WO2016088819A1 - Fatigue detection device - Google Patents

Fatigue detection device Download PDF

Info

Publication number
WO2016088819A1
WO2016088819A1 PCT/JP2015/083962 JP2015083962W WO2016088819A1 WO 2016088819 A1 WO2016088819 A1 WO 2016088819A1 JP 2015083962 W JP2015083962 W JP 2015083962W WO 2016088819 A1 WO2016088819 A1 WO 2016088819A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatigue
myoelectric
signal
biological
neck
Prior art date
Application number
PCT/JP2015/083962
Other languages
French (fr)
Japanese (ja)
Inventor
亨 志牟田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016562666A priority Critical patent/JP6226088B2/en
Publication of WO2016088819A1 publication Critical patent/WO2016088819A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]

Definitions

  • the present invention relates to a fatigue detection device.
  • Patent Document 1 establishes fatigue level determination reference value data for LF / HF values, and compares the subject's LF / HF value calculated from the pulse interval (or heart rate interval) with the fatigue level determination reference value data.
  • a fatigue level determination processing system for determining the level of fatigue is disclosed.
  • the aa interval of the acceleration pulse wave is expressed by a low frequency component (LF: about 0.04-0. 15 Hz) and high frequency components (HF: about 0.15-0.40 Hz), and the LF value is the working value of the subject's sympathetic nerve and the HF value is the working value of the subject's parasympathetic nerve.
  • LF low frequency component
  • HF high frequency components
  • the fatigue determination processing system using the LF / HF values described above it is necessary to obtain data such as a pulse or a heart rate when the state of the autonomic nerve (that is, the sympathetic nerve and the parasympathetic nerve) is stable.
  • the user is required to rest in a resting posture, for example, for about 5 minutes before measurement. Then, after taking a sufficient rest, it is necessary to continuously measure the photoelectric pulse wave or the electrocardiogram for 3 minutes or more (or 100 beats or more, for example) as it is.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a fatigue detection device capable of detecting whether or not the user is fatigued more stably and accurately. .
  • a fatigue detection device includes a mounting member that can be mounted along a circumferential direction of a user's neck, a plurality of biological electrodes that are attached to the mounting member and acquire a biological signal including a myoelectric signal, Frequency analysis means for obtaining a frequency spectrum by performing frequency analysis on biological signals obtained by a plurality of biological electrodes, myoelectric component acquisition means for obtaining an myoelectric component from the frequency spectrum obtained by the frequency analysis means, Fatigue determination means for determining fatigue when the myoelectric component acquired by the component acquisition means is greater than or equal to a reference value.
  • a biological signal including a myoelectric signal is acquired from the user's neck, subjected to frequency analysis, and a myoelectric component is acquired from the frequency analysis result (frequency spectrum). The Then, the myoelectric component and the reference value are compared to determine whether or not the user is fatigued. In this way, since the myoelectric signal acquired from the neck is used and it is determined whether or not the user is fatigued based on the frequency analysis result (frequency spectrum), it is determined whether or not the user is fatigued. It becomes possible to detect more stably and accurately.
  • the fatigue determination means determines that the user is fatigued when the ratio of the time during which the myoelectric component is equal to or higher than the reference value within a predetermined time is equal to or higher than the predetermined ratio. It is preferable to do.
  • the time ratio in which the myoelectric component is equal to or higher than the reference value is equal to or higher than a predetermined ratio. Therefore, for example, when it is in a temporary tension state (when a force is temporarily applied to the neck), it can be prevented from being determined to be tired, and the accuracy of fatigue detection can be improved. It becomes possible to improve.
  • the fatigue determination means determine that the user is fatigued when a state where the myoelectric component is equal to or higher than a reference value continues for a predetermined time or longer.
  • a fatigue detection device includes a mounting member that can be mounted along a circumferential direction of a user's neck, a plurality of biological electrodes that are attached to the mounting member and acquire a biological signal including a myoelectric signal, Frequency analysis means for obtaining a frequency spectrum by performing frequency analysis on biological signals acquired by a plurality of biological electrodes, and a power value of the first frequency spectrum in a first frequency band having a low myoelectric component ratio relative to an electrocardiographic component
  • the myoelectric component acquisition means for acquiring the ratio of the power values of the second frequency spectrum in the second frequency band having a higher myoelectric component ratio than the first frequency band, and the myoelectric component acquisition means, Fatigue determination means for determining fatigue when the ratio of the power value of the second frequency spectrum to the power value of the first frequency spectrum is greater than or equal to a reference value. And wherein the Rukoto.
  • a biological signal including a myoelectric signal is acquired from the neck of the user, subjected to frequency analysis, and based on the frequency analysis result (frequency spectrum), the myoelectric for the electrocardiographic component is obtained.
  • the ratio of the myoelectric component is higher than that of the first frequency band with respect to the power value of the first frequency spectrum in the first frequency band in which the ratio of the component is low (the electrocardiographic component is greater than the myoelectric component).
  • the ratio of the power value of the second frequency spectrum in the second frequency band is obtained (the electrocardiogram component is less than the electrical component). Then, the ratio and the reference value are compared to determine whether or not the user is fatigued.
  • the myoelectric component can be obtained with high accuracy.
  • the myoelectric signal obtained from the neck is used and it is determined whether or not the user is tired based on the ratio obtained from the frequency analysis result (frequency spectrum), the noise It is possible to detect whether or not the vehicle is fatigued more stably and accurately.
  • the fatigue determination means determines that the tire is fatigued when the ratio of the time in which the ratio is equal to or higher than the reference value within a predetermined time is equal to or higher than the predetermined ratio. It is preferable.
  • the fatigue determination means determine that the tire is fatigued when the state where the ratio is equal to or higher than the reference value continues for a predetermined time or longer.
  • the fatigue detection device further includes an acceleration sensor that is attached to the mounting member and detects the acceleration of the neck of the subject, and when the acceleration detected by the acceleration sensor exceeds a predetermined threshold value
  • the fatigue determination means preferably stops determining whether or not the user is fatigued.
  • the plurality of biomedical electrodes have one common electrode and one or more biomedical electrodes each paired with the common electrode.
  • a biological signal that is more suitable for processing is selected from a plurality of biological signals (myoelectric components) by using the biological electrodes in combination. It is possible to improve the detection accuracy of the myoelectric component. Further, the background noise can be removed by detecting the background noise using one of the biological electrode pairs. Therefore, the accuracy of fatigue determination can be further improved.
  • At least a pair of the living body electrodes among the plurality of living body electrodes is a living body electrode for measuring a living body signal including an electrocardiographic signal.
  • the mounting member is preferably a neckband. In this way, it is possible to simply detect fatigue by simply attaching a neckband type fatigue detection device to the neck.
  • the mounting member has a mounting body portion that is flexible and formed in a substantially band shape, and an adhesive portion that has adhesiveness attached to the mounting body portion.
  • the adhesive part preferably has at least a part of conductivity and functions as the biological electrode.
  • the adhesive portion having adhesiveness is attached to the flexible mounting body portion that is formed in a substantially strip shape
  • the mounting body portion (mounting member) is attached using the adhesiveness of the adhesive portion. Can be attached (attached) to the neck.
  • the adhesive portion since at least a part of the adhesive portion has conductivity and functions as a biological electrode, it is possible to easily detect fatigue by simply attaching (attaching) the attachment member to the neck portion.
  • the fatigue detection device further includes a presentation unit that presents the user with the fatigue state when it is determined that the fatigue state is present.
  • the fatigue detection apparatus further includes a heating means for heating the neck when it is determined that the fatigue state is present.
  • the fatigue can be reduced or reduced by heating the neck.
  • the heating means warms the neck by raising the temperature of the living body electrode.
  • the neck since the user's neck is heated via the living body electrode, there is no need to provide a separate heating portion.
  • the biomedical electrode since the biomedical electrode is in contact with the user's neck, the neck can be reliably and efficiently heated.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. It is a block diagram which shows the function structure of the fatigue detection apparatus which concerns on 1st Embodiment. It is a figure which shows an example of the frequency spectrum of each biological signal when not including and including a myoelectric signal.
  • FIG. 1 is a perspective view illustrating an appearance of a fatigue detection device 1 according to the first embodiment.
  • FIG. 2 is a perspective view showing the configuration of the sensor unit 12 (the state in which the frame body 12b is opened) constituting the fatigue detection device 1.
  • FIG. 3 is a diagram illustrating a configuration of the sensor unit 12 (a state in which the frame body 12b is closed). 4 is a cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a block diagram showing a functional configuration of the fatigue detection apparatus 1.
  • the fatigue detection device 1 detects fatigue by being mounted on the neck (neck muscle) (see FIG. 1), and is elastically mounted so as to sandwich the neck from the back side of the user's neck.
  • a substantially U-shaped neckband (mounting member) 13 and a pair of sensor parts 11 and 12 that are disposed at both ends of the neckband 13 and come into contact with both sides of the neck of the user are provided.
  • the neckband 13 can be worn along the circumferential direction of the user's neck. That is, as shown in FIG. 1, the neckband 13 is worn along the back of the user's neck from one side of the user's neck to the other side of the neck. More specifically, the neck band 13 includes, for example, a belt-shaped plate spring and a rubber tube that covers the plate spring. Therefore, the neckband 13 is biased so as to shrink inward, and when the user wears the neckband 13, the neckband 13 (sensor units 11 and 12) is in contact with the neck of the user. Retained.
  • a rubber tube it is preferable to use what has biocompatibility as a rubber tube. Moreover, it can replace with a rubber tube and can use the tube which consists of plastics, for example.
  • a cable for electrically connecting both sensor units 11 and 12 is also wired. Here, it is desirable that the cable be coaxial in order to reduce noise.
  • the sensor unit 12 (11) mainly sandwiches the periphery of the conductive cloth 15 between the conductive cloth 15 formed in a rectangular flat shape, the main body 12a on which the conductive cloth 15 is set, and the main body 12a. It has the frame 12b to hold down, and the input terminal 14 provided on the surface of the main body 12a facing the frame 12b.
  • the conductive cloth 15 is used as a biological electrode for detecting a biological signal including a myoelectric signal or an electrocardiographic signal.
  • one sensor part 12 has the photoelectric pulse wave sensor 20 in addition to the said structure. Instead of or in addition to the photoelectric pulse wave sensor 20, a piezoelectric pulse wave sensor, an oxygen saturation sensor, a sound sensor (microphone), a displacement sensor, a temperature sensor, a humidity sensor, or the like may be used.
  • an acceleration sensor 22 that detects the acceleration of the subject's neck (that is, whether or not the neck is moving) is attached to the sensor unit 11 (or sensor unit 12) of the neckband 13.
  • a gyro sensor or the like may be used instead of the acceleration sensor.
  • the conductive cloth 15 serving as the living body electrode a woven fabric or a knitted fabric made of conductive yarn having conductivity is used.
  • the conductive cloth 15 is formed in a rectangular planar shape.
  • the conductive yarn for example, a resin yarn whose surface is plated with Ag, a carbon nanotube-coated one, or a conductive polymer such as PEDOT may be used.
  • the conductive cloth 15 is preferably subjected to end treatment such as folding four sides and sewing with a sewing machine, or cutting and welding treatment using laser or ultrasonic waves.
  • the main body 12a is formed of, for example, a resin so that it has a thin, approximately semi-cylindrical shape, that is, a surface in contact with the neck when drawing in a cross section along the short side. Thereby, a feeling of wearing is improved. Further, the main body portion 12a is formed such that a portion facing the frame body 12b (a region in which the frame body 12b fits) is recessed by the thickness of the frame body 12b (or deeper than the thickness).
  • the frame body 12b is formed in a rectangular shape. Further, the frame body 12 b is formed so that its dimension (outer edge) is slightly larger than that of the conductive cloth 15.
  • the shape of the conductive cloth 15 and the shape of the frame body 12b are not limited to a rectangle.
  • a hinge portion is provided on one side surface of the main body portion 12a, and the frame body 12b can be opened and closed with the hinge portion as a fulcrum.
  • two groove portions 12c are formed on the other side surface of the main body portion 12a.
  • the frame 12b is fixed (locked) to the main body 12a by fitting a claw (not shown) formed in the frame 12b into the groove 12c. That is, as shown in FIG. 2, the frame 12b is opened, the conductive cloth 15 is set on the main body 12a, and then the frame 12b is closed and locked to easily set (or replace) the conductive cloth 15. )can do.
  • the frame body 12b may be configured to be removable.
  • An input terminal 14 is disposed at a position facing the frame 12b of the main body 12a.
  • the conductive cloth 15 is sandwiched between the main body 12a and the frame body 12b, the conductive cloth 15 and the input terminal 14 are electrically connected.
  • the conductive cloth (biological electrode) 15 is connected to a signal processing unit 31 described later via the input terminal 14.
  • the main body portion 12a is formed such that the portion facing the frame body 12b (the area in which the frame body 12b fits) is recessed by the thickness of the frame body 12b (or deeper than the thickness). Therefore, in a state where the conductive cloth 15 is set on the main body portion 12a, the surface of the frame body 12b is substantially the same as the surface of the central portion of the conductive cloth 15 as shown in FIG. It is fixed at a position that is recessed (lower) than the central portion of. Thereby, when it mounts
  • a photoelectric pulse wave sensor that has a light emitting element 201 and a light receiving element 202 in the vicinity of the conductive cloth (biological electrode) 15 on the inner surface (the surface in contact with the neck portion) of the main body 12a and detects a photoelectric pulse wave signal. 20 is arranged.
  • the photoelectric pulse wave sensor 20 is a sensor that optically detects a photoelectric pulse wave signal using the light absorption characteristic of blood hemoglobin.
  • the light emitting element 201 emits light according to a pulsed drive signal output from a drive unit 350 of the signal processing unit 31 described later.
  • a drive unit 350 of the signal processing unit 31 for example, an LED, a VCSEL (Vertical Cavity Surface Emitting LASER), or a resonator type LED can be used.
  • the driving unit 350 generates and outputs a pulsed driving signal for driving the light emitting element 201.
  • the light receiving element 202 outputs a detection signal corresponding to the intensity of light irradiated from the light emitting element 201 and transmitted through the neck or reflected from the neck.
  • a photodiode or a phototransistor is preferably used as the light receiving element 202.
  • a photodiode is used as the light receiving element 202.
  • the light receiving element 202 is connected to the signal processing unit 31, and a detection signal (photoelectric pulse wave signal) obtained by the light receiving element 202 is output to the signal processing unit 31.
  • a battery (not shown) that supplies power to the photoelectric pulse wave sensor 20, the signal processing unit 31, the wireless communication module 60, and the like is accommodated in one sensor unit 11 (main body unit 11a).
  • the other sensor unit 12 (main body unit 12a) includes a signal processing unit 31, fatigue information (fatigue determination result), a measured myoelectric signal, an electrocardiogram signal, a photoelectric pulse wave signal, and a pulse wave propagation time.
  • a wireless communication module 60 that transmits biometric information such as such to an external device is housed.
  • the pair of biological electrodes (conductive cloth) 15 and 15 and the photoelectric pulse wave sensor 20 are each connected to a signal processing unit 31, and detected biological signals (myoelectric signals and electrocardiographic signals) and photoelectric pulses.
  • a wave signal is input to the signal processing unit 31.
  • the acceleration sensor 22 is also connected to the signal processing unit 31, and the detected acceleration signal is input to the signal processing unit 31.
  • the signal processing unit 31 mainly acquires a myoelectric component (or an index value indicating the magnitude of the myoelectric component) from a biological signal including the myoelectric signal and the electrocardiographic signal, and is in a fatigue state according to the myoelectric component. A determination is made (details will be described later).
  • the signal processing unit 31 processes the input electrocardiogram signal to measure the heart rate and the heart rate interval, and also processes the input photoelectric pulse wave signal to measure the pulse rate and the pulse interval. To do. Further, the signal processing unit 31 measures the pulse wave propagation time from the time difference between the detected R wave peak of the electrocardiogram signal (electrocardiogram) and the peak of the first photoelectric pulse wave signal (pulse wave).
  • the signal processing unit 31 includes a biological signal amplification unit 311, a pulse wave signal amplification unit 321, a first signal processing unit 310, a second signal processing unit 320, peak detection units 316 and 326, peak correction units 318 and 328, and pulse wave propagation. It has a time measurement unit 330, a frequency analysis unit 331, a myoelectric component acquisition unit 332, and a fatigue determination unit 333.
  • the first signal processing unit 310 includes an analog filter 312, an A / D converter 313, and a digital filter 314.
  • the second signal processing unit 320 includes an analog filter 322, an A / D converter 323, a digital filter 324, and a second-order differentiation processing unit 325.
  • the electric component acquisition unit 332 and the fatigue determination unit 333 temporarily store various data such as a CPU that performs arithmetic processing, a ROM that stores programs and data for causing the CPU to execute each processing, and arithmetic results. It is comprised by RAM etc. That is, the functions of the above-described units are realized by executing the program stored in the ROM by the CPU.
  • the biological signal amplifier 311 is configured by an amplifier using an operational amplifier, for example, and amplifies the biological signals (myoelectric signal and electrocardiographic signal) detected by the pair of biological electrodes (conductive cloth) 15 and 15.
  • the biological signal (myoelectric signal and electrocardiographic signal) amplified by the biological signal amplification unit 311 is output to the first signal processing unit 310.
  • the pulse wave signal amplifying unit 321 is configured by an amplifier using, for example, an operational amplifier, and amplifies the photoelectric pulse wave signal detected by the photoelectric pulse wave sensor 20.
  • the photoelectric pulse wave signal amplified by the pulse wave signal amplification unit 321 is output to the second signal processing unit 320.
  • the first signal processing unit 310 includes the analog filter 312, the A / D converter 313, and the digital filter 314, and the biological signal (myoelectric signal and electrocardiogram) amplified by the biological signal amplification unit 311.
  • the pulsation component (including the myoelectric component) is extracted by performing a filtering process on No.).
  • the second signal processing unit 320 includes the analog filter 322, the A / D converter 323, the digital filter 324, and the second-order differentiation processing unit 325, and is amplified by the pulse wave signal amplification unit 321.
  • the pulsating component is extracted by subjecting the photoelectric pulse wave signal to filtering processing and second-order differentiation processing.
  • the analog filters 312, 322 and the digital filters 314, 324 remove components (noise) other than the frequency characterizing the electrocardiogram signal (including myoelectric signal) and the photoelectric pulse wave signal, and improve the S / N.
  • an ECG signal including myoelectric signal
  • a photoelectric pulse wave signal is dominated by a frequency component of 0.1 to several tens of Hz.
  • Filtering is performed using analog filters 312, 322 such as a low-pass filter and a band-pass filter, and digital filters 314, 324, and the S / N is improved by selectively passing only signals in the frequency range.
  • analog filters 312, 322 and the digital filters 314, 324 are not necessarily provided, and only one of the analog filters 312, 322 and the digital filters 314, 324 may be provided. Note that the electrocardiogram signal subjected to the filtering process by the analog filter 312 and the digital filter 314 is output to the peak detection unit 316. Similarly, the photoelectric pulse wave signal subjected to the filtering process by the analog filter 322 and the digital filter 324 is output to the second-order differentiation processing unit 325.
  • the second-order differentiation processing unit 325 obtains a second-order differential pulse wave (acceleration pulse wave) signal by second-order differentiation of the photoelectric pulse wave signal.
  • the acquired acceleration pulse wave signal is output to the peak detector 326.
  • the peak (rising point) of the photoelectric pulse wave is not clearly changed and may be difficult to detect. Therefore, it is preferable to detect the peak by converting it to an acceleration pulse wave.
  • a second-order differential processing unit 325 is provided. Is not essential and may be omitted.
  • the peak detection unit 316 detects the peak (R wave) of the electrocardiogram signal that has been subjected to signal processing by the first signal processing unit 310 (the pulsating component has been extracted).
  • the peak detection unit 326 detects the peak of the photoelectric pulse wave signal (acceleration pulse wave) subjected to the filtering process by the second signal processing unit 320.
  • Each of the peak detection unit 316 and the peak detection unit 326 performs peak detection within the normal range of the heartbeat interval and the pulse interval, and information on the peak time, peak amplitude, and the like for all detected peaks is stored in the RAM or the like. save.
  • the peak correction unit 318 obtains the delay time of the electrocardiogram signal in the first signal processing unit 310 (analog filter 312 and digital filter 314). The peak correction unit 318 corrects the peak of the electrocardiogram signal detected by the peak detection unit 316 based on the obtained delay time of the electrocardiogram signal. Similarly, the peak correction unit 328 obtains the delay time of the photoelectric pulse wave signal in the second signal processing unit 320 (analog filter 322, digital filter 324, second-order differentiation processing unit 325). The peak correction unit 328 corrects the peak of the photoelectric pulse wave signal (acceleration pulse wave signal) detected by the peak detection unit 326 based on the obtained delay time of the photoelectric pulse wave signal. The corrected peak of the electrocardiogram signal and the corrected peak of the photoelectric pulse wave signal (acceleration pulse wave) are output to the pulse wave propagation time measurement unit 330. Note that providing the peak correction unit 318 is not essential and may be omitted.
  • the pulse wave propagation time measurement unit 330 is configured to detect an interval (time difference) between the R wave peak of the electrocardiogram signal corrected by the peak correction unit 318 and the peak of the photoelectric pulse wave signal (acceleration pulse wave) corrected by the peak correction unit 328. ) To determine the pulse wave propagation time.
  • the pulse wave propagation time measurement unit 330 calculates, for example, a heart rate, a heartbeat interval, a heartbeat interval change rate, and the like from an electrocardiogram signal in addition to the pulse wave propagation time. Similarly, the pulse wave propagation time measurement unit 330 calculates a pulse rate, a pulse interval, a pulse interval change rate, and the like from the photoelectric pulse wave signal (acceleration pulse wave).
  • the frequency analysis unit 331 performs frequency analysis on a biological signal (including myoelectric signal and electrocardiographic signal) obtained by the pair of biological electrodes 15 and 15 and filtered by the signal processing unit 310 to obtain a frequency spectrum. get. That is, the frequency analysis unit 331 functions as a frequency analysis unit described in the claims. Examples of the frequency analysis method include a fast Fourier transform method (FFT method), a maximum entropy method (MEM method), and a wavelet method.
  • FFT method fast Fourier transform method
  • MEM method maximum entropy method
  • wavelet method a wavelet method
  • FIG. 6 shows an example of the frequency spectrum of each biological signal when the myoelectric signal is included and when it is not included.
  • the horizontal axis in FIG. 6 is frequency (Hz), and the vertical axis is signal intensity.
  • the frequency spectrum of a biological signal that does not include a myoelectric signal is indicated by a solid line
  • the frequency spectrum of the biological signal that includes a myoelectric signal is indicated by a broken line.
  • the frequency component of the electrocardiogram is particularly large from 0.25 to 30 Hz. Since the frequency component of the electrocardiogram waveform has a frequency component corresponding to the heart rate, a peak in the range of 0.25 to 1.5 Hz corresponding to the heart rate (40 to 240 beats / min) and a peak of its harmonics are included. Have. There are also frequency components of the waveform itself, but there are many components below 30 Hz. Note that the frequency band where the frequency component of the photoelectric pulse wave is particularly large is the same as that of the electrocardiogram, but the frequency side is lower than that of the electrocardiogram. On the other hand, myoelectric signals have a wide frequency component, and there are many ratios of signals of 100 Hz or higher. In FIG. 6, the frequency spectrum of the biological signal including the myoelectric signal is gently attenuated at 40 Hz or more because of the influence of the LPF.
  • the frequency analysis unit 331 determines that the acceleration of the neck detected by the acceleration sensor 22 is equal to or greater than a predetermined threshold (that is, when the neck moves and body motion noise is expected to increase).
  • the frequency analysis of the above-described biological signals is stopped. In other words, when there is body movement, noise is likely to be applied, and the accuracy of the required myoelectric component may be reduced.
  • the acceleration sensor 22 determines a state in which the user has little movement, and performs a frequency analysis of the biological signal only when such a state continues for a predetermined time, and the frequency analysis result (frequency spectrum) ) To determine the fatigue state.
  • the frequency analysis result (frequency spectrum) acquired by the frequency analysis unit 331 is output to the myoelectric component acquisition unit 332.
  • the myoelectric component acquisition unit 332 has the first frequency in the first frequency band (for example, 10 to 20 Hz) in which the ratio of the myoelectric component to the electrocardiographic component is low (the electrocardiographic component is large relative to the myoelectric component).
  • the power value of the spectrum and the second frequency in the second frequency band (for example, 30 to 50 Hz) in which the ratio of the myoelectric component is higher than the first frequency band (the electrocardiographic component is smaller than the myoelectric component) Obtain the power value of the spectrum.
  • the myoelectric component acquisition unit 332 acquires the ratio of the power value of the second frequency spectrum to the power value of the first frequency spectrum (hereinafter also referred to as “myoelectric component ratio”). That is, the myoelectric component acquisition unit 332 functions as the myoelectric component acquisition unit described in the claims.
  • the myoelectric component acquisition unit 332 is used when the acceleration of the neck detected by the acceleration sensor 22 is equal to or higher than a predetermined threshold (that is, when the neck moves and body motion noise is expected to increase). Stops acquiring the above-described myoelectric component ratio.
  • the myoelectric component ratio acquired by the myoelectric component acquisition unit 332 is output to the fatigue determination unit 333.
  • the fatigue determination unit 333 determines that the user is fatigued when the myoelectric component ratio acquired by the myoelectric component acquisition unit 332 is equal to or greater than a predetermined reference value (fatigue reference value). That is, the fatigue determination unit 333 functions as fatigue determination means described in the claims. At that time, the fatigue determination unit 333 determines that the ratio of the time during which the myoelectric component ratio is equal to or higher than the reference value within the predetermined time is equal to or higher than the predetermined ratio, or (and) the myoelectric component ratio is When the state above the reference value continues for a predetermined time (for example, several minutes) or more, it is determined that the user is tired. That is, primary force may be applied to the cervix even in a non-fatigue state.
  • a predetermined reference value for example, several minutes
  • the fatigue determination unit 333 determines that the neck acceleration detected by the acceleration sensor 22 is equal to or greater than a predetermined threshold (that is, when the neck moves and body motion noise is expected to increase). Stop fatigue assessment.
  • the fatigue detection device 1 informs the user that the user is in a fatigued state through a speaker (or buzzer) 70 (warning). To do). That is, the speaker (or buzzer) 70 functions as the presenting means described in the claims.
  • the fatigue detection device 1 is connected to a PC (personal computer), a portable music player having a display, a smartphone, or the like via the wireless communication module 60. It has a function to transmit and display information (fatigue judgment result).
  • the acquired data such as fatigue information (fatigue judgment result) is stored and stored in, for example, the RAM described above, and output to a PC or the like for confirmation after the measurement is completed. Good. Furthermore, it can also be set as the structure which performs fatigue determination with PC, a smart phone, etc. which were connected by radio
  • the neck heating unit 80 increases the temperature of the neck by heating the neck (around the neck) when the fatigue determination unit 333 determines that the user is tired. That is, the neck heating unit 80 functions as a heating unit described in the claims.
  • the neck heating unit 80 warms the neck when it is determined that the user is tired. At that time, the neck heating unit 80 adjusts the output so that the temperature of the neck increases as the deviation between the myoelectric component ratio and the reference value increases. On the other hand, when it is determined that the user is not fatigued, the neck heating unit 80 maintains the state at that time or weakens the degree of heating.
  • Examples of the heating method by the neck heating unit 80 include a method using an electric heater or the like. More specifically, for example, it is preferable that the bioelectrode 15, the insulating layer, and the high resistance layer of the electric heater are sequentially stacked. In this case, the heat generated by the current flowing through the high resistance layer of the electric heater is transmitted to the user's neck through the insulating layer and the living body electrode 15. In addition, it is preferable to provide a temperature control by limiting the temperature adjustment or providing a temperature sensor so that the user does not feel uncomfortable.
  • FIG. 7 is a flowchart showing a processing procedure of fatigue detection processing by the fatigue detection device 1.
  • the processing shown in FIG. 7 is repeatedly executed mainly at a predetermined timing by the signal processing unit 31.
  • the pair of biomedical electrodes 15 and 15 are used in step S100.
  • the detected biological signal (myoelectric signal, electrocardiographic signal) and the photoelectric pulse wave signal detected by the photoelectric pulse wave sensor 20 are read.
  • a filtering process is performed on the biological signal (myoelectric signal, electrocardiogram signal) and the photoelectric pulse wave signal read in step S100.
  • the acceleration pulse wave is obtained by second-order differentiation of the photoelectric pulse wave signal.
  • step S104 the wearing state of the fatigue detection device 1 is determined based on the amount of light received by the photoelectric pulse wave sensor 20 (amplitude of the photoelectric pulse wave signal). That is, the photoelectric pulse wave sensor 22 receives the light irradiated from the light emitting element 201, transmitted through the living body / reflected by the living body, and returned by the light receiving element 202, and detects the fluctuation of the light amount as a photoelectric pulse wave signal. Therefore, the amount of received signal light decreases when the device is not properly mounted. Therefore, in step S104, a determination is made as to whether the amplitude of the photoelectric pulse wave signal is greater than or equal to a predetermined value.
  • step S108 If the amplitude of the photoelectric pulse wave signal is greater than or equal to a predetermined value, the process proceeds to step S108. On the other hand, when the amplitude of the photoelectric pulse wave signal is less than the predetermined value, it is determined as a mounting error, and mounting error information (warning information) is output in step S106. Thereafter, the process is temporarily exited.
  • a method using the received light amount (amplitude of the photoelectric pulse wave signal) of the photoelectric pulse wave sensor 20 described above for example, a method using the baseline stability of the electrocardiogram waveform or the noise frequency component ratio is adopted. You can also
  • step S108 the peak of the electrocardiogram signal and photoelectric pulse wave signal (acceleration pulse wave signal) is detected. Then, the time difference (peak time difference) between the R wave peak of the detected electrocardiogram signal and the peak of the photoelectric pulse wave signal (acceleration pulse wave) is calculated.
  • step S110 the delay time (shift amount) of each of the R wave peak of the electrocardiogram signal and the peak of the photoelectric pulse wave signal (acceleration pulse wave) is obtained, and based on the obtained delay time, The time difference (peak time difference) between the R wave peak of the signal and the peak of the photoelectric pulse wave signal (acceleration pulse wave) is corrected.
  • step S112 it is determined whether or not the peak time difference corrected in step S110 is a predetermined time (for example, 0.01 sec.) Or more. If the peak time difference is greater than or equal to the predetermined time, the process proceeds to step S116. On the other hand, when the peak time difference is less than the predetermined value, error information (noise determination) is output in step S114, and then the process is temporarily exited.
  • a predetermined time for example, 0.01 sec.
  • step S116 the peak time difference calculated in step S108 is determined as the pulse wave propagation time, and the pulse wave interval is acquired.
  • step S118 whether or not the neck acceleration detected by the acceleration sensor 22 is equal to or greater than a predetermined threshold (that is, whether or not the neck moves and body motion noise increases). Judgment is made. If the neck acceleration is less than the predetermined threshold value, the process proceeds to step S122. On the other hand, when the cervical acceleration is equal to or greater than the predetermined threshold value, body motion error information is output in step S120, and then the process is temporarily exited.
  • a predetermined threshold that is, whether or not the neck moves and body motion noise increases.
  • step S122 the biological signal including the myoelectric signal and the electrocardiographic signal is subjected to frequency analysis to obtain a frequency spectrum.
  • step S124 the first frequency spectrum in the first frequency band (for example, 10 Hz or more and 20 Hz or less) in which the ratio of the myoelectric component to the electrocardiographic component is low (the electrocardiographic component is large relative to the myoelectric component).
  • Ratio of the power value of the second frequency spectrum in the second frequency band (for example, 30 Hz to 50 Hz) with a high myoelectric component ratio to the power value (the electrocardiographic component is less than the myoelectric component) (myoelectric component) Ratio) is acquired.
  • step S126 the myoelectric component ratio acquired in step S124 is stored in time series.
  • step S1208 whether or not the acquired myoelectric component ratio is greater than or equal to a reference value and the time ratio of the state is greater than or equal to a predetermined ratio, or (and) the myoelectric component ratio is greater than or equal to a reference value
  • a determination is made as to whether or not has continued for a predetermined time or more.
  • the said conditions are satisfied, it determines with having been fatigued and a process transfers to step S130.
  • the condition is not satisfied, it is determined that the user is not fatigued, and the process proceeds to step S132.
  • step S130 the user is informed (warned) of the fatigue state by an alarm sound or voice. Further, the neck warming unit 80 is driven to warm the neck, thereby relieving and reducing user fatigue. Thereafter, the process is temporarily exited.
  • step S132 the operating state of the neck heating unit 80 is maintained without being changed (or the operating state is relaxed). Thereafter, the process is temporarily exited.
  • a biological signal including a myoelectric signal is acquired from the user's neck, subjected to frequency analysis, and from the frequency analysis result (frequency spectrum),
  • the myoelectric component ratio is high with respect to the power value of the first frequency spectrum in the first frequency band (for example, 10 Hz or more and 20 Hz or less) in which the electric component ratio is low (the electrocardiographic component is greater than the myoelectric component).
  • the ratio (myoelectric component ratio) of the power value of the second frequency spectrum in the second frequency band for example, 30 Hz to 50 Hz
  • the myoelectric component ratio and the reference value are compared to determine whether or not the user is fatigued.
  • the myoelectric component ratio increases as the myoelectric component increases, the myoelectric component can be accurately obtained.
  • the predetermined time when it continues for the above, it is determined that the user is tired. Therefore, for example, when it is in a temporary tension state (when a force is temporarily applied to the neck), it can be prevented from being determined to be tired, and the accuracy of fatigue detection can be improved. It becomes possible to improve.
  • the fatigue determination is performed. Since it is stopped, erroneous detection due to body movement can be prevented, and fatigue can be detected more accurately.
  • an electrocardiogram signal can be simultaneously measured without providing a dedicated electrode for detecting an electrocardiogram signal. Therefore, together with the presence or absence of fatigue, for example, biological information such as heart rate and heart rate interval can be measured simultaneously.
  • the user when it is determined that the user is in a fatigued state, the user is informed (warned) of the fatigued state by an alarm sound or voice. Therefore, it is possible to inform the user that the user is tired, and it is possible to prevent the user from being in an excessive fatigue state.
  • the neck when the user is fatigued, the neck (neck) is heated, so that fatigue can be reduced / reduced.
  • the neck of the user since the neck of the user is heated via the living body electrode 15, it is not necessary to provide a separate heating portion.
  • the biomedical electrode 15 since the biomedical electrode 15 is in contact with the neck of the user, the neck can be reliably and efficiently heated.
  • the fatigue detection device 1 By the way, there are individual differences in the amplitude of the biological signal (electrocardiogram signal, myoelectric signal) measured at the neck.
  • the fatigue detection device 1 according to the first embodiment described above has two (a pair of) biological electrodes 15, but in order to further improve the determination accuracy, three (two pairs) or more. It is also preferable to have a configuration having the living body electrode 15.
  • FIG. 8 is a block diagram illustrating a functional configuration of the fatigue detection device 2.
  • the same or equivalent components as those in the first embodiment are denoted by the same reference numerals.
  • the fatigue detection device 2 includes three biological electrodes 15A, 15B, and 15C, a biological signal amplification unit 311, and a signal processing unit 310, and a frequency analysis unit 331B instead of the frequency analysis unit 331. It differs from the fatigue detection apparatus 1 which concerns on 1st Embodiment mentioned above. Other configurations are the same as or similar to those of the fatigue detection device 1 described above, and thus detailed description thereof is omitted here.
  • the three biological electrodes 15A, 15B and 15C are composed of one common electrode 15A and two biological electrodes 15B and 15C which are paired with the common electrode 15A.
  • the biological electrode 15B is preferably disposed in the vicinity of the biological electrode 15C.
  • a biological signal (myoelectric signal and electrocardiographic signal) is detected by the combination of the common electrode 15A and the biological electrode 15B and the combination of the common electrode 15A and the biological electrode 15C.
  • the frequency analysis unit 331B detects a biological signal (myoelectric signal and electrocardiographic signal) detected by a combination of the common electrode 15A and the living body electrode 15B and a living body detected by a combination of the common electrode 15A and the living body electrode 15C. Compare the signal (myoelectric signal and electrocardiographic signal) and select the biological signal (myoelectric signal and electrocardiographic signal) that is more suitable for fatigue determination (for example, the one with larger amplitude) and perform frequency analysis . Since the myoelectric component acquisition unit 332 and the fatigue determination unit 333 are the same as those described above, detailed description thereof is omitted here.
  • the two biological signals are more suitable for processing.
  • a biological signal can be selected and used, and the myoelectric component detection accuracy can be improved.
  • the substantially U-shaped neckband 13 that is mounted so as to sandwich the neck from the back side of the user's neck is used as the mounting member, but forms other than the neckband may be employed.
  • FIG. 9 is a perspective view showing the appearance of the fatigue detection device 3.
  • FIG. 10A is a top view showing the appearance of the fatigue detection device, and
  • FIG. 10B is a bottom view showing the appearance of the fatigue detection device 3.
  • the same reference numerals are given to the same or equivalent components as those in the first embodiment.
  • the fatigue detection device 3 is a flexible mounting body part 16 having a substantially strip shape as a mounting member, and two adhesive parts attached to both ends on the back side of the mounting body part 16. It has adhesive portions 17 and 17.
  • Each adhesive part 17 has conductivity in addition to adhesiveness, and also functions as the above-described biological electrode (hereinafter, the adhesive part 17 may also be referred to as “biological electrode 17”).
  • the adhesive part (bioelectrode) 17 for example, a biogel electrode is suitably used. Note that only a part of the adhesive portion 17 may be conductive.
  • the detection main body 18 in which the photoelectric pulse wave sensor 20, the signal processing unit 31, the wireless communication module 60, the battery, and the like are housed is attached to the central portion on the surface side of the mounting main body portion 16.
  • the pair of biological electrodes 17 and 17 are electrically connected to the detection main body 18 (signal processing unit 31).
  • a hole is formed in the mounting main body 16 at a position corresponding to the photoelectric pulse wave sensor 20, and the photoelectric pulse wave sensor 20 is fitted into the hole. That is, when the mounting body 16 (fatigue detection device 3) is mounted on the neck, the photoelectric pulse wave sensor 20 (the light emitting element 201 and the light receiving element 202) is mounted so as to come into contact with the neck skin. Yes.
  • the photoelectric pulse wave sensor 20 is disposed outside the region where the adhesive portion 17 is attached (see FIG. 10B), but the photoelectric pulse wave sensor 20 is attached to the adhesive portion 17. You may arrange
  • the details of the photoelectric pulse wave sensor 20, the signal processing unit 31, the wireless communication module 60, and the like are as described above, and thus detailed description thereof is omitted here.
  • the adhesive portion 17 having adhesiveness is attached to the mounting body portion 16 having flexibility and formed in a substantially strip shape, the mounting body portion is utilized by using the adhesiveness of the adhesive portion 17. 16 can be affixed (attached) to the neck. Moreover, since the adhesion part 17 has electroconductivity and functions as a biological electrode, it is possible to easily detect fatigue simply by attaching (attaching) the attachment main body part 16 to the neck part.
  • the fatigue detection devices 1 and 2 include the photoelectric pulse wave sensor 20, but may be configured not to include the photoelectric pulse wave sensor 20.
  • the pair of sensor portions 11 and 12 are attached to both ends of the neckband 13, but the sensor portions 11 and 12 are not necessarily attached to both ends of the neckband. Further, the neckband 13 may be configured such that its length can be adjusted by an adjusting mechanism or the like.
  • a conductive cloth is used as the living body electrode 15, but instead of the conductive cloth, for example, a metal (stainless steel, Au, etc.), silver-silver chloride, conductive rubber, etc. It may be used. In that case, it is preferable to design so that the area of the biomedical electrode in contact with the skin is increased.
  • the number of the biological electrodes 15 is two or three has been described as an example, but the number of the biological electrodes 15 may be four or more.
  • the fatigue state is determined based on the myoelectric component ratio acquired from the biological signal, but the fatigue state may be determined based on the myoelectric component amount.
  • the myoelectric component acquisition unit 332 performs, for example, a frequency band of 30 Hz to 50 Hz with respect to the frequency analysis result (frequency spectrum) by the frequency analysis unit 331 (that is, the myoelectric component is low and has a small electrocardiographic component).
  • the ratio of the time during which the myoelectric component amount is equal to or higher than the reference value within the predetermined time is equal to or higher than the predetermined ratio, or (and) the myoelectric component amount is equal to or higher than the reference value. It is preferable to determine that the state is fatigued when the state continues for a predetermined time or more. Thus, even if the fatigue state is determined based on the amount of myoelectric component obtained from the frequency analysis result (frequency spectrum), it is possible to more stably and accurately detect whether or not the user is fatigued. it can.
  • the fatigue detection device 3 is attached (attached) along the back of the user's neck from one side of the user's neck to the other side of the neck,
  • it is good also as a structure which arrange
  • the neck warming portion 80 when it is determined that the user is tired, the neck warming portion 80 is used to warm the neck (around the neck) and the fatigue is reduced / reduced.
  • a neck cooling means that cools the neck, or a neck that presses the neck (for example, a pressure is applied intermittently by inflating a built-in bag with a pump). It is good also as a structure which relieves / reduces fatigue using a part press means.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Educational Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A fatigue detection device (1) is provided with the following: a neckband (13) that can be worn along the circumferential direction of the neck of a user; a pair of biological-use electrodes (15, 15) that are attached to the neckband (13) and that acquire a biological signal which includes a myoelectric signal; a frequency analysis unit (331) that finds a frequency spectrum by performing frequency analysis on the acquired biological signal which includes the myoelectric signal; a myoelectric component acquisition unit (332) that acquires the ratio (myoelectric component ratio) of a power-value of a second frequency spectrum in a second frequency band, in which the proportion of myoelectric components to electrocardiographic components is higher than that in a first frequency band, to a power value of a first frequency spectrum in the first frequency band, in which the proportion of myoelectric components to electrocardiographic components is low; and a fatigue determination unit (333) which determines that a user is fatigued if the myoelectric component ratio is at least a reference value.

Description

疲労検出装置Fatigue detection device
 本発明は、疲労検出装置に関する。 The present invention relates to a fatigue detection device.
 近年、人の疲労を検知する技術が提案されている(例えば特許文献1参照)。ここで、特許文献1には、LF/HF値について疲労度判定基準値データを確立し、脈拍間隔(又は心拍間隔)から算出した被験者のLF/HF値と疲労度判定基準値データとを対比して、疲労度を判定する疲労度の判定処理システムが開示されている。 Recently, a technique for detecting human fatigue has been proposed (see, for example, Patent Document 1). Here, Patent Document 1 establishes fatigue level determination reference value data for LF / HF values, and compares the subject's LF / HF value calculated from the pulse interval (or heart rate interval) with the fatigue level determination reference value data. Thus, a fatigue level determination processing system for determining the level of fatigue is disclosed.
 特許文献1に記載の疲労度の判定処理システムでは、例えば、加速度脈波のa-a間隔を最大エントロピー法(MEM)を用いて周波数領域の低周波数成分(LF:約0.04-0.15Hz)と高周波数成分(HF:約0.15-0.40Hz)とに分離し、LF値を被験者の交感神経の働き値、HF値を被験者の副交感神経の働き値としている。この疲労度の判定処理システムによれば、LF/HF値を用いることにより、交感神経機能の亢進を評価することができ、客観的に疲労度を評価することができる。 In the fatigue level determination processing system described in Patent Document 1, for example, the aa interval of the acceleration pulse wave is expressed by a low frequency component (LF: about 0.04-0. 15 Hz) and high frequency components (HF: about 0.15-0.40 Hz), and the LF value is the working value of the subject's sympathetic nerve and the HF value is the working value of the subject's parasympathetic nerve. According to this fatigue level determination processing system, by using the LF / HF value, the enhancement of the sympathetic nerve function can be evaluated, and the fatigue level can be objectively evaluated.
特開2010-201113号公報JP 2010-201113 A
 ところで、上述したLF/HF値を用いた疲労度の判定処理システムでは、自律神経(すなわち交感神経及び副交感神経)の状態が安定しているときに脈拍又は心拍等のデータを得る必要があるため、使用者は計測前に例えば5分間程度、安静座位姿勢にて休息することが必要とされる。そして、十分な休息をとった後、そのままの状態で例えば3分間以上(又は例えば100拍以上)、継続的に光電脈波又は心電図の計測を行う必要がある。 By the way, in the fatigue determination processing system using the LF / HF values described above, it is necessary to obtain data such as a pulse or a heart rate when the state of the autonomic nerve (that is, the sympathetic nerve and the parasympathetic nerve) is stable. The user is required to rest in a resting posture, for example, for about 5 minutes before measurement. Then, after taking a sufficient rest, it is necessary to continuously measure the photoelectric pulse wave or the electrocardiogram for 3 minutes or more (or 100 beats or more, for example) as it is.
 そのため、上述した疲労度の判定処理システムでは、計測前に充分な休息を取ることができない場合や、計測中に安静状態を保てないときには、交感神経が優位になり、正しい疲労状態の評価を行うことができないおそれがあった。また、この疲労度の判定処理システムでは、疲労度の判定精度が、加速度脈波のa-a間隔を正確に取得できるか否かに直接的に影響されるため、ノイズに弱く、判定精度が低下しやすいという問題があった。そのため、特許文献1に記載の疲労度の判定処理システムでは、疲労しているか否かを安定的に、かつ精度よく検出することが困難であった。 Therefore, in the above-described fatigue level determination processing system, when sufficient rest cannot be taken before measurement, or when resting state cannot be maintained during measurement, the sympathetic nerve is dominant, and the correct fatigue state is evaluated. There was a risk that it could not be done. In addition, in this fatigue level determination processing system, the fatigue level determination accuracy is directly affected by whether or not the aa interval of the acceleration pulse wave can be accurately acquired. There was a problem that it was easy to decrease. Therefore, in the fatigue level determination processing system described in Patent Literature 1, it has been difficult to stably and accurately detect whether or not the user is fatigued.
 本発明は、上記問題点を解消する為になされたものであり、疲労している否かをより安定的に、かつ精度よく検出することが可能な疲労検出装置を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a fatigue detection device capable of detecting whether or not the user is fatigued more stably and accurately. .
 本発明に係る疲労検出装置は、使用者の頸部の周方向に沿って装着可能な装着部材と、装着部材に取り付けられ、筋電信号を含む生体信号を取得する複数の生体用電極と、複数の生体用電極により取得された生体信号を周波数解析して周波数スペクトルを求める周波数解析手段と、周波数解析手段により求められた周波数スペクトルから筋電成分を取得する筋電成分取得手段と、筋電成分取得手段により取得された筋電成分が基準値以上である場合に、疲労していると判定する疲労判定手段とを備えることを特徴とする。 A fatigue detection device according to the present invention includes a mounting member that can be mounted along a circumferential direction of a user's neck, a plurality of biological electrodes that are attached to the mounting member and acquire a biological signal including a myoelectric signal, Frequency analysis means for obtaining a frequency spectrum by performing frequency analysis on biological signals obtained by a plurality of biological electrodes, myoelectric component acquisition means for obtaining an myoelectric component from the frequency spectrum obtained by the frequency analysis means, Fatigue determination means for determining fatigue when the myoelectric component acquired by the component acquisition means is greater than or equal to a reference value.
 ところで、頸部に力が入っている状態(すなわち頸部の筋電信号量が多い状態)が続く場合には、緊張・疲労している状態であると推測することができる。そこで、本発明に係る疲労検出装置によれば、使用者の頸部から筋電信号を含む生体信号が取得されて、周波数解析され、その周波数解析結果(周波数スペクトル)から筋電成分が取得される。そして、筋電成分と基準値とが比較されて、疲労しているか否かが判定される。このように、頸部から取得される筋電信号を利用し、かつ、その周波数解析結果(周波数スペクトル)に基づいて疲労しているか否かを判定するようにしたため、疲労している否かをより安定的に、かつ精度よく検出することが可能となる。 By the way, when the state where force is applied to the neck (that is, the state where the amount of myoelectric signal of the neck is large) continues, it can be assumed that the patient is in a state of tension or fatigue. Therefore, according to the fatigue detection device of the present invention, a biological signal including a myoelectric signal is acquired from the user's neck, subjected to frequency analysis, and a myoelectric component is acquired from the frequency analysis result (frequency spectrum). The Then, the myoelectric component and the reference value are compared to determine whether or not the user is fatigued. In this way, since the myoelectric signal acquired from the neck is used and it is determined whether or not the user is fatigued based on the frequency analysis result (frequency spectrum), it is determined whether or not the user is fatigued. It becomes possible to detect more stably and accurately.
 本発明に係る疲労検出装置では、疲労判定手段が、所定時間内における、筋電成分が基準値以上の状態の時間の割合が、所定の割合以上になった場合に、疲労していると判定することが好ましい。 In the fatigue detection device according to the present invention, the fatigue determination means determines that the user is fatigued when the ratio of the time during which the myoelectric component is equal to or higher than the reference value within a predetermined time is equal to or higher than the predetermined ratio. It is preferable to do.
 この場合、筋電成分が基準値以上である状態の時間割合が所定割合以上になった場合に、疲労していると判定される。よって、例えば、一時的な緊張状態にあるような場合(一時的に頸部に力が入ったとき)に疲労していると判定してしまうことを防止することができ、疲労検出の精度を向上させることが可能となる。 In this case, it is determined that the user is tired when the time ratio in which the myoelectric component is equal to or higher than the reference value is equal to or higher than a predetermined ratio. Therefore, for example, when it is in a temporary tension state (when a force is temporarily applied to the neck), it can be prevented from being determined to be tired, and the accuracy of fatigue detection can be improved. It becomes possible to improve.
 本発明に係る疲労検出装置では、疲労判定手段が、筋電成分が基準値以上の状態が、所定時間以上継続した場合に、疲労していると判定することが好ましい。 In the fatigue detection device according to the present invention, it is preferable that the fatigue determination means determine that the user is fatigued when a state where the myoelectric component is equal to or higher than a reference value continues for a predetermined time or longer.
 この場合、筋電成分が基準値以上の状態が所定時間以上継続した場合に、疲労していると判定される。よって、例えば、一時的な緊張状態にあるような場合(一時的に頸部に力が入ったとき)に疲労していると判定してしまうことを防止することができ、疲労検出の精度を向上させることが可能となる。 In this case, when the state where the myoelectric component is equal to or higher than the reference value continues for a predetermined time or more, it is determined that the user is tired. Therefore, for example, when it is in a temporary tension state (when a force is temporarily applied to the neck), it can be prevented from being determined to be tired, and the accuracy of fatigue detection can be improved. It becomes possible to improve.
 本発明に係る疲労検出装置は、使用者の頸部の周方向に沿って装着可能な装着部材と、装着部材に取り付けられ、筋電信号を含む生体信号を取得する複数の生体用電極と、複数の生体用電極により取得された生体信号を周波数解析して周波数スペクトルを求める周波数解析手段と、心電成分に対する筋電成分割合が低い第1の周波数帯域における第1の周波数スペクトルのパワー値に対する、第1の周波数帯域よりも筋電成分割合が高い第2の周波数帯域における第2の周波数スペクトルのパワー値の比率を取得する筋電成分取得手段と、筋電成分取得手段により取得された、第1の周波数スペクトルのパワー値に対する第2の周波数スペクトルのパワー値の比率が基準値以上である場合に、疲労していると判定する疲労判定手段と、を備えることを特徴とする。 A fatigue detection device according to the present invention includes a mounting member that can be mounted along a circumferential direction of a user's neck, a plurality of biological electrodes that are attached to the mounting member and acquire a biological signal including a myoelectric signal, Frequency analysis means for obtaining a frequency spectrum by performing frequency analysis on biological signals acquired by a plurality of biological electrodes, and a power value of the first frequency spectrum in a first frequency band having a low myoelectric component ratio relative to an electrocardiographic component The myoelectric component acquisition means for acquiring the ratio of the power values of the second frequency spectrum in the second frequency band having a higher myoelectric component ratio than the first frequency band, and the myoelectric component acquisition means, Fatigue determination means for determining fatigue when the ratio of the power value of the second frequency spectrum to the power value of the first frequency spectrum is greater than or equal to a reference value. And wherein the Rukoto.
 本発明に係る疲労検出装置によれば、使用者の頸部から、筋電信号を含む生体信号が取得されて、周波数解析され、その周波数解析結果(周波数スペクトル)から、心電成分に対する筋電成分の割合が低い(筋電成分に対して心電成分が多い)第1の周波数帯域における第1の周波数スペクトルのパワー値に対する、第1の周波数帯域よりも筋電成分の割合が高い(筋電成分に対して心電成分が少ない)第2の周波数帯域における第2の周波数スペクトルのパワー値の比率が取得される。そして、当該比率と基準値とが比較されて、疲労しているか否かが判定される。ここで、筋電成分が大きくなるほど、上記比率が大きくなるため、筋電成分を精度よく求めることができる。このように、頸部から取得される筋電信号を利用し、かつ、その周波数解析結果(周波数スペクトル)から求められた上記比率に基づいて疲労しているか否かを判定するようにしたため、ノイズに強く、疲労しているか否かをより安定的に、かつ精度よく検出することが可能となる。 According to the fatigue detection device of the present invention, a biological signal including a myoelectric signal is acquired from the neck of the user, subjected to frequency analysis, and based on the frequency analysis result (frequency spectrum), the myoelectric for the electrocardiographic component is obtained. The ratio of the myoelectric component is higher than that of the first frequency band with respect to the power value of the first frequency spectrum in the first frequency band in which the ratio of the component is low (the electrocardiographic component is greater than the myoelectric component). The ratio of the power value of the second frequency spectrum in the second frequency band is obtained (the electrocardiogram component is less than the electrical component). Then, the ratio and the reference value are compared to determine whether or not the user is fatigued. Here, since the ratio increases as the myoelectric component increases, the myoelectric component can be obtained with high accuracy. As described above, since the myoelectric signal obtained from the neck is used and it is determined whether or not the user is tired based on the ratio obtained from the frequency analysis result (frequency spectrum), the noise It is possible to detect whether or not the vehicle is fatigued more stably and accurately.
 本発明に係る疲労検出装置では、疲労判定手段が、所定時間内における、上記比率が基準値以上の状態の時間の割合が、所定の割合以上になった場合に、疲労していると判定することが好ましい。 In the fatigue detection device according to the present invention, the fatigue determination means determines that the tire is fatigued when the ratio of the time in which the ratio is equal to or higher than the reference value within a predetermined time is equal to or higher than the predetermined ratio. It is preferable.
 この場合、上記比率が基準値以上である状態の時間割合が所定割合以上になった場合に、疲労していると判定される。よって、例えば、一時的な緊張状態にあるような場合(一時的に頸部に力が入ったとき)に疲労していると判定してしまうことを防止することができ、疲労検出の精度を向上させることが可能となる。 In this case, it is determined that the user is tired when the time ratio in a state where the ratio is equal to or greater than the reference value is equal to or greater than a predetermined ratio. Therefore, for example, when it is in a temporary tension state (when a force is temporarily applied to the neck), it can be prevented from being determined to be tired, and the accuracy of fatigue detection can be improved. It becomes possible to improve.
 本発明に係る疲労検出装置では、疲労判定手段が、上記比率が基準値以上の状態が、所定時間以上継続した場合に、疲労していると判定することが好ましい。 In the fatigue detection device according to the present invention, it is preferable that the fatigue determination means determine that the tire is fatigued when the state where the ratio is equal to or higher than the reference value continues for a predetermined time or longer.
 この場合、上記比率が基準値以上の状態が所定時間以上継続した場合に、疲労していると判定される。よって、例えば、一時的な緊張状態にあるような場合(一時的に頸部に力が入ったとき)に疲労していると判定してしまうことを防止することができ、疲労検出の精度を向上させることが可能となる。 In this case, when the state where the ratio is equal to or higher than the reference value continues for a predetermined time or more, it is determined that the user is tired. Therefore, for example, when it is in a temporary tension state (when a force is temporarily applied to the neck), it can be prevented from being determined to be tired, and the accuracy of fatigue detection can be improved. It becomes possible to improve.
 また、本発明に係る疲労検出装置は、装着部材に取り付けられ、被験者の頸部の加速度を検出する加速度センサをさらに備え、加速度センサにより検出された加速度が所定のしきい値を超えているときには、疲労判定手段が、疲労しているか否かの判定を停止することが好ましい。 The fatigue detection device according to the present invention further includes an acceleration sensor that is attached to the mounting member and detects the acceleration of the neck of the subject, and when the acceleration detected by the acceleration sensor exceeds a predetermined threshold value The fatigue determination means preferably stops determining whether or not the user is fatigued.
 このようにすれば、例えば、頸部を動かしている場合(すなわち、頸部を動かしたことにより筋電量が一時的に大きくなった場合や体動ノイズが大きい場合)には、疲労判定が停止されるため、体動に起因する誤検出を防止でき、より精度よく疲労を検出することが可能となる。 In this way, for example, when the neck is moved (that is, when the myoelectric amount is temporarily increased due to the movement of the neck or the body motion noise is large), fatigue determination is stopped. Therefore, erroneous detection due to body movement can be prevented, and fatigue can be detected with higher accuracy.
 本発明に係る疲労検出装置では、複数の生体用電極が、一つの共通電極と、該共通電極とそれぞれに対を成す1以上の生体用電極とを有することが好ましい。 In the fatigue detection device according to the present invention, it is preferable that the plurality of biomedical electrodes have one common electrode and one or more biomedical electrodes each paired with the common electrode.
 例えば、3つ以上の生体用電極を有する場合には、生体用電極を組み合わせて使用することにより、複数の生体信号(筋電成分)のうち、処理により適した生体信号を選択して用いることができ、筋電成分の検出精度を上げることが可能となる。また、一方の生体用電極対を用いてバックグランドノイズを検出することにより、該バックグランドノイズを除去することもできる。よって、疲労判定の精度をより向上することが可能となる。 For example, in the case of having three or more biological electrodes, a biological signal that is more suitable for processing is selected from a plurality of biological signals (myoelectric components) by using the biological electrodes in combination. It is possible to improve the detection accuracy of the myoelectric component. Further, the background noise can be removed by detecting the background noise using one of the biological electrode pairs. Therefore, the accuracy of fatigue determination can be further improved.
 本発明に係る疲労検出装置では、上記複数の生体用電極の内、少なくとも一対の生体用電極が、心電信号を含む生体信号を測定するための生体用電極であることが好ましい。 In the fatigue detection device according to the present invention, it is preferable that at least a pair of the living body electrodes among the plurality of living body electrodes is a living body electrode for measuring a living body signal including an electrocardiographic signal.
 このようにすれば、心電信号検出用の電極を専用に設けることなく、心電信号も同時に計測することができる。そのため、疲労の有無と併せて、例えば、心拍数や心拍間隔等の生体情報を同時に計測することが可能となる。 In this way, it is possible to simultaneously measure an electrocardiogram signal without providing a dedicated electrode for detecting the electrocardiogram signal. Therefore, together with the presence or absence of fatigue, for example, biological information such as heart rate and heart rate interval can be measured simultaneously.
 本発明に係る疲労検出装置では、上記装着部材がネックバンドであることが好ましい。このようにすれば、ネックバンド型の疲労検出装置を頸部に装着するだけで、簡便に疲労を検出することができる。 In the fatigue detection device according to the present invention, the mounting member is preferably a neckband. In this way, it is possible to simply detect fatigue by simply attaching a neckband type fatigue detection device to the neck.
 また、本発明に係る疲労検出装置では、上記装着部材が、柔軟性を有し略帯状に形成された装着本体部と、該装着本体部に取り付けられた粘着性を有する粘着部とを有し、該粘着部が、少なくとも一部が導電性を有し、上記生体用電極として機能することが好ましい。 Further, in the fatigue detection device according to the present invention, the mounting member has a mounting body portion that is flexible and formed in a substantially band shape, and an adhesive portion that has adhesiveness attached to the mounting body portion. The adhesive part preferably has at least a part of conductivity and functions as the biological electrode.
 この場合には、柔軟性を有し略帯状に形成された装着本体部に粘着性を有する粘着部が取り付けられているため、粘着部の粘着性を利用して装着本体部(装着部材)を頸部に貼り付ける(装着する)ことができる。また、粘着部の少なくとも一部が導電性を有し生体用電極として機能するため、装着部材を頸部に貼り付ける(装着する)だけで、簡便に疲労を検出することができる。 In this case, since the adhesive portion having adhesiveness is attached to the flexible mounting body portion that is formed in a substantially strip shape, the mounting body portion (mounting member) is attached using the adhesiveness of the adhesive portion. Can be attached (attached) to the neck. In addition, since at least a part of the adhesive portion has conductivity and functions as a biological electrode, it is possible to easily detect fatigue by simply attaching (attaching) the attachment member to the neck portion.
 本発明に係る疲労検出装置は、疲労状態であると判定された場合に、使用者に疲労状態であることを提示する提示手段をさらに備えることが好ましい。 It is preferable that the fatigue detection device according to the present invention further includes a presentation unit that presents the user with the fatigue state when it is determined that the fatigue state is present.
 このようにすれば、疲労していることを使用者に知らせることができ、使用者が過度の疲労状態になることを予防することが可能となる。 In this way, it is possible to inform the user that they are tired, and it is possible to prevent the user from becoming overly fatigued.
 本発明に係る疲労検出装置は、疲労状態であると判定された場合に、頸部を加温する加温手段をさらに備えることが好ましい。 It is preferable that the fatigue detection apparatus according to the present invention further includes a heating means for heating the neck when it is determined that the fatigue state is present.
 このようにすれば、使用者が疲労しているときに、頸部を加温することにより、疲労を緩和・低減することが可能となる。 In this way, when the user is tired, the fatigue can be reduced or reduced by heating the neck.
 本発明に係る疲労検出装置では、上記加温手段が、生体用電極の温度を上げることにより、頸部を加温することが好ましい。 In the fatigue detection device according to the present invention, it is preferable that the heating means warms the neck by raising the temperature of the living body electrode.
 この場合、生体用電極を介して使用者の頸部を加温するため、別途加温部を設ける必要がない。また、生体用電極は使用者の頸部に接触しているため、確実に、かつ効率よく頸部を加温することが可能となる。 In this case, since the user's neck is heated via the living body electrode, there is no need to provide a separate heating portion. In addition, since the biomedical electrode is in contact with the user's neck, the neck can be reliably and efficiently heated.
 本発明によれば、疲労している否かをより安定的に、かつ精度よく検出することが可能となる。 According to the present invention, it is possible to detect whether or not the user is tired more stably and accurately.
第1実施形態に係る疲労検出装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the fatigue detection apparatus which concerns on 1st Embodiment. 第1実施形態に係る疲労検出装置を構成するセンサ部の構成(枠体を開いた状態)を示す斜視図である。It is a perspective view which shows the structure (state which opened the frame) of the sensor part which comprises the fatigue detection apparatus which concerns on 1st Embodiment. 第1実施形態に係る疲労検出装置を構成するセンサ部の構成(枠体を閉じた状態)を示す図である。It is a figure which shows the structure (state which closed the frame) of the sensor part which comprises the fatigue detection apparatus which concerns on 1st Embodiment. 図3のIV-IV線に沿った断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. 第1実施形態に係る疲労検出装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the fatigue detection apparatus which concerns on 1st Embodiment. 筋電信号を含む場合と、含まない場合それぞれの生体信号の周波数スペクトルの一例を示す図である。It is a figure which shows an example of the frequency spectrum of each biological signal when not including and including a myoelectric signal. 第1実施形態に係る疲労検出装置による疲労検出処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the fatigue detection process by the fatigue detection apparatus which concerns on 1st Embodiment. 第2実施形態に係る疲労検出装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the fatigue detection apparatus which concerns on 2nd Embodiment. 第3実施形態に係る疲労検出装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the fatigue detection apparatus which concerns on 3rd Embodiment. (a)は第3実施形態に係る疲労検出装置の外観を示す上面図である。(b)は第3実施形態に係る疲労検出装置の外観を示す底面図である。(A) is a top view which shows the external appearance of the fatigue detection apparatus which concerns on 3rd Embodiment. (B) is a bottom view which shows the external appearance of the fatigue detection apparatus which concerns on 3rd Embodiment.
 以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、図中、同一又は相当部分には同一符号を用いることとする。また、各図において、同一要素には同一符号を付して重複する説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same reference numerals are used for the same or corresponding parts. Moreover, in each figure, the same code | symbol is attached | subjected to the same element and the overlapping description is abbreviate | omitted.
 (第1実施形態)
 まず、図1~図5を併せて用いて、第1実施形態に係る疲労検出装置1の構成について説明する。図1は、第1実施形態に係る疲労検出装置1の外観を示す斜視図である。図2は、疲労検出装置1を構成するセンサ部12の構成(枠体12bを開いた状態)を示す斜視図である。図3は、センサ部12の構成(枠体12bを閉じた状態)を示す図である。図4は、図3のIV-IV線に沿った断面図である。また、図5は、疲労検出装置1の機能構成を示すブロック図である。
(First embodiment)
First, the configuration of the fatigue detection device 1 according to the first embodiment will be described with reference to FIGS. FIG. 1 is a perspective view illustrating an appearance of a fatigue detection device 1 according to the first embodiment. FIG. 2 is a perspective view showing the configuration of the sensor unit 12 (the state in which the frame body 12b is opened) constituting the fatigue detection device 1. FIG. 3 is a diagram illustrating a configuration of the sensor unit 12 (a state in which the frame body 12b is closed). 4 is a cross-sectional view taken along line IV-IV in FIG. FIG. 5 is a block diagram showing a functional configuration of the fatigue detection apparatus 1.
 疲労検出装置1は、頸部(首筋)に装着することにより疲労を検出するものであり(図1参照)、使用者の頸部の後ろ側から頸部を挟むように弾性的に装着される概略U字形のネックバンド(装着部材)13と、ネックバンド13の両端に配設されることで使用者の頸部の両側に接触する一対のセンサ部11,12とを備えている。 The fatigue detection device 1 detects fatigue by being mounted on the neck (neck muscle) (see FIG. 1), and is elastically mounted so as to sandwich the neck from the back side of the user's neck. A substantially U-shaped neckband (mounting member) 13 and a pair of sensor parts 11 and 12 that are disposed at both ends of the neckband 13 and come into contact with both sides of the neck of the user are provided.
 ネックバンド13は、使用者の頸部の周方向に沿って装着可能なものである。すなわち、ネックバンド13は、図1に示されるように、使用者の一方の頸部側方から他方の頸部側方まで、使用者の頸部後方に沿って装着される。より具体的には、ネックバンド13は、例えば、帯状の板バネと、この板バネを覆うゴムチューブを有して構成されている。そのため、ネックバンド13は、内側に縮むように付勢されており、使用者がネックバンド13を装着した場合に、ネックバンド13(センサ部11,12)が使用者の頸部に接触した状態で保持される。 The neckband 13 can be worn along the circumferential direction of the user's neck. That is, as shown in FIG. 1, the neckband 13 is worn along the back of the user's neck from one side of the user's neck to the other side of the neck. More specifically, the neck band 13 includes, for example, a belt-shaped plate spring and a rubber tube that covers the plate spring. Therefore, the neckband 13 is biased so as to shrink inward, and when the user wears the neckband 13, the neckband 13 (sensor units 11 and 12) is in contact with the neck of the user. Retained.
 なお、ゴムチューブとしては、生体適合性を有するものを用いることが好ましい。また、ゴムチューブに代えて例えばプラスチックからなるチューブを用いることもできる。ゴムチューブの中には、双方のセンサ部11,12を電気的に接続するケーブルも配線されている。ここで、ケーブルは、ノイズを低減するために、同軸とすることが望ましい。 In addition, it is preferable to use what has biocompatibility as a rubber tube. Moreover, it can replace with a rubber tube and can use the tube which consists of plastics, for example. In the rubber tube, a cable for electrically connecting both sensor units 11 and 12 is also wired. Here, it is desirable that the cable be coaxial in order to reduce noise.
 センサ部12(11)は、主として、矩形の平面状に形成された導電布15と、導電布15がセットされる本体部12aと、本体部12aとの間で導電布15の周縁を挟んで押さえる枠体12bと、枠体12bと対向する本体部12aの表面に設けられた入力端子14とを有している。本実施形態では、導電布15を、筋電信号や心電信号を含む生体信号を検出するための生体用電極として用いる。また、一方のセンサ部12は、上記構成に加えて、光電脈波センサ20を有している。なお、光電脈波センサ20に代えて又は加えて、圧電脈波センサ、酸素飽和度センサ、音センサ(マイク)、変位センサ、温度センサ、湿度センサなどを用いる構成としてもよい。 The sensor unit 12 (11) mainly sandwiches the periphery of the conductive cloth 15 between the conductive cloth 15 formed in a rectangular flat shape, the main body 12a on which the conductive cloth 15 is set, and the main body 12a. It has the frame 12b to hold down, and the input terminal 14 provided on the surface of the main body 12a facing the frame 12b. In this embodiment, the conductive cloth 15 is used as a biological electrode for detecting a biological signal including a myoelectric signal or an electrocardiographic signal. Moreover, one sensor part 12 has the photoelectric pulse wave sensor 20 in addition to the said structure. Instead of or in addition to the photoelectric pulse wave sensor 20, a piezoelectric pulse wave sensor, an oxygen saturation sensor, a sound sensor (microphone), a displacement sensor, a temperature sensor, a humidity sensor, or the like may be used.
 また、ネックバンド13のセンサ部11(又はセンサ部12)には、被験者の頸部の加速度(すなわち、頸部を動かしているか否か)を検出する加速度センサ22が取り付けられている。なお、加速度センサに代えて、例えば、ジャイロセンサ等を用いてもよい。 Also, an acceleration sensor 22 that detects the acceleration of the subject's neck (that is, whether or not the neck is moving) is attached to the sensor unit 11 (or sensor unit 12) of the neckband 13. For example, a gyro sensor or the like may be used instead of the acceleration sensor.
 生体用電極となる導電布15は、導電性を有する導電糸からなる織物又は編物が用いられる。本実施形態では、導電布15を、矩形の平面状に形成した。ここで、導電糸としては、例えば、樹脂糸の表面をAgなどでめっきしたものや、カーボンナノチューブ・コーティングを施したもの、PEDOTなどの導電性高分子をコーティングしたものを用いることができる。また、導電性を有する導電性ポリマー糸を用いてもよい。なお、導電布15は、ほつれなどを防止するため、四辺を折り返してミシンで縫うなどの端処理や、レーザーや超音波を用いた裁断溶着処理を施すことが好ましい。 As the conductive cloth 15 serving as the living body electrode, a woven fabric or a knitted fabric made of conductive yarn having conductivity is used. In this embodiment, the conductive cloth 15 is formed in a rectangular planar shape. Here, as the conductive yarn, for example, a resin yarn whose surface is plated with Ag, a carbon nanotube-coated one, or a conductive polymer such as PEDOT may be used. Moreover, you may use the conductive polymer thread | yarn which has electroconductivity. In order to prevent fraying and the like, the conductive cloth 15 is preferably subjected to end treatment such as folding four sides and sewing with a sewing machine, or cutting and welding treatment using laser or ultrasonic waves.
 本体部12aは、例えば樹脂などにより、薄い略かまぼこ型、すなわち、短手方向に沿った断面で見た場合に、頸部と接触する面が円弧を描くように形成されている。これにより、装着感が向上される。また、本体部12aは、枠体12bと対向する部分(枠体12bが嵌る領域)が、枠体12bの厚み分(又は厚み分よりも深く)凹んで形成されている。 The main body 12a is formed of, for example, a resin so that it has a thin, approximately semi-cylindrical shape, that is, a surface in contact with the neck when drawing in a cross section along the short side. Thereby, a feeling of wearing is improved. Further, the main body portion 12a is formed such that a portion facing the frame body 12b (a region in which the frame body 12b fits) is recessed by the thickness of the frame body 12b (or deeper than the thickness).
 枠体12bは、矩形に形成されている。また、枠体12bは、その寸法(外縁)が、導電布15よりも若干大きくなるように形成されている。なお、導電布15の形状、および枠体12bの形状は矩形には限られない。 The frame body 12b is formed in a rectangular shape. Further, the frame body 12 b is formed so that its dimension (outer edge) is slightly larger than that of the conductive cloth 15. The shape of the conductive cloth 15 and the shape of the frame body 12b are not limited to a rectangle.
 本体部12aの一方の側面には、ヒンジ部が設けられており、このヒンジ部を支点として枠体12bが開閉可能とされている。一方、本体部12aの他方の側面には2つの溝部12cが形成されている。そして、この溝部12cに、枠体12bに形成された爪部(図示省略)が嵌ることにより枠体12bが本体部12aに固定(ロック)される。すなわち、図2に示されるように、枠体12bを開いて、導電布15を本体部12aにセットした後、枠体12bを閉じてロックすることにより、簡易に導電布15をセット(又は交換)することができる。なお、枠体12bは、取り外しできるように構成されていてもよい。 A hinge portion is provided on one side surface of the main body portion 12a, and the frame body 12b can be opened and closed with the hinge portion as a fulcrum. On the other hand, two groove portions 12c are formed on the other side surface of the main body portion 12a. The frame 12b is fixed (locked) to the main body 12a by fitting a claw (not shown) formed in the frame 12b into the groove 12c. That is, as shown in FIG. 2, the frame 12b is opened, the conductive cloth 15 is set on the main body 12a, and then the frame 12b is closed and locked to easily set (or replace) the conductive cloth 15. )can do. The frame body 12b may be configured to be removable.
 本体部12aの枠体12bと対向する位置には、入力端子14が配設されている。本体部12aと枠体12bとで導電布15が挟み込まれることにより、導電布15と入力端子14とが電気的に接続される。なお、導電布(生体用電極)15は、入力端子14を介して、後述する信号処理部31と接続される。 An input terminal 14 is disposed at a position facing the frame 12b of the main body 12a. When the conductive cloth 15 is sandwiched between the main body 12a and the frame body 12b, the conductive cloth 15 and the input terminal 14 are electrically connected. The conductive cloth (biological electrode) 15 is connected to a signal processing unit 31 described later via the input terminal 14.
 上述したように、本体部12aは、枠体12bと対向する部分(枠体12bが嵌る領域)が、枠体12bの厚み分(又は厚み分よりも深く)凹んで形成されている。そのため、導電布15が本体部12aにセットされた状態では、枠体12bは、図4に示されるように、その表面が、導電布15の中央部の表面と略同一か、又は導電布15の中央部よりも凹んだ(低い)位置で固定される。これにより、頸部に装着されたときに、頸部に導電布15を安定して接触させることができる。 As described above, the main body portion 12a is formed such that the portion facing the frame body 12b (the area in which the frame body 12b fits) is recessed by the thickness of the frame body 12b (or deeper than the thickness). Therefore, in a state where the conductive cloth 15 is set on the main body portion 12a, the surface of the frame body 12b is substantially the same as the surface of the central portion of the conductive cloth 15 as shown in FIG. It is fixed at a position that is recessed (lower) than the central portion of. Thereby, when it mounts | wears with a neck part, the conductive cloth 15 can be made to contact a neck part stably.
 本体部12aの内面(頸部と接触する面)には、導電布(生体用電極)15の近傍に、発光素子201および受光素子202を有し、光電脈波信号を検出する光電脈波センサ20が配設されている。光電脈波センサ20は、血中ヘモグロビンの吸光特性を利用して、光電脈波信号を光学的に検出するセンサである。 A photoelectric pulse wave sensor that has a light emitting element 201 and a light receiving element 202 in the vicinity of the conductive cloth (biological electrode) 15 on the inner surface (the surface in contact with the neck portion) of the main body 12a and detects a photoelectric pulse wave signal. 20 is arranged. The photoelectric pulse wave sensor 20 is a sensor that optically detects a photoelectric pulse wave signal using the light absorption characteristic of blood hemoglobin.
 発光素子201は、後述する信号処理部31の駆動部350から出力されるパルス状の駆動信号に応じて発光する。発光素子201としては、例えば、LED、VCSEL(Vertical Cavity Surface Emitting LASER)、又は共振器型LED等を用いることができる。なお、駆動部350は、発光素子201を駆動するパルス状の駆動信号を生成して出力する。 The light emitting element 201 emits light according to a pulsed drive signal output from a drive unit 350 of the signal processing unit 31 described later. As the light emitting element 201, for example, an LED, a VCSEL (Vertical Cavity Surface Emitting LASER), or a resonator type LED can be used. Note that the driving unit 350 generates and outputs a pulsed driving signal for driving the light emitting element 201.
 受光素子202は、発光素子201から照射され、頸部を透過して、又は頸部に反射して入射される光の強さに応じた検出信号を出力する。受光素子202としては、例えば、フォトダイオードやフォトトランジスタ等が好適に用いられる。本実施形態では、受光素子202として、フォトダイオードを用いた。 The light receiving element 202 outputs a detection signal corresponding to the intensity of light irradiated from the light emitting element 201 and transmitted through the neck or reflected from the neck. As the light receiving element 202, for example, a photodiode or a phototransistor is preferably used. In the present embodiment, a photodiode is used as the light receiving element 202.
 受光素子202は、信号処理部31に接続されており、受光素子202で得られた検出信号(光電脈波信号)は信号処理部31に出力される。 The light receiving element 202 is connected to the signal processing unit 31, and a detection signal (photoelectric pulse wave signal) obtained by the light receiving element 202 is output to the signal processing unit 31.
 また、一方のセンサ部11(本体部11a)の内部には、光電脈波センサ20や、信号処理部31、無線通信モジュール60などに電力を供給するバッテリ(図示省略)が収納されている。他方のセンサ部12(本体部12a)の内部には、信号処理部31、及び、疲労情報(疲労判定結果)や、計測した筋電信号、心電信号、光電脈波信号、脈波伝播時間などの生体情報を外部の機器に送信する無線通信モジュール60が収納されている。 In addition, a battery (not shown) that supplies power to the photoelectric pulse wave sensor 20, the signal processing unit 31, the wireless communication module 60, and the like is accommodated in one sensor unit 11 (main body unit 11a). The other sensor unit 12 (main body unit 12a) includes a signal processing unit 31, fatigue information (fatigue determination result), a measured myoelectric signal, an electrocardiogram signal, a photoelectric pulse wave signal, and a pulse wave propagation time. A wireless communication module 60 that transmits biometric information such as such to an external device is housed.
 一対の生体用電極(導電布)15,15、及び光電脈波センサ20それぞれは、信号処理部31に接続されており、検出された生体信号(筋電信号、心電信号)、及び光電脈波信号が信号処理部31に入力される。また、加速度センサ22も、信号処理部31に接続されており、検出された加速度信号が信号処理部31に入力される。 The pair of biological electrodes (conductive cloth) 15 and 15 and the photoelectric pulse wave sensor 20 are each connected to a signal processing unit 31, and detected biological signals (myoelectric signals and electrocardiographic signals) and photoelectric pulses. A wave signal is input to the signal processing unit 31. The acceleration sensor 22 is also connected to the signal processing unit 31, and the detected acceleration signal is input to the signal processing unit 31.
 信号処理部31は、主として、筋電信号および心電信号を含む生体信号から筋電成分(又は筋電成分の大きさを示す指標値)を取得し、その筋電成分に応じて疲労状態の判定を行う(詳細は後述する)。また、信号処理部31は、入力された心電信号を処理して、心拍数や心拍間隔などを計測するとともに、入力された光電脈波信号を処理して、脈拍数や脈拍間隔などを計測する。さらに、信号処理部31は、検出した心電信号(心電波)のR波ピークと第1の光電脈波信号(脈波)のピークとの時間差から脈波伝播時間を計測する。 The signal processing unit 31 mainly acquires a myoelectric component (or an index value indicating the magnitude of the myoelectric component) from a biological signal including the myoelectric signal and the electrocardiographic signal, and is in a fatigue state according to the myoelectric component. A determination is made (details will be described later). In addition, the signal processing unit 31 processes the input electrocardiogram signal to measure the heart rate and the heart rate interval, and also processes the input photoelectric pulse wave signal to measure the pulse rate and the pulse interval. To do. Further, the signal processing unit 31 measures the pulse wave propagation time from the time difference between the detected R wave peak of the electrocardiogram signal (electrocardiogram) and the peak of the first photoelectric pulse wave signal (pulse wave).
 信号処理部31は、生体信号増幅部311、脈波信号増幅部321、第1信号処理部310、第2信号処理部320、ピーク検出部316,326、ピーク補正部318,328、脈波伝播時間計測部330、周波数解析部331、筋電成分取得部332、及び疲労判定部333を有している。また、上記第1信号処理部310は、アナログフィルタ312、A/Dコンバータ313、ディジタルフィルタ314を有している。一方、第2信号処理部320は、アナログフィルタ322、A/Dコンバータ323、ディジタルフィルタ324、2階微分処理部325を有している。 The signal processing unit 31 includes a biological signal amplification unit 311, a pulse wave signal amplification unit 321, a first signal processing unit 310, a second signal processing unit 320, peak detection units 316 and 326, peak correction units 318 and 328, and pulse wave propagation. It has a time measurement unit 330, a frequency analysis unit 331, a myoelectric component acquisition unit 332, and a fatigue determination unit 333. The first signal processing unit 310 includes an analog filter 312, an A / D converter 313, and a digital filter 314. On the other hand, the second signal processing unit 320 includes an analog filter 322, an A / D converter 323, a digital filter 324, and a second-order differentiation processing unit 325.
 ここで、上述した各部の内、ディジタルフィルタ314,324、2階微分処理部325、ピーク検出部316,326、ピーク補正部318,328、脈波伝播時間計測部330、周波数解析部331、筋電成分取得部332、及び疲労判定部333は、演算処理を行うCPU、該CPUに各処理を実行させるためのプログラムやデータを記憶するROM、及び演算結果などの各種データを一時的に記憶するRAM等により構成されている。すなわち、ROMに記憶されているプログラムがCPUによって実行されることにより、上記各部の機能が実現される。 Here, among the above-described units, the digital filter 314, 324, the second-order differentiation processing unit 325, the peak detection unit 316, 326, the peak correction unit 318, 328, the pulse wave propagation time measurement unit 330, the frequency analysis unit 331, the muscle The electric component acquisition unit 332 and the fatigue determination unit 333 temporarily store various data such as a CPU that performs arithmetic processing, a ROM that stores programs and data for causing the CPU to execute each processing, and arithmetic results. It is comprised by RAM etc. That is, the functions of the above-described units are realized by executing the program stored in the ROM by the CPU.
 生体信号増幅部311は、例えばオペアンプ等を用いた増幅器により構成され、一対の生体用電極(導電布)15,15により検出された生体信号(筋電信号及び心電信号)を増幅する。生体信号増幅部311で増幅された生体信号(筋電信号及び心電信号)は、第1信号処理部310に出力される。同様に、脈波信号増幅部321は、例えばオペアンプ等を用いた増幅器により構成され、光電脈波センサ20により検出された光電脈波信号を増幅する。脈波信号増幅部321で増幅された光電脈波信号は、第2信号処理部320に出力される。 The biological signal amplifier 311 is configured by an amplifier using an operational amplifier, for example, and amplifies the biological signals (myoelectric signal and electrocardiographic signal) detected by the pair of biological electrodes (conductive cloth) 15 and 15. The biological signal (myoelectric signal and electrocardiographic signal) amplified by the biological signal amplification unit 311 is output to the first signal processing unit 310. Similarly, the pulse wave signal amplifying unit 321 is configured by an amplifier using, for example, an operational amplifier, and amplifies the photoelectric pulse wave signal detected by the photoelectric pulse wave sensor 20. The photoelectric pulse wave signal amplified by the pulse wave signal amplification unit 321 is output to the second signal processing unit 320.
 第1信号処理部310は、上述したように、アナログフィルタ312、A/Dコンバータ313、ディジタルフィルタ314を有しており、生体信号増幅部311で増幅された生体信号(筋電信号及び心電信号)に対して、フィルタリング処理を施すことにより拍動成分(筋電成分を含む)を抽出する。 As described above, the first signal processing unit 310 includes the analog filter 312, the A / D converter 313, and the digital filter 314, and the biological signal (myoelectric signal and electrocardiogram) amplified by the biological signal amplification unit 311. The pulsation component (including the myoelectric component) is extracted by performing a filtering process on No.).
 また、第2信号処理部320は、上述したように、アナログフィルタ322、A/Dコンバータ323、ディジタルフィルタ324、2階微分処理部325を有しており、脈波信号増幅部321で増幅された光電脈波信号に対して、フィルタリング処理及び2階微分処理を施すことにより拍動成分を抽出する。 Further, as described above, the second signal processing unit 320 includes the analog filter 322, the A / D converter 323, the digital filter 324, and the second-order differentiation processing unit 325, and is amplified by the pulse wave signal amplification unit 321. The pulsating component is extracted by subjecting the photoelectric pulse wave signal to filtering processing and second-order differentiation processing.
 アナログフィルタ312,322、及び、ディジタルフィルタ314,324は、心電信号(筋電信号を含む)、光電脈波信号を特徴づける周波数以外の成分(ノイズ)を除去し、S/Nを向上するためのフィルタリングを行う。より詳細には、心電信号(筋電信号を含む)は一般的に0.1から200Hzの周波数成分、光電脈波信号は0.1から数十Hz付近の周波数成分が支配的であるため、ローパスフィルタやバンドパスフィルタ等のアナログフィルタ312,322、及びディジタルフィルタ314,324を用いてフィルタリング処理を施し、上記周波数範囲の信号のみを選択的に通過させることによりS/Nを向上する。 The analog filters 312, 322 and the digital filters 314, 324 remove components (noise) other than the frequency characterizing the electrocardiogram signal (including myoelectric signal) and the photoelectric pulse wave signal, and improve the S / N. For filtering. More specifically, an ECG signal (including myoelectric signal) is generally dominated by a frequency component of 0.1 to 200 Hz, and a photoelectric pulse wave signal is dominated by a frequency component of 0.1 to several tens of Hz. Filtering is performed using analog filters 312, 322 such as a low-pass filter and a band-pass filter, and digital filters 314, 324, and the S / N is improved by selectively passing only signals in the frequency range.
 なお、拍動成分の抽出のみを目的とする場合には、ノイズ耐性を向上するために通過周波数範囲をより狭くして拍動成分以外の成分を遮断してもよい。また、アナログフィルタ312,322とディジタルフィルタ314,324は必ずしも両方備える必要はなく、アナログフィルタ312,322とディジタルフィルタ314,324のいずれか一方のみを設ける構成としてもよい。なお、アナログフィルタ312、ディジタルフィルタ314によりフィルタリング処理が施された心電信号は、ピーク検出部316へ出力される。同様に、アナログフィルタ322、ディジタルフィルタ324によりフィルタリング処理が施された光電脈波信号は、2階微分処理部325へ出力される。 In the case where only the extraction of pulsation components is intended, in order to improve noise resistance, components other than the pulsation component may be blocked by narrowing the pass frequency range. The analog filters 312, 322 and the digital filters 314, 324 are not necessarily provided, and only one of the analog filters 312, 322 and the digital filters 314, 324 may be provided. Note that the electrocardiogram signal subjected to the filtering process by the analog filter 312 and the digital filter 314 is output to the peak detection unit 316. Similarly, the photoelectric pulse wave signal subjected to the filtering process by the analog filter 322 and the digital filter 324 is output to the second-order differentiation processing unit 325.
 2階微分処理部325は、光電脈波信号を2階微分することにより、2階微分脈波(加速度脈波)信号を取得する。取得された加速度脈波信号は、ピーク検出部326へ出力される。なお、光電脈波のピーク(立ち上がり点)は変化が明確でなく検出しにくいことがあるため、加速度脈波に変換してピーク検出を行うことが好ましいが、2階微分処理部325を設けることは必須ではなく、省略した構成としてもよい。 The second-order differentiation processing unit 325 obtains a second-order differential pulse wave (acceleration pulse wave) signal by second-order differentiation of the photoelectric pulse wave signal. The acquired acceleration pulse wave signal is output to the peak detector 326. The peak (rising point) of the photoelectric pulse wave is not clearly changed and may be difficult to detect. Therefore, it is preferable to detect the peak by converting it to an acceleration pulse wave. However, a second-order differential processing unit 325 is provided. Is not essential and may be omitted.
 ピーク検出部316は、第1信号処理部310により信号処理が施された(拍動成分が抽出された)心電信号のピーク(R波)を検出する。一方、ピーク検出部326は、第2信号処理部320によりフィルタリング処理が施された光電脈波信号(加速度脈波)のピークを検出する。なお、ピーク検出部316、及びピーク検出部326それぞれは、心拍間隔、及び脈拍間隔の正常範囲内においてピーク検出を行い、検出したすべてのピークについて、ピーク時間、ピーク振幅等の情報をRAM等に保存する。 The peak detection unit 316 detects the peak (R wave) of the electrocardiogram signal that has been subjected to signal processing by the first signal processing unit 310 (the pulsating component has been extracted). On the other hand, the peak detection unit 326 detects the peak of the photoelectric pulse wave signal (acceleration pulse wave) subjected to the filtering process by the second signal processing unit 320. Each of the peak detection unit 316 and the peak detection unit 326 performs peak detection within the normal range of the heartbeat interval and the pulse interval, and information on the peak time, peak amplitude, and the like for all detected peaks is stored in the RAM or the like. save.
 ピーク補正部318は、第1信号処理部310(アナログフィルタ312、ディジタルフィルタ314)における心電信号の遅延時間を求める。ピーク補正部318は、求めた心電信号の遅延時間に基づいて、ピーク検出部316により検出された心電信号のピークを補正する。同様に、ピーク補正部328は、第2信号処理部320(アナログフィルタ322、ディジタルフィルタ324、2階微分処理部325)における光電脈波信号の遅延時間を求める。ピーク補正部328は、求めた光電脈波信号の遅延時間に基づいて、ピーク検出部326により検出された光電脈波信号(加速度脈波信号)のピークを補正する。補正後の心電信号のピーク、及び補正後の光電脈波信号(加速度脈波)のピークは、脈波伝播時間計測部330に出力される。なお、ピーク補正部318を設けることは必須ではなく、省略した構成としてもよい。 The peak correction unit 318 obtains the delay time of the electrocardiogram signal in the first signal processing unit 310 (analog filter 312 and digital filter 314). The peak correction unit 318 corrects the peak of the electrocardiogram signal detected by the peak detection unit 316 based on the obtained delay time of the electrocardiogram signal. Similarly, the peak correction unit 328 obtains the delay time of the photoelectric pulse wave signal in the second signal processing unit 320 (analog filter 322, digital filter 324, second-order differentiation processing unit 325). The peak correction unit 328 corrects the peak of the photoelectric pulse wave signal (acceleration pulse wave signal) detected by the peak detection unit 326 based on the obtained delay time of the photoelectric pulse wave signal. The corrected peak of the electrocardiogram signal and the corrected peak of the photoelectric pulse wave signal (acceleration pulse wave) are output to the pulse wave propagation time measurement unit 330. Note that providing the peak correction unit 318 is not essential and may be omitted.
 脈波伝播時間計測部330は、ピーク補正部318により補正された心電信号のR波ピークと、ピーク補正部328により補正された光電脈波信号(加速度脈波)のピークとの間隔(時間差)から脈波伝播時間を求める。 The pulse wave propagation time measurement unit 330 is configured to detect an interval (time difference) between the R wave peak of the electrocardiogram signal corrected by the peak correction unit 318 and the peak of the photoelectric pulse wave signal (acceleration pulse wave) corrected by the peak correction unit 328. ) To determine the pulse wave propagation time.
 脈波伝播時間計測部330は、脈波伝播時間に加えて、例えば、心電信号から心拍数、心拍間隔、心拍間隔変化率等も算出する。同様に、脈波伝播時間計測部330は、光電脈波信号(加速度脈波)から脈拍数、脈拍間隔、脈拍間隔変化率等も算出する。 The pulse wave propagation time measurement unit 330 calculates, for example, a heart rate, a heartbeat interval, a heartbeat interval change rate, and the like from an electrocardiogram signal in addition to the pulse wave propagation time. Similarly, the pulse wave propagation time measurement unit 330 calculates a pulse rate, a pulse interval, a pulse interval change rate, and the like from the photoelectric pulse wave signal (acceleration pulse wave).
 周波数解析部331は、一対の生体用電極15,15により取得され、信号処理部310によりフィルタリング処理が施された生体信号(筋電信号および心電信号を含む)を周波数解析して周波数スペクトルを取得する。すなわち、周波数解析部331は、請求の範囲に記載の周波数解析手段として機能する。なお、周波数解析の手法としては、例えば、高速フーリエ変換法(FFT法)、最大エントロピー法(MEM法)、ウェーブレット法等が挙げられる。 The frequency analysis unit 331 performs frequency analysis on a biological signal (including myoelectric signal and electrocardiographic signal) obtained by the pair of biological electrodes 15 and 15 and filtered by the signal processing unit 310 to obtain a frequency spectrum. get. That is, the frequency analysis unit 331 functions as a frequency analysis unit described in the claims. Examples of the frequency analysis method include a fast Fourier transform method (FFT method), a maximum entropy method (MEM method), and a wavelet method.
 ここで、筋電信号を含む場合と、含まない場合それぞれの生体信号の周波数スペクトルの一例を図6に示す。図6の横軸は周波数(Hz)であり、縦軸は信号強度である。また、図6では、筋電信号を含まない生体信号(すなわち心電信号のみ)の周波数スペクトルを実線で、筋電信号を含む生体信号の周波数スペクトルを破線で、それぞれ示した。 Here, FIG. 6 shows an example of the frequency spectrum of each biological signal when the myoelectric signal is included and when it is not included. The horizontal axis in FIG. 6 is frequency (Hz), and the vertical axis is signal intensity. In FIG. 6, the frequency spectrum of a biological signal that does not include a myoelectric signal (that is, only the electrocardiographic signal) is indicated by a solid line, and the frequency spectrum of the biological signal that includes a myoelectric signal is indicated by a broken line.
 図6に実線で示されるように、心電の周波数成分が特に多いのは0.25から30Hzである。心電波形の周波数成分は心拍数に対応する周波数成分があるため、心拍数(40から240拍/分)に対応する0.25から1.5Hzの範囲にあるピークとその高調波のピークをもつ。また波形自体の周波数成分もあるが、それも30Hz以下の成分が多い。なお、光電脈波の周波数成分が特に多い周波数帯も心電と同様であるが、心電よりさらに高周波側が少ない。一方、筋電信号は広い周波数成分を持っており、100Hz以上の信号の割合も多い。なお、図6において、筋電信号を含む生体信号の周波数スペクトルが、40Hz以上でなだらかに減衰しているのは、LPFの影響によるものである。 As shown by the solid line in FIG. 6, the frequency component of the electrocardiogram is particularly large from 0.25 to 30 Hz. Since the frequency component of the electrocardiogram waveform has a frequency component corresponding to the heart rate, a peak in the range of 0.25 to 1.5 Hz corresponding to the heart rate (40 to 240 beats / min) and a peak of its harmonics are included. Have. There are also frequency components of the waveform itself, but there are many components below 30 Hz. Note that the frequency band where the frequency component of the photoelectric pulse wave is particularly large is the same as that of the electrocardiogram, but the frequency side is lower than that of the electrocardiogram. On the other hand, myoelectric signals have a wide frequency component, and there are many ratios of signals of 100 Hz or higher. In FIG. 6, the frequency spectrum of the biological signal including the myoelectric signal is gently attenuated at 40 Hz or more because of the influence of the LPF.
 なお、周波数解析部331は、加速度センサ22により検出された頸部の加速度が所定のしきい値以上の場合(すなわち、頸部が動き、体動ノイズが大きくなると予想される場合)には、上述した生体信号(筋電信号及び心電信号)の周波数解析を停止する。すなわち、体動がある場合、ノイズがのりやすく、求められる筋電成分の精度が低下するおそれが有ることと、体を動かしている場合には疲労とは関係なく頸部(首)に力が入ることがあるため、加速度センサ22で使用者の動きが少ない状態を判定し、そのような状態が所定の時間継続したときにのみ、生体信号の周波数解析を行い、その周波数解析結果(周波数スペクトル)を用いて疲労状態の判定を行う。なお、周波数解析部331により取得された周波数解析結果(周波数スペクトル)は、筋電成分取得部332に出力される。 The frequency analysis unit 331 determines that the acceleration of the neck detected by the acceleration sensor 22 is equal to or greater than a predetermined threshold (that is, when the neck moves and body motion noise is expected to increase). The frequency analysis of the above-described biological signals (myoelectric signal and electrocardiographic signal) is stopped. In other words, when there is body movement, noise is likely to be applied, and the accuracy of the required myoelectric component may be reduced. When the body is moving, force is applied to the neck (neck) regardless of fatigue. Therefore, the acceleration sensor 22 determines a state in which the user has little movement, and performs a frequency analysis of the biological signal only when such a state continues for a predetermined time, and the frequency analysis result (frequency spectrum) ) To determine the fatigue state. The frequency analysis result (frequency spectrum) acquired by the frequency analysis unit 331 is output to the myoelectric component acquisition unit 332.
 上述したように、筋電信号は広い周波数成分を持っているのに対し、心電信号は30Hz以下の成分が多い(図6参照)。そのため、筋電成分取得部332は、心電成分に対する筋電成分の割合が低い(筋電成分に対して心電成分が多い)第1の周波数帯域(例えば10から20Hz)における第1の周波数スペクトルのパワー値、及び、第1の周波数帯域よりも筋電成分の割合が高い(筋電成分に対して心電成分が少ない)第2の周波数帯域(例えば30から50Hz)における第2の周波数スペクトルのパワー値を求める。そして、筋電成分取得部332は、第1の周波数スペクトルのパワー値に対する、第2の周波数スペクトルのパワー値の比率(以下「筋電成分比率」ともいう)を取得する。すなわち、筋電成分取得部332は、請求の範囲に記載の筋電成分取得手段として機能する。 As described above, the myoelectric signal has a wide frequency component, whereas the electrocardiographic signal has many components of 30 Hz or less (see FIG. 6). Therefore, the myoelectric component acquisition unit 332 has the first frequency in the first frequency band (for example, 10 to 20 Hz) in which the ratio of the myoelectric component to the electrocardiographic component is low (the electrocardiographic component is large relative to the myoelectric component). The power value of the spectrum and the second frequency in the second frequency band (for example, 30 to 50 Hz) in which the ratio of the myoelectric component is higher than the first frequency band (the electrocardiographic component is smaller than the myoelectric component) Obtain the power value of the spectrum. Then, the myoelectric component acquisition unit 332 acquires the ratio of the power value of the second frequency spectrum to the power value of the first frequency spectrum (hereinafter also referred to as “myoelectric component ratio”). That is, the myoelectric component acquisition unit 332 functions as the myoelectric component acquisition unit described in the claims.
 なお、筋電成分取得部332は、加速度センサ22により検出された頸部の加速度が所定のしきい値以上の場合(すなわち、頸部が動き、体動ノイズが大きくなると予想される場合)には、上述した筋電成分比率の取得を停止する。筋電成分取得部332により取得された筋電成分比率は、疲労判定部333に出力される。 The myoelectric component acquisition unit 332 is used when the acceleration of the neck detected by the acceleration sensor 22 is equal to or higher than a predetermined threshold (that is, when the neck moves and body motion noise is expected to increase). Stops acquiring the above-described myoelectric component ratio. The myoelectric component ratio acquired by the myoelectric component acquisition unit 332 is output to the fatigue determination unit 333.
 疲労判定部333は、筋電成分取得部332により取得された、筋電成分比率が予め定められた所定の基準値(疲労基準値)以上である場合に、疲労していると判定する。すなわち、疲労判定部333は、請求の範囲に記載の疲労判定手段として機能する。その際に、疲労判定部333は、所定時間内における、筋電成分比率が基準値以上の状態の時間の割合が、所定の割合以上になった場合、又は(及び)、筋電成分比率が基準値以上の状態が、所定時間(例えば数分)以上継続した場合に、疲労していると判定する。すなわち、一次的に頸部に力が入ることは疲労状態でなくても起こり得るため、測定時間が短い(例えば数分)と、筋電成分比率が高くても疲労ではない場合が有り得る。そのため、筋電成分比率データを累積させて疲労判定することで、疲労判定精度を向上させる。なお、疲労判定部333は、加速度センサ22により検出された頸部の加速度が所定のしきい値以上である場合(すなわち、頸部が動き、体動ノイズが大きくなると予想される場合)には、疲労判定を停止する。 The fatigue determination unit 333 determines that the user is fatigued when the myoelectric component ratio acquired by the myoelectric component acquisition unit 332 is equal to or greater than a predetermined reference value (fatigue reference value). That is, the fatigue determination unit 333 functions as fatigue determination means described in the claims. At that time, the fatigue determination unit 333 determines that the ratio of the time during which the myoelectric component ratio is equal to or higher than the reference value within the predetermined time is equal to or higher than the predetermined ratio, or (and) the myoelectric component ratio is When the state above the reference value continues for a predetermined time (for example, several minutes) or more, it is determined that the user is tired. That is, primary force may be applied to the cervix even in a non-fatigue state. Therefore, if the measurement time is short (for example, several minutes), there may be no fatigue even if the myoelectric component ratio is high. Therefore, fatigue determination accuracy is improved by accumulating myoelectric component ratio data and determining fatigue. It should be noted that the fatigue determination unit 333 determines that the neck acceleration detected by the acceleration sensor 22 is equal to or greater than a predetermined threshold (that is, when the neck moves and body motion noise is expected to increase). Stop fatigue assessment.
 疲労判定部333により疲労状態であると判定された場合に、疲労検出装置1は、使用者に対して疲労状態であることを、スピーカ(又はブザー)70を通して、アラーム音や音声で知らせる(警告する)。すなわち、スピーカ(又はブザー)70は、請求の範囲に記載の提示手段として機能する。また、疲労検出装置1は、疲労状態であると判定された場合に、無線通信モジュール60を介して、例えば、PC(パーソナルコンピュータ)や、ディスプレイを有する携帯型音楽プレーヤ、又はスマートフォン等に、疲労情報(疲労判定結果)を送信し、表示する機能を有している。なお、取得された疲労情報(疲労判定結果)等のデータは、例えば、上述したRAMなどに蓄積して記憶しておき、計測が終了した後に、PC等に出力して確認するようにしてもよい。さらに、疲労判定を、無線で接続されたPCやスマートフォン等で行う構成とすることもできる。 When the fatigue determination unit 333 determines that the user is in a fatigued state, the fatigue detection device 1 informs the user that the user is in a fatigued state through a speaker (or buzzer) 70 (warning). To do). That is, the speaker (or buzzer) 70 functions as the presenting means described in the claims. In addition, when it is determined that the fatigue detection device 1 is in a fatigue state, the fatigue detection device 1 is connected to a PC (personal computer), a portable music player having a display, a smartphone, or the like via the wireless communication module 60. It has a function to transmit and display information (fatigue judgment result). Note that the acquired data such as fatigue information (fatigue judgment result) is stored and stored in, for example, the RAM described above, and output to a PC or the like for confirmation after the measurement is completed. Good. Furthermore, it can also be set as the structure which performs fatigue determination with PC, a smart phone, etc. which were connected by radio | wireless.
 頸部加温部80は、疲労判定部333により使用者が疲労していると判定された場合に、頸部(首周り)を温めることにより、頸部の温度を上げる。すなわち、頸部加温部80は、請求の範囲に記載の加温手段として機能する。 The neck heating unit 80 increases the temperature of the neck by heating the neck (around the neck) when the fatigue determination unit 333 determines that the user is tired. That is, the neck heating unit 80 functions as a heating unit described in the claims.
 より具体的には、頸部加温部80は、使用者が疲労していると判定された場合に、頸部を温める。その際に、頸部加温部80は、筋電成分比率と上記基準値との偏差が大きくなるほど、頸部の温度が高くなるように出力を調節する。一方、頸部加温部80は、使用者が疲労していないと判定されたときには、そのときの状態を保持するか、又は加温の程度を弱くする。 More specifically, the neck heating unit 80 warms the neck when it is determined that the user is tired. At that time, the neck heating unit 80 adjusts the output so that the temperature of the neck increases as the deviation between the myoelectric component ratio and the reference value increases. On the other hand, when it is determined that the user is not fatigued, the neck heating unit 80 maintains the state at that time or weakens the degree of heating.
 頸部加温部80による加温方法としては、例えば、電気ヒータ等を利用する方法を挙げることができる。より詳細には、例えば、生体用電極15、絶縁層、電気ヒータの高抵抗層が順番に積層された構成とすることが好ましい。この場合、電気ヒータの高抵抗層に電流が流されることによって発生した熱が、絶縁層、生体用電極15を介して、使用者の頸部に伝えられる。なお、加温は、使用者が不快に感じないよう、温度調節に制限を設けたり、又は、温度センサを設けてフィードバックをかけるようにすることが好ましい。 Examples of the heating method by the neck heating unit 80 include a method using an electric heater or the like. More specifically, for example, it is preferable that the bioelectrode 15, the insulating layer, and the high resistance layer of the electric heater are sequentially stacked. In this case, the heat generated by the current flowing through the high resistance layer of the electric heater is transmitted to the user's neck through the insulating layer and the living body electrode 15. In addition, it is preferable to provide a temperature control by limiting the temperature adjustment or providing a temperature sensor so that the user does not feel uncomfortable.
 次に、図7を参照しつつ、疲労検出装置1の動作について説明する。図7は、疲労検出装置1による疲労検出処理の処理手順を示すフローチャートである。図7に示される処理は、主として信号処理ユニット31によって、所定のタイミングで繰り返して実行される。 Next, the operation of the fatigue detection device 1 will be described with reference to FIG. FIG. 7 is a flowchart showing a processing procedure of fatigue detection processing by the fatigue detection device 1. The processing shown in FIG. 7 is repeatedly executed mainly at a predetermined timing by the signal processing unit 31.
 疲労検出装置1が頸部に装着され、センサ部11,12(生体用電極15,15及び光電脈波センサ20)が頸部に接触すると、ステップS100では、一対の生体用電極15,15により検出された生体信号(筋電信号、心電信号)、及び光電脈波センサ20により検出された光電脈波信号が読み込まれる。続くステップS102では、ステップS100で読み込まれた生体信号(筋電信号、心電信号)、及び光電脈波信号に対してフィルタリング処理が施される。また、光電脈波信号が2階微分されることにより加速度脈波が取得される。 When the fatigue detection device 1 is attached to the neck and the sensor units 11 and 12 (the biomedical electrodes 15 and 15 and the photoelectric pulse wave sensor 20) come into contact with the neck, the pair of biomedical electrodes 15 and 15 are used in step S100. The detected biological signal (myoelectric signal, electrocardiographic signal) and the photoelectric pulse wave signal detected by the photoelectric pulse wave sensor 20 are read. In subsequent step S102, a filtering process is performed on the biological signal (myoelectric signal, electrocardiogram signal) and the photoelectric pulse wave signal read in step S100. Further, the acceleration pulse wave is obtained by second-order differentiation of the photoelectric pulse wave signal.
 続いて、ステップS104では、例えば、光電脈波センサ20の受光量(光電脈波信号の振幅)に基づいて、疲労検出装置1の装着状態の判定が行われる。すなわち、光電脈波センサ22では、発光素子201から照射され、生体を透過して/生体で反射されて戻ってきた光を受光素子202で受けて、その光量の変動を光電脈波信号として検出するため、装置が適切に装着されていない状態では信号光の受光量が減少する。そこで、ステップS104では、光電脈波信号の振幅が所定値以上であるか否かについての判断が行われる。ここで、光電脈波信号の振幅が所定値以上である場合には、ステップS108に処理が移行する。一方、光電脈波信号の振幅が所定値未満のときには、装着エラーと判定され、ステップS106において、装着エラー情報(ワーニング情報)が出力される。その後、本処理から一旦抜ける。なお、上述した光電脈波センサ20の受光量(光電脈波信号の振幅)を用いる方法に代えて、例えば、心電波形のベースラインの安定度やノイズ周波数成分比率を用いる方法等を採用することもできる。 Subsequently, in step S104, for example, the wearing state of the fatigue detection device 1 is determined based on the amount of light received by the photoelectric pulse wave sensor 20 (amplitude of the photoelectric pulse wave signal). That is, the photoelectric pulse wave sensor 22 receives the light irradiated from the light emitting element 201, transmitted through the living body / reflected by the living body, and returned by the light receiving element 202, and detects the fluctuation of the light amount as a photoelectric pulse wave signal. Therefore, the amount of received signal light decreases when the device is not properly mounted. Therefore, in step S104, a determination is made as to whether the amplitude of the photoelectric pulse wave signal is greater than or equal to a predetermined value. If the amplitude of the photoelectric pulse wave signal is greater than or equal to a predetermined value, the process proceeds to step S108. On the other hand, when the amplitude of the photoelectric pulse wave signal is less than the predetermined value, it is determined as a mounting error, and mounting error information (warning information) is output in step S106. Thereafter, the process is temporarily exited. Instead of the method using the received light amount (amplitude of the photoelectric pulse wave signal) of the photoelectric pulse wave sensor 20 described above, for example, a method using the baseline stability of the electrocardiogram waveform or the noise frequency component ratio is adopted. You can also
 ステップS108では、心電信号、光電脈波信号(加速度脈波信号)のピークが検出される。そして、検出された心電信号のR波ピークと、光電脈波信号(加速度脈波)のピークとの時間差(ピーク時間差)が算出される。 In step S108, the peak of the electrocardiogram signal and photoelectric pulse wave signal (acceleration pulse wave signal) is detected. Then, the time difference (peak time difference) between the R wave peak of the detected electrocardiogram signal and the peak of the photoelectric pulse wave signal (acceleration pulse wave) is calculated.
 次に、ステップS110では、心電信号のR波ピーク及び光電脈波信号(加速度脈波)のピークそれぞれの遅延時間(ずれ量)が求められるとともに、求められた遅延時間に基づいて、心電信号のR波ピークと光電脈波信号(加速度脈波)のピークとの時間差(ピーク時間差)が補正される。 Next, in step S110, the delay time (shift amount) of each of the R wave peak of the electrocardiogram signal and the peak of the photoelectric pulse wave signal (acceleration pulse wave) is obtained, and based on the obtained delay time, The time difference (peak time difference) between the R wave peak of the signal and the peak of the photoelectric pulse wave signal (acceleration pulse wave) is corrected.
 続いて、ステップS112では、ステップS110で補正されたピーク時間差が所定時間(例えば0.01sec.)以上か否かについての判断が行われる。ここで、ピーク時間差が所定時間以上の場合には、ステップS116に処理が移行する。一方、ピーク時間差が所定未満のときには、ステップS114においてエラー情報(ノイズ判定)が出力された後、本処理から一旦抜ける。 Subsequently, in step S112, it is determined whether or not the peak time difference corrected in step S110 is a predetermined time (for example, 0.01 sec.) Or more. If the peak time difference is greater than or equal to the predetermined time, the process proceeds to step S116. On the other hand, when the peak time difference is less than the predetermined value, error information (noise determination) is output in step S114, and then the process is temporarily exited.
 ステップS116では、ステップS108で算出されたピーク時間差が脈波伝播時間として確定されるとともに、脈波間隔が取得される。 In step S116, the peak time difference calculated in step S108 is determined as the pulse wave propagation time, and the pulse wave interval is acquired.
 次に、ステップS118では、加速度センサ22により検出された頸部の加速度が所定のしきい値以上であるか否か(すなわち、頸部が動き、体動ノイズが大きくなるか否か)についての判断が行われる。ここで、頸部の加速度が所定のしきい値未満の場合には、ステップS122に処理が移行する。一方、頸部の加速度が所定のしきい値以上のときには、ステップS120において、体動エラー情報が出力された後、本処理から一旦抜ける。 Next, in step S118, whether or not the neck acceleration detected by the acceleration sensor 22 is equal to or greater than a predetermined threshold (that is, whether or not the neck moves and body motion noise increases). Judgment is made. If the neck acceleration is less than the predetermined threshold value, the process proceeds to step S122. On the other hand, when the cervical acceleration is equal to or greater than the predetermined threshold value, body motion error information is output in step S120, and then the process is temporarily exited.
 ステップS122では、筋電信号および心電信号を含む生体信号が周波数解析されて周波数スペクトルが取得される。続いて、ステップS124では、心電成分に対する筋電成分の割合が低い(筋電成分に対して心電成分が多い)第1の周波数帯域(例えば10Hz以上20Hz以下)における第1の周波数スペクトルのパワー値に対する、筋電成分割合が高い(筋電成分に対して心電成分が少ない)第2の周波数帯域(例えば30Hz以上50Hz以下)における第2の周波数スペクトルのパワー値の比率(筋電成分比率)が取得される。そして、ステップS126では、ステップS124で取得された筋電成分比率が時系列的に記憶される。 In step S122, the biological signal including the myoelectric signal and the electrocardiographic signal is subjected to frequency analysis to obtain a frequency spectrum. Subsequently, in step S124, the first frequency spectrum in the first frequency band (for example, 10 Hz or more and 20 Hz or less) in which the ratio of the myoelectric component to the electrocardiographic component is low (the electrocardiographic component is large relative to the myoelectric component). Ratio of the power value of the second frequency spectrum in the second frequency band (for example, 30 Hz to 50 Hz) with a high myoelectric component ratio to the power value (the electrocardiographic component is less than the myoelectric component) (myoelectric component) Ratio) is acquired. In step S126, the myoelectric component ratio acquired in step S124 is stored in time series.
 ステップS128では、取得された筋電成分比率が基準値以上であり、かつその状態の時間割合が所定の割合以上であるか否か、又は(及び)、筋電成分比率が基準値以上の状態が所定時間以上継続したか否かについての判断が行われる。ここで、当該条件が満足された場合には、疲労していると判定され、ステップS130に処理が移行する。一方、当該条件が満足されないときには、疲労していないと判定され、ステップS132に処理が移行する。 In step S128, whether or not the acquired myoelectric component ratio is greater than or equal to a reference value and the time ratio of the state is greater than or equal to a predetermined ratio, or (and) the myoelectric component ratio is greater than or equal to a reference value A determination is made as to whether or not has continued for a predetermined time or more. Here, when the said conditions are satisfied, it determines with having been fatigued and a process transfers to step S130. On the other hand, when the condition is not satisfied, it is determined that the user is not fatigued, and the process proceeds to step S132.
 疲労していると判定された場合、ステップS130では、アラーム音や音声によって、使用者に対して疲労状態であることが知らされる(警告される)。また、頸部加温部80が駆動されて頸部が温められることにより、使用者の疲労が緩和・低減される。その後、本処理から一旦抜ける。 If it is determined that the user is tired, in step S130, the user is informed (warned) of the fatigue state by an alarm sound or voice. Further, the neck warming unit 80 is driven to warm the neck, thereby relieving and reducing user fatigue. Thereafter, the process is temporarily exited.
 一方、疲労していないと判定された場合、ステップS132では、頸部加温部80の稼働状態が変更されることなく維持される(又は稼働状態が緩和される)。その後、本処理から一旦抜ける。 On the other hand, when it is determined that the user is not fatigued, in step S132, the operating state of the neck heating unit 80 is maintained without being changed (or the operating state is relaxed). Thereafter, the process is temporarily exited.
 以上、詳細に説明したように、本実施形態によれば、使用者の頸部から、筋電信号を含む生体信号が取得されて、周波数解析され、その周波数解析結果(周波数スペクトル)から、筋電成分割合が低い(筋電成分に対して心電成分が多い)第1の周波数帯域(例えば10Hz以上20Hz以下)における第1の周波数スペクトルのパワー値に対する、筋電成分割合が高い(筋電成分に対して心電成分が少ない)第2の周波数帯域(例えば30Hz以上50Hz以下)における第2の周波数スペクトルのパワー値の比率(筋電成分比率)が取得される。そして、筋電成分比率と基準値とが比較されて、疲労しているか否かが判定される。ここで、筋電成分が大きくなるほど、筋電成分比率が大きくなるため、筋電成分を精度よく求めることができる。このように、頸部から取得される筋電信号を利用し、かつ、その周波数解析結果(周波数スペクトル)から求められた筋電成分比率に基づいて疲労しているか否かを判定するようにしたため、ノイズに強く、疲労している否かをより安定的に、かつ精度よく検出することが可能となる。また、この場合、ネックバンド型の疲労検出装置1を頸部に装着するだけで、簡便に疲労を評価することができる。 As described above in detail, according to the present embodiment, a biological signal including a myoelectric signal is acquired from the user's neck, subjected to frequency analysis, and from the frequency analysis result (frequency spectrum), The myoelectric component ratio is high with respect to the power value of the first frequency spectrum in the first frequency band (for example, 10 Hz or more and 20 Hz or less) in which the electric component ratio is low (the electrocardiographic component is greater than the myoelectric component). The ratio (myoelectric component ratio) of the power value of the second frequency spectrum in the second frequency band (for example, 30 Hz to 50 Hz) having a smaller electrocardiographic component than the component is acquired. Then, the myoelectric component ratio and the reference value are compared to determine whether or not the user is fatigued. Here, since the myoelectric component ratio increases as the myoelectric component increases, the myoelectric component can be accurately obtained. As described above, the use of the myoelectric signal obtained from the neck and the determination of whether or not the user is tired based on the myoelectric component ratio obtained from the frequency analysis result (frequency spectrum). In addition, it is possible to detect whether or not it is resistant to noise and fatigue more stably and accurately. In this case, it is possible to simply evaluate fatigue simply by attaching the neckband type fatigue detection device 1 to the neck.
 また、本実施形態によれば、筋電成分比率が基準値以上である状態の時間割合が所定割合以上になった場合、又は(及び)、筋電成分比率が基準値以上の状態が所定時間以上継続した場合に、疲労していると判定される。よって、例えば、一時的な緊張状態にあるような場合(一時的に頸部に力が入ったとき)に疲労していると判定してしまうことを防止することができ、疲労検出の精度を向上させることが可能となる。 Further, according to the present embodiment, when the time ratio when the myoelectric component ratio is equal to or higher than the reference value becomes equal to or higher than the predetermined ratio, or (and) when the myoelectric component ratio is equal to or higher than the reference value, the predetermined time If it continues for the above, it is determined that the user is tired. Therefore, for example, when it is in a temporary tension state (when a force is temporarily applied to the neck), it can be prevented from being determined to be tired, and the accuracy of fatigue detection can be improved. It becomes possible to improve.
 本実施形態によれば、例えば、頸部を動かしている場合(すなわち、頸部を動かしたことにより筋電量が一時的に大きくなった場合や体動ノイズが大きい場合)には、疲労判定が停止されるため、体動に起因する誤検出を防止でき、より精度よく疲労を検出することが可能となる。 According to the present embodiment, for example, when the neck is moved (that is, when the myoelectric amount temporarily increases due to the movement of the neck or the body motion noise is large), the fatigue determination is performed. Since it is stopped, erroneous detection due to body movement can be prevented, and fatigue can be detected more accurately.
 本実施形態によれば、心電信号検出用の電極を専用に設けることなく、心電信号も同時に計測することができる。そのため、疲労の有無と併せて、例えば、心拍数や心拍間隔等の生体情報を同時に計測することが可能となる。 According to the present embodiment, an electrocardiogram signal can be simultaneously measured without providing a dedicated electrode for detecting an electrocardiogram signal. Therefore, together with the presence or absence of fatigue, for example, biological information such as heart rate and heart rate interval can be measured simultaneously.
 本実施形態によれば、疲労状態であると判定された場合に、使用者に対して、疲労状態であることが、アラーム音や音声で知らされる(警告される)。そのため、使用者に疲労していることを知らせることができ、使用者が過度の疲労状態になることを予防することが可能となる。 According to this embodiment, when it is determined that the user is in a fatigued state, the user is informed (warned) of the fatigued state by an alarm sound or voice. Therefore, it is possible to inform the user that the user is tired, and it is possible to prevent the user from being in an excessive fatigue state.
 本実施形態によれば、使用者が疲労しているときに、頸部(首筋)が加温されるため、疲労を緩和/低減することが可能となる。また、その際に、本実施形態によれば、生体用電極15を介して使用者の頸部が加温されるため、別途、加温部を設ける必要がない。また、生体用電極15は使用者の頸部に接触しているため、確実に、かつ効率よく頸部を加温することが可能となる。 According to the present embodiment, when the user is fatigued, the neck (neck) is heated, so that fatigue can be reduced / reduced. At this time, according to the present embodiment, since the neck of the user is heated via the living body electrode 15, it is not necessary to provide a separate heating portion. In addition, since the biomedical electrode 15 is in contact with the neck of the user, the neck can be reliably and efficiently heated.
 (第2実施形態)
 ところで、頸部で測定される生体信号(心電信号、筋電信号)の振幅には個人差がある。ここで、上述した第1実施形態に係る疲労検出装置1では、2つの(一対の)生体用電極15を有する構成としたが、判定精度をより向上させるために、3つ(二対)以上の生体用電極15を有する構成とすることも好ましい。
(Second Embodiment)
By the way, there are individual differences in the amplitude of the biological signal (electrocardiogram signal, myoelectric signal) measured at the neck. Here, the fatigue detection device 1 according to the first embodiment described above has two (a pair of) biological electrodes 15, but in order to further improve the determination accuracy, three (two pairs) or more. It is also preferable to have a configuration having the living body electrode 15.
 そこで、次に、図8を用いて、第2実施形態に係る疲労検出装置2について説明する。ここでは、上述した第1実施形態と同一・同様な構成については説明を簡略化又は省略し、異なる点を主に説明する。図8は、疲労検出装置2の機能構成を示すブロック図である。なお、図8において第1実施形態と同一又は同等の構成要素については同一の符号が付されている。 Therefore, next, the fatigue detection device 2 according to the second embodiment will be described with reference to FIG. Here, the description of the same or similar configuration as in the first embodiment will be simplified or omitted, and different points will be mainly described. FIG. 8 is a block diagram illustrating a functional configuration of the fatigue detection device 2. In FIG. 8, the same or equivalent components as those in the first embodiment are denoted by the same reference numerals.
 疲労検出装置2は、3つの生体用電極15A,15B,15C、並びに生体信号増幅部311、信号処理部310を有している点、及び、周波数解析部331に代えて周波数解析部331Bを備えている点で、上述した第1実施形態に係る疲労検出装置1と異なっている。その他の構成は、上述した疲労検出装置1と同一又は同様であるので、ここでは詳細な説明を省略する。 The fatigue detection device 2 includes three biological electrodes 15A, 15B, and 15C, a biological signal amplification unit 311, and a signal processing unit 310, and a frequency analysis unit 331B instead of the frequency analysis unit 331. It differs from the fatigue detection apparatus 1 which concerns on 1st Embodiment mentioned above. Other configurations are the same as or similar to those of the fatigue detection device 1 described above, and thus detailed description thereof is omitted here.
 3つの生体用電極15A,15B,15Cは、一つの共通電極15Aと、該共通電極15Aとそれぞれに対を成す2つの生体用電極15B,15Cとから構成されている。ここで、生体用電極15Bは、生体用電極15Cの近傍に配設することが好ましい。そして、共通電極15Aと生体用電極15Bとの組み合わせ、及び、共通電極15Aと生体用電極15Cとの組み合わせそれぞれにより、生体信号(筋電信号及び心電信号)が検出される。 The three biological electrodes 15A, 15B and 15C are composed of one common electrode 15A and two biological electrodes 15B and 15C which are paired with the common electrode 15A. Here, the biological electrode 15B is preferably disposed in the vicinity of the biological electrode 15C. A biological signal (myoelectric signal and electrocardiographic signal) is detected by the combination of the common electrode 15A and the biological electrode 15B and the combination of the common electrode 15A and the biological electrode 15C.
 周波数解析部331Bは、共通電極15Aと生体用電極15Bとの組み合わせで検出された生体信号(筋電信号及び心電信号)と、共通電極15Aと生体用電極15Cとの組み合わせで検出された生体信号(筋電信号及び心電信号)とを比較し、より疲労判定処理に適した方(例えば振幅が大きい方)の生体信号(筋電信号及び心電信号)を選択して周波数解析を行う。筋電成分取得部332、疲労判定部333は、上述したものと同一であるので、ここでは詳細な説明を省略する。 The frequency analysis unit 331B detects a biological signal (myoelectric signal and electrocardiographic signal) detected by a combination of the common electrode 15A and the living body electrode 15B and a living body detected by a combination of the common electrode 15A and the living body electrode 15C. Compare the signal (myoelectric signal and electrocardiographic signal) and select the biological signal (myoelectric signal and electrocardiographic signal) that is more suitable for fatigue determination (for example, the one with larger amplitude) and perform frequency analysis . Since the myoelectric component acquisition unit 332 and the fatigue determination unit 333 are the same as those described above, detailed description thereof is omitted here.
 本実施形態によれば、3つの生体用電極15A,15B,15Cを設けているため、生体用電極15A,15B,15Cを組み合わせて使用することにより、2つの生体信号のうち、処理により適した生体信号を選択して用いることができ、筋電成分の検出精度を向上させることが可能となる。また、一方の生体用電極対を用いてバックグランドノイズを検出し、該バックグランドノイズを除去することもできる。よって、疲労判定の精度をより向上することが可能となる。 According to the present embodiment, since three biological electrodes 15A, 15B, and 15C are provided, by using the biological electrodes 15A, 15B, and 15C in combination, the two biological signals are more suitable for processing. A biological signal can be selected and used, and the myoelectric component detection accuracy can be improved. In addition, it is possible to detect background noise using one of the biological electrode pairs and remove the background noise. Therefore, the accuracy of fatigue determination can be further improved.
 上記実施形態では、装着部材として、使用者の頸部の後ろ側から頸部を挟むように装着する略U字形のネックバンド13を用いたが、ネックバンド以外の形態を採用してもよい。 In the above-described embodiment, the substantially U-shaped neckband 13 that is mounted so as to sandwich the neck from the back side of the user's neck is used as the mounting member, but forms other than the neckband may be employed.
 そこで、次に、図9及び図10を併せて用いて、第3実施形態に係る疲労検出装置3について説明する。ここでは、上述した第1実施形態と同一・同様な構成については説明を簡略化又は省略し、異なる点を主に説明する。図9は、疲労検出装置3の外観を示す斜視図である。また、図10(a)は疲労検出装置の外観を示す上面図であり、(b)は疲労検出装置3の外観を示す底面図である。なお、図9、図10において第1実施形態と同一又は同等の構成要素については同一の符号が付されている。 Therefore, next, the fatigue detection device 3 according to the third embodiment will be described with reference to FIGS. 9 and 10 together. Here, the description of the same or similar configuration as in the first embodiment will be simplified or omitted, and different points will be mainly described. FIG. 9 is a perspective view showing the appearance of the fatigue detection device 3. FIG. 10A is a top view showing the appearance of the fatigue detection device, and FIG. 10B is a bottom view showing the appearance of the fatigue detection device 3. 9 and 10, the same reference numerals are given to the same or equivalent components as those in the first embodiment.
 疲労検出装置3は、装着部材として、柔軟性を有し、略帯状に形成された装着本体部16と、該装着本体部16の裏面側の両端部に取り付けられた、粘着性を有する2つの粘着部17,17とを有している。 The fatigue detection device 3 is a flexible mounting body part 16 having a substantially strip shape as a mounting member, and two adhesive parts attached to both ends on the back side of the mounting body part 16. It has adhesive portions 17 and 17.
 各粘着部17は、粘着性に加えて導電性を有し、上述した生体用電極としても機能する(以下、粘着部17を「生体用電極17」ということもある)。粘着部(生体用電極)17としては、例えば生体用ゲル電極等が好適に用いられる。なお、粘着部17は、その一部のみが導電性を有する構成としてもよい。 Each adhesive part 17 has conductivity in addition to adhesiveness, and also functions as the above-described biological electrode (hereinafter, the adhesive part 17 may also be referred to as “biological electrode 17”). As the adhesive part (bioelectrode) 17, for example, a biogel electrode is suitably used. Note that only a part of the adhesive portion 17 may be conductive.
 装着本体部16の表面側の中央部には、光電脈波センサ20、信号処理部31、無線通信モジュール60、及びバッテリ等が収納された検出本体部18が取り付けられている。ここで、一対の生体用電極17,17は、検出本体部18(信号処理部31)と電気的に接続されている。また、装着本体部16には、光電脈波センサ20と対応する位置に孔が形成されており、その孔に光電脈波センサ20が嵌め込まれるようにして取り付けられている。すなわち、装着本体部16(疲労検出装置3)が頸部に装着されたときに、光電脈波センサ20(発光素子201、受光素子202)が頸部皮膚に当接されるように取り付けられている。 The detection main body 18 in which the photoelectric pulse wave sensor 20, the signal processing unit 31, the wireless communication module 60, the battery, and the like are housed is attached to the central portion on the surface side of the mounting main body portion 16. Here, the pair of biological electrodes 17 and 17 are electrically connected to the detection main body 18 (signal processing unit 31). Further, a hole is formed in the mounting main body 16 at a position corresponding to the photoelectric pulse wave sensor 20, and the photoelectric pulse wave sensor 20 is fitted into the hole. That is, when the mounting body 16 (fatigue detection device 3) is mounted on the neck, the photoelectric pulse wave sensor 20 (the light emitting element 201 and the light receiving element 202) is mounted so as to come into contact with the neck skin. Yes.
 なお、本実施形態では、光電脈波センサ20を、粘着部17が取り付けられている領域外に配設した(図10(b)参照)が、光電脈波センサ20を、粘着部17の取付領域内に配設してもよい。その際には、粘着部17に孔を形成し、その孔から光電脈波センサ20を突出させるように配設してもよいし、粘着部17に孔を形成する代わりに、粘着部17に光を透過する透明な粘着材を用い、その透明な粘着材を通して光電脈波信号を取得するようにしてもよい。なお、光電脈波センサ20、信号処理部31、無線通信モジュール60等の詳細については、上述した通りであるので、ここでは詳細な説明を省略する。 In this embodiment, the photoelectric pulse wave sensor 20 is disposed outside the region where the adhesive portion 17 is attached (see FIG. 10B), but the photoelectric pulse wave sensor 20 is attached to the adhesive portion 17. You may arrange | position in an area | region. In that case, a hole may be formed in the adhesive portion 17 so that the photoelectric pulse wave sensor 20 protrudes from the hole, or instead of forming a hole in the adhesive portion 17, A transparent adhesive material that transmits light may be used, and a photoelectric pulse wave signal may be acquired through the transparent adhesive material. The details of the photoelectric pulse wave sensor 20, the signal processing unit 31, the wireless communication module 60, and the like are as described above, and thus detailed description thereof is omitted here.
 本実施形態によれば、柔軟性を有し略帯状に形成された装着本体部16に粘着性を有する粘着部17が取り付けられているため、粘着部17の粘着性を利用して装着本体部16を頸部に貼り付ける(装着する)ことができる。また、粘着部17が導電性を有し生体用電極として機能するため、装着本体部16を頸部に貼り付ける(装着する)だけで、簡便に疲労を検出することができる。 According to the present embodiment, since the adhesive portion 17 having adhesiveness is attached to the mounting body portion 16 having flexibility and formed in a substantially strip shape, the mounting body portion is utilized by using the adhesiveness of the adhesive portion 17. 16 can be affixed (attached) to the neck. Moreover, since the adhesion part 17 has electroconductivity and functions as a biological electrode, it is possible to easily detect fatigue simply by attaching (attaching) the attachment main body part 16 to the neck part.
 以上、本発明の実施の形態について説明したが、本発明は、上記実施形態に限定されるものではなく種々の変形が可能である。例えば、上記実施形態では、疲労検出装置1,2が、光電脈波センサ20を備えていたが、光電脈波センサ20を備えていない構成としてもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made. For example, in the above-described embodiment, the fatigue detection devices 1 and 2 include the photoelectric pulse wave sensor 20, but may be configured not to include the photoelectric pulse wave sensor 20.
 上記実施形態では、ネックバンド13の両端に一対のセンサ部11,12を取り付けたが、センサ部11,12は、必ずしもネックバンドの両端に取り付ける必要はない。また、ネックバンド13は、アジャスト機構などによってその長さを調節できるように構成してもよい。 In the above embodiment, the pair of sensor portions 11 and 12 are attached to both ends of the neckband 13, but the sensor portions 11 and 12 are not necessarily attached to both ends of the neckband. Further, the neckband 13 may be configured such that its length can be adjusted by an adjusting mechanism or the like.
 上記実施形態では、生体用電極15として導電布を用いたが、導電布に代えて、例えば、さびにくく、かつアレルギーの少ない金属(ステンレス、Au等)や、銀-塩化銀、導電ゴム等を用いてもよい。その際には、皮膚に接触する生体用電極の面積が大きくなるよう設計することが好ましい。 In the above embodiment, a conductive cloth is used as the living body electrode 15, but instead of the conductive cloth, for example, a metal (stainless steel, Au, etc.), silver-silver chloride, conductive rubber, etc. It may be used. In that case, it is preferable to design so that the area of the biomedical electrode in contact with the skin is increased.
 上記実施形態では、生体用電極15の数が2つ又は3つの場合を例にして説明したが、生体用電極15の数は、4つ以上であってもよい。 In the above embodiment, the case where the number of the biological electrodes 15 is two or three has been described as an example, but the number of the biological electrodes 15 may be four or more.
 上記実施形態では、生体信号から取得された筋電成分比率に基づいて疲労状態を判定したが、筋電成分量に基づいて疲労状態を判定する構成とすることもできる。より具体的には、筋電成分取得部332が、周波数解析部331による周波数解析結果(周波数スペクトル)に対して、例えば30Hz以上50Hz以下の周波数帯域(すなわち、心電成分が少なく筋電成分が多い周波数帯域)の周波数スペクトルを積分して筋電成分量を求め、疲労判定部333が、求められた筋電成分量が基準値以上である場合に、疲労していると判定する構成としてもよい。なお、その際に、所定時間内における、筋電成分量が基準値以上の状態の時間の割合が、所定の割合以上になった場合、又は(及び)、筋電成分量が基準値以上の状態が、所定時間以上継続した場合に、疲労していると判定することが好ましい。このように、周波数解析結果(周波数スペクトル)から求められる筋電成分量に基づいて疲労状態を判定するようにしても、疲労している否かをより安定的に、かつ精度よく検出することができる。 In the above embodiment, the fatigue state is determined based on the myoelectric component ratio acquired from the biological signal, but the fatigue state may be determined based on the myoelectric component amount. More specifically, the myoelectric component acquisition unit 332 performs, for example, a frequency band of 30 Hz to 50 Hz with respect to the frequency analysis result (frequency spectrum) by the frequency analysis unit 331 (that is, the myoelectric component is low and has a small electrocardiographic component). A configuration in which the myoelectric component amount is obtained by integrating the frequency spectrum of a large frequency band) and the fatigue determination unit 333 determines that the user is tired when the obtained myoelectric component amount is equal to or greater than a reference value. Good. At that time, if the ratio of the time during which the myoelectric component amount is equal to or higher than the reference value within the predetermined time is equal to or higher than the predetermined ratio, or (and) the myoelectric component amount is equal to or higher than the reference value. It is preferable to determine that the state is fatigued when the state continues for a predetermined time or more. Thus, even if the fatigue state is determined based on the amount of myoelectric component obtained from the frequency analysis result (frequency spectrum), it is possible to more stably and accurately detect whether or not the user is fatigued. it can.
 上記第3実施形態では、使用者の一方の頸部側方から他方の頸部側方まで、使用者の頸部後方に沿って疲労検出装置3を貼り付ける(装着する)構成としたが、例えば、一対の生体用電極17,17を近接して配置し、頸部の一方の側方又は後方のみに貼り付ける(装着する)構成としてもよい。 In the third embodiment, the fatigue detection device 3 is attached (attached) along the back of the user's neck from one side of the user's neck to the other side of the neck, For example, it is good also as a structure which arrange | positions a pair of biological electrodes 17 and 17 closely, and affixes (attaches) it only to one side or back of a neck part.
 上記実施形態では、使用者が疲労していると判定された場合に、頸部加温部80を用いて頸部(首周り)を温め、疲労を緩和/低減する構成としたが、頸部を温める頸部加温部80に代えて、例えば、頸部を冷やす頸部冷却手段や、頸部を押圧する(例えば、内蔵した袋をポンプで膨らませることで断続的に押圧を加える)頸部押圧手段等を用いて、疲労を緩和/低減する構成としてもよい。 In the above embodiment, when it is determined that the user is tired, the neck warming portion 80 is used to warm the neck (around the neck) and the fatigue is reduced / reduced. For example, a neck cooling means that cools the neck, or a neck that presses the neck (for example, a pressure is applied intermittently by inflating a built-in bag with a pump). It is good also as a structure which relieves / reduces fatigue using a part press means.
 1,2,3 疲労検出装置
 11,12 センサ部
 12a 本体部
 12b 枠体
 13 ネックバンド
 14 入力端子
 15 生体用電極(導電布)
 15A 生体用電極(共通電極)
 15B,15C 生体用電極
 16 装着本体部
 17 粘着部/生体用電極
 18 検出本体部
 20 光電脈波センサ
 201 発光素子
 202 受光素子
 22 加速度センサ
 31,31B 信号処理部
 310 第1信号処理部
 320 第2信号処理部
 311 心電信号増幅部
 321 脈波信号増幅部
 312,322 アナログフィルタ
 313,323 A/Dコンバータ
 314,324 ディジタルフィルタ
 325 2階微分処理部
 316,326 ピーク検出部
 318,328 ピーク補正部
 330 脈波伝播時間計測部
 331,331B 周波数解析部
 332 筋電成分取得部
 333 疲労判定部
 350 駆動部
 60 無線通信モジュール
 70 スピーカ
 80 頸部加温部
 
1, 2, 3 Fatigue detection device 11, 12 Sensor part 12a Body part 12b Frame 13 Neckband 14 Input terminal 15 Biological electrode (conductive cloth)
15A Biological electrode (common electrode)
15B, 15C Biological electrode 16 Mounting main body part 17 Adhesive part / biological electrode 18 Detection main body part 20 Photoelectric pulse wave sensor 201 Light emitting element 202 Light receiving element 22 Acceleration sensor 31, 31B Signal processing part 310 First signal processing part 320 Second Signal processing unit 311 ECG signal amplification unit 321 Pulse wave signal amplification unit 312, 322 Analog filter 313, 323 A / D converter 314, 324 Digital filter 325 Second-order differentiation processing unit 316, 326 Peak detection unit 318, 328 Peak correction unit 330 Pulse wave transit time measurement unit 331, 331B Frequency analysis unit 332 Myoelectric component acquisition unit 333 Fatigue determination unit 350 Drive unit 60 Wireless communication module 70 Speaker 80 Neck heating unit

Claims (14)

  1.  使用者の頸部の周方向に沿って装着可能な装着部材と、
     前記装着部材に取り付けられ、筋電信号を含む生体信号を取得する複数の生体用電極と、
     前記複数の生体用電極により取得された生体信号を周波数解析して周波数スペクトルを求める周波数解析手段と、
     前記周波数解析手段により求められた周波数スペクトルから筋電成分を取得する筋電成分取得手段と、
     前記筋電成分取得手段により取得された筋電成分が基準値以上である場合に、疲労していると判定する疲労判定手段と、を備えることを特徴とする疲労検出装置。
    A mounting member that can be mounted along the circumferential direction of the user's neck;
    A plurality of biological electrodes attached to the mounting member and acquiring biological signals including myoelectric signals;
    Frequency analysis means for obtaining a frequency spectrum by performing frequency analysis on biological signals acquired by the plurality of biological electrodes;
    Myoelectric component acquisition means for acquiring myoelectric components from the frequency spectrum obtained by the frequency analysis means;
    A fatigue detection device comprising: fatigue determination means for determining fatigue when the myoelectric component acquired by the myoelectric component acquisition means is greater than or equal to a reference value.
  2.  前記疲労判定手段は、所定時間内における、前記筋電成分が基準値以上の状態の時間の割合が、所定の割合以上になった場合に、疲労していると判定することを特徴とする請求項1に記載の疲労検出装置。 The fatigue determination means determines that the user is fatigued when a ratio of a time during which the myoelectric component is equal to or higher than a reference value within a predetermined time is equal to or higher than a predetermined ratio. Item 2. The fatigue detection device according to Item 1.
  3.  前記疲労判定手段は、筋電成分が基準値以上の状態が、所定時間以上継続した場合に、疲労していると判定することを特徴とする請求項1又は2に記載の疲労検出装置。 The fatigue detection device according to claim 1 or 2, wherein the fatigue determination means determines that the user is fatigued when a state in which the myoelectric component is equal to or higher than a reference value continues for a predetermined time or longer.
  4.  使用者の頸部の周方向に沿って装着可能な装着部材と、
     前記装着部材に取り付けられ、筋電信号を含む生体信号を取得する複数の生体用電極と、
     前記複数の生体用電極により取得された生体信号を周波数解析して周波数スペクトルを求める周波数解析手段と、
     心電成分に対する筋電成分割合が低い第1の周波数帯域における第1の周波数スペクトルのパワー値に対する、前記第1の周波数帯域よりも筋電成分割合が高い第2の周波数帯域における第2の周波数スペクトルのパワー値の比率を取得する筋電成分取得手段と、
     前記筋電成分取得手段により取得された、第1の周波数スペクトルのパワー値に対する第2の周波数スペクトルのパワー値の比率が基準値以上である場合に、疲労していると判定する疲労判定手段と、を備えることを特徴とする疲労検出装置。
    A mounting member that can be mounted along the circumferential direction of the user's neck;
    A plurality of biological electrodes attached to the mounting member and acquiring biological signals including myoelectric signals;
    Frequency analysis means for obtaining a frequency spectrum by performing frequency analysis on biological signals acquired by the plurality of biological electrodes;
    The second frequency in the second frequency band having a higher myoelectric component ratio than the first frequency band for the power value of the first frequency spectrum in the first frequency band having a low myoelectric component ratio relative to the electrocardiographic component Myoelectric component acquisition means for acquiring a ratio of spectrum power values;
    Fatigue determination means for determining fatigue when the ratio of the power value of the second frequency spectrum to the power value of the first frequency spectrum acquired by the myoelectric component acquisition means is greater than or equal to a reference value; A fatigue detection apparatus comprising:
  5.  前記疲労判定手段は、所定時間内における、前記比率が基準値以上の状態の時間の割合が、所定の割合以上になった場合に、疲労していると判定することを特徴とする請求項4に記載の疲労検出装置。 The fatigue determination means determines that the tire is fatigued when a ratio of a time in which the ratio is equal to or greater than a reference value within a predetermined time is equal to or greater than a predetermined ratio. The fatigue detection device described in 1.
  6.  前記疲労判定手段は、前記比率が基準値以上の状態が、所定時間以上継続した場合に、疲労していると判定することを特徴とする請求項4又は5に記載の疲労検出装置。 The fatigue detection device according to claim 4 or 5, wherein the fatigue determination means determines that the tire is fatigued when a state where the ratio is equal to or higher than a reference value continues for a predetermined time or more.
  7.  前記装着部材に取り付けられ、被験者の頸部の加速度を検出する加速度センサをさらに備え、
     前記疲労判定手段は、前記加速度センサにより検出された加速度が所定のしきい値を超えているときには、疲労しているか否かの判定を停止することを特徴とする請求項1~6のいずれか1項に記載の疲労検出装置。
    An acceleration sensor attached to the mounting member for detecting the acceleration of the neck of the subject;
    The fatigue determination means stops determination of whether or not the vehicle is fatigued when the acceleration detected by the acceleration sensor exceeds a predetermined threshold value. The fatigue detection apparatus according to item 1.
  8.  前記複数の生体用電極は、一つの共通電極と、該共通電極とそれぞれに対を成す1以上の生体用電極と、を有することを特徴とする請求項1~7のいずれか1項に記載の疲労検出装置。 The plurality of biomedical electrodes include one common electrode and one or more biomedical electrodes paired with the common electrode, respectively. Fatigue detection device.
  9.  前記複数の生体用電極の内、少なくとも一対の生体用電極は、心電信号を含む生体信号を測定するための生体用電極であることを特徴とする請求項1~8のいずれか1項に記載の疲労検出装置。 9. The biological electrode for measuring a biological signal including an electrocardiographic signal among at least a pair of the biological electrodes among the plurality of biological electrodes. The fatigue detection apparatus described.
  10.  前記装着部材はネックバンドであることを特徴とする請求項1~9のいずれか1項に記載の疲労検出装置。 The fatigue detecting device according to any one of claims 1 to 9, wherein the mounting member is a neckband.
  11.  前記装着部材は、柔軟性を有し、略帯状に形成された装着本体部と、該装着本体部に取り付けられた、粘着性を有する粘着部と、を有し、
     前記粘着部は、少なくとも一部が導電性を有し、前記生体用電極として機能することを特徴とする請求項1~9のいずれか1項に記載の疲労検出装置。
    The mounting member has flexibility, a mounting main body portion formed in a substantially band shape, and an adhesive portion having adhesiveness attached to the mounting main body portion,
    The fatigue detection device according to any one of claims 1 to 9, wherein at least a part of the adhesive portion has conductivity, and functions as the biological electrode.
  12.  疲労状態であると判定された場合に、使用者に疲労状態であることを提示する提示手段をさらに備えることを特徴とする請求項1~11のいずれか1項に記載の疲労検出装置。 The fatigue detection apparatus according to any one of claims 1 to 11, further comprising a presentation unit that presents the user with a fatigue state when the fatigue state is determined.
  13.  疲労状態であると判定された場合に、頸部を加温する加温手段をさらに備えることを特徴とする請求項1~12のいずれか1項に記載の疲労検出装置。 The fatigue detection device according to any one of claims 1 to 12, further comprising a heating means for heating the neck when it is determined that the tire is in a fatigue state.
  14.  前記加温手段は、前記生体用電極の温度を上げることにより、頸部を加温することを特徴とする請求項13に記載の疲労検出装置。
     
    The fatigue detection apparatus according to claim 13, wherein the warming means warms the neck by raising the temperature of the living body electrode.
PCT/JP2015/083962 2014-12-05 2015-12-03 Fatigue detection device WO2016088819A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016562666A JP6226088B2 (en) 2014-12-05 2015-12-03 Fatigue detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014246761 2014-12-05
JP2014-246761 2014-12-05

Publications (1)

Publication Number Publication Date
WO2016088819A1 true WO2016088819A1 (en) 2016-06-09

Family

ID=56091759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083962 WO2016088819A1 (en) 2014-12-05 2015-12-03 Fatigue detection device

Country Status (2)

Country Link
JP (1) JP6226088B2 (en)
WO (1) WO2016088819A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114344071A (en) * 2022-01-10 2022-04-15 深圳创维-Rgb电子有限公司 Massage method, device, massage instrument, storage medium and system
CN114786640A (en) * 2019-12-31 2022-07-22 华为技术有限公司 Intelligent control device, control method thereof and intelligent wearable equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486936A (en) * 1987-09-30 1989-03-31 Kitsusei Komutetsuku Kk Method and apparatus for analyzing bio-data
JP2003169782A (en) * 2001-12-07 2003-06-17 Matsushita Electric Works Ltd Myoelectricity measuring instrument
JP2004298606A (en) * 2003-03-19 2004-10-28 Seiko Epson Corp Pulsimeter, method of controlling pulsimeter, wrist-watch type information device, control program, recording medium, blood vessel simulation sensor, and biological information measuring instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486936A (en) * 1987-09-30 1989-03-31 Kitsusei Komutetsuku Kk Method and apparatus for analyzing bio-data
JP2003169782A (en) * 2001-12-07 2003-06-17 Matsushita Electric Works Ltd Myoelectricity measuring instrument
JP2004298606A (en) * 2003-03-19 2004-10-28 Seiko Epson Corp Pulsimeter, method of controlling pulsimeter, wrist-watch type information device, control program, recording medium, blood vessel simulation sensor, and biological information measuring instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114786640A (en) * 2019-12-31 2022-07-22 华为技术有限公司 Intelligent control device, control method thereof and intelligent wearable equipment
CN114344071A (en) * 2022-01-10 2022-04-15 深圳创维-Rgb电子有限公司 Massage method, device, massage instrument, storage medium and system
CN114344071B (en) * 2022-01-10 2024-02-20 深圳创维-Rgb电子有限公司 Massage method, massage device, massage instrument, storage medium and massage system

Also Published As

Publication number Publication date
JPWO2016088819A1 (en) 2017-07-06
JP6226088B2 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
JP6620821B2 (en) Fatigue detection device
US11925476B2 (en) Biological signal detection apparatus
CN106231995B (en) Pulse wave propagation time measuring device and living body state estimating device
JP6597790B2 (en) Pulse wave propagation time measurement device and biological state estimation device
US20190175033A1 (en) Blood pressure estimating device
JP6595479B2 (en) System and method for enhancing sleep wave removal activity based on cardiac or respiratory characteristics
EP2116183B1 (en) Robust opto-electrical ear located cardiovascular monitoring device
JP6662459B2 (en) Blood pressure measurement device
JP6583427B2 (en) Pulse wave propagation time measurement device and biological state estimation device
JP5843005B2 (en) ECG signal measuring apparatus and ECG signal measuring method
WO2012078259A1 (en) System and method for measurement of vital signs of a human
US20100099957A1 (en) Physiological parameter monitoring device
EP3496601A1 (en) Systems and methods for medical monitoring
US20220087609A1 (en) In-ear biometric monitoring using photoplethysmography (ppg)
CN111166305A (en) Ear physiological signal acquisition device
JP6288247B2 (en) Sleep support device
JP6226088B2 (en) Fatigue detection device
JP6379297B2 (en) Biological signal detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016562666

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865773

Country of ref document: EP

Kind code of ref document: A1