WO2016089005A1 - Super-absorbent resin and method for preparing same - Google Patents

Super-absorbent resin and method for preparing same Download PDF

Info

Publication number
WO2016089005A1
WO2016089005A1 PCT/KR2015/011089 KR2015011089W WO2016089005A1 WO 2016089005 A1 WO2016089005 A1 WO 2016089005A1 KR 2015011089 W KR2015011089 W KR 2015011089W WO 2016089005 A1 WO2016089005 A1 WO 2016089005A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
meth
superabsorbent polymer
weight
water
Prior art date
Application number
PCT/KR2015/011089
Other languages
French (fr)
Korean (ko)
Inventor
남대우
한장선
이혜민
김동현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150145613A external-priority patent/KR20160067725A/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2016089005A1 publication Critical patent/WO2016089005A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules

Definitions

  • the present invention relates to a super absorbent polymer having excellent solution permeability and a method of preparing the same.
  • a super absorbent polymer is a synthetic polymer material that can absorb about 500 to 1000 times its own weight. It is a SAM (Super Absorbency Material), AGM (Asorbent Gel Material), etc. It is also blowing. Super absorbent resins have been put into practical use as sanitary devices and are now widely used in various materials such as hygiene products such as paper diapers for children, horticultural soil repair agents, civil engineering materials, seedling sheets, and freshness retainers in food distribution. It is used. As a method for producing such a super absorbent polymer, a method by reverse phase suspension polymerization or a solution polymerization is known.
  • the production of superabsorbent polymers through reverse phase suspension polymerization is disclosed, for example, in Japanese Patent Laid-Open Nos. 56-161408, 5,158, JP, 158,209, and the like.
  • the production of superabsorbent polymers through polymerization of aqueous solution is a thermal polymerization method for polymerizing a hydrogel polymer in a kneader equipped with several shafts while breaking and angled, and polymerizing and drying by irradiating UV light to a high concentration of aqueous solution on a belt.
  • the photopolymerization method etc. which perform simultaneously are known.
  • absorption rate which is one of the important physical properties of super absorbent polymer
  • the surface dryness of the product in contact with the skin can be improved by increasing the surface area of the superabsorbent polymer.
  • a method of forming a porous structure on the particle surface of the super absorbent polymer by using a blowing agent has been applied.
  • the general foaming agent cannot form a sufficient amount of porous structure, so that the increase in absorption rate is not large.
  • there is a method of increasing the surface area by reassembling the fine powder obtained in the manufacturing process of the super absorbent polymer to form porous particles of irregular shape.
  • the present invention is to provide a superabsorbent polymer and a method for preparing the same, which have a high water permeability and pressure absorbing ability as well as excellent solution permeability by controlling the degree of surface crosslinking of the base resin.
  • the present invention provides a super absorbent polymer comprising a crosslinked polymer comprising an acidic group and surface-crosslinked a base resin polymerized with a water-soluble ethylenically unsaturated monomer in which at least part of the acidic group is neutralized,
  • the gel strength of the base resin is 4000 to 5000 Pa
  • the gel strength of the crosslinked polymer is 1.4 times or more of the gel strength of the base resin
  • the pressure absorption of 0.7 psi of the crosslinked polymer ⁇ (AUP, g / g) is at least 22
  • And centrifuged beam SAT (CRC, g / g) of the crosslinked polymer is 28 or more, the transmittance of the solution of cross-linked polymer (SFC, 10- 7 cm 1 ⁇ sec / g) is more than 30,
  • the superabsorbent polymer according to the present invention controls the degree of surface crosslinking of a base resin having a gel strength in the above range, such that the gel strength of the crosslinked polymer is compared with that of the base resin.
  • the water-soluble ethylenically unsaturated monomer included in the monomer composition may be any monomer conventionally used for preparing a super absorbent polymer.
  • the water-soluble ethylenically unsaturated monomer may be a compound represented by Formula 1:
  • Ri is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond
  • M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt.
  • the monomer is acrylic acid, methacrylic acid, and
  • It may be at least one selected from the group consisting of monovalent metal salts, divalent metal salts, ammonium salts and organic amine salts.
  • monovalent metal salts divalent metal salts
  • ammonium salts organic amine salts.
  • the monomers include maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2- Methacryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid or 2- (meth) acrylamide-2-methyl propane sulfonic acid, (meth) acrylamide, N-substituted (meth) acrylate, 2-hydrate Hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, methoxypolyethylene glycol
  • the water-soluble ethylenically unsaturated monomer has an acidic group, at least a portion of the acidic group may be neutralized.
  • those which have been partially neutralized with an alkali substance such as sodium hydroxide, potassium hydroxide, ammonium hydroxide or the like may be used.
  • the degree of neutralization of the monomer may be 40 to 95 mol%, or 40 to 80 mol% or 45 to 75 mol%.
  • the range of the degree of neutralization may vary depending on the final physical properties, but if the degree of neutralization is too high, the neutralized monomer may precipitate and polymerization may be difficult to proceed smoothly.
  • the concentration of the water-soluble ethylenically unsaturated monomer in the monomer composition may be appropriately adjusted in consideration of the polymerization time and reaction conditions, preferably 20 to 90% by weight, or 40 to 65% by weight. This concentration range may be advantageous to control the grinding efficiency during the grinding of the polymer to be described later, while eliminating the need for removing the unbanung monomer after the polymerization by using the gel effect phenomenon appearing in the polymerization reaction of the high concentration aqueous solution.
  • the surface crosslinking is a method of increasing the crosslinking density of the surface of the base resin particles, and in particular, in the present invention, the physical properties of the crosslinked polymer are improved by controlling the degree of surface crosslinking of the base resin. Let's do it.
  • the gel strength means the horizontal gel strength of the superabsorbent polymer measured after swelling by absorbing physiological saline solution (0.9% by weight aqueous sodium chloride solution) in the base resin or crosslinked polymer for 1 hour, using a rheometer Can be measured.
  • the pressure absorption capacity (AUP) of 0.7 psi may be represented by the following formula 2:
  • AUP (g / g) [W 4 (g)-W 3 (g)] / W 0 (g)
  • W 0 (g) is the weight of superabsorbent polymer (g) .
  • W 3 (g) is the sum of the weight of the superabsorbent polymer and the weight of the device capable of applying a load to the superabsorbent polymer
  • W 4 (g) is the sum of the weight of the water absorbed superabsorbent resin after supplying water to the superabsorbent polymer for one hour under a load (0.7 psi) and the weight of the device capable of loading the superabsorbent polymer. to be.
  • the centrifugal water retention capacity (CRC) for the physiological saline can be expressed according to the following equation 3:
  • W 0 (g) is the weight of superabsorbent polymer (g) .
  • Kg does not use a super absorbent polymer, but uses a centrifuge Device weight measured after dehydration at 250G for 3 minutes,
  • W 2 (g) is the weight of the device, including the superabsorbent polymer, after submerging the superabsorbent polymer for 30 minutes in 0.9 mass% of physiological saline to the silver, followed by dehydration at 250 G for 3 minutes using a centrifuge.
  • the centrifugal water holding capacity (CRC, .g / g) of the crosslinked polymer is 29 or more, more preferably 30 or more.
  • the solution permeability (SFC) is determined by Darcy's law and steady flow method (e.g., "Absorbency", edited by PK Chatter jee, Elsevier 1985, pp. 42-43 and Chemical Engineering, Vol.
  • the super absorbent polymer according to the present invention may be prepared by a manufacturing method comprising the following steps.
  • step 1 Formation of hydrogel polymer (step 1)
  • the method for preparing the superabsorbent polymer includes thermally polymerizing or photopolymerizing a monomer composition including a water-soluble ethylenically unsaturated monomer and a polymerization initiator. Polymerizing to form a hydrogel polymer.
  • the water-soluble ethylenically unsaturated monomer included in the monomer composition is as described above.
  • the monomer composition may include a polymerization initiator generally used in the production of superabsorbent polymers.
  • a thermal polymerization initiator or a photopolymerization initiator may be used as the polymerization initiator, depending on the polymerization method.
  • a thermal polymerization initiator may be further included.
  • the photoinitiator for example, benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenylglyoxylate, benzyldimethyl
  • the photoinitiator for example, benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenylglyoxylate, benzyldimethyl
  • One or more compounds selected from the group consisting of benzyl dimethyl ketal, acyl phosphine and a -aminoketone can be used.
  • acylphosphine commercially available lucirin TP0, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide (2,4,6-trimethyl benzoyl one trimethyl phosphine oxide) may be used.
  • photopolymerization initiators are disclosed on page 115 of Reinhold Schwalm, "UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)", and can be referred to this.
  • the thermal polymerization initiator one or more compounds selected from the group consisting of persulfate-based initiators, azo-based initiators, hydrogen peroxide, and ascorbic acid may be used.
  • sodium persulfate Na 2 S 2 0 8
  • potassium persulfate Pitassium persulfate
  • NH 4 ammonium persulfate
  • azo (Azo) -based initiators are 2,2-azobis- (2-amidinopropane) dihydrochloride (2,2-azobis (2— amidinopropane) dihydrochloride), 2,2-azobis- ( ⁇ , ⁇ —dimethylene) isobutyramimidine dihydrochloride (2,2- azobis- (N, N-dimethyl ene) is obut yr am idi ne dihydrochloride), 2- (carbamoyl azo) isobutyronitrile ( 2- (carbamoylazo) isobutylonitril), 2,2- azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride (2, 2- azobis [2- (2-imidazol in-2- yl) propane] dihydrochlor ide), 4,4—azobis -1- (4-cyanovaleric acid) (4,4-320 5- (4 ⁇ £ 1110 31 ⁇ ; acid)) .
  • thermal polymerization initiators are disclosed on page 203 of Odian's book “Principle of Polymerization (Wiley, 1981)", which can be referred to as about 0.001 to 1 weight based on the monomer composition.
  • concentration of the polymerization initiator is too low, the polymerization rate may be slowed down and a large amount of remaining monomer may be extracted in the final product.
  • Too high is not preferable because the polymer chain forming the network is shortened, so that the content of the water-soluble component and the pressure absorption capacity is lowered, such that the physical properties of the resin may be lowered.
  • crosslinking agent for improving the physical properties of the resin
  • the crosslinking agent may be used to internally crosslink the hydrogel polymer, and may be used separately from a crosslinking agent (“surface crosslinking agent”) for crosslinking the surface of the hydrogel polymer.
  • any compound may be used as long as it enables the introduction of crosslinks in the polymerization of the unsaturated monomers
  • the internal crosslinking agent include ⁇ , ⁇ '—methylenebisacrylamide, trimethyl propane tri (meth) acrylate, ethylene glycol Di (meth) acrylate, polyethylene glycol (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, butanediol di (meth) acrylate, butylene glycol die (meth Acrylate, diethylene glycol di (meth) acrylate, nucleic acid die di (meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) Polyacrylates such as acrylates, dipentaerythrates, pentaacrylates, glycerin tri (meth) acrylates, pen
  • Such internal crosslinking agent may be added at a concentration of about 0.001 to 1% by weight relative to the monomer composition. That is, when the concentration of the internal crosslinking agent is too low, the absorption rate of the resin may be low and the gel strength may be weakened, which is not preferable. On the contrary, when the concentration of the internal crosslinking agent is too high, the absorbing power of the resin may be low, which may be undesirable as an absorber.
  • the monomer composition may further include additives such as thickeners, plasticizers, storage stabilizers, and antioxidants as necessary.
  • the monomer composition may be prepared in the form of a solution in which raw materials such as the aforementioned monomer, polymerization initiator, internal crosslinking agent, and the like are dissolved in a solvent.
  • a solvent any solvent that can be used may be used without limitation as long as it can dissolve the above-described raw materials.
  • the solvent includes water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanedi, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether.
  • the formation of the hydrogel polymer through the polymerization of the monomer composition may be performed by a conventional polymerization method, and the process is not particularly limited.
  • the polymerization method is largely divided into thermal polymerization and photopolymerization according to the type of polymerization energy source.
  • the thermal polymerization the polymerization method may be performed in a reactor having a stirring shaft such as a kneader.
  • the polymerization proceeds, it can be carried out in a semi-unggi equipped with a movable conveyor belt.
  • the monomer composition may be added to a reactor such as a kneader equipped with a stirring shaft, and hot water may be supplied thereto or thermally polymerized by heating the reactor to obtain a hydrogel polymer.
  • the hydrous gel phase polymer discharged to the semi-unggi outlet according to the shape of the stirring shaft provided in the reactor may be obtained in the particles of several millimeters to several centimeters.
  • the resulting hydrogel polymer may be obtained in various forms depending on the concentration and injection rate of the monomer composition to be injected, and a hydrogel polymer having a particle size of 2 to 50 mm 3 can be obtained.
  • the photopolymerization of the monomer composition in a semi-unggi equipped with a movable conveyor belt may be a hydrous gel polymer in the form of a sheet.
  • the thickness of the sheet may vary depending on the concentration and the injection rate of the monomer composition to be injected, in order to ensure the production rate while the entire sheet is evenly polymerized, it is usually adjusted to a thickness of 0.5 to 5 cm desirable.
  • Water-containing gel polymer formed by this method is about 40 to 80 Moisture content in weight percent.
  • the moisture content is a weight of water in the total weight of the hydrogel polymer, and may be a value obtained by subtracting the weight of the dried polymer from the weight of the hydrogel polymer. Specifically, it may be defined as a value calculated by measuring the weight loss due to evaporation of water in the polymer in the process of drying the temperature of the polymer through infrared heating.
  • the drying conditions may be set to 20 minutes, including 5 minutes of the temperature rise step in such a way that the temperature is raised to about 180 ° C and then maintained at 180 ° C. Drying the hydrogel polymer (step 2)
  • the manufacturing method of the super absorbent polymer includes the step of drying the hydrogel-like laminate formed through the above-described steps.
  • the step of pulverizing (coarse grinding) the hydrogel polymer before the drying may be more rough.
  • the grinders available for the coarse grinding include a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutting type Examples include a cutter mill, a disc mill, a shred crusher, a crusher, a chopper, a disc cutter, and the like.
  • the coarse grinding may be performed so that the particle size of the hydrogel polymer is 2 to 10 ⁇ .
  • the hydrous gel polymer is preferably pulverized into particles of 10 mm or less.
  • the hydrous gel phase polymer is preferably pulverized into particles of 2 mm or more.
  • the polymer may stick to the surface of the grinder because the polymer has a high water content.
  • the coarsely pulverizing step includes, as necessary, steam, water, surfactants, anti-aggregation agents such as clay or Si ica; Thermal sulfate initiators such as persulfate initiators, azo initiators, hydrogen peroxide, and ascorbic acid, epoxy crosslinkers, diol crosslinkers, crosslinkers comprising acrylates of difunctional or trifunctional or more than trifunctional groups, and hydroxyl groups.
  • Thermal sulfate initiators such as persulfate initiators, azo initiators, hydrogen peroxide, and ascorbic acid
  • epoxy crosslinkers diol crosslinkers, crosslinkers comprising acrylates of difunctional or trifunctional or more than trifunctional groups, and hydroxyl groups.
  • Crosslinking agents such as a compound of monofunctional groups, may be added.
  • the drying of the hydrous gel phase polymer immediately after coarse grinding or polymerization may be performed at a temperature of 120 to 250 ° C., or 150 to 200 ° C., or 160 to 180 ° C. It may be defined as the temperature of the heat medium supplied for drying or the temperature inside the drying reactor comprising the heat medium and the polymer in the drying process. That is, when the drying temperature is low and the drying time is long, the physical properties of the final resin may be lowered. In order to prevent this, the drying temperature is preferably 120 ° C or more.
  • drying temperature may be a fine powder generated more in the milling process to be described later is dry only the surface of the function, the gel polymer is higher than necessary, the physical properties of the final resin can be lowered, a drying temperature in order to prevent this, is 250 ° It is preferable that it is C or less.
  • the drying time in the drying step is not particularly limited, but may be adjusted to 20 to 90 minutes under the drying temperature in consideration of process efficiency and the like.
  • the drying method of the drying step can also be commonly used as a drying step of the hydrous gel phase polymer is applicable to the configuration without limitation.
  • the drying step may be a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation.
  • the polymer dried in this manner may exhibit a water content of about 0.1 to 10% by weight. In other words, if the water content of the polymer is less than 0.1% by weight, it is not advantageous because an increase in the manufacturing cost and degradation of the crosslinked polymer may occur due to excessive drying. In addition, when the water content of the polymer exceeds 10% by weight, defects may occur in subsequent processes, which is not preferable. Grinding the dried polymer (step 3)
  • the manufacturing method of the super absorbent polymer includes the step of pulverizing the polymer dried through the above-described steps.
  • the grinding step may be performed to optimize the surface area of the dried polymer, and may be performed to have a particle diameter of 150 to 850. Mills that can be used to grind to these particle sizes include pin mills, hammer mills, screw mills, roll mills, disc mills and jogs. A jog mill etc. are mentioned, for example.
  • the polymer produced by grinding as described above is referred to as 'base resin' in the present invention, which is distinguished from the 'crosslinked polymer' prepared by crosslinking reaction to be described below.
  • the step of selectively classifying particles having a particle size of 150 to 850 in the polymer powder obtained through the grinding step may be further performed.
  • the manufacturing method of the super absorbent polymer includes the step of surface crosslinking the polymer pulverized through the above-described steps.
  • Surface crosslinking is a method of increasing the crosslinking density of the surface of a resin particle, and the solution comprising a crosslinking agent (surface crosslinking agent) and the pulverized polymer It can be carried out by a method of mixing and crosslinking reaction.
  • the gel strength of the base resin having a gel strength of 4000 to 5000 Pa may be increased by 1.4 times or more, and thus solution permeability (SFC), water retention, and pressure absorption may be improved.
  • SFC solution permeability
  • the gel strength of the base resin is less than 4000 Pa, the solution permeability (SFC) of the crosslinked polymer is lowered.
  • a cross-linking agent contained in the surface cross-linking solution roneun by surface cross-linking as described above comprising a cross-linking agent to increase the gel strength of at least 1.4 times, in particular (C 2 - 4) alkylene carbonates, preferably For example, ethylene carbonate or propylene carbonate can be used.
  • the content of the surface crosslinking agent may be appropriately adjusted according to the type or reaction conditions of the crosslinking agent, and preferably may be adjusted to 0.001 to 5 parts by weight based on 100 parts by weight of the pulverized polymer.
  • the content of the surface crosslinking agent is too low, surface crosslinking may not be properly introduced, and the physical properties of the final resin may be reduced.
  • the surface crosslinking agent is used in an excessively high content, the absorption of the resin may be lowered due to excessive surface crosslinking reaction, which is not preferable.
  • the surface crosslinking solution and the pulverized polymer are mixed in a semi-permanent mixture, a method of spraying the surface crosslinking solution on the pulverized polymer, a pulverized polymer and The method of supplying and mixing the surface crosslinking solution continuously can be used.
  • additional water may be added. Can be. As such water is added together, more even dispersion of the crosslinking agent may be induced, aggregation of the polymer powder may be prevented, and the penetration depth of the surface crosslinking agent into the polymer powder may be further optimized.
  • the amount of water added may be adjusted to 0.5 to 10 parts by weight based on 100 parts by weight of the pulverized polymer.
  • the surface crosslinking reaction step may be performed under a temperature of 100 to 250 ° C, it may be made continuously after the drying and grinding step proceeds to a relatively high temperature. At this time.
  • the surface crosslinking reaction may be performed for 1 to 120 minutes, or 1 to 100 minutes, or 10 to 60 minutes. In other words, in order to induce a minimum surface crosslinking reaction, the polymer particles may be damaged during excessive reaction, thereby preventing the physical properties from deteriorating.
  • the superabsorbent polymer according to the present invention and a method for preparing the same have the characteristics of having excellent solution permeability by controlling the degree of surface crosslinking of the base resin, and exhibiting high water retention and pressure absorption capability.
  • FIG. 1 is a graph showing physical property data of a super absorbent polymer according to an embodiment of the present invention.
  • the resin was sieved through a sieve (30-50 mesh) and weighed 0.5 g, which was then swollen in 50 g of 0.9% NaCl solution for 1 hour. The swollen gel was then spread over a Buchner funnel covered with filter paper to remove the remaining fluids for 3 minutes under vacuum. The gel was stored in a closed container until the test was ready. The gel was sucked into the filter paper so that there was no remaining water between the particles during testing before placing the gel between the rheometer and the parallel plate. Gel strength was measured with a rheometer with 2 g of the swollen gel. At this time, the measurement conditions of the rheometer were as follows. The measured values were taken for 5 minutes and then averaged.
  • Plate Gap Size 2 mm 3; Strain amplitude 1%; Osci lat ion frequency 10 readina / sec; ambient temperature: 22 ° C; plate: 25 mm, TA Instruments-AR series
  • Pressurized absorption capacity was measured by the following method according to the EDANA method WSP 242.2, the European Disposables and Nonwovens Association (EDANA) standard.
  • a stainless steel 400 mesh wire was mounted on the bottom of a 60 mm diameter plastic cylinder.
  • 0.9 g (W 0 ) of the resin was uniformly spread on the wire mesh under conditions of 50% of humidity and room temperature, and a piston was formed thereon which could further uniformly apply a load of 0.7 psi.
  • the piston had an outer diameter of slightly less than 60 mm 3, no gap with the inner wall of the cylinder, and the up and down movement was not disturbed. At this time, the weight W 3 (g) of the apparatus was measured.
  • a 90 mm diameter and 5 mm thick glass filter was placed inside a 150 mm diameter petri dish, and physiological saline consisting of 0.90 wt% sodium chloride was added at the same level as the top surface of the glass filter.
  • physiological saline consisting of 0.90 wt% sodium chloride was added at the same level as the top surface of the glass filter.
  • One sheet of filter paper having a diameter of 90 mm was placed thereon.
  • the measuring device was placed on filter paper and the solution was allowed to absorb under constant load. After 1 hour, the measuring apparatus was lifted up, and the weight W 4 (g) was measured.
  • the AUP was measured by the measurement result as shown in Equation 2 below. '
  • AUP (g / g) [W 4 (g)-W 3 (g)] / W 0 (g)
  • Beam SAT by Mucha Heavy absorption ratio was determined according to European Nonwoven Industry Association (European Disposables and Nonwovens Association,. EDANA) standard EDANA WSP 241.2. Specifically, 0.2 g (W 0 ) of the resin was uniformly placed in a bag made of a nonwoven fabric and sealed, and then immersed in 0.9% physiological saline at room temperature. After 30 minutes, the bag was drained at 250 G for 3 minutes using a centrifuge, and then the mass (g) of the bag was measured. In addition, the time of the mass Kg After the same operation without the use of resin), was measured. From each mass thus obtained, CRC (g / g) was calculated according to the following formula.
  • a phosphorus monomer aqueous solution composition was prepared.
  • the monomer aqueous solution composition was continuously fed into the supply section of the polymerized polymer conveyor belt, and then irradiated with UV light using a UV irradiation apparatus (irradiation amount: 20 mW / ciif), followed by UV polymerization for 2 minutes to form a hydrogel polymer.
  • a UV irradiation apparatus irradiation amount: 20 mW / ciif
  • the hydrogel polymer was transferred to a cutter and cut into 0.2 cm. At this time, the water content of the hydrogel polymer was 47% by weight. Subsequently, the hydrogel polymer was dried at a temperature of 160 ° C. in a hot air dryer for 30 minutes, and the dried hydrogel polymer was pulverized with a pin mill grinder. Subsequently, sieves were used to classify polymers having a particle size (average particle diameter size) of 150 ⁇ to 850 to prepare a base resin. CRC of the prepared base resin was 33 ⁇ 35 g / g, the gel strength was 4500-5000 Pa. Step 2) Preparation of Super Absorbent Resin
  • Resin was prepared using 1,3-propanedi (1, 3-P). Samples were taken at 10 minute intervals during the crosslinking reaction as in Example 1, and the physical properties thereof were shown in FIG. 1 (total 40 minutes). Comparative Example 2
  • Step 2 of Example 1 except that a solution containing 3 g of distilled water, 0.3 g of 4-butanediol and 100 g of base resin was mixed, a superabsorbent polymer was prepared in the same manner as in Example 1. It was. Comparative Example 3
  • Step 2 of Example 1 a superabsorbent polymer was prepared in the same manner as in Example 1, except that 100 g of the base resin was mixed with 3 g of distilled water and 0.3 g of ethylene glycol. Comparative Example 4
  • the CRC of the prepared base resin was 43 g / g, and the gel strength was 3120 Pa.
  • 100 g of the base resin prepared above was mixed with a solution of 3 g of distilled water and 0.4 g of ethylene carbonate, followed by crosslinking reaction at a temperature of 194 ° C. for 40 minutes in a convection oven.
  • the CRC of the prepared base resin was 52 g / g, and the gel strength was 1980 Pa.
  • 100 g of the base resin prepared above was mixed with a solution of 3 g of distilled water and 0.4 g of ethylene carbonate, followed by a crosslinking reaction for 40 minutes at a temperature of 194 ° C. in a convection oven.
  • the physical properties of the Example (red) and Comparative Example (black) were different.
  • the solution permeability of the Example was higher than the comparative example of similar gel strength.
  • the centrifugal water holding capacity of the Example was higher than the comparative example of similar solution permeability, the sum of the centrifugal water holding capacity and the solution permeability of the embodiment (CRC + SFC / 10) It was higher than this comparative example (FIG. 1 (d)). Therefore, it was confirmed that the super absorbent polymer according to the present invention can simultaneously achieve high centrifugal water-retaining ability and solution permeability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

According to a super-absorbent resin and a method for preparing the same, of the present invention, the super-absorbent resin does not only have excellent solution permeability but can also exhibit high water retention capacity and absorbency under pressure, by controlling the surface cross-linkage degree of a base resin.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
고흡수성 수지 및 이의 제조 방법  Super Absorbent Resin and Method for Making the Same
【관련 출원 (들)과의 상호 인용】  [Cross Citation with Related Application (s)]
본 출원은 2014년 12월ᅳ 14일자 한국 특허 출원 게 10-2014-0172999호 및 2015년 10월 19일자 한국 특허 출원 제 10-2015-0145613호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2014-0172999 dated December 14, 2014 and Korean Patent Application No. 10-2015-0145613 dated October 19, 2015. All content disclosed in these references is included as part of this specification.
【기술분야】  Technical Field
' 본 발명은용액 투과도가 우수한 고흡수성 수지 및 이의 제조 방법에 관한 것이다. The present invention relates to a super absorbent polymer having excellent solution permeability and a method of preparing the same.
【배경기술】  Background Art
고흡수성 수지 (super absorbent polymer , SAP)란 자체 무게의 약 5백 내지 1천배 정도의 수분을 흡수할 수 있는 합성 고분자 물질로서, SAM (Super Absorbency Mater i al ) , AGM( Absorbent Gel Mater ial ) 등으로도 블리우고 있다. 고흡수성 수지는 생리 용구로 실용화되기 시작해서, 현재는 어린이용 종이 기저귀 등의 위생 용품, 원예용 토양 보수제, 토목용 지수재, 육묘용 시트, 식품 유통 분야에서의 신선도 유지제 등 다양한 재료로 널리 사용되고 있다. 이러한 고흡수성 수지를 제조하는 방법으로는 역상 현탁 중합에 의한 방법 또는 수용액 중합에 의한 방법 등이 알려져 있다. 그 중 역상 현탁 중합을 통한 고흡수성 수지의 제조에 대해서는 예를 들면 일본 특개소 56- 161408 , 특개소 5그 158209 , 및 특개소 57-198714 등에 개시되어 있다. 그리고, 수용액 중합을 통한 고흡수성 수지의 제조는 여러 개의 축이 구비된 반죽기 내에서 함수겔상 중합체를 파단 및 넁각하면서 중합하는 열 중합 방법과, 벨트 상에서 고농도의 수용액에 자외선 등을 조사하여 중합과 건조를 동시에 행하는 광 중합 방법 등이 알려져 있다. 한편, 고흡수성 수지의 중요한 물성 중 하나인 흡수 속도는 기저귀와 같이 피부에 닿는 제품의 표면 dryness와 연관되어 있다. 일반적으로 이러한 흡수 속도는 고흡수성 수지의 표면적을 넓히는 방법으로 향상시킬 수 있다. 일 예로, 발포제를 사용하여 고흡수성 수지의 입자 표면에 다공성 구조를 형성시키는 방법이 적용되고 있다. 하지만, 일반적인 발포제로는 층분한 양의 다공성 구조를 형성시킬 수 없어 흡수 속도의 증가폭이 크지 않은 단점이 있다. 다른 예로, 고흡수성 수지의 제조 과정에서 수득되는 미분을 재조립하여 불규칙한 형태의 다공성 입자를 형성시킴으로써 표면적을 넓히는 방법이 있다. 그러나, 이러한 방법을 통해 고흡수성 수지의 흡수 속도는 향상될 수 있더라도, 수지의 원심분리 보수능 (CRC)과 가압 흡수능 (AUL)이 상대적으로 저하되는 한계가 있다. 이처럼 고흡수성 수지의 흡수 속도, 보수능, 가압 흡수능 등의 물성은 트레이드 -오프 (trade— of f )의 관계에 있어, 이들 물성을 동시에 향상시킬 수 있는 제조 방법이 절실히 요구되고 있는 실정이다. A super absorbent polymer (SAP) is a synthetic polymer material that can absorb about 500 to 1000 times its own weight. It is a SAM (Super Absorbency Material), AGM (Asorbent Gel Material), etc. It is also blowing. Super absorbent resins have been put into practical use as sanitary devices and are now widely used in various materials such as hygiene products such as paper diapers for children, horticultural soil repair agents, civil engineering materials, seedling sheets, and freshness retainers in food distribution. It is used. As a method for producing such a super absorbent polymer, a method by reverse phase suspension polymerization or a solution polymerization is known. Among them, the production of superabsorbent polymers through reverse phase suspension polymerization is disclosed, for example, in Japanese Patent Laid-Open Nos. 56-161408, 5,158, JP, 158,209, and the like. In addition, the production of superabsorbent polymers through polymerization of aqueous solution is a thermal polymerization method for polymerizing a hydrogel polymer in a kneader equipped with several shafts while breaking and angled, and polymerizing and drying by irradiating UV light to a high concentration of aqueous solution on a belt. The photopolymerization method etc. which perform simultaneously are known. On the other hand, absorption rate, which is one of the important physical properties of super absorbent polymer, Similarly, the surface dryness of the product in contact with the skin. In general, this absorption rate can be improved by increasing the surface area of the superabsorbent polymer. For example, a method of forming a porous structure on the particle surface of the super absorbent polymer by using a blowing agent has been applied. However, there is a disadvantage in that the general foaming agent cannot form a sufficient amount of porous structure, so that the increase in absorption rate is not large. As another example, there is a method of increasing the surface area by reassembling the fine powder obtained in the manufacturing process of the super absorbent polymer to form porous particles of irregular shape. However, although the absorption rate of the superabsorbent polymer can be improved through this method, there is a limit that the resin's centrifugal water retention capacity (CRC) and the pressure absorption capacity (AUL) are relatively lowered. As such, the physical properties such as absorption rate, water holding capacity, and pressure absorbing capacity of the super absorbent polymer are in a trade-off relationship, and a manufacturing method capable of improving these properties at the same time is urgently required.
[발명의 내용]  [Content of invention]
【해결하려는 과제】  [Problem to solve]
본 발명은 베이스 수지의 표면 가교 정도를 조절하여 우수한 용액 투과성을 가질 뿐만 아니라 높은 보수능 및 가압 흡수능을 나타내는 고흡수성 수지 및 이의 제조방법을 제공하기 위한 것이다.  The present invention is to provide a superabsorbent polymer and a method for preparing the same, which have a high water permeability and pressure absorbing ability as well as excellent solution permeability by controlling the degree of surface crosslinking of the base resin.
【과제의 해결 수단】  [Measures of problem]
상기 과제를 해결하기 위하여, 본 발명은 산성기를 포함하고 상기 산성기의 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체를 중합시킨 베이스 수지를 표면 가교시킨 가교 중합체를 포함하는 고흡수성 수지에 있어서,  In order to solve the above problems, the present invention provides a super absorbent polymer comprising a crosslinked polymer comprising an acidic group and surface-crosslinked a base resin polymerized with a water-soluble ethylenically unsaturated monomer in which at least part of the acidic group is neutralized,
상기 베이스 수지의 겔 강도가 4000 내지 5000 Pa이고, 상기 가교 중합체의 겔 강도가 상기 베이스 수지의 겔 강도의 1.4배 이상이고,  The gel strength of the base resin is 4000 to 5000 Pa, the gel strength of the crosslinked polymer is 1.4 times or more of the gel strength of the base resin,
상기 가교 중합체의 0.7 psi의 가압 흡수^ (AUP , g/g)이 22 이상이고 상기 가교 중합체의 원심분리 보수능 (CRC , g/g)이 28 이상이고, 상기 가교 중합체의 용액 투과도 (SFC , 10— 7 cm1 · sec/g)가 30 이상이고, The pressure absorption of 0.7 psi of the crosslinked polymer ^ (AUP, g / g) is at least 22 And centrifuged beam SAT (CRC, g / g) of the crosslinked polymer is 28 or more, the transmittance of the solution of cross-linked polymer (SFC, 10- 7 cm 1 · sec / g) is more than 30,
상기 가교 중합체의 원심분리 보수능 (CRC) 및 용액 투과도 (SFC)가 하기 계산식 1을 만족하는 것을 특징으로 하는, 고흡수성 수자를 제공한다:  It provides a super absorbent water, characterized in that the centrifugal water retention (CRC) and solution permeability (SFC) of the crosslinked polymer satisfies the following formula 1.
[계산식 1]  [Calculation 1]
CRC + (SFC/10) > 34. 상기와 같이 본 발명에 따른 고흡수성 수지는, 상기 범위의 겔 강도를 가지는 베이스 수지의 표면 가교 정도를 조절하여 가교 중합체의 겔 강도가 베이스 수지의 겔 강도 대비 상기 범위로 조절함으로써, 우수한 용액 투과성을 가질 뿐만 아니라 높은 보수능 및 가압 흡수능을 나타낼 수 있다는 특징이 있다. 상기 단량체 조성물에 포함되는 수용성 에틸렌계 불포화 단량체는 고흡수성 수지의 제조에 통상적으로 사용되는 임의의 단량체일 수 있다. 비제한적인 예로, 상기 수용성 에틸렌계 불포화 단량체는 하기 화학식 1로 표시되는 화합물일 수 있다:  CRC + (SFC / 10)> 34. As described above, the superabsorbent polymer according to the present invention controls the degree of surface crosslinking of a base resin having a gel strength in the above range, such that the gel strength of the crosslinked polymer is compared with that of the base resin. By adjusting to the above range, not only has excellent solution permeability, but also has a feature of exhibiting high water holding capacity and pressure absorbing ability. The water-soluble ethylenically unsaturated monomer included in the monomer composition may be any monomer conventionally used for preparing a super absorbent polymer. As a non-limiting example, the water-soluble ethylenically unsaturated monomer may be a compound represented by Formula 1:
[화학식 1] [Formula 1]
Figure imgf000005_0001
Figure imgf000005_0001
상기 화학식 1에서,  In Chemical Formula 1,
Ri는 불포화 결합올 포함하는 탄소수 2 내지 5의 알킬 그룹이고, M1는 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다. 바람직하게는, 상기 단량체는 아크릴산, 메타크릴산, 및 이들 산의Ri is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond, and M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt. Preferably, the monomer is acrylic acid, methacrylic acid, and
1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 이처럼 수용성 에틸렌계 블포화 단량체로 아크릴산 또는 그 염을 사용할 경우 흡수성이 향상된 고흡수성 수지를 얻을 수 있어 유리하다. 이 밖에도 상기 단량체로는 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2- 메타아크릴로일에탄술폰산, 2- (메트)아크릴로일프로판술폰산 또는 2- (메타)아크릴아미드 -2-메틸 프로판 술폰산, (메트)아크릴아미드, N- 치환 (메트)아크릴레이트, 2-히드록시에틸 (메트)아크릴레이트, 2- 히드록시프로필 (메트)아크릴레이트, 메톡시폴리에틸렌글리콜It may be at least one selected from the group consisting of monovalent metal salts, divalent metal salts, ammonium salts and organic amine salts. As such, when acrylic acid or its salt is used as the water-soluble ethylene-based unsaturated monomer, it is advantageous to obtain a superabsorbent polymer having improved water absorption. In addition, the monomers include maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2- Methacryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid or 2- (meth) acrylamide-2-methyl propane sulfonic acid, (meth) acrylamide, N-substituted (meth) acrylate, 2-hydrate Hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, methoxypolyethylene glycol
(메트)아크릴레이트, 폴리에틸렌 글리콜 (메트)아크릴레이트, (Ν ,Ν)- 디메틸아미노에틸 (메트)아크릴레이트, (Ν ,Ν)-디메틸아미노프로필(Meth) acrylate, polyethylene glycol (meth) acrylate, (Ν, Ν) -dimethylaminoethyl (meth) acrylate, (Ν, Ν) -dimethylaminopropyl
(메트)아크릴아미드 등이 사용될 수 있다. 여기서, 상기 수용성 에틸렌계 불포화 단량체는 산성기를 가지며, 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 알칼리 물질로 부분적으로 중화시킨 것이 사용될 수 있다. 이때, 상기 단량체의 중화도는 40 내지 95 몰%, 또는 40 내지 80 몰% 또는 45 내지 75 몰%일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 달라질 수 있지만, 중화도가 지나치게 높으면 중화된 단량체가 석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로 중화도가 지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와 같은 성질을 나타낼 수 있다. 또한, 상기 단량체 조성물 중 상기 수용성 에틸렌계 불포화 단량체의 농도는 중합 시간 및 반응 조건 등을 고려하여 적절히 조절될 수 있으며, 바람직하게는 20 내지 90 중량 %, 또는 40 내지 65 중량 %일 수 있다. 이러한 농도 범위는 고농도 수용액의 중합 반웅에서 나타나는 겔 효과 현상을 이용하여 중합 후 미반웅 단량체를 제거할 필요가 없도록 하면서도, 후술할 중합체의 분쇄시 분쇄 효율을 조절하기 위해 유리할 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮아질 수 있다. 반대로, 상기 단량체의 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄시 분쇄 효율이 떨어지는 등 공정상 문제가 생길 수 있고, 고흡수성 수지의 물성이 저하될 수 있다. 상기 표면 가교는 베이스 수지 입자 표면의 가교 결합 밀도를 증가시키는 방법으로서, 특히 본 발명에서는 베이스 수지의 표면 가교 정도를 조절하여 가교 중합체의 물성을 향상시키는 것으로, 이에 사용되는 가교제 및 표면 가교 방법은 후술하기로 한다. 한편, 상기 겔 강도는 베이스 수지 또는 가교 중합체에 1시간 동안 생리 식염수 (0.9 중량 % 염화 나트륨 수용액)를 흡수시켜 팽윤시킨 후에 측정한 고흡수성 수지의 수평 방향 겔 강도를 의미하며, 이때 레오미터를 사용하여 측정할 수 있다. 또한, 상기 0.7 psi의 가압 흡수능 (AUP)은 하기 계산식 2로 표시될 수 있다: (Meth) acrylamide and the like can be used. Here, the water-soluble ethylenically unsaturated monomer has an acidic group, at least a portion of the acidic group may be neutralized. Preferably, those which have been partially neutralized with an alkali substance such as sodium hydroxide, potassium hydroxide, ammonium hydroxide or the like may be used. In this case, the degree of neutralization of the monomer may be 40 to 95 mol%, or 40 to 80 mol% or 45 to 75 mol%. The range of the degree of neutralization may vary depending on the final physical properties, but if the degree of neutralization is too high, the neutralized monomer may precipitate and polymerization may be difficult to proceed smoothly. On the contrary, if the degree of neutralization is too low, the absorbency of the polymer is not only greatly reduced. It can exhibit the same properties as elastic rubber, which is difficult to handle. In addition, the concentration of the water-soluble ethylenically unsaturated monomer in the monomer composition may be appropriately adjusted in consideration of the polymerization time and reaction conditions, preferably 20 to 90% by weight, or 40 to 65% by weight. This concentration range may be advantageous to control the grinding efficiency during the grinding of the polymer to be described later, while eliminating the need for removing the unbanung monomer after the polymerization by using the gel effect phenomenon appearing in the polymerization reaction of the high concentration aqueous solution. However, when the concentration of the monomer is too low, the yield of the super absorbent polymer may be lowered. On the contrary, if the concentration of the monomer is too high, some of the monomers may precipitate or process problems may occur such as when the pulverization efficiency of the polymerized hydrogel polymer is reduced, and the physical properties of the super absorbent polymer may be reduced. The surface crosslinking is a method of increasing the crosslinking density of the surface of the base resin particles, and in particular, in the present invention, the physical properties of the crosslinked polymer are improved by controlling the degree of surface crosslinking of the base resin. Let's do it. On the other hand, the gel strength means the horizontal gel strength of the superabsorbent polymer measured after swelling by absorbing physiological saline solution (0.9% by weight aqueous sodium chloride solution) in the base resin or crosslinked polymer for 1 hour, using a rheometer Can be measured. In addition, the pressure absorption capacity (AUP) of 0.7 psi may be represented by the following formula 2:
[계산삭 2]  [Calculation 2]
AUP(g/g) = [W4(g) - W3(g) ] / W0(g) AUP (g / g) = [W 4 (g)-W 3 (g)] / W 0 (g)
상기 계산식 2에서,  In the formula 2,
W0(g)는 고흡수성 수지의 무게 (g)이고, W 0 (g) is the weight of superabsorbent polymer (g) ,
W3(g)는 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이고, W 3 (g) is the sum of the weight of the superabsorbent polymer and the weight of the device capable of applying a load to the superabsorbent polymer,
W4(g)는 하중 (0.7 psi ) 하에 1시간 동안 상기 고흡수성 수지에 수분을 공급한 후의 수분이 흡수된 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중올 부여할 수 있는 장치 무게의 총합이다. 또한, 상기 생리 식염수에 대한 원심분리 보수능 (CRC)는 하기 계산식 3에 따라 표시될 수 있다: W 4 (g) is the sum of the weight of the water absorbed superabsorbent resin after supplying water to the superabsorbent polymer for one hour under a load (0.7 psi) and the weight of the device capable of loading the superabsorbent polymer. to be. In addition, the centrifugal water retention capacity (CRC) for the physiological saline can be expressed according to the following equation 3:
[계산식 3]  [Calculation 3]
CRC(g/g) = { [W2(g) - Wi(g) ] /W0(g) } - 1 CRC (g / g) = {[W 2 (g)-Wi (g)] / W 0 (g)}-1
상기 계산식 3에서,  In the above formula 3,
W0(g)는 고흡수성 수지의 무게 (g)이고, W 0 (g) is the weight of superabsorbent polymer (g) ,
Kg)는 고흡수성 수지를 사용하지 않고, 원심분라기를 사용하여 250G로 3분간 탈수한 후에 측정한 장치 무게이고, Kg) does not use a super absorbent polymer, but uses a centrifuge Device weight measured after dehydration at 250G for 3 minutes,
W2(g)는 상은에 0.9 질량 %의 생리 식염수에 고흡수성 수지를 30분 동안 침수한 후에, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 고흡수성 수지를 포함하여 측정한 장치 무게이다. 바람직하게는, 상기 가교 중합체의 원심분리 보수능 (CRC,. g/g)이 29 이상이고, 보다 바람직하게는 30 이상이다. 또한, 상기 용액 투과도 (SFC)는 Darcy의 법칙 및 정상류법 (예컨대, "Absorbency" , edited by P. K. Chatter jee, Elsevier 1985, pp. 42-43 and Chemical Engineering, Vol . II, 3rd edit ion, J. M. Coulson and J. F. Ri char son, Pergamon Press, 1978, pp. 125-127)을 사용한 방법을 참고하여 측정할 수 있으며, 미국특허 등록번호 게 5,562,646호의 컬럼 54 내지 59에 기재된 방법에 따라 측정할 수 있다. 고흡수성 수지의 제조방법 W 2 (g) is the weight of the device, including the superabsorbent polymer, after submerging the superabsorbent polymer for 30 minutes in 0.9 mass% of physiological saline to the silver, followed by dehydration at 250 G for 3 minutes using a centrifuge. Preferably, the centrifugal water holding capacity (CRC, .g / g) of the crosslinked polymer is 29 or more, more preferably 30 or more. In addition, the solution permeability (SFC) is determined by Darcy's law and steady flow method (e.g., "Absorbency", edited by PK Chatter jee, Elsevier 1985, pp. 42-43 and Chemical Engineering, Vol. II, 3rd edit ion, JM Coulson and JF Ri char son, Pergamon Press, 1978, pp. 125-127) and can be measured according to the methods described in columns 54 to 59 of US Pat. No. 5,562,646. Can be. Manufacturing method of super absorbent polymer
상기 본 발명에 따른 고흡수성 수지는 하기의 단계를 포함하는 제조 방법으로 제조할 수 있다.  The super absorbent polymer according to the present invention may be prepared by a manufacturing method comprising the following steps.
1) 수용성 에틸렌계 불포화 단량체 및 중합 개시제를 포함하는 단량체 조성물을 열 중합 또는 광 중합하여 함수겔상 중합체를 형성하는 단계,  1) thermally polymerizing or photopolymerizing a monomer composition comprising a water-soluble ethylenically unsaturated monomer and a polymerization initiator to form a hydrogel polymer;
2) 상기 분쇄된 함수겔상 중합체를 건조하는 단계,  2) drying the pulverized hydrogel polymer;
3) 상기 건조된 중합체를 분쇄하는 단계, 및  3) pulverizing the dried polymer; and
4) 상기 분쇄된 중합체를 표면 가교 반웅하는 단계. 이하 각 단계별로 본 발명을 상세히 설명한다. 함수겔상중합체의 형성 단계 (단계 1)  4) surface crosslinking the pulverized polymer; Hereinafter, the present invention will be described in detail for each step. Formation of hydrogel polymer (step 1)
먼저, 상기 고흡수성 수지의 제조 방법에는 수용성 에틸렌계 불포화 단량체 및 중합 개시제를 포함하는 단량체 조성물을 열 중합 또는 광 중합하여 함수겔상 중합체를 형성하는 단계가 포함된다. 상기 단량체 조성물에 포함되는 수용성 에틸렌계 불포화 단량체는 앞서 설명한 바와 같다. 또한, 상기 단량체 조성물에는 고흡수성 수지의 제조에 일반적으로 사용되는 중합 개시제가 포함될 수 있다. 비제한적인 예로, 상기 중합 개시제로는 중합 방법에 따라 열 중합 개시제 또는 광 중합 개시제 등이 사용될 수 있다. 다만, 광 중합 방법에 의하더라도, 자외선 조사 등에 의해 일정량의 열이 발생하고, 또한 발열 반웅인 중합 반웅의 진행에 따라 어느 정도의 열이 발생하므로, 열 중합 개시제가 추가로 포함될 수 있다. 여기서, 상기 광 중합 개시제로는, 예를 들어, 벤조인 에테르 (benzoin ether), 디알킬아세토페논 (dialkyl acetophenone) , 하이드록실 알킬케톤 (hydroxyl alkylketone) , 페닐글리옥실레이트 (phenyl glyoxylate), 벤질디메틸케탈 (Benzyl Dimethyl Ketal), 아실포스핀 (acyl phosphine) 및 알파 -아미노케톤 ( a -aminoketone)으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다. 그 중 아실포스핀의 구체 예로서, 상용하는 lucirin TP0, 즉, 2,4,6-트리메틸-벤조일—트리메틸 포스핀 옥사이드 (2,4,6— trimethyl一 benzoyl一 trimethyl phosphine oxide)가 사용될 수 있다. 보다 다양한 광 중합 개시제에 대해서는 Reinhold Schwa lm 저서인 "UV Coatings: Basics , Recent Developments and New Application(Elsevier 2007년)"의 115 페이지에 개시되어 있으며, 이를 참조할 수 있다. 그리고, 상기 열 중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소, 및 아스코르빈산으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다. 구체적으로, 과황산염계 개시제로는 과황산나트륨 (Sodium persulfate; Na2S208), 과황산칼륨 (Potassium persulfate; K2S208) , 과황산암모늄 (Ammonium persulfate; (NH4)2S208) 등을 예로 들 수 있다. 또한, 아조 (Azo)계 개시제로는 2,2-아조비스 -(2- 아미디노프로판)이염산염 (2,2-azobis(2— amidinopropane) dihydrochlor ide), 2,2-아조비스 -(Ν,Ν—디메틸렌)이소부티라마이딘 디하이드로클로라이드 (2,2- azobis-(N,N-dimethyl ene ) i s obut y r am i d i ne dihydrochlor ide) , 2- (카바모일아조)이소부티로니트릴 (2-(carbamoylazo)isobutylonitril), 2,2- 아조비스 [2-(2-이미다졸린 -2-일)프로판] 디하이드로클로라이드 (2, 2- azobis[2-(2-imidazol in-2-yl )propane] dihydrochlor ide), 4,4—아조비스一 (4-시아노발레릭 산)(4,4-320 5-(4^ £1110 31^^; acid)) 등을 예로 들 수 있다. 보다 다양한 열 중합 개시제에 대해서는 Odian 저서인 "Principle of Polymerization(Wiley, 1981년)' '의 203 페이지에 개시되어 있으며, 이를 참조할 수 있다. 이러한 증합 개시제는 상기 단량체 조성물에 대하여 약 0.001 내지 1 중량 %의 농도로 첨가될 수 있다. 즉, 상기 증합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고 최종 제품에 잔존 모노머가 다량으로 추출될 수 있어 바람직하지 않다. 반대로, 상기 중합 개시제의 농도가 지나치게 높을 경우 네트워크를 이루는 고분자 체인이 짧아져 수가용 성분의 함량이 높아지고 가압 흡수능이 낮아지는 등 수지의 물성이 저하될 수 있어 바람직하지 않다. 한편, 상기 단량체 조성물에는 상기 수용성 에틸렌계 불포화 단량체의 중합에 의한 수지의 물성을 향상시키기 위한 가교제 ("내부 가교제 ")가 더 포함될 수 있다. 상기 가교제는 함수겔상 중합체를 내부 가교시키기 위한 것으로서, 상기 함수겔상 중합체의 표면을 가교시키기 위한 가교제 ("표면 가교제 ")와는 별개로 사용될 수 있다. 상기 내부 가교제로는 상기 수용성 에틸렌계 불포화 단량체의 중합시 가교 결합의 도입을 가능케 하는 것이라면 어떠한 화합물도 사용 가능하다. 비제한적인 예로, 상기 내부 가교제는 Ν,Ν'—메틸렌비스아크릴아미드, 트리메틸를프로판 트리 (메트)아크릴레이트, 에틸렌글리콜 다이 (메트)아크릴레이트, 폴리에틸렌글리콜 (·메트)아크릴레이트, 프로필렌글리콜 다이 (메트)아크릴레이트, 폴리프로필렌글리콜 (메트)아크릴레이트, 부탄다이올다이 (메트)아크릴레이트, 부틸렌글리콜다이 (메트)아크릴레이트, 다이에틸렌글리콜 다이 (메트)아크릴레이트, 핵산다이을다이 (메트)아크릴레이트, 트리에틸렌글리콜 다이 (메트)아크릴레이트, 트리프로필렌글리콜 다이 (메트)아크릴레이트, 테트라에틸렌글리콜 다이 (메트)아크릴레이트, 다이펜타에리스리를 펜타아크릴레이트, 글리세린 트리 (메트)아크릴레이트, 펜타에리스를 테트라아크릴레이트, 트리아릴아민, 에틸렌글리콜 디글리시딜 에테르 , 프로필렌 글리콜, 글리세린, 또는 에틸렌카보네이트와 같은 다관능성 가교제가 단독 사용 또는 2 이상 병용될 수 있으며, 이에 제한되는 것은 아니다. 이러한 내부 가교제는 상기 단량체 조성물에 대하여 약 0.001 내지 1 중량 %의 농도로 첨가될 수 있다. 즉, 상기 내부 가교제의 농도가 지나치게 낮을 경우 수지의 흡수 속도가 낮아지고 겔 강도가 약해질 수 있어 바람직하지 않다. 반대로, 상기 내부 가교제의 농도가 지나치게 높을 경우 수지의 흡수력이 낮아져 흡수체로서는 바람직하지 않게 될 수 있다. 이 밖에도, 상기 단량체 조성물에는 필요에 따라 증점제, 가소제, 보존 안정제, 산화 방지제 등의 첨가제가 더 포함될 수 있다. 그리고, 이러한 단량체 조성물은 전술한 단량체, 중합 개시제, 내부 가교제 등의 원료 물질이 용매에 용해된 용액의 형태로 준비될 수 있다. 이때 사용 가능한 용매로는 전술한 원료 물질들을 용해시킬 수 있는 것이라면 그 구성의 한정 없이 사용될 수 있다. 예를 들어, 상기 용매로는 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1 , 4- 부탄디을, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로핵사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 를루엔, 자일렌, 부티로락톤, 카르비를, 메틸셀로솔브아세테이트, Ν,Ν-디메틸아세트아미드, 또는 이들의 흔합물 등 사용될 수 있다. 그리고, 상기 단량체 조성물의 중합을 통한 함수겔상 중합체의 형성은 통상적인 중합 방법으로 수행될 수 있으며, 그 공정은 특별히 한정되지 않는다. 비제한적인 예로, 상기 중합 방법은 중합 에너지원의 종류에 따라 크게 열 중합과 광 중합으로 나뒤는데, 상기 열 중합을 진행하는 경우에는 니더 (kneader )와 같은 교반축을 가진 반응기에서 진행될 수 있으며, 광 중합을 진행하는 경우에는 이동 가능한 컨베이어 벨트가 구비된 반웅기에서 진행될 수 있다. 일 예로, 교반축이 구비된 니더와 같은 반응기에 상기 단량체 조성물을 투입하고, 여기에 열풍을 공급하거나 반응기를 가열하여 열 중합함으로써 함수겔상 중합체를 얻을 수 있다. 이때, 반응기에 구비된 교반축의 형태에 따라 반웅기 배출구로 배출되는 함수겔상 중합체는 수 밀리미터 내지 수 센티미터의 입자로 얻어질 수 있다. 구체적으로, 얻어지는 함수겔상 중합체는 주입되는 단량체 조성물의 농도 및 주입속도 등에 따라 다양한 형태로 얻어질 수 있는데, 통상 (중량 평균) 입경이 2 내지 50隱인 함수겔상 중합체가 얻어질 수 있다. , 그리고, 다른 일 예로, 이동 가능한 컨베이어 벨트가 구비된 반웅기에서 상기 단량체 조성물에 대한 광 중합을 진행하는 경우에는 시트 형태의 함수겔상 중합체가 얻어질 수 있다. 이때 상기 시트의 두께는 주입되는 단량체 조성물의 농도 및 주입속도에 따라 달라질 수 있는데, 시트 전체가 고르게 중합될 수 있도록 하면서도 생산 속도 등을 확보하기 위하여, 통상적으로 0.5 내지 5 cm의 두께로 조절되는 것이 바람직하다. 이와 같은 방법으로 형성되는 함수겔상 중합체는 약 40 내지 80 중량 %의 함수율을 나타낼 수 있다. 여기서, 함수율은 함수겔상 중합체의 전체 중량에서 수분이 차지하는 중량으로서, 함수겔상 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값일 수 있다. 구체적으로, 적외선 가열을 통해 중합체의 온도를 을려 건조하는 과정에서 중합체 중의 수분 증발에 따른 무게 감소분을 측정하여 계산된 값으로 정의될 수 있다. 이때, 건조 조건은 상은에서 약 180 °C까지 온도를 상승시킨 뒤 180°C에서 유지하는 방식으로 총 건조 시간은 온도 상승 단계 5분을 포함하여 20분으로 설정될 수 있다. 함수겔상중합체를 건조하는 단계 (단계 2) First, the method for preparing the superabsorbent polymer includes thermally polymerizing or photopolymerizing a monomer composition including a water-soluble ethylenically unsaturated monomer and a polymerization initiator. Polymerizing to form a hydrogel polymer. The water-soluble ethylenically unsaturated monomer included in the monomer composition is as described above. In addition, the monomer composition may include a polymerization initiator generally used in the production of superabsorbent polymers. As a non-limiting example, a thermal polymerization initiator or a photopolymerization initiator may be used as the polymerization initiator, depending on the polymerization method. However, even by the photopolymerization method, since a certain amount of heat is generated by ultraviolet irradiation or the like, and a certain amount of heat is generated in accordance with the progress of the polymerization reaction, which is an exothermic reaction, a thermal polymerization initiator may be further included. Here, as the photoinitiator, for example, benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenylglyoxylate, benzyldimethyl One or more compounds selected from the group consisting of benzyl dimethyl ketal, acyl phosphine and a -aminoketone can be used. As specific examples of the acylphosphine, commercially available lucirin TP0, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide (2,4,6-trimethyl benzoyl one trimethyl phosphine oxide) may be used. . A wider variety of photopolymerization initiators are disclosed on page 115 of Reinhold Schwalm, "UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)", and can be referred to this. As the thermal polymerization initiator, one or more compounds selected from the group consisting of persulfate-based initiators, azo-based initiators, hydrogen peroxide, and ascorbic acid may be used. Specifically, as the persulfate-based initiator, sodium persulfate (Na 2 S 2 0 8 ), potassium persulfate (Potassium persulfate; K 2 S 2 0 8 ), ammonium persulfate (NH 4 ) 2 S 2 0 8 ) For example. In addition, azo (Azo) -based initiators are 2,2-azobis- (2-amidinopropane) dihydrochloride (2,2-azobis (2— amidinopropane) dihydrochloride), 2,2-azobis- (Ν , Ν—dimethylene) isobutyramimidine dihydrochloride (2,2- azobis- (N, N-dimethyl ene) is obut yr am idi ne dihydrochloride), 2- (carbamoyl azo) isobutyronitrile ( 2- (carbamoylazo) isobutylonitril), 2,2- azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride (2, 2- azobis [2- (2-imidazol in-2- yl) propane] dihydrochlor ide), 4,4—azobis -1- (4-cyanovaleric acid) (4,4-320 5- (4 ^ £ 1110 31 ^^; acid)) . More various thermal polymerization initiators are disclosed on page 203 of Odian's book "Principle of Polymerization (Wiley, 1981)", which can be referred to as about 0.001 to 1 weight based on the monomer composition. In other words, when the concentration of the polymerization initiator is too low, the polymerization rate may be slowed down and a large amount of remaining monomer may be extracted in the final product. Too high is not preferable because the polymer chain forming the network is shortened, so that the content of the water-soluble component and the pressure absorption capacity is lowered, such that the physical properties of the resin may be lowered. Crosslinking agent ("internal crosslinking agent") for improving the physical properties of the resin The crosslinking agent may be used to internally crosslink the hydrogel polymer, and may be used separately from a crosslinking agent (“surface crosslinking agent”) for crosslinking the surface of the hydrogel polymer. Any compound may be used as long as it enables the introduction of crosslinks in the polymerization of the unsaturated monomers, and non-limiting examples of the internal crosslinking agent include Ν, Ν'—methylenebisacrylamide, trimethyl propane tri (meth) acrylate, ethylene glycol Di (meth) acrylate, polyethylene glycol (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, butanediol di (meth) acrylate, butylene glycol die (meth Acrylate, diethylene glycol di (meth) acrylate, nucleic acid die di (meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) Polyacrylates such as acrylates, dipentaerythrates, pentaacrylates, glycerin tri (meth) acrylates, pentaeris, tetraacrylates, triarylamines, ethylene glycol diglycidyl ethers, propylene glycols, glycerin, or ethylene carbonates The functional crosslinking agent may be used alone or in combination of two or more. It is not limited thereto. Such internal crosslinking agent may be added at a concentration of about 0.001 to 1% by weight relative to the monomer composition. That is, when the concentration of the internal crosslinking agent is too low, the absorption rate of the resin may be low and the gel strength may be weakened, which is not preferable. On the contrary, when the concentration of the internal crosslinking agent is too high, the absorbing power of the resin may be low, which may be undesirable as an absorber. In addition, the monomer composition may further include additives such as thickeners, plasticizers, storage stabilizers, and antioxidants as necessary. In addition, the monomer composition may be prepared in the form of a solution in which raw materials such as the aforementioned monomer, polymerization initiator, internal crosslinking agent, and the like are dissolved in a solvent. In this case, any solvent that can be used may be used without limitation as long as it can dissolve the above-described raw materials. For example, the solvent includes water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanedi, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether. acetate, Methyl ethyl ketone, acetone, methyl amyl ketone, cyclonucleanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether, toluene, xylene, butyrolactone, carbyl, methyl cellosolve acetate , Ν, Ν-dimethylacetamide, or a combination thereof may be used. In addition, the formation of the hydrogel polymer through the polymerization of the monomer composition may be performed by a conventional polymerization method, and the process is not particularly limited. As a non-limiting example, the polymerization method is largely divided into thermal polymerization and photopolymerization according to the type of polymerization energy source. When the thermal polymerization is performed, the polymerization method may be performed in a reactor having a stirring shaft such as a kneader. When the polymerization proceeds, it can be carried out in a semi-unggi equipped with a movable conveyor belt. For example, the monomer composition may be added to a reactor such as a kneader equipped with a stirring shaft, and hot water may be supplied thereto or thermally polymerized by heating the reactor to obtain a hydrogel polymer. At this time, the hydrous gel phase polymer discharged to the semi-unggi outlet according to the shape of the stirring shaft provided in the reactor may be obtained in the particles of several millimeters to several centimeters. Specifically, the resulting hydrogel polymer may be obtained in various forms depending on the concentration and injection rate of the monomer composition to be injected, and a hydrogel polymer having a particle size of 2 to 50 mm 3 can be obtained. And, as another example, when the photopolymerization of the monomer composition in a semi-unggi equipped with a movable conveyor belt may be a hydrous gel polymer in the form of a sheet. At this time, the thickness of the sheet may vary depending on the concentration and the injection rate of the monomer composition to be injected, in order to ensure the production rate while the entire sheet is evenly polymerized, it is usually adjusted to a thickness of 0.5 to 5 cm desirable. Water-containing gel polymer formed by this method is about 40 to 80 Moisture content in weight percent. Herein, the moisture content is a weight of water in the total weight of the hydrogel polymer, and may be a value obtained by subtracting the weight of the dried polymer from the weight of the hydrogel polymer. Specifically, it may be defined as a value calculated by measuring the weight loss due to evaporation of water in the polymer in the process of drying the temperature of the polymer through infrared heating. At this time, the drying conditions may be set to 20 minutes, including 5 minutes of the temperature rise step in such a way that the temperature is raised to about 180 ° C and then maintained at 180 ° C. Drying the hydrogel polymer (step 2)
한편, 상기 고흡수성 수지의 제조 방법에는 전술한 단계를 통해 형성된 함수겔상 층합체를 건조하는 단계가 포함된다. 여기서, 필요에 따라, 상기 건조 단계의 효율을 높이기 위해, 상기 건조 전에 상기 함수겔상 중합체를 분쇄 (조분쇄)하는 단계를 더 거칠 수 있다. 비제한적인 예로, 상기 조분쇄에 이용 가능한 분쇄기로는 수직형 절단기 (Vertical pulverizer) , 터보 커터 (Turbo cutter) , 터보 글라인더 (Turbo grinder), 회전 절단식 분쇄기 (Rotary cutter mill), 절단식 분쇄기 (Cutter mill), 원판 분쇄기 (Disc mill), 조각 파쇄기 (Shred crusher), 파쇄기 (Crusher ), 초퍼 (chopper), 원판식 절단기 (Disc cutter) 등을 예로 들 수 있다. 이때, 상기 조분쇄는 상기 함수겔상 중합체의 입경이 2 내지 10匪가 되도록 수행될 수 있다. 즉, 건조 효율의 증대를 위하여 상기 함수겔상 중합체는 10 mm 이하의 입자로 분쇄되는 것이 바람직하다. 하지만, 과도한 분쇄시 입자간 응집 현상이 발생할 수 있으므로, 상기 함수겔상 중합체는 2 mm 이상의 입자로 분쇄되는 것이 바람직하다. 그리고, 이와 같이 함수겔상 중합체의 건조 단계 전에 조분쇄 단계를 거치는 경우, 중합체는 함수율이 높은 상태이기 때문에 분쇄기의 표면에 중합체가 들러붙는 현상이 나타날 수 있다. 이러한 현상을 최소화하기 위하여, 상기 조분쇄 단계에는, 필요에 따라, 스팀, 물, 계면활성제, Clay 나 Si l ica 등의 미분 응집 방지제; 과황산염계 개시제, 아조계 개시제, 과산화수소, 및 아스코르빈산와 같은 열중합 개시제, 에폭시계 가교제, 디올 (diol )류 가교제, 2 관능기 또는 3 관능기 이상의 다관능기의 아크릴레이트를 포함하는 가교제, 수산화기를 포함하는 1관능기의 화합물과 같은 가교제가 첨가될 수 있다. 한편, 상기와 같이 조분쇄 혹은 중합 직후의 함수겔상 중합체에 대한 건조는 120 내지 250°C , 또는 150 내지 200°C , 또는 160 내지 180°C의 온도 하에서 수행될 수 있다 (이때, 상기 온도는 건조를 위해 공급되는 열 매체의 온도 또는 건조 공정에서 열 매체 및 중합체를 포함하는 건조 반응기 내부의 온도로 정의될 수 있다 . ) . 즉, 건조 온도가 낮아 건조 시간이 길어질 경우 최종 수지의 물성이 저하될 수 있는데, 이를 방지하기 위하여 건조 온도는 120°C 이상인 것이 바람직하다. 또한, 건조 온도가 필요 이상으로 높을 경우 함수겔상 중합체의 표면만 건조되어 후술할 분쇄 공정에서 미분 발생이 많아질 수 있고, 최종 수지의 물성이 저하될 수 있는데, 이를 방지하기 위하여 건조 온도는 250°C 이하인 것이 바람직하다. 이때, 상기 건조 단계에서의 건조 시간은 특별히 한정되지 않으나, 공정 효율 등을 고려하여 상기 건조 온도 하에서 20 내지 90분으로 조절될 수 있다. 그리고, 상기 건조 단계의 건조 방법 역시 함수겔상 중합체의 건조 공정으로 통상적으로 사용될 수 있는 것이라면 그 구성이 한정 없이 적용 가능하다. 구체적으로, 상기 건조 단계는 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법이 적용될 수 있다. 이와 같은 방법으로 건조된 중합체는 약 0.1 내지 10 중량 %의 함수율을 나타낼 수 있다. 즉, 중합체의 함수율이 0.1 중량 % 미만인 경우 과도한 건조로 인한 제조 원가의 상승 및 가교 증합체의 분해 (degradation)가 일어날 수 있어 유리하지 않다. 그리고, 중합체의 함수율이 10 중량 %를 초과할 경우 후속 공정에서 불량이 발생할 수 있어 바람직하지 않다. 건조된 중합체를분쇄하는 단계 (단계 3) On the other hand, the manufacturing method of the super absorbent polymer includes the step of drying the hydrogel-like laminate formed through the above-described steps. Here, if necessary, in order to increase the efficiency of the drying step, the step of pulverizing (coarse grinding) the hydrogel polymer before the drying may be more rough. As a non-limiting example, the grinders available for the coarse grinding include a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutting type Examples include a cutter mill, a disc mill, a shred crusher, a crusher, a chopper, a disc cutter, and the like. At this time, the coarse grinding may be performed so that the particle size of the hydrogel polymer is 2 to 10 내지. That is, in order to increase the drying efficiency, the hydrous gel polymer is preferably pulverized into particles of 10 mm or less. However, since excessive aggregation may cause intergranular phenomena, the hydrous gel phase polymer is preferably pulverized into particles of 2 mm or more. In this case, when the coarse grinding step is performed before the drying step of the hydrogel polymer, the polymer may stick to the surface of the grinder because the polymer has a high water content. In order to minimize this phenomenon, the coarsely pulverizing step includes, as necessary, steam, water, surfactants, anti-aggregation agents such as clay or Si ica; Thermal sulfate initiators such as persulfate initiators, azo initiators, hydrogen peroxide, and ascorbic acid, epoxy crosslinkers, diol crosslinkers, crosslinkers comprising acrylates of difunctional or trifunctional or more than trifunctional groups, and hydroxyl groups. Crosslinking agents, such as a compound of monofunctional groups, may be added. On the other hand, as described above, the drying of the hydrous gel phase polymer immediately after coarse grinding or polymerization may be performed at a temperature of 120 to 250 ° C., or 150 to 200 ° C., or 160 to 180 ° C. It may be defined as the temperature of the heat medium supplied for drying or the temperature inside the drying reactor comprising the heat medium and the polymer in the drying process. That is, when the drying temperature is low and the drying time is long, the physical properties of the final resin may be lowered. In order to prevent this, the drying temperature is preferably 120 ° C or more. In addition, there is a drying temperature may be a fine powder generated more in the milling process to be described later is dry only the surface of the function, the gel polymer is higher than necessary, the physical properties of the final resin can be lowered, a drying temperature in order to prevent this, is 250 ° It is preferable that it is C or less. At this time, the drying time in the drying step is not particularly limited, but may be adjusted to 20 to 90 minutes under the drying temperature in consideration of process efficiency and the like. And, if the drying method of the drying step can also be commonly used as a drying step of the hydrous gel phase polymer is applicable to the configuration without limitation. Specifically, the drying step may be a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation. The polymer dried in this manner may exhibit a water content of about 0.1 to 10% by weight. In other words, if the water content of the polymer is less than 0.1% by weight, it is not advantageous because an increase in the manufacturing cost and degradation of the crosslinked polymer may occur due to excessive drying. In addition, when the water content of the polymer exceeds 10% by weight, defects may occur in subsequent processes, which is not preferable. Grinding the dried polymer (step 3)
상기 고흡수성 수지의 제조 방법에는 전술한 단계를 통해 건조된 중합체를 분쇄하는 단계가 포함된다. 상기 분쇄 단계는 건조된 중합체의 표면적을 최적화하기 위한 단계로서, 분쇄된 중합체의 입경이 150 내지 850 가 되도록 수행될 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용 가능한 분쇄기로는 핀 밀 (pin mill), 해머 밀 (ha腿 er mill), 스크류 밀 (screw mill), 를 밀 (roll mill), 디스크 밀 (disc mill), 조그 밀 (jog mill) 등을 예로 들 수 있다. 상기와 같이 분쇄되어 제조되는 중합체를 본 발명에서는 '베이스 수지 '라 하며, 이는 이하 설명할 가교 반웅에 의하여 제조되는 '가교 중합체 '와 구분된다. 그리고, 최종 제품화되는 고흡수성 수지의 물성을 관리하기 위하여, 상기 분쇄 단계를 통해 얻은 증합체 분말에서 150 내지 850 의 입경을 갖는 입자를 선택적으로 분급하는 단계가 더 수행될 수 있다. 분쇄된 중합체를표면 가교 반웅시키는 단계 (단계 4)  The manufacturing method of the super absorbent polymer includes the step of pulverizing the polymer dried through the above-described steps. The grinding step may be performed to optimize the surface area of the dried polymer, and may be performed to have a particle diameter of 150 to 850. Mills that can be used to grind to these particle sizes include pin mills, hammer mills, screw mills, roll mills, disc mills and jogs. A jog mill etc. are mentioned, for example. The polymer produced by grinding as described above is referred to as 'base resin' in the present invention, which is distinguished from the 'crosslinked polymer' prepared by crosslinking reaction to be described below. And, in order to manage the physical properties of the superabsorbent polymer to be finalized, the step of selectively classifying particles having a particle size of 150 to 850 in the polymer powder obtained through the grinding step may be further performed. Surface crosslinking reaction of the ground polymer (step 4)
상기 고흡수성 수지의 제조 방법에는 전술한 단계를 통해 분쇄된 중합체를 표면 가교 시키는 단계가 포함된다. 표면 가교는 수지 입자 표면의 가교 결합 밀도를 증가시키는 방법으로서, 가교제 (표면 가교제)를 포함하는 용액과 상기 분쇄된 중합체를 흔합하여 가교 반웅시키는 방법으로 수행될 수 있다. 상기 표면 가교에 의하여, 앞서 제조한 4000 내지 5000 Pa의 겔 강도를 가지는 베이스 수지의 겔 강도가 1.4배 이상 높아질 수 있으며, 이에 따라 용액 투과도 (SFC) , 보수능 및 가압 흡수능이 향상될 수 있다. 상기 베이스 수지의 겔 강도가 4000 Pa 미만인 경우에는 가교 중합체의 용액 투과도 (SFC)가 낮아지는 문제가 있으며, 상기 베이스 수지의 겔 강도가 5000 Pa 초과인 경우에는 원심분리 보수능 (CRC)이 낮아지는 문제가 있다. 여기서, 상기 표면 가교 용액에 포함되는 가교제 (표면 가교게)로는 상기와 같이 표면 가교에 의하여 겔 강도를 1.4배 이상 높일 수 있는 가교제를 포함하며, 구체적으로 (C2-4)알킬렌 카보네이트, 바람직하게는 에틸렌 카보네이트 또는 프로필렌 카보네이트를 사용할 수 있다. 이때, 상기 표면 가교제의 함량은 가교제의 종류나 반응 조건 등에 따라 적절히 조절될 수 있으며, 바람직하게는 상기 분쇄된 중합체 100 중량부에 대하여 0.001 내지 5 중량부로 조절될 수 있다. 상기 표면 가교제의 함량이 지나치게 낮아지면, 표면 가교가 제대로 도입되지 못해, 최종 수지의 물성이 저하될 수 있다. 반대로 상기 표면 가교제가 지나치게 많은 함량으로 사용되면 과도한 표면 가교 반웅으로 인해 수지의 흡수력이 오히려 낮아질 수 있어 바람직하지 않다. 한편, 상기 표면 가교 반응 단계를 수행하기 위해서는, 상기 표면 가교 용액과 분쇄된 중합체를 반웅조에 넣고 흔합하는 방법, 분쇄된 중합체에 표면 가교 용액을 분사하는 방법, 연속적으로 운전되는 믹서에 분쇄된 중합체와 표면 가교 용액을 연속적으로 공급하여 흔합하는 방법 등이 이용될 수 있다. 그리고, 상기 표면 가교 용액이 첨가될 때 추가적으로 물이 첨가될 수 있다. 이처럼 물이 함께 첨가됨으로써 가교제의 보다 고른 분산이 유도될 수 있고, 중합체 분말의 뭉침 현상이 방지되고, 중합체 분말에 대한 표면 가교제의 침투 깊이가 보다 최적화될 수 있다. 이러한 목적 및 효과를 감안하여, 첨가되는 물의 함량은 상기 분쇄된 중합체 100 중량부에 대하여 0.5 내지 10 중량부로 조절될 수 있다. 그리고, 상기 표면 가교 반응 단계는 100 내지 250 °C의 온도 하에서 진행될 수 있으며, 비교적 고온으로 진행되는 상기 건조 및 분쇄 단계 이후에 연속적으로 이루어질 수 있다. 이때. 상기 표면 가교 반웅은 1 내지 120분, 또는 1 내지 100분, 또는 10 내지 60분 동안 진행될 수 있다. 즉, 최소 한도의 표면 가교 반웅을 유도하면서도 과도한 반웅시 중합체 입자가 손상되어 물성이 저하되는 것을 방지하기 위하여 전술한 표면 가교 반응의 조건으로 진행될 수 있다. The manufacturing method of the super absorbent polymer includes the step of surface crosslinking the polymer pulverized through the above-described steps. Surface crosslinking is a method of increasing the crosslinking density of the surface of a resin particle, and the solution comprising a crosslinking agent (surface crosslinking agent) and the pulverized polymer It can be carried out by a method of mixing and crosslinking reaction. By the surface crosslinking, the gel strength of the base resin having a gel strength of 4000 to 5000 Pa may be increased by 1.4 times or more, and thus solution permeability (SFC), water retention, and pressure absorption may be improved. When the gel strength of the base resin is less than 4000 Pa, the solution permeability (SFC) of the crosslinked polymer is lowered. When the gel strength of the base resin is more than 5000 Pa, the centrifugal water retention capacity (CRC) is lowered. there is a problem. Here, (to surface cross-linking), a cross-linking agent contained in the surface cross-linking solution roneun by surface cross-linking as described above comprising a cross-linking agent to increase the gel strength of at least 1.4 times, in particular (C 2 - 4) alkylene carbonates, preferably For example, ethylene carbonate or propylene carbonate can be used. At this time, the content of the surface crosslinking agent may be appropriately adjusted according to the type or reaction conditions of the crosslinking agent, and preferably may be adjusted to 0.001 to 5 parts by weight based on 100 parts by weight of the pulverized polymer. When the content of the surface crosslinking agent is too low, surface crosslinking may not be properly introduced, and the physical properties of the final resin may be reduced. On the contrary, when the surface crosslinking agent is used in an excessively high content, the absorption of the resin may be lowered due to excessive surface crosslinking reaction, which is not preferable. Meanwhile, in order to perform the surface crosslinking reaction step, the surface crosslinking solution and the pulverized polymer are mixed in a semi-permanent mixture, a method of spraying the surface crosslinking solution on the pulverized polymer, a pulverized polymer and The method of supplying and mixing the surface crosslinking solution continuously can be used. Further, when the surface crosslinking solution is added, additional water may be added. Can be. As such water is added together, more even dispersion of the crosslinking agent may be induced, aggregation of the polymer powder may be prevented, and the penetration depth of the surface crosslinking agent into the polymer powder may be further optimized. In view of these objects and effects, the amount of water added may be adjusted to 0.5 to 10 parts by weight based on 100 parts by weight of the pulverized polymer. And, the surface crosslinking reaction step may be performed under a temperature of 100 to 250 ° C, it may be made continuously after the drying and grinding step proceeds to a relatively high temperature. At this time. The surface crosslinking reaction may be performed for 1 to 120 minutes, or 1 to 100 minutes, or 10 to 60 minutes. In other words, in order to induce a minimum surface crosslinking reaction, the polymer particles may be damaged during excessive reaction, thereby preventing the physical properties from deteriorating.
【발명의 효과】  【Effects of the Invention】
본 발명에 따른 고흡수성 수지 및 이의 제조 방법은, 베이스 수지의 표면 가교 정도를.조절하여 우수한 용액 투과성을 가질 뿐만 아니라 높은 보수능 및 가압 흡수능을 나타낼 수 있다는 특징이 있다.  The superabsorbent polymer according to the present invention and a method for preparing the same have the characteristics of having excellent solution permeability by controlling the degree of surface crosslinking of the base resin, and exhibiting high water retention and pressure absorption capability.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 본 발명의 일실시예에 따른 고흡수성 수지의 물성 데이터를 그래프로 나타낸 것이다.  1 is a graph showing physical property data of a super absorbent polymer according to an embodiment of the present invention.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 발명의 이해를 돕기 위하여 바람직한 실시예들이 제시된다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다. 물성 측정 방법  Hereinafter, preferred embodiments are presented to help understand the invention. However, the following examples are only for illustrating the present invention, and the present invention is not limited thereto. Property measurement method
이하의, 제조예, 실시예 및 실험예에서 측정한 겔 강도, 가압 흡수능 (AUP) , 원심분리 보수능 (CRC) , 용액 투과도 (SFC)는 다음과 같은 방법으로 측정하였다. 1) 겔 강도 Gel strength, pressure absorption capacity (AUP), centrifugal water retention capacity (CRC), and solution permeability (SFC) measured in the following Production Examples, Examples, and Experimental Examples were measured by the following methods. 1) gel strength
수지를 체 (30 내지 50 메쉬)로 걸러 0.5 g을 칭량하고, 이를 0.9% NaCl 용액 50 g에 1시간 동안 층분히 팽윤시켰다. 이후 여과지가 덮혀 있는 뷰흐너 깔때기 (Buchner funnel) 위에 팽윤된 겔을 펼쳐 놓고 진공 하에 3분 동안 남아있는 유체들을 제거하였다. 상기 겔은 테스트가 준비될 때까지 밀폐된 용기에 보관하였다. 상기 겔을 레오미터 (rheometer)와 평행판 사이에 놓기 전에 테스팅하는 동안에 입자들 사이의 잔존하는 물이 없도록 여과지로 빨아들였다. 상기 팽윤된 겔 2 g으로 레오미터 (rheometer)로 겔 강도를 측정하였다. 이때, 레오미터 (rheometer)의 측정 조건은, 하기와 같았다. 측정값은 5분 동안 측정한 뒤에 평균값을 취하였다.  The resin was sieved through a sieve (30-50 mesh) and weighed 0.5 g, which was then swollen in 50 g of 0.9% NaCl solution for 1 hour. The swollen gel was then spread over a Buchner funnel covered with filter paper to remove the remaining fluids for 3 minutes under vacuum. The gel was stored in a closed container until the test was ready. The gel was sucked into the filter paper so that there was no remaining water between the particles during testing before placing the gel between the rheometer and the parallel plate. Gel strength was measured with a rheometer with 2 g of the swollen gel. At this time, the measurement conditions of the rheometer were as follows. The measured values were taken for 5 minutes and then averaged.
- Plate Gap Size: 2 誦; Strain amplitude 1%; Osci lat ion frequency 10 readina/ sec; ambient temperature: 22 °C; plate: 25 mm, TA Instruments- AR series Plate Gap Size: 2 mm 3; Strain amplitude 1%; Osci lat ion frequency 10 readina / sec; ambient temperature: 22 ° C; plate: 25 mm, TA Instruments-AR series
2) 가압 흡수능 (AUP) 2) Pressurized Absorption Capacity (AUP)
가압 흡수능은 유럽부직포산업협회 (European Disposables and Nonwovens Association, EDANA) 규격인 EDANA 법 WSP 242.2에 따라 다음과 같은 방법으로 측정하였다. 내경 60瞧의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 상온, 습도 50%의 조건하에서 철망상에 수지 0.9 g(W0)을 균일하게 살포하고, 그 위에 0.7 psi의 하중을 균일하게 더 부여할 수 있는 피스톤 (piston)을 두었다. 상기 피스톤은 외경이 60 隱 보다 약간 작고 원통의 내벽과 틈이 없고, 상하의 움직임이 방해받지 않게 하였다. 이때 상기 장치의 중량 W3(g)을 측정하였다. 직경 150 隱의 페트로 접시의 내측에 직경 90 隱이고 두께 5 隱의 유리 필터를 두고, 0.90 wt% 염화 나트륨으로 구성된 생리 식염수를 유리 필터의 윗면과 동일 레벨이 되도록 투입하였다. 그 위에 직경 90 mm의 여과지 1장을 올려놓았다. 여과지 위에 상기 측정장치를 싣고, 용액이 일정한 하중 하에서 흡수되도록 하였다. 1시간 후 측정 장치를 들어을리고, 그 중량 W4(g)을 각각 측정하였다. 상기 측정 결과를 하기 계산식 2와 같이 AUP를 측정하였다. ' Pressurized absorption capacity was measured by the following method according to the EDANA method WSP 242.2, the European Disposables and Nonwovens Association (EDANA) standard. A stainless steel 400 mesh wire was mounted on the bottom of a 60 mm diameter plastic cylinder. 0.9 g (W 0 ) of the resin was uniformly spread on the wire mesh under conditions of 50% of humidity and room temperature, and a piston was formed thereon which could further uniformly apply a load of 0.7 psi. The piston had an outer diameter of slightly less than 60 mm 3, no gap with the inner wall of the cylinder, and the up and down movement was not disturbed. At this time, the weight W 3 (g) of the apparatus was measured. A 90 mm diameter and 5 mm thick glass filter was placed inside a 150 mm diameter petri dish, and physiological saline consisting of 0.90 wt% sodium chloride was added at the same level as the top surface of the glass filter. One sheet of filter paper having a diameter of 90 mm was placed thereon. The measuring device was placed on filter paper and the solution was allowed to absorb under constant load. After 1 hour, the measuring apparatus was lifted up, and the weight W 4 (g) was measured. The AUP was measured by the measurement result as shown in Equation 2 below. '
[계산식 2]  [Calculation 2]
AUP(g/g) = [W4(g) - W3(g)]/ W0(g) AUP (g / g) = [W 4 (g)-W 3 (g)] / W 0 (g)
3) 원심분리 보수능 (CRC) 3) Centrifugal water retention capacity (CRC)
유럽부직포산업협회 (European Disposables and Nonwovens Association, . EDANA) 규격 EDANA WSP 241.2에 따라 무하중하 흡수배율에 의한 보수능을 측정하였다. 구체적으로, 수지 0.2 g(W0)을 부직포제의 봉투에 균일하게 넣고 밀봉 (seal)한 후에, 상온에서 0.9 %의 생리식염수에 침수시켰다. 30분 후에 봉투를 원심 분리기를 이용하여 250G로 3분간 물기를 뺀 후에 봉투의 질량 (g)을 측정하였다. 또한, 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 Kg)을'측정하였다. 이렇게 얻어진 각 질량으로부터 다음 식에 따라 CRC (g/g)를 산출하였다. Beam SAT by Mucha Heavy absorption ratio was determined according to European Nonwoven Industry Association (European Disposables and Nonwovens Association,. EDANA) standard EDANA WSP 241.2. Specifically, 0.2 g (W 0 ) of the resin was uniformly placed in a bag made of a nonwoven fabric and sealed, and then immersed in 0.9% physiological saline at room temperature. After 30 minutes, the bag was drained at 250 G for 3 minutes using a centrifuge, and then the mass (g) of the bag was measured. In addition, the time of the mass Kg After the same operation without the use of resin), was measured. From each mass thus obtained, CRC (g / g) was calculated according to the following formula.
[계산식 3]  [Calculation 3]
CRC(g/g) = {[W2(g) - W!(g)]/W0(g)} - 1 4) 용액 투과도 (SFC) CRC (g / g) = {[W 2 (g)-W! (G)] / W 0 (g)}-1 4) Solution Permeability (SFC)
Darcy의 법칙 및 정상류법 (예컨대, "Absorbency" , edited by P. K. Chatter jee, Elsevier 1985, pp. 42-43 and Chemical Engineering, Vol . II 3rd edition, J. M. Coulson and J. F. Ri char son, Pergamon Press, 1978, PP. 125-127)을 사용한 방법을 참고하였으며, 미국특허 등록번호 제 5 ,562 ,646호의 컬럼 54 내지 59에 기재된 방법에 따라 측정하였다. 측정시 사용되는 고흡수성 수지의 무게는 0.9 g이었다. 실시예 Darcy's Law and Steady Flow Method (e.g., "Absorbency", edited by PK Chatter jee, Elsevier 1985, pp. 42-43 and Chemical Engineering, Vol. II 3rd edition, JM Coulson and JF Ri char son, Pergamon Press, 1978, Pp. 125-127) and measured according to the methods described in columns 54-59 of US Pat. No. 5,562,646. The weight of the super absorbent polymer used in the measurement was 0.9 g. Example
단계 1) 베이스 수지의 제조  Step 1) Preparation of Base Resin
아크릴산 100 g , 가교제로 폴리에틸렌글리콜디아크릴레이트 (Mw=523) 100 g of acrylic acid, polyethylene glycol diacrylate as crosslinking agent (Mw = 523)
0.5 g , UV 개시제로 디페닐 (2,4,6-트리메틸벤조인) -포스핀 옥사이드 0.033 g , 50% 가성소다 수용액 (NaOH) 83.3 g 및 물 89.8 g을 흔합하여, 단량체 농도가 45.7 중량 %인 모노머 수용액 조성물을 제조하였다. 상기 모노머 수용액 조성물을 연속 이동하는 컨베이어 벨트를 구빈한 중합기의 공급부로 투입한 후, UV 조사 장치로 자외선을 조사하고 (조사량: 20 mW/ciif ) , 2분 동안 UV 중합을 진행하여 함수겔 중합체를 제조하였다. 상기 함수겔 중합체를 절단기로 이송한 후, 0.2 cm로 절단하였다. 이때 절단된 함수겔 중합체의 함수율은 47 중량 %였다. 이어, 상기 함수겔 중합체를 160 °C의 온도로 열풍 건조기에서 30분 동안 건조시키고, 건조된 함수겔 중합체를 핀밀 분쇄기로 분쇄하였다. 이어, 시브 ( s i eve)로 입도 (평균 입경 크기)가 150 μη 내지 850 인 중합체를 분급하여, 베이스 수지를 제조하였다. 상기 제조된 베이스 수지의 CRC는 33~35 g/g이고, 겔 강도는 4500-5000 Pa이었다. 단계 2) 고흡수성 수지의 제조 0.5 g, a mixture of diphenyl (2,4,6-trimethylbenzoin) -phosphine oxide 0.033 g, 50% aqueous sodium hydroxide solution (NaOH) and 89.8 g of water as a UV initiator, monomer concentration is 45.7% by weight A phosphorus monomer aqueous solution composition was prepared. The monomer aqueous solution composition was continuously fed into the supply section of the polymerized polymer conveyor belt, and then irradiated with UV light using a UV irradiation apparatus (irradiation amount: 20 mW / ciif), followed by UV polymerization for 2 minutes to form a hydrogel polymer. Was prepared. The hydrogel polymer was transferred to a cutter and cut into 0.2 cm. At this time, the water content of the hydrogel polymer was 47% by weight. Subsequently, the hydrogel polymer was dried at a temperature of 160 ° C. in a hot air dryer for 30 minutes, and the dried hydrogel polymer was pulverized with a pin mill grinder. Subsequently, sieves were used to classify polymers having a particle size (average particle diameter size) of 150 µη to 850 to prepare a base resin. CRC of the prepared base resin was 33 ~ 35 g / g, the gel strength was 4500-5000 Pa. Step 2) Preparation of Super Absorbent Resin
상기 단계 1에서 제조한 베이스 수지 100 g에 증류수 3 g , 에틸렌 카보네이트 (EC) 0.4 g를 흔합한 용액을 흔합하고, 컨백션 오븐에서 194 °C의 온도로 가교 반응을 진행하면서 10분 간격으로 샘플을 취하여 물성을 측정하여 도 1에 나타내었다 (총 40분) . 표면 가교 반웅 완료 후, 상온으로 냉각하고 건조시킨 다음, 시브 (s i eve)로 입도 (평균 입경 크기)가 150 내지 850 인 중합체를 분급하여, 표면 가교된 고흡수성 수지를 제조하였다. 비교예 1 100 g of the base resin prepared in step 1 was mixed with a solution of 3 g of distilled water and 0.4 g of ethylene carbonate (EC), followed by crosslinking reaction at a temperature of 194 ° C. in a convection oven at intervals of 10 minutes. The physical properties were taken and measured as shown in FIG. 1 (total 40 minutes). After completion of the surface crosslinking reaction, the mixture was cooled to room temperature and dried, and then the sieve size (average particle size) was 150. The polymers from 850 to 850 were classified to prepare surface-crosslinked superabsorbent polymers. Comparative Example 1
상기 실시예 1과 동일한 방법으로 제조하되, 에틸렌 카보네이트 대신 Prepared in the same manner as in Example 1, but instead of ethylene carbonate
1,3-프로판디을 ( 1 , 3-P)을 사용하여 수지를 제조하였다. 상기 실시예 1과 마찬가지로 가교 반응을 진행하면서 10분 간격으로 샘플을 취하여 물성을 측정하여 도 1에 나타내었다 (총 40분) . 비교예 2 Resin was prepared using 1,3-propanedi (1, 3-P). Samples were taken at 10 minute intervals during the crosslinking reaction as in Example 1, and the physical properties thereof were shown in FIG. 1 (total 40 minutes). Comparative Example 2
상기 실시예 1의 단계 2에서, 베이스 수지 100 g에 증류수 3 g, 1 , 4- 부탄디올 0.3 g을 흔합한 용액을 흔합하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 비교예 3  In Step 2 of Example 1, except that a solution containing 3 g of distilled water, 0.3 g of 4-butanediol and 100 g of base resin was mixed, a superabsorbent polymer was prepared in the same manner as in Example 1. It was. Comparative Example 3
상기 실시예 1의 단계 2에서, 베이스 수지 100 g에 증류수 3 g , 에틸렌글리콜 0.3 g을 흔합한 용액을 흔합하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 비교예 4  In Step 2 of Example 1, a superabsorbent polymer was prepared in the same manner as in Example 1, except that 100 g of the base resin was mixed with 3 g of distilled water and 0.3 g of ethylene glycol. Comparative Example 4
폴리에틸렌글리콜디아크릴레이트 (Mw=523)를 0.3 g을 사용하는 것을 제외하고, 상기 실시예 1의 단계 1과 동일한 방법으로 베이스 수지를 제조하였다. 상기 제조된 베이스 수지의 CRC는 43 g/g이고, 겔 강도는 3120 Pa이었다. 상기 제조한 베이스 수지 100 g에 증류수 3 g, 에틸렌 카보네이트 0.4 g를 흔합한 용액을 흔합하고, 컨백션 오븐에서 194°C의 온도로 40분 동안 가교 반웅을 진행하였다. 표면 가교 반웅 완료 후, 상은으로 냉각하고 건조시킨 다음, 시브 (si eve)로 입도 (평균 입경 크기)가 150 urn 내지 850 인 중합체를 분급하여, 표면 가교된 고흡수성 수지를 제조하였다. 비교예 5 A base resin was prepared in the same manner as in Step 1 of Example 1, except that 0.3 g of polyethylene glycol diacrylate (Mw = 523) was used. The CRC of the prepared base resin was 43 g / g, and the gel strength was 3120 Pa. 100 g of the base resin prepared above was mixed with a solution of 3 g of distilled water and 0.4 g of ethylene carbonate, followed by crosslinking reaction at a temperature of 194 ° C. for 40 minutes in a convection oven. After the completion of the surface crosslinking reaction, the phase was cooled with silver and dried, and then sieve was used to classify a polymer having a particle size (average particle diameter size) of 150 urn to 850 to prepare a surface-crosslinked superabsorbent polymer. Comparative Example 5
폴리에틸렌글리콜디아크릴레이트 (Mw=523)를 0. 15 g을 사용하는 것을 제외하고, 상기 실시예 1의 단계 1과 동일한 방법으로 베이스 수지를 제조하였다. 상기 제조된 베이스 수지의 CRC는 52 g/g이고, 겔 강도는 1980 Pa이었다. 상기 제조한 베이스 수지 100 g에 증류수 3 g , 에틸렌 카보네이트 0.4 g를 흔합한 용액을 흔합하고, 컨백션 오븐에서 194°C의 온도로 40분 동안 가교 반응을 진행하였다. 표면 가교 반웅 완료 후, 상온으로 넁각하고 건조시킨 다음, 시브 ( s i eve)로 입도 (평균 입경 크기)가 150 pm 내지 850 인 중합체를 분급하여, 표면 가교된 고흡수성 수지를 제조하였다. 실험예: 물성 비교 결과 A base resin was prepared in the same manner as in Step 1 of Example 1, except that 0.1 g of polyethylene glycol diacrylate (Mw = 523) was used. The CRC of the prepared base resin was 52 g / g, and the gel strength was 1980 Pa. 100 g of the base resin prepared above was mixed with a solution of 3 g of distilled water and 0.4 g of ethylene carbonate, followed by a crosslinking reaction for 40 minutes at a temperature of 194 ° C. in a convection oven. After completion of the surface crosslinking reaction, it was cooled to room temperature and dried, and then sieve was used to classify a polymer having a particle size (average particle diameter size) of 150 pm to 850 to prepare a surface-crosslinked superabsorbent polymer. Experimental Example: Property Comparison
도 1에 나타난 바와 같 o 실시예 (붉은색)와 비교예 (검은색)의 물성 변화 양상이 다르게 나타났다. 특히, 도 1(b)에 나타난 바와 같이, 유사한 겔 강도의 비교예에 비하여 실시예의 용액 투과도가 높게 나타났다. 또한, 도 1( c )에 나타난 바와 같이, 유사한 용액 투과도의 비교예에 비하여 실시예의 원심 분리 보수능이 높게 나타났으며, 실시예의 원심 분리 보수능 및 용액 투과도의 합 (CRC+SFC/10)이 비교예에 비하여 높았다 (도 1(d) ) . 따라서, 본 발명에 따른 고흡수성 수지는 높은 원심 분리 보수능 및 용액 투과도를 동시에 달성할 수 있음을 확인할 수 있었다. 또한, 비교예 2 내지 5의 물성 측정 결과를 하기 표 1에 나타내었으며, 하기 표 1에 나타난 바와 같이, 비교예 2 및 3의 경우 실시예와 표면 가교제가 상이하여 CRC+(SFC/10)의 값이 34에 미치지 못하고 베이스 수지의 겔 강도가 4000 Pa 미만인 비교예 4 및 5의 경우 SFC 값이 에 미치지 못하였다. 【표 1】As shown in FIG. 1, the physical properties of the Example (red) and Comparative Example (black) were different. In particular, as shown in Figure 1 (b), the solution permeability of the Example was higher than the comparative example of similar gel strength. In addition, as shown in Figure 1 (c), the centrifugal water holding capacity of the Example was higher than the comparative example of similar solution permeability, the sum of the centrifugal water holding capacity and the solution permeability of the embodiment (CRC + SFC / 10) It was higher than this comparative example (FIG. 1 (d)). Therefore, it was confirmed that the super absorbent polymer according to the present invention can simultaneously achieve high centrifugal water-retaining ability and solution permeability. In addition, the measurement results of the physical properties of Comparative Examples 2 to 5 are shown in Table 1, and as shown in Table 1 below, in Examples 2 and 3, the values of CRC + (SFC / 10) were different from those of the surface crosslinking agent. In the case of Comparative Examples 4 and 5 where the gel strength of the base resin was less than 34 and the gel strength was less than 4000 Pa, the SFC value was Did not reach Table 1
Figure imgf000023_0001
Figure imgf000023_0001

Claims

【특허청구범위】 .【청구항 1】 산성기를 포함하고 상기 산성기의 적어도 일부가 중화된 수용성 에틸렌계' 불포화 단량체를 중합시킨 베이스 수지를 표면 가교시킨 가교 중합체를 포함하는 고흡수성 수지에 있어서, 상기 베이스 수지의 겔 강도가 4000 내지 5000 Pa이고, 상기 가교 중합체의 겔 강도가 상기 베이스 수지의 겔 강도의 1.4배 이상이고, 상기 가교 중합체의 0.7 psi의 가압 흡수능 (AUP , g/g)이 22 이상이고 상기 가교 중합체의 원심분리 보수능 (CRC , g/g)이 28 이상이고, 상기 가교 중합체의 용액 투과도 (SFC , 10"7 cm3 - sec/g)가 30 이상이고, 상기 가교 중합체의 원심분리 보수능 (CRC) 및 용액 투과도 (src)가 하기 계산식 1을 만족하는 것을 특징으로 하는, 고흡수성 수지 : Claims 1. The superabsorbent polymer comprising a crosslinked polymer comprising an acidic group and surface-crosslinked with a base resin polymerized with a water-soluble ethylene-unsaturated monomer in which at least a part of the acidic group is neutralized. The gel strength of the base resin is 4000 to 5000 Pa, the gel strength of the crosslinked polymer is 1.4 times or more the gel strength of the base resin, and the pressure absorption capacity (AUP, g / g) of 0.7 psi of the crosslinked polymer is 22 or more. And the centrifugal water retention capacity (CRC, g / g) of the crosslinked polymer is 28 or more, the solution permeability (SFC, 10 " 7 cm3-sec / g) of the crosslinked polymer is 30 or more, and the centrifugation of the crosslinked polymer A super absorbent polymer, characterized in that the water holding capacity (CRC) and the solution permeability (src) satisfy the following formula 1.
[계산식 1]  [Calculation 1]
C C + (SFC/10) > 34.  C C + (SFC / 10)> 34.
【청구항 2] [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 수용성 에틸렌계 불포화 단량체는 하기 화학식 1로 표시되는 화합물인 것을 특징으로 하는,  The water-soluble ethylenically unsaturated monomer is characterized in that the compound represented by the formula (1),
고흡수성 수지 :  Super Absorbent Resin:
[화학식 1] 상기 화학식 1에서,  [Formula 1] In Formula 1,
¾는 불포화 결합을포함하는 탄소수 2 내지 5의 알킬 그룹이고, ¾ is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond,
M1는 수소원자, 1가또는 2가 금속, 암모늄기 또는 유기 아민염이다. M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt.
【청구항 3] [Claim 3]
게 1항에 있어서 상기 수용성 에틸렌계 불포화 단량체는 아크릴산, 메타아크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2- 메타아크릴로일에탄술폰산, 2- (메타)아크릴로일프로판술폰산 또는 2- (메타)아크릴아미드 -2-메틸 프로판 술폰산의 음이온성 단량체와 이의 염; (메타)아크릴아미드, N-치환 (메타)아크릴레이트, 2- 히드록시에틸 (메타)아크릴레이트 , 2-히드록시프로필 (메타)아크릴레이트, 메특시폴리에틸렌글리콜 (메타)아크릴레이트 또는 폴리에틸렌 글리콜 (메타)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (Ν,Ν)- 디메틸아미노에틸 (메타)아크릴레이트 또는 (Ν,Ν)- 디메틸아미노프로필 (메타)아크릴아미드의 아미노기 함유 불포화 단량체와 그의 4급화물;로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는, According to claim 1 The water-soluble ethylenically unsaturated monomers are acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryloylethanesulfonic acid, 2- (meth) acryloylpropane Anionic monomers of sulfonic acid or 2- (meth) acrylamide-2-methyl propane sulfonic acid and salts thereof; (Meth) acrylamide, N-substituted (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, mesopolyethylene glycol (meth) acrylate or polyethylene glycol ( Nonionic hydrophilic-containing monomers of meth) acrylate; And an amino group-containing unsaturated monomer of (Ν, Ν) -dimethylaminoethyl (meth) acrylate or (Ν, Ν) -dimethylaminopropyl (meth) acrylamide and its quaternized product; Characterized by including
고흡수성 수지 .  Superabsorbent polymer.
【청구항 4】 [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 표면 가교는 상기 베이스 수지와 (C2-4 알킬렌)카보네이트를 반응시켜 수행되는 것을 특징으로 하는, The surface crosslinking of the base resin, and - characterized in that the carbonate is carried out by reacting (C 2 4 alkylene),
고흡수성 수지 .  Superabsorbent polymer.
【청구항 5】 [Claim 5]
제 4항에 있어서,  The method of claim 4,
상기 (C2-4 알킬렌)카보네이트는 에틸렌 카보네이트 또는 프로필렌 카보네이트인 것을 특징으로 하는, The (C 2 - 4 alkylene) carbonate, characterized in that the ethylene carbonate or propylene carbonate,
고흡수성 수지 .  Superabsorbent polymer.
【청구항 6】 [Claim 6]
제 1항에 있어서,  The method of claim 1,
' 상기 0.7 psi의 가압 흡수능 (AUP)은 하기 계산식 2로 표시되는 것을 특징으로 하는, 고흡수성 수지 : 'Absorption capacity under pressure (AUP) of the 0.7 psi is characterized in that represented by the following formula 2, Super Absorbent Resin:
[계산식 2]  [Calculation 2]
AUP(g/g) = [W4(g) ― W3(g) ] / W0(g) AUP (g / g) = [W 4 (g) ― W 3 (g)] / W 0 (g)
상기 계산식 2에서,  In the formula 2,
W0(g)는 고흡수성 수지의 무게 (g)이고, W 0 (g) is the weight of superabsorbent polymer (g) ,
W3(g)는 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이고, W 3 (g) is the sum of the weight of the superabsorbent polymer and the weight of the device capable of applying a load to the superabsorbent polymer,
W4(g)는 하중 (0.7 ps i ) 하에 1시간 동안 상기 고흡수성 수지에 수분을 공급한 후의 수분이 흡수된 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이다. W 4 (g) is the weight of the water absorbed superabsorbent resin after supplying water to the superabsorbent polymer for 1 hour under a load (0.7 ps i) and the weight of the device capable of applying a load to the superabsorbent polymer. Total.
【청구항 7】 [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 생리 식염수에 대한 원심분리 보수능 (CRC)는 하기 계산식 3에 따라 표시되는 것을 특징으로 하는,  The centrifugal water retention capacity (CRC) for the physiological saline is characterized in that shown in accordance with the following formula 3,
고흡수성 수지:  Super Absorbent Polymer :
[계산식 3]  [Calculation 3]
CRC(g/g) = { [W2(g) - Wi(g) ] /W0(g) } ᅳ 1 CRC (g / g) = {[W 2 (g)-Wi (g)] / W 0 (g)} ᅳ 1
상기 계산식 3에서,  In the above formula 3,
W0(g)는 고흡수성 수지의 무게 (g)이고, W 0 (g) is the weight of superabsorbent polymer (g) ,
Kg)는 고흡수성 수지를 사용하지 않고, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 측정한 장치 무게이고,  Kg) is the weight of the device measured after dehydration at 250G for 3 minutes without using a super absorbent polymer, using a centrifuge,
W2(g)는 상온에 0.9 질량 ¾>의 생리ᅳ 식염수에 고흡수성 수지를 30분 동안 침수한 후에, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 고흡수성 수지를 포함하여 측정한 장치 무게이다. W 2 (g) is the weight of the device including superabsorbent polymer after 30 minutes of superabsorbent polymer was immersed in physiologically saline solution of 0.9 mass ¾> at room temperature for 30 minutes and then dehydrated at 250G for 3 minutes using a centrifuge. to be.
[청구항 8】 [Claim 8]
제 1항에 있어서,  The method of claim 1,
상기 고흡수성 수지는 하기의 단계를 포함하는 제조 방법으로 제조되는 것을 특징으로 하는, 고흡수성 수지 : The super absorbent polymer is characterized in that it is produced by a manufacturing method comprising the following steps, Super Absorbent Resin:
1) 수용성 에틸렌계 불포화 단량체 및 중합 개시제를 포함하는 단량체 조성물을 열 중합 또는 광 중합하여 함수겔상 중합체를 형성하는 단계,  1) thermally polymerizing or photopolymerizing a monomer composition comprising a water-soluble ethylenically unsaturated monomer and a polymerization initiator to form a hydrogel polymer;
2) 상기 함수겔상 중합체를 건조하는 단계,  2) drying the hydrogel polymer;
3) 상기 건조된 중합체를 분쇄하는 단계, 및  3) pulverizing the dried polymer; and
4) 상기 분쇄된 중합체를 표면 가교 반웅하는 단계.  4) surface crosslinking the pulverized polymer;
【청구항 9】 [Claim 9]
제 8항에 있어서,  The method of claim 8,
상기 단계 1과 단계 2 사이에, 상기 함수겔상 중합체를 2 내지 10 醒의 입경으로 분쇄하는 단계를 추가로 포함하는 것을 특징으로 하는,  Between the step 1 and step 2, characterized in that it further comprises the step of grinding the hydrogel polymer to a particle diameter of 2 to 10 mm 3,
고흡수성 수지 .  Superabsorbent polymer.
【청구항 10】 [Claim 10]
제 8항에 있어서,  The method of claim 8,
상기 단계 2의 건조는 120 내지 250°C의 온도 하에서 수행하는 것을 특징으로 하는, The drying of step 2, characterized in that carried out at a temperature of 120 to 250 ° C,
고흡수성 수지 .  Superabsorbent polymer.
【청구항 11】 [Claim 11]
게 8항에 있어서,  According to claim 8,
상기 단계 3의 분쇄는 분쇄된 중합체의 입경이 150 내지 850 가 되도록 수행하는 것을 특징으로 하는,  The pulverization of the step 3 is characterized in that to be carried out so that the particle diameter of the pulverized polymer is 150 to 850,
고흡수성 수지 .  Superabsorbent polymer.
【청구항 12] [Claim 12]
게 8항에 있어서  According to claim 8
상기 단계 4의 표면 가교 반웅은 100 내지 250°C의 온도 하에서 수행되는 것을 특징으 하는, 고흡수성 수지 The surface crosslinking reaction of step 4 is characterized in that it is carried out under a temperature of 100 to 250 ° C, Superabsorbent polymer
PCT/KR2015/011089 2014-12-04 2015-10-20 Super-absorbent resin and method for preparing same WO2016089005A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140172999 2014-12-04
KR10-2014-0172999 2014-12-04
KR1020150145613A KR20160067725A (en) 2014-12-04 2015-10-19 Super absorbent polymer and preparation method thereof
KR10-2015-0145613 2015-10-19

Publications (1)

Publication Number Publication Date
WO2016089005A1 true WO2016089005A1 (en) 2016-06-09

Family

ID=56091918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011089 WO2016089005A1 (en) 2014-12-04 2015-10-20 Super-absorbent resin and method for preparing same

Country Status (1)

Country Link
WO (1) WO2016089005A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161768A (en) * 2003-08-27 2009-07-23 Nippon Shokubai Co Ltd Process for producing surface-treated particulate water-absorbent resin
KR20100014556A (en) * 2007-03-23 2010-02-10 에보닉 스톡하우젠, 인코포레이티드 High permeability superabsorbent polymer compositions
KR20130096152A (en) * 2010-05-07 2013-08-29 에보닉 스톡하우젠, 엘엘씨 Particulate superabsorbent polymer having a capacity increase
WO2014079694A1 (en) * 2012-11-21 2014-05-30 Basf Se A process for producing surface-postcrosslinked water-absorbent polymer particles
KR20140130034A (en) * 2013-04-30 2014-11-07 주식회사 엘지화학 Super absorbent polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161768A (en) * 2003-08-27 2009-07-23 Nippon Shokubai Co Ltd Process for producing surface-treated particulate water-absorbent resin
KR20100014556A (en) * 2007-03-23 2010-02-10 에보닉 스톡하우젠, 인코포레이티드 High permeability superabsorbent polymer compositions
KR20130096152A (en) * 2010-05-07 2013-08-29 에보닉 스톡하우젠, 엘엘씨 Particulate superabsorbent polymer having a capacity increase
WO2014079694A1 (en) * 2012-11-21 2014-05-30 Basf Se A process for producing surface-postcrosslinked water-absorbent polymer particles
KR20140130034A (en) * 2013-04-30 2014-11-07 주식회사 엘지화학 Super absorbent polymer

Similar Documents

Publication Publication Date Title
KR101471982B1 (en) Super absorbent polymer
KR101720309B1 (en) Preparation method of super absorbent polymer
WO2017159903A1 (en) Method for preparing superabsorbent resin
KR101513146B1 (en) Preparation method for super absorbent polymer
WO2014077612A1 (en) Method for preparing super absorbent resin, and super absorbent resin prepared by same
WO2015190878A1 (en) Method for manufacturing high absorbency resin and high absorbency resin manufactured through same
US10988582B2 (en) Super absorbent polymer and method for preparing same
JP7093370B2 (en) High water absorption resin
EP3015479B1 (en) Method for preparing super absorbent resin
JP6277282B2 (en) Method for producing superabsorbent resin
KR20160061743A (en) Super absorbent polymer and preparation method thereof
KR102086050B1 (en) Super absorbent polymer and preparation method thereof
WO2018004161A1 (en) Method for preparing superabsorbent resin, and superabsorbent resin
WO2016111473A1 (en) Method for preparing super absorbent resin, and super absorbent resin prepared thereby
US10829630B2 (en) Super absorbent polymer
KR101631297B1 (en) Super Absorbent Polymer Resin And Method for Preparing The Same
KR101680830B1 (en) Super Absorbent Polymer Resin and the Method for Preparing of the Same
WO2017078228A1 (en) Method for preparing super-absorbent resin and super-absorbent resin prepared thereby
KR102069313B1 (en) Preparation method of super absorbent polymer, and super absorbent polymer
US9109097B2 (en) Method of preparing super absorbent polymer
KR20140036866A (en) Preparation method for super absorbent polymer
WO2016085123A1 (en) Method for preparing superabsorbent polymer and superabsorbent polymer prepared thereby
US10711074B2 (en) Super absorbent polymer and method for preparing same
US20220234027A1 (en) Preparation Method of Super Absorbent Polymer
CN109563275B (en) Superabsorbent polymer and method of making the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865558

Country of ref document: EP

Kind code of ref document: A1

WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865558

Country of ref document: EP

Kind code of ref document: A1