WO2016089207A1 - A motion compensation device - Google Patents

A motion compensation device Download PDF

Info

Publication number
WO2016089207A1
WO2016089207A1 PCT/NL2015/050838 NL2015050838W WO2016089207A1 WO 2016089207 A1 WO2016089207 A1 WO 2016089207A1 NL 2015050838 W NL2015050838 W NL 2015050838W WO 2016089207 A1 WO2016089207 A1 WO 2016089207A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
mounting structure
spring
free extremity
orientation
Prior art date
Application number
PCT/NL2015/050838
Other languages
French (fr)
Inventor
Michaël Hubert SCHINKEL
Edouard Frans Alexander SCHINKEL
Original Assignee
H. Schinkel Holding B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NL2014631A external-priority patent/NL2014631B1/en
Application filed by H. Schinkel Holding B.V. filed Critical H. Schinkel Holding B.V.
Priority to EP15841078.7A priority Critical patent/EP3227175B1/en
Priority to DK15841078.7T priority patent/DK3227175T3/en
Priority to PL15841078T priority patent/PL3227175T3/en
Publication of WO2016089207A1 publication Critical patent/WO2016089207A1/en
Priority to US15/614,217 priority patent/US10604216B2/en
Priority to CY20191100818T priority patent/CY1122106T1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/14Arrangement of ship-based loading or unloading equipment for cargo or passengers of ramps, gangways or outboard ladders ; Pilot lifts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/30Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • B63B2017/0072Seaway compensators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/14Arrangement of ship-based loading or unloading equipment for cargo or passengers of ramps, gangways or outboard ladders ; Pilot lifts
    • B63B2027/141Arrangement of ship-based loading or unloading equipment for cargo or passengers of ramps, gangways or outboard ladders ; Pilot lifts telescopically extendable

Definitions

  • WO2013/174886 discloses a gangway system for providing passage between the structure and an independent vessel, comprising a pedestal for mounting to said vessel; a gangway comprising an inboard root hingedly mounted to the pedestal, and an outboard end for interfacing with the structure; a processor and one or more sensors configured to report to the processor and a control system responsive to signals from the processor, wherein a ram is applied responsive to signals from the control system and mounted on the pedestal for adjusting the vertical position of the gangway outboard end; and a ram response to signals from the control system and mounted on the gangway for adjusting the horizontal position of the gangway outboard end.
  • Another objective is to provide that the device is operationally safe at all circumstances; meaning that with a power failure the construction with the tiltable arm remains essentially balanced.
  • the arm is articulated.
  • the at least two parts of the arm are arranged to be displaced with reference to each other so as to maintain the free extremity of the arm which lies distant from the mounting structure, at a pre- determined and possibly variable position and/or orientation.
  • the at least one sensor is equipped for monitoring an orientation of the floating object, and that the control system receives signals relating to the orientation of the float- ing object, which control system based on said signals drivingly connects to the said first positioning actuator for the arm to maintain its free extremity at a predetermined position and/or orientation.
  • control system driv- ingly connects to means for positioning at least one of the connecting points of the spring with the arm and with the mounting structure respectively and/or for adjusting a spring constant of said spring to maintain the free extremity of the arm at a predetermined position and/or orientation.
  • control system drivingly connects to means for displacing the at least two parts of the arm with reference to each other so as to maintain the free extremity of the arm distant from the mounting structure at a predetermined position and/or orientation.
  • control system drivingly connects to the second actuator for pivoting the mounting structure with reference to the object to maintain the free extremity of the arm at a predetermined position and/or orientation.
  • the arm 2 may further be connected to the mounting structure 8 by a positioning actuator 9.
  • the positioning actu- ator 9 is depicted in this figure la being connected to the mounting structure 8 on the same imaginary vertical line 800 as the spring base point 60 and the pivot point 3, but in practice the positioning actuator 9 does not need to be connected to the mounting structure 8 on this imaginary vertical line 800.
  • the 5 may also be connected to any other part of the arm 2 and may be moved along the arm 2 and connected or disconnected at any time .
  • the spring 6 may be adjusted in order to balance the arm 2. This can be done by changing the position of at least one of the spring connecting points 60, 61 and/or by changing the spring constant of the spring 6.
  • the mounting structure 8 is pivotably mounted on the floating object 7 with a hinge 84 and further connected to the floating object 7 with an offset actuator 92.
  • the floating object 7 is subjected to a rolling motion 2002 (roll) and to a rolling motion 2003 (pitch) t and the mounting structure 8 is maintained substantially vertical by two offset actuators 91 and 92.
  • the upper part of the mounting structure 81 may be extended or retracted from the mounting base 80.
  • the positioning actuator 9 is connected to a hydraulic motor 94, which in practice may be equipped with a hydraulic accumulator, and which motor 94 is controlled by a control system 13 which receives input from at least one motion sensor 10 but possibly from more motion sensors 11, 12.
  • the control system 13 and the motor 94 may also drive the offset actuator 91 rotating the mounting structure 8 around the offset axis 83 preferably parallel to the horizontal orientation 200 of the arm 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Manipulator (AREA)

Abstract

Method and device to balance a tiltable arm (2) comprising a free extremity (4) and having a pivot point (3) on a mounting structure (8) which is supported by a floating object (7), by providing said arm (2) with suspension and/or support means (6) for controlling the arm's inclination with respect to the horizon, and by providing said suspension and/or support means (6) with at least one spring (6), wherein the spring (6) connects to the arm (2) and to said mounting structure (8), and embodying the spring as a passive spring (6) which is arranged to balance the arm (2) so as to stabilize a position of a free extremity (4) of the arm (2) during movements of the floating object (7).

Description

A motion compensation device
The invention relates to a device suitable for placement in a mounted condition on a floating object, comprising a mounting structure and a tiltable arm having a free extremity and a pivot point supported by said mounting structure, wherein said arm connects to suspension and/or support means for controlling the arm' s inclination with respect to the horizon, and wherein said suspension and/or support means comprise at least one spring, wherein opposite extremities of the said spring share connecting points with said arm and with said mounting structure.
Such a device is known from O93/11036 and is for instance used for transfer of personnel or cargo between a fixed or floating installation and a boat in a high sea. According to this document the tiltable arm or boom is pivoted around a horizontal axis of the installation, wherein one outer end of the boom projects over a position to which a boat deck can be manoeuvered. An approximately vertical rope or wire connection of approximately constant length is applied between the deck and the outer end of the boom, wherein the outer end of the boom is upwardly suspended around the horizontal axis by means of a passive spring device, thus keeping the rope or wire taut despite the movements of the boat in the waves. The rope or wire connection also serves as a guide rope or guide wire for transport means in the form of a chute like rescue sock, slide, lift, stairway, gangway or the like between the outer end of the boom and the boat deck. The spring device comprises an hydraulic cylinder, wherein claim 3 of WO93/11036 teaches that the spring characteristic can be adjusted by altering the amount of gas and/or liquid in the accumulator with pump and/or valve devices provided for this purpose.
A disadvantage of the known device is that maintaining the arm's free extremity at a predefined position with reference to the boat deck requires the application of said rope or wire which is relatively cumbersome, and which inherently provides an unsafe situation when the rope or wire breaks. In WO93/11036 a passive spring is engaged in an unbalanced configuration, meaning the free extremity of the arm, gangway or access bridge is maintained by the passive spring in only one predetermined inclination of the arm. Once the arm is in any other inclination the passive spring will cause acceleration forces towards the predetermined inclination. When the floating object on which the arm is mounted is subjected to motions due to waves, and when the free extremity of the arm is not connected to a fixed point, these acceleration forces can be very high due to amplification (the acceleration forces due to the spring are amplified by the acceleration forces due to waves) . Moreover the acceleration forces are unpredictable and dependent on an irregular wave pattern. This can result in unpredictable and dangerous movements of the free extremity of the arm. In WO93/11036 the passive spring connected to the arm has therefore the drawback of requiring a secondary force to stabilize the free extremity of the arm, such as a connection to a fixed point.
WO2011/154730 discloses a gangway assembly for a vessel comprising a gangway, a pivotably mounted base, a sensor arrangement two sense movement of the vessel, an end por- tion of the gangway pivotably connected to the base and an actuator connected to the gangway responsive to signals from the sensor arrangement to control the vertical position of an opposite end portion of the gangway so as to compensate for vertical movement of the vessel, and the base arranged to respond to and compensate for roll of the vessel.
WO2013/174886 discloses a gangway system for providing passage between the structure and an independent vessel, comprising a pedestal for mounting to said vessel; a gangway comprising an inboard root hingedly mounted to the pedestal, and an outboard end for interfacing with the structure; a processor and one or more sensors configured to report to the processor and a control system responsive to signals from the processor, wherein a ram is applied responsive to signals from the control system and mounted on the pedestal for adjusting the vertical position of the gangway outboard end; and a ram response to signals from the control system and mounted on the gangway for adjusting the horizontal position of the gangway outboard end.
WO00/15489 discloses a mooring arrangement for moor- ing a vessel against a structure, comprising a connecting means, a maneuvering member arranged at a first end of the connecting means for adjusting the angle between the connecting means and the horizontal plane, and a locking device ar- ranged at a second end of the connecting means for fastening the vessel to the structure when mooring.
WO2007/120039 discloses the vessel provided with a motion platform and means applied to the platform for compensating motions of the vessel, wherein actuators are applied sensitive to signals from a control system to move the platform with reference to the vessel. Further a passive pressure element is provided to the platform in order to support this platform at least partly.
It is one of the objectives of the invention to ar- range that the device according to the preamble is embodied such that a free extremity of the arm can be maintained more easily at a desired position with improved energy efficiency.
It is another object of the invention to maintain the free extremity of the arm at a desired position also when the arm has no connection with a fixed point, and to avoid unpredictable and dangerous movements of the arm, wherein the arm is resistant to irregular and unknown wave patterns.
Another objective is to provide that the device is operationally safe at all circumstances; meaning that with a power failure the construction with the tiltable arm remains essentially balanced.
A still further objective is to provide that the device has improved handling capability for heavier weights and/or longer arms.
Further objectives and advantages of the invention will become apparent from the following disclosure.
The invention is embodied in a device and a method to balance a tiltable arm comprising a free extremity and having a pivot point on a mounting structure which is supported by a floating object, in accordance with one or more of the appended claims .
In a first aspect of the invention the device is embodied with the feature that the spring is a passive spring and is arranged to balance the arm so as to substantially sta- bilize a position of a free extremity of the arm during movements of the floating object. A major advantage of this is that hardly any energy will be required for maintaining the free extremity of the arm at the desired position or orienta- tion. Preferably then the free extremity of the arm distant from the mounting structure is arranged to carry or support a payload, wherein the spring is arranged to balance the arm in¬ cluding said payload.
Without being bound to any particular theory the in- ventors contemplate that in the invention the moment generated by the force of gravity on the arm relative to the pivot point with the mounting structure is to be substantially compensated by a moment generated on the arm relative to said pivot point by the spring in any inclination the arm assumes, so that the spring is arranged to balance the arm in any inclination it assumes, meaning that the force of gravity on the arm and the force of the spring on the arm cancel each other out and do not change or influence the position of the free extremity of the arm. In that situation it is the inertia of the arm which ensures maintaining the position of the free extremity of the arm during movements of the floating object due to waves at any wave frequency and in high sea states.
Suitably the spring is a gas spring comprising a gas container or a hydro-pneumatic spring comprising a gas con- tainer and an oil container. The inventors have found that particularly this type of spring is best equipped to balance heavy loads without much energy consumption, if any at all.
Without excluding any other possible embodiments it is in a particular embodiment preferable that with the mount- ing structure being level, the said pivot point of the tilta- ble arm with the mounting structure and the connecting point of the at least one spring with the mounting structure are positioned on a straight imaginary vertical line above each other. This construction is particularly suitable for marine ap- plications wherein it is possible to stabilize the position of the free extremity of the arm with a very little amount of energy (if any at all) , and this applies to heave, and pitch or roll depending on the arm' s direction with reference to the object on which it is mounted. In order to enable the device to adequately compensate all possible motions due to the waves at least a part of the mounting structure carrying the tiltable arm is rotatable with reference to the object.
It is advantageous that at least one of the connecting points of the spring with the arm and with the mounting structure is adjustable in position along the arm respectively the mounting structure, and/or a spring constant of said spring is adjustable. In this way it is easily possible to compensate for different loads to which the arm is subjected, and for compensating imbalance due to extensions or reductions in length of the arm.
It is preferable that the device comprises at least a first positioning actuator for the arm in addition to the ad- justable spring. The position of the free extremity of the arm can then easily be adjusted and relatively small forces due to motion of the object or frictional forces can be compensated.
Further to optimize the reach of the device of the invention it is preferable that the arm is articulated.
In one preferred embodiment of the device of the invention the arm has at least two parts that are displaceable with reference to each other. Advantageously the at least two parts of the arm are longitudinally displaceable with reference to each other and/or said at least two parts of the arm are angularly displaceable with reference to each other. Suitably the at least two parts of the arm are angularly displaceable with reference to each other in a substantially horizontal plane and/or in a substantially vertical plane. These features contribute to securing the reach of the arm and enabling that the arm's extremity is controllable as to its position.
In all embodiments it is preferred that the at least two parts of the arm are arranged to be displaced with reference to each other so as to maintain the free extremity of the arm which lies distant from the mounting structure, at a pre- determined and possibly variable position and/or orientation.
Further it is preferable that the mounting structure is arranged to be pivotably mountable or placeable on the ob- j ect .
Appropriately in the mounted condition the mounting structure is mounted and connected with at least one hinge to the object. This optimizes the manoeuverability of the mounting structure with reference to the object and increases its capability to counter motions due to the waves.
In one suitable embodiment the mounting structure is provided with a gimbal for mounting and connecting it to the obj ect .
Further it may be beneficial that in the mounted condition the device is provided with at least a second actuator for pivoting the mounting structure with reference to the ob- j ect .
Suitably further the device is provided with at least one sensor for monitoring an orientation of the free extremity of the arm distant from the mounting structure and/or of the mounting structure, wherein the device is further provided with a control system receiving signals from said at least one sensor, which control system based on said signals drivingly connects to the said first positioning actuator for the arm to maintain its free extremity at a predetermined position and/or orientation.
It is further beneficial that in the mounted condition the at least one sensor is equipped for monitoring an orientation of the floating object, and that the control system receives signals relating to the orientation of the float- ing object, which control system based on said signals drivingly connects to the said first positioning actuator for the arm to maintain its free extremity at a predetermined position and/or orientation.
It is further preferred that the control system driv- ingly connects to means for positioning at least one of the connecting points of the spring with the arm and with the mounting structure respectively and/or for adjusting a spring constant of said spring to maintain the free extremity of the arm at a predetermined position and/or orientation.
It may still be further beneficial that the control system drivingly connects to means for displacing the at least two parts of the arm with reference to each other so as to maintain the free extremity of the arm distant from the mounting structure at a predetermined position and/or orientation. The adequacy of the device of the invention may be further promoted in that the control system drivingly connects to the second actuator for pivoting the mounting structure with reference to the object to maintain the free extremity of the arm at a predetermined position and/or orientation.
Even further it may be beneficial that in the mounted condition the control system drivingly connects to means for extending the mounting structure upwards with reference to the object to maintain the free extremity of the arm at a prede- termined position and/or orientation.
Still further it may be beneficial that in the mounted condition the control system drivingly connects to means for rotating the mounting structure with reference to the object to maintain the free extremity of the arm at a predeter- mined position and/or orientation.
The invention will hereinafter be further elucidated with reference to the drawing of exemplary embodiments of a device according to the invention that is not limiting as to the appended claims.
In the drawing:
-Figure la shows a schematic side view of a first embodiment of a device according to the invention;
-Figure lb shows a schematic side view of a second embodiment according to the invention;
-Figure lc shows a schematic side view of a third embodiment according to the invention;
-Figure 2a shows a schematic side view of a fourth embodiment according to the invention;
-Figure 2b shows a schematic side view of a fifth em- bodiment according to the invention;
-Figure 2c shows a schematic side view of a sixth embodiment according to the invention;
-Figure 2d shows a schematic side view of a seventh embodiment according to the invention;
-Figure 2e shows a schematic side view of an eighth embodiment according to the invention;
-Figure 3 shows a 3-dimensional view of a ninth embodiment according to the invention; and
-Figure 4 schematically shows the arrangement of the control system and the connected sensors and actuators forming part of the device of the invention.
Whenever in the figures the same reference numerals are applied, these numerals refer to the same parts.
Making first reference to figure la, a first embodiment of the device 1 according to the invention is shown.
A floating object 7 is subjected to the motions of waves 100. In practice the floating object 7 is mostly a ship, a vessel or a working platform. Drawn in figure la is a cross section of the hull of a ship 7, the ship's bow and stern are not drawn and extend from the shown cross section parallel to the y-axis 2000.
Due to waves 100, the floating object 7 is subjected to motions of:
- heave 1001, a motion parallel to the vertical axis 1000, yaw 1002, a rolling motion revolving around the vertical axis 1000,
surge 2001, a motion parallel to the y-axis 2000,
roll 2002, a rolling motion revolving around the y-axis 2000,
sway 3001, a motion parallel to the x-axis 3000,
- pitch 3002 a rolling motion revolving around the x-axis
3000.
The arm 2 is mounted on the floating object 7 by a mounting structure 8 in a pivot point 3. The upper part of the mounting structure 81 may be enabled to make a rotating movement 802 revolving around the spring base 80 in the swivel point 82 of the mounting structure 8. The upper part of the mounting structure 81 may slide along the mounting base 80 in the direction of the mounting structure 8 in order to extend the mounting structure 8 in a direction 800 of the mounting structure 8 in order to increase the working height of the arm 2. In this figure the direction of the vertical axis 1000 is parallel to the direction 800 of the mounting structure 8.
The arm 2 is further connected to the mounting structure 8 by a spring 6 in a spring base point 60 located on the mounting structure 8 and a spring mounting point 61 located on the arm 2. When the floating object 7 is level, the spring base point 60 (the connection point of the spring 6 with the mounting structure 8) and the pivot point 3 are positioned on a straight imaginary vertical line 800 above each other. The spring base point 60 may be movable along the mounting structure 8, the spring mounting point 61 may be movable along the arm 2. The spring 6 may be a conventional coil spring, but in practice, as depicted in figure 2e and further, in most offshore conditions the spring will likely be a hydro-pneumatic spring comprising a spring piston 66 connected to a gas container 62. The spring 6 may also comprise multiple spring pis- tons 66 and/or gas containers 62.
The arm' s free extremity 4 may be constructed to transfer a payload 5 (cargo or staff) between the floating object 7 and a connection point 40 or vice versa. The connection point 40 may be located on a fixed object as shown in this figure la, but the connection point 40 may possibly also be located on another floating object.
The arm 2 comprises at least one arm segment 20 but may also be articulated, comprising a second arm segment 21 or even multiple arm segments. In this figure la the second arm segment 21 extends from the first arm segment 20 in a sliding or rolling way, but the arm segments may also be connected to each other with a pivot point or by other moving means. The arm parts may be longitudinally and/or angularly displaceable with reference to each other. The relative position of the arm segments to each other will determine the length of the arm 2. The arm segments may slide or pivot against each other by conventional actuation means, extending or retracting the arm 2.
The arm 2 may further be connected to the mounting structure 8 by a positioning actuator 9. The positioning actu- ator 9 is depicted in this figure la being connected to the mounting structure 8 on the same imaginary vertical line 800 as the spring base point 60 and the pivot point 3, but in practice the positioning actuator 9 does not need to be connected to the mounting structure 8 on this imaginary vertical line 800.
In practice the positioning actuator 9 and/or the spring 6 may also be connected to the mounting structure 8 below the pivot point 3 as depicted in figure 2c and further.
The arm 2 extends in a direction 200, and an inclina- tion angle 202 is defined between the direction 200 and the vertical axis 1000. In this figure la the direction 200 of the arm 2 is square to the axis 2000 but in practice the direction 200 of the arm 2 may be square to the axis 3000 or at any di- rection in between.
Changing the length of the arm 2 and/or a change in the force payload 5 exerted on the arm 2 may be counteracted by the positioning actuator 9 and/or by adjusting the spring. The spring may be adjusted by moving one of the spring connec- tion points 60, 61 or both, and/or by changing the spring constant of the spring 6.
The payload 5 is shown as carried on the free extremity 4 but may also be suspended underneath the free extremity
4 by means of a rope or wire, or by means of a hoisting system with pulleys or other conventional hoisting means. The payload
5 may also be connected to any other part of the arm 2 and may be moved along the arm 2 and connected or disconnected at any time .
In use, while the pivot point 3 is subjected to heave 1001, the position of the free extremity 4 along the vertical 1000 axis is maintained stationary substantially by the spring 6. The pivot point 3 will repetitively move up and down due to the waves 100, but the spring 6 will maintain the vertical position of the free extremity 4 stationary along the vertical axis 1000, accumulating and releasing the energy for the continuous changes of the inclination 202 of the arm 2. Due to the configuration of the spring 6 it generates a moment in the pivot point 3 counteracting the forces of gravity on the arm 2 and -when applicable- its payload 5, in any inclination 202 of the arm 2. Therefore, the energy required to maintain the position of the free extremity 4 along the vertical axis 1000 stationary during heave 1001 is delivered substantially by the spring 6.
In use, because of the action of the spring 6, a po- sitioning actuator 9 is not substantially required to maintain the position of the free extremity 4 along the vertical axis 1000 stationary during the influence of heave 1001. Therefore the device 1 is energy efficient and enables safe operation: maintaining the free extremity 4 substantially stationary along the vertical axis 1000 is not dependent on the continuous supply of energy nor depending on a functional actuation system. However, the positioning actuator 9 may be engaged for relatively small forces required to maintain the free extremi- ty 4 stationary along the vertical axis 1000, such as counteracting friction in the spring 6. In addition the positioning actuator 9 may be engaged to change the inclination 202 of the arm 2 in order to change the position of the free extremity 4 along the vertical axis 1000.
In use, during the influence of motions due to waves
100 as mentioned above, the relative position of the free extremity 4 to the connection point 40 may further be maintained stationary by adjusting the length 201 of the arm 2 and changing the orientation of the mounting structure 8 relative to the floating object 7.
In use, when the length of the arm 2 changes and/or when the influence of the payload 5 on the arm 2 changes, the spring 6 may be adjusted in order to balance the arm 2. This can be done by changing the position of at least one of the spring connecting points 60, 61 and/or by changing the spring constant of the spring 6.
Making reference now to figure lb, a second embodiment of the device 1 according to the invention is shown.
The arm 2 shown in figure lb comprises a first arm segment 20 which is pivotably connected to the second arm segment 21 in a pivot point 22 with an axis substantially parallel to the horizontal axis 2000. The second arm segment 21 is enabled to make a pivoting movement 222 parallel to the horizontal axis 2000, extending or retracting the second arm seg- ment 21 to or from the first arm segment 20. The two arm parts 20 and 21 are angularly displaceable with reference to each other in a horizontal plane. The payload 5 is suspended under the free extremity 4 of the arm 2 by means of a rope or wire 41 and may in practice be suspended by means of a hoisting system with pulleys or other conventional hoisting means.
With reference to figure lc a third embodiment of the device 1 according to the invention is shown.
The arm 2 of the device shown in figure lc comprises a first arm segment 20 which is pivotably connected to the second arm segment 21 in a pivot point 22 which is aligned substantially parallel to the vertical axis 1000. The second arm segment 21 is enabled to make a pivoting movement 212 parallel to the vertical axis 1000, extending or retracting the second arm segment 21 to or from the first arm segment 20. The two arm parts 20 and 21 are angularly displaceable with reference to each other in a vertical plane.
With reference to figure 2a a fourth embodiment of the device 1 according to the invention is shown.
Due to a rolling motion 2002 (called roll for this direction of the floating object 7), the mounting structure 8 of the device shown in figure 2a extends in a direction 800, causing an offset angle 301 with the vertical axis 1000. Due to the offset angle 301 the spring 6 causes acceleration fore- es on the arm 2 and -when applicable- its payload 5. These acceleration forces can be counteracted by the positioning actuator 9.
With reference to figure 2b a fifth embodiment of the device 1 according to the invention is shown.
In figure 2b the mounting structure 8 is pivotably mounted on the floating object 7 with a hinge 84 and further connected to the floating object 7 with an offset actuator 92.
In use, during a rolling motion 2002 of the floating object 7, the mounting structure 8 is maintained substantially vertical by the offset actuator 92. By doing so the positioning actuator 9 does not need to counteract acceleration forces due to an offset angle, despite the rolling motion of the floating object 7. The orientation 804 of the hinge 84 is square to the horizontal orientation of the arm 2. This is not a preferred solution because in this configuration, for compensation of the offset angle 301 the offset actuator 92 uses a lot of energy. This is because the moment the arm 2 generates in the hinge 84 needs to be considered. It is preferable to maintain the direction of the orientation of the hinge par- allel to the horizontal orientation of the arm 2. Then the offset angle 301 can be compensated with little energy because the moment generated by the arm 2 in the pivot point does not need to be taken in consideration.
Making now reference to figure 2c, a sixth embodiment of the device 1 according to the invention is shown. In figure 2c the spring 6 is a gas spring comprising a gas container 62 and the piston 66. Mounting structure 8 is mounted on the floating object 7 by two hinges 83 and 84 (a gimbal) . The mounting structure 8 is extendable and retractable by a motion 801 of the upper part of the mounting structure 81 along the mounting base 80. Depending on practical requirements the positioning actuator 9 may be placed above of underneath the arm 2. In the shown embodiment the spring 6 and the positioning actuator 9 are mounted below the arm. In order to balance the arm 2 when the spring 6 is positioned underneath the arm 2, the connection point 61 is connected to the arm 2 at a side of the arm beyond the pivot point 3 with reference to the payload 5. By using simple construction principles, in practice the spring connection point 61 can be constructed at any desired position, as long as the spring connection point 60 is repositioned correspondingly.
In use, the floating object 7 is subjected to a rolling motion 2002 (roll) and to a rolling motion 2003 (pitch) t and the mounting structure 8 is maintained substantially vertical by two offset actuators 91 and 92. In order to change the working position of the arm, the upper part of the mounting structure 81 may be extended or retracted from the mounting base 80.
With further reference to figure 2d a seventh embodiment of the device 1 according to the invention is shown.
In figure 2d the spring 6 is a hydro-pneumatic spring, comprising a gas container 62 and an oil container 63 separated by a membrane, bladder or piston. In practice the hydro-pneumatic adjustable spring 6 may comprise multiple gas container 62 and/or multiple pistons 66. The spring 6 may be further be equipped with a hydraulic pump 64 answers or a gas compressor 65 in order to control the spring constant of the spring 6. The spring 6 may be controlled by a control system 14, which may receive input from a load cell sensor 15 measuring the weight of the payload 5 and another sensor measuring the length of the arm 2. The positioning actuator 9 is connected to a hydraulic motor 94, which in practice may be equipped with a hydraulic accumulator, and which motor 94 is controlled by a control system 13 which receives input from at least one motion sensor 10 but possibly from more motion sensors 11, 12. The control system 13 and the motor 94 may also drive the offset actuator 91 rotating the mounting structure 8 around the offset axis 83 preferably parallel to the horizontal orientation 200 of the arm 2.
In use, when the length of the arm 2 changes and/or the influence of the payload 5 on the arm 2 changes, the spring constant of the spring 6 may be adjusted in order to balance the arm 2 and -when applicable- its payload 5. This may be done by changing the position of at least one of the spring connection points 60, 61 and/or by changing the spring constant of the spring 6 by adjusting the gas volume and/or the oil volume in the hydro-pneumatic spring.
Turning now to figure 2e an eighth embodiment of the device 1 according to the invention is shown.
In this preferred embodiment of figure 2e, the whole mounting structure 8, including the hinge 83 with its offset actuator 91 is mounted above mount swivel point 82. Therefore, in any horizontal orientation of the arm 2, offset axis 803 always extends aligned with the horizontal orientation of the arm 2. The offset angle which is most easy to compensate
{aligned with the horizontal orientation of the arm 2) is therefore always compensated by the offset actuator 91. The adjustable spring 6 compensates for both heave 1001 and substantially for the offset angle square to the horizontal ori¬ entation of the arm 2. As its relative size suggests, the forces delivered by the spring cylinder 62 are larger than the forces delivered by the positioning actuator 9. In this con- figuration, the device 1 enables safe and energy efficient compensation for heave 1001, pitch and roll (2002, 3002 or vice versa) as well as for the other motions due to waves 100 mentioned above.
In figure 3 a ninth embodiment of the device 1 ac- cording to the invention is shown. Figure 3 provides a 3 dimensional view of a preferred realization of the device 1 depicted schematically in figure 2e.
The arm 2 of the device shown in figure 3 is both suitable for transferring staff and also for transferring heavier payloads 5 such as cargo.
It can be seen that the arm can be accessed by staff or cargo from the deck of a boat 3 during operation of the arm in all angles of the arm and in any horizontal orientation of the arm by simple access means such as a stair 85. The swivel point 82 is below the hinge 83 and its offset actuator 91.
Due to the energy efficient compensation in the device of the invention for heave, pitch and roll (and all other motions due to waves 100 mentioned above) , the power supplies 94 and 64 as shown on the deck of the floating object 7 are much smaller compared to the power supplies of known devices. The first arm segment 20, the free extremity 4 and the connection point 40 both comprise guide and connect means 41. The first arm segment 20 is supported by a hydro-pneumatic spring 6 comprising two spring piston 66 and two gas containers 62.
Figure 4 finally shows the basic schematics of the control system and sensors and actuators that are part of the device of the invention. The control system 13, 14 receives data about the status of the device from different sensors. Figure 5 shows for instance motion sensor 10, motion sensor 11 and load cell sensor 15 that are shown in figure 2d. Another sensor that is used but is not shown relates to the actual length of the tiltable arm counting from its pivot point 3 up to where the payload 5 is supported, and the weight of which is measured with the load cell sensor 15. It is further shown that the control system 13, 14 drivingly connects to means for positioning at least one of the connecting points 60, 61 (see for instance figure 2d) of the spring 6 with the arm 2 and with the mounting structure 8 respectively and/or for adjust- ing a spring constant 65 of said spring 6. Further the control system 13, 14 preferably drivingly connects to means 66 which are equipped to displace the at least two parts 20, 21 of the arm 2 {see for instance figure 2e) with reference to each other. The control system 13, 14 preferably also drivingly con- nects to the second actuator 91, 92 (see figure 2c) which is equipped for pivoting the mounting structure 8 with reference to the object 7. Further the control system 13, 14 preferably drivingly connects to means 83 for extending the mounting structure 8 upwards with reference to the object 7, and said control system 13, 14 preferably drivingly connects to means 84 for rotating the mounting structure 8 with reference to the object 7.
Although the invention has been discussed in the foregoing with reference to several exemplary embodiments of the device of the invention, the invention is not restricted to these particular embodiments which can be varied in many ways without departing from the gist of the invention. The discussed exemplary embodiments shall therefore not be used to construe the appended claims strictly in accordance therewith. On the contrary the embodiments are merely intended to explain the wording of the appended claims without intent to limit the claims to the offered exemplary embodiments. The scope of protection of the invention shall therefore be construed in accordance with the appended claims only, wherein a possible ambiguity in the wording of the claims shall be resolved using the provided examples.

Claims

1. A device (1) suitable for placement in a mounted condition on a floating object (7), comprising a mounting structure (8) and a tiltable arm (2) having a free extremity (4) and a pivot point (3) supported by said mounting structure (8), wherein said arm (2) connects to suspension and/or support means (6) for controlling the arm's inclination with respect to the horizon, and wherein said suspension and/or support means (6) comprise at least one spring (6), wherein opposite extremities of the said spring (6) share connecting points {60, 61) with said arm (2) and with said mounting structure (8), characterized in that the spring is a passive spring (6) and is arranged to balance the arm (2) so as to stabilize a position of a free extremity (4) of the arm (2) during movements of the floating object (7).
2. A device (1) according to claim 1, characterized in that a moment generated by the force of gravity on the arm (2) relative to the pivot point (3) with the mounting structure (8) is substantially compensated by a moment generated on the arm (2} relative to said pivot point (3) by the spring (6) in any inclination the arm (2) assumes, so that the spring (6} is arranged to balance the arm (2) in any inclination it assumes, and the force of gravity on the arm (2) and the force of the spring (6) on the arm (2) cancel each other out to arrange that the position of the free extremity (4) of the arm {2) is substantially independent from said forces to cause that an inertia of the arm (2) ensures maintaining the said extremity (4) of the arm (2) in a stable position during movements of the floating object (7).
3. A device (1) according to claim 1 or 2, character- ized in that the free extremity (4) of the arm (2) distant from the mounting structure (8) is arranged to carry or support a payload (5), wherein the spring (6) is arranged to balance the arm (2) including said payload (5).
4. The device (1) according to any one of claims 1 - 3, characterized in that the spring (6) is a gas spring comprising a gas container (62) or a hydro-pneumatic spring comprising a gas container (62) and an oil container (63).
5. A device (1) according to any one of claims 1 - 4, characterized in that with the mounting structure (8) being level the said pivot point (3) and the connecting point (60) of the at least one spring (6) with the mounting structure (8) are positioned on a straight imaginary vertical line (1000) above each other.
6. The device (1) according to any one of claims 1 -
5, characterized in that at least a part of the mounting structure (8) carrying the tiltable arm (2) is rotatable with reference to the object (7) .
7. The device (1) according to any one of claims 1 -
6, characterized in that at least one of the connecting points (60, 61) of the spring (6) with the arm (2) and with the
mounting structure (8) is adjustable in position along the arm ( 2 ) respectively the mounting structure (8), and/or a spring constant of said spring (6) is adjustable.
8. The device (1) according to any one of claims 1 -
7, characterized in that it comprises at least a first positioning actuator (9) for the arm (2) in addition to the spring (6).
9. The device (1) according to any one of claims 1 -
8, characterized in that the arm (2) is articulated.
10. The device (1) according to any one of claims 1 -
9, characterized in that the arm (2) has at least two parts (20, 21) that are displaceable with reference to each other.
11. The device (1) according to claim 10, characterized in that the at least two parts (20, 21) of the arm (2) are longitudinally displaceable with reference to each other.
12. The device (1) according to claim 10 or 11, char- acterized in that the at least two parts (20, 21) of the arm
(2) are angularly displaceable with reference to each other.
13. The device (1) according to claim 12, characterized in that the at least two parts (20, 21) of the arm (2) are angularly displaceable with reference to each other in a substantially horizontal plane and/or in a substantially vertical plane.
14. The device (1() according to any one of claims 10 - 13, characterized in that the at least two parts (20, 21) of the arm (2) are arranged to be displaced with reference to each other so as to maintain the free extremity (4) of the arm (2) which lies distant from the mounting structure (8) , at a predetermined position and/or orientation.
15. The device (1) according to any one of the previ- ous claims 1 - 14, characterized in that the mounting structure (8) is arranged to be pivotably mountable or placeable on the object (7 ) .
16. The device (1) according to any one of the previous claims 1 - 15, characterized in that in the mounted condi- tion the mounting structure (8) is mounted and connected with at least one hinge (84) to the object (7).
17. The device (1} according to claim 15 or 16, characterized in that in the mounted condition the mounting structure (8) is provided with a gimbal (83, 84) for mounting and connecting it to the ob ect (7) .
18. The device (1) according to any one of claims 15 - 17, characterized in that in the mounted condition it is provided with at least a second actuator (91, 92) for pivoting the mounting structure (8) with reference to the object (7).
19. The device (1) according to any one of claims 1 -
18, characterized in that it is provided with at least one sensor (10, 12) for monitoring an orientation of the free extremity (4) of the arm (2) distant from the mounting structure (8} and/or of the mounting structure (8), and that it is fur- ther provided with a control system (14) receiving signals from said at least one sensor (10, 12), which control system (13, 14) based on said signals drivingly connects to the said first positioning actuator (9) for the arm (2) to maintain its free extremity (4) at a predetermined position and/or orienta- tion.
20. The device (1) according to claim 19, characterized in that in the mounted condition the at least one sensor (11) is equipped for monitoring an orientation of the object (7), and that the control system (13) receives signals relat- ing to the orientation of the object (7), which control system (13) based on said signals drivingly connects to the said first positioning actuator (9) for the arm (2) to maintain its free extremity (4) at a predetermined position and/or orientation .
21. The device (1) according to of any one of claims 5 - 18 and claim 19 or 20, characterized in that the control system (13, 14) drivingly connects to means for positioning at least one of the connecting points (60, 61) of the spring (6) with the arm (2) and with the mounting structure (8} respectively and/or for adjusting the spring constant (65) of said spring (6) to maintain the free extremity (4) of the arm (2) at a predetermined position and/or orientation.
22. The device (1) according to any one of claims 10 - 18 and any one of claims 19 - 21, characterized in that the control system (13, 14) drivingly connects to means (66} for displacing the at least two parts (20, 21) of the arm (2} with reference to each other so as to maintain the free extremity (4) of the arm (2) distant from the mounting structure (8) at a predetermined position and/or orientation.
23. The device (1) according to claim 18 and any one of claims 19 - 22, characterized in that the control system (13, 14) drivingly connects to the second actuator (91, 92} for pivoting the mounting structure (8) with reference to the object (7) to maintain the free extremity (4) of the arm (2) at a predetermined position and/or orientation.
24. The device (1) according to any one of claims 1 - 18 and any one of claims 19 - 23, characterized in that in the mounted condition the control system (13, 14) drivingly con- nects to means (83) for extending the mounting structure (8) upwards with reference to the object (7) to maintain the free extremity (4) of the arm (2) at a predetermined position and/or orientation.
25. The device (1) according to any one of claims 1 - 18 and any one of claims 19 - 24, characterized in that in the mounted condition the control system (13, 14) drivingly connects to means (84) for rotating the mounting structure (8) with reference to the object (7) to maintain the free extremity (4} of the arm (2) at a predetermined position and/or ori- entation.
26. Method to balance a tiltable arm (2) comprising a free extremity (4) and having a pivot point (3) on a mounting structure (8} which is supported by a floating object (7), by providing said arm (2) with suspension and/or support means (6, 9) for controlling the arm's inclination with respect to the horizon, and by providing said suspension and/or support means {6, 9) with at least one spring (6), wherein the spring
(6) connects to the arm (2) and to said mounting structure (8), characterized by providing that the spring (6) balances the arm (2) so as to stabilize a position of a free extremity
(4) of the arm (2) during movements of the floating object
(7) .
27. Method according to claim 26, characterized by compensating a moment generated by a force of gravity on the arm {2) relative to the pivot point (3) with the mounting structure (8) by a moment generated on the arm (2) relative to said pivot point (3) by the spring (6) in any inclination the arm (2) assumes, so that the spring (6) balances the arm (2) in any inclination it assumes, and the force of gravity on the arm (2) and the force of the spring (6) on the arm (2) cancel each other out so that the position of the free, extremity (4) of the arm (2) is independent from said forces to cause that an inertia of the arm (2) ensures maintaining the free extrem- ity (4) of the arm (2) in a stable position during movements of the floating object (7) .
28. Method according to claim 26 or 27, characterized by providing a payload (5) on the free extremity (4) of the arm (2) distant from the mounting structure (8), and arranging that the spring (6) balances the arm (2) including its payload
(5) so as to maintain the free extremity (4} of the arm (2) which lies distant from the mounting structure (8), at a predetermined position and/or orientation.
29. Method according to any one of claims 26 - 28, characterized by embodying the spring as a gas spring (6) comprising a gas container (62) or a hydro-pneumatic spring comprising a gas container (62) and an oil container (63).
30. Method according to any one of claims 26 - 29, characterized by providing that when the mounting structure is level the pivot point (3) is positioned on an imaginary vertical straight line (1000) corresponding to a longitudinal body axis of the mounting structure (8).
31. Method according to any one of claims 26 - 30, characterized by adjusting at least one of the connecting points (60, 61) of the spring (6) with the arm (2) and with the mounting structure (8) along the arm (2) respectively the mounting structure (8), and/or adjusting a spring constant of said spring (6) so as to maintain the free extremity (4) of the arm (2) which lies distant from the mounting structure (8) , at a predetermined position and/or orientation.
32. Method according to any one of claims 26 - 31, characterized by providing at least one first positioning actuator (9) in addition to the spring (6) so as to maintain the free extremity (4) of the arm (2) which lies distant from the mounting structure (8), at a predetermined position and/or orientation .
33. Method according to any one of claims 26 - 32, characterized by providing that the arm (2) comprises at least two parts (20, 21), and displacing said at least two parts (20, 21) with reference to each other so as to maintain the free extremity (4) of the arm (2) which lies distant from the mounting structure (8), at a predetermined position and/or orientation .
34. Method according to any one of claims 26 - 33, characterized by providing that the at least two parts (20, 21) of the arm (2) are longitudinally displaced with reference to each other and/or are angularly displaced with reference to each other so as to maintain the free extremity (4) of the arm (2} which lies distant from the mounting structure (8), at a predetermined position and/or orientation.
35. Method according to any one of claims 26 - 34, characterized by providing that the mounting structure (8) is pivotably placed on the object (7), and providing at least a second actuator (91, 92) for pivoting the mounting structure (8} with reference to the object (7) so as to maintain the free extremity (4) of the arm (2} which lies distant from the mounting structure (8), at a predetermined position and/or orientation.
36. Method according to any one of claims 26 - 35, characterized by providing at least one sensor (10, 11, 12} for monitoring an orientation of a free extremity (4} of the arm (2) distant from the mounting structure (8) and/or for monitoring an orientation of the object (7) and/or the mount- ing structure (8), and providing a control system (13, 14) receiving signals from said at least one sensor (10, 11, 12), and providing that said control system (13, 14} drives the said first positioning actuator (9) for the arm to maintain its free extremity at a predetermined position and/or orientation .
37. Method according to any one of claims 26 - 36, characterized by providing that the control system (13, 14) positions at least one of the connecting points (60, 61) of the spring (6) with the arm (2) and with the mounting structure (8) respectively and/or adjusts a spring constant of said spring (6) to maintain the free extremity (4) of the arm (2) at a predetermined position and/or orientation.
38. Method according to any one of claims 26 - 37, characterized by providing that the control system (13, 14) drives the at least one first positioning actuator (9) for the arm (2) so as to maintain the free extremity (4) of the arm (2} at a predetermined position and/or orientation.
39. Method according to any one of claims 26 - 38, characterized by providing that the control system (13, 14) displaces the at least two parts (20, 21) of the arm (2) with reference to each other so as to maintain the free extremity (4) of the arm (2) distant from the mounting structure (8) at a predetermined position and/or orientation.
40. Method according to any one of claims 26 - 39, characterized by providing that the control system (13, 14) drives the at least one second actuator (91, 92) for pivoting the mounting structure with reference to the object so as to maintain the free extremity (4} of the arm (2) at a predeter- mined position and/or orientation.
41. Method according to any one of claims 26 - 40, characterized by providing that the control system (13, 14} drives means for extending the mounting structure (8) upwards with reference to the object (7) so as to maintain the free extremity (4} of the arm (2) at a predetermined position and/or orientation.
42. Method according to any one of claims 26 - 41, characterized by providing that the control system (13, 14) drives means for rotating the mounting structure (8) with ref- erence to the object (7) so as to maintain the free extremity (4) of the arm (2) at a predetermined position and/or orientation.
PCT/NL2015/050838 2014-12-05 2015-12-03 A motion compensation device WO2016089207A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15841078.7A EP3227175B1 (en) 2014-12-05 2015-12-03 A motion compensation device
DK15841078.7T DK3227175T3 (en) 2014-12-05 2015-12-03 MOTION COMPENSATION DEVICE
PL15841078T PL3227175T3 (en) 2014-12-05 2015-12-03 A motion compensation device
US15/614,217 US10604216B2 (en) 2014-12-05 2017-06-05 Motion compensation device
CY20191100818T CY1122106T1 (en) 2014-12-05 2019-07-30 MOTION COMPENSATION ARRANGEMENT

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
NL2013933 2014-12-05
NL2013933 2014-12-05
NL2014631 2015-04-14
NL2014631A NL2014631B1 (en) 2014-12-05 2015-04-14 A motion compensation device.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/614,217 Continuation US10604216B2 (en) 2014-12-05 2017-06-05 Motion compensation device

Publications (1)

Publication Number Publication Date
WO2016089207A1 true WO2016089207A1 (en) 2016-06-09

Family

ID=55524417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NL2015/050838 WO2016089207A1 (en) 2014-12-05 2015-12-03 A motion compensation device

Country Status (1)

Country Link
WO (1) WO2016089207A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3252001A1 (en) * 2016-06-01 2017-12-06 Robert Bosch GmbH Winching device
US10392083B2 (en) 2015-04-23 2019-08-27 Safeway B.V. Vessel and boom construction
US10604216B2 (en) 2014-12-05 2020-03-31 Ampelmann Holding B.V. Motion compensation device
CN113665743A (en) * 2021-09-23 2021-11-19 上海海事大学 Boarding ladder with wave compensation function
WO2024038257A1 (en) * 2022-08-16 2024-02-22 Submarine Technology Limited System for attaching a vessel and method for doing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993011036A1 (en) 1991-11-26 1993-06-10 Selantic Industrier As A device for transfer of personnel or cargo between a fixed or floating installation and a boat in a high sea
WO2000015489A1 (en) * 1998-09-17 2000-03-23 Ägir Konsult AB Mooring device
WO2007120039A1 (en) 2006-03-01 2007-10-25 Technische Universiteit Delft Vessel, motion platform, method for compensating motions of a vessel and use of a stewart platform
WO2011154730A2 (en) 2010-06-07 2011-12-15 Bmt Nigel Gee Limited Transfer apparatus for vessels
WO2013174886A1 (en) 2012-05-22 2013-11-28 Otso Limited Vessel gangway system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993011036A1 (en) 1991-11-26 1993-06-10 Selantic Industrier As A device for transfer of personnel or cargo between a fixed or floating installation and a boat in a high sea
WO2000015489A1 (en) * 1998-09-17 2000-03-23 Ägir Konsult AB Mooring device
WO2007120039A1 (en) 2006-03-01 2007-10-25 Technische Universiteit Delft Vessel, motion platform, method for compensating motions of a vessel and use of a stewart platform
WO2011154730A2 (en) 2010-06-07 2011-12-15 Bmt Nigel Gee Limited Transfer apparatus for vessels
WO2013174886A1 (en) 2012-05-22 2013-11-28 Otso Limited Vessel gangway system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10604216B2 (en) 2014-12-05 2020-03-31 Ampelmann Holding B.V. Motion compensation device
US10392083B2 (en) 2015-04-23 2019-08-27 Safeway B.V. Vessel and boom construction
EP3286070B1 (en) * 2015-04-23 2021-07-07 Safeway B.V. Vessel and boom construction
EP3252001A1 (en) * 2016-06-01 2017-12-06 Robert Bosch GmbH Winching device
CN113665743A (en) * 2021-09-23 2021-11-19 上海海事大学 Boarding ladder with wave compensation function
WO2024038257A1 (en) * 2022-08-16 2024-02-22 Submarine Technology Limited System for attaching a vessel and method for doing the same

Similar Documents

Publication Publication Date Title
US10604216B2 (en) Motion compensation device
WO2016089207A1 (en) A motion compensation device
US10392083B2 (en) Vessel and boom construction
EP2450271B1 (en) Mooring system for a vessel
CN109195900B (en) Movable in-line heave compensator
CN109292647B (en) Active rigid-flexible hybrid wave motion compensation device and control method thereof
CN103189297B (en) Fluctuation compensation hoisting crane
CN109553005B (en) Rigid-flexible type multi-dimensional wave motion compensation device for offshore floating platform
EP4081451A1 (en) A feeder vessel
KR102124888B1 (en) System for reducing the counterweight of a crane
EP3687935B1 (en) Heave compensation system
CN210528282U (en) Three-degree-of-freedom active and passive combined type wave compensation hanger joint of integrated winch
US20210403293A1 (en) (heave) balancing device, hoisting system, method for hoisting and kit of parts for spring balancing a hoisting system
KR102401281B1 (en) A system and method for handling large and heavy constructions from an offshore installation vessel
NO342595B1 (en) Rotary inline heave compensator
EP1809564A2 (en) Macro/micro crane
NL2011872C2 (en) System and method for deploying/operating tool and heave compensation for same.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841078

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015841078

Country of ref document: EP