WO2016088950A1 - Condensate water and steam recovery/supply device of trapless steam generation system - Google Patents

Condensate water and steam recovery/supply device of trapless steam generation system Download PDF

Info

Publication number
WO2016088950A1
WO2016088950A1 PCT/KR2015/003564 KR2015003564W WO2016088950A1 WO 2016088950 A1 WO2016088950 A1 WO 2016088950A1 KR 2015003564 W KR2015003564 W KR 2015003564W WO 2016088950 A1 WO2016088950 A1 WO 2016088950A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
condensate
pipe
condensate water
tank
Prior art date
Application number
PCT/KR2015/003564
Other languages
French (fr)
Korean (ko)
Inventor
이지성
Original Assignee
이지성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이지성 filed Critical 이지성
Publication of WO2016088950A1 publication Critical patent/WO2016088950A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/16Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/16Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
    • F22B1/162Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour in combination with a nuclear installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/16Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
    • F22B1/165Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour using heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/16Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
    • F22B1/167Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour using an organic fluid

Definitions

  • the present invention relates to a condensed water and steam recovery / supply device of a steam generating system for recovering and recycling high-temperature, high-pressure condensed water and steam in a steam generating system such as a closed-circuit circulation steam boiler for heating water.
  • Condensate of the furnace trap type steam generating system that recovers and recycles high-temperature and high-pressure condensate and steam by installing a condensate collection tank at a low position without using a trap or discharging high-temperature and high-pressure steam to the outside.
  • a steam recovery / supply apparatus a condensed water and steam recovery / supply apparatus.
  • the high-pressure steam obtained by heating the water is widely used in various fields, such as heating in the room, laundry, sewing factory, kitchen, etc., such steam is usually obtained by a steam boiler.
  • Patent No. 613397 is a longitudinal sectional view showing the main part of Patent No. 613397, which is a conventional apparatus, wherein a steam supply pipe 3 is installed on an upper portion of a boiler 1 and a heat exchanger 4 is connected to an end of the steam supply pipe 3. The other end of the heat exchanger is connected to a condensate return pipe (5) for steam 22 to exchange heat in the heat exchanger and to recover condensate generated as a result of the condensate return pipe (5). It is installed.
  • condensate collection tank (8) having a float switch (7) is connected to the end of the condensate collection pipe (5) and on the connecting pipe (9) connected to one side of the condensate collection tank (8) in the condensate collection tank (8)
  • a condensate recovery pump 12 that operates by driving the motor 10 and pumps the condensate in the condensate collection tank 8 to the replenishment tank 11 is installed.
  • the check pipe 14 is installed on the connecting pipe 9 to prevent the condensate 13 in the condensate collection tank 11 from flowing back to the condensate collection tank 8.
  • one side of the boiler (1) has a supplemental water tank (11) for supplying the condensate 13 recovered through the connecting pipe (9) to the inside of the boiler (1) without water head difference on one side of the boiler (1) It is installed side by side and one side of the boiler 1 is provided with an automatic water level sensor 15 for detecting the water level of the condensate 13 located inside the boiler.
  • the compressed air supply pipe 16 is connected to an upper portion of the supplemental water tank 11 installed at one side of the boiler 1 without having a head difference from the boiler 1, and the supplemental water tank 11 is connected to the other end of the compressed air supply pipe.
  • the condensed water in the supplemental water tank 11 is supplied to another boiler (not shown) on the condensed water supply pipe 20 that supplies the condensed water 13 in the supplemental water tank 11 to the inside of the boiler 1. It is further provided with a preliminary valve 21 for branching.
  • the high-pressure compressed air (higher than the steam pressure in the boiler) generated by driving the compressor 19 is located in the upper part of the make-up water tank 11.
  • the operation of the compressor (19) is detected by the automatic pressure control switch 17 installed on the top of the replenishment water tank 11, the pressure in the replenishment water tank (11) is boiler 1
  • the compressor 19 is temporarily stopped.
  • the automatic pressure control switch 17 is replenished. Since the compressor 19 is restarted until it senses that the pressure in the water tank 11 is higher than the steam pressure in the boiler 1, the pressure in the make-up water tank 11 is always higher than the steam pressure in the boiler 1. State is maintained.
  • Patent Document 0001 Korean Registered Patent Publication No. 10-0613397 (2006. 08. 09)
  • the high temperature and high pressure steam is discharged to the atmosphere to lower the pressure in the condensate collection tank to recover condensate generated in the heat exchanger to the condensate collection tank.
  • the low water level of the condensate collection tank should be set higher than necessary so as not to cause cavitation damage to the pump, so the condensate collection tank is designed to be higher than necessary.
  • the present invention has been devised to solve such a problem, and the structure of the condensate generated in the heat exchanger by pumping the condensate recovered in the condensate collection tank while maintaining the same internal pressure of the entire pipe by dramatically improving the structure
  • the purpose is to recover the high-temperature, high-pressure condensate and steam to the condensate collection tank side for recycling without removing the wet steam.
  • Another object of the present invention is to prevent the cavitation damage to the pump even when the condensate in the condensate collection tank to the low water level, so that the height of the condensate collection tank does not have to be designed high.
  • the condensate collection tank is installed to recover the condensate and steam generated by heat exchange in the heat exchanger through the condensate return pipe by gravity, and is installed inside the condensate collection tank A condensate suction pipe having a plurality of through holes formed at a bottom thereof, a pump installed at an outlet side of the condensate suction pipe to pump condensate in the condensate collection tank, and installed in the condensate collection tank to control the driving of the pump according to the condensate level A water level sensing rod, a condensate pipe installed at an output end of the pump to transfer the pumped condensed water to a supplement water tank or a boiler, and a steam pipe provided to be provided with an upper portion of the condensate collection tank and provided with a first check valve; It is installed on the discharge path of the condensed water and the steam discharged to the steam vent pipe A steam tank, a second check valve installed on the condensate
  • Condensed water of the furnace trap type steam generating system comprising a steam regeneration valve configured to be opened when the steam is compressed by the condensate by the driving of the pump and to pass the compressed steam, and to close the flow path when the condensed water rises. Steam recovery / supply is provided.
  • the present invention has several advantages over the conventional apparatus as follows.
  • condensate can be recovered without installing an expensive trap for each heat exchanger, thereby reducing the facility cost by about 40%.
  • FIG. 2 is a block diagram showing an embodiment of the condensate and steam recovery / supply apparatus of the conventional steam generating system
  • 3A and 3B are longitudinal cross-sectional views showing a first embodiment of the present invention.
  • Figure 3a is a state filled with condensate in the condensate collection tank
  • Figure 3b is a state of pumping the condensate in the condensate collection tank driven by the pump
  • 4A and 4B are longitudinal cross-sectional views showing a second embodiment of the present invention.
  • Figure 4a is a state diagram filled with condensate in the condensate collection tank
  • Figure 4b is a state of pumping the condensate in the condensate collection tank driven by the pump
  • 5A and 5B are longitudinal cross-sectional views showing a third embodiment of the present invention.
  • Figure 5a is a state filled with condensate in the condensate collection tank
  • Figure 5b is a state of pumping the condensate in the condensate collection tank by the drive of the pump
  • 5C is a state in which the condensate in the steam tank is drained to the condensate collection tank by stopping the operation of the pump
  • 6a to 6c are longitudinal cross-sectional views showing the configuration of the steam regeneration valve
  • Figure 7 is a block diagram showing an embodiment of the condensate and steam recovery / supply apparatus of the steam generating system of the present invention
  • FIGS. 6A and 6B are longitudinal cross-sectional views showing a first embodiment of the present invention
  • FIGS. 6A and 6B are longitudinal cross-sectional views showing the configuration of a steam regeneration valve, and the present invention is generated by heat exchange in the heat exchanger 4.
  • the condensate collection tank 31 is installed so that the condensate 13 and the steam 22 are recovered through the condensate return pipe 30 by gravity, and a plurality of through holes 32a are formed in the bottom of the condensate collection tank.
  • a condensate suction pipe 32 is provided, and a pump 33 for pumping the condensate 13 in the condensate collection tank 31 is installed at the outlet side of the condensate suction pipe 32.
  • a level sensor rod 34 is installed in the condensate collection tank 31 to control the driving of the pump 33 according to the level of the condensate 13, and the output terminal of the pump 33 is pumped condensate ( 13 is connected to the condensate pipe (35) for transferring the refill water tank (11) or the boiler (1) side and the steam pipe (37) provided with a first check valve 36 on the upper portion of the condensate collection tank (31) Is installed, and a steam tank 38 for collecting the steam 22 discharged to the steam pipe 37 is installed on the discharge path of the condensate 13.
  • the first check valve 36 opens the flow path of the steam pipe 37 so that the steam 22 recovered into the condensate collection tank 31 is the steam pipe ( 37 is filled in the steam tank 38 through.
  • a second check valve 39 is installed on the condensate pipe 35 to prevent backflow of the condensate 13, and a steam regeneration valve 40 is provided in the steam recovery pipe 40 which is installed to be in contact with the steam tank 38. 41 is provided so that the steam 22 is not transferred to the steam recovery pipe 40 when the pump 33 is stopped, and the steam 22 is driven by the condensate 13 by the pump 33.
  • the pressure is compressed, the pressure is opened to allow the compressed steam to pass therethrough, and the flow path is closed by the condensate 13.
  • the steam regeneration valve 41 is provided with a housing 42 having an inner diameter larger than the inner diameter of the steam recovery pipe 40, and a valve disc 43 having a cutting surface 43 a formed on the outer circumferential surface thereof so as to be lifted and lowered. And a coil spring 44 installed above the valve disc and having an elastic modulus greater than the pressure of steam 22 compressed by the condensate 13 and less than the pumping pressure of the condensate.
  • a steam tank 38 is installed on the condensate pipe 35.
  • the steam tank 38 is a condensate collection. It is provided in the upper part of the tank 31.
  • the steam generating system can be compacted.
  • the second and third embodiments are different from each other in the second embodiment of the steam vent pipe 37 provided with a first check valve 36 in the steam tank 38 installed above the condensate collection tank 31.
  • the steam tank 38 is directly connected to the steam tank 38 to the condensate pipe 35, but in the third embodiment, the condensate collection tank 31 and the steam tank 38 are
  • the vent pipe 47 is provided so as to pass through, and the vent pipe 47 is configured such that the valve 48 is elastically installed by the spring 49.
  • the condensed water 13 inside the steam tank 38 is drained through the condensed water pipe 35 to the condensed water collection tank 31.
  • the condensate collection tank 31 is quickly drained through the vent pipe 47.
  • the air discharge pipe 50 is connected so that the upper portion of the pump 33 and the condensate pipe 35 pass.
  • the pump 33 is filled when the condensate 13 is filled in the condensate collection tank 31 even if the operator does not manually discharge the gas existing inside the pump 33 while the pump 33 is stopped.
  • the pump 33 is driven by allowing the gas to be discharged to the outside through the air discharge pipe 50 while the condensed water is filled to have the same head.
  • a known discharge valve 51 for discharging the cold steam to the outside on the condensate pipe 35 is further installed.
  • the condensate 13 generated by heat exchange in the heat exchanger 4 is condensate collection tank 31 through the condensate return pipe 30 by gravity. ) Will be gathered to the side.
  • the pump 33 is controlled by the control unit (not shown). Since the driving is pumped of the condensate (13).
  • valve disk 43 of the steam regeneration valve 41 closes the inlet of the steam recovery pipe 40 by the coil spring 44 as shown in FIG. 6C.
  • the condensate 13 in the condensate collection tank 31 is pumped by the driving of the pump 33 as described above, the condensate 13 is condensate pipe 35 through a plurality of through holes 32a formed in the bottom surface of the condensate suction pipe 32. As it is discharged into the lower portion of the steam tank 38 to be filled, the steam 22 filled in the upper portion of the steam tank 38 is compressed.
  • the condensate 13 is driven into the steam tank 38 by the driving of the pump 33 to compress the steam 22 and discharge the steam 22 to the steam recovery pipe 40.
  • the valve disc 43 closes the flow path of the steam recovery pipe 40 by the pressure of the coil spring 44 and is compressed by the condensate 13 so that the pressure is increased.
  • the valve disk 43 acts on the bottom surface and rises while compressing the coil spring 44.
  • the elastic modulus of the coil spring 44 is only about 1/5 compressed by the pressure of the steam 22, the compressed steam 22 ) Is recovered and recycled to the steam recovery pipe 40 through the cut surface 43a formed on the outer circumferential surface of the valve disc 43.
  • the steam 22 filled in the steam tank 38 is compressed, and then sent to the steam recovery pipe 40.
  • the second check valve 39 installed at the outlet of the condensate pipe 35 opens the flow path by the pumping pressure of the condensate 13, thereby transferring the condensed water to the make-up tank 11. It is possible to send directly or to the inside of the boiler 1 as needed.
  • the condensate suction pipe 32 having a plurality of through holes 32a formed on the bottom thereof is connected to the condensate collection tank 31.
  • 31 is located in the interior of the condensate (13a) pumping a large amount of condensate 13 through the exit of the condensate collection tank 31 is close to the bottom of the condensate collection tank 31 so that the gas flows through the through (32a) This is because it fundamentally prevents the phenomenon.
  • the condensate collection tank 31 pumps the condensate 13 and the water level sensing rod 34 detects the low water level
  • the driving of the pump 33 is temporarily stopped, and the driving of the pump 33 is temporarily stopped.
  • the first check valve 36 opens the flow path of the steam pipe 37 and the second check valve 39 ) Is the condensate pipe 35 and the valve disc 43 to close the flow path of the steam recovery pipe 40, respectively.
  • the condensate 13 in the steam tank 38 is drained to the condensate collection tank 31 through the condensate pipe 35, but in the third embodiment, the condensate 13 is pumped. Since the valve 48 which closed the flow path of the vent pipe 47 while compressing the spring 49 by the pressure acted upon is opened, the flow path of the vent pipe 47 is opened by the restoring force of the spring 49 as shown in FIG. 5C. The condensed water 13 in the steam tank 38 is quickly drained to the condensate collection tank 31.
  • the condensed water 13 and steam 22 generated in the heat exchanger 4 is condensed water recovery pipe 30
  • the gas present in the pump 33 is discharged through the air discharge pipe (50) as the condensate collection tank 31 is filled with the condensate (13) continues to condensate It is possible to recover the steam as well as pumping of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

The present invention relates to a condensate water and steam recovery/supply device of a trapless steam generation system, the device recovering and recycling high-temperature and high-pressure condensate water and steam in a steam generation system such as a closed loop circulation-type steam boiler for heating water, and the objective of the present invention is to recover and recycle the high-temperature and high-pressure condensate water and steam by providing a condensate water collection tank at a low position, without using a trap or discharging the high-temperature and high-pressure steam to the outside. To this end, the present invention comprises: the condensate water collection tank (31) provided so as to recover the condensate water (13) and the steam (22), which are generated from a heat exchanger (4) by heat exchange, through a condensate water recovery pipe (30) by means of gravity; a condensate water suction pipe (32) provided inside the condensate water collection tank and having a plurality of through-holes (32a) at the bottom thereof; a pump (33) provided at an outlet side of the condensate water suction pipe so as to pump the condensate water (13) inside the condensate water collection tank (31); a water level sensing rod (34) provided inside the condensate water collection tank so as to control the driving of the pump (22) according to the level of the condensate water; a condensate water pipe (35) provided at an output end of the pump so as to transfer the pumped condensate water to a make-up water tank or a boiler; a steam-passing pipe (37) provided to communicate with the upper part of the condensate water collection tank (31), and equipped with a first check valve (36); a steam tank (38) provided at a discharge path of the condensate water (13) and at which the steam (22) discharged through the steam-passing pipe (37) is recovered; a second check valve (39) provided at the condensate water pipe (35) so as to prevent condensate water backflow; and a steam regeneration valve (41) provided at a steam recovery pipe (40), which is provided to communicate with the steam tank (38), so as to prevent the steam from being transferred to the steam recovery pipe (40) when the driving of the pump (33) stops, opened so as to allow the compressed steam to pass therethrough when the steam (22) is compressed by the condensate water (13) through the driving of the pump (33), and closing a flow path when the valve is raised by the condensate water.

Description

노 트랩 타입 스팀발생시스템의 응축수 및 스팀 회수/공급장치Condensate and steam recovery / supply device for furnace trap type steam generation system
본 발명은 물을 가열하는 폐쇄회로 순환식 스팀보일러 등의 스팀발생시스템에서 고온, 고압의 응축수 및 스팀을 회수하여 재활용하는 스팀발생시스템의 응축수 및 스팀 회수/공급장치에 관한 것으로써, 좀더 구체적으로는 트랩을 사용하거나, 고온, 고압의 스팀을 외부로 배출하지 않고도 낮은 위치에 응축수 모음탱크를 설치하여 고온, 고압의 응축수 및 스팀을 회수하였다가 재활용할 수 있도록 하는 노 트랩 타입 스팀발생시스템의 응축수 및 스팀 회수/공급장치에 관한 것이다.The present invention relates to a condensed water and steam recovery / supply device of a steam generating system for recovering and recycling high-temperature, high-pressure condensed water and steam in a steam generating system such as a closed-circuit circulation steam boiler for heating water. Condensate of the furnace trap type steam generating system that recovers and recycles high-temperature and high-pressure condensate and steam by installing a condensate collection tank at a low position without using a trap or discharging high-temperature and high-pressure steam to the outside. And a steam recovery / supply apparatus.
일반적으로, 물을 가열함에 따라 얻어지는 고압의 스팀은 실내의 난방, 세탁소, 봉제공장, 취사장 등 여러 분야에서 널리 사용되고 있는데, 이러한 스팀은 통상 스팀보일러에 의해 얻어진다.In general, the high-pressure steam obtained by heating the water is widely used in various fields, such as heating in the room, laundry, sewing factory, kitchen, etc., such steam is usually obtained by a steam boiler.
도 1은 종래의 장치인 특허 제613397호의 요부를 나타낸 종단면도로써, 보일러(1)의 상부에 스팀 공급관(3)이 설치되어 있고 상기 스팀 공급관(3)의 끝단에는 열 교환기(4)가 연결되어 있으며 상기 열 교환기의 타단에는 스팀(22)이 열 교환기에서 열 교환을 이루고 남에 따라 발생되는 응축수를 회수하는 응축수 회수관(5)이 연결되어 있는데, 이때 응축수 회수관 상에는 트랩(6)이 설치되어 있다.1 is a longitudinal sectional view showing the main part of Patent No. 613397, which is a conventional apparatus, wherein a steam supply pipe 3 is installed on an upper portion of a boiler 1 and a heat exchanger 4 is connected to an end of the steam supply pipe 3. The other end of the heat exchanger is connected to a condensate return pipe (5) for steam 22 to exchange heat in the heat exchanger and to recover condensate generated as a result of the condensate return pipe (5). It is installed.
그리고 응축수 회수관(5)의 끝단에 플로트 스위치(7)가 구비된 응축수 모음탱크(8)가 연결되어 있고 상기 응축수 모음탱크의 일 측에 연결된 연결관(9)상에는 응축수 모음탱크(8) 내의 수위가 설정 수위 이상임을 플로트 스위치(7)가 감지함에 따라 모터(10)의 구동으로 동작하여 응축수 모음탱크(8) 내의 응축수를 보충수 탱크(11) 측으로 압송하는 응축수 회수펌프(12)가 설치되어 있는데, 상기 연결관(9) 상에는 응축수 모음탱크(11) 내의 응축수(13)가 응축수 모음탱크(8) 측으로 역류되는 현상을 방지하는 체크밸브(14)가 설치되어 있다.And condensate collection tank (8) having a float switch (7) is connected to the end of the condensate collection pipe (5) and on the connecting pipe (9) connected to one side of the condensate collection tank (8) in the condensate collection tank (8) As the float switch 7 detects that the water level is above the set level, a condensate recovery pump 12 that operates by driving the motor 10 and pumps the condensate in the condensate collection tank 8 to the replenishment tank 11 is installed. The check pipe 14 is installed on the connecting pipe 9 to prevent the condensate 13 in the condensate collection tank 11 from flowing back to the condensate collection tank 8.
또한, 보일러(1)의 일 측에는 연결관(9)을 통해 회수된 응축수(13)를 보일러(1)의 내부로 공급하는 보충수 탱크(11)가 보일러(1)의 일 측에 수두차이 없이 나란히 설치되어 있고 보일러(1)의 일 측에는 보일러의 내부에 위치하는 응축수(13)의 수위를 감지하는 자동수위 감지센서(15)가 설치되어 있다.In addition, one side of the boiler (1) has a supplemental water tank (11) for supplying the condensate 13 recovered through the connecting pipe (9) to the inside of the boiler (1) without water head difference on one side of the boiler (1) It is installed side by side and one side of the boiler 1 is provided with an automatic water level sensor 15 for detecting the water level of the condensate 13 located inside the boiler.
상기 보일러(1)와 수두차이 없이 보일러(1)의 일 측에 설치된 보충수 탱크(11)의 상부에 압축공기 공급관(16)이 연결되어 있고 상기 압축공기 공급관의 다른 일단에는 보충수 탱크(11)에 설치된 자동압력 조절스위치(17)가 설정 압력 이하임을 감지에 따라 구동하여 압축공기(18)를 발생시키는 콤프레셔(19)가 설치되어 있다.The compressed air supply pipe 16 is connected to an upper portion of the supplemental water tank 11 installed at one side of the boiler 1 without having a head difference from the boiler 1, and the supplemental water tank 11 is connected to the other end of the compressed air supply pipe. Compressor 19 for generating compressed air 18 by driving in accordance with the detection that the automatic pressure control switch 17 installed in the lower than the set pressure is installed.
또한, 보충수 탱크(11) 내의 응축수(13)를 보일러(1)의 내부로 공급하는 응축수 공급관(20)상에 보충수 탱크(11) 내의 응축수를 또 다른 보일러(도시는 생략함) 측으로 공급되도록 분기하기 위한 예비밸브(21)가 더 구비되어 있다.Further, the condensed water in the supplemental water tank 11 is supplied to another boiler (not shown) on the condensed water supply pipe 20 that supplies the condensed water 13 in the supplemental water tank 11 to the inside of the boiler 1. It is further provided with a preliminary valve 21 for branching.
따라서 보일러(1)의 가동으로 스팀(2)이 발생되면 발생된 스팀(22)은 스팀 공급관(3)을 따라 열 교환기(4)로 공급되어 난방을 실시함과 함께 일부의 스팀은 별도의 스팀관을 통해 공급된다.Therefore, when steam (2) is generated by the operation of the boiler (1), the generated steam 22 is supplied to the heat exchanger (4) along the steam supply pipe (3) for heating and some of the steam is a separate steam It is supplied through a pipe.
이러한 과정에서 열 교환으로 스팀이 응축수(13)로 변하면 응축수 회수관(5)을 통해 응축수 모음탱크(8) 측으로 회수되는 과정에서 트랩(6)에서 습증기가 제거된다.In this process, when the steam is converted into the condensate 13 by heat exchange, wet steam is removed from the trap 6 in the process of being recovered to the condensate collection tank 8 through the condensate return pipe 5.
상기 응축수(13)가 응축수 모음탱크(8) 내에 채워져 플로트 스위치(7)가 설정된 수위 이상임을 감지하면 모터(10)에 전원이 자동으로 인가되어 응축수 회수용 펌프(12)가 가동되므로 응축수 모음탱크 내의 응축수(13)가 연결관(9)을 통해 보충수 탱크(11) 측으로 회수된다.When the condensate 13 is filled in the condensate collection tank 8 and detects that the float switch 7 is above the set level, power is automatically applied to the motor 10 to operate the condensate collection pump 12 so that the condensate collection tank is operated. The condensate 13 in the inside is recovered to the make-up water tank 11 through the connecting pipe 9.
이와 같이 응축수(13)가 보충수 탱크(11)로 회수되고 나면 보충수 탱크(11)의 상부에는 콤프레셔(19)의 구동으로 생성된 고압의 압축공기(보일러내의 스팀압력보다 높은)가 압축공기 공급관(16)을 통해 작용되고 있는데, 상기 콤프레셔(19)의 구동은 보충수 탱크(11)의 상부에 설치된 자동압력 조절스위치(17)가 감지하여 보충수 탱크(11) 내의 압력이 보일러(1) 내의 스팀압력보다 높으면 콤프레셔(19)의 구동을 일시적으로 중단시켰다가 응축수의 공급으로 보충수 탱크(11) 내의 압력이 보일러(1) 내의 스팀압력보다 낮아지면 자동압력 조절스위치(17)가 보충수 탱크(11) 내의 압력이 보일러(1) 내의 스팀압력보다 높음을 감지할 때까지 콤프레셔(19)를 재구동하게 되므로 보충수 탱크(11) 내의 압력은 항상 보일러(1) 내의 스팀압력보다 높은 상태를 유지하게 된다.After the condensate 13 is recovered to the make-up water tank 11, the high-pressure compressed air (higher than the steam pressure in the boiler) generated by driving the compressor 19 is located in the upper part of the make-up water tank 11. Is acting through the supply pipe 16, the operation of the compressor (19) is detected by the automatic pressure control switch 17 installed on the top of the replenishment water tank 11, the pressure in the replenishment water tank (11) is boiler 1 When the pressure in the tank is higher than the steam pressure in the tank), the compressor 19 is temporarily stopped. When the pressure in the make-up tank 11 is lower than the steam pressure in the boiler 1 by the supply of condensate water, the automatic pressure control switch 17 is replenished. Since the compressor 19 is restarted until it senses that the pressure in the water tank 11 is higher than the steam pressure in the boiler 1, the pressure in the make-up water tank 11 is always higher than the steam pressure in the boiler 1. State is maintained.
이러한 상태에서 보일러(1)의 계속되는 가동으로 보일러에 있던 응축수(13)의 수위가 설정된 수위보다 낮아짐을 자동수위 감지센서(15)가 감지하면 응축수 공급관(20) 상에 설치된 전자밸브(23)가 개방되므로 보충수 탱크(11) 내의 응축수가 보일러(1)의 내부로 충수되는데, 이때 보충수 탱크(11)의 수위가 일 측에 위치된 보일러(1)의 수위보다 낮은 상태를 유지하더라도 보충수 탱크(11)의 상부에는 보일러(1) 내의 스팀압력보다 높은 압축공기의 압력이 작용되고 있으므로 보충수 탱크(11) 내의 응축수가 응축수 공급관(20)을 통해 보일러(1) 내에 충수된다.In this state, when the automatic water level sensor 15 detects that the water level of the condensate water 13 in the boiler is lower than the set water level due to the continuous operation of the boiler 1, the solenoid valve 23 installed on the condensate water supply pipe 20 is Since it is open, the condensed water in the replenishment water tank 11 is replenished into the inside of the boiler 1, wherein the replenishment water is maintained even though the level of the replenishment water tank 11 is lower than the level of the boiler 1 located on one side. Since the pressure of the compressed air higher than the steam pressure in the boiler 1 is applied to the upper portion of the tank 11, the condensed water in the replenishment water tank 11 is filled in the boiler 1 through the condensed water supply pipe 20.
[선행기술문헌][Preceding technical literature]
(특허문헌 0001) 대한민국 등록특허공보 등록번호 10-0613397호(2006. 08. 09)(Patent Document 0001) Korean Registered Patent Publication No. 10-0613397 (2006. 08. 09)
그러나 이러한 종래의 장치는 응축수에 포함되어 있던 습증기를 제거하지 않으면 응축수 배관(5) 내의 압력이 높아 응축수 모음탱크(8) 측으로 응축수(13)가 중력에 의해 회수되지 않으므로 도 2와 같이 각 응축수 배관(5) 상에 응축수(13)에 포함되어 있던 습증기를 제거하는 고가의 트랩(24)을 반드시 설치하고 있다.However, such a conventional apparatus has high pressure in the condensate pipe 5 unless the wet steam contained in the condensate is removed, so that the condensate 13 is not recovered by gravity toward the condensate collection tank 8, and thus, each condensate pipe as shown in FIG. 2. The expensive trap 24 which removes the wet steam contained in the condensed water 13 on (5) is necessarily provided.
그러나, 고가의 트랩을 설치하더라도 고온, 고압의 응축수 및 스팀 또는 응축수에 포함된 불순물에 의해 트랩을 구성하는 부품이 부식되어 고온, 고압의 응축수 및 스팀이 외부로 빠져나가게 되므로 고가의 트랩을 자주 교체하여야만 되는 사용상의 문제점이 대두되었다.However, even if expensive traps are installed, high-temperature, high-pressure condensate and steam or parts contained in the condensate will corrode the components that make up the trap, causing high-temperature and high-pressure condensate and steam to escape to the outside, so that expensive traps are frequently replaced. Problems of use that must be brought up.
또한, 트랩을 사용하지 않는 노 트랩(No trap) 타입에서는 고온, 고압의 스팀을 대기 중으로 배출하여 응축수 모음탱크 내의 압력을 떨어뜨려 열 교환기에서 발생된 응축수를 응축수 모음탱크 측으로 회수하고 있다.In addition, in the trap type that does not use a trap, the high temperature and high pressure steam is discharged to the atmosphere to lower the pressure in the condensate collection tank to recover condensate generated in the heat exchanger to the condensate collection tank.
그러나 이러한 시스템은 응축수 모음탱크의 압력을 강제로 떨어뜨림에 따라 열 교환기에서 발생된 응축수가 응축수 모음탱크 측으로 원활히 회수되지만, 스팀 공급관 또는 응축수 배관의 결함으로 이들 내부의 압력이 떨어지면 응축수 모음탱크 내부 압력도 함께 떨어지게 되므로 정상적인 압력에서는 응축수가 응축수 모음탱크에서 응축수로 존재하지만, 응축수 모음탱크의 압력이 설정 압력 이하로 떨어지면 응축수 모음탱크의 내부에 있던 응축수가 기화되기 시작하여 수위가 급격히 줄어들게 된다. 즉, 응축수가 물로서 존재하는 온도까지 기화되어 줄어들게 된다.However, such a system smoothly recovers the condensate generated from the heat exchanger to the condensate collection tank side by forcibly dropping the pressure of the condensate collection tank.However, if the pressure inside the condensate collection tank drops due to a defect in the steam supply pipe or condensate piping, the pressure inside the condensate collection tank Since condensate is present as condensate in the condensate collection tank at normal pressure, when the pressure of the condensate collection tank falls below the set pressure, the condensate inside the condensate collection tank starts to evaporate and the water level decreases rapidly. In other words, the condensate is evaporated to a temperature present as water and reduced.
이와 같이 응축수 모음탱크 내의 압력이 설정된 압력 이하로 떨어져 응축수 수위가 줄어든 상태에서 펌프가 구동하여 응축수를 펌핑하면 펌프에 캐비테이션 손상(cavitation damage)이 발생되어 펌프의 모터가 소손되는 치명적인 결과를 초래하게 되었다.In this way, when the pressure in the condensate collection tank falls below the set pressure and the condensate level is reduced, pumping condensate causes cavitation damage to the pump, resulting in a fatal result of burning the motor of the pump. .
따라서 응축수 모음탱크의 저수위를 펌프에 캐비테이션 손상이 발생되지 않도록 필요 이상으로 높게 설정하여야 되므로 응축수 모음탱크를 필요 이상으로 높게 설계하고 있는 실정이다.Therefore, the low water level of the condensate collection tank should be set higher than necessary so as not to cause cavitation damage to the pump, so the condensate collection tank is designed to be higher than necessary.
본 발명은 이와 같은 문제점을 해결하기 위한 안출한 것으로써, 그 구조를 획기적으로 개선하여 전체 배관의 내부 압력을 동일하게 유지하면서 응축수 모음탱크로 회수된 응축수를 펌핑함에 따라 열 교환기에서 발생된 응축수 내의 습증기를 제거하지 않고도 고온, 고압의 응축수 및 스팀을 응축수 모음탱크 측으로 회수하여 재활용할 수 있도록 하는데 그 목적이 있다.The present invention has been devised to solve such a problem, and the structure of the condensate generated in the heat exchanger by pumping the condensate recovered in the condensate collection tank while maintaining the same internal pressure of the entire pipe by dramatically improving the structure The purpose is to recover the high-temperature, high-pressure condensate and steam to the condensate collection tank side for recycling without removing the wet steam.
본 발명의 다른 목적은 응축수 모음탱크 내의 응축수를 저수위까지 펌핑하고도 펌프에 캐비테이션 손상이 발생되지 않도록 함으로써, 응축수 모음탱크의 높이를 높게 설계하지 않아도 되도록 하는 데 있다.Another object of the present invention is to prevent the cavitation damage to the pump even when the condensate in the condensate collection tank to the low water level, so that the height of the condensate collection tank does not have to be designed high.
상기 목적을 달성하기 위한 본 발명의 형태에 따르면, 열 교환기에서 열 교환으로 생성된 응축수 및 스팀을 중력에 의해 응축수 회수관을 통해 회수되게 설치된 응축수 모음탱크와, 상기 응축수 모음탱크의 내부에 설치되며 저면에 복수 개의 통공이 형성된 응축수 흡입관과, 상기 응축수 흡입관의 출구 측에 설치되어 응축수 모음탱크 내의 응축수를 펌핑하는 펌프와, 상기 응축수 모음탱크의 내부에 설치되어 응축수의 수위에 따라 펌프의 구동을 제어하는 수위감지봉과, 상기 펌프의 출력단에 설치되어 펌핑되는 응축수를 보충수 탱크 또는 보일러 측으로 이송시키는 응축수 배관과, 상기 응축수 모음탱크의 상부와 통하여지게 설치되며 제1 체크밸브가 구비된 스팀통기관과, 상기 응축수의 배출경로 상에 설치되며 스팀통기관으로 배출된 스팀이 회수되는 스팀탱크와, 상기 응축수 배관 상에 설치되어 응축수의 역류를 방지하는 제2 체크밸브와, 상기 스팀탱크와 통하여지게 설치된 스팀회수관에 설치되어 펌프의 구동 중단 시에는 스팀이 스팀회수관으로 이송되지 않도록 하고 펌프의 구동으로 응축수에 의해 스팀이 압축되면 개방되어 압축된 스팀이 통과되도록 하다가 응축수에 의해 상승하면 유로를 폐쇄하는 스팀재생밸브로 구성된 것을 특징으로 하는 노 트랩 타입 스팀발생시스템의 응축수 및 스팀 회수/공급장치가 제공된다.According to an aspect of the present invention for achieving the above object, the condensate collection tank is installed to recover the condensate and steam generated by heat exchange in the heat exchanger through the condensate return pipe by gravity, and is installed inside the condensate collection tank A condensate suction pipe having a plurality of through holes formed at a bottom thereof, a pump installed at an outlet side of the condensate suction pipe to pump condensate in the condensate collection tank, and installed in the condensate collection tank to control the driving of the pump according to the condensate level A water level sensing rod, a condensate pipe installed at an output end of the pump to transfer the pumped condensed water to a supplement water tank or a boiler, and a steam pipe provided to be provided with an upper portion of the condensate collection tank and provided with a first check valve; It is installed on the discharge path of the condensed water and the steam discharged to the steam vent pipe A steam tank, a second check valve installed on the condensate pipe to prevent backflow of condensate, and a steam return pipe installed through the steam tank to transfer steam to the steam recovery pipe when the pump stops driving. Condensed water of the furnace trap type steam generating system comprising a steam regeneration valve configured to be opened when the steam is compressed by the condensate by the driving of the pump and to pass the compressed steam, and to close the flow path when the condensed water rises. Steam recovery / supply is provided.
본 발명은 종래의 장치에 비하여 다음과 같은 여러 가지 장점을 갖는다.The present invention has several advantages over the conventional apparatus as follows.
첫째, 각 열 교환기마다 고가의 트랩을 설치하지 않아도 응축수의 회수가 가능하므로 시설비를 종래에 비하여 약 40% 절감할 수 있게 된다.First, condensate can be recovered without installing an expensive trap for each heat exchanger, thereby reducing the facility cost by about 40%.
둘째, 열 교환으로 발생되는 응축수 및 스팀을 100% 회수하여 재사용하게 되므로 열 효율이 향상되고, 이에 따라 연료비를 절감하게 된다.Second, since 100% of condensed water and steam generated by heat exchange are recovered and reused, thermal efficiency is improved, thereby reducing fuel costs.
셋째, 응축수를 펌핑하는 과정에서 펌프에 캐비테이션 손상이 발생되지 않으므로 고가의 펌프 수명을 극대화하게 된다.Third, cavitation damage does not occur in the pump during the condensate pumping process, thereby maximizing expensive pump life.
넷째, 응축수 모음탱크에 회수된 응축수를 최대한 많이 펌핑할 수 있어 열 교환기와의 수두차를 최대한 낮게 설치할 수 있게 된다.Fourth, it is possible to pump as much condensate recovered in the condensate collection tank as much as possible to install the water head difference with the heat exchanger as low as possible.
도 1은 종래의 장치인 특허 제613397호의 요부를 나타낸 종단면도1 is a longitudinal sectional view showing the main part of patent 613397, which is a conventional apparatus;
도 2는 종래의 스팀발생시스템의 응축수 및 스팀 회수/공급장치의 일 실시예를 나타낸 구성도Figure 2 is a block diagram showing an embodiment of the condensate and steam recovery / supply apparatus of the conventional steam generating system
도 3a 및 도 3b는 본 발명의 제1 실시예를 나타낸 종단면도로써, 3A and 3B are longitudinal cross-sectional views showing a first embodiment of the present invention;
도 3a는 응축수 모음탱크 내에 응축수가 채워진 상태도Figure 3a is a state filled with condensate in the condensate collection tank
도 3b는 펌프의 구동으로 응축수 모음탱크 내의 응축수를 펌핑한 상태도Figure 3b is a state of pumping the condensate in the condensate collection tank driven by the pump
도 4a 및 도 4b는 본 발명의 제2 실시예를 나타낸 종단면도로써, 4A and 4B are longitudinal cross-sectional views showing a second embodiment of the present invention;
도 4a는 응축수 모음탱크 내에 응축수가 채워진 상태도Figure 4a is a state diagram filled with condensate in the condensate collection tank
도 4b는 펌프의 구동으로 응축수 모음탱크 내의 응축수를 펌핑한 상태도Figure 4b is a state of pumping the condensate in the condensate collection tank driven by the pump
도 5a 및 도 5b는 본 발명의 제3 실시예를 나타낸 종단면도로써, 5A and 5B are longitudinal cross-sectional views showing a third embodiment of the present invention;
도 5a는 응축수 모음탱크 내에 응축수가 채워진 상태도Figure 5a is a state filled with condensate in the condensate collection tank
도 5b는 펌프의 구동으로 응축수 모음탱크 내의 응축수를 펌핑한 상태도Figure 5b is a state of pumping the condensate in the condensate collection tank by the drive of the pump
도 5c는 펌프의 구동 중단으로 스팀탱크 내의 응축수가 응축수 모음탱크로 드레인되는 상태도5C is a state in which the condensate in the steam tank is drained to the condensate collection tank by stopping the operation of the pump
도 6a 내지 도 6c는 스팀재생밸브의 구성을 나타낸 종단면도6a to 6c are longitudinal cross-sectional views showing the configuration of the steam regeneration valve
도 7은 본 발명의 스팀발생시스템의 응축수 및 스팀 회수/공급장치의 일 실시예를 나타낸 구성도Figure 7 is a block diagram showing an embodiment of the condensate and steam recovery / supply apparatus of the steam generating system of the present invention
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면들은 개략적이고 축적에 맞게 도시되지 않았다는 것을 일러둔다. 도면에 있는 부분들의 상대적인 치수 및 비율은 도면에서의 명확성 및 편의를 위해 그 크기에 있어 과장되거나 감소되어 도시되었으며 임의의 치수는 단지 예시적인 것이지 한정적인 것은 아니다. 그리고 둘 이상의 도면에 나타나는 동일한 구조물, 요소 또는 부품에는 동일한 참조 부호가 유사한 특징을 나타내기 위해 사용된다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. It is noted that the figures are schematic and not drawn to scale. The relative dimensions and ratios of the parts in the figures have been exaggerated or reduced in size for clarity and convenience in the figures and any dimensions are merely exemplary and not limiting. And the same reference numerals are used to refer to similar features in the same structure, element or part shown in more than one figure.
*도 3a 및 도 3b는 본 발명의 제1 실시예를 나타낸 종단면도이고 도 6a 및 도 6b는 스팀재생밸브의 구성을 나타낸 종단면도로써, 본 발명은 열 교환기(4)에서 열 교환으로 생성된 응축수(13) 및 스팀(22)이 중력에 의해 응축수 회수관(30)을 통해 회수되게 응축수 모음탱크(31)가 설치되어 있고 상기 응축수 모음탱크의 내부에는 저면에 복수 개의 통공(32a)이 형성된 응축수 흡입관(32)이 설치되어 있으며 상기 응축수 흡입관(32)의 출구 측에는 응축수 모음탱크(31) 내의 응축수(13)를 펌핑하는 펌프(33)가 설치되어 있다.3A and 3B are longitudinal cross-sectional views showing a first embodiment of the present invention, and FIGS. 6A and 6B are longitudinal cross-sectional views showing the configuration of a steam regeneration valve, and the present invention is generated by heat exchange in the heat exchanger 4. The condensate collection tank 31 is installed so that the condensate 13 and the steam 22 are recovered through the condensate return pipe 30 by gravity, and a plurality of through holes 32a are formed in the bottom of the condensate collection tank. A condensate suction pipe 32 is provided, and a pump 33 for pumping the condensate 13 in the condensate collection tank 31 is installed at the outlet side of the condensate suction pipe 32.
상기 응축수 흡입관(32)의 저면에 복수 개의 통공(32a)이 형성된 이유는 펌프(33)의 구동으로 응축수 모음탱크(31)에 모인 응축수(13)를 저수위까지 펌핑하더라도 소용돌이현상으로 응축수 모음탱크(31)에 있던 기체(스팀)의 일부가 펌프(33) 측으로 유입되지 않도록 함으로써, 펌프(33)에 캐비테이션 손상이 발생되지 않도록 하기 위한 것이다.The reason why the plurality of through holes 32a are formed on the bottom surface of the condensate suction pipe 32 is that although the condensate 13 collected in the condensate collection tank 31 is pumped to the low water level by the driving of the pump 33, the condensate collection tank is swirled. This is to prevent the cavitation damage from occurring in the pump 33 by preventing a part of the gas (steam) in 31 from flowing into the pump 33 side.
그리고 상기 응축수 모음탱크(31)의 내부에 응축수(13)의 수위에 따라 펌프(33)의 구동을 제어하는 수위감지봉(34)이 설치되어 있고 상기 펌프(33)의 출력단에는 펌핑되는 응축수(13)를 보충수 탱크(11) 또는 보일러(1) 측으로 이송시키는 응축수 배관(35)이 연결되어 있으며 상기 응축수 모음탱크(31)의 상부에는 제1 체크밸브(36)가 구비된 스팀통기관(37)이 설치되어 있고 상기 응축수(13)의 배출경로 상에는 스팀통기관(37)으로 배출된 스팀(22)이 회수되는 스팀탱크(38)가 설치되어 있다.In addition, a level sensor rod 34 is installed in the condensate collection tank 31 to control the driving of the pump 33 according to the level of the condensate 13, and the output terminal of the pump 33 is pumped condensate ( 13 is connected to the condensate pipe (35) for transferring the refill water tank (11) or the boiler (1) side and the steam pipe (37) provided with a first check valve 36 on the upper portion of the condensate collection tank (31) Is installed, and a steam tank 38 for collecting the steam 22 discharged to the steam pipe 37 is installed on the discharge path of the condensate 13.
따라서 펌프(33)의 구동이 중단된 상태에서는 제1 체크밸브(36)가 스팀통기관(37)의 유로를 개방하고 있어 응축수 모음탱크(31)의 내부로 회수된 스팀(22)이 스팀통기관(37)을 통해 스팀탱크(38)의 내부에 채워지게 된다.Therefore, when the driving of the pump 33 is stopped, the first check valve 36 opens the flow path of the steam pipe 37 so that the steam 22 recovered into the condensate collection tank 31 is the steam pipe ( 37 is filled in the steam tank 38 through.
한편, 상기 응축수 배관(35) 상에 응축수(13)의 역류를 방지하는 제2 체크밸브(39)가 설치되어 있고 상기 스팀탱크(38)와 통하여지게 설치된 스팀회수관(40)에는 스팀재생밸브(41)가 설치되어 있어 펌프(33)의 구동 중단 시에는 스팀(22)이 스팀회수관(40)으로 이송되지 않도록 하고, 펌프(33)의 구동으로 응축수(13)에 의해 스팀(22)이 압축되면 그 압력으로 개방되어 압축된 스팀이 통과되도록 하다가 응축수(13)에 의해 유로를 폐쇄하도록 구성되어 있다.Meanwhile, a second check valve 39 is installed on the condensate pipe 35 to prevent backflow of the condensate 13, and a steam regeneration valve 40 is provided in the steam recovery pipe 40 which is installed to be in contact with the steam tank 38. 41 is provided so that the steam 22 is not transferred to the steam recovery pipe 40 when the pump 33 is stopped, and the steam 22 is driven by the condensate 13 by the pump 33. When the pressure is compressed, the pressure is opened to allow the compressed steam to pass therethrough, and the flow path is closed by the condensate 13.
상기 스팀재생밸브(41)는 상기 스팀회수관(40)의 내경보다 큰 내경을 갖는 하우징(42)과, 상기 하우징 내에 승, 하강 가능하게 설치되며 외주면에는 절단면(43a)이 형성된 밸브 디스크(43)와, 상기 밸브 디스크의 상부에 설치되며 응축수(13)에 의해 압축되는 스팀(22)의 압력보다 크고, 응축수의 펌핑압력보다는 작은 탄성계수를 갖는 코일스프링(44)으로 구성되어 있다.The steam regeneration valve 41 is provided with a housing 42 having an inner diameter larger than the inner diameter of the steam recovery pipe 40, and a valve disc 43 having a cutting surface 43 a formed on the outer circumferential surface thereof so as to be lifted and lowered. And a coil spring 44 installed above the valve disc and having an elastic modulus greater than the pressure of steam 22 compressed by the condensate 13 and less than the pumping pressure of the condensate.
본 발명의 제1 실시예로 나타낸 도 3a에서는 스팀탱크(38)가 응축수 배관(35) 상에 설치되어 있고 제2, 3 실시예로 나타낸 도 4a 및 도 5a에서는 스팀탱크(38)가 응축수 모음탱크(31)의 상부에 설치되어 있다.In FIG. 3A of the first embodiment of the present invention, a steam tank 38 is installed on the condensate pipe 35. In FIGS. 4A and 5A of the second and third embodiments, the steam tank 38 is a condensate collection. It is provided in the upper part of the tank 31.
따라서 제1 실시예보다는 제2, 3 실시예의 설치면적이 줄어들게 되므로 스팀발생시스템을 콤팩트(compact)화할 수 있는 장점을 갖는다.Therefore, since the installation area of the second and third embodiments is reduced rather than the first embodiment, the steam generating system can be compacted.
또한, 제2, 3 실시예가 다른 점은 제2 실시예에서는 상기 응축수 모음탱크(31)의 상부에 설치되는 스팀탱크(38)의 내부에 제1 체크밸브(36)가 구비된 스팀 통기관(37)을 위치시키고 상기 스팀탱크(38)에는 응축수 배관(35)을 직접 연결하여 스팀탱크(38)가 독립된 형태를 취하고 있으나, 제3 실시예에서는 응축수 모음탱크(31)와 스팀탱크(38)가 통하여지도록 통기관(47)이 설치되어 있고 상기 통기관(47)에는 밸브(48)가 스프링(49)으로 탄력 설치되도록 구성되어 있다는 점이다.In addition, the second and third embodiments are different from each other in the second embodiment of the steam vent pipe 37 provided with a first check valve 36 in the steam tank 38 installed above the condensate collection tank 31. ) And the steam tank 38 is directly connected to the steam tank 38 to the condensate pipe 35, but in the third embodiment, the condensate collection tank 31 and the steam tank 38 are The vent pipe 47 is provided so as to pass through, and the vent pipe 47 is configured such that the valve 48 is elastically installed by the spring 49.
이에 따라, 펌프(33)의 구동이 중단되면 제2 실시예서는 스팀탱크(38)의 내부에 있던 응축수(13)가 응축수배관(35)을 통해 응축수 모음탱크(31)로 드레인(drain)되지만, 제3 실시예에서는 통기관(47)을 통해 신속하게 응축수 모음탱크(31)로 드레인되는 이점을 갖는다.Accordingly, when the driving of the pump 33 is stopped, in the second embodiment, the condensed water 13 inside the steam tank 38 is drained through the condensed water pipe 35 to the condensed water collection tank 31. In the third embodiment, the condensate collection tank 31 is quickly drained through the vent pipe 47.
본 발명의 각 실시예에서는 상기 응축수 모음탱크(31)의 상부와 응축수 회수관(30)이 통하여지게 압력 배출관(52)을 연결하는 것이 보다 바람직하다.In each embodiment of the present invention, it is more preferable to connect the pressure discharge pipe 52 so that the upper part of the condensate collection tank 31 and the condensate recovery pipe 30 pass through.
이는, 응축수 모음탱크(31) 측으로 응축수(13) 및 스팀(22)이 회수되어 차이더라도 응축수 모음탱크(31)의 상부 압력이 낮아지도록 함으로써, 열 교환으로 발생된 응축수(13)가 중력에 의해 보다 신속하게 응축수 모음탱크(31) 측으로 회수되도록 하기 위한 것이다.This causes the upper pressure of the condensate collection tank 31 to be lowered even if the condensate 13 and the steam 22 are recovered to the condensate collection tank 31, thereby reducing the condensate 13 generated by heat exchange by gravity. It is to be more quickly recovered to the condensate collection tank 31.
또한, 상기 펌프(33)의 상부와 응축수 배관(35)이 통하여지게 공기 배출관(50)을 연결하는 것이 보다 바람직하다.In addition, it is more preferable that the air discharge pipe 50 is connected so that the upper portion of the pump 33 and the condensate pipe 35 pass.
이는, 펌프(33)의 구동을 중단한 상태에서 작업자가 펌프(33)의 내부에 존재하는 기체를 수작업으로 일일이 배출시키지 않아도 응축수 모음탱크(31) 내에 응축수(13)가 채워질 때 펌프(33)의 내부에도 동일 수두를 갖도록 응축수가 채워지면서 공기 배출관(50)을 통해 기체가 외부로 배출되도록 함으로써, 펌프(33)의 구동 시 펌프(33)에 캐비테이션 손상이 발생되지 않도록 하기 위한 것이다.This is because the pump 33 is filled when the condensate 13 is filled in the condensate collection tank 31 even if the operator does not manually discharge the gas existing inside the pump 33 while the pump 33 is stopped. In order to prevent the cavitation damage to the pump 33 when the pump 33 is driven by allowing the gas to be discharged to the outside through the air discharge pipe 50 while the condensed water is filled to have the same head.
한편, 상기 응축수 배관(35) 상에 차가운 스팀을 외부로 배출하는 공지의 배출밸브(51)가 더 설치되어 있다.On the other hand, a known discharge valve 51 for discharging the cold steam to the outside on the condensate pipe 35 is further installed.
이는, 배출밸브(51)의 내부에 설치된 바이메탈(도시는 생략함)에 의해 스팀(22)을 회수하여 스팀회수관(40)으로 이송시키는 과정에서 차가운 스팀이 함께 이송되지 않도록 함으로써, 스팀의 회수효율을 증대시킬 수 있도록 하기 위한 것이다.This is to recover the steam by preventing the cold steam is transported together in the process of recovering the steam 22 by the bimetal (not shown) installed in the discharge valve 51 to the steam recovery pipe 40. This is to increase the efficiency.
이와 같이 구성된 본 발명의 작용을 설명하면 다음과 같다.Referring to the operation of the present invention configured as described above is as follows.
먼저, 본 발명에서는 트랩을 사용하던 종래의 스팀발생시스템과는 달리 도 7에 나타낸 바와 같이 트랩을 사용하지 않았다.First, in the present invention, unlike the conventional steam generation system that used the trap, as shown in Figure 7 did not use a trap.
본 발명의 스팀발생시스템에서 펌프(33)의 구동이 중단된 상태에서는 열 교환기(4)에서 열 교환으로 발생된 응축수(13)가 중력에 의해 응축수 회수관(30)을 통해 응축수 모음탱크(31) 측으로 모이게 된다.In the steam generating system of the present invention, when the driving of the pump 33 is stopped, the condensate 13 generated by heat exchange in the heat exchanger 4 is condensate collection tank 31 through the condensate return pipe 30 by gravity. ) Will be gathered to the side.
이때, 응축수(13)와 함께 일부 스팀(22)이 응축수 모음탱크(31)의 내부로 유입되어 응축수(13)의 상부에 채워지게 되는데, 상기 스팀통기관(37) 상에 설치된 제1 체크밸브(36)는 개방되어 있고 응축수 배관(35)에 설치된 제2 체크밸브(39)는 폐쇄되어 있어 응축수 모음탱크(31)로 유입된 스팀(22)은 스팀통기관(37)을 통해 스팀탱크(38)의 내부에 차이게 된다.At this time, part of the steam 22 together with the condensate 13 is introduced into the condensate collection tank 31 to be filled in the upper portion of the condensate 13, the first check valve installed on the steam pipe (37) 36 is open and the second check valve 39 installed in the condensate pipe 35 is closed so that the steam 22 introduced into the condensate collection tank 31 is steam tank 38 through the steam pipe 37. The difference is inside of.
상기 응축수 모음탱크(31)의 내부로 응축수(13)가 차임에 따라 일부 스팀(22)은 압력 배출관(52)을 통해 응축수 회수관(30) 측으로 빠져나가게 되므로 응축수(13)의 흐름이 원활히 이루어지게 된다. 즉, 열 교환기(4)에서 발생된 응축수(13)가 중력에 의해 응축수 모음탱크(31) 측으로 원활하게 모이게 된다.As the condensate 13 is charged into the condensate collection tank 31, some steam 22 exits to the condensate return pipe 30 through the pressure discharge pipe 52, so that the condensate 13 flows smoothly. You lose. That is, the condensate 13 generated in the heat exchanger 4 is smoothly gathered toward the condensate collection tank 31 by gravity.
상기 열 교환기(4)에서 발생된 응축수(13)가 응축수 모음탱크(31) 내에 채워져 수위감지봉(34)이 고수위를 감지하면 콘트롤부(도시는 생략함)의 제어에 의해 펌프(33)가 구동하게 되므로 응축수(13)의 펌핑이 이루어지게 된다.When the condensate 13 generated in the heat exchanger 4 is filled in the condensate collection tank 31 and the water level sensing rod 34 senses the high water level, the pump 33 is controlled by the control unit (not shown). Since the driving is pumped of the condensate (13).
이때, 스팀재생밸브(41)의 밸브 디스크(43)는 도 6c와 같이 코일스프링(44)에 의해 스팀회수관(40)의 입구를 폐쇄하고 있다.At this time, the valve disk 43 of the steam regeneration valve 41 closes the inlet of the steam recovery pipe 40 by the coil spring 44 as shown in FIG. 6C.
이와 같이 펌프(33)의 구동으로 응축수 모음탱크(31) 내의 응축수(13)를 펌핑하면 응축수(13)는 응축수 흡입관(32)의 저면에 형성된 복수 개의 통공(32a)을 통해 응축수 배관(35)으로 배출되어 스팀탱크(38)의 하부에 유입되어 채워지면서 스팀탱크(38)의 상부에 채워진 스팀(22)을 압축하게 된다.When the condensate 13 in the condensate collection tank 31 is pumped by the driving of the pump 33 as described above, the condensate 13 is condensate pipe 35 through a plurality of through holes 32a formed in the bottom surface of the condensate suction pipe 32. As it is discharged into the lower portion of the steam tank 38 to be filled, the steam 22 filled in the upper portion of the steam tank 38 is compressed.
계속되는 응축수(13)의 펌핑으로 스팀탱크(38)의 상부에 채워진 스팀(22)이 응축수(13)에 의해 압축되어 압력이 상승되면 스팀회수관(40)에 설치된 밸브 디스크(43)가 도 6a와 같이 스팀(22)의 압력에 의해 상승하여 유로를 개방하게 되므로 압축된 스팀(22)이 스팀회수관(40)으로 회수되어 재활용하게 된다.When the steam 22 filled in the upper portion of the steam tank 38 is compressed by the condensate 13 due to the continuous pumping of the condensate 13, the valve disc 43 installed in the steam recovery pipe 40 is shown in FIG. 6A. As it rises by the pressure of the steam 22 to open the flow path, the compressed steam 22 is recovered and recycled to the steam recovery pipe 40.
즉, 펌프(33)의 구동으로 응축수(13)가 스팀탱크(38)의 내부로 차 올라 스팀(22)을 압축하여 스팀회수관(40)으로 토출시키는 과정에서 스팀(22)이 설정된 압력 이하에서는 밸브 디스크(43)가 코일스프링(44)의 압력에 의해 스팀회수관(40)의 유로를 폐쇄하고 있다가 응축수(13)에 의해 압축되어 압력이 상승되면 그 압력이 밸브 디스크(43)의 저면에 작용되어 밸브 디스크(43)가 코일스프링(44)을 압축시키면서 상승하지만, 코일스프링(44)의 탄성계수가 스팀(22)의 압력에 의해 약 1/5정도만 압축되므로 압축된 스팀(22)이 밸브 디스크(43)의 외주면에 형성된 절단면(43a)을 통해 스팀회수관(40)으로 회수되어 재활용하게 된다.That is, the condensate 13 is driven into the steam tank 38 by the driving of the pump 33 to compress the steam 22 and discharge the steam 22 to the steam recovery pipe 40. In this case, the valve disc 43 closes the flow path of the steam recovery pipe 40 by the pressure of the coil spring 44 and is compressed by the condensate 13 so that the pressure is increased. The valve disk 43 acts on the bottom surface and rises while compressing the coil spring 44. However, since the elastic modulus of the coil spring 44 is only about 1/5 compressed by the pressure of the steam 22, the compressed steam 22 ) Is recovered and recycled to the steam recovery pipe 40 through the cut surface 43a formed on the outer circumferential surface of the valve disc 43.
그러나 펌프(33)의 계속되는 펌핑으로 응축수(13)가 스팀탱크(38)의 내부에 가득 채워지도록 응축수(13)가 상승하면 밸브 디스크(43)가 도 6b와 같이 밀어 올려 스팀회수관(40)의 출구를 폐쇄하게 되므로 응축수(13)가 스팀회수관(40)으로 빠져나가는 현상을 방지하게 된다.However, when the condensate 13 rises so that the condensate 13 fills the inside of the steam tank 38 due to the continuous pumping of the pump 33, the valve disc 43 is pushed up as shown in FIG. Since the outlet of the condensate (13) is prevented from coming out of the steam recovery pipe (40).
이때, 스팀통기관(37)에 설치된 제1 체크밸브(36)는 스팀(22) 및 응축수(13)의 압력에 의해 스팀통기관(37)의 유로를 폐쇄하게 되므로 응축수 모음탱크(31)에 있는 스팀(22)의 이송이 일시적으로 중단된다.At this time, since the first check valve 36 installed in the steam pipe 37 closes the flow path of the steam pipe 37 by the pressure of the steam 22 and the condensate 13, the steam in the condensate collection tank 31 The transfer of 22 is temporarily stopped.
전술한 바와 같이 펌프(33)의 구동으로 응축수 모음탱크(31)에 모인 응축수(13)를 펌핑하여 스팀탱크(38) 내에 채워진 스팀(22)을 압축한 다음 스팀회수관(40)으로 보내고 나면 도 3b, 도 4b, 도 5b와 같이 응축수 배관(35)의 출구에 설치된 제2 체크밸브(39)가 응축수(13)의 펌핑압력에 의해 유로를 개방시키게 되므로 응축수를 보충수 탱크(11)로 보내거나, 필요에 따라서는 보일러(1)의 내부로 직접 보낼 수 있게 된다.As described above, after pumping the condensate 13 collected in the condensate collection tank 31 by the driving of the pump 33, the steam 22 filled in the steam tank 38 is compressed, and then sent to the steam recovery pipe 40. As shown in FIGS. 3B, 4B, and 5B, the second check valve 39 installed at the outlet of the condensate pipe 35 opens the flow path by the pumping pressure of the condensate 13, thereby transferring the condensed water to the make-up tank 11. It is possible to send directly or to the inside of the boiler 1 as needed.
본 발명에서는 상기 응축수 모음탱크(31)에 있던 응축수(13)를 수위감지봉(34)이 저수위를 감지하기 직전까지 펌핑하더라도 펌프(33)에 캐비테이션 손상현상이 발생되지 않는다.In the present invention, even if the condensate 13 in the condensate collection tank 31 is pumped until just before the water level sensing rod 34 detects the low water level, cavitation damage does not occur in the pump 33.
이는, 응축수 모음탱크(31)에 응축수 배관(35)이 직접 연결되어 응축수 배관을 통해 빠져나가던 종래의 시스템과는 달리 저면에 복수 개의 통공(32a)이 형성된 응축수 흡입관(32)을 응축수 모음탱크(31)의 내부에 위치시킴에 따라 많은 양의 응축수(13)를 펌핑하더라도 응축수가 빠져나가는 통공(32a)이 응축수 모음탱크(31)의 바닥과 근접하고 있어 통공(32a)을 통해 기체가 유입되는 현상을 근본적으로 방지하기 때문이다.Unlike the conventional system in which the condensate pipe 35 is directly connected to the condensate collection tank 31 and exits through the condensate pipe, the condensate suction pipe 32 having a plurality of through holes 32a formed on the bottom thereof is connected to the condensate collection tank 31. 31 is located in the interior of the condensate (13a) pumping a large amount of condensate 13 through the exit of the condensate collection tank 31 is close to the bottom of the condensate collection tank 31 so that the gas flows through the through (32a) This is because it fundamentally prevents the phenomenon.
이와 같이 응축수 모음탱크(31)에 있던 응축수(13)를 펌핑하여 수위감지봉(34)이 저수위를 감지하면 펌프(33)의 구동이 일시적으로 중단되는데, 펌프(33)의 구동이 일시적으로 중단되면 제1,2 체크밸브(36)(39) 및 밸브 디스크(43)에 걸리던 압력이 모두 해제되므로 제1 체크밸브(36)는 스팀통기관(37)의 유로를 개방하고 제2 체크밸브(39)는 응축수 배관(35) 그리고 밸브 디스크(43)는 스팀회수관(40)의 유로를 각각 폐쇄하게 된다.As such, when the condensate collection tank 31 pumps the condensate 13 and the water level sensing rod 34 detects the low water level, the driving of the pump 33 is temporarily stopped, and the driving of the pump 33 is temporarily stopped. When the pressure applied to the first and second check valves 36 and 39 and the valve disc 43 are released, the first check valve 36 opens the flow path of the steam pipe 37 and the second check valve 39 ) Is the condensate pipe 35 and the valve disc 43 to close the flow path of the steam recovery pipe 40, respectively.
이에 따라, 제1,2 실시예에서는 스팀탱크(38)에 있던 응축수(13)가 응축수 배관(35)을 통해 응축수 모음탱크(31) 측으로 드레인되지만, 제3 실시예에서는 응축수(13)의 펌핑 시 작용되는 압력에 의해 스프링(49)을 압축시키면서 통기관(47)의 유로를 폐쇄하고 있던 밸브(48)가 도 5c와 같이 스프링(49)의 복원력에 의해 통기관(47)의 유로를 개방하게 되므로 스팀탱크(38)에 있던 응축수(13)가 신속하게 응축수 모음탱크(31) 측으로 드레인된다.Accordingly, in the first and second embodiments, the condensate 13 in the steam tank 38 is drained to the condensate collection tank 31 through the condensate pipe 35, but in the third embodiment, the condensate 13 is pumped. Since the valve 48 which closed the flow path of the vent pipe 47 while compressing the spring 49 by the pressure acted upon is opened, the flow path of the vent pipe 47 is opened by the restoring force of the spring 49 as shown in FIG. 5C. The condensed water 13 in the steam tank 38 is quickly drained to the condensate collection tank 31.
전술한 바와 같이 펌프(33)의 구동으로 응축수 모음탱크(31) 내의 응축수(13)를 응축수 배관(35) 측으로 압송할 때 응축수(13)에 의해 스팀탱크(38)에 있던 스팀(22)을 압축한 다음 스팀회수관(40)으로 회수하여 재활용한 후 펌프(33)의 구동이 일시적으로 중단되면 열 교환기(4)에서 발생된 응축수(13) 및 스팀(22)이 응축수 회수관(30)을 통해 응축수 모음탱크(31)에 채워지게 되는데, 펌프(33) 내에 존재하는 기체는 응축수 모음탱크(31)에 응축수(13)가 채워짐에 따라 공기배출관(50)을 통해 빠져나가게 되므로 계속해서 응축수의 펌핑은 물론이고 스팀의 회수가 가능해지게 되는 것이다.As described above, when the condensate 13 in the condensate collection tank 31 is pumped to the condensate pipe 35 by the driving of the pump 33, the steam 22 in the steam tank 38 is removed by the condensate 13. After the compression and recovery to the steam recovery pipe 40 and recycled, and then the operation of the pump 33 is temporarily stopped, the condensed water 13 and steam 22 generated in the heat exchanger 4 is condensed water recovery pipe 30 Through the condensate collection tank 31 is filled, the gas present in the pump 33 is discharged through the air discharge pipe (50) as the condensate collection tank 31 is filled with the condensate (13) continues to condensate It is possible to recover the steam as well as pumping of.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 기술적 사상이나 필수적 특징을 변경하지 않고 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.Although the embodiments of the present invention have been described above with reference to the accompanying drawings, it will be understood by those skilled in the art that the present invention may be embodied in other specific forms without changing the technical spirit or essential features. will be.
그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 상기 상세한 설명에서 기술된 본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, the above-described embodiments are to be understood as illustrative and not restrictive in all respects, and the scope of the present invention described in the above detailed description is represented by the following claims, and the meanings of the claims and All changes or modifications derived from the scope and the equivalent concept should be construed as being included in the scope of the present invention.

Claims (8)

  1. 열 교환기(4)에서 열 교환으로 생성된 응축수(13) 및 스팀(22)을 중력에 의해 응축수 회수관(30)을 통해 회수되게 설치된 응축수 모음탱크(31)와, 상기 응축수 모음탱크의 내부에 설치되며 저면에 복수 개의 통공(32a)이 형성된 응축수 흡입관(32)과, 상기 응축수 흡입관의 출구 측에 설치되어 응축수 모음탱크(31) 내의 응축수(13)를 펌핑하는 펌프(33)와, 상기 응축수 모음탱크의 내부에 설치되어 응축수의 수위에 따라 펌프(22)의 구동을 제어하는 수위감지봉(34)과, 상기 펌프의 출력단에 설치되어 펌핑되는 응축수를 보충수 탱크 또는 보일러 측으로 이송시키는 응축수 배관(35)과, 상기 응축수 모음탱크(31)의 상부와 통하여지게 설치되며 제1 체크밸브(36)가 구비된 스팀통기관(37)과, 상기 응축수(13)의 배출경로 상에 설치되며 스팀통기관(37)으로 배출된 스팀(22)이 회수되는 스팀탱크(38)와, 상기 응축수 배관(35) 상에 설치되어 응축수의 역류를 방지하는 제2 체크밸브(39)와, 상기 스팀탱크(38)와 통하여지게 설치된 스팀회수관(40)에 설치되어 펌프(33)의 구동 중단 시에는 스팀이 스팀회수관(40)으로 이송되지 않도록 하고 펌프(33)의 구동으로 응축수(13)에 의해 스팀(22)이 압축되면 개방되어 압축된 스팀이 통과되도록 하다가 응축수에 의해 상승하면 유로를 폐쇄하는 스팀재생밸브(41)로 구성된 것을 특징으로 하는 노 트랩 타입 스팀발생시스템의 응축수 및 스팀 회수/공급장치.The condensate collection tank 31 installed to recover the condensate 13 and the steam 22 generated by the heat exchange in the heat exchanger 4 through the condensate return pipe 30 by gravity, and the condensate collection tank 31 inside the condensate collection tank. A condensate suction tube 32 having a plurality of through holes 32a formed at a bottom thereof, a pump 33 installed at an outlet side of the condensate suction tube to pump condensate 13 in the condensate collection tank 31, and the condensate A level sensing rod 34 installed inside the collection tank and controlling the driving of the pump 22 according to the level of the condensate, and a condensate pipe for transferring the condensed water pumped at the output end of the pump to the supplementary water tank or the boiler side. (35) and, through the upper portion of the condensate collection tank 31, the steam pipe 37 is provided with a first check valve 36, and is installed on the discharge path of the condensate 13 and the steam pipe Steam (22) discharged to (37) The steam tank 38 to be received, the second check valve 39 is installed on the condensate pipe 35 to prevent the backflow of condensate, and the steam recovery pipe 40 installed to be through the steam tank 38 When the pump 33 is stopped, the steam is not transferred to the steam recovery pipe 40, and when the steam 22 is compressed by the condensate 13 by the driving of the pump 33, the steam is opened and compressed. Condensed water and steam recovery / supply device of the furnace trap type steam generating system, characterized in that consisting of a steam regeneration valve (41) for closing the passage when the passage is up by the condensate.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 스팀탱크(38)를 응축수 배관(35) 상에 설치한 것을 특징으로 하는 노 트랩 타입 스팀발생시스템의 응축수 및 스팀 회수/공급장치.Condensate and steam recovery / supply device of the furnace trap type steam generating system, characterized in that the steam tank 38 is installed on the condensate pipe (35).
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 스팀탱크(38)를 응축수 모음탱크(31)의 상부에 설치하여 제1 체크밸브(36)가 구비된 스팀 통기관(37)을 스팀탱크(38)의 내부에 위치되도록 하고, 상기 스팀탱크(38)의 일측에는 응축수 배관(35)을 연결한 것을 특징으로 하는 노 트랩 타입 스팀발생시스템의 응축수 및 스팀 회수/공급장치.The steam tank 38 is installed on the condensate collection tank 31 so that the steam pipe 37 having the first check valve 36 is positioned inside the steam tank 38, and the steam tank ( 38) Condensate and steam recovery / supply device of the furnace trap type steam generating system, characterized in that the condensate pipe 35 is connected to one side.
  4. 청구항 3에 있어서, The method according to claim 3,
    상기 응축수 모음탱크(31)와 스팀탱크(38)가 통하여지도록 통기관(47)을 설치하고 상기 통기관(47)에는 밸브(48)를 스프링(49)으로 탄력 설치한 것을 특징으로 하는 노 트랩 타입 스팀발생시스템의 응축수 및 스팀 회수/공급장치.No trap type steam characterized in that the vent pipe 47 is installed so that the condensate collection tank 31 and the steam tank 38 pass through, and the valve 48 is elastically installed with a spring 49 in the vent pipe 47. Condensate and steam recovery / supply system of generating system.
  5. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서, The method according to any one of claims 1 to 3,
    상기 응축수 모음탱크(31)의 상부와 응축수 회수관(40)이 통하여지게 압력 배출관(52)을 연결한 것을 특징으로 하는 노 트랩 타입 스팀발생시스템의 응축수 및 스팀 회수/공급장치.Condensate and steam recovery / supply device of the furnace trap type steam generating system, characterized in that the pressure discharge pipe 52 is connected to the upper portion of the condensate collection tank 31 and the condensate recovery pipe 40 through.
  6. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서, The method according to any one of claims 1 to 3,
    상기 펌프(33)의 상부와 응축수 이송경로 상에 공기 배출관(50)을 연결한 것을 특징으로 하는 노 트랩 타입 스팀발생시스템의 응축수 및 스팀 회수/공급장치.Condensate and steam recovery / supply apparatus of the furnace trap type steam generating system, characterized in that the air discharge pipe 50 is connected to the upper portion of the pump (33) and the condensate transfer path.
  7. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서, The method according to any one of claims 1 to 3,
    상기 응축수 배관(35) 상에 차가운 스팀을 외부로 배출하는 배출밸브(51)를 더 설치한 것을 특징으로 하는 노 트랩 타입 스팀발생시스템의 응축수 및 스팀 회수/공급장치.Condensate and steam recovery / supply device of the furnace trap type steam generating system, characterized in that further installed on the condensate pipe 35 discharge valve 51 for discharging the cold steam to the outside.
  8. 청구항 1에 있어서, The method according to claim 1,
    상기 스팀재생밸브(41)는 상기 스팀회수관(40)의 내경보다 큰 내경을 갖는 하우징(42)과, 상기 하우징 내에 승, 하강 가능하게 설치되며 외주면에는 절단면(43a)이 형성된 밸브 디스크(43)와, 상기 밸브 디스크의 상부에 설치되며 응축수(13)에 의해 압축되는 스팀(22)의 압력보다 크고, 응축수의 펌핑압력보다는 작은 탄성계수를 갖는 코일스프링(44)으로 구성된 것을 특징으로 하는 노 트랩 타입 스팀발생시스템의 응축수 및 스팀 회수/공급장치.The steam regeneration valve 41 is provided with a housing 42 having an inner diameter larger than the inner diameter of the steam recovery pipe 40, and a valve disc 43 having a cutting surface 43 a formed on the outer circumferential surface thereof so as to be lifted and lowered. And a coil spring 44 installed above the valve disc and having an elastic modulus greater than the pressure of steam 22 compressed by the condensate 13 and less than the pumping pressure of the condensate. Condensate and steam recovery / supply system for trap type steam generating system.
PCT/KR2015/003564 2014-12-05 2015-04-09 Condensate water and steam recovery/supply device of trapless steam generation system WO2016088950A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140173885A KR101601825B1 (en) 2014-12-05 2014-12-05 Device of Recovering/Supplying Condensate Water and Steam of No Trap-typed Steam Generating System
KR10-2014-0173885 2014-12-05

Publications (1)

Publication Number Publication Date
WO2016088950A1 true WO2016088950A1 (en) 2016-06-09

Family

ID=55539228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003564 WO2016088950A1 (en) 2014-12-05 2015-04-09 Condensate water and steam recovery/supply device of trapless steam generation system

Country Status (2)

Country Link
KR (1) KR101601825B1 (en)
WO (1) WO2016088950A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101960156B1 (en) * 2017-02-23 2019-03-19 이지성 Condensate and steam recovery system of closed circuit circulation steam boiler
CN107340735B (en) * 2017-06-06 2020-02-07 山东东方方圆厨房设备有限公司 Double-control system of steam cabinet
KR102076696B1 (en) * 2018-03-16 2020-02-13 이지성 Condensate Recovery Equipment with Different Pressure in Closed Loop Circulating Steam Boiler
KR102091450B1 (en) * 2018-12-14 2020-04-20 주식회사 포스코 Recycling storage apparatus for steam condensate and re-evaporated steam of steam trap and storage method using the same
KR102312086B1 (en) * 2020-04-20 2021-10-12 주식회사 미래테크인 The condensated water feeder of boiler

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200367359Y1 (en) * 2004-08-17 2004-11-10 이준형 Device of Supplying a Steam Boiler
KR100613397B1 (en) * 2004-04-14 2006-08-17 이준형 Water Supplying Device of Closed Circuit Circular Steam Boiler
KR101141438B1 (en) * 2011-10-21 2012-05-04 이지성 Condensate Recovery and Automatic Water Supply System for a Closed Loop Circulating Steam Boiler
KR20130017604A (en) * 2011-08-11 2013-02-20 이지성 Condensate Recovery and Automatic Water Supply System for a Closed Loop Circulating Steam Boiler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100613397B1 (en) * 2004-04-14 2006-08-17 이준형 Water Supplying Device of Closed Circuit Circular Steam Boiler
KR200367359Y1 (en) * 2004-08-17 2004-11-10 이준형 Device of Supplying a Steam Boiler
KR20130017604A (en) * 2011-08-11 2013-02-20 이지성 Condensate Recovery and Automatic Water Supply System for a Closed Loop Circulating Steam Boiler
KR101141438B1 (en) * 2011-10-21 2012-05-04 이지성 Condensate Recovery and Automatic Water Supply System for a Closed Loop Circulating Steam Boiler

Also Published As

Publication number Publication date
KR101601825B1 (en) 2016-03-10

Similar Documents

Publication Publication Date Title
WO2016088950A1 (en) Condensate water and steam recovery/supply device of trapless steam generation system
WO2010056000A2 (en) Apparatus for recovering re-evaporated steam and condensate
KR101003880B1 (en) Steam supplying system
KR102076696B1 (en) Condensate Recovery Equipment with Different Pressure in Closed Loop Circulating Steam Boiler
WO2010093157A1 (en) Air conditioner for an elevator
CN110409591A (en) A kind of sewage pump drainage storage system based on negative pressure of vacuum
KR101303759B1 (en) Condensate Recovery and Automatic Water Supply System for a Closed Loop Circulating Steam Boiler
KR20180097383A (en) Condensate and steam recovery system of closed circuit circulation steam boiler
WO2022085864A1 (en) Condensate water supply device of steam boiler
CN106704195A (en) Screw air compressor waste heat recovery device
CN115076068B (en) Waste heat recovery system of air compressor
WO2021172795A1 (en) Vacuum steam circulator and boiler having vacuum steam circulator coupled thereto
KR102312086B1 (en) The condensated water feeder of boiler
KR102643167B1 (en) The condensated water feeder of the steam boiler
KR200275082Y1 (en) Condensation water recevery and supply apparatus for steam boiller
CN201196408Y (en) Multifunctional automatic steam thermal energy recovery machine
JP2010025394A (en) Hot water generating device
JP3895423B2 (en) Liquid pumping device
CN218717376U (en) Automatic water-vapor separation mechanism for air compressor
KR20140047795A (en) Heat exchanger and cooling system
JP2008170126A (en) Condensate collecting apparatus
CN210993643U (en) Be applied to vertical cold quick-witted heat transfer whirlwind water trap of doing of super efficiency
CN210832373U (en) Air conditioner steam condensate humidifying system
JP2001227877A (en) Heat exchanger
KR102536163B1 (en) Waste heat recovery apparatus for a boiler of a laundry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866196

Country of ref document: EP

Kind code of ref document: A1