydrocarbon oils, surfactants, fillers, additional gelifying agents, thickening agents, film forming agents, polymers, preservatives, silicone elastomers, self-tanning agents, additional non-entrapped colorants, cosmetic actives, pH regulators, perfumes, UV filters and mixtures thereof.
  • additional cosmetic ingredient selected from volatile and non-volatile silicon or hydrocarbon oils, surfactants, fillers, additional gelifying agents, thickening agents, film forming agents, polymers, preservatives, silicone elastomers, self-tanning agents, additional non-entrapped colorants, cosmetic actives, pH regulators, perfumes, UV filters and mixtures thereof.
  • the core is made of at least an organic material.
  • the size of the core preferably ranges from 500 nm to 150 ⁇ m in diameter.
  • the core is in a solid and/or crystal form at room temperature under atmospheric pressure.
  • the organic material may have high water dissolvability.
  • the core is water-soluble or water dispersible.
  • the core is uncolored, i.e., it does not contain colorant material.
  • the core consists of only one compound.
  • This compound is organic and more preferably is a natural compound.
  • the core is sugar-alcohol, preferably a monosaccharide-polyol advantageously selected from mannitol, erythritol, xylitol, sorbitol.
  • the core is made of mannitol and more preferably exclusively made of mannitol.
  • the core contains at least mannitol and at least one additional ingredient being preferably a polymer selected from hydrophilic polymers.
  • a core may contain mannitol and hydrophilic polymers chosen among cellulose polymers, starch polymers and their mixture, preferably their mixture.
  • the cellulose polymer is a carboxymethylcellulose and the starch polymer is a non-modified natural starch, for example corn starch.
  • the core may be constituted by a seed (or crystal) of one of the previous materials.
  • the core is preferably contained in an amount of from 1%to 50%by weight, preferably from 4%to 40%by weight, in particular from 5%to 30%by weight, and more particularly from 10%to 20%by weight with respect to the total weight of the microcapsule.
  • the mannitol is preferably contained in an amount of from 2%to 100%by weight, preferably from 5%to 100%by weight, and in particular 100%by weight with respect to the total weight of the core.
  • the mannitol is preferably contained in an amount of from 1%to 50%by weight, preferably 4%to 40%by weight, in particular from 5%to 30%by weight, and in particular from 10%to 20%by weight with respect to the total weight of the microcapsule.
  • the core is advantageously surrounded with external layer (s) preferably containing at least one inner layer and one outer layer.
  • these layers preferably extend concentrically with respect to the core.
  • the layer (s) is/are preferably organic, i.e., contain (s) at least one organic compound as wall-forming material.
  • the inner and/or outer layer (s) include (s) at least one polymer, and in particular a hydrophilic polymer.
  • the microcapsules, and in particular the external layer (s) contain (s) hydrophilic polymers selected from the group consisting of polysaccharides and derivatives, acrylic or methacrylic acid homopolymers or copolymers or salts and esters thereof, and their mixture.
  • the microcapsule, and in particular the external layer (s) contain (s) hydrophilic polymers selected from the group consisting of polysaccharides and derivatives, and in particular starch polymers.
  • the polymer (s) is (are) advantageously selected from (poly) (alkyl) (meth) acrylic acid and their derivatives, notably (poly) (alkyl) (meth) acrylate and their derivatives, preferably from alkylacrylic /alkylmethacrylic acid copolymers and their derivatives, and most preferably is a copolymer of ethyl acrylate, methyl methacrylate and low content of methacrylic acid ester with quaternary ammonium groups provided under the trade name of EUDRAGIT RSPO from Evonik Degussa.
  • the polysaccharides and derivatives are preferably selected from the group consisting of chitosan polymers, chitin polymers, cellulose polymers, starch polymers, galactomannans, alginates, carrageenans, mucopolysaccharides, and their derivatives, and mixtures thereof.
  • the external layer (s) is/are devoid of microcrystalline cellulose.
  • the polysaccharides and their derivatives are preferably selected from those including one type of ose or several types of ose (s) , preferably several types of oses, in particular at least D-Glucose unit (s) as ose (s) , preferably starch polymers, cellulose polymers, and derivatives, and mixtures thereof.
  • the microcapsule contains at least one hydrophilic polymer selected from the group consisting of starch and its derivatives, in particular corn starch, cellulose and its derivatives, homo-and/or co-polymer of methacrylic acid and/or methacrylic acid ester or co-polymer of (alkyl) acrylic acid and/or (alkyl) methacrylic acid and their derivatives, preferably their salts and their esters, and in particular the capsule contains polymethyl methacrylate.
  • starch and its derivatives in particular corn starch, cellulose and its derivatives, homo-and/or co-polymer of methacrylic acid and/or methacrylic acid ester or co-polymer of (alkyl) acrylic acid and/or (alkyl) methacrylic acid and their derivatives, preferably their salts and their esters, and in particular the capsule contains polymethyl methacrylate.
  • the microcapsule contains at least one hydrophilic polymer selected from the group consisting of starch and its derivatives, in particular corn starch.
  • Starch usable according to the present invention is usually issued from vegetable raw materials, such as rice, soybeans, potatoes, or corn.
  • Starch can be unmodified or (by analogy with cellulose) modified starch.
  • the starch is unmodified.
  • Preferred homo-and /or co-polymers of methacrylic acid and/or methacrylic acid ester are those wherein the copolymer of methyl methacrylate and ethyl acrylate has a molecular weight from 750 to 850 kDa.
  • Cellulose derivatives include, for example, alkali celluloses carboxymethyl cellulose (CMC) , cellulose esters and ethers, and aminocelluloses.
  • the cellulose is a carboxymethyl cellulose (CMC) .
  • the capsule contains at least starch derivative, in particular corn starch, polymethyl methacrylate, a co-polymer of (alkyl) acrylic acid and/or (alkyl) methacrylic acid and their derivatives preferably their salts and their esters, and/or cellulose derivatives.
  • starch derivative in particular corn starch, polymethyl methacrylate, a co-polymer of (alkyl) acrylic acid and/or (alkyl) methacrylic acid and their derivatives preferably their salts and their esters, and/or cellulose derivatives.
  • the microcapsule contains polymer (s) which are not cross-linked.
  • the polymer (s) may be in one or several layer (s) .
  • the polymer (s) may be in the core.
  • the microcapsule may contain polymer (s) in the core and/or in the layer (s) .
  • the polymer (s) is (are) in the core and in the layer (s) .
  • the core contains at least starch and/or cellulose derivative as polymer (s) .
  • the starch is contained within the core, it represents the main ingredient of such a core, i.e., the weight amount of starch is greater than the respective amount of other compounds of the core.
  • the polymer may represent from 0.5%to 20%by weight of the microcapsule, in particular from 1%to 10%by weight, and preferably from 2%to 8%by weight of the microcapsule.
  • the different layers forming the coating may be based on identical or different polymers.
  • they will be formed from the same polymer.
  • the layers will be advantageously differently colored. These different colors may be obtained through the use of different colorants but also the use of different concentrations in at least one colorant when the colorant will be the same for two layers.
  • the outer layer contains at least one colorant. In another embodiment, the outer layer does not contain any colorant.
  • the microcapsules, and in particular the external layer (s) contain (s) colorant (s) .
  • colorant includes any organic or inorganic pigment or colorant approved for use in cosmetics by the CTFA and the FDA for use in cosmetic formulations.
  • colorant refers to organic pigments such as synthetic or natural dyes selected from any of the well-known FD&C or D&C dyes, to inorganic pigments such as metal oxides, or lakes such as the ones based on cochineal carmine, barium, strontium, calcium or aluminum and any combination (blend) thereof.
  • the colorant may be water-soluble or water-dispersible.
  • the colorant useful according to the present invention may be oil-soluble or oil-dispersible or with limited solubility in water.
  • the colorant is an inorganic pigment, more preferably a metal oxide.
  • the colorants of the multilayered microcapsules are primary metal oxides selected from iron oxides, titanium dioxide, aluminum oxide, zirconium oxides, cobalt oxides, cerium oxides, nickel oxides, tin oxide or zinc oxide, or composite oxides, more preferably an iron oxide selected from red iron oxide, yellow iron oxide or black iron oxide, or a mixture thereof.
  • the layer (s) may also contain lakes corresponding to an organic colorant secured to a substrate.
  • lakes corresponding to an organic colorant secured to a substrate.
  • Such (a) lake (s) is (are) advantageously chosen among the following material, and their mixture (s) :
  • -organic pigments of azoic, anthraquinonic, indigoid, xanthenic, pyrenic, quinolinic, triphenylmethane, fluoran colorants among the organic pigments may be cited those known under the following trademark references: D&C Blue No. 4, D&C Brown No. 1, D&C Green No.5, D&C Green No. 6, D&C Orange No. 4, D&C Orange No. 5, D&C Orange No. 10, D&C Orange No. 11, D&C Red No. 6, D&C Red No. 7, D&C Red No. 17, D&C Red No. 21, D&C Red No. 22, D&C Red No. 27, D&C Red No. 28, D&C Red No. 30, D&C Red No.
  • the water-insoluble salts of sodium, potassium, calcium, barium, aluminum, zirconium, strontium, titanium of acid colorants such as azoic, anthraquinonic, indigoids, xanthenic, pyrenic, quinolinic, triphenylmethane, and fluoran colorants, these colorants may include at least one carboxylic or sulfonic acid group.
  • the organic lakes may also be protected by an organic support such as rosin or aluminum benzoate.
  • organic lakes we may in particular cite those known under the following names: D&C Red No. 2 Aluminum lake, D&C Red No. 3 Aluminum lake, D&C Red No. 4 Aluminum lake, D&C Red No. 6 Aluminum lake, D&C Red No. 6 Barium lake, D&C Red No. 6 Barium/Strontium lake, D&C Red No. 6 Strontium lake, D&C Red No. 6 Potassium lake, D&C Red No. 6 Sodium lake, D&C Red No. 7 Aluminum lake, D&C Red No. 7 Barium lake, D&C Red No. 7 Calcium lake, D&C Red No. 7 Calcium/Strontium lake, D&C Red No. 7 Zirconium lake, D&C Red No.
  • Aluminum lake D&C Yellow No. 7 Zirconium lake, D&C Yellow No. 10 Aluminum lake, FD&C Blue No. 1 Aluminum lake, FD&C Red No. 4 Aluminum lake, FD&C Red No. 40 Aluminum lake, FD&C Yellow No. 5 Aluminum lake, and FD&C Yellow No. 6 Aluminum lake.
  • the lake (s) is/are selected from carmin of cochineal and the water-insoluble salts of sodium, potassium, calcium, barium, aluminum, zirconium, strontium, titanium, of acid colorants such as azoic, anthraquinonic, indigoid, xanthenic, pyrenic, quinolinic, triphenylmethane, and fluoran colorants, given that these colorants may include at least one carboxylic or sulfonic acid group, and their mixture.
  • acid colorants such as azoic, anthraquinonic, indigoid, xanthenic, pyrenic, quinolinic, triphenylmethane, and fluoran colorants, given that these colorants may include at least one carboxylic or sulfonic acid group, and their mixture.
  • the lake (s) is/are selected from carmin of cochineal and the water-insoluble salts of sodium, calcium, aluminum, and their mixture.
  • the water-insoluble aluminum salts are preferably selected from FDC Yellow No. 5 Aluminum lake, FDC Blue No. 1 Aluminum lake, FDC Red No. 40 Aluminum lake, FDC Red No.30 Aluminum lake, FDC Green No. 5 Aluminum lake, and their mixtures.
  • inorganic lakes may notably be cited the commercial references:INTENZA FIREFLY C91-1211, INTENZA AZURE ALLURE C91-1251, INTENZA THINK PINK C91-1236.
  • the water-insoluble calcium salts are preferably selected from Red No. 7 Calcium lake.
  • inorganic lakes may notably be cited the commercial references: INTENZA MAGENTITUDE C91-1234, INTENZA HAUTE PINK C91-1232, INTENZA RAZZLED ROSE C91-1231, INTENZA AMETHYST FORCE C91-7231, INTENZA PLUSH PLUM C91-7441, INTENZA ELECTRIC CORAL 30 C91-1233, FLORASOMES-JOJOBA-SMS-10%CELLINI RED-NATURAL and their mixture.
  • the water-insoluble sodium salts are preferably selected from Red No. 6 Sodium lake and Red No. 28 Sodium lake, and their mixture.
  • Red No. 6 Sodium lake and Red No. 28 Sodium lake, and their mixture.
  • compounds incorporating such inorganic lakes may notably be cited the commercial references: INTENZA MANGO TANGO C91-1221 and INTENZA NITRO PINK C91-1235.
  • the colorants present in the microcapsules are selected from the group consisting of inorganic pigments, organic pigments and their mixture, preferably is at least one inorganic pigment, more preferably at least a mixture of inorganic pigments, even more preferably selected from metallic oxides, and in particular from iron oxide (s) , titanium dioxide particles and their mixture, preferably their mixture.
  • the composition of the present invention may contain a mixture of two or more colorants, either encapsulated individually in microcapsules and/or one or more blends of colorants encapsulated within the multilayered microcapsules.
  • each layer of the microcapsule may contain at least one specific colorant or a specific blend of colorant (s) .
  • the composition of the present invention contains two or more microcapsules having different colors.
  • the microcapsules contain preferably at least titanium dioxide and/or iron oxides in their coating, preferably at least titanium dioxide. In a preferred embodiment, the microcapsules contain at least titanium dioxide and iron oxides in their coating. In a specific embodiment, the outer layer of the microcapsules contains titanium dioxide, more preferably as the sole colorant.
  • the outer layer of the microcapsules contains organic pigments or iron oxides.
  • the colorants are present in an amount ranging from 20%to 90%by weight, preferably from 30%to 80%by weight, and more preferably from 50%to 75%by weight relative to the total weight of the microcapsule.
  • the microcapsules contain a metallic oxide selected from the group consisting of iron oxides, and titanium oxides, present in an amount ranging from 20%to 90%by weight, preferably from 30%to 85%by weight, and more preferably from 50%to 85%by weight, relative to the total weight of the microcapsule.
  • the titanium oxide may be present from 28%to 80%by weight, preferably from 30%to 75%by weight, and more preferably from 30 to 50%by weight, relative to the total weight of the microcapsule.
  • the titanium oxide may be present from 50%to 80%by weight, in particular from 55%to 70%by weight, and more particularly from 55%to 65%by weight, relative to the total weight of the microcapsule.
  • the iron oxides may be present from 5%to 75%by weight, preferably from 8%to 65%by weight relative to the total weight of the microcapsule. In a particular embodiment, the iron oxides may be present in an amount higher than 15%by weight, preferably higher than 30%by weight, and in particular from 40%to 65%by weight, relative to the total weight of the microcapsule.
  • the colorants are the main ingredients, i.e., represent at least 40%by weight of the layer (s) , preferably at least 75%by weight of the layer (s) , more preferably at least 95%by weight of the total weight of the layer (s) .
  • the mean thickness of the titanium dioxide layer ranges from 5 ⁇ m to 150 ⁇ m.
  • the inner and/or outer layer (s) may also include advantageously at least one binder, preferably a lipid-based material.
  • a lipid-based material may have amphiphilic properties, that is to say having an apolar part and a polar part.
  • Such a lipid-based material can include at least one or several C 12 -C 22 fatty acid chain (s) such as those selected from stearic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, etc., and mixtures thereof.
  • these fatty acids chains are hydrogenated.
  • these fatty acid chains may be the apolar part of a lipid-based material.
  • Such a lipid-based material is preferably selected from phospholipids.
  • These phospholipids are preferably selected from phosphoacylglycerol, more preferably selected from lecithins, and are in particular hydrogenated lecithin.
  • the lipid-based material may represent from 0.05%to 5%by weight of the microcapsule, in particular from 0.1%to 1%by weight of the microcapsule.
  • microcapsule of different hardness and/or water solubility By combining three or more compounds (e.g., sugar alcohols, polymers, lipid-based materials) in the microcapsule of different hardness and/or water solubility, it is possible to adjust the time required for colorant-encapsulated microcapsules to break down on the skin so that, by varying the method or intensity of application onto the skin, it is possible to adjust the preferred coloration or gradation pattern.
  • compounds e.g., sugar alcohols, polymers, lipid-based materials
  • the multi-layer coating contains at least starch as a polymer and at least one lipid-based material, which is preferably lecithin.
  • microcapsules include at least one monosaccharide or its derivatives and at least one polysaccharide or its derivatives.
  • the microcapsules include a core containing a monosaccharide derivative and a coating containing a polysaccharide (or its derivatives) including one type of ose or several types of ose (s) , preferably several types of oses.
  • the microcapsules include a core containing a monosaccharide polyol, preferably selected from mannitol, erythritol, xylitol, sorbitol, and a coating containing a polysaccharide (or its derivatives) including as ose (s) at least one or more D-Glucose unit (s) .
  • a monosaccharide polyol preferably selected from mannitol, erythritol, xylitol, sorbitol
  • a coating containing a polysaccharide (or its derivatives) including as ose (s) at least one or more D-Glucose unit (s) a polysaccharide (or its derivatives) including as ose (s) at least one or more D-Glucose unit (s) .
  • the microcapsules include three or more colorants in different layers.
  • the microcapsules additionally include a binder, for example, a lipid-based material chosen from phospholipids, advantageously selected from phosphoacylglycerol and in particular from lecithins.
  • a binder for example, a lipid-based material chosen from phospholipids, advantageously selected from phosphoacylglycerol and in particular from lecithins.
  • the microcapsules contain mannitol, starch polymer and a lipid-based material.
  • the present invention advantageously provides a color-changing microcapsule containing:
  • a core (A) preferably having a size of less than 800 ⁇ m, more preferably less than about 400 ⁇ m, advantageously from 1 ⁇ m to 300 ⁇ m, in particular from 5 ⁇ m to 200 ⁇ m, and more particularly from 10 ⁇ m to 100 ⁇ m in diameter, which preferably does not contain any colorant, and containing at least one organic core preferably selected from at least one sugar alcohol preferably a monosaccharide-polyol advantageously selected from the group consisting of mannitol, erythritol, xylitol, and sorbitol;
  • -a binder selected from the group consisting of a polymer and a lipid-based material, preferably their mixture;
  • one second layer (C) surrounding the first layer (B) preferably having a thickness of 5 ⁇ m to 500 ⁇ m, containing:
  • -a binder selected from the group consisting of a polymer and a lipid-based material, preferably their mixture;
  • -a binder selected from the group consisting of a polymer and a lipid-based material, preferably their mixture;
  • At least one wall-forming polymer preferably selected from polysaccharides such as cellulose derivatives, in particular cellulose ether and cellulose ester, from (poly) (alkyl) (meth) acrylic acid and its derivatives, notably (poly) (alkyl) (meth) acrylate and its derivatives, and preferably from alkylacrylic /alkylmethacrylic acid copolymers and their derivatives.
  • polysaccharides such as cellulose derivatives, in particular cellulose ether and cellulose ester
  • acrylic acid and its derivatives notably (poly) (alkyl) (meth) acrylate and its derivatives
  • alkylacrylic /alkylmethacrylic acid copolymers and their derivatives preferably from alkylacrylic /alkylmethacrylic acid copolymers and their derivatives.
  • the polymer is a hydrophilic polymer selected from the group consisting of starch and its derivatives, in particular corn starch.
  • microcapsules As examples of commercially available microcapsules used in the composition of the present invention, we may refer to the following microcapsules produced by Korea Particle Technology KPT under the commercial names:
  • -Magic50-BW0105 from KPT ash gray spherical microcapsule containing mannitol, iron oxide red, iron oxide yellow, iron oxide black, hydrogenated lecithin, titanium dioxide, zea mays (corn) starch, having a 60-200 Mesh particle size.
  • the microcapsule contains:
  • -a core including at least one colored core and eventually at least one inner color layer (s) , and
  • -a shell having at least one pressure-breakable wall layer surrounding the core, an optional outer color layer and an optional outmost shell.
  • the microcapsule contains colorant (s) selected from inorganic pigment (s) , preferably selected from metal oxides, such as iron oxides and titanium oxide.
  • the colored core includes at least one inorganic pigment advantageously selected from at least one metallic oxide, more advantageously selected from at least one iron oxide.
  • the pressure-breakable wall layer includes at least one inorganic pigment advantageously selected from at least one metallic oxide, more advantageously selected from at least one titanium oxide.
  • iron oxides are located at least in the colored core and the titanium oxides are located at least in a pressure-breakable wall layer surrounding the core.
  • the microcapsules contain at least 70%by weight of colorant (s) , preferably of inorganic pigment (s) , preferably of a mixture of inorganic pigments, preferably of metallic oxides such as iron oxides and titanium oxides, compared to the total weight of the microcapsules.
  • average particle size diameters of colorant microcapsules up to about 800 microns are used according to the present invention.
  • the average particle size diameter of the colorant microcapsules is less than about 400 microns for skin care applications.
  • the average particle size diameter is in the range of about 10 to 350 microns.
  • the average particle size will be from 50 ⁇ m to 800 ⁇ m, and in particular from 60 ⁇ m to 400 ⁇ m.
  • the microcapsule has a mean particle size of about from 18 to 270 mesh (around from 1000 ⁇ m to 53 ⁇ m) , particularly about from 25 to 170 mesh (around from 710 ⁇ m to 90 ⁇ m) .
  • the amount of microcapsules will range from 0.1%to 5%, preferably from 0.2%to 3%by weight relative to the total weight of composition.
  • the amount of microcapsules will range from 0.5%to 20%, preferably from 1%to 15%, more preferably from 2%to 10%by weight relative to the total weight of composition.
  • the encapsulated colorant (s) may be present in a composition of the present invention in an amount in active matter of encapsulated pigments ranging from 0.5%to 20%by weight, in particular from 1%to 15%by weight, and more particularly from 2%to 12%by weight, relative to the total weight of the composition.
  • microcapsules of the present invention are added and mixed uniformly at temperatures under 50°C. They are mixed gently with a paddle rather than a homogenizer.
  • more than 60%, preferably more than 70%, particularly more than 80%, and more particularly more than 90%of microcapsules will be ruptured to release the inner colorant within 1 minute, preferably from 1 to 40 seconds, particularly from 1 to 30 seconds, and more particularly from 1 to 20 seconds after pressing, rubbing, wiping and/or scrubbing with the hands or an implement.
  • the ratio and time-limit is not critical in the present invention.
  • the core of the microcapsule contains a colored core which contains at least one colorant and advantageously at least one binder, for example a lipid-based material.
  • the colorant (s) are not limited specifically, and the species described above are preferably used.
  • the binder is preferably selected from at least one hydrophilic polymer, at least one lipid-based material, and their mixture, preferably their mixture.
  • a binder may be employed in order to promote the coating process and to improve the durability of the coating layer.
  • Such a binder is selected from adhesive polymeric materials, which can act as wall-forming materials (wall-forming polymeric materials) .
  • the binder is preferably selected from at least one wall-forming material, from a lipid-base material, and their mixture. More preferably, the binder is a mixture which contains both a polymer as a wall-forming material and a lipid-base material as a coating base.
  • the coating base refers to a hydrophilic coating base, a hydrophobic coating base, or a lipid-based coating base. Since the hydrophilic coating base may be extracted together with colorant and the hydrophobic coating base may give a feeling of the presence of foreign substances due to its too strong film property, it is preferable to employ a lipid-based coating base.
  • such a lipid-based material may have amphiphilic properties, that is to say having an apolar part and a polar part.
  • Such a lipid-based material can include at least one or several C 12 -C 22 fatty acids chain such as selected from stearic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, etc. and mixtures thereof. Preferably these fatty acids chains are hydrogenated. Eventually, these fatty acid chains may be the apolar part of a lipid-based material.
  • Lipid-based materials are amphiphilic materials having both a polar part and an apolar part in one molecule and include, for example, a C 12 -C 22 fatty acid chain selected from the group consisting of stearic acid, palmitic acid, oleic acid, linoleic acid, linolenoic acid, and mixtures thereof.
  • the fatty acid chain may be hydrogenated, and optionally forms the apolar portion of the lipid-based materials.
  • the lipid-based materials can be selected form the group consisting of a phospolipid such as phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid or phosphatidylserine, a sphingolipid such as sphingosine-1-phosphate or sphingomyelin and ceramide, preferably ceramide or lecithin which is a phospholipid mixture, particularly hydrogenated lecithin.
  • the amount of lipid-based materials can be determined by considering the type and amount of wall-forming polymers as well as other components such as colorants and/or titanium dioxide particles.
  • the amount of lipid-based materials can be selected, in terms of the total weight of each layer, from 0.1%to 30 %by weight, particularly from 0.2%to 25%by weight, preferably from 0.3%to 20%by weight and more preferably from 0.4%to 20%by weight.
  • the amount of lipid-based materials is less than 0.1%by weight, the breakability or dissolution ability may be decreased, and when it is more than 25%by weight, the durability may be decreased or the stability during processing and storage may be decreased.
  • the wall-forming polymer is selected from hydrophilic polymers.
  • hydrophilic polymers means a polymer which can form hydrogen bond with water or alcohol compounds (especially selected from lower alcohols, glycol and polyol) , particularly those having O-H, N-H and S-H bonds in the molecule.
  • the hydrophilic polymer can be selected from the following polymers or a mixture thereof:
  • -polyacrylic acid/alkyl acrylate copolymers preferably modified or unmodified carboxyvinyl polymers
  • the copolymers most particularly preferred are acrylate/C 10 -C 30 -alkylacrylate copolymers (INCI name: Acrylates/C 10-30 Alkylacrylate Cross polymer) such as the products sold by the company Lubrizol under the tradenames Pemulen TR1, Pemulen TR2, Carbopol 1382 and Carbopol ETD2020, Carbopol Ultrez 21, and even more preferentially Pemulen TR-2;
  • -AMPS/acrylamide copolymers such as the products Sepigel or Simulgel sold by the company SEPPIC, especially a copolymer of INCI name Polyacrylamide (and) C 13 -C 14 Isoparaffin (and) Laureth-7;
  • -cellulose polymers and their derivatives preferably other than alkylcellulose, chosen from hydroxyethylcellulose, hydroxypropylcellulose, hydroxymethylcellulose, ethylhydroxyethylcellulose and carboxymethylcellulose, and also quaternized cellulose derivatives; in a preferred embodiment, the cellulose polymer is a carboxymethylcellulose;
  • starch polymer is a natural starch
  • polyvinyl polymers for instance polyvinylpyrrolidones, copolymers of methyl vinyl ether and of malic anhydride, the copolymer of vinyl acetate and of crotonic acid, copolymers of vinylpyrrolidone and of vinyl acetate; copolymers of vinylpyrrolidone and of caprolactam; polyvinyl alcohol;
  • polymers of natural origin such as galactomannans and derivatives thereof, such as konjac gum, gellan gum, locust bean gum, fenugreek gum, karaya gum, gum tragacanth, gum arabic, acacia gum, guar gum, hydroxypropyl guar, hydroxypropyl guar modified with sodium methylcarboxylate groups (Jaguar XC97-1, Rhodia) , hydroxypropyltrimethylammonium guar chloride, and xanthan derivatives;
  • galactomannans and derivatives thereof such as konjac gum, gellan gum, locust bean gum, fenugreek gum, karaya gum, gum tragacanth, gum arabic, acacia gum, guar gum, hydroxypropyl guar, hydroxypropyl guar modified with sodium methylcarboxylate groups (Jaguar XC97-1, Rhodia) , hydroxypropyltrimethylam
  • -mucopolysaccharides such as hyaluronic acid and chondroitin sulfates, and mixtures thereof.
  • the hydrophilic polymers of the present invention can be selected from the group consisting of polysaccharides and their derivatives, homo-and/or co-polymers of acrylic or methacrylic acid or salts and esters thereof, and their mixture.
  • the polysaccharides and their derivatives can be selected from chitosan polymers, chitin polymers, cellulose polymers, starch polymers, galactomannans, alginates, carrageenans, mucopolysaccharides, and their derivatives, and a mixture thereof.
  • the polysaccharides and their derivatives are preferably selected from the group consisting of starch polymers.
  • the hydrophilic polymers can be selected from the group consisting of corn starch, polymethyl methacrylate, cellulose or its derivatives such as carboxymethylcellulose (CMC) , cellulose ester and ether and aminocellulose, and a mixture thereof.
  • CMC carboxymethylcellulose
  • the hydrophilic polymers can be selected from the group consisting of corn starch, polymethyl methacrylate, their derivatives, and a mixture thereof.
  • Preferred homo-and /or co-polymers of methacrylic acid and/or methacrylic acid ester are those wherein the copolymer of methyl methacrylate and ethyl acrylate has a molecule weight from 750 kDa to 850 kDa.
  • hydrophilic polymer (s) used as a wall-forming material in the present invention are not cross-linked.
  • the amount of polymers or wall-forming polymers can be determined by considering the type and amount of colorants, titanium dioxide particles and/or lipid-based materials. In general, however, the amount of polymers or wall-forming polymers in each layer can be selected, in terms of total weight of each layer, from 0.1%to 30%by weight, particularly from 0.2%to 25%by weight, preferably from 0.3%to 20%by weight and more preferably from 0.4%to 20%by weight. When the content of lipid-based materials is less than 0.1%by weight, the breakability or dissolution ability may be decreased, and when it is more than 25%by weight, the durability may be decreased or the stability during processing and storage may be decreased.
  • Such hydrophilic polymers described in this part may be implemented both as a shell-forming polymer and as a binder.
  • the core can be prepared in a form of particles, a powder, granules, micro spheres, and microcapsules, for example, by spray drying or fluid bed processing of the solution containing at least one colorant, at least one polymer as a wall-forming material and at least one lipid-based material in a solvent.
  • the size of the colored core, and more generally of the core is not particularly limited and may be suitably chosen according to the finally desired microcapsule.
  • the size of the colored core, and more generally of the core may be larger than 20 ⁇ m or more, particularly 30 ⁇ m or more, preferably 40 ⁇ m or more, more preferably 50 ⁇ m or more, and smaller than 800 ⁇ m or less, particularly 700 ⁇ m or less, preferably 600 ⁇ m or less, more preferably 500 ⁇ m or less.
  • the radius of the core is larger than 50%, specifically larger than 60%, preferably larger than 70%and more preferably larger than 80%, relative to the total radius of the microcapsule.
  • the ratio between the radius of the core and the thickness of the shell may be from 1: 0.05 to 1: 0.5.
  • the amount of the core may be more than 30%by weight, specifically more than 40%by weight, preferably more than 50%by weight and more preferably more than 60%by weight, relative to the total weight of the microcapsule. Therefore, the microcapsule has a large loading amount of colorant in a particle.
  • the core can have one or more inner color layer (s) surrounding the colored core.
  • the inner color layer (s) may be every layer located between the colored core and the pressure-breakable wall layer.
  • the inner color layer (s) include, for example, a first inner color layer, second inner color layer and third inner color layer, etc., wherein the colorants and binders contained in each inner color layer are the same or different from each other.
  • the colored core can contain one or two inner color layer (s) , preferably one inner color layer.
  • the colored core can be formed by a granulation of a solution for the colored core containing at least one colorant and preferably at least one binder
  • an inner color layer can be formed by coating the colored core with a solution for the inner color layer containing at least one colorant and preferably at least one binder.
  • the coating process can be performed by a fluidized bed coating process.
  • the thickness of the inner color layer is not particularly limited and may be suitably chosen according to the finally desired microcapsule.
  • the thickness of the colored core may be larger than 20 ⁇ m or more, particularly 40 ⁇ m or more, preferably 60 ⁇ m or more, more preferably 80 ⁇ m or more, and smaller than 200 ⁇ m or less, particularly 160 ⁇ m or less, preferably 120 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the amount of the inner color layer may be from 20%to 80%by weight, specifically from 30%to 70%by weight, and preferably from 40%to 60%by weight, relative to the total weight of core.
  • the colored core does not contain a binder and is surrounded by an inner color layer containing a colorant and a binder, by which pigments contained in the core will be more easily dispersed when the microcapsule is ruptured.
  • a binder in the colored core, can be used in an amount where the colorant will not fall apart or separate from the layer during the coating process and/or after the removal of solvent, and generally can be used in an amount selected from 1%to 30%by weight, preferably from 2%to 25%by weight, particularly from 5%to 20%by weight, and more particularly from 5%to 15%by weight relative to the total weight of the colored core.
  • the colorant (s) and preferably the pigment (s) , still more preferably the iron oxide (s) , is (are) present in the core in an amount of at least 70%by weight, specifically at least 75%by weight, preferably at least 80%by weight, more preferably at least 85%by weight, such as from 80%to 99%by weight, relative to the total weight of the core.
  • the colorant (s) and preferably the pigment (s) , more preferably the iron oxide (s) , is (are) present in an amount of at least 30%by weight, specifically at least 35%by weight, preferably at least 40%by weight, such as from 40%to 60%by weight, relative to the total weight of the microcapsule.
  • the amount of iron oxide (s) particles in the microcapsule may be from 20%to 60%by weight, preferably from 25%to 55%by weight, more preferably from 30%to 50%by weight, relative to the total weight of the microcapsule. More preferably, the amount of iron oxide (s) particles in the microcapsule may be from 30%to 58%by weight, preferably from 35%to 55%by weight, and more preferably from 40%to 50%by weight, relative to the total weight of the microcapsule.
  • the microcapsule has a pressure-breakable wall layer including at least one colorant.
  • the colorant (s) is (are) preferably selected from inorganic pigments, more preferably from metallic oxides and still more preferably from titanium dioxide particles.
  • the colorant contained in the pressure-breakable wall layer is distinct from the colorant (s) contained in the colored core, for instance being both metallic oxides distinct from each other.
  • the titanium dioxide particles are discontinuously dispersed in the layer and linked to each other by a binder.
  • pressure-breakable or “pressure-friable” means that a rupture can be easily made by pressing, rubbing, wiping and/or scrubbing with the hands or an implement such as a cloth, sponge or paper.
  • a pressure-breakable titanium dioxide particle layer can contain particles of titanium dioxide and a binder, and the binder can contain a wall-forming material.
  • the titanium dioxide particles lodged in the wall-forming materials will break the pressure-breakable wall layer in an irreversible manner and facilitate or increase the disintegration or dissolution of the wall layer. Further, it is also predicted that the titanium dioxide particles perform an important role in terms of the strength, durability, the pressure-breakability, and the resulting feeling of the wall layer.
  • the pressure-breakable wall layer can be formed by the following procedure:
  • the coating may be preformed by using a fluidized bed process, but other coating processes can be utilized, if necessary.
  • solvents which can be utilized in the above procedure, mention can be made of water or a low boiling solvent such as methylene chloride, methanol and ethanol.
  • the titanium dioxide particle layer may have a thickness of 10 ⁇ m or more, preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, particularly 40 ⁇ m or more, commonly 300 ⁇ m or less, preferably 250 ⁇ m or less, more preferably 200 ⁇ m or less, and particularly 150 ⁇ m or less.
  • the amount of titanium dioxide particles in the pressure-breakable wall layer is preferably selected from 50%to 99%by weight, more preferably from 60%to 98%by weight, even more preferably from 70%to 97%by weight, and particularly from 80%to 95%by weight, in terms of total weight of the pressure-breakable wall layer.
  • the amount of colorant (s) , and in particular of titanium dioxide particles represent less than 100%of the pressure-breakable wall layer.
  • the amount of titanium dioxide particles in the microcapsule is preferably selected from 20%to 60%by weight, preferably from 25%to 55%by weight, and more preferably from 30%to 50%by weight, relative to the total weight of the microcapsule.
  • the colorant (s) in the colored core, preferably iron oxide (s) , and the colorant (s) in the pressure-breakable wall layer, preferably titanium dioxide particles are both present in a respective total amount in the microcapsules such as the weight ratio of the colorant (s) in the colored core, and preferably iron oxide (s) , relative to colorant (s) in the pressure-breakable wall layer, preferably titanium dioxide particles, is greater than or equal to 1.
  • the iron oxide (s) and the titanium dioxide particles are both present in a respective total amount in the microcapsules such as the weight ratio of the iron oxide (s) relative to the titanium dioxide particles is greater than or equal to 1.
  • the mean diameter or size of the titanium dioxide particles is not specifically limited but has a mean diameter of usually from 10 nm to 20 ⁇ m, preferably from 50 nm to 10 ⁇ m, more preferably from 100 nm to 5 ⁇ m, and particularly from 150 nm to 5 ⁇ m.
  • a mean diameter or size of less than 10 nm of titanium dioxide particles may result in a decrease in the pressure-breakable ability, and a mean diameter of more than 20 ⁇ m may make the formation of the titanium dioxide particle layer difficult.
  • Titanium dioxide particles having a first particle size of less than the above range but having a second particle size falling within the above particle size range can be applicable in the present invention.
  • the microcapsule additionally contains an optional outer color layer on the pressure-breakable titanium dioxide particle layer.
  • the outer color layer can be formed by coating the titanium dioxide particle layer with a solution having a colorant and a binder, for example, by a fluidized bed process.
  • the colorant and binder used in the outer color layer can be the same or different from those used in the inner color layer.
  • the outer color layer is provided so as to impart a visual color different from the white color produced by the titanium dioxide particle layer and/or the color of the inner color layer. Therefore, a colorant in the outer color layer can be used in an amount that does not disturb the color developed by the inner color layer when the microcapsules are scrubbed.
  • the amount of the outer color layer can be from 1%to 60%by weight, preferably from 2%to 50%by weight, more preferably from 3%to 40%by weight, and particularly from 4%to 30%by weight relative to the total weight of core.
  • the amount of the colorant in the outer color layer may be from 0.01%to 5%by weight, preferably from 0.05%to 4.5%by weight, more preferably from 0.1%to 4%by weight, and particularly from 0.5%to 3.5%by weight relative to the total weight of the colorant in the inner color layer.
  • the amount of colorant in the outer color layer may be additionally increased if the color of the outer color layer would not disturb the color of the inner color layer.
  • a person skilled in the art can choose the color and amount of colorant in the outer color layer in an appropriate manner by considering the color and amount of colorants contained in the inner color layers and the desired color to be finally developed.
  • the thickness of the outer color layer is not particularly limited and may be suitably chosen according to the finally desired microcapsule.
  • the outer color layer may have a thickness which is larger than 20 ⁇ m, particularly 40 ⁇ m, preferably 60 ⁇ m, and more preferably 80 ⁇ m, and which is smaller than 200 ⁇ m, particularly 150 ⁇ m, preferably 120 ⁇ m, and more preferably 100 ⁇ m.
  • the microcapsule can contain a protective outmost shell on a pressure-breakable titanium dioxide particle layer or an additional outer color layer to protect the microcapsule against moisture in the air during storage or to ensure long-term stability of the microcapsule in a carrier, notably in a solution.
  • the outmost shell can be made from at least one polymer, and preferably can be made from at least one polymer selected from the group consisting of polysaccharides and their derivatives, acrylic or methacrylic acid homopolymers or copolymers or salts and esters thereof, polystyrene-maleic anhydride copolymers, and their mixtures, such as poly (meth) acrylate, cellulose ether, cellulose ester and their derivatives, and their mixtures.
  • the amount of the outmost shell is selected, in terms of total weight of the microcapsule, from 0.1%to 20.0 %by weight and preferably from 0.5%to 15%by weight.
  • the shell coating may be meaningless, and when it is more than 20.0%by weight, the feeling of the presence of foreign substances may be caused.
  • the thickness of the outmost shell is not particularly limited and may be suitably chosen according to the finally desired microcapsule.
  • the outmost shell may have a thickness which is larger than 20 ⁇ m, particularly 30 ⁇ m, preferably 40 ⁇ m, and more preferably 50 ⁇ m, and which is smaller than 200 ⁇ m, particularly 150 ⁇ m, preferably 120 ⁇ m, and more preferably 90 ⁇ m.
  • the microcapsules may be produced by conventional methods known in the art within the coating or encapsulation domain, including pelletization, granulation, coating, etc.
  • the microcapsules may be obtained by the steps of containing a mixture of the compounds (actives, pigments, polymers, solvents) and drying to form capsules as disclosed in WO01/35933 and WO2011/027960, or the steps of granulation and coating by spray drying as disclosed in FR2841155, or by fluidized bed technology, which has been used in the food and pharmaceutical industry.
  • An example may be cited in WO08/139053 for the preparation of a spheroid multilayer containing a core of sugar and concentric layers of pharmaceutical actives. Fixation of pharmaceutical actives on the core is made by impregnation or pulverization or projection, and then the first layer is dried before application of a second layer.
  • the microcapsules introduced in the composition of the present invention are obtainable, and preferably obtained, at least in part, by fluidized bed technology which is described later.
  • the fluid-bed process is characterized in that leads to real capsules compared to spray drying, which leads to granular particles formed by particle cohesion or to a matrix with the core material randomly dispersed in a polymer.
  • a fluid-bed process allows substantially spherical microcapsules with a core substantially spherical, surrounded by at least one layer circumferentially surrounding the core and preferably at least one outer layer circumferentially surrounding the inner layer.
  • the fluid bed process is disclosed by example in ‘Fluid-Bed Coating, Teunou, E.; Poncelet, 2005, D. Food Science and Technology (BocaRaton, FL, United States) , Volume 146, Issue Encapsulated and Powdered Foods, Pages 197-212.
  • a person skilled in the art knows how to adjust air quantity, liquid quantity and temperature allowing reproduction of the microcapsule according to the present invention.
  • a fluid bed process includes a Würster process and/or a tangential spray process.
  • Würster process and/or a tangential spray process.
  • Such processes allow, contrary to a pelletization process, spherical capsules with a core surrounded by one or more circumferential layers.
  • the multi-layered coating contains at least starch as a polymer with at least one lipid-based material and preferably lecithin.
  • the microcapsules additionally include a lipid-based material chosen from phospholipids, advantageously selected from phosphoacylglycerol and in particular lecithins.
  • the microcapsules include three or more different colorants (in terms of color) . More preferably, the colorants are inorganic pigments, and even more preferably metal oxide (s) .
  • an organic solvent may be employed in the preparation of a coating solution used in the fluidized bed coating process.
  • the organic solvent is not specifically restricted but preferably includes methylene chloride, methanol, ethanol, and mixtures thereof. It is possible to employ any organic solvent if it can dissolve or disperse the polymers and/or lipid-based materials, has a boiling point less than that of water, and has a low residual toxicity.
  • microcapsules used in the present invention are obtainable, and preferably obtained, by the following steps:
  • step (c-2) optionally coating the particles obtained in the above step (b) or (c-1) with a solution in which a shell-forming polymer is dissolved or dispersed to form an outmost shell.
  • microcapsules are stable in the compositions of the present invention, preferably at high temperatures, for example greater than or equal to 40°C, for example for one month, better two months and still better three months in an oven at 45°Cor for 15 days in an oven at 60°C
  • the microcapsules present appropriate softening kinetics. More preferably, at least three hours after being in contact with the other compounds of the formula, the hardness of the microcapsules is advantageously from 5 to 50 grams, more preferably from 6 to 20 grams and still more preferably from 7 to 10 grams. Such hardness is in conformity with an industrial process for preparing compositions including such microcapsules. Such values of softening kinetics and hardness allow the provision of not only aesthetic microcapsules but also overall aesthetic compositions.
  • the composition may lead to different shades or color gradations depending on the intensity of the rubbing.
  • the compositions may advantageously present a high chromaticity C*as measured in the in CIE Lab system 1976.
  • compositions in accordance with the present invention may also comprise conventional cosmetic additives as for example organic solvents, ionic or nonionic thickeners, softeners, humectants, additional opacifiers, stabilizers, emollients, silicones, antifoams, fragrances, preserving agents, anionic, cationic, nonionic, zwitterionic or amphoteric surfactants, active agents, fillers, polymers, propellants, acidifying or basifying agents or any other ingredient commonly used in the cosmetic and/or dermatological field.
  • conventional cosmetic additives as for example organic solvents, ionic or nonionic thickeners, softeners, humectants, additional opacifiers, stabilizers, emollients, silicones, antifoams, fragrances, preserving agents, anionic, cationic, nonionic, zwitterionic or amphoteric surfactants, active agents, fillers, polymers, propellants, acidifying or basifying agents or any
  • Thickeners that may be mentioned include the carboxyvinyl polymers such as the products (Carbomers) and the Pemulen products, for instance Pemulen and Pemulen (acrylate/C 10 -C 30 alkyl acrylate copolymer) ; polyacrylamides, for instance the crosslinked copolymers sold under the names Sepigel (CTFA name: polyacrylamide/C 13-14 isoparaffin/laureth 7) or Simulgel 600 (CTFA name: acrylamide/sodium acryloyldimethyltaurate copolymer/isohexadecane/polysorbate 80) by the company SEPPIC; 2-acrylamido-2-methylpropanesulfonic acid polymers and copolymers, optionally crosslinked and/or neutralized, for instance poly (2-acrylamido-2-methylpropanesulfonic acid) sold by the company Hoechst under the trade name “Hostacerin ” (INCI name: ammonium polyacryloyldimethyl taurate,
  • acidifying agents examples that may be mentioned include mineral or organic acids, for instance hydrochloric acid, orthophosphoric acid, sulfuric acid, carboxylic acids, for instance acetic acid, tartaric acid, citric acid or lactic acid, and sulfonic acids.
  • mineral or organic acids for instance hydrochloric acid, orthophosphoric acid, sulfuric acid, carboxylic acids, for instance acetic acid, tartaric acid, citric acid or lactic acid, and sulfonic acids.
  • basifying agents examples that may be mentioned include aqueous ammonia, alkali metal carbonates, alkanolamines such as monoethanolamine, diethanolamine and triethanolamine, and also derivatives thereof, sodium hydroxide and potassium hydroxide.
  • the cosmetic composition comprises one or more basifying agents chosen from alkanolamines, in particular triethanolamine, and sodium hydroxide.
  • the pH of the composition in accordance with the invention is generally between 3 and 12 approximately, preferably between 5 and 11 approximately and even more particularly from 6.5 to 8.5.
  • compositions of the present invention are emulsions, preferably oil-in-water emulsions.
  • compositions of the invention are gelified compositions and in particular gelified oil-in-water emulsions.
  • a composition according to the invention may be in the form of makeup compositions and/or care compositions for keratin materials, in particular for the skin.
  • a composition according to the invention may be a cream, essence, water, lotion or gel, preferably in the form of face skincare gel.
  • a composition according to the present invention is a non-rinsing composition: the composition is not intended to be rinsed after application on the skin.
  • compositions are prepared according to the usual methods.
  • compositions of this type may be in the form of a facial and/or body care or makeup product, and may be conditioned, for example, in the form of cream in a jar or of fluid in a tube.
  • composition of the present invention can be used for a non-therapeutic process, such as a cosmetic process or method, for making up and/or caring for the keratin materials, such as the skin, in particular the face and the lips, by being applied to the skin, especially the face and the lips.
  • a non-therapeutic process such as a cosmetic process or method
  • the keratin materials such as the skin, in particular the face and the lips
  • the present invention relates to use of a composition as described above, in preparing compositions for making up and/or caring for the keratin materials.
  • Example 1 formulation example
  • Comparative B contains microcapsules comprising releasable colorant(s), which is different from the invention
  • Comparative C contains more than 20% by weight of polyols, relative to the total weight of the composition
  • Comparative D does not contain solubilizing agent a) according to the invention.
  • the skin benefits of the Invention A, Comparative B, C, and D were evaluated by a group of 10 panelists, after using the examples, respectively, on their faces.
  • Comparative B and D are not stable, with issue of beads bleeding or precipitation immediately after preparation. Comparative C failed to have a desired hydrating effect after application.
  • invention A is stable over time, and has improved skin benefits, such as good coverage of the skin imperfections, and hydrating effect with very fresh feeling.

Abstract

A composition in form of an oil-in-water emulsion is disclosed, which comprises a dispersed oily phase and a continuous aqueous phase, and: a) at least one solubilizing agent chosen from polyoxylakylene ether of alkyl alcohols, polyalkylene glycols of saturated or unsaturated fatty acid, optionally hydrogenated, or a mixture thereof; b) less than or equal to 20% by weight of at least one polyol, relative to the total weight of the composition; c) at least one hydroxylated diphenylmethane derivative; and d) at least one microcapsule comprising releasable colorant(s).

Description

Composition Comprising Visible Beads TECHNICAL FIELD
The present invention relates to the field of cosmetics. More particularly, it relates to a stable cosmetic composition with an improved hydrating effect with fresh feeling to the skin, after application.
BACKGROUND ART
In the field of cosmetic or dermatology, consumers expect products or compositions to have desired skin benefit such as coverage of the imperfections on the skin, proper hydrating effects with fresh feeling, i.e., not too sticky or oily, and whitening effects.
Moreover, cosmetic or dermatological compositions with transparent appearance are more favored by the consumers due to the fresh, hydrating, natural, and caring perceptions they deliver.
In order to obtain a composition as described above, different types of active principles and pigments, especially entrapped colorants and more particularly pigments-containing microcapsules are already used.
As a skin active principle, hydroxylated diphenylmethane derivatives are known from application US 2007/098655 in compositions in the emulsion form. These hydroxylated diphenylmethane derivatives are described in this patent application as tyrosinase inhibitors which can be used in particular in depigmenting compositions.
Efforts had been made to stabilize this type of derivatives in the compositions containing water. US8551458 described an emulsion comprising hydroxylated diphenylmethane derivatives, such as 4- (1-phenylethyl) -1, 3-dihydroxybenzene, esters of fatty acid and of polyethylene glycol, additional surfactants chosen from esters of C16-C22 fatty acid and of sorbitan and esters of C16-C22 fatty acid and of glycerol, and polycondensates of ethylene oxide and of propylene oxide.
However, the composition as such is not totally satisfying in terms of its skin benefit after application, or furthermore its appearance.
Pigments, especially entrapped colorants and more particularly pigments-containing microcapsules are already used. They mainly differ through the type of entrapping material (s) and/or the type of encapsulation. For example WO-A-01/35933 described pigments encapsulated by microcapsules in acrylic acid and/or methacrylic acid polymers or  copolymers (commercialized by TAGRA BIOTECHNOLOGIES under the name
Figure PCTCN2014093367-appb-000001
); the pigments encapsulated by microspheres in cellulose derivatives, it can be cited for example spheres comprising cellulose, hydroxypropyl methylcellulose, commercialized by the Induchem company under the name
Figure PCTCN2014093367-appb-000002
the pigments encapsulated by microcapsules in polymers of polyester, polyaminomethacrylate, polyvinylpyrrolidone, hydroxypropylmethylcellulose, shellac types and mixtures thereof, it may be notably cited those described in the application US 2011/0165208 of Biogenics and commercialized under the name
Figure PCTCN2014093367-appb-000003
by Biogenics; the pigments encapsulated by microcapsules may also be cited the ones disclosed by DAITO in JP2011-79804, these pigment-encapsulated double-layer microcapsules comprising three or more of the following (a) mannitol, (b) hydrogenated lecithin, (c) polymethylmethacrylate, (d) cellulose and (e) shellac.
These double-layer microcapsules do not comprise an uncoloured core as the one of the microcapsules preferably used according to the invention, but rather a colored inner layer containing the aforesaid components which are mixed all together and then granulated.
However, with some colorant-containing microcapsules it may be difficult to permanently retain the colorant over long periods of time and when subjected to different environments and conditions. This is true of pigments, oil soluble dyes, and water soluble dyes. Thus, some microcapsules described in patents and publications have been found to gradually release the colorant, or to "bleed" , over time when tested for prolonged periods at elevated temperatures. Color bleed occurs when a dye or pigment migrates through or off of microspheres/microcapsules through contact with moisture and/or other ingredients in a formulation such as alcohols or glycols, surfactants, silicones, oils, preservatives, salts and other components typically found in cosmetic formulations. Leeching or bleed of the colorant in cosmetic composition can impair the long term visual effect of the cosmetic both in the container and on the substrate.
Furthermore, some pigment-containing microcapsules may confer a lower covering effect than expected.
Furthermore, some pigment-containing microcapsules may have some stability issues depending on the cosmetic composition and associated solvents/ingredients.
None of the above mentioned prior arts disclosed a stable composition with hydrating effect and fresh feeling after application, and furthermore such a composition with pleasant transparent appearance.
AIMS OF THE INVENTION
The present invention is intended to provide a composition in form of an oil in water emulsion comprising a dispersed fatty phase and a continuous aqueous phase, with an improved proper hydrating effect on the skin (no sticky or oily feeling) , and meanwhile stable over time and temperature changes.
Furthermore, the present invention also aims to provide a composition, in particular a transparent composition.
In particular, the invention provides a composition in form of an oil-in-water emulsion comprising a dispersed fatty phase and a continuous aqueous phase, comprising solubilizing agent (s) , polyol (s) , hydroxylated diphenylmethane derivative (s) , and microcapsule (s) containing a releasable colorant (s) .
Such a composition is stable over time and temperature changes, and possesses an improved hydrating effect on application to the skin. Moreover, it has a pleasant transparent appearance.
DESCRIPTION OF THE DRAWINGS
Drawings intended to illustrate the invention in a non-limitative way, representing examples of microcapsules to be introduced in a cosmetic composition according to the invention will be described as follows.
Figure 1 is a schematic diagram illustrating a typical structure of a color changing microcapsule of a first embodiment of the present invention, wherein A1 represents a core and B1, C1, D1 and E1 being different layers concentrically surrounding said core.
Figure 2 is a schematic diagram of the first embodiment of a microcapsule showing the core-shell structure of color-changing microcapsules B as used in Example 1 described below.
Figure 3 is a schematic diagram illustrating a typical structure of a microcapsule of a second embodiment of the present invention, wherein A2 represents a colored core, B2, C2, D2 and E2 being different layers concentrically surrounding the core A2, at least one of these surrounding layers being mandatory and including preferably titanium dioxide particles, and the others being optional.
Figure 4 is a schematic diagram showing the core-shell structure of color-changing microcapsules of the second embodiment of a microcapsule containing 3 layers: colored core-inner color layer-TiO2 particle layer. The pigment core included in the right particle of Fig. 4 corresponds to the left particle, which comprises a pigment/lecithin layer (inner color layer) and an inner pigment powder (inner colored core) .
Figure 5 is a schematic diagram showing the core-shell structure of color-changing microcapsules of the second embodiment of a microcapsule containing 2 layers: colored core-TiO2 particle layer.
DISCLOSURE OF INVENTION
It has been discovered, in accordance to the present invention, that these objectives could be achieved with a composition in form of an oil-in-water emulsion comprising a dispersed fatty phase and a continuous aqueous phase, comprising solubilizing agent (s) , polyol (s) , hydroxylated diphenylmethane derivative (s) , and microcapsule (s) containing a releasable colorant (s) .
For the purposes of the invention, the term "transparent composition" can be understood as a composition which transmits at least 40%of light at a wavelength of 750 nm without scattering it, i.e. a composition in which the scattering angle of the light is less than 5° and is better still about 0°.
The transparent composition may transmit at least 50%, especially at least 60%and especially at least 70%of light at a wavelength of 750 nm.
The transmission measurement is made with a Cary 300 Scan UV-visible spectrophotometer from the company Varian, according to the following protocol:
-the composition is poured into a square-sided spectrophotometer cuvette with a side length of 10 mm;
-the sample of the composition is then maintained in a thermostatically-regulated chamber at 20℃for 24 hours;
-the light transmitted through the sample of the composition is then measured on the spectrophotometer by scanning wavelengths ranging from 700 nm to 800 nm, the measurement being made in transmission mode;
-the percentage of light transmitted through the sample of the composition at a wavelength of 750 nm is then determined.
The term “keratin material” means the skin (of the body, face and around the eyes) , hair, eyelashes, eyebrows, bodily hair, nails, lips or mucous membranes. In particular it means the skin.
DETAILED DESCRIPTION OF THE INVENTION
Aqueous phase
The composition of the present invention comprises a continuous aqueous phase.
The aqueous phase contains water as main component. The amount of water is not limited, and may be from 5%to 99%by weight, preferably from 10%to 95%by weight, and more preferably from 15%to 90%by weight, relative to the total weight of the composition.
The aqueous phase may further contain at least one organic solvent, preferably water-miscible organic solvent. As the organic solvent, there may be mentioned, for example, C1-C4 alkanols, such as ethanol and isopropanol; aromatic alcohols such as benzyl alcohol and phenoxyethanol; analogous products thereof; and mixtures thereof. The amount of the organic water-miscible solvent may be less than 10%by weight, preferably 5%by weight or less, and more preferably 1%by weight or less, relative to the total weight of the composition.
Fatty phase
A composition in accordance with the present invention comprises a dispersed fatty phase. In particular, the fatty phase of the invention comprises at least one oil.
The term “oil” means any fatty substance that is in liquid form at room temperature (20-25℃) and at atmospheric pressure.
A composition of the invention may comprise a liquid fatty phase in a content ranging from 0.1%to 90%by weight, in particular from 0.5%to 60%by weight, in particular from 1%to 40%by weight, relative to the total weight of the composition.
The fatty phase that is suitable for preparing the cosmetic compositions according to the invention may comprise hydrocarbon-based oils, silicone oils, fluoro oils or non-fluoro oils, or mixtures thereof.
The oils may be volatile or non-volatile.
They may be of animal, plant, mineral or synthetic origin.
The term "non-volatile oil" means an oil that remains on the skin or the keratin fibre at room temperature and atmospheric pressure. More specifically, a non-volatile oil has an evaporation rate strictly less than 0.01 mg/cm2/min.
To measure this evaporation rate, 15 g of oil or of oil mixture to be tested are placed in a crystallizing dish 7 cm in diameter, which is placed on a balance in a large chamber of about 0.3 m3 that is temperature-regulated, at a temperature of 25℃, and hygrometry-regulated, at a relative humidity of 50%. The liquid is allowed to evaporate freely, without stirring it, while providing ventilation by means of a fan (Papst-Motoren, reference 8550 N, rotating at 2700  rpm) placed in a vertical position above the crystallizing dish containing said oil or said mixture, the blades being directed towards the crystallizing dish, 20 cm away from the bottom of the crystallizing dish. The mass of oil remaining in the crystallizing dish is measured at regular intervals. The evaporation rates are expressed in mg of oil evaporated per unit of area (cm2) and per unit of time (minutes) .
The term "volatile oil" means any non-aqueous medium that is capable of evaporating on contact with the skin or the lips in less than one hour, at room temperature and atmospheric pressure. The volatile oil is a cosmetic volatile oil, which is liquid at room temperature. More specifically, a volatile oil has an evaporation rate of between 0.01 and 200 mg/cm2/min, limits included.
For the purooses of the present invention, the term “silicone oil” means an oil comprising at least one silicon atom, and especially at least one Si-O group.
The term “fluoro oil” means an oil comprising at least one fluorine atom.
The term “hydrocarbon-based oil” means an oil mainly containing hydrogen and carbon atoms.
The oils may optionally comprise oxygen, nitrogen, sulfur and/or phosphorus atoms, for example in the form of hydroxyl or acid radicals.
Solubilizing agents
The composition of the present invention comprises at least one solubilizing agent.
The solubilizing agent is understood according to the invention to mean in particular an ingredient which makes it possible (i) either to solubilize or stabilize the said hydroxylated diphenylmethane derivative, or (ii) to solubilize or stabilize the physiologically acceptable medium in which the said hydroxylated diphenylmethane derivative is present.
The expression "physiologically acceptable medium" is understood to mean a medium which is compatible with the skin, including the scalp, the mucous membranes, the eyes and/or the hair.
In one embodiment, the solubilizing agent is selected from the group consisting of polyoxyalkylene ether of alkyl alcohols, polyalkylene glycols of saturated or unsaturated fatty acid, optionally hydrogenated, and any mixture thereof.
More specifically, the polyoxylakylene ether of alkyl alcohols may be chosen from polyoxyethylene ether and/or polyoxypropylene ether of alkyl alcohols, or a mixture thereof.
In one embodiment, the solubilizing agent is preferably polyoxyethylene ether and/or polyoxypropylene ether of C1-C34, more preferably C1-C30, even more preferably C4-C24 alcohol, or a mixture thereof.
Mentions may be made of, for example, PPG-5-ceteth-20, PPG-6-decyltetradeceth-30, PPG-26-buteth-26, or a mixture thereof.
The solubilizing agents of the present invention may also be chosen from polyalkylene glycols of saturated or unsaturated fatty acid, optionally hydrogenated, or its mixture.
In one embodiment, the solubilizing agent is a polyalkylene glocols of castor oil, optionally hydrogenated, or its mixture.
Mentions may be made of oxyethylenated castor oils such as PEG-40 castor oil, PEG-60 castor oil, preferably hydrogenated, or a mixture thereof.
According to one embodiment, mentions can be made of the solubilizing agents, such as PPG-6 decyltetradeceth-30 sold under the name Nikkol Pen-4630 by the company Nikkol, oxyethylenated (40 EO) hydrogenated castor oil sold as a mixture with oxypropylenated (26 PO) oxyethylenated (26 EO) butyl alcohol in water under the reference Solubilisant LRI by LCW, the polyoxyl 40 hydrogenated castor oil sold under the name Cremophore RH 40, the PEG-60 hydrogenated castor oil sold under the name Eumulgin Co 60 by the company Cognis (BASF) , or a mixture thereof.
In one embodiment, the composition comprises the solubilizing agent ranging from 0.1%to 25%by weight, preferably from 0.5%to 15%by weight, more preferably from 0.5%to 5%by weight, relative to the total weight of the composition.
Polyol
The composition of the present invention comprises at least one polyol.
A single type of polyol may be used, but two or more different types of polyol may be used in combination.
The term “polyol” here means an alcohol having two or more hydroxy groups, and does not encompass a saccharide or a derivative thereof. The derivative of a saccharide includes a sugar alcohol which is obtained by reducing one or more carbonyl groups of a saccharide, as well as a saccharide or a sugar alcohol in which the hydrogen atom or atoms in one or more hydroxy groups thereof has or have been replaced with at least one substituent such as an alkyl group, a hydroxyalkyl group, an alkoxy group, an acylgroup or a carbonyl group.
The polyol may be a C2-C12 polyol, preferably a C2-9 polyol, containing at least 2 hydroxy groups, and preferably 2 to 5 hydroxy groups.
The polyol may be a natural or synthetic polyol.
The polyol may have a linear, branched or cyclic molecular structure.
The polyol may be selected from the group consisting of glycerins and glycols, more preferably propylene glycol, butylene glycol, pentylene glycol, hexylene glycol, dipropylene glycol, diethylene glycol, ethylhexylglycerine, caprylyl glycol, glycol ethers, preferably mono-, di-or tripropylene glycol of alkyl (C1-C4) ether or mono-, di-or triethylene glycol of alkyl (C1-C4) ether, and mixtures thereof.
Still more preferably, the polyol is chosen from glycerins, butylene glycol, dipropylene glycol, caprylyl glycol, or a mixture thereof.
Advantageously, the polyol may be present in an amount less than or equal to 20%by weight, preferably from 0.01%to 20%by weight, more preferably from 1%to 15%by weight, relative to the total weight of the composition.
Hydroxylated diphenylmethane derivatives
The composition of the present invention comprises at least one hydroxylated diphenylmethane derivative.
The hydroxylated diphenylmethane derivatives which can be used in the compositions of the invention are described in application WO2004/105736.
These compounds have the following formula (I) :
Figure PCTCN2014093367-appb-000004
in which:
-R1 is chosen from a hydrogen atom, a methyl group, a saturated or unsaturated, linear or branched alkyl chain having from 2 to 4 carbon atoms, an-OH group, and a halogen,
-R2 is chosen from a hydrogen atom, a methyl group, a saturated or unsaturated linear or branched alkyl chain having from 2 to 5 carbon atoms,
-R3 is chosen from a methyl group or a saturated or unsaturated linear or branched alkyl chain having from 2 to 5 carbon atoms,
-R4 and R5 are, independently of each other, chosen from a hydrogen atom, a methyl group, a saturated or unsaturated linear or branched alkyl chain having from 2 to 5 carbon atoms, an-OH group or a halogen.
The-OH, R1, R4 and R5 groups may be at the ortho, meta or para position with respect to the bond formed with the carbon linking the two aromatic rings to each other.
Also included in the compounds of the invention possessing substituted phenyl groups and for which R2 and R3 are different are the enantiomeric forms of S configuration, the enantiomers of R configuration and their racemic mixture.
According to a preferred embodiment of the invention, a compound of formula (I) is used in which:
-R1, R2, R4 and R5 denote a hydrogen atom;
-R3 is a methyl group;
-the-OH groups are at the ortho and para positions with respect to the bond formed with the carbon linking the two aromatic rings to each other.
This compound corresponds to the following formula (II)
Figure PCTCN2014093367-appb-000005
called 4- (1-phenylethyl) -1, 3-benzenediol or 4- (1-phenylethyl) -1, 3-dihydroxybenzene or otherwise called phenylethylresorcinol or phenylethylbenzenediol or styrylresorcinol. This compound has a CAS number 85-27-8.
Such a compound is marketed under the name
Figure PCTCN2014093367-appb-000006
377 or BIO 377 by the company SYMRISE.
According to a preferred embodiment of the invention, the composition comprises, in an aqueous phase, at least one hydroxylated diphenylmethane derivative of formula (II)
Figure PCTCN2014093367-appb-000007
According to a preferred embodiment, the hydroxylated diphenyl methane derivative of formula (I) is present in the composition of the present invention ranging from 0.01%to 3%by weight relative to the total weight of the composition, in particular from 0.05%to 1%by weight, relative to the total weight of the composition.
Microcapsule containing a releasable colorant
The composition of the present invention comprises at least one microcapsule containing a releasable colorant.
The term "microcapsule" , as used herein, refers to a spherical microcapsule containing at least one layered coating entrapping at least one colorant and surrounding a core chemically different from the coating. Microcapsules are distinct from microspheres, which consist of a spherical homogeneous matrix.
In an embodiment, the “at least one layered coating” is a multilayered coating preferably an organic multilayered coating.
The term "multilayered microcapsule" refers to a microcapsule consisting of a core surrounded by a coating based on one or more inner layer (s) and one outer layer. The one or more inner layer (s) forming the multilayered coating of the multilayered microcapsule and the single outer layer of the microcapsule may be formed of the same or different wall-forming organic compound (s) .
The microcapsule contains a core also called an “inner core” surrounded by a coating based on one or more layer (s) .In a preferred embodiment, the microcapsule is a ‘multilayered’ microcapsule, containing at least one inner layer and one outer layer. The one or more inner layer (s) forming the multi-layer coating of the multilayered microcapsule and the single outer layer of the microcapsule may be formed of the same or different wall-forming organic compound (s) .
In a particular embodiment, the inner layer and the outer layer are formed of the same wall-forming organic compounds, and the core is then surrounded by one layer coating.
In one embodiment, the outer layer does not contain any colorant. In another embodiment, the outer layer contains at least one colorant.
The term "wall-forming organic compound" refers to an organic compound or a combination of two or more different organic compounds as defined herein, which form a component of the layer (s) of the microcapsules. In a preferred embodiment, the ‘wall-forming organic compound’ contains at least one polymer.
In a particular embodiment, encapsulated colorant (s) may be present in the composition of the present invention in an amount in active matter of encapsulated pigments ranging from 0.5%to 20%by weight, in particular from 1%to 15%by weight, and more particularly from 2%to 12%by weight, relative to the total weight of the composition.
The microcapsules will be integrated in the cosmetic formula generally at the latest stages of the formulation and after filtering stages if any, to avoid the microcapsules being broken. Preferably, the microcapsules are added and mixed uniformly at temperatures under 50℃. They are mixed gently with a paddle rather than a homogenizer.
The microcapsules may have the ability of being more easily breakable in contact with aqueous phase, preferably in contact with hydrophilic agent (s) (e.g., water, polyols, glycols, alcohols) . The microcapsules may advantageously swell in contact with such hydrophilic agent (s) as defined hereunder. The microcapsules are advantageously deformable when applied on a keratin material and consequently provide a soft feeling to the user. Furthermore, their small size contributes to not creating any discomfort or unfavourable feeling when applied.
However, the microcapsules are soft enough to rupture upon very slight rubbing or pressing of the skin in order to release their content but, nevertheless, are durable enough to avoid destruction of the coating during manufacture and storage of the corresponding composition. 
In addition, the microcapsule allows the use of regular equipment for the preparation of the compositions of the present invention because substantially no coloring of the apparatus occurs during the manufacturing process.
Accordingly, the microcapsules are of particular interest since they can mask the original color of the encapsulated colorants, increase the stability of these colorants against degradation, and prevent undesirable release of the encapsulated colorants into the composition during the manufacturing process and prolonged storage.
Advantageously, the microcapsule is present in the composition of the invention ranging from 0.1%to 10%by weight, preferably from 0.5%to 5%by weight, relative to the total weight of the composition.
A preferable constitution of the microcapsules will be described in detail below.
1.First embodiment of a microcapsule containing releasable colorant (s)
In a first embodiment, generally, the microcapsules have average particle sizes of less than 800 μm, more preferably less than about 400 μm, advantageously from 1 μm to 300 μm, in particular from 5 μm to 200 μm, and more particularly from 10 μm to 100 μm in diameter.
The microcapsules containing releasable colorant (s) are multilayered microcapsules. The microcapsules contain:
-a core, preferably uncolored core, containing, preferably consisting of, one organic material, and
-at least one layered coating surrounding the core, the layered coating containing at least one polymer, and at least one colorant. Advantageously it contains at least one binder.
Preferably, the microcapsule contains at least two layers, preferably at least one organic colored inner layer and one organic outer layer of different color from that of the organic colored inner layer.
Preferably, the core contains at least one monosaccharide or its derivatives as the organic material, in particular a monosaccharide-polyol advantageously selected from the group consisting of mannitol, erythritol, xylitol, sorbitol and mixtures thereof, preferably mannitol.
Advantageously, the layered coating surrounding the core contains at least one hydrophilic polymer (s) selected from the group consisting of polysaccharides and derivatives thereof, preferably the ones including one type of ose or several type of ose (s) , preferably several type of ose (s) including at least D-glucose units, in particular starch and derivatives, cellulose or its derivatives, and more preferably starch and derivatives.
Preferably, the microcapsule includes at least one lipid-based material, preferably with amphiphilic properties such as lecithins and in particular hydrogenated lecithin.
Advantageously the core represents from 10%to 90%by weight, preferably 20%to 80%by weight, more preferably from 30%to 70%by weight, and still more preferably from 40%to 60%by weight, relative to the total weight of the microcapsule.
Advantageously, the colorant (s) represent from 20%to 90%, preferably from 30%to 80%, and in particular from 50%to 75%by weight relative to the microcapsule.
Particularly the microcapsule contains at least:
-an inner core made of monosaccharide-polyol, preferably mannitol,
-at least two layers of different color from each other,
-at least one hydrophilic polymer preferably selected from polysaccharide or its derivatives, and more preferably from starch or derivatives, and advantageously at least one lipid based material, preferably an amphiphilic compound, and more preferably a phospholipid, even more preferably phosphoacylglycerol such as hydrogenated lecithin.
In one embodiment, each layer from the microcapsule contains at least one specific colorant or a specific blend of colorant (s) . In one embodiment, the outer layer from the microcapsule contains at least one specific colorant or a specific blend of colorant (s) . Particularly the colorants are pigments, preferably selected from the group consisting of metallic oxides. In one embodiment, one layer from the microcapsule contains iron oxides and titanium dioxide (TiO2) as colorants. In one embodiment, one layer from the microcapsule only contains TiO2 as a colorant.
The composition of the present invention may further contain from 0.1%to 70%by weight relative to the weight of the composition, of additional cosmetic ingredient (s) selected from volatile and non-volatile silicon or hydrocarbon oils, surfactants, fillers, additional gelifying agents, thickening agents, film forming agents, polymers, preservatives, silicone elastomers, self-tanning agents, additional non-entrapped colorants, cosmetic actives, pH regulators, perfumes, UV filters and mixtures thereof.
1-1. Core
In a first embodiment of the invention, the core is made of at least an organic material. The size of the core preferably ranges from 500 nm to 150 μm in diameter. Preferably the core is in a solid and/or crystal form at room temperature under atmospheric pressure. In a particular embodiment, the organic material may have high water dissolvability.
Preferably, the core is water-soluble or water dispersible.
In a particular embodiment, the core is uncolored, i.e., it does not contain colorant material.
In a particular embodiment, the core consists of only one compound. This compound is organic and more preferably is a natural compound.
In a preferred embodiment, the core is sugar-alcohol, preferably a monosaccharide-polyol advantageously selected from mannitol, erythritol, xylitol, sorbitol. In a particular embodiment, the core is made of mannitol and more preferably exclusively made of mannitol.
In an alternative embodiment, the core contains at least mannitol and at least one additional ingredient being preferably a polymer selected from hydrophilic polymers. In particular, such a core may contain mannitol and hydrophilic polymers chosen among cellulose polymers, starch polymers and their mixture, preferably their mixture. In a preferred embodiment, the  cellulose polymer is a carboxymethylcellulose and the starch polymer is a non-modified natural starch, for example corn starch.
The core may be constituted by a seed (or crystal) of one of the previous materials.
The core is preferably contained in an amount of from 1%to 50%by weight, preferably from 4%to 40%by weight, in particular from 5%to 30%by weight, and more particularly from 10%to 20%by weight with respect to the total weight of the microcapsule.
The mannitol is preferably contained in an amount of from 2%to 100%by weight, preferably from 5%to 100%by weight, and in particular 100%by weight with respect to the total weight of the core.
The mannitol is preferably contained in an amount of from 1%to 50%by weight, preferably 4%to 40%by weight, in particular from 5%to 30%by weight, and in particular from 10%to 20%by weight with respect to the total weight of the microcapsule.
1-2. External Layer (s)
As disclosed previously, the core is advantageously surrounded with external layer (s) preferably containing at least one inner layer and one outer layer. In the first embodiment, these layers preferably extend concentrically with respect to the core. The layer (s) is/are preferably organic, i.e., contain (s) at least one organic compound as wall-forming material. Preferably, the inner and/or outer layer (s) include (s) at least one polymer, and in particular a hydrophilic polymer.
(a) Polymer (s)
In the first embodiment, the microcapsules, and in particular the external layer (s) contain (s) hydrophilic polymers selected from the group consisting of polysaccharides and derivatives, acrylic or methacrylic acid homopolymers or copolymers or salts and esters thereof, and their mixture.
In a preferred embodiment, the microcapsule, and in particular the external layer (s) , contain (s) hydrophilic polymers selected from the group consisting of polysaccharides and derivatives, and in particular starch polymers.
The polymer (s) is (are) advantageously selected from (poly) (alkyl) (meth) acrylic acid and their derivatives, notably (poly) (alkyl) (meth) acrylate and their derivatives, preferably from alkylacrylic /alkylmethacrylic acid copolymers and their derivatives, and most preferably is a copolymer of ethyl acrylate, methyl methacrylate and low content of methacrylic acid ester  with quaternary ammonium groups provided under the trade name of EUDRAGIT RSPO from Evonik Degussa.
The polysaccharides and derivatives are preferably selected from the group consisting of chitosan polymers, chitin polymers, cellulose polymers, starch polymers, galactomannans, alginates, carrageenans, mucopolysaccharides, and their derivatives, and mixtures thereof. 
In a preferred embodiment, the external layer (s) is/are devoid of microcrystalline cellulose.
In a particularly preferred embodiment, the polysaccharides and their derivatives are preferably selected from those including one type of ose or several types of ose (s) , preferably several types of oses, in particular at least D-Glucose unit (s) as ose (s) , preferably starch polymers, cellulose polymers, and derivatives, and mixtures thereof.
In a preferred embodiment, the microcapsule contains at least one hydrophilic polymer selected from the group consisting of starch and its derivatives, in particular corn starch, cellulose and its derivatives, homo-and/or co-polymer of methacrylic acid and/or methacrylic acid ester or co-polymer of (alkyl) acrylic acid and/or (alkyl) methacrylic acid and their derivatives, preferably their salts and their esters, and in particular the capsule contains polymethyl methacrylate.
In a preferred embodiment, the microcapsule contains at least one hydrophilic polymer selected from the group consisting of starch and its derivatives, in particular corn starch.
Starch usable according to the present invention is usually issued from vegetable raw materials, such as rice, soybeans, potatoes, or corn. Starch can be unmodified or (by analogy with cellulose) modified starch. In a preferred embodiment, the starch is unmodified. 
Preferred homo-and /or co-polymers of methacrylic acid and/or methacrylic acid ester are those wherein the copolymer of methyl methacrylate and ethyl acrylate has a molecular weight from 750 to 850 kDa.
Cellulose derivatives include, for example, alkali celluloses carboxymethyl cellulose (CMC) , cellulose esters and ethers, and aminocelluloses. In a particular embodiment, the cellulose is a carboxymethyl cellulose (CMC) .
In a preferred embodiment, the capsule contains at least starch derivative, in particular corn starch, polymethyl methacrylate, a co-polymer of (alkyl) acrylic acid and/or (alkyl) methacrylic acid and their derivatives preferably their salts and their esters, and/or cellulose derivatives.
Preferably, the microcapsule contains polymer (s) which are not cross-linked. The polymer (s) may be in one or several layer (s) . In another embodiment, the polymer (s) may be in the core. The microcapsule may contain polymer (s) in the core and/or in the layer (s) . In a particular embodiment, the polymer (s) is (are) in the core and in the layer (s) . In an embodiment, the core contains at least starch and/or cellulose derivative as polymer (s) . When the starch is contained within the core, it represents the main ingredient of such a core, i.e., the weight amount of starch is greater than the respective amount of other compounds of the core. The polymer may represent from 0.5%to 20%by weight of the microcapsule, in particular from 1%to 10%by weight, and preferably from 2%to 8%by weight of the microcapsule.
The different layers forming the coating may be based on identical or different polymers. Advantageously, they will be formed from the same polymer. In contrast, the layers will be advantageously differently colored. These different colors may be obtained through the use of different colorants but also the use of different concentrations in at least one colorant when the colorant will be the same for two layers.
In a particular embodiment, the outer layer contains at least one colorant. In another embodiment, the outer layer does not contain any colorant.
(b) Colorant (s)
In the first embodiment, the microcapsules, and in particular the external layer (s) contain (s) colorant (s) .
The term “colorant” includes any organic or inorganic pigment or colorant approved for use in cosmetics by the CTFA and the FDA for use in cosmetic formulations. Thus the term "colorant" refers to organic pigments such as synthetic or natural dyes selected from any of the well-known FD&C or D&C dyes, to inorganic pigments such as metal oxides, or lakes such as the ones based on cochineal carmine, barium, strontium, calcium or aluminum and any combination (blend) thereof. Such colorants are detailed hereinafter. In a particular embodiment, the colorant may be water-soluble or water-dispersible. In another embodiment, the colorant useful according to the present invention may be oil-soluble or oil-dispersible or with limited solubility in water. In a preferred embodiment, the colorant is an inorganic pigment, more preferably a metal oxide. Advantageously, the colorants of the multilayered microcapsules are primary metal oxides selected from iron oxides, titanium dioxide, aluminum oxide, zirconium oxides, cobalt oxides, cerium oxides, nickel oxides, tin oxide or zinc oxide, or composite oxides, more preferably an iron oxide selected from red iron oxide, yellow iron oxide or black iron oxide, or a mixture thereof.
The layer (s) may also contain lakes corresponding to an organic colorant secured to a substrate. Such (a) lake (s) is (are) advantageously chosen among the following material, and their mixture (s) :
-carmin of cochineal;
-organic pigments of azoic, anthraquinonic, indigoid, xanthenic, pyrenic, quinolinic, triphenylmethane, fluoran colorants; among the organic pigments may be cited those known under the following trademark references: D&C Blue No. 4, D&C Brown No. 1, D&C Green No.5, D&C Green No. 6, D&C Orange No. 4, D&C Orange No. 5, D&C Orange No. 10, D&C Orange No. 11, D&C Red No. 6, D&C Red No. 7, D&C Red No. 17, D&C Red No. 21, D&C Red No. 22, D&C Red No. 27, D&C Red No. 28, D&C Red No. 30, D&C Red No. 31, D&C Red No. 33, D&C Red No. 34, D&C Red No. 36, D&C Violet No. 2, D&C Yellow No. 7, D&C Yellow No. 8, D&C Yellow No. 10, D&C Yellow No. 11, FD&C Blue No. 1, FD&C Green No. 3, FD&C Red No. 40, FD&C Yellow No. 5, and FD&C Yellow No. 6;
-the water-insoluble salts of sodium, potassium, calcium, barium, aluminum, zirconium, strontium, titanium, of acid colorants such as azoic, anthraquinonic, indigoids, xanthenic, pyrenic, quinolinic, triphenylmethane, and fluoran colorants, these colorants may include at least one carboxylic or sulfonic acid group.
The organic lakes may also be protected by an organic support such as rosin or aluminum benzoate.
Among the organic lakes, we may in particular cite those known under the following names: D&C Red No. 2 Aluminum lake, D&C Red No. 3 Aluminum lake, D&C Red No. 4 Aluminum lake, D&C Red No. 6 Aluminum lake, D&C Red No. 6 Barium lake, D&C Red No. 6 Barium/Strontium lake, D&C Red No. 6 Strontium lake, D&C Red No. 6 Potassium lake, D&C Red No. 6 Sodium lake, D&C Red No. 7 Aluminum lake, D&C Red No. 7 Barium lake, D&C Red No. 7 Calcium lake, D&C Red No. 7 Calcium/Strontium lake, D&C Red No. 7 Zirconium lake, D&C Red No. 8 Sodium lake, D&C Red No. 9 Aluminum lake, D&C Red No. 9 Barium lake, D&C Red No. 9 Barium/Strontium lake, D&C Red No. 9 Zirconium lake, D&C Red No. 10 Sodium lake, D&C Red No. 19 Aluminum lake, 20 D&C Red No. 19 Barium lake, D&C Red No. 19 Zirconium lake, D&C Red No. 21 Aluminum lake, D&C Red No. 21 Zirconium lake, D&C Red No. 22 Aluminum lake, D&C Red No. 27 Aluminum lake, D&C Red No. 27 Aluminum/Titanium/Zirconium lake, D&C Red No. 27 Barium lake, D&C Red No. 27 Calcium lake, D&C Red No. 27 Zirconium lake, D&C Red No. 28 Aluminum lake, D&C Red No. 28 Sodium lake, D&C Red No. 30 lake, 25 D&C Red No. 31 Calcium lake, D&C Red No. 33 Aluminum lake, D&C Red No. 34 Calcium lake, D&C Red No. 36 lake, D&C Red No. 40  Aluminum lake, D&C Blue No. 1 Aluminum lake, D&C Green No. 3 Aluminum lake, D&C Orange No. 4 Aluminum lake, D&C Orange No. 5 Aluminum lake, D&C Orange No. 5 Zirconium lake, D&C Orange No. 10 Aluminum lake, D&C Orange No. 17 Barium lake, D&C Yellow No. 5 Aluminum lake, D&C Yellow No. 5 Zirconium lake, D&C Yellow No. 6 Aluminum lake, D&C Yellow No. 7 Zirconium lake, D&C Yellow No. 10 Aluminum lake, FD&C Blue No. 1 Aluminum lake, FD&C Red No. 4 Aluminum lake, FD&C Red No. 40 Aluminum lake, FD&C Yellow No. 5 Aluminum lake, and FD&C Yellow No. 6 Aluminum lake.
The chemical material corresponding to each of these organic colorants previously cited are mentioned in the book called <International Cosmetic Ingredient Dictionary and Handbook>, Edition 1997, pages 371 to 386 and 524 to 528, published by <The Cosmetic, Toiletry, and Fragrance Association>, of which the content is hereby incorporated by reference into the present specification.
In a preferred embodiment, the lake (s) is/are selected from carmin of cochineal and the water-insoluble salts of sodium, potassium, calcium, barium, aluminum, zirconium, strontium, titanium, of acid colorants such as azoic, anthraquinonic, indigoid, xanthenic, pyrenic, quinolinic, triphenylmethane, and fluoran colorants, given that these colorants may include at least one carboxylic or sulfonic acid group, and their mixture.
In a preferred embodiment, the lake (s) is/are selected from carmin of cochineal and the water-insoluble salts of sodium, calcium, aluminum, and their mixture.
As lake incorporating carmine we may cite the commercial references:
CARMIN COVALAC W 3508, CLOISONNE RED 424C et CHROMA-LITE MAGENTA CL4505.
The water-insoluble aluminum salts are preferably selected from FDC Yellow No. 5 Aluminum lake, FDC Blue No. 1 Aluminum lake, FDC Red No. 40 Aluminum lake, FDC Red No.30 Aluminum lake, FDC Green No. 5 Aluminum lake, and their mixtures. As compounds incorporating such inorganic lakes may notably be cited the commercial references:INTENZA FIREFLY C91-1211, INTENZA AZURE ALLURE C91-1251, INTENZA THINK PINK C91-1236.
The water-insoluble calcium salts are preferably selected from Red No. 7 Calcium lake. As compounds incorporating such inorganic lakes may notably be cited the commercial references: INTENZA MAGENTITUDE C91-1234, INTENZA HAUTE PINK C91-1232, INTENZA RAZZLED ROSE C91-1231, INTENZA AMETHYST FORCE C91-7231, INTENZA  PLUSH PLUM C91-7441, INTENZA ELECTRIC CORAL 30 C91-1233, FLORASOMES-JOJOBA-SMS-10%CELLINI RED-NATURAL and their mixture.
The water-insoluble sodium salts are preferably selected from Red No. 6 Sodium lake and Red No. 28 Sodium lake, and their mixture. As compounds incorporating such inorganic lakes may notably be cited the commercial references: INTENZA MANGO TANGO C91-1221 and INTENZA NITRO PINK C91-1235.
In an embodiment, the colorants present in the microcapsules are selected from the group consisting of inorganic pigments, organic pigments and their mixture, preferably is at least one inorganic pigment, more preferably at least a mixture of inorganic pigments, even more preferably selected from metallic oxides, and in particular from iron oxide (s) , titanium dioxide particles and their mixture, preferably their mixture.
The composition of the present invention may contain a mixture of two or more colorants, either encapsulated individually in microcapsules and/or one or more blends of colorants encapsulated within the multilayered microcapsules. In this specific embodiment, each layer of the microcapsule may contain at least one specific colorant or a specific blend of colorant (s) . In this specific embodiment, the composition of the present invention contains two or more microcapsules having different colors.
A person skilled in the art knows how to choose colorants and combinations of colorants to produce a desired color effect or color change. As stated hereinbefore, the microcapsules contain preferably at least titanium dioxide and/or iron oxides in their coating, preferably at least titanium dioxide. In a preferred embodiment, the microcapsules contain at least titanium dioxide and iron oxides in their coating. In a specific embodiment, the outer layer of the microcapsules contains titanium dioxide, more preferably as the sole colorant.
In a specific embodiment, the outer layer of the microcapsules contains organic pigments or iron oxides.
The colorants are present in an amount ranging from 20%to 90%by weight, preferably from 30%to 80%by weight, and more preferably from 50%to 75%by weight relative to the total weight of the microcapsule.
In a particular embodiment, the microcapsules contain a metallic oxide selected from the group consisting of iron oxides, and titanium oxides, present in an amount ranging from 20%to 90%by weight, preferably from 30%to 85%by weight, and more preferably from 50%to 85%by weight, relative to the total weight of the microcapsule.
In particular the titanium oxide may be present from 28%to 80%by weight, preferably from 30%to 75%by weight, and more preferably from 30 to 50%by weight, relative to the total weight of the microcapsule. In a particular embodiment, the titanium oxide may be present from 50%to 80%by weight, in particular from 55%to 70%by weight, and more particularly from 55%to 65%by weight, relative to the total weight of the microcapsule.
In particular the iron oxides may be present from 5%to 75%by weight, preferably from 8%to 65%by weight relative to the total weight of the microcapsule. In a particular embodiment, the iron oxides may be present in an amount higher than 15%by weight, preferably higher than 30%by weight, and in particular from 40%to 65%by weight, relative to the total weight of the microcapsule.
In a preferred embodiment, in at least one layer, and preferably in every layer, the colorants are the main ingredients, i.e., represent at least 40%by weight of the layer (s) , preferably at least 75%by weight of the layer (s) , more preferably at least 95%by weight of the total weight of the layer (s) .
In a preferred embodiment, the mean thickness of the titanium dioxide layer ranges from 5 μm to 150 μm.
(c) Binder or Lipid-Based Material
The inner and/or outer layer (s) may also include advantageously at least one binder, preferably a lipid-based material. In a particular embodiment of this invention, such a lipid-based material may have amphiphilic properties, that is to say having an apolar part and a polar part.
Such a lipid-based material can include at least one or several C12-C22 fatty acid chain (s) such as those selected from stearic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, etc., and mixtures thereof. Preferably these fatty acids chains are hydrogenated. Eventually, these fatty acid chains may be the apolar part of a lipid-based material.
Such a lipid-based material is preferably selected from phospholipids. These phospholipids are preferably selected from phosphoacylglycerol, more preferably selected from lecithins, and are in particular hydrogenated lecithin.
The lipid-based material may represent from 0.05%to 5%by weight of the microcapsule, in particular from 0.1%to 1%by weight of the microcapsule.
By combining three or more compounds (e.g., sugar alcohols, polymers, lipid-based materials) in the microcapsule of different hardness and/or water solubility, it is possible to  adjust the time required for colorant-encapsulated microcapsules to break down on the skin so that, by varying the method or intensity of application onto the skin, it is possible to adjust the preferred coloration or gradation pattern.
Thus, in a preferred embodiment, the multi-layer coating contains at least starch as a polymer and at least one lipid-based material, which is preferably lecithin.
In an advantageous embodiment the microcapsules include at least one monosaccharide or its derivatives and at least one polysaccharide or its derivatives.
In a preferred embodiment, the microcapsules include a core containing a monosaccharide derivative and a coating containing a polysaccharide (or its derivatives) including one type of ose or several types of ose (s) , preferably several types of oses.
In a more preferred embodiment, the microcapsules include a core containing a monosaccharide polyol, preferably selected from mannitol, erythritol, xylitol, sorbitol, and a coating containing a polysaccharide (or its derivatives) including as ose (s) at least one or more D-Glucose unit (s) .
In a preferred embodiment, the microcapsules include three or more colorants in different layers.
In a preferred embodiment, the microcapsules additionally include a binder, for example, a lipid-based material chosen from phospholipids, advantageously selected from phosphoacylglycerol and in particular from lecithins.
In a particular embodiment, the microcapsules contain mannitol, starch polymer and a lipid-based material.
Referring to figure 1, in a preferred embodiment, the present invention advantageously provides a color-changing microcapsule containing:
i) a core (A) , preferably having a size of less than 800 μm, more preferably less than about 400 μm, advantageously from 1 μm to 300 μm, in particular from 5 μm to 200 μm, and more particularly from 10 μm to 100 μm in diameter, which preferably does not contain any colorant, and containing at least one organic core preferably selected from at least one sugar alcohol preferably a monosaccharide-polyol advantageously selected from the group consisting of mannitol, erythritol, xylitol, and sorbitol;
ii) one first layer (B) surrounding the core containing:
-at least one colorant, preferably iron oxide (s) , and
-a binder selected from the group consisting of a polymer and a lipid-based material, preferably their mixture;
iii) one second layer (C) surrounding the first layer (B) , preferably having a thickness of 5 μm to 500 μm, containing:
-titanium dioxide particles, and
-a binder selected from the group consisting of a polymer and a lipid-based material, preferably their mixture;
iv) optionally one third layer (D) surrounding the second layer (C) containing:
-at least one colorant, and
-a binder selected from the group consisting of a polymer and a lipid-based material, preferably their mixture;
v) optionally one fourth layer (E) surrounding the third layer (D) , if any, or surrounding the second layer (C) containing:
-at least one wall-forming polymer preferably selected from polysaccharides such as cellulose derivatives, in particular cellulose ether and cellulose ester, from (poly) (alkyl) (meth) acrylic acid and its derivatives, notably (poly) (alkyl) (meth) acrylate and its derivatives, and preferably from alkylacrylic /alkylmethacrylic acid copolymers and their derivatives.
In a preferred embodiment, the polymer is a hydrophilic polymer selected from the group consisting of starch and its derivatives, in particular corn starch.
As examples of commercially available microcapsules used in the composition of the present invention, we may refer to the following microcapsules produced by Korea Particle Technology KPT under the commercial names:
-Magic50-BW0105 from KPT: ash gray spherical microcapsule containing mannitol, iron oxide red, iron oxide yellow, iron oxide black, hydrogenated lecithin, titanium dioxide, zea mays (corn) starch, having a 60-200 Mesh particle size.
2.Second embodiment of microcapsule containing releasable colorant (s)
In the second embodiment, the microcapsule contains:
-a core including at least one colored core and eventually at least one inner color layer (s) , and
-a shell having at least one pressure-breakable wall layer surrounding the core, an optional outer color layer and an optional outmost shell.
In a preferred embodiment, the microcapsule contains colorant (s) selected from inorganic pigment (s) , preferably selected from metal oxides, such as iron oxides and titanium oxide.
Preferably the colored core includes at least one inorganic pigment advantageously selected from at least one metallic oxide, more advantageously selected from at least one iron oxide. 
Preferably the pressure-breakable wall layer includes at least one inorganic pigment advantageously selected from at least one metallic oxide, more advantageously selected from at least one titanium oxide.
Preferably such iron oxides are located at least in the colored core and the titanium oxides are located at least in a pressure-breakable wall layer surrounding the core.
The microcapsules contain at least 70%by weight of colorant (s) , preferably of inorganic pigment (s) , preferably of a mixture of inorganic pigments, preferably of metallic oxides such as iron oxides and titanium oxides, compared to the total weight of the microcapsules.
Generally average particle size diameters of colorant microcapsules up to about 800 microns are used according to the present invention. Preferably the average particle size diameter of the colorant microcapsules is less than about 400 microns for skin care applications.
Advantageously the average particle size diameter is in the range of about 10 to 350 microns. Preferably, the average particle size will be from 50 μm to 800 μm, and in particular from 60 μm to 400μm.
Advantageously the microcapsule has a mean particle size of about from 18 to 270 mesh (around from 1000 μm to 53 μm) , particularly about from 25 to 170 mesh (around from 710 μm to 90 μm) .
In particular for a skincare composition of the present invention, the amount of microcapsules will range from 0.1%to 5%, preferably from 0.2%to 3%by weight relative to the total weight of composition.
In particular for a makeup composition of the present invention, the amount of microcapsules will range from 0.5%to 20%, preferably from 1%to 15%, more preferably from 2%to 10%by weight relative to the total weight of composition.
In a particular embodiment, the encapsulated colorant (s) may be present in a composition of the present invention in an amount in active matter of encapsulated pigments ranging from  0.5%to 20%by weight, in particular from 1%to 15%by weight, and more particularly from 2%to 12%by weight, relative to the total weight of the composition.
They will be integrated in the cosmetic formula generally at the latest stages of the formulation and after filtering stages if any, to avoid broken. Preferably, the microcapsules of the present invention are added and mixed uniformly at temperatures under 50℃. They are mixed gently with a paddle rather than a homogenizer.
In a particular aspect of the present invention, more than 60%, preferably more than 70%, particularly more than 80%, and more particularly more than 90%of microcapsules will be ruptured to release the inner colorant within 1 minute, preferably from 1 to 40 seconds, particularly from 1 to 30 seconds, and more particularly from 1 to 20 seconds after pressing, rubbing, wiping and/or scrubbing with the hands or an implement. However, the ratio and time-limit is not critical in the present invention.
2-1. Core (colorant and binder or lipid-based material)
In the second embodiment, the core of the microcapsule contains a colored core which contains at least one colorant and advantageously at least one binder, for example a lipid-based material.
The colorant (s) are not limited specifically, and the species described above are preferably used.
The binder is preferably selected from at least one hydrophilic polymer, at least one lipid-based material, and their mixture, preferably their mixture. In general, it is difficult to form a coating layer by using only colorant components or particles without using any binder. Further, even if a coating layer without a binder is formed with difficulty, such a coating layer may be easily damaged or ruptured or any of the components or particles may be easily removed from the coating layer. Therefore, a binder may be employed in order to promote the coating process and to improve the durability of the coating layer. Such a binder is selected from adhesive polymeric materials, which can act as wall-forming materials (wall-forming polymeric materials) .
In the present invention, the binder is preferably selected from at least one wall-forming material, from a lipid-base material, and their mixture. More preferably, the binder is a mixture which contains both a polymer as a wall-forming material and a lipid-base material as a coating base.
The coating base refers to a hydrophilic coating base, a hydrophobic coating base, or a lipid-based coating base. Since the hydrophilic coating base may be extracted together with colorant and the hydrophobic coating base may give a feeling of the presence of foreign substances due to its too strong film property, it is preferable to employ a lipid-based coating base.
In a particular embodiment, such a lipid-based material may have amphiphilic properties, that is to say having an apolar part and a polar part.
Such a lipid-based material can include at least one or several C12-C22 fatty acids chain such as selected from stearic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, etc. and mixtures thereof. Preferably these fatty acids chains are hydrogenated. Eventually, these fatty acid chains may be the apolar part of a lipid-based material.
Lipid-based materials are amphiphilic materials having both a polar part and an apolar part in one molecule and include, for example, a C12-C22 fatty acid chain selected from the group consisting of stearic acid, palmitic acid, oleic acid, linoleic acid, linolenoic acid, and mixtures thereof. The fatty acid chain may be hydrogenated, and optionally forms the apolar portion of the lipid-based materials.
The lipid-based materials can be selected form the group consisting of a phospolipid such as phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid or phosphatidylserine, a sphingolipid such as sphingosine-1-phosphate or sphingomyelin and ceramide, preferably ceramide or lecithin which is a phospholipid mixture, particularly hydrogenated lecithin. The amount of lipid-based materials can be determined by considering the type and amount of wall-forming polymers as well as other components such as colorants and/or titanium dioxide particles. In general, however, the amount of lipid-based materials can be selected, in terms of the total weight of each layer, from 0.1%to 30 %by weight, particularly from 0.2%to 25%by weight, preferably from 0.3%to 20%by weight and more preferably from 0.4%to 20%by weight. When the amount of lipid-based materials is less than 0.1%by weight, the breakability or dissolution ability may be decreased, and when it is more than 25%by weight, the durability may be decreased or the stability during processing and storage may be decreased.
In the present invention, the wall-forming polymer is selected from hydrophilic polymers. The term “hydrophilic polymers” means a polymer which can form hydrogen bond with water or alcohol compounds (especially selected from lower alcohols, glycol and polyol) , particularly those having O-H, N-H and S-H bonds in the molecule.
The hydrophilic polymer can be selected from the following polymers or a mixture thereof:
-acrylic or methacrylic acid homopolymers or copolymers or salts and esters thereof and in particular the products sold under the names Versicol For Versicol K by the company Allied Colloid, Ultrahold 8 by the company Ciba-Geigy, and polyacrylic acids of Synthalen K type, and salts, especially sodium salts, of polyacrylic acids (corresponding to the INCI name sodium acrylate copolymer) and more particularly a crosslinked sodium polyacrylate (corresponding to the INCI name sodium acrylate copolymer (and) caprylic/capric triglycerides) sold under the name Luvigel EM by the company BASF;
-copolymers of acrylic acid and of acrylamide sold in the form of the sodium salt thereof  under the names Reten by the company Hercules, sodium polymethacrylate sold under the name Darvan No. 7 by the company Vanderbilt, and the sodium salts of polyhydroxycarboxylic acids sold under the name Hydagen F by the company Henkel;
-polyacrylic acid/alkyl acrylate copolymers, preferably modified or unmodified carboxyvinyl polymers; the copolymers most particularly preferred are acrylate/C10-C30-alkylacrylate copolymers (INCI name: Acrylates/C10-30 Alkylacrylate Cross polymer) such as the products sold by the company Lubrizol under the tradenames Pemulen TR1, Pemulen TR2, Carbopol 1382 and Carbopol ETD2020, Carbopol Ultrez 21, and even more preferentially Pemulen TR-2;
-alkylacrylic /alkylmethacrylic acid copolymers and their derivatives notably their salts and their esters, such as the copolymer of ethyl acrylate, methyl methacrylate and low amount of methacrylic acid ester with quaternary ammonium groups provided under the tradename of EUDRAGIT RSPO from Evonik Degussa;
-AMPS (polyacrylamidomethylpropanesulfonic acid partially neutralized with aqueous ammonia and highly crosslinked) sold by the company Clariant;
-AMPS/acrylamide copolymers such as the products Sepigel or Simulgel sold by the company SEPPIC, especially a copolymer of INCI name Polyacrylamide (and) C13-C14Isoparaffin (and) Laureth-7;
-polyoxyethylenated AMPS/alkyl methacrylate copolymers (crosslinked or non-crosslinked) of the type such as Aristoflex HMS sold by the company Clariant;
-anionic, cationic, amphoteric or nonionic chitin or chitosan polymers;
-cellulose polymers and their derivatives, preferably other than alkylcellulose, chosen from hydroxyethylcellulose, hydroxypropylcellulose, hydroxymethylcellulose, ethylhydroxyethylcellulose and carboxymethylcellulose, and also quaternized cellulose derivatives; in a preferred embodiment, the cellulose polymer is a carboxymethylcellulose;
-starch polymers and their derivatives, eventually modified; in a preferred embodiment, the starch polymer is a natural starch;
-vinyl polymers, for instance polyvinylpyrrolidones, copolymers of methyl vinyl ether and of malic anhydride, the copolymer of vinyl acetate and of crotonic acid, copolymers of vinylpyrrolidone and of vinyl acetate; copolymers of vinylpyrrolidone and of caprolactam; polyvinyl alcohol;
-optionally modified polymers of natural origin, such as galactomannans and derivatives thereof, such as konjac gum, gellan gum, locust bean gum, fenugreek gum, karaya gum, gum tragacanth, gum arabic, acacia gum, guar gum, hydroxypropyl guar, hydroxypropyl guar modified with sodium methylcarboxylate groups (Jaguar XC97-1, Rhodia) , hydroxypropyltrimethylammonium guar chloride, and xanthan derivatives;
-alginates and carrageenans;
-glycoaminoglycans, hyaluronic acid and derivatives thereof; and
-mucopolysaccharides such as hyaluronic acid and chondroitin sulfates, and mixtures thereof.
Preferably, the hydrophilic polymers of the present invention can be selected from the group consisting of polysaccharides and their derivatives, homo-and/or co-polymers of acrylic or methacrylic acid or salts and esters thereof, and their mixture.
The polysaccharides and their derivatives can be selected from chitosan polymers, chitin polymers, cellulose polymers, starch polymers, galactomannans, alginates, carrageenans, mucopolysaccharides, and their derivatives, and a mixture thereof.
The polysaccharides and their derivatives are preferably selected from the group consisting of starch polymers.
Preferably, the hydrophilic polymers can be selected from the group consisting of corn starch, polymethyl methacrylate, cellulose or its derivatives such as carboxymethylcellulose (CMC) , cellulose ester and ether and aminocellulose, and a mixture thereof.
Preferably, the hydrophilic polymers can be selected from the group consisting of corn starch, polymethyl methacrylate, their derivatives, and a mixture thereof.
Preferred homo-and /or co-polymers of methacrylic acid and/or methacrylic acid ester are those wherein the copolymer of methyl methacrylate and ethyl acrylate has a molecule weight from 750 kDa to 850 kDa.
The hydrophilic polymer (s) used as a wall-forming material in the present invention are not cross-linked.
The amount of polymers or wall-forming polymers can be determined by considering the type and amount of colorants, titanium dioxide particles and/or lipid-based materials. In general, however, the amount of polymers or wall-forming polymers in each layer can be selected, in terms of total weight of each layer, from 0.1%to 30%by weight, particularly from 0.2%to 25%by weight, preferably from 0.3%to 20%by weight and more preferably from 0.4%to 20%by weight. When the content of lipid-based materials is less than 0.1%by weight, the breakability or dissolution ability may be decreased, and when it is more than 25%by weight, the durability may be decreased or the stability during processing and storage may be decreased. Such hydrophilic polymers described in this part may be implemented both as a shell-forming polymer and as a binder.
The core can be prepared in a form of particles, a powder, granules, micro spheres, and microcapsules, for example, by spray drying or fluid bed processing of the solution containing at least one colorant, at least one polymer as a wall-forming material and at least one lipid-based material in a solvent.
The size of the colored core, and more generally of the core, is not particularly limited and may be suitably chosen according to the finally desired microcapsule. For example, the size  of the colored core, and more generally of the core, may be larger than 20 μm or more, particularly 30 μm or more, preferably 40 μm or more, more preferably 50 μm or more, and smaller than 800 μm or less, particularly 700 μm or less, preferably 600 μm or less, more preferably 500 μm or less.
The radius of the core is larger than 50%, specifically larger than 60%, preferably larger than 70%and more preferably larger than 80%, relative to the total radius of the microcapsule. For example, the ratio between the radius of the core and the thickness of the shell may be from 1: 0.05 to 1: 0.5.
Alternatively, the amount of the core may be more than 30%by weight, specifically more than 40%by weight, preferably more than 50%by weight and more preferably more than 60%by weight, relative to the total weight of the microcapsule. Therefore, the microcapsule has a large loading amount of colorant in a particle.
The core can have one or more inner color layer (s) surrounding the colored core. The inner color layer (s) may be every layer located between the colored core and the pressure-breakable wall layer.
The inner color layer (s) include, for example, a first inner color layer, second inner color layer and third inner color layer, etc., wherein the colorants and binders contained in each inner color layer are the same or different from each other. In a preferred embodiment, the colored core can contain one or two inner color layer (s) , preferably one inner color layer.
When the core has a colored core and an inner color layer, the colored core can be formed by a granulation of a solution for the colored core containing at least one colorant and preferably at least one binder, an inner color layer can be formed by coating the colored core with a solution for the inner color layer containing at least one colorant and preferably at least one binder. The coating process can be performed by a fluidized bed coating process. The thickness of the inner color layer is not particularly limited and may be suitably chosen according to the finally desired microcapsule. For example, the thickness of the colored core, and more generally of the core, may be larger than 20 μm or more, particularly 40 μm or more, preferably 60 μm or more, more preferably 80 μm or more, and smaller than 200 μm or less, particularly 160 μm or less, preferably 120 μm or less, more preferably 100 μm or less.
Alternatively, the amount of the inner color layer may be from 20%to 80%by weight, specifically from 30%to 70%by weight, and preferably from 40%to 60%by weight, relative to the total weight of core.
In a particular embodiment, the colored core does not contain a binder and is surrounded by an inner color layer containing a colorant and a binder, by which pigments contained in the core will be more easily dispersed when the microcapsule is ruptured.
In the colored core, a binder can be used in an amount where the colorant will not fall apart or separate from the layer during the coating process and/or after the removal of solvent, and generally can be used in an amount selected from 1%to 30%by weight, preferably from 2%to 25%by weight, particularly from 5%to 20%by weight, and more particularly from 5%to 15%by weight relative to the total weight of the colored core.
In a preferred embodiment, the colorant (s) , and preferably the pigment (s) , still more preferably the iron oxide (s) , is (are) present in the core in an amount of at least 70%by weight, specifically at least 75%by weight, preferably at least 80%by weight, more preferably at least 85%by weight, such as from 80%to 99%by weight, relative to the total weight of the core.
In a preferred embodiment, the colorant (s) , and preferably the pigment (s) , more preferably the iron oxide (s) , is (are) present in an amount of at least 30%by weight, specifically at least 35%by weight, preferably at least 40%by weight, such as from 40%to 60%by weight, relative to the total weight of the microcapsule.
The amount of iron oxide (s) particles in the microcapsule may be from 20%to 60%by weight, preferably from 25%to 55%by weight, more preferably from 30%to 50%by weight, relative to the total weight of the microcapsule. More preferably, the amount of iron oxide (s) particles in the microcapsule may be from 30%to 58%by weight, preferably from 35%to 55%by weight, and more preferably from 40%to 50%by weight, relative to the total weight of the microcapsule.
2-2. Pressure-breakable wall layer or titanium dioxide particle layer
The microcapsule has a pressure-breakable wall layer including at least one colorant. The colorant (s) is (are) preferably selected from inorganic pigments, more preferably from metallic oxides and still more preferably from titanium dioxide particles. Preferably the colorant contained in the pressure-breakable wall layer is distinct from the colorant (s) contained in the colored core, for instance being both metallic oxides distinct from each other.
In a preferred embodiment, the titanium dioxide particles are discontinuously dispersed in the layer and linked to each other by a binder.
The term "pressure-breakable" or "pressure-friable" means that a rupture can be easily made by pressing, rubbing, wiping and/or scrubbing with the hands or an implement such as a cloth, sponge or paper.
A pressure-breakable titanium dioxide particle layer can contain particles of titanium dioxide and a binder, and the binder can contain a wall-forming material.
In the pressure-breakable wall layer of the present invention, it is believed that the titanium dioxide particles lodged in the wall-forming materials will break the pressure-breakable wall layer in an irreversible manner and facilitate or increase the disintegration or dissolution of  the wall layer. Further, it is also predicted that the titanium dioxide particles perform an important role in terms of the strength, durability, the pressure-breakability, and the resulting feeling of the wall layer.
For example, the pressure-breakable wall layer can be formed by the following procedure:
(a) dissolve or disperse titanium dioxide particles and a binder in an appropriate solvent to give a solution containing titanium dioxide particles and a binder,
(b) coat particles having the inner color layer with the solution obtained in (a) above, and
(c) optionally dry the resulting particles obtained in (b) above.
The coating may be preformed by using a fluidized bed process, but other coating processes can be utilized, if necessary. As to the appropriate solvents which can be utilized in the above procedure, mention can be made of water or a low boiling solvent such as methylene chloride, methanol and ethanol.
The titanium dioxide particle layer, of which the thickness can vary depending on the amount of titanium dioxide used and/or the type of binder, may have a thickness of 10 μm or more, preferably 20 μm or more, more preferably 30 μm or more, particularly 40 μm or more, commonly 300 μm or less, preferably 250 μm or less, more preferably 200 μm or less, and particularly 150 μm or less.
The amount of titanium dioxide particles in the pressure-breakable wall layer is preferably selected from 50%to 99%by weight, more preferably from 60%to 98%by weight, even more preferably from 70%to 97%by weight, and particularly from 80%to 95%by weight, in terms of total weight of the pressure-breakable wall layer. Preferably the amount of colorant (s) , and in particular of titanium dioxide particles, represent less than 100%of the pressure-breakable wall layer.
The amount of titanium dioxide particles in the microcapsule is preferably selected from 20%to 60%by weight, preferably from 25%to 55%by weight, and more preferably from 30%to 50%by weight, relative to the total weight of the microcapsule.
The colorant (s) in the colored core, preferably iron oxide (s) , and the colorant (s) in the pressure-breakable wall layer, preferably titanium dioxide particles, are both present in a respective total amount in the microcapsules such as the weight ratio of the colorant (s) in the colored core, and preferably iron oxide (s) , relative to colorant (s) in the pressure-breakable wall layer, preferably titanium dioxide particles, is greater than or equal to 1. The iron oxide (s) and the titanium dioxide particles are both present in a respective total amount in the microcapsules such as the weight ratio of the iron oxide (s) relative to the titanium dioxide particles is greater than or equal to 1.
The mean diameter or size of the titanium dioxide particles is not specifically limited but has a mean diameter of usually from 10 nm to 20 μm, preferably from 50 nm to 10 μm, more preferably from 100 nm to 5 μm, and particularly from 150 nm to 5 μm. A mean diameter or  size of less than 10 nm of titanium dioxide particles may result in a decrease in the pressure-breakable ability, and a mean diameter of more than 20 μm may make the formation of the titanium dioxide particle layer difficult. Titanium dioxide particles having a first particle size of less than the above range but having a second particle size falling within the above particle size range can be applicable in the present invention.
2-3. Optional outer color layer
The microcapsule additionally contains an optional outer color layer on the pressure-breakable titanium dioxide particle layer. The outer color layer can be formed by coating the titanium dioxide particle layer with a solution having a colorant and a binder, for example, by a fluidized bed process. The colorant and binder used in the outer color layer can be the same or different from those used in the inner color layer.
In general, the outer color layer is provided so as to impart a visual color different from the white color produced by the titanium dioxide particle layer and/or the color of the inner color layer. Therefore, a colorant in the outer color layer can be used in an amount that does not disturb the color developed by the inner color layer when the microcapsules are scrubbed.
The amount of the outer color layer can be from 1%to 60%by weight, preferably from 2%to 50%by weight, more preferably from 3%to 40%by weight, and particularly from 4%to 30%by weight relative to the total weight of core. However, the amount of the colorant in the outer color layer may be from 0.01%to 5%by weight, preferably from 0.05%to 4.5%by weight, more preferably from 0.1%to 4%by weight, and particularly from 0.5%to 3.5%by weight relative to the total weight of the colorant in the inner color layer.
The amount of colorant in the outer color layer may be additionally increased if the color of the outer color layer would not disturb the color of the inner color layer. A person skilled in the art can choose the color and amount of colorant in the outer color layer in an appropriate manner by considering the color and amount of colorants contained in the inner color layers and the desired color to be finally developed.
The thickness of the outer color layer is not particularly limited and may be suitably chosen according to the finally desired microcapsule. For example, the outer color layer may have a thickness which is larger than 20 μm, particularly 40 μm, preferably 60 μm, and more preferably 80 μm, and which is smaller than 200 μm, particularly 150 μm, preferably 120 μm, and more preferably 100 μm.
2-4. Outmost shell
The microcapsule can contain a protective outmost shell on a pressure-breakable titanium dioxide particle layer or an additional outer color layer to protect the microcapsule against moisture in the air during storage or to ensure long-term stability of the microcapsule in a carrier, notably in a solution.
The outmost shell can be made from at least one polymer, and preferably can be made from  at least one polymer selected from the group consisting of polysaccharides and their derivatives, acrylic or methacrylic acid homopolymers or copolymers or salts and esters thereof, polystyrene-maleic anhydride copolymers, and their mixtures, such as poly (meth) acrylate, cellulose ether, cellulose ester and their derivatives, and their mixtures.
The amount of the outmost shell is selected, in terms of total weight of the microcapsule, from 0.1%to 20.0 %by weight and preferably from 0.5%to 15%by weight. When the amount of the outmost shell is less than 0.1%by weight, the shell coating may be meaningless, and when it is more than 20.0%by weight, the feeling of the presence of foreign substances may be caused.
The thickness of the outmost shell is not particularly limited and may be suitably chosen according to the finally desired microcapsule. For example, the outmost shell may have a thickness which is larger than 20 μm, particularly 30 μm, preferably 40 μm, and more preferably 50 μm, and which is smaller than 200 μm, particularly 150 μm, preferably 120 μm, and more preferably 90 μm.
Other examples of polymers which could be implemented as the outmost shell will be given later during the description of the binder which may be used in the microcapsules of the present invention.
3.Process
The microcapsules may be produced by conventional methods known in the art within the coating or encapsulation domain, including pelletization, granulation, coating, etc. For example, the microcapsules may be obtained by the steps of containing a mixture of the compounds (actives, pigments, polymers, solvents) and drying to form capsules as disclosed in WO01/35933 and WO2011/027960, or the steps of granulation and coating by spray drying as disclosed in FR2841155, or by fluidized bed technology, which has been used in the food and pharmaceutical industry. An example may be cited in WO08/139053 for the preparation of a spheroid multilayer containing a core of sugar and concentric layers of pharmaceutical actives. Fixation of pharmaceutical actives on the core is made by impregnation or pulverization or projection, and then the first layer is dried before application of a second layer.
Preferably, the microcapsules introduced in the composition of the present invention are obtainable, and preferably obtained, at least in part, by fluidized bed technology which is described later. The fluid-bed process is characterized in that leads to real capsules compared to spray drying, which leads to granular particles formed by particle cohesion or to a matrix with the core material randomly dispersed in a polymer. In particular the use of a fluid-bed process allows substantially spherical microcapsules with a core substantially  spherical, surrounded by at least one layer circumferentially surrounding the core and preferably at least one outer layer circumferentially surrounding the inner layer.
The fluid bed process is disclosed by example in ‘Fluid-Bed Coating, Teunou, E.; Poncelet, 2005, D. Food Science and Technology (BocaRaton, FL, United States) , Volume 146, Issue Encapsulated and Powdered Foods, Pages 197-212. A person skilled in the art knows how to adjust air quantity, liquid quantity and temperature allowing reproduction of the microcapsule according to the present invention.
Preferably a fluid bed process includes a Würster process and/or a tangential spray process. Such processes allow, contrary to a pelletization process, spherical capsules with a core surrounded by one or more circumferential layers.
By combining two or more compounds (e.g., polymers, lipid-based material) with titanium dioxide particles in the microcapsules of different hardness and/or water solubility, it is possible to adjust the time required for colorant-encapsulated microcapsules to break down on the skin so that, by varying the method or intensity of application onto the skin, it is possible to adjust the preferred coloration or gradation pattern.
Preferably, the multi-layered coating contains at least starch as a polymer with at least one lipid-based material and preferably lecithin.
Preferably, the microcapsules additionally include a lipid-based material chosen from phospholipids, advantageously selected from phosphoacylglycerol and in particular lecithins. Preferably, the microcapsules include three or more different colorants (in terms of color) . More preferably, the colorants are inorganic pigments, and even more preferably metal oxide (s) .
In the present invention, an organic solvent may be employed in the preparation of a coating solution used in the fluidized bed coating process. The organic solvent is not specifically restricted but preferably includes methylene chloride, methanol, ethanol, and mixtures thereof. It is possible to employ any organic solvent if it can dissolve or disperse the polymers and/or lipid-based materials, has a boiling point less than that of water, and has a low residual toxicity.
The microcapsules used in the present invention are obtainable, and preferably obtained, by the following steps:
(a-1) preparing particles of a colored core (A-1) containing at least one colorant and at least one binder, and
(a-2) optionally coating the colored core prepared in the above step (a-1) with a solution in which a colorant and a binder that are the same as or different from those used in the above step (a-1) are dissolved or dispersed to form an inner color layer (A-2) ,
(b) coating the particles prepared in the above step (a-1) or (a-2) with a solution in which  titanium dioxide particles and a binder form a pressure-breakable wall layer (B) ,
(c-1) optionally coating the particles obtained in the above step (b) with a solution in which a colorant and a binder that are the same as or different from those used in the above steps (a-1) or (a-2) are dissolved or dispersed to form an outer color layer (C-1) ,
(c-2) optionally coating the particles obtained in the above step (b) or (c-1) with a solution in which a shell-forming polymer is dissolved or dispersed to form an outmost shell.
The present invention will be further explained by the following examples, but is not restricted to them.
4 Properties of the microcapsules
The microcapsules are stable in the compositions of the present invention, preferably at high temperatures, for example greater than or equal to 40℃, for example for one month, better two months and still better three months in an oven at 45℃or for 15 days in an oven at 60℃
Preferably, the microcapsules present appropriate softening kinetics. More preferably, at least three hours after being in contact with the other compounds of the formula, the hardness of the microcapsules is advantageously from 5 to 50 grams, more preferably from 6 to 20 grams and still more preferably from 7 to 10 grams. Such hardness is in conformity with an industrial process for preparing compositions including such microcapsules. Such values of softening kinetics and hardness allow the provision of not only aesthetic microcapsules but also overall aesthetic compositions.
Particularly, the composition may lead to different shades or color gradations depending on the intensity of the rubbing. The compositions may advantageously present a high chromaticity C*as measured in the in CIE Lab system 1976.
Additives
The compositions in accordance with the present invention may also comprise conventional cosmetic additives as for example organic solvents, ionic or nonionic thickeners, softeners, humectants, additional opacifiers, stabilizers, emollients, silicones, antifoams, fragrances, preserving agents, anionic, cationic, nonionic, zwitterionic or amphoteric surfactants, active agents, fillers, polymers, propellants, acidifying or basifying agents or any other ingredient commonly used in the cosmetic and/or dermatological field.
Thickeners that may be mentioned include the carboxyvinyl polymers such as the
Figure PCTCN2014093367-appb-000008
products (Carbomers) and the Pemulen products, for instance Pemulen
Figure PCTCN2014093367-appb-000009
and Pemulen 
Figure PCTCN2014093367-appb-000010
 (acrylate/C10-C30 alkyl acrylate copolymer) ; polyacrylamides, for instance the crosslinked copolymers sold under the names Sepigel
Figure PCTCN2014093367-appb-000011
 (CTFA name:  polyacrylamide/C13-14 isoparaffin/laureth 7) or Simulgel 600 (CTFA name: acrylamide/sodium acryloyldimethyltaurate copolymer/isohexadecane/polysorbate 80) by the company SEPPIC; 2-acrylamido-2-methylpropanesulfonic acid polymers and copolymers, optionally crosslinked and/or neutralized, for instance poly (2-acrylamido-2-methylpropanesulfonic acid) sold by the company Hoechst under the trade name “Hostacerin
Figure PCTCN2014093367-appb-000012
” (INCI name: ammonium polyacryloyldimethyl taurate, made with
Figure PCTCN2014093367-appb-000013
monomer (2-acrylamido-2-methylpropanesulfonic acid from LUBRIZOL) , or Simulgel
Figure PCTCN2014093367-appb-000014
sold by the company SEPPIC (CTFA name: sodium polyacryolyldimethyl taurate/polysorbate 80/sorbitan oleate) ; copolymers of 2-acrylamido-2-methylpropanesulfonic acid and of hydroxyethyl acrylate, for instance Simulgel
Figure PCTCN2014093367-appb-000015
and Sepinov EMT
Figure PCTCN2014093367-appb-000016
sold by the company SEPPIC; cellulose derivatives such as hydroxyethylcellulose; polysaccharides and especially gums such as xanthan gum; water-soluble or water-dispersible silicone derivatives, for instance acrylic silicones, polyether silicones and cationic silicones, and mixtures thereof.
Among the acidifying agents, examples that may be mentioned include mineral or organic acids, for instance hydrochloric acid, orthophosphoric acid, sulfuric acid, carboxylic acids, for instance acetic acid, tartaric acid, citric acid or lactic acid, and sulfonic acids.
Among the basifying agents, examples that may be mentioned include aqueous ammonia, alkali metal carbonates, alkanolamines such as monoethanolamine, diethanolamine and triethanolamine, and also derivatives thereof, sodium hydroxide and potassium hydroxide.
Preferably, the cosmetic composition comprises one or more basifying agents chosen from alkanolamines, in particular triethanolamine, and sodium hydroxide.
The pH of the composition in accordance with the invention is generally between 3 and 12 approximately, preferably between 5 and 11 approximately and even more particularly from 6.5 to 8.5.
A person skilled in the art will select the said active principle (s) according to the effect desired on the skin, the hair, the eyelashes, the eyebrows or the nails.
Needless to say, a person skilled in the art will take care to select the abovementioned optional compound (s) and/or the amounts thereof such that the advantageous properties intrinsically associated with the compositions in accordance with the invention are not, or are not substantially, adversely affected by the envisaged addition (s) .
Galenic form
The compositions of the present invention are emulsions, preferably oil-in-water emulsions.
In yet another preferred embodiment, the compositions of the invention are gelified compositions and in particular gelified oil-in-water emulsions.
A composition according to the invention may be in the form of makeup compositions and/or care compositions for keratin materials, in particular for the skin. Particularly, a composition according to the invention may be a cream, essence, water, lotion or gel, preferably in the form of face skincare gel.
In a preferred embodiment, a composition according to the present invention is a non-rinsing composition: the composition is not intended to be rinsed after application on the skin.
These compositions are prepared according to the usual methods.
The compositions of this type may be in the form of a facial and/or body care or makeup product, and may be conditioned, for example, in the form of cream in a jar or of fluid in a tube.
Method and use
The composition of the present invention can be used for a non-therapeutic process, such as a cosmetic process or method, for making up and/or caring for the keratin materials, such as the skin, in particular the face and the lips, by being applied to the skin, especially the face and the lips.
The present invention relates to use of a composition as described above, in preparing compositions for making up and/or caring for the keratin materials.
The examples that follow are aimed at illustrating the compositions and processes according to this invention, but are not in any way a limitation of the scope of the invention.
EXAMPLES
Example 1: formulation example
Invention A, comparative B, and comparative C were prepared as follow.
Figure PCTCN2014093367-appb-000017
Figure PCTCN2014093367-appb-000018
1: Magic50-BW0105 from KPT
2: REDCAP1 (by TAGRA BIOTECHNOLOGIES)
Comparative B contains microcapsules comprising releasable colorant(s), which is different from the invention;
Comparative C contains more than 20% by weight of polyols, relative to the total weight of the composition;
Comparative D does not contain solubilizing agent a) according to the invention.
The examples were formulated using conventional method of preparation.
Example 2: Evaluation
The skin benefits of the Invention A, Comparative B, C, and D were evaluated by a group of 10 panelists, after using the examples, respectively, on their faces.
3:significant hydrating effect with very fresh feeling, very good coverage on skin imperfection;
2:good hydrating effect with fresh feeling, good coverage on skin imperfection;
1:poor hydrating effect, or hydrating but with oily or sticky feeling, no or undesired coverage on skin imperfection;
Stability of the examples Invention A, Comparative B, C, and D were measured by leaving the examples under 45℃for 2 months.
Figure PCTCN2014093367-appb-000019
It is observed that, all the examples are transparent.
Comparative B and D are not stable, with issue of beads bleeding or precipitation immediately after preparation. Comparative C failed to have a desired hydrating effect after application.
In comparison to these, invention A is stable over time, and has improved skin benefits, such as good coverage of the skin imperfections, and hydrating effect with very fresh feeling.

Claims (21)

  1. Composition in form of an oil-in-water emulsion comprising a dispersed fatty phase and a continuous aqueous phase, and:
    a) at least one solubilizing agent chosen from polyoxylakylene ether of alkyl alcohols, polyalkylene glycols of saturated or unsaturated fatty acid, optionally hydrogenated, or a mixture thereof;
    b) less than or equal to 20% by weight of at least one polyol, relative to the total weight of the composition;
    c) at least one hydroxylated diphenylmethane derivative of formula (I) 
    Figure PCTCN2014093367-appb-100001
    in which:
    R1 is chosen from a hydrogen atom, a methyl group, a saturated or unsaturated, linear or branched alkyl chain having from 2 to 4 carbon atoms, an -OH group, and a halogen,
    R2 is chosen from a hydrogen atom, a methyl group, a saturated or unsaturated linear or branched alkyl chain having from 2 to 5 carbon atoms,
    R3 is chosen from a methyl group or a saturated or unsaturated linear or branched alkyl chain having from 2 to 5 carbon atoms,
    R4 and R5 are, independently of each other, chosen from a hydrogen atom, a methyl group, a saturated or unsaturated linear or branched alkyl chain having from 2 to 5 carbon atoms, an -OH group or a halogen; and
    d) at least one microcapsule comprising releasable colorant (s) .
  2. Composition of claim 1, wherein the composition is transparent.
  3. Composition of claim 1 or 2, wherein the solubilizing agent is chosen from polyoxyethylene ether and/or polyoxypropylene ether of C1-C34, more preferably C1-C30, even more preferably C4-C24 alcohol, polyalkylene glocols of castor oil, optionally hydrogenated, or its mixture; preferably chosen from PPG-5-ceteth-20, PPG-6-decyltetradeceth-30, PPG-26-buteth-26, PEG-40 castor oil, PEG-60 castor oil, preferably hydrogenated, or a mixture thereof.
  4. Composition of any one of the claims 1 to 3, wherein the solubilizing agent is present in an amount ranging from 0.1% to 25% by weight, preferably from 0.5% to 15% by weight, more preferably from 0.5% to 5% by weight, relative to the total weight of the composition.
  5. Composition of any one of the preceding claims 1 to 4, wherein the polyol is chosen from glycerins, butylene glycol, dipropylene glycol, caprylyl glycol, or a mixture thereof.
  6. Composition of any one of the preceding claims 1 to 5, wherein the polyol is present in an amount from 0.01% to 20% by weight, preferably from 1% to 15% by weight, relative to the total weight of the composition.
  7. Composition of any one of the preceding claims 1 to 6, wherein the hydroxylated diphenylmethane derivative has the following formula (II) :
    Figure PCTCN2014093367-appb-100002
  8. Composition of any one of the preceding claims 1 to 7, wherein the hydroxylated diphenylmethane derivative has the following formula (I) or (II) is present in an amount ranging from 0.01% to 3% by weight relative to the total weight of the composition, in particular from 0.05% to 1% by weight, relative to the total weight of the composition.
  9. Composition of any one of the preceding claims 1 to 8, wherein the microcapsule comprises:
    (A) a core, preferably uncolored core, comprising one organic material, and
    (B) at least one layered coating surrounding the core, the layered coating comprising at least one polymer, at least one colorant, and advantageously at least one binder.
  10. Composition according to any one of claims 1 to 9, wherein the microcapsule is present in an amount ranging from 0.1% to 10% by weight, preferably from 0.5% to 5% by weight, relative to the total weight of the composition.
  11. The composition according to any one of claims 1 to 10, wherein the core of the microcapsules, comprises at least one monosaccharide or its derivatives as the organic material, in particular a monosaccharide-polyol advantageously selected from the group consisting of mannitol, erythritol, xylitol, sorbitol and mixtures thereof, preferably mannitol.
  12. Composition of anyone of claims 1 to 11, wherein the microcapsules comprise at least: 
    -an inner core made of a monosaccharide-polyol, preferably mannitol,
    -at least two layers of different color from each other,
    -at least one hydrophilic polymer preferably selected from polysaccharides or their derivatives, and more preferably from starch or its derivatives, and advantageously at least one lipid based material, preferably an amphiphilic compound, more preferably a phospholipid, and even more preferably phosphoacylglycerol such as hydrogenated lecithin.
  13. Composition of any one of claims 1 to 12, wherein the microcapsules comprise:
    a) a core (A) , preferably having a size less than 800 μm, more preferably less than about 400 μm, advantageously from 1 μm to 300 μm, in particular from 5 μm to 200 μm, and even more particularly from 10 μm to 100 μm in diameter, which preferably does not contain any colorant, and comprising at least one organic core preferably selected from at least one sugar alcohol preferably a monosaccharide-polyol advantageously selected from the group consisting of mannitol, erythritol, xylitol, and sorbitol;
    b) one first layer (B) surrounding the core comprising:
    -at least one colorant, preferably iron oxide (s) , and
    -a binder selected from the group consisting of a polymer and a lipid-based material, preferably their mixture;
    c) one second layer (C) surrounding said first layer (B) , preferably having a thickness of 5 μm to 500 μm, comprising:
    -titanium dioxide particles, and
    -a binder selected from the group consisting of a polymer and a lipid-based material, preferably their mixture;
    d) optionally one third layer (D) surrounding the second layer (C) comprising:
    -at least one colorant, and
    -a binder selected from the group consisting of a polymer and a lipid-based material, preferably their mixture;
    e) optionally one fourth layer (E) surrounding the third layer (D) , if any, or surrounding the second layer (C) comprising:
    -at least one wall-forming polymer preferably selected from polysaccharides such as cellulose derivatives, in particular cellulose ether and cellulose ester, from (poly) (alkyl) (meth) acrylic acid and its derivatives, notably (poly) (alkyl) (meth) acrylate and its  derivatives, and preferably from alkylacrylic/alkylmethacrylic acid copolymers and their derivatives.
  14. Composition of any one of claims 1 to 13, wherein the microcapsules inside the composition are breakable under pressure at the application on the keratinous materials.
  15. Composition of any one of claims 1 to 14, wherein the core represents from 10% to 90% by weight, preferably 20% to 80% by weight, more preferably from 30% to 70% by weight, and still more preferably from 40% to 60% by weight, relative to the total weight of the microcapsule.
  16. Composition of any one of claims 1 to 15, wherein the colorant represents from 20% to 90%, preferably from 30% to 80%; and in particular from 50% to 75% by weight relative to the microcapsule.
  17. Composition of any one of claims 1 to 16, wherein the colorants present in the microcapsules are selected from a group consisting of inorganic pigments, organic pigments and their mixture, preferably is at least one inorganic pigment, more preferably at least a mixture of inorganic pigments, even more preferably selected from metallic oxides, and in particular from iron oxide (s) , titanium dioxide particles and their mixtures, preferably their mixture.
  18. Composition of any one of claims 1 to 17, wherein the microcapsule comprises:
    (A) a core, having preferably a size ranging from 20 μm to 800 μm, comprising at least one colorant and preferably at least one binder, the colorant (s) including preferably at least one inorganic pigment preferably selected from iron oxide (s) , and
    (B) a pressure-breakable wall layer surrounding the core, comprising at least one colorant and preferably at least one binder, the colorant (s) comprising preferably at least titanium dioxide particles,
    wherein the microcapsules include at least 70% by weight of colorant (s) , compared to the total weight of the microcapsules.
  19. Composition of any one of claims 1 to 18, wherein at least one layer of the microcapsules is obtained by a fluid bed process.
  20. Composition in form of an oil-in-water emulsion comprising a dispersed oily phase and a continuous aqueous phase, and:
    a1) at least one solubilizing agent chosen from PPG-5-ceteth-20, PPG-6-decyltetradeceth-30, PPG-26-buteth-26, PEG-40 castor oil, PEG-60 castor oil, preferably hydrogenated, or a mixture thereof;
    b1) less than or equal to 20% by weight of at least one polyol, relative to the total weight of  the composition;
    c1) at least one hydroxylated diphenylmethane derivative of formula (II) 
    Figure PCTCN2014093367-appb-100003
    d1) at least one microcapsule comprising releasable colorant (s) .
  21. A cosmetic process for caring for and/or making up keratinous materials, comprising application on the keratinous materials in particular on the skin of a composition according to any one of claims 1 to 20.
PCT/CN2014/093367 2014-12-09 2014-12-09 Composition comprising visible beads WO2016090551A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/093367 WO2016090551A1 (en) 2014-12-09 2014-12-09 Composition comprising visible beads
CN201480084632.9A CN107205952A (en) 2014-12-09 2014-12-09 Include the composition of visible pearl

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/093367 WO2016090551A1 (en) 2014-12-09 2014-12-09 Composition comprising visible beads

Publications (1)

Publication Number Publication Date
WO2016090551A1 true WO2016090551A1 (en) 2016-06-16

Family

ID=56106420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093367 WO2016090551A1 (en) 2014-12-09 2014-12-09 Composition comprising visible beads

Country Status (2)

Country Link
CN (1) CN107205952A (en)
WO (1) WO2016090551A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023110035A1 (en) * 2021-12-15 2023-06-22 Koehler Innovation & Technology Gmbh Microcapsule dispersions with emulsifier

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1287877A (en) * 1999-07-27 2001-03-21 株式会社资生堂 Micro-capsule and its prepn. method
CN1379655A (en) * 1999-08-18 2002-11-13 普利马凯尔公司 Decorative cosmetic preparations containing chitosan microcapsules charged with active ingredients
CN1798550A (en) * 2003-05-30 2006-07-05 西姆莱斯有限责任两合公司 Use of diphenylmethane derivatives as tyrosinase inhibitors
US20110052512A1 (en) * 2009-08-28 2011-03-03 L'oreal Composition containing a hydroxylated diphenylmethane derivative
WO2013107354A1 (en) * 2012-01-17 2013-07-25 L'oreal Colour changing composition in o/w emulsion form
WO2014082299A1 (en) * 2012-11-30 2014-06-05 L'oreal Color-changing composition
CN104168960A (en) * 2012-01-17 2014-11-26 欧莱雅 Colour changing composition in o/w emulsion form
CN104168871A (en) * 2012-01-17 2014-11-26 欧莱雅 Changing-color composition in foam form
CN104168874A (en) * 2012-01-17 2014-11-26 欧莱雅 Color changing composition with polyol

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2900048B1 (en) * 2006-04-21 2012-11-16 Oreal COMPOSITIONS COMPRISING A DIPHENYL-METHANE HYDROXYLATED DERIVATIVE

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1287877A (en) * 1999-07-27 2001-03-21 株式会社资生堂 Micro-capsule and its prepn. method
CN1379655A (en) * 1999-08-18 2002-11-13 普利马凯尔公司 Decorative cosmetic preparations containing chitosan microcapsules charged with active ingredients
CN1798550A (en) * 2003-05-30 2006-07-05 西姆莱斯有限责任两合公司 Use of diphenylmethane derivatives as tyrosinase inhibitors
US20110052512A1 (en) * 2009-08-28 2011-03-03 L'oreal Composition containing a hydroxylated diphenylmethane derivative
WO2013107354A1 (en) * 2012-01-17 2013-07-25 L'oreal Colour changing composition in o/w emulsion form
CN104168960A (en) * 2012-01-17 2014-11-26 欧莱雅 Colour changing composition in o/w emulsion form
CN104168871A (en) * 2012-01-17 2014-11-26 欧莱雅 Changing-color composition in foam form
CN104168874A (en) * 2012-01-17 2014-11-26 欧莱雅 Color changing composition with polyol
WO2014082299A1 (en) * 2012-11-30 2014-06-05 L'oreal Color-changing composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023110035A1 (en) * 2021-12-15 2023-06-22 Koehler Innovation & Technology Gmbh Microcapsule dispersions with emulsifier

Also Published As

Publication number Publication date
CN107205952A (en) 2017-09-26

Similar Documents

Publication Publication Date Title
JP2015505317A (en) Color changing composition in the form of a gel
JP2017514827A (en) Composition comprising microcapsules comprising particles having a high wetting point
JP2016500113A (en) Discoloration composition
JP6591408B2 (en) Color change cosmetic composition in the form of an O / W emulsion in the form of an oleosome
EP2823804B1 (en) Color changing composition comprising pigments and a high amount of water
KR102087477B1 (en) Color changing composition in o/w emulsion form comprising a gemini surfactant
US10894007B2 (en) Hair care composition with encapsulated moisturizers and method to deliver extended moisture release to the hair
FR3008312A1 (en) THREE-PHASE COSMETIC COMPOSITIONS COMPRISING ENCAPSULATED PIGMENTS
KR102252243B1 (en) Colour changing composition in emulsion form comprising a partially neutralized, crosslinked acrylic homopolymer or copolymer
FR3029406A1 (en) CAPILLARY COLORING PROCESS USING AT LEAST ONE DYE, ONE TITANIUM SALT, AND ANIONIC THICKENING POLYMER
JP6442420B2 (en) Emulsion-type color changing composition containing emulsifiable hydrophilic gelling agent
WO2016090551A1 (en) Composition comprising visible beads
WO2017088146A1 (en) Composition comprising microcapsules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907761

Country of ref document: EP

Kind code of ref document: A1