WO2016088446A1 - Superconducting cable and cable core for superconducting cable - Google Patents

Superconducting cable and cable core for superconducting cable Download PDF

Info

Publication number
WO2016088446A1
WO2016088446A1 PCT/JP2015/078389 JP2015078389W WO2016088446A1 WO 2016088446 A1 WO2016088446 A1 WO 2016088446A1 JP 2015078389 W JP2015078389 W JP 2015078389W WO 2016088446 A1 WO2016088446 A1 WO 2016088446A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
arc
cable
superconducting
resin
Prior art date
Application number
PCT/JP2015/078389
Other languages
French (fr)
Japanese (ja)
Inventor
正義 大屋
忠彦 南野
昇一 本庄
丸山 修
哲太郎 中野
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015151640A external-priority patent/JP2016110988A/en
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to DE112015005492.8T priority Critical patent/DE112015005492T5/en
Publication of WO2016088446A1 publication Critical patent/WO2016088446A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/10Multi-filaments embedded in normal conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a superconducting cable used for a power transmission path and the like, and a cable core housed in a heat insulating tube and used for the superconducting cable.
  • the present invention relates to a superconducting cable and a cable core for a superconducting cable that can prevent the insulation pipe from being damaged in the event of an accident such as a ground fault.
  • the superconducting cable is expected as an energy-saving technology because it is small and can transmit a large amount of power with low loss.
  • a typical superconducting cable includes a cable core having a superconducting conductor layer, and a heat insulating tube that houses the cable core and is filled with a liquid refrigerant such as liquid nitrogen that maintains the superconducting conductor layer in a superconducting state.
  • Superconducting cables include single-core cables in which only one cable core is accommodated in one heat insulation tube, and multi-core batch cables in which a plurality of cable cores are accommodated in one heat insulation tube (Patent Document 1). .
  • the cable core typically mechanically protects the former, the superconducting conductor layer, the electrical insulating layer, the outer superconducting layer that is grounded and used as a shield layer, and the outer superconducting layer in order from the inside.
  • a protective layer (Patent Document 1).
  • tube is a vacuum heat insulation pipe
  • a metal pipe such as a stainless steel pipe is used for the inner pipe and the outer pipe.
  • Patent Document 1 discloses that a former supporting a superconducting conductor layer is made of a normal conducting material such as copper in order to divert an accident current in the event of an accident such as a short circuit or a ground fault.
  • Patent Document 1 discloses a configuration that allows an accident current to flow when an accident such as a short circuit or a ground fault occurs as described above.
  • This accident current is assumed to be an excessive current that can flow instantaneously to a superconducting cable due to a short circuit accident that occurs in a normal conducting cable such as an overhead power transmission line that can be laid around the superconducting cable.
  • the above configuration is for flowing the excessive current on the assumption that the superconducting cable itself is healthy. Since an accident such as a ground fault can occur in the superconducting cable itself, countermeasures are desired.
  • an arc can occur from the superconducting conductor layer that is at high potential to the grounding layer such as the outer superconducting layer that is grounded to zero potential There is sex.
  • this arc reaches the inner tube of the heat insulating tube, there is a possibility that a hole is opened in the inner tube. If a hole is made in the inner tube, the liquid refrigerant leaks into the vacuum heat insulating layer formed between the inner tube and the outer tube, making it impossible to maintain the vacuum, or the liquid refrigerant is vaporized and insulated by the volume expansion at the time of vaporization. The tube may be damaged.
  • the arc discharge described above may cause a hole in the outer tube as well as the inner tube.
  • the cable cores housed in one heat insulating tube are close to each other. Therefore, when a certain cable core breaks down and an arc is generated among a plurality of cable cores housed in one heat insulating tube, the arc may jump to adjacent cable cores, and the cable cores may be short-circuited. .
  • one of the objects of the present invention is to provide a superconducting cable and a cable core for the superconducting cable that can prevent the insulation pipe from being damaged when an accident such as a ground fault occurs in the superconducting cable itself.
  • a cable core for a superconducting cable includes a superconducting conductor layer, a ground layer provided on an outer periphery of the superconducting conductor layer via an electrical insulating layer, and a protective layer provided on the outer periphery of the ground layer.
  • the protective layer is made of high performance / high performance fiber, polypropylene resin, polyethylene resin, polytetrafluoroethylene resin, silicone resin, amino resin, aramid resin, polyphenylene sulfide resin, polyimide resin, polyacrylate resin, silicone rubber and metal.
  • Including an arc resistant layer comprised of one or more selected materials.
  • a superconducting cable includes the above-described cable core for a superconducting cable and a heat insulating tube that houses the cable core for the superconducting cable.
  • the superconducting cable When a superconducting cable is constructed by housing the above-mentioned superconducting cable core in a heat insulating tube, the superconducting cable can prevent the heat insulating tube from being damaged in the event of a ground fault or the like.
  • the above superconducting cable can prevent the insulation pipe from being damaged in the event of a ground fault.
  • FIG. 2 is a transverse cross section showing an outline of the superconducting cable of the first embodiment.
  • a cable core for a superconducting cable includes a superconducting conductor layer, a grounding layer provided on the outer periphery of the superconducting conductor layer via an electrical insulating layer, and a protection provided on the outer periphery of the grounding layer. And a layer.
  • the protective layer is made of high performance / high performance fiber, polypropylene resin, polyethylene resin, polytetrafluoroethylene resin, silicone resin, amino resin, aramid resin, polyphenylene sulfide resin, polyimide resin, polyacrylate resin, silicone rubber and metal. It includes an arc resistant layer composed of one or more selected materials (hereinafter sometimes referred to as a high arc resistant material).
  • Examples of the high-performance and high-function fiber include high-strength fiber, high-strength and high-modulus fiber, high heat-resistant fiber, and non-combustible fiber.
  • Examples of the high-strength fiber include non-metallic fibers having a tensile strength of about 1 GPa or more.
  • Examples of the high strength / high elastic modulus fiber include non-metallic fibers having a tensile strength of about 2 GPa or more and an elastic modulus of about 50 GPa or more, which are called super fibers.
  • Examples thereof include inorganic fibers composed of non-metallic inorganic materials such as carbon, ceramics such as glass and metal compounds, and organic fibers composed of organic materials such as resins.
  • the cable core for the above superconducting cable has an arc resistant layer containing a specific high arc resistant material on the outer periphery of the grounding layer. Therefore, the superconducting cable is housed in a heat insulating tube to form a superconducting cable. When it occurs, it is possible to prevent the insulation pipe from being damaged by the arc resulting from this accident. Specifically, even if the electric insulation layer breaks down and an arc is generated from the superconducting conductor layer to the ground layer, an arc-resistant layer is interposed between the ground layer and the heat insulation tube. Can be substantially blocked by the arc-resistant layer.
  • the cable core for a superconducting cable can prevent damage to the heat insulating pipe such as a hole formed in the heat insulating pipe due to an arc generated at the time of an accident such as a ground fault that may occur in the superconducting cable.
  • the arc-resistant layer includes a wound layer formed by winding a tape material composed of the material (high arc-resistant material).
  • the above form can easily form an arc-resistant layer and is excellent in manufacturability.
  • the winding layer has a multilayer structure in which the tape material is wound with a gap, and includes layers with different winding directions, that is, includes an S winding layer and a Z winding layer, so that the winding to the heat insulating tube and the adjacent cable core can be performed. While preventing arc discharge, a liquid refrigerant impregnation path can be secured, and the superconducting cable can be manufactured with excellent productivity.
  • the arc-resistant layer has a multilayer structure composed of a plurality of different materials, and from a semi-synthetic paper containing polypropylene resin and kraft paper in order from the inner peripheral side.
  • a semisynthetic paper layer to be formed examples include a semisynthetic paper layer to be formed, an inorganic fiber layer formed from at least one of glass fiber and ceramic fiber, and an organic fiber layer formed from aramid fiber.
  • the above embodiment has the following effects.
  • A) The lower grounding layer can be pressed, smoothed or protected by the semi-synthetic paper layer, and an inorganic fiber layer can be easily formed.
  • Aramid fiber which is one of high arc-resistant materials, has high strength, and mechanical strength can be increased by providing an organic fiber layer made of aramid fiber. This organic fiber layer can function as a high-strength layer described later.
  • the arc-resistant layer includes a high-strength layer composed of fibers having a tensile strength of 1 GPa or more among the high-performance and high-function fibers. It is done.
  • the above-mentioned configuration can contribute to the construction of a superconducting cable that can prevent damage to the heat insulation pipe at the time of an accident such as a ground fault by providing an arc-resistant layer including a specific high arc-resistant material, and also can withstand arc.
  • an arc-resistant layer including a specific high arc-resistant material
  • the strength is also excellent.
  • the high-strength layer is made of a fiber having a strength sufficient to withstand the tension when the above-described superconducting cable core is pulled into the heat insulating tube
  • the high-strength layer is a tension member for pulling in the high-strength layer.
  • the arc-resistant layer can also be used as a tension member and another high-tensile material can be omitted or the constituent material of the high-tensile material can be reduced, the above form is excellent in superconducting cable manufacturability and the like.
  • a superconducting cable according to an aspect of the present invention includes the cable core for a superconducting cable according to any one of the above (1) to (4), and a heat insulating tube for housing the cable core for the superconducting cable. Prepare.
  • the above superconducting cable is at least one cable core housed in a heat insulating tube, preferably all the cable cores are the above-mentioned superconducting cable cable cores having the specific arc-resistant layer, as described above.
  • the arc resistant layer including a specific high arc resistant material.
  • the arc resistance is superior.
  • the arc-resistant layer includes a high-strength layer
  • at least a part of the arc-resistant layer can be used for the above-mentioned pulling-in tension member, etc.
  • Superconducting cables are excellent in manufacturability and installation workability.
  • the above form is a multi-core cable.
  • the said form is a cable core for superconducting cables with which each cable core accommodated in one heat insulation pipe
  • the superconducting cable 1 provided with the cable core 10 for superconducting cables of Embodiment 1 is demonstrated.
  • the superconducting cable 1 of Embodiment 1 includes a superconducting cable core 10 (hereinafter, simply referred to as a cable core 10 or a core 10) including a superconducting conductor layer 12, and a plurality of superconducting cables 1.
  • a superconducting cable core 10 hereinafter, simply referred to as a cable core 10 or a core 10
  • Superconducting cable 1 is laid to construct a power transmission path.
  • Each cable core 10 has the same configuration, and includes a former 11, a superconducting conductor layer 12, an electric insulating layer 13, a ground layer 14, and a protective layer 15 in order from the center.
  • the heat insulating tube 20 is a double structure vacuum heat insulating tube including an inner tube 21 and an outer tube 22.
  • the superconducting cable 1 is a low-temperature insulation type cable in which both the superconducting conductor layer 12 and the electrical insulating layer 13 are accommodated in a heat insulating tube 20 and cooled by a liquid refrigerant L such as liquid nitrogen.
  • the basic configuration of the superconducting cable 1 is similar to a conventional superconducting cable.
  • the superconducting cable 1 of the first embodiment is characterized in that the protective layer 15 includes an arc resistant layer made of a specific material (high arc resistant material).
  • the protective layer 15 includes an arc resistant layer made of a specific material (high arc resistant material).
  • the former 11 is a support member that supports the superconducting conductor layer 12.
  • Specific examples include a solid body such as a hollow body such as a pipe, a twisted wire obtained by twisting a plurality of metal strands, and a twisted product obtained by further twisting a plurality of twisted wires.
  • Main constituent materials include normal conducting materials such as copper, aluminum, and alloys thereof.
  • Examples of the element wire include a covered wire in which a metal conductor wire is covered with an insulating coating.
  • the superconducting conductor layer 12 includes a wire layer formed by spirally winding a plurality of superconducting wires around the outer periphery of the former 11.
  • the superconducting wire include a tape-shaped wire such as an oxide-based silver sheathed wire containing bismuth such as Bi2223 and an oxide-based thin film wire containing a rare earth element such as RE123.
  • the wire layer and the number of wires used can be selected according to a predetermined amount of power.
  • the wire layer can be either a multilayer or a single layer. In the case of multiple layers, an interlayer insulating layer (not shown) in which insulating paper or the like is wound can be provided.
  • the electrical insulation layer 13 is interposed between the superconducting conductor layer 12 and the ground layer 14 disposed outside thereof, and ensures electrical insulation between them.
  • Examples of the electrical insulating layer 13 include a wound layer formed by spirally winding an insulating paper such as kraft paper or semi-synthetic paper including resin and kraft paper around the outer periphery of the superconducting conductor layer 12.
  • Semi-synthetic paper includes polypropylene resin and kraft paper, such as PPLP (Polypropylene Laminated Paper) (registered trademark).
  • a semiconductive layer (not shown) can be provided inside and outside the electrical insulating layer 13.
  • the grounding layer 14 is provided on the outer periphery of the superconducting conductor layer 12 via the electric insulating layer 13 and is a conductive portion for taking a ground potential.
  • Examples of the ground layer 14 include a winding layer formed by appropriately spirally winding the above-described superconducting wire, a wire made of a normal conducting material such as copper, a tape material, and a braided material.
  • the ground layer 14 can be used as a superconducting shield layer in AC power transmission.
  • An outer superconducting layer formed of a superconducting wire can be provided on the outer periphery of the electrical insulating layer 13, and a ground layer 14 formed of a normal conducting material can be provided separately.
  • the outer superconducting layer can be used as a superconducting shield layer as described above.
  • An interlayer insulating layer can be provided between the outer superconducting layer and the ground layer 14 of normal conducting material.
  • the conventional cable core is mechanically protected by the ground layer 14 made of a conductive material such as a superconducting wire, and electrically between the ground layer 14 and the heat insulating tube 20 made of metal.
  • a protective layer is provided on the outer periphery of the ground layer 14.
  • the protective layer is made of an electrically insulating material such as kraft paper.
  • the superconducting cable 1 of the first embodiment when an accident such as a ground fault occurs in the superconducting cable 1 itself, the electrical insulating layer 13 breaks down and an arc is generated from the superconducting conductor layer 12 to the ground layer 14.
  • One purpose of the protective layer 15 is to prevent this arc from reaching the heat insulating tube 20. Therefore, the superconducting cable 1 of Embodiment 1 includes an arc resistant layer in the protective layer 15.
  • the arc-resistant layer prevents arc discharge from the superconducting conductor layer 12 through the grounding layer 14 to the heat insulating tube 20 (particularly the inner tube 21) in the event of a ground fault or the like as described above. What is necessary is just to have arc resistance, tracking resistance, heat resistance, thickness, or the like that can be interrupted.
  • the constituent material of the arc resistant layer preferably includes a high arc resistant material having excellent arc resistance and tracking resistance.
  • the high arc-resistant material is an organic material such as a resin, a non-metallic inorganic material such as a carbon-based material, glass, or ceramic, or a fiber or metal made of a non-metallic material (organic material or inorganic material).
  • the constituent material of the arc resistant layer includes a material considered to be inferior in arc resistance compared to the above-mentioned high arc resistant material, specifically, an insulating material (craft paper, semi-synthetic paper, cotton, etc.) described later. be able to.
  • specific organic materials are polyethylene resin, polypropylene resin, fluorine resin represented by polytetrafluoroethylene resin, silicone resin, amino resin, aramid resin, polyphenylene sulfide (PPS) resin, polyimide Examples thereof include one or more resins selected from (PI) resins and polyacrylate resins, and rubbers such as silicone rubber.
  • Specific examples of the amino resin include urea resin (urea resin), melamine resin, aniline resin, and guanamine resin. These resins are excellent in arc resistance and tracking resistance.
  • Table 1 shows typical values of arc resistance (seconds) and tracking resistance when the following arc resistance test is performed.
  • test conditions include, for example, a voltage of 12,500 V and a current of 10 mA or more and 40 mA or less. The test conditions can be adjusted according to the operating current of the superconducting cable 1 and the like. The longer the measured time (seconds), the better the arc resistance.
  • the tracking resistance can be evaluated by a tracking resistance test method for measuring arc deterioration.
  • Specific test methods include the IEC method (International Electrotechnical Commission), the DIN method (Deutsches Institute for Normung), the Dust Fog method, the high-voltage microcurrent arc resistance test method, the Differential Wet method, and the Dip Track method.
  • fibers made of non-metallic materials for example, fibers made of resin (organic material) such as aramid fibers (organic fibers), fibers made of inorganic materials such as carbon fibers, glass fibers, ceramic fibers ( Inorganic fiber).
  • organic material such as aramid fibers (organic fibers)
  • fibers made of inorganic materials such as carbon fibers, glass fibers, ceramic fibers ( Inorganic fiber).
  • high-performance and high-performance fibers having excellent mechanical properties such as strength and rigidity, and excellent heat resistance and flame retardancy can be mentioned.
  • High-performance and high-performance fibers are called high-strength fibers with excellent strength, super fibers, etc., especially high-strength and high-modulus fibers with excellent strength and rigidity, especially high-heat-resistant fibers with excellent heat resistance and flame resistance Etc.
  • Examples of the high-strength fiber, high-strength / high-modulus fiber include para-aramid fiber, ultrahigh molecular weight polyethylene fiber, polyarylate fiber, polyparaphenylene benzobisoxal (PBO) fiber, and carbon fiber.
  • Examples of the high heat resistant fiber include meta-aramid fiber, PPS fiber, PI fiber, and fluorine fiber.
  • Examples of non-combustible fibers include glass fibers and ceramic fibers.
  • a typical example of the constituent material of the glass fiber is silica (SiO 2 ).
  • Examples of the ceramic constituting the ceramic fiber include metal oxides such as aluminum oxide (alumina), non-metal oxides such as boron oxide, and other metal carbides and metal nitrides.
  • a fiber containing silica and ceramics for example, a ceramic fiber containing silica and alumina, or a fiber containing a plurality of types of ceramics, for example, a ceramic fiber containing silica, boron oxide, and alumina can be used.
  • Glass fibers and ceramic fibers can form an arc resistant layer that is more excellent in arc resistance. Therefore, the total thickness of the arc resistant layer can be reduced.
  • Aramid fibers can form an arc-resistant layer that is also excellent in strength. Therefore, it is preferable that the constituent material of the arc resistant layer includes at least one high arc resistant material of glass fiber, ceramic fiber, and aramid fiber. More preferably, at least one of a glass fiber and a ceramic fiber and an aramid fiber are included.
  • a filler and a compounding agent can be suitably selected according to a resin component or a rubber component, and examples thereof include the following inorganic materials.
  • fillers for improving arc resistance with respect to silicone resins and silicone rubbers include alumina compounds such as alumina trihydrate. Silica (silicon oxide) can be used as a filler for improving the strength of silicone resin and silicone rubber.
  • Examples of the compounding agent for the PPS resin and the PPS fiber include the following decomposition endothermic filler, and a carbonization inhibitor that promotes carbon dioxide and water when the polymer is completely burned.
  • Examples of the constituent material of the decomposition endothermic filler include aluminum hydroxide, magnesium hydroxide, calcium borate, and zinc borate. A well-known thing can be utilized for a filler and a compounding agent.
  • specific metals include lead, iron-based metals including iron group elements such as stainless steel, nickel, and iron.
  • the arc-resistant layer is expected to be usable not only with the above-mentioned electrically insulating materials such as organic materials but also with inorganic materials having conductivity such as metals.
  • constituent materials of the arc-resistant layer include composite materials in which different materials are combined, for example, fiber reinforced resin including the above-described resin and the above-described fiber.
  • the arc-resistant layer includes a wound layer in which a tape material (including a sheet material) composed of the organic material or inorganic material described above is wound, preferably the entire arc-resistant layer is substantially It is preferable that the winding layer is formed because an arc-resistant layer can be easily provided.
  • An arc-resistant layer having a desired thickness can be easily formed by preparing a tape material having a desired thickness and width and winding the tape material around the outer periphery of the ground layer 14. Even an arc resistant layer having a multilayer structure can be easily formed.
  • this winding layer preferably has a multi-layer structure of gap winding and at least one layer has a different winding direction, that is, an S winding layer and a Z winding layer.
  • the winding direction may be changed for each layer (that is, S winding layers and Z winding layers are alternately present) or for each of a plurality of layers.
  • the impregnation time can be shortened, and the superconducting cable 1 is excellent in manufacturability.
  • the thickness and width of the tape material, the gap of the winding layer, the winding pitch, and the like can be selected as appropriate.
  • the above-mentioned fibers can be used in any form of woven fabric, braided material, and non-woven fabric.
  • the arc can be sufficiently interrupted by making it dense.
  • the flow path of the liquid refrigerant L can be sufficiently secured by providing a gap wound multilayer structure as described above and having both the S winding layer and the Z winding layer.
  • the flow path of the liquid refrigerant L can be secured while interrupting the arc by using a lap winding instead of a gap winding. What is necessary is just to set the density of a woven fabric, a nonwoven fabric, etc., the thickness of a tape material, the gap of a winding layer, etc. so that the interruption
  • coolant L may be compatible.
  • the arc-resistant layer has a multilayer structure in which wound layers of tape materials having different constituent materials or wound layers of tape materials having different forms (for example, resin tape and fiber tape, woven tape and non-woven tape) are combined. Can do. For example, two or more kinds of winding layers selected from a winding layer of the tape material made of the resin, a winding layer of the tape material made of the fiber, and a winding layer of the tape material made of the metal are provided in combination. A form is mentioned.
  • the semi-synthetic paper layer formed from semi-synthetic paper such as the above-mentioned PPLP, and at least one of glass fiber and ceramic fiber in order from the inner peripheral side
  • the form containing the inorganic fiber layer formed from an organic fiber layer formed from an aramid fiber is mentioned.
  • the semi-synthetic paper layer smoothes the surface of the grounding layer 14 composed of a metal tape material or a metal wire, presses the metal tape material or the like, prevents damage to the grounding layer 14 due to glass fiber, Functions as a base layer for the inorganic fiber layer.
  • the inorganic fiber layer is composed of glass fiber
  • the glass fiber is excellent in flame retardancy, and thus contributes to the construction of an arc resistant layer excellent in arc resistance.
  • the inorganic fiber layer is composed of ceramic fibers
  • the ceramic fibers have better arc resistance than glass fibers, and thus contribute to the construction of an arc resistant layer that is more excellent in arc resistance.
  • the inorganic fiber layer includes both glass fiber and ceramic fiber, it can be an arc resistant layer that is more excellent in arc resistance.
  • the organic fiber layer can be further improved in arc resistance by being provided with the inorganic fiber layer, and it is also made of high strength and high elastic modulus fiber such as aramid resin, especially para-type aramid fiber. It is done.
  • the arc-resistant layer can include a wound layer in which an insulating tape material made of an insulating material such as an insulating paper such as kraft paper, a cloth such as cotton, or a semi-synthetic paper such as PPLP is wound.
  • an insulating tape material made of an insulating material such as an insulating paper such as kraft paper, a cloth such as cotton, or a semi-synthetic paper such as PPLP is wound.
  • the thickness of the wound layer of the insulating tape material may be 1 mm or more, more preferably 1.5 mm or more, more than 2.5 mm, 3 mm or more. Even when these insulating tape materials are used, if they are sufficiently thick as described above, they are expected to function sufficiently as an arc-resistant layer.
  • the arc resistance can be improved, so that it is expected that the thickness of the wound layer of the insulating tape material can be reduced as described above and contribute to the reduction of the diameter of the cable core 10.
  • the thicker the wound layer of the insulating tape material the better the arc resistance.
  • the bending characteristics of the core 10 may be deteriorated and the core 10 may be increased in diameter.
  • the wound layer of the insulating tape material can be provided below the layer made of the above-mentioned high arc resistant material (on the grounding layer), or above or both above and below so as to be sandwiched between the top and bottom (the above-mentioned multilayer). See also specific examples of structures).
  • the arc-resistant layer includes a wound layer of a metal tape material
  • electrical insulation between the arc-resistant layer and the inner tube 21 of the heat insulating tube 20 is provided if the wound layer of the insulating tape material is provided on the outer periphery thereof. It is preferable because the properties are improved.
  • the thickness of the winding layer of the insulating tape material is about 1 mm or less.
  • the thicker the arc resistant layer the easier it is to interrupt the arc.
  • the material of the arc-resistant layer it is considered that 0.5 mm or more, more preferably 1 mm or more is preferable when using non-metallic materials such as resin or fibers among the above-mentioned high arc-resistant materials.
  • the arc-resistant layer is too thick, the cable core 10 and the superconducting cable 1 will be increased in size and diameter. Therefore, the thickness of the arc-resistant layer (total thickness in the case of a multilayer structure) is 16 mm or less, and further 10 mm or less. , 8 mm or less, 7 mm or less. If the arc-resistant layer has a thickness of about 5 mm or less, the core 10 and the cable 1 can be easily formed with a small diameter.
  • the thickness of the semisynthetic paper layer is about 0.2 mm or more and 1 mm or less, and the thickness of the inorganic fiber layer is 1 mm.
  • the thickness of the organic fiber layer is about 0.5 mm or more and about 5 mm or less, preferably about 2 mm or less.
  • the entire protective layer 15 can be an arc resistant layer. That is, the protective layer 15 can be formed of a tape material, an insulating tape material, or the like made of the above-described high arc resistant material such as an organic material or an inorganic material.
  • the occupation ratio of the layer made of the high arc resistant material in the protective layer 15 is 80% or more, more preferably 85% or more, 90% or more in terms of thickness. Is preferred.
  • At least a part of the arc-resistant layer is provided with a fiber having excellent mechanical properties such as strength, particularly a high-strength layer composed of the above-described high-strength fiber and the above-described high-strength / high-modulus fiber
  • the arc-resistant layer can be used as a tension member.
  • the cable core 10 of this form can be provided with an arc resistant layer that is also used as a tension member.
  • the fibers constituting the high-strength layer the above-described high-strength fibers and high-strength / high-modulus fibers having a tensile strength of 1 GPa or more can be suitably used.
  • the high-strength layer can be suitably used as a pulling tension member when the cable core 10 is pulled into the heat insulating tube 20.
  • non-metallic fibers called super fibers can be suitably used as the constituent material of the high-strength layer.
  • the entire arc-resistant layer or the arc-resistant layer is mainly composed of high-strength fibers or high-strength / high-modulus fibers, and the arc-proof layer is substantially the entire high-strength layer, arc resistance
  • the strength against the tension at the time of pulling in can be sufficiently obtained.
  • the high-strength layer is provided only in a part of the arc-resistant layer, for example, the other part can be composed of a material that is superior in arc resistance (multi-layer structure including the above-described inorganic fiber layer and organic fiber layer) Refer to the form).
  • the winding pitch is preferably relatively long.
  • Specific winding pitch is, for example, 400 mm or more and 2000 mm or less, preferably 600 mm or more and 1000 mm or less.
  • the high-strength layer is tightened by pulling the high-strength layer at the time of pulling, and the cable core 10 is tightened, and an excessive force is applied to the core 10 by this tightening. Can be prevented.
  • the winding pitch satisfies the above range, it can have sufficient strength to withstand the tension at the time of pulling in compared with the case where it is vertically attached.
  • the heat insulation pipe 20 is a double structure pipe having an inner pipe 21 and an outer pipe 22 provided on the outer periphery of the inner pipe 21, and the space between the inner pipe 21 and the outer pipe 22 is evacuated.
  • This is a vacuum heat insulating tube in which a vacuum heat insulating layer is formed in this space.
  • the inner space of the inner tube 21 is a storage space for the cable core 10 and is filled with a liquid refrigerant L for maintaining the superconducting state of the superconducting conductor layer 12 and the outer superconducting layer (the refrigerant flow path). It is.
  • the inner tube 21 and the outer tube 22 are metal tubes made of stainless steel or the like, and are excellent in flexibility when a corrugated tube or bellows tube, and have a small surface area and excellent heat insulating properties when used as a flat tube, and the pressure of the liquid refrigerant L Loss can be reduced.
  • a heat insulating material such as a super insulation is provided between the inner tube 21 and the outer tube 22, it has higher heat insulating properties.
  • the outer side of the outer tube 22 of the heat insulating tube 20 is provided with an anticorrosion layer 24 made of an anticorrosion material such as vinyl or polyethylene.
  • the superconducting cable 1 of Embodiment 1 can be manufactured typically by accommodating the cable core 10 produced in the factory etc. in the heat insulation pipe
  • the superconducting cable 1 can also be manufactured by transporting the core 10 manufactured in a factory or the like to the laying site, laying the heat insulating pipe 20 in the laying path, and then storing the core 10 in the heat insulating pipe 20.
  • the high-strength layer is used as a tension member when the core 10 is pulled in and stored in the heat insulating tube 20 at a factory or a laying site. Members can be omitted. In this case, since the number of parts can be reduced, the superconducting cable 1 is excellent in manufacturability and installation workability.
  • superconducting cable 1 of Embodiment 1 is equipped with the arc-proof layer in which all the cable cores 10 accommodated in the heat insulation pipe
  • tube 20 contain specific high arc-proof material, accidents, such as a ground fault, are carried out to itself. Even when an arc is generated from the superconducting conductor layer 12 toward the ground layer 14, the arc does not reach the heat insulating tube 20 (inner tube 21). That is, the superconducting cable 1 can cut off the arc from the superconducting conductor layer 12 through the ground layer 14 to the heat insulating tube 20 by the arc-resistant layer. Therefore, the superconducting cable 1 can prevent damage to the heat insulating tube 20 at the time of an accident such as a ground fault.
  • the superconducting cable 1 of the first embodiment is a multi-core collective cable (three-core collective cable in this example), and one core 10 housed in the heat insulating tube 20 breaks down and is connected from the superconducting conductor layer 12.
  • an arc is generated in the formation 14, an arc directed to another core 10 adjacent to the core 10 can be interrupted by the arc-resistant layer. Therefore, the superconducting cable 1 can also prevent a short circuit from occurring between the adjacent cores 10 and 10 at the time of an accident such as a ground fault. That is, it is possible to prevent a transition from a ground fault accident to a short-circuit accident.
  • the multi-core collective cable in which the plurality of cable cores 10 are accommodated in one heat insulating tube 20 has been described.
  • it can be set as the single core cable by which only one cable core 10 was accommodated in the one heat insulation pipe
  • the superconducting cable (single-core cable) of the second embodiment since the cable core 10 accommodated in the heat insulating tube 20 includes an arc resistant layer including a specific high arc resistant material, an accident such as a ground fault occurs in the superconducting cable. Even when an arc is generated from the conductor layer 12 toward the ground layer 14, this arc can be interrupted by the arc-resistant layer. Therefore, similarly to the superconducting cable 1 of the first embodiment, the superconducting cable of the second embodiment can prevent the heat insulating tube 20 from being damaged at the time of an accident such as a ground fault.
  • sample No. 1 cable core sample no. 100 cable cores were inserted into the heat insulation tubes, respectively, and sample Nos. 1 superconducting cable, sample no. 100 superconducting cables are used, liquid nitrogen is introduced into the heat insulating tube of each sample, and the cable core of each sample is cooled by liquid nitrogen. In this state, an earth current is passed between the superconducting conductor layer and the outer superconducting layer of each sample to generate an arc between both layers.
  • the superconducting cable of the present invention can be used for a DC transmission line and an AC transmission line.
  • the cable core for a superconducting cable of the present invention can be used as a constituent member of a superconducting cable.

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

Provided are: a superconducting cable that makes it possible to prevent damage to a heat-insulating pipe during an accident such as a ground fault; and a cable core for a superconducting cable. The cable core for a superconducting cable is provided with a superconducting conductor layer, a ground layer provided to the outer circumference of the superconducting conductor layer with an electrically insulating layer therebetween, and a protective layer provided to the outer circumference of the ground layer. The protective layer comprises an arc-resistant layer configured from one or more materials selected from among high-performance and highly functional fibers, polypropylene resins, polyethylene resins, polytetrafluoroethylene resins, silicone resins, amino resins, aramid resins, polyphenylene sulfide resins, polyimide resins, polyacrylate resins, silicone rubbers, and metal.

Description

超電導ケーブル、及び超電導ケーブル用ケーブルコアSuperconducting cable and cable core for superconducting cable
 本発明は、送電路などに利用される超電導ケーブル、断熱管に収納されて超電導ケーブルに用いられるケーブルコアに関する。特に、地絡などの事故時に断熱管の損傷を防止できる超電導ケーブル、及び超電導ケーブル用ケーブルコアに関する。 The present invention relates to a superconducting cable used for a power transmission path and the like, and a cable core housed in a heat insulating tube and used for the superconducting cable. In particular, the present invention relates to a superconducting cable and a cable core for a superconducting cable that can prevent the insulation pipe from being damaged in the event of an accident such as a ground fault.
 超電導ケーブルは、小型でありながら、大容量の電力を低損失で送電可能なことから、省エネルギー技術として期待されている。超電導ケーブルは、超電導導体層を有するケーブルコアと、ケーブルコアを収納し、超電導導体層を超電導状態に維持する液体窒素などの液体冷媒が充填される断熱管とを備える構成が代表的である。超電導ケーブルには、一つの断熱管内に1本のケーブルコアのみが収納された単心ケーブルと、一つの断熱管内に複数のケーブルコアが収納された多心一括ケーブルとがある(特許文献1)。 The superconducting cable is expected as an energy-saving technology because it is small and can transmit a large amount of power with low loss. A typical superconducting cable includes a cable core having a superconducting conductor layer, and a heat insulating tube that houses the cable core and is filled with a liquid refrigerant such as liquid nitrogen that maintains the superconducting conductor layer in a superconducting state. Superconducting cables include single-core cables in which only one cable core is accommodated in one heat insulation tube, and multi-core batch cables in which a plurality of cable cores are accommodated in one heat insulation tube (Patent Document 1). .
 上記ケーブルコアは、代表的には、内側から順に、フォーマと、超電導導体層と、電気絶縁層と、接地されてシールド層などに利用される外側超電導層と、外側超電導層を機械的に保護する保護層とを備える(特許文献1)。上記断熱管は、代表的には、内管及び外管を備える二重構造の真空断熱管である(特許文献1)。内管及び外管には、ステンレス鋼管などの金属管が利用される。 The cable core typically mechanically protects the former, the superconducting conductor layer, the electrical insulating layer, the outer superconducting layer that is grounded and used as a shield layer, and the outer superconducting layer in order from the inside. A protective layer (Patent Document 1). The said heat insulation pipe | tube is a vacuum heat insulation pipe | tube of a double structure provided with an inner tube and an outer tube | pipe typically (patent document 1). A metal pipe such as a stainless steel pipe is used for the inner pipe and the outer pipe.
 その他、特許文献1は、短絡や地絡などの事故時に事故電流を分流するために、超電導導体層を支持するフォーマを銅などの常電導材料によって構成することを開示している。 In addition, Patent Document 1 discloses that a former supporting a superconducting conductor layer is made of a normal conducting material such as copper in order to divert an accident current in the event of an accident such as a short circuit or a ground fault.
特開2013-044564号公報JP 2013-044564 A
 超電導ケーブル自体に地絡などの事故が生じたときに、断熱管の損傷を防止できることが望まれる。 It is desirable to be able to prevent damage to the insulation pipe when an accident such as a ground fault occurs in the superconducting cable itself.
 特許文献1は、上述のように短絡や地絡などの事故が生じた場合に事故電流を流せる構成を開示している。この事故電流とは、超電導ケーブルの周囲に布設され得る架空送電線などの常電導ケーブルに短絡事故などが生じ、この事故に起因して超電導ケーブルに瞬間的に流れ得る過大な電流を想定している。上記の構成は、超電導ケーブル自体は健全であることを前提として、上記の過大な電流を流すためのものである。超電導ケーブル自体にも地絡などの事故が生じ得ることから、その対策が望まれる。 Patent Document 1 discloses a configuration that allows an accident current to flow when an accident such as a short circuit or a ground fault occurs as described above. This accident current is assumed to be an excessive current that can flow instantaneously to a superconducting cable due to a short circuit accident that occurs in a normal conducting cable such as an overhead power transmission line that can be laid around the superconducting cable. Yes. The above configuration is for flowing the excessive current on the assumption that the superconducting cable itself is healthy. Since an accident such as a ground fault can occur in the superconducting cable itself, countermeasures are desired.
 超電導ケーブル自体に地絡などの事故が発生して、電気絶縁破壊が生じた場合、高電位である超電導導体層から、接地されてゼロ電位である外側超電導層などの接地層にアークが生じる可能性がある。このアークが断熱管の内管にまで達すると、内管に孔が開く恐れがある。内管に孔が開けば、内管と外管との間に形成される真空断熱層に液体冷媒が漏れて真空を維持できなくなったり、液体冷媒が気化し、この気化時の体積膨張によって断熱管が破損したりするなどの恐れがある。また、上述のアーク放電によって、内管だけでなく外管にも孔が開く恐れがある。 If an accident such as a ground fault occurs in the superconducting cable itself and an electrical breakdown occurs, an arc can occur from the superconducting conductor layer that is at high potential to the grounding layer such as the outer superconducting layer that is grounded to zero potential There is sex. When this arc reaches the inner tube of the heat insulating tube, there is a possibility that a hole is opened in the inner tube. If a hole is made in the inner tube, the liquid refrigerant leaks into the vacuum heat insulating layer formed between the inner tube and the outer tube, making it impossible to maintain the vacuum, or the liquid refrigerant is vaporized and insulated by the volume expansion at the time of vaporization. The tube may be damaged. In addition, the arc discharge described above may cause a hole in the outer tube as well as the inner tube.
 更に、特許文献1に記載されるような多心一括ケーブルの場合、一つの断熱管に収納されるケーブルコア同士が近接している。そのため、一つの断熱管に収納される複数のケーブルコアのうち、あるケーブルコアが絶縁破壊してアークが発生した場合に、隣接するケーブルコアにアークが飛び、ケーブルコア同士が短絡する恐れもある。 Furthermore, in the case of a multi-core cable as described in Patent Document 1, the cable cores housed in one heat insulating tube are close to each other. Therefore, when a certain cable core breaks down and an arc is generated among a plurality of cable cores housed in one heat insulating tube, the arc may jump to adjacent cable cores, and the cable cores may be short-circuited. .
 そこで、本発明の目的の一つは、超電導ケーブル自体に地絡などの事故が生じたときに、断熱管の損傷を防止できる超電導ケーブル、及び超電導ケーブル用ケーブルコアを提供することにある。 Therefore, one of the objects of the present invention is to provide a superconducting cable and a cable core for the superconducting cable that can prevent the insulation pipe from being damaged when an accident such as a ground fault occurs in the superconducting cable itself.
 本発明の一態様に係る超電導ケーブル用ケーブルコアは、超電導導体層と、前記超電導導体層の外周に電気絶縁層を介して設けられる接地層と、前記接地層の外周に設けられる保護層とを備える。
 前記保護層は、高性能・高機能繊維、ポリプロピレン樹脂、ポリエチレン樹脂、ポリ四フッ化エチレン樹脂、シリコーン樹脂、アミノ樹脂、アラミド樹脂、ポリフェニレンサルファイド樹脂、ポリイミド樹脂、ポリアクリレート樹脂、シリコーンゴム及び金属から選択される1種以上の材料から構成される耐アーク層を含む。
A cable core for a superconducting cable according to an aspect of the present invention includes a superconducting conductor layer, a ground layer provided on an outer periphery of the superconducting conductor layer via an electrical insulating layer, and a protective layer provided on the outer periphery of the ground layer. Prepare.
The protective layer is made of high performance / high performance fiber, polypropylene resin, polyethylene resin, polytetrafluoroethylene resin, silicone resin, amino resin, aramid resin, polyphenylene sulfide resin, polyimide resin, polyacrylate resin, silicone rubber and metal. Including an arc resistant layer comprised of one or more selected materials.
 本発明の一態様に係る超電導ケーブルは、上記の超電導ケーブル用ケーブルコアと、前記超電導ケーブル用ケーブルコアを収納する断熱管とを備える。 A superconducting cable according to an aspect of the present invention includes the above-described cable core for a superconducting cable and a heat insulating tube that houses the cable core for the superconducting cable.
 上記の超電導ケーブル用ケーブルコアを断熱管に収納して超電導ケーブルを構築した場合、この超電導ケーブルは、地絡などの事故時に断熱管の損傷を防止できる。 When a superconducting cable is constructed by housing the above-mentioned superconducting cable core in a heat insulating tube, the superconducting cable can prevent the heat insulating tube from being damaged in the event of a ground fault or the like.
 上記の超電導ケーブルは、地絡などの事故時に断熱管の損傷を防止できる。 ∙ The above superconducting cable can prevent the insulation pipe from being damaged in the event of a ground fault.
実施形態1の超電導ケーブルの概略を示す横断面である。2 is a transverse cross section showing an outline of the superconducting cable of the first embodiment.
 [本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
(1)本発明の一態様に係る超電導ケーブル用ケーブルコアは、超電導導体層と、上記超電導導体層の外周に電気絶縁層を介して設けられる接地層と、上記接地層の外周に設けられる保護層とを備える。
 上記保護層は、高性能・高機能繊維、ポリプロピレン樹脂、ポリエチレン樹脂、ポリ四フッ化エチレン樹脂、シリコーン樹脂、アミノ樹脂、アラミド樹脂、ポリフェニレンサルファイド樹脂、ポリイミド樹脂、ポリアクリレート樹脂、シリコーンゴム及び金属から選択される1種以上の材料(以下、高耐アーク材料と呼ぶことがある)から構成される耐アーク層を含む。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.
(1) A cable core for a superconducting cable according to an aspect of the present invention includes a superconducting conductor layer, a grounding layer provided on the outer periphery of the superconducting conductor layer via an electrical insulating layer, and a protection provided on the outer periphery of the grounding layer. And a layer.
The protective layer is made of high performance / high performance fiber, polypropylene resin, polyethylene resin, polytetrafluoroethylene resin, silicone resin, amino resin, aramid resin, polyphenylene sulfide resin, polyimide resin, polyacrylate resin, silicone rubber and metal. It includes an arc resistant layer composed of one or more selected materials (hereinafter sometimes referred to as a high arc resistant material).
 高性能・高機能繊維とは、例えば、高強度繊維、高強度・高弾性率繊維、高耐熱性繊維、不燃性繊維などが挙げられる。高強度繊維は、引張強さが1GPa以上程度を有する非金属繊維が挙げられる。高強度・高弾性率繊維は、引張強さが2GPa程度以上、弾性率が50GPa程度以上を有する非金属繊維であって、スーパー繊維と呼ばれるものなどが挙げられる。カーボンや、ガラス、金属化合物といったセラミックスなどの非金属無機材料から構成される無機繊維、樹脂といった有機材料から構成される有機繊維が挙げられる。 Examples of the high-performance and high-function fiber include high-strength fiber, high-strength and high-modulus fiber, high heat-resistant fiber, and non-combustible fiber. Examples of the high-strength fiber include non-metallic fibers having a tensile strength of about 1 GPa or more. Examples of the high strength / high elastic modulus fiber include non-metallic fibers having a tensile strength of about 2 GPa or more and an elastic modulus of about 50 GPa or more, which are called super fibers. Examples thereof include inorganic fibers composed of non-metallic inorganic materials such as carbon, ceramics such as glass and metal compounds, and organic fibers composed of organic materials such as resins.
 上記の超電導ケーブル用ケーブルコアは、接地層の外周に特定の高耐アーク材料を含む耐アーク層を備えるため、断熱管に収納して超電導ケーブルとし、この超電導ケーブル自身に地絡などの事故が生じた場合に、この事故に起因するアークによる断熱管の損傷を防止できる。詳しくは、電気絶縁層が絶縁破壊して、超電導導体層から接地層に向かってアークが発生しても、接地層と断熱管との間に耐アーク層が介在するため、このアークが断熱管に飛ぶことを耐アーク層によって実質的に遮断できる。従って、上記の超電導ケーブル用ケーブルコアは、超電導ケーブルに生じ得る地絡などの事故時に発生するアークによって、断熱管に孔が開くといった断熱管の損傷を防止できる。 The cable core for the above superconducting cable has an arc resistant layer containing a specific high arc resistant material on the outer periphery of the grounding layer. Therefore, the superconducting cable is housed in a heat insulating tube to form a superconducting cable. When it occurs, it is possible to prevent the insulation pipe from being damaged by the arc resulting from this accident. Specifically, even if the electric insulation layer breaks down and an arc is generated from the superconducting conductor layer to the ground layer, an arc-resistant layer is interposed between the ground layer and the heat insulation tube. Can be substantially blocked by the arc-resistant layer. Therefore, the cable core for a superconducting cable can prevent damage to the heat insulating pipe such as a hole formed in the heat insulating pipe due to an arc generated at the time of an accident such as a ground fault that may occur in the superconducting cable.
 一つの断熱管に上記の超電導ケーブル用ケーブルコアを複数収納した多心一括ケーブルとする場合には、隣接するコア同士の間に耐アーク層が介在する。そのため、この多心一括ケーブルに備える一つのコアからのアークによって、隣接するコア同士が短絡することも防止できる。 In the case of a multi-core cable in which a plurality of the above-mentioned superconducting cable cores are housed in one heat insulating tube, an arc-resistant layer is interposed between adjacent cores. Therefore, it is possible to prevent adjacent cores from being short-circuited by an arc from one core provided in the multi-core cable.
(2)上記の超電導ケーブル用ケーブルコアの一例として、上記耐アーク層が上記材料(高耐アーク材料)から構成されるテープ材を巻回した巻回層を含む形態が挙げられる。 (2) As an example of the cable core for the superconducting cable, there is a form in which the arc-resistant layer includes a wound layer formed by winding a tape material composed of the material (high arc-resistant material).
 上記形態は、耐アーク層を容易に形成できて製造性に優れる。巻回層は、テープ材をギャップ巻きした多層構造とすると共に、巻方向が異なる層を含むことで、即ちS巻層とZ巻層とを含むことで、断熱管や隣接するケーブルコアへのアーク放電を防止しつつ、液体冷媒の含浸経路を確保できて、超電導ケーブルの製造性にも優れる。 The above form can easily form an arc-resistant layer and is excellent in manufacturability. The winding layer has a multilayer structure in which the tape material is wound with a gap, and includes layers with different winding directions, that is, includes an S winding layer and a Z winding layer, so that the winding to the heat insulating tube and the adjacent cable core can be performed. While preventing arc discharge, a liquid refrigerant impregnation path can be secured, and the superconducting cable can be manufactured with excellent productivity.
(3)上記の超電導ケーブル用ケーブルコアの一例として、上記耐アーク層が複数の異なる材料から構成される多層構造であり、内周側から順に、ポリプロピレン樹脂とクラフト紙とを含む半合成紙から形成される半合成紙層と、ガラス繊維及びセラミックス繊維の少なくとも一方から形成される無機繊維層と、アラミド繊維から形成される有機繊維層とを含む形態が挙げられる。 (3) As an example of the cable core for the superconducting cable, the arc-resistant layer has a multilayer structure composed of a plurality of different materials, and from a semi-synthetic paper containing polypropylene resin and kraft paper in order from the inner peripheral side. Examples include a semisynthetic paper layer to be formed, an inorganic fiber layer formed from at least one of glass fiber and ceramic fiber, and an organic fiber layer formed from aramid fiber.
 上記形態は、上述のように地絡などの事故時における断熱管の損傷を防止できる超電導ケーブルの構築に寄与できる上に、以下の効果を奏する。
(a)半合成紙層によってその下層の接地層を押えたり、平滑にしたり、保護したりでき、無機繊維層を形成し易い。
(b)耐アーク性に優れる高耐アーク材料の一つであるガラス繊維及びセラミックス繊維の少なくとも一方からなる無機繊維層を備える場合には耐アーク性により優れる。その結果、耐アーク層の合計厚さを薄くでき、コアの小径化を図ることができる。特に、セラミックス繊維はガラス繊維よりも耐アーク性に優れることから、セラミックス繊維を含む耐アーク層を備える場合には、耐アーク性に更に優れて、コアの更なる小径化を図ることができると期待される。ガラス繊維及びセラミックス繊維の双方からなる無機繊維層を備える場合には、耐アーク性により一層優れると期待される。
(c)高耐アーク材料の一つであるアラミド繊維は高強度であり、アラミド繊維からなる有機繊維層を備えることで、機械的強度を高められる。この有機繊維層を後述する高強度層として機能させることができる。
In addition to contributing to the construction of a superconducting cable that can prevent damage to the heat insulation pipe at the time of an accident such as a ground fault as described above, the above embodiment has the following effects.
(A) The lower grounding layer can be pressed, smoothed or protected by the semi-synthetic paper layer, and an inorganic fiber layer can be easily formed.
(B) When an inorganic fiber layer composed of at least one of glass fiber and ceramic fiber, which is one of highly arc-resistant materials having excellent arc resistance, is provided, the arc resistance is excellent. As a result, the total thickness of the arc resistant layer can be reduced, and the core diameter can be reduced. In particular, since ceramic fibers have better arc resistance than glass fibers, when an arc-resistant layer containing ceramic fibers is provided, arc resistance is further improved, and the core can be further reduced in diameter. Be expected. When an inorganic fiber layer composed of both glass fibers and ceramic fibers is provided, it is expected to be more excellent in arc resistance.
(C) Aramid fiber, which is one of high arc-resistant materials, has high strength, and mechanical strength can be increased by providing an organic fiber layer made of aramid fiber. This organic fiber layer can function as a high-strength layer described later.
(4)上記の超電導ケーブル用ケーブルコアの一例として、上記耐アーク層が上記高性能・高機能繊維のうち、引張強さが1GPa以上である繊維から構成される高強度層を含む形態が挙げられる。 (4) As an example of the cable core for the superconducting cable, the arc-resistant layer includes a high-strength layer composed of fibers having a tensile strength of 1 GPa or more among the high-performance and high-function fibers. It is done.
 上記形態は、特定の高耐アーク材料を含む耐アーク層を備えることで、上述のように地絡などの事故時の断熱管の損傷を防止できる超電導ケーブルの構築に寄与できる上に、耐アーク層の少なくとも一部に高強度層を備えることで強度にも優れる。特に、高強度層が、上記の超電導ケーブル用ケーブルコアを断熱管に引き込む際の張力に耐え得る程度の強度を有する繊維で構成されている場合には、この高強度層を引き込み用のテンションメンバに利用できる。上記形態は、耐アーク層をテンションメンバに兼用でき、別の高張力材を省略できる又は高張力材の構成材料を低減できるため、超電導ケーブルの製造性などに優れる。 The above-mentioned configuration can contribute to the construction of a superconducting cable that can prevent damage to the heat insulation pipe at the time of an accident such as a ground fault by providing an arc-resistant layer including a specific high arc-resistant material, and also can withstand arc. By providing a high-strength layer in at least a part of the layer, the strength is also excellent. In particular, when the high-strength layer is made of a fiber having a strength sufficient to withstand the tension when the above-described superconducting cable core is pulled into the heat insulating tube, the high-strength layer is a tension member for pulling in the high-strength layer. Available to: Since the arc-resistant layer can also be used as a tension member and another high-tensile material can be omitted or the constituent material of the high-tensile material can be reduced, the above form is excellent in superconducting cable manufacturability and the like.
(5)本発明の一態様に係る超電導ケーブルは、上記(1)~(4)のいずれか一つに記載の超電導ケーブル用ケーブルコアと、上記超電導ケーブル用ケーブルコアを収納する断熱管とを備える。 (5) A superconducting cable according to an aspect of the present invention includes the cable core for a superconducting cable according to any one of the above (1) to (4), and a heat insulating tube for housing the cable core for the superconducting cable. Prepare.
 上記の超電導ケーブルは、断熱管に収納される少なくとも1本のケーブルコア、好ましくは全てのケーブルコアが上述の特定の耐アーク層を備える上記の超電導ケーブル用ケーブルコアであるため、上述のように自身に地絡などの事故が生じて超電導導体層から断熱管に向かうアークが発生した場合に、このアークに起因する断熱管の損傷を特定の高耐アーク材料を含む耐アーク層によって防止できる。上述の(3)で説明したように耐アーク層が特定の無機繊維層を含む場合には耐アーク性により優れる。上述の(3)又は(4)で説明したように、耐アーク層が高強度層を含む場合には、耐アーク層の少なくとも一部を上述の引き込み用のテンションメンバなどに利用でき、上記の超電導ケーブルは、製造性、布設作業性などに優れる。 Since the above superconducting cable is at least one cable core housed in a heat insulating tube, preferably all the cable cores are the above-mentioned superconducting cable cable cores having the specific arc-resistant layer, as described above. When an accident such as a ground fault occurs in itself and an arc is generated from the superconducting conductor layer to the heat insulating tube, damage to the heat insulating tube due to the arc can be prevented by the arc resistant layer including a specific high arc resistant material. As described in (3) above, when the arc resistant layer includes a specific inorganic fiber layer, the arc resistance is superior. As described in the above (3) or (4), when the arc-resistant layer includes a high-strength layer, at least a part of the arc-resistant layer can be used for the above-mentioned pulling-in tension member, etc. Superconducting cables are excellent in manufacturability and installation workability.
(6)上記の超電導ケーブルの一例として、上記断熱管に複数の上記超電導ケーブル用ケーブルコアを備える形態が挙げられる。 (6) As an example of the superconducting cable, a form in which the heat insulating pipe is provided with a plurality of cable cores for the superconducting cable can be given.
 上記形態は、多心一括ケーブルである。上記形態は、一つの断熱管に収納される各ケーブルコアがいずれも、上述の特定の高耐アーク材料を含む耐アーク層を備える上記の超電導ケーブル用ケーブルコアである。そのため、上記形態は、断熱管に収納される上記の複数の超電導ケーブル用ケーブルコアのうち、一つのコアが絶縁破壊して、超電導導体層から接地層に向かってアークが発生しても、隣接するコア同士の間に耐アーク層が介在するため、隣接するコア同士が短絡することを防止できる。 The above form is a multi-core cable. The said form is a cable core for superconducting cables with which each cable core accommodated in one heat insulation pipe | tube is equipped with the arc-resistant layer containing the above-mentioned specific high arc-resistant material. Therefore, even if one of the plurality of superconducting cable cable cores housed in the heat insulating tube breaks down and an arc is generated from the superconducting conductor layer to the ground layer, the above configuration is adjacent. Since the arc-resistant layer is interposed between the cores to be performed, adjacent cores can be prevented from being short-circuited.
 [本発明の実施形態の詳細]
 以下、図面を参照して、本発明の実施形態の具体例を説明する。
[Details of the embodiment of the present invention]
Hereinafter, specific examples of embodiments of the present invention will be described with reference to the drawings.
 [実施形態1]
 図1を参照して、実施形態1の超電導ケーブル用ケーブルコア10を備える超電導ケーブル1を説明する。
 ・全体構成
 実施形態1の超電導ケーブル1は、図1に示すように、超電導導体層12を備える超電導ケーブル用ケーブルコア10(以下、単にケーブルコア10又はコア10と呼ぶことがある)と、複数のコア10を収納する断熱管20とを備える多心一括ケーブルである(ここでは3心一括ケーブル)。超電導ケーブル1は、布設されて送電路を構築する。
[Embodiment 1]
With reference to FIG. 1, the superconducting cable 1 provided with the cable core 10 for superconducting cables of Embodiment 1 is demonstrated.
Overall Configuration As shown in FIG. 1, the superconducting cable 1 of Embodiment 1 includes a superconducting cable core 10 (hereinafter, simply referred to as a cable core 10 or a core 10) including a superconducting conductor layer 12, and a plurality of superconducting cables 1. It is a multi-core collective cable provided with the heat insulation pipe | tube 20 which accommodates the core 10 (here 3 core collective cable). Superconducting cable 1 is laid to construct a power transmission path.
 各ケーブルコア10はいずれも同様の構成であり、中心から順にフォーマ11、超電導導体層12、電気絶縁層13、接地層14、保護層15を備える。断熱管20は、内管21と外管22とを備える二重構造の真空断熱管である。超電導ケーブル1は、超電導導体層12と電気絶縁層13との双方が断熱管20に収納されて、液体窒素などの液体冷媒Lで冷却される低温絶縁型のケーブルである。超電導ケーブル1の基本的構成は、従来の超電導ケーブルに類似する。実施形態1の超電導ケーブル1は、保護層15に特定の材料(高耐アーク材料)から構成される耐アーク層を含む点を特徴の一つとする。以下、各要素の機能や代表的な構成などを簡単に説明し、保護層15を詳細に説明する。 Each cable core 10 has the same configuration, and includes a former 11, a superconducting conductor layer 12, an electric insulating layer 13, a ground layer 14, and a protective layer 15 in order from the center. The heat insulating tube 20 is a double structure vacuum heat insulating tube including an inner tube 21 and an outer tube 22. The superconducting cable 1 is a low-temperature insulation type cable in which both the superconducting conductor layer 12 and the electrical insulating layer 13 are accommodated in a heat insulating tube 20 and cooled by a liquid refrigerant L such as liquid nitrogen. The basic configuration of the superconducting cable 1 is similar to a conventional superconducting cable. The superconducting cable 1 of the first embodiment is characterized in that the protective layer 15 includes an arc resistant layer made of a specific material (high arc resistant material). Hereinafter, functions and representative configurations of each element will be briefly described, and the protective layer 15 will be described in detail.
 ・超電導ケーブル用ケーブルコア
 ・・フォーマ
 フォーマ11は、超電導導体層12を支持する支持部材である。具体例として、管材などの中空体や、複数の金属の素線を撚り合わせた撚り線、複数の撚り線を更に撚り合わせた撚り合せ体などの中実体などが挙げられる。主たる構成材料は、銅やアルミニウム、その合金といった常電導材料が挙げられる。上記素線は、金属導体線が絶縁被覆で覆われた被覆線が挙げられる。
-Cable core for superconducting cable-Former The former 11 is a support member that supports the superconducting conductor layer 12. Specific examples include a solid body such as a hollow body such as a pipe, a twisted wire obtained by twisting a plurality of metal strands, and a twisted product obtained by further twisting a plurality of twisted wires. Main constituent materials include normal conducting materials such as copper, aluminum, and alloys thereof. Examples of the element wire include a covered wire in which a metal conductor wire is covered with an insulating coating.
 ・・超電導導体層
 超電導導体層12は、フォーマ11の外周に複数の超電導線材をスパイラル巻きして形成された線材層が挙げられる。超電導線材は、Bi2223といったビスマスを含む酸化物系銀シース線材や、RE123といった希土類元素を含む酸化物系薄膜線材などのテープ状線材が挙げられる。線材層や線材の使用本数などは、所定の電力量に応じて選択できる。線材層は、多層、単層のいずれも利用できる。多層の場合、絶縁紙などを巻回した層間絶縁層(図示せず)を設けることができる。
.. Superconducting conductor layer The superconducting conductor layer 12 includes a wire layer formed by spirally winding a plurality of superconducting wires around the outer periphery of the former 11. Examples of the superconducting wire include a tape-shaped wire such as an oxide-based silver sheathed wire containing bismuth such as Bi2223 and an oxide-based thin film wire containing a rare earth element such as RE123. The wire layer and the number of wires used can be selected according to a predetermined amount of power. The wire layer can be either a multilayer or a single layer. In the case of multiple layers, an interlayer insulating layer (not shown) in which insulating paper or the like is wound can be provided.
 ・・電気絶縁層
 電気絶縁層13は、超電導導体層12とその外側に配置された接地層14との間に介在し、両者の電気的絶縁を確保する。電気絶縁層13は、クラフト紙や、樹脂とクラフト紙とを含む半合成紙などの絶縁紙を超電導導体層12の外周にスパイラル巻きして形成された巻回層が挙げられる。半合成紙は、ポリプロピレン樹脂とクラフト紙とを含むもの、例えば、PPLP(Polypropylene Laminated Paper)(登録商標)が挙げられる。電気絶縁層13内外に半導電層(図示せず)を設けることができる。
.. Electrical insulation layer The electrical insulation layer 13 is interposed between the superconducting conductor layer 12 and the ground layer 14 disposed outside thereof, and ensures electrical insulation between them. Examples of the electrical insulating layer 13 include a wound layer formed by spirally winding an insulating paper such as kraft paper or semi-synthetic paper including resin and kraft paper around the outer periphery of the superconducting conductor layer 12. Semi-synthetic paper includes polypropylene resin and kraft paper, such as PPLP (Polypropylene Laminated Paper) (registered trademark). A semiconductive layer (not shown) can be provided inside and outside the electrical insulating layer 13.
 ・・接地層
 接地層14は、超電導導体層12の外周に電気絶縁層13を介して設けられ、接地電位をとるための導電部である。接地層14は、上述の超電導線材、銅などの常電導材料からなる線材やテープ材、編組材などを適宜スパイラル巻きなどして形成された巻回層が挙げられる。接地層14が超電導線材によって形成されている場合、接地層14を、交流送電では超電導シールド層に利用できる。
..Grounding layer The grounding layer 14 is provided on the outer periphery of the superconducting conductor layer 12 via the electric insulating layer 13 and is a conductive portion for taking a ground potential. Examples of the ground layer 14 include a winding layer formed by appropriately spirally winding the above-described superconducting wire, a wire made of a normal conducting material such as copper, a tape material, and a braided material. When the ground layer 14 is formed of a superconducting wire, the ground layer 14 can be used as a superconducting shield layer in AC power transmission.
 電気絶縁層13の外周に、超電導線材によって形成された外側超電導層を設け、別途、常電導材料によって形成された接地層14を設けることができる。この場合、外側超電導層は、上述のように超電導シールド層などに利用できる。外側超電導層と常電導材料の接地層14との間には層間絶縁層を設けることができる。 An outer superconducting layer formed of a superconducting wire can be provided on the outer periphery of the electrical insulating layer 13, and a ground layer 14 formed of a normal conducting material can be provided separately. In this case, the outer superconducting layer can be used as a superconducting shield layer as described above. An interlayer insulating layer can be provided between the outer superconducting layer and the ground layer 14 of normal conducting material.
 ・・保護層
 ここで、従来のケーブルコアは、超電導線材などの導電材料で構成される接地層14の機械的保護、この接地層14と金属で構成される断熱管20との間の電気的絶縁などを目的として、接地層14の外周に保護層を設けている。これらの目的から、従来のケーブルコアでは、保護層をクラフト紙などの電気絶縁材料で構成している。実施形態1の超電導ケーブル1では、超電導ケーブル1自身に地絡などの事故が生じた場合に、電気絶縁層13が絶縁破壊して超電導導体層12から接地層14にアークが発生し、更にはこのアークが断熱管20に達することを防止することを保護層15の目的の一つとする。そこで、実施形態1の超電導ケーブル1は、保護層15に耐アーク層を含む。
..Protective layer Here, the conventional cable core is mechanically protected by the ground layer 14 made of a conductive material such as a superconducting wire, and electrically between the ground layer 14 and the heat insulating tube 20 made of metal. For the purpose of insulation, a protective layer is provided on the outer periphery of the ground layer 14. For these purposes, in the conventional cable core, the protective layer is made of an electrically insulating material such as kraft paper. In the superconducting cable 1 of the first embodiment, when an accident such as a ground fault occurs in the superconducting cable 1 itself, the electrical insulating layer 13 breaks down and an arc is generated from the superconducting conductor layer 12 to the ground layer 14. One purpose of the protective layer 15 is to prevent this arc from reaching the heat insulating tube 20. Therefore, the superconducting cable 1 of Embodiment 1 includes an arc resistant layer in the protective layer 15.
 ・・・耐アーク層
 ・・・・材質
 耐アーク層は、上述のように地絡などの事故時に超電導導体層12から接地層14を経て断熱管20(特に内管21)へのアーク放電を遮断できる程度の耐アーク性、又は耐トラッキング性、又は耐熱性、又は厚さなどを有していればよい。特に、耐アーク層の構成材料は、耐アーク性や耐トラッキング性に優れる高耐アーク材料を含むことが好ましい。ここでの高耐アーク材料とは、以下に挙げる、樹脂といった有機材料、炭素系材料やガラス、セラミックスなどの非金属無機材料、非金属材料(有機材料、無機材料)からなる繊維、金属である。その他、耐アーク層の構成材料は、上述の高耐アーク材料に比較すると耐アーク性に劣ると考えられる材料、具体的には後述する絶縁材(クラフト紙、半合成紙、綿など)を含むことができる。
・ ・ ・ Arc-resistant layer ・ ・ ・ ・ Material The arc-resistant layer prevents arc discharge from the superconducting conductor layer 12 through the grounding layer 14 to the heat insulating tube 20 (particularly the inner tube 21) in the event of a ground fault or the like as described above. What is necessary is just to have arc resistance, tracking resistance, heat resistance, thickness, or the like that can be interrupted. In particular, the constituent material of the arc resistant layer preferably includes a high arc resistant material having excellent arc resistance and tracking resistance. Here, the high arc-resistant material is an organic material such as a resin, a non-metallic inorganic material such as a carbon-based material, glass, or ceramic, or a fiber or metal made of a non-metallic material (organic material or inorganic material). . In addition, the constituent material of the arc resistant layer includes a material considered to be inferior in arc resistance compared to the above-mentioned high arc resistant material, specifically, an insulating material (craft paper, semi-synthetic paper, cotton, etc.) described later. be able to.
 高耐アーク材料のうち、具体的な有機材料は、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ四フッ化エチレン樹脂に代表されるフッ素樹脂、シリコーン樹脂、アミノ樹脂、アラミド樹脂、ポリフェニレンサルファイド(PPS)樹脂、ポリイミド(PI)樹脂、ポリアクリレート樹脂から選択される1種以上の樹脂、シリコーンゴムといったゴムなどが挙げられる。アミノ樹脂の具体例として、尿素樹脂(ユリア樹脂)、メラミン樹脂、アニリン樹脂、グアナミン樹脂などが挙げられる。これらの樹脂は、耐アーク性や耐トラッキング性に優れる。例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ四フッ化エチレン樹脂について、以下の耐アーク性試験を行った場合の耐アーク性(秒)、耐トラッキング性の代表値を表1に示す。 Among the high arc resistant materials, specific organic materials are polyethylene resin, polypropylene resin, fluorine resin represented by polytetrafluoroethylene resin, silicone resin, amino resin, aramid resin, polyphenylene sulfide (PPS) resin, polyimide Examples thereof include one or more resins selected from (PI) resins and polyacrylate resins, and rubbers such as silicone rubber. Specific examples of the amino resin include urea resin (urea resin), melamine resin, aniline resin, and guanamine resin. These resins are excellent in arc resistance and tracking resistance. For example, with respect to polyethylene resin, polypropylene resin, and polytetrafluoroethylene resin, Table 1 shows typical values of arc resistance (seconds) and tracking resistance when the following arc resistance test is performed.
 耐アーク性試験は、列挙した非金属材料のうち、有機材料などの電気絶縁材料からなる試験片の上に2本のタングステン電極を対向して置き、この対向配置の状態で高電圧、微小電流のアークを飛ばして、試料表面が炭化して、電気絶縁性が無くなるまでの時間(秒)を測定する(JIS K 6911(1995年)、5.15 耐アーク性、参照)。試験条件は、例えば、電圧が12,500V、電流が10mA以上40mA以下、が挙げられる。超電導ケーブル1の使用電流などに応じて、試験条件を調整することができる。測定した時間(秒)が長いほど、耐アーク性に優れる。 In the arc resistance test, two tungsten electrodes are placed facing each other on a test piece made of an electrically insulating material such as an organic material among the non-metallic materials listed, and a high voltage and a small current are placed in this facing state. The time (seconds) until the sample surface is carbonized and the electrical insulation is lost is measured (see JIS K 6911 (1995), 5.15 arc resistance). Test conditions include, for example, a voltage of 12,500 V and a current of 10 mA or more and 40 mA or less. The test conditions can be adjusted according to the operating current of the superconducting cable 1 and the like. The longer the measured time (seconds), the better the arc resistance.
 耐トラッキング性は、アーク劣化を測定する耐トラッキング性試験法によって評価できる。具体的な試験法は、IEC法(International Electrotechnical Commission)、DIN法(Deutsches Institut fur Normung)、Dust Fog法、高電圧微小電流耐アーク試験法、Differential Wet法、Dip Track法などが挙げられる。 The tracking resistance can be evaluated by a tracking resistance test method for measuring arc deterioration. Specific test methods include the IEC method (International Electrotechnical Commission), the DIN method (Deutsches Institute for Normung), the Dust Fog method, the high-voltage microcurrent arc resistance test method, the Differential Wet method, and the Dip Track method.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 高耐アーク材料のうち、非金属材料からなる繊維として、例えば、アラミド繊維などの樹脂(有機材料)からなる繊維(有機繊維)、カーボン繊維やガラス繊維、セラミックス繊維などの無機材料からなる繊維(無機繊維)が挙げられる。特に、強度や剛性などの機械的特性に優れていたり、耐熱性や難燃性に優れていたりする高性能・高機能繊維などが挙げられる。高性能・高機能繊維は、特に強度に優れる高強度繊維、スーパー繊維などと呼ばれて特に強度や剛性に優れる高強度・高弾性率繊維、特に耐熱性や難燃性に優れる高耐熱性繊維などが挙げられる。 Among the high arc resistant materials, as fibers made of non-metallic materials, for example, fibers made of resin (organic material) such as aramid fibers (organic fibers), fibers made of inorganic materials such as carbon fibers, glass fibers, ceramic fibers ( Inorganic fiber). In particular, high-performance and high-performance fibers having excellent mechanical properties such as strength and rigidity, and excellent heat resistance and flame retardancy can be mentioned. High-performance and high-performance fibers are called high-strength fibers with excellent strength, super fibers, etc., especially high-strength and high-modulus fibers with excellent strength and rigidity, especially high-heat-resistant fibers with excellent heat resistance and flame resistance Etc.
 高強度繊維、高強度・高弾性率繊維は、例えば、パラ系アラミド繊維、超高分子量ポリエチレン繊維、ポリアリレート繊維、ポリパラフェニレンベンゾビスオキサザール(PBO)繊維、カーボン繊維などが挙げられる。
 高耐熱性繊維は、例えば、メタ系アラミド繊維、PPS繊維、PI繊維、フッ素繊維などが挙げられる。
 不燃性繊維は、例えば、ガラス繊維、セラミックス繊維などが挙げられる。
 ガラス繊維の構成材料は、代表的には、シリカ(SiO)が挙げられる。セラミックス繊維などを構成するセラミックスは、例えば、酸化アルミニウム(アルミナ)などの金属酸化物、酸化ホウ素などの非金属酸化物、その他、金属炭化物や金属窒化物などが挙げられる。シリカとセラミックスとを含む繊維、例えば、シリカとアルミナとを含むセラミックス繊維や、複数種のセラミックスを含む繊維、例えば、シリカと酸化ホウ素とアルミナとを含むセラミックス繊維などを利用することができる。
 ガラス繊維やセラミックス繊維は、耐アーク性により優れる耐アーク層を形成できる。そのため、耐アーク層の合計厚さを薄くできる。アラミド繊維は、強度にも優れる耐アーク層を形成できる。従って、耐アーク層の構成材料には、ガラス繊維、セラミックス繊維、及びアラミド繊維の少なくとも一種の高耐アーク材料を含むことが好ましい。ガラス繊維及びセラミックス繊維の少なくとも一方と、アラミド繊維とを含むことがより好ましい。
Examples of the high-strength fiber, high-strength / high-modulus fiber include para-aramid fiber, ultrahigh molecular weight polyethylene fiber, polyarylate fiber, polyparaphenylene benzobisoxal (PBO) fiber, and carbon fiber.
Examples of the high heat resistant fiber include meta-aramid fiber, PPS fiber, PI fiber, and fluorine fiber.
Examples of non-combustible fibers include glass fibers and ceramic fibers.
A typical example of the constituent material of the glass fiber is silica (SiO 2 ). Examples of the ceramic constituting the ceramic fiber include metal oxides such as aluminum oxide (alumina), non-metal oxides such as boron oxide, and other metal carbides and metal nitrides. A fiber containing silica and ceramics, for example, a ceramic fiber containing silica and alumina, or a fiber containing a plurality of types of ceramics, for example, a ceramic fiber containing silica, boron oxide, and alumina can be used.
Glass fibers and ceramic fibers can form an arc resistant layer that is more excellent in arc resistance. Therefore, the total thickness of the arc resistant layer can be reduced. Aramid fibers can form an arc-resistant layer that is also excellent in strength. Therefore, it is preferable that the constituent material of the arc resistant layer includes at least one high arc resistant material of glass fiber, ceramic fiber, and aramid fiber. More preferably, at least one of a glass fiber and a ceramic fiber and an aramid fiber are included.
 耐アーク層の構成材料が樹脂や樹脂繊維、ゴムを含む場合、適宜な充填材や配合剤を樹脂やゴムに添加すると、樹脂単体やゴム単体の場合に比較して、耐アーク性や強度などの機械的特性に優れることがある。充填材や配合剤は、樹脂の成分やゴムの成分に応じて適宜選択でき、以下のような無機材料などが挙げられる。シリコーン樹脂やシリコーンゴムに対して耐アーク性向上の充填材として、アルミナ三水和物などのアルミナ系化合物などが挙げられる。シリコーン樹脂やシリコーンゴムに対して強度などの向上の充填材として、シリカ(酸化珪素)などが挙げられる。PPS樹脂やPPS繊維の配合剤として、以下の分解吸熱フィラーや、ポリマーが完全燃焼したときに二酸化炭素と水になることを促進する炭化抑制剤などが挙げられる。分解吸熱フィラーの構成材料は、水酸化アルミニウム、水酸化マグネシウム、ホウ酸カルシウム、ホウ酸亜鉛などが挙げられる。充填材や配合剤は、公知のものを利用できる。 When the constituent material of the arc-resistant layer contains resin, resin fiber, or rubber, adding appropriate fillers or compounding agents to the resin or rubber will increase the arc resistance, strength, etc. compared to the resin or rubber alone. May have excellent mechanical properties. A filler and a compounding agent can be suitably selected according to a resin component or a rubber component, and examples thereof include the following inorganic materials. Examples of fillers for improving arc resistance with respect to silicone resins and silicone rubbers include alumina compounds such as alumina trihydrate. Silica (silicon oxide) can be used as a filler for improving the strength of silicone resin and silicone rubber. Examples of the compounding agent for the PPS resin and the PPS fiber include the following decomposition endothermic filler, and a carbonization inhibitor that promotes carbon dioxide and water when the polymer is completely burned. Examples of the constituent material of the decomposition endothermic filler include aluminum hydroxide, magnesium hydroxide, calcium borate, and zinc borate. A well-known thing can be utilized for a filler and a compounding agent.
 高耐アーク材料のうち、具体的な金属は、鉛、ステンレス鋼・ニッケル・鉄などといった鉄族元素を含む鉄系金属などが挙げられる。耐アーク層は、上述の有機材料のような電気絶縁材料だけではなく、金属といった導電性を有する無機材料でも利用できると期待される。 Among the high arc resistant materials, specific metals include lead, iron-based metals including iron group elements such as stainless steel, nickel, and iron. The arc-resistant layer is expected to be usable not only with the above-mentioned electrically insulating materials such as organic materials but also with inorganic materials having conductivity such as metals.
 その他の耐アーク層の構成材料として、異なる材料を複合した複合材料、例えば、上述の樹脂と上述の繊維とを含む繊維強化樹脂などが挙げられる。 Other constituent materials of the arc-resistant layer include composite materials in which different materials are combined, for example, fiber reinforced resin including the above-described resin and the above-described fiber.
 ・・・・形状
 耐アーク層は、上述の有機材料や無機材料から構成されるテープ材(シート材を含む)を巻回した巻回層を含むと、好ましくは耐アーク層全体が実質的に巻回層で構成されていると、耐アーク層を容易に設けられて好ましい。所望の厚さや幅のテープ材を用意して、接地層14の外周などに巻回することで、所望の厚さの耐アーク層を容易に形成できる。多層構造の耐アーク層であっても、容易に形成できる。特に、この巻回層は、ギャップ巻きの多層構造とすると共に、少なくとも一層は巻方向が異なること、つまりS巻層とZ巻層とを備えることが好ましい。巻方向の変更は、一層ごとでも(即ち、S巻層とZ巻層とが交互に存在する)、複数層ごとでもいずれでもよい。ギャップ巻きの多層構造であって、S巻層とZ巻層との双方を備えることで、S巻層のギャップをZ巻層が覆うため、ギャップが多過ぎたり大き過ぎたりすることなどによるアーク遮断効果の低下を抑制できる耐アーク層にすることができる。かつ、ギャップ巻きの多層構造であって、S巻層とZ巻層との双方を備えることで、上述の樹脂や金属といったテープ材を利用する場合であっても、液体冷媒Lの流路を十分に確保できる。そのため、超電導ケーブル1の断熱管20内に液体冷媒Lを導入して、ケーブルコア10に液体冷媒Lを含浸させるときに含浸時間の短縮を図ることができ、超電導ケーブル1の製造性に優れる。テープ材の厚さや幅、巻回層のギャップや巻回ピッチなどは適宜選択できる。
.... Shape When the arc-resistant layer includes a wound layer in which a tape material (including a sheet material) composed of the organic material or inorganic material described above is wound, preferably the entire arc-resistant layer is substantially It is preferable that the winding layer is formed because an arc-resistant layer can be easily provided. An arc-resistant layer having a desired thickness can be easily formed by preparing a tape material having a desired thickness and width and winding the tape material around the outer periphery of the ground layer 14. Even an arc resistant layer having a multilayer structure can be easily formed. In particular, this winding layer preferably has a multi-layer structure of gap winding and at least one layer has a different winding direction, that is, an S winding layer and a Z winding layer. The winding direction may be changed for each layer (that is, S winding layers and Z winding layers are alternately present) or for each of a plurality of layers. A gap-wound multi-layer structure with both an S-winding layer and a Z-winding layer, and the Z-winding layer covers the gap of the S-winding layer. It can be set as the arc-proof layer which can suppress the fall of the interruption | blocking effect. And it is a multilayer structure of gap winding, Comprising: Even when it is a case where tape materials, such as the above-mentioned resin and metal, are provided by providing both S winding layer and Z winding layer, the channel of liquid refrigerant L Enough can be secured. Therefore, when the liquid refrigerant L is introduced into the heat insulating tube 20 of the superconducting cable 1 and the cable core 10 is impregnated with the liquid refrigerant L, the impregnation time can be shortened, and the superconducting cable 1 is excellent in manufacturability. The thickness and width of the tape material, the gap of the winding layer, the winding pitch, and the like can be selected as appropriate.
 上述の繊維は、織物や編組材、不織布のいずれの形態も利用できる。いずれの形態も、緻密にすることでアークを十分に遮断できる。緻密な繊維テープ材とする場合でも、上述のようにギャップ巻きの多層構造であって、S巻層とZ巻層との双方を備えることで、液体冷媒Lの流路を十分に確保できる。一方、緻密度合いによっては、ギャップ巻ではなく重ね巻などとすることで、アークを遮断しつつ、液体冷媒Lの流路を確保できる。アークの遮断と液体冷媒Lの流路の確保とを両立するように、織物や不織布などの緻密度合いやテープ材の厚さ、巻回層のギャップなどを設定すればよい。 The above-mentioned fibers can be used in any form of woven fabric, braided material, and non-woven fabric. In any form, the arc can be sufficiently interrupted by making it dense. Even in the case of a dense fiber tape material, the flow path of the liquid refrigerant L can be sufficiently secured by providing a gap wound multilayer structure as described above and having both the S winding layer and the Z winding layer. On the other hand, depending on the degree of density, the flow path of the liquid refrigerant L can be secured while interrupting the arc by using a lap winding instead of a gap winding. What is necessary is just to set the density of a woven fabric, a nonwoven fabric, etc., the thickness of a tape material, the gap of a winding layer, etc. so that the interruption | blocking of an arc and ensuring of the flow path of the liquid refrigerant | coolant L may be compatible.
 耐アーク層は、構成材料が異なるテープ材の巻回層や、形態が異なるテープ材(例えば、樹脂テープと繊維テープ、織物テープと不織布テープなど)の巻回層を組み合わせた多層構造とすることができる。例えば、上記樹脂からなるテープ材の巻回層、上記繊維からなるテープ材の巻回層、及び上記金属からなるテープ材の巻回層から選択される二種以上の巻回層を組み合わせて備える形態が挙げられる。 The arc-resistant layer has a multilayer structure in which wound layers of tape materials having different constituent materials or wound layers of tape materials having different forms (for example, resin tape and fiber tape, woven tape and non-woven tape) are combined. Can do. For example, two or more kinds of winding layers selected from a winding layer of the tape material made of the resin, a winding layer of the tape material made of the fiber, and a winding layer of the tape material made of the metal are provided in combination. A form is mentioned.
 複数の異なる材料から構成される多層構造の耐アーク層の具体例として、内周側から順に、上述のPPLPといった半合成紙から形成される半合成紙層と、ガラス繊維及びセラミックス繊維の少なくとも一方から形成される無機繊維層と、アラミド繊維から形成される有機繊維層とを含む形態が挙げられる。
 半合成紙層は、金属テープ材や金属線などで構成される接地層14の表面を平滑にしたり、金属テープ材などを押えたり、ガラス繊維による接地層14の損傷を防止したりして、無機繊維層の下地層として機能する。また、PPLPなどの半合成紙は、例えばクラフト紙などの絶縁紙よりも耐アーク性に優れるため、耐アーク層の合計厚さを薄くして、ケーブルコア10の小径化に寄与する。
 無機繊維層がガラス繊維で構成される場合には、ガラス繊維は難燃性に優れるため、耐アーク性に優れる耐アーク層の構築に寄与する。無機繊維層がセラミックス繊維で構成される場合には、セラミックス繊維はガラス繊維よりも耐アーク性に優れるため、耐アーク性により優れる耐アーク層の構築に寄与する。無機繊維層がガラス繊維とセラミックス繊維との双方を含む場合には、耐アーク性により一層優れる耐アーク層とすることができる。
 有機繊維層は、無機繊維層と共に備えることで耐アーク性を更に高められると共に、アラミド樹脂、特にパラ系アラミド繊維といった高強度・高弾性率繊維で構成されることで、機械的強度をも高められる。
As a specific example of the arc-resistant layer having a multilayer structure composed of a plurality of different materials, the semi-synthetic paper layer formed from semi-synthetic paper such as the above-mentioned PPLP, and at least one of glass fiber and ceramic fiber in order from the inner peripheral side The form containing the inorganic fiber layer formed from an organic fiber layer formed from an aramid fiber is mentioned.
The semi-synthetic paper layer smoothes the surface of the grounding layer 14 composed of a metal tape material or a metal wire, presses the metal tape material or the like, prevents damage to the grounding layer 14 due to glass fiber, Functions as a base layer for the inorganic fiber layer. Moreover, since semi-synthetic paper such as PPLP has better arc resistance than insulating paper such as kraft paper, the total thickness of the arc-resistant layer is reduced, which contributes to a reduction in the diameter of the cable core 10.
When the inorganic fiber layer is composed of glass fiber, the glass fiber is excellent in flame retardancy, and thus contributes to the construction of an arc resistant layer excellent in arc resistance. When the inorganic fiber layer is composed of ceramic fibers, the ceramic fibers have better arc resistance than glass fibers, and thus contribute to the construction of an arc resistant layer that is more excellent in arc resistance. When the inorganic fiber layer includes both glass fiber and ceramic fiber, it can be an arc resistant layer that is more excellent in arc resistance.
The organic fiber layer can be further improved in arc resistance by being provided with the inorganic fiber layer, and it is also made of high strength and high elastic modulus fiber such as aramid resin, especially para-type aramid fiber. It is done.
 その他、耐アーク層は、クラフト紙などの絶縁紙、綿などの布、PPLPといった半合成紙などの絶縁材からなる絶縁テープ材を巻回した巻回層を含むことができる。例えば、絶縁テープ材の巻回層の厚さが1mm以上、更に1.5mm以上、2.5mm超、3mm以上と厚いものを含む形態とすることができる。これらの絶縁テープ材を利用する場合でも、上述のように十分に厚ければ耐アーク層として十分に機能すると期待される。特に、PPLPなどの半合成紙を含むと耐アーク性を高められるため、上述のように絶縁テープ材の巻回層の厚さを薄くして、ケーブルコア10の小径化に寄与できると期待される。絶縁テープ材の巻回層が厚いほど耐アーク性に優れるものの、コア10の曲げ特性の低下や、コア10の大径化を招き得る。耐アーク性、超電導ケーブル1の機械的特性、サイズなどを考慮すると、上述の絶縁材などを含む場合には、上述の高耐アーク材料と共に含むことが好ましいと考えられる。例えば、絶縁テープ材の巻回層は、上述の高耐アーク材料からなる層の下(接地層の上)、又は上、又は上下に挟むように上下の双方に設けることができる(上述の多層構造の具体例も参照)。耐アーク層として、金属テープ材の巻回層を含む場合には、その外周に上記絶縁テープ材の巻回層を備えると、耐アーク層と断熱管20の内管21との間の電気絶縁性を高められて好ましい。上述の高耐アーク材料からなる層と共に、上記絶縁テープ材の巻回層を備える場合、絶縁テープ材の巻回層の厚さは1mm以下程度が挙げられる。 In addition, the arc-resistant layer can include a wound layer in which an insulating tape material made of an insulating material such as an insulating paper such as kraft paper, a cloth such as cotton, or a semi-synthetic paper such as PPLP is wound. For example, the thickness of the wound layer of the insulating tape material may be 1 mm or more, more preferably 1.5 mm or more, more than 2.5 mm, 3 mm or more. Even when these insulating tape materials are used, if they are sufficiently thick as described above, they are expected to function sufficiently as an arc-resistant layer. In particular, if semi-synthetic paper such as PPLP is included, the arc resistance can be improved, so that it is expected that the thickness of the wound layer of the insulating tape material can be reduced as described above and contribute to the reduction of the diameter of the cable core 10. The The thicker the wound layer of the insulating tape material, the better the arc resistance. However, the bending characteristics of the core 10 may be deteriorated and the core 10 may be increased in diameter. In consideration of arc resistance, mechanical properties of the superconducting cable 1, size, and the like, it is considered preferable to include the above-described high arc-resistant material when the above-described insulating material is included. For example, the wound layer of the insulating tape material can be provided below the layer made of the above-mentioned high arc resistant material (on the grounding layer), or above or both above and below so as to be sandwiched between the top and bottom (the above-mentioned multilayer). See also specific examples of structures). When the arc-resistant layer includes a wound layer of a metal tape material, electrical insulation between the arc-resistant layer and the inner tube 21 of the heat insulating tube 20 is provided if the wound layer of the insulating tape material is provided on the outer periphery thereof. It is preferable because the properties are improved. When the winding layer of the insulating tape material is provided together with the layer made of the high arc-resistant material, the thickness of the winding layer of the insulating tape material is about 1 mm or less.
 ・・・・厚さ
 耐アーク層は、厚いほどアークを遮断し易い。耐アーク層の材質にもよるが、上述の高耐アーク材料のうち、樹脂などの非金属材料や繊維を用いる場合には、0.5mm以上、更に1mm以上が好ましいと考えられる。上述の金属を用いる場合には、1mm以上、更に2mm以上が好ましいと考えられる。耐アーク層が厚過ぎるとケーブルコア10や超電導ケーブル1の大型化、大径化を招くことから、耐アーク層の厚さ(多層構造の場合には合計厚さ)は16mm以下、更に10mm以下、8mm以下、7mm以下とすることができる。耐アーク層の厚さが5mm程度以下であれば、小径なコア10やケーブル1とし易い。
.... Thickness The thicker the arc resistant layer, the easier it is to interrupt the arc. Although it depends on the material of the arc-resistant layer, it is considered that 0.5 mm or more, more preferably 1 mm or more is preferable when using non-metallic materials such as resin or fibers among the above-mentioned high arc-resistant materials. When using the above-mentioned metal, it is considered that 1 mm or more, and further 2 mm or more is preferable. If the arc-resistant layer is too thick, the cable core 10 and the superconducting cable 1 will be increased in size and diameter. Therefore, the thickness of the arc-resistant layer (total thickness in the case of a multilayer structure) is 16 mm or less, and further 10 mm or less. , 8 mm or less, 7 mm or less. If the arc-resistant layer has a thickness of about 5 mm or less, the core 10 and the cable 1 can be easily formed with a small diameter.
 上述の半合成紙層と、無機繊維層と、有機繊維層とを備える多層構造の形態では、半合成紙層の厚さは、0.2mm以上1mm以下程度、無機繊維層の厚さは1mm以上10mm以下程度、好ましくは5mm以下程度、有機繊維層の厚さは0.5mm以上5mm以下程度、好ましくは2mm以下程度が挙げられる。 In the form of a multilayer structure including the semisynthetic paper layer, the inorganic fiber layer, and the organic fiber layer, the thickness of the semisynthetic paper layer is about 0.2 mm or more and 1 mm or less, and the thickness of the inorganic fiber layer is 1 mm. The thickness of the organic fiber layer is about 0.5 mm or more and about 5 mm or less, preferably about 2 mm or less.
 ・・・・保護層における占有割合
 保護層15全体を耐アーク層とすることができる。つまり、保護層15が上述の有機材料や無機材料の高耐アーク材料からなるテープ材や絶縁テープ材などから構成される形態とすることができる。上述の高耐アーク材料からなる層の占有割合が高いほど好ましく、保護層15における高耐アーク材料からなる層の占有割合は、厚さ割合で、80%以上、更に85%以上、90%以上が好ましい。
..... Occupation ratio in protective layer The entire protective layer 15 can be an arc resistant layer. That is, the protective layer 15 can be formed of a tape material, an insulating tape material, or the like made of the above-described high arc resistant material such as an organic material or an inorganic material. The higher the occupation ratio of the layer made of the above-mentioned high arc resistant material, the better. The occupation ratio of the layer made of the high arc resistant material in the protective layer 15 is 80% or more, more preferably 85% or more, 90% or more in terms of thickness. Is preferred.
 ・・・・その他の機能
 耐アーク層の少なくとも一部に、強度などの機械的特性に優れる繊維、特に上述の高強度繊維や上述の高強度・高弾性率繊維から構成される高強度層を備えて、この耐アーク層をテンションメンバに利用することができる。この形態のケーブルコア10は、テンションメンバに兼用する耐アーク層を備えることができる。
.... Other functions At least a part of the arc-resistant layer is provided with a fiber having excellent mechanical properties such as strength, particularly a high-strength layer composed of the above-described high-strength fiber and the above-described high-strength / high-modulus fiber In addition, the arc-resistant layer can be used as a tension member. The cable core 10 of this form can be provided with an arc resistant layer that is also used as a tension member.
 高強度層を構成する繊維は、引張強さが1GPa以上である上述の高強度繊維や高強度・高弾性率繊維を好適に利用できる。この程度の強度を有することで、超電導ケーブル1の製造にあたり、ケーブルコア10を断熱管20内に引き込む際に、高強度層を引き込み用のテンションメンバとして好適に利用できる。高強度層を構成する繊維の引張強さは、高いほど好ましく、1.5GPa以上、更に2GPa以上が挙げられる。高強度層の構成材料には、スーパー繊維と呼ばれる非金属繊維を好適に利用できる。耐アーク層の全体が又は耐アーク層が主として高強度繊維や、高強度・高弾性率繊維から構成されて、耐アーク層の実質的に全体が高強度層である場合には、耐アーク性に優れる上に、上述の引き込み時の張力に対する強度を十分に有することができる。耐アーク層の一部にのみ高強度層を備える場合には、例えば、他部を耐アーク性により優れる材料で構成することなどができる(上述の無機繊維層と有機繊維層とを備える多層構造の形態参照)。 As the fibers constituting the high-strength layer, the above-described high-strength fibers and high-strength / high-modulus fibers having a tensile strength of 1 GPa or more can be suitably used. By having such a strength, when manufacturing the superconducting cable 1, the high-strength layer can be suitably used as a pulling tension member when the cable core 10 is pulled into the heat insulating tube 20. The higher the tensile strength of the fibers constituting the high-strength layer, the better, and 1.5 GPa or more, and further 2 GPa or more can be mentioned. As the constituent material of the high-strength layer, non-metallic fibers called super fibers can be suitably used. When the entire arc-resistant layer or the arc-resistant layer is mainly composed of high-strength fibers or high-strength / high-modulus fibers, and the arc-proof layer is substantially the entire high-strength layer, arc resistance In addition, the strength against the tension at the time of pulling in can be sufficiently obtained. In the case where the high-strength layer is provided only in a part of the arc-resistant layer, for example, the other part can be composed of a material that is superior in arc resistance (multi-layer structure including the above-described inorganic fiber layer and organic fiber layer) Refer to the form).
 高強度層を、上述のような繊維のテープ材とし、このテープ材を巻回してなる巻回層とする場合、巻回ピッチは比較的長い方が好ましい。具体的な巻回ピッチは、例えば、400mm以上2000mm以下、好ましくは600mm以上1000mm以下が挙げられる。このような比較的長いピッチとすることで、引き込み時に高強度層を引っ張ることで高強度層(巻回層)が巻き締まってケーブルコア10を締め付け、この締め付けによってコア10に過度の力が付与されることを防止できる。また、巻回ピッチが上記範囲を満たすことで、縦添えする場合に比較して、引き込み時の張力に耐え得る十分な強度を有することができる。 When the high-strength layer is a fiber tape material as described above, and the wound layer is formed by winding this tape material, the winding pitch is preferably relatively long. Specific winding pitch is, for example, 400 mm or more and 2000 mm or less, preferably 600 mm or more and 1000 mm or less. By using such a relatively long pitch, the high-strength layer (winding layer) is tightened by pulling the high-strength layer at the time of pulling, and the cable core 10 is tightened, and an excessive force is applied to the core 10 by this tightening. Can be prevented. In addition, when the winding pitch satisfies the above range, it can have sufficient strength to withstand the tension at the time of pulling in compared with the case where it is vertically attached.
 ・断熱管
 断熱管20は、内管21と、内管21の外周に設けられる外管22とを有する二重構造管であり、内管21と外管22との間の空間が真空引きされ、この空間に真空断熱層が形成された真空断熱管である。内管21の内部空間は、ケーブルコア10の収納空間であると共に、超電導導体層12や外側超電導層の超電導状態を維持するための液体冷媒Lが充填され、流通される空間(冷媒流路)である。内管21及び外管22は、ステンレス鋼などの金属管であってコルゲート管やベローズ管とすると可撓性に優れ、フラット管とすると表面積が小さく断熱性に優れる上に、液体冷媒Lの圧力損失を小さくできる。内管21と外管22との間にスーパーインシュレーションといった断熱材(図示せず)を備えると、より高い断熱性を有する。
-Heat insulation pipe The heat insulation pipe 20 is a double structure pipe having an inner pipe 21 and an outer pipe 22 provided on the outer periphery of the inner pipe 21, and the space between the inner pipe 21 and the outer pipe 22 is evacuated. This is a vacuum heat insulating tube in which a vacuum heat insulating layer is formed in this space. The inner space of the inner tube 21 is a storage space for the cable core 10 and is filled with a liquid refrigerant L for maintaining the superconducting state of the superconducting conductor layer 12 and the outer superconducting layer (the refrigerant flow path). It is. The inner tube 21 and the outer tube 22 are metal tubes made of stainless steel or the like, and are excellent in flexibility when a corrugated tube or bellows tube, and have a small surface area and excellent heat insulating properties when used as a flat tube, and the pressure of the liquid refrigerant L Loss can be reduced. When a heat insulating material (not shown) such as a super insulation is provided between the inner tube 21 and the outer tube 22, it has higher heat insulating properties.
 断熱管20の外管22の外側には、ビニルやポリエチレンなどの防食材から構成される防食層24を備える。 The outer side of the outer tube 22 of the heat insulating tube 20 is provided with an anticorrosion layer 24 made of an anticorrosion material such as vinyl or polyethylene.
 ・製造方法
 実施形態1の超電導ケーブル1は、代表的には、工場などで作製したケーブルコア10を断熱管20に収納することで製造できる。コア10の外周に断熱管20を形成したり、別途作製した断熱管20内にコア10を引き込んだりすることで、コア10を断熱管20に収納した状態にできる。その他、工場などで作製したコア10を布設現場に搬送し、布設経路に断熱管20を布設した後、この断熱管20内にコア10を収納することでも超電導ケーブル1を製造できる。耐アーク層が上述の高強度層を含む場合には、工場又は布設現場において、コア10を引き込んで断熱管20に収納する際に、高強度層をテンションメンバとして利用することで、別途、テンションメンバを省略できる。この場合、部品点数を低減できるため、超電導ケーブル1の製造性、布設作業性に優れる。
-Manufacturing method The superconducting cable 1 of Embodiment 1 can be manufactured typically by accommodating the cable core 10 produced in the factory etc. in the heat insulation pipe | tube 20. As shown in FIG. By forming the heat insulation pipe 20 on the outer periphery of the core 10 or drawing the core 10 into the heat insulation pipe 20 separately manufactured, the core 10 can be stored in the heat insulation pipe 20. In addition, the superconducting cable 1 can also be manufactured by transporting the core 10 manufactured in a factory or the like to the laying site, laying the heat insulating pipe 20 in the laying path, and then storing the core 10 in the heat insulating pipe 20. When the arc-resistant layer includes the above-described high-strength layer, the high-strength layer is used as a tension member when the core 10 is pulled in and stored in the heat insulating tube 20 at a factory or a laying site. Members can be omitted. In this case, since the number of parts can be reduced, the superconducting cable 1 is excellent in manufacturability and installation workability.
 ・効果
 実施形態1の超電導ケーブル1は、断熱管20に収納される複数のケーブルコア10のいずれもが特定の高耐アーク材料を含む耐アーク層を備えるため、自身に地絡などの事故が生じて超電導導体層12から接地層14に向かってアークが生じた場合でも、このアークが断熱管20(内管21)に至らない。即ち、超電導ケーブル1は、超電導導体層12から接地層14を経て断熱管20に向かおうとするアークを耐アーク層によって遮断できる。従って、超電導ケーブル1は、地絡などの事故時に断熱管20の損傷を防止できる。
-Effect Since superconducting cable 1 of Embodiment 1 is equipped with the arc-proof layer in which all the cable cores 10 accommodated in the heat insulation pipe | tube 20 contain specific high arc-proof material, accidents, such as a ground fault, are carried out to itself. Even when an arc is generated from the superconducting conductor layer 12 toward the ground layer 14, the arc does not reach the heat insulating tube 20 (inner tube 21). That is, the superconducting cable 1 can cut off the arc from the superconducting conductor layer 12 through the ground layer 14 to the heat insulating tube 20 by the arc-resistant layer. Therefore, the superconducting cable 1 can prevent damage to the heat insulating tube 20 at the time of an accident such as a ground fault.
 特に、実施形態1の超電導ケーブル1は、多心一括ケーブル(この例では3心一括ケーブル)であり、断熱管20に収納される一つのコア10が絶縁破壊して、超電導導体層12から接地層14にアークが生じた場合に、このコア10に隣接する別のコア10に向かうアークを耐アーク層によって遮断できる。従って、超電導ケーブル1は、地絡などの事故時に隣接するコア10,10同士の間で短絡が生じることも防止できる。即ち、地絡事故から短絡事故に移行することを防止できる。 In particular, the superconducting cable 1 of the first embodiment is a multi-core collective cable (three-core collective cable in this example), and one core 10 housed in the heat insulating tube 20 breaks down and is connected from the superconducting conductor layer 12. When an arc is generated in the formation 14, an arc directed to another core 10 adjacent to the core 10 can be interrupted by the arc-resistant layer. Therefore, the superconducting cable 1 can also prevent a short circuit from occurring between the adjacent cores 10 and 10 at the time of an accident such as a ground fault. That is, it is possible to prevent a transition from a ground fault accident to a short-circuit accident.
 [実施形態2]
 実施形態1では、一つの断熱管20に複数のケーブルコア10が収納された多心一括ケーブルを説明した。その他、一つの断熱管20に1本のケーブルコア10のみが収納された単心ケーブルとすることができる。
[Embodiment 2]
In the first embodiment, the multi-core collective cable in which the plurality of cable cores 10 are accommodated in one heat insulating tube 20 has been described. In addition, it can be set as the single core cable by which only one cable core 10 was accommodated in the one heat insulation pipe | tube 20. FIG.
 実施形態2の超電導ケーブル(単心ケーブル)は、断熱管20に収納されるケーブルコア10が特定の高耐アーク材料を含む耐アーク層を備えるため、自身に地絡などの事故が生じて超電導導体層12から接地層14に向かってアークが生じた場合でも、このアークを耐アーク層によって遮断できる。従って、実施形態2の超電導ケーブルは、実施形態1の超電導ケーブル1と同様に、地絡などの事故時に断熱管20の損傷を防止できる。 In the superconducting cable (single-core cable) of the second embodiment, since the cable core 10 accommodated in the heat insulating tube 20 includes an arc resistant layer including a specific high arc resistant material, an accident such as a ground fault occurs in the superconducting cable. Even when an arc is generated from the conductor layer 12 toward the ground layer 14, this arc can be interrupted by the arc-resistant layer. Therefore, similarly to the superconducting cable 1 of the first embodiment, the superconducting cable of the second embodiment can prevent the heat insulating tube 20 from being damaged at the time of an accident such as a ground fault.
 [試験例1]
 接地層の外周に多層構造の耐アーク層を備える超電導ケーブル用ケーブルコアを作製して、耐アーク特性を調べた。
 この試験では、超電導導体層(上述の超電導線材使用)と、電気絶縁層と、接地層となる外側超電導層(上述の超電導線材使用)と、外側超電導層の外周に、内周側から順に、PPLPのテープ材の巻回層(厚さ0.6mm)、ガラス繊維のテープ材の巻回層(厚さ5mm、シリカクロス)、アラミド繊維のテープ材の巻回層(厚さ1mm、ケブラー(登録商標)クロス)を備える耐アーク層とを備えるケーブルコア(No.1)を用意した。各テープ材はいずれも市販品である。
 比較として、外側超電導層の外周に上述の耐アーク層を備えていないケーブルコア(No.100)を用意した。試料No.100のケーブルコアは、耐アーク層を備えていない点を除いて試料No.1と同様である。
[Test Example 1]
A cable core for a superconducting cable having a multi-layer arc-proof layer on the outer periphery of the grounding layer was fabricated and the arc-proof characteristics were examined.
In this test, a superconducting conductor layer (using the above-described superconducting wire), an electrical insulating layer, an outer superconducting layer (using the above-mentioned superconducting wire) serving as a ground layer, and an outer periphery of the outer superconducting layer, in order from the inner periphery side, PPLP tape material winding layer (thickness 0.6 mm), glass fiber tape material winding layer (thickness 5 mm, silica cloth), aramid fiber tape material winding layer (thickness 1 mm, Kevlar ( A cable core (No. 1) provided with an arc-resistant layer provided with (registered trademark) cloth) was prepared. Each tape material is a commercial product.
As a comparison, a cable core (No. 100) not provided with the arc-resistant layer described above on the outer periphery of the outer superconducting layer was prepared. Sample No. The cable core No. 100 does not have an arc-resistant layer, except for sample No. Same as 1.
 用意した試料No.1のケーブルコア、試料No.100のケーブルコアをそれぞれ断熱管に挿入して試料No.1の超電導ケーブル、試料No.100の超電導ケーブルとし、各試料の断熱管に液体窒素を導入して、液体窒素によって各試料のケーブルコアを冷却する。この状態で、各試料の超電導導体層と外側超電導層との間に地絡電流を流して、両層間にアークを発生させる。 Prepared sample No. 1 cable core, sample no. 100 cable cores were inserted into the heat insulation tubes, respectively, and sample Nos. 1 superconducting cable, sample no. 100 superconducting cables are used, liquid nitrogen is introduced into the heat insulating tube of each sample, and the cable core of each sample is cooled by liquid nitrogen. In this state, an earth current is passed between the superconducting conductor layer and the outer superconducting layer of each sample to generate an arc between both layers.
 その結果、耐アーク層を有さないケーブルコアを備える試料No.100の超電導ケーブルでは、発生したアークが断熱管まで達して断熱管に孔が開いたのに対して、耐アーク層を有するケーブルコアを備える試料No.1の超電導ケーブルでは、断熱管に孔が開かず、耐アーク性に優れることが確認できた。この試験では無機繊維層の構成材料としてガラス繊維を用いたが、セラミックス繊維であれば、耐アーク特性により優れることから、巻回層の厚さを薄くできる、又は地絡事故時の断熱管の損傷防止の信頼性を高められると期待される。 As a result, Sample No. provided with a cable core that does not have an arc-resistant layer. In the 100 superconducting cable, the generated arc reached the heat insulating tube and the heat insulating tube was perforated, whereas the sample No. 1 having a cable core having an arc-resistant layer was formed. It was confirmed that the superconducting cable No. 1 was excellent in arc resistance because no hole was opened in the heat insulating tube. In this test, glass fiber was used as the constituent material of the inorganic fiber layer, but if it is ceramic fiber, it is superior in arc resistance characteristics, so the thickness of the wound layer can be reduced, or the insulation tube at the time of ground fault It is expected to increase the reliability of damage prevention.
 本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 The present invention is not limited to these exemplifications, but is defined by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
 本発明の超電導ケーブルは、直流送電路、交流送電路に利用できる。本発明の超電導ケーブル用ケーブルコアは、超電導ケーブルの構成部材に利用できる。 The superconducting cable of the present invention can be used for a DC transmission line and an AC transmission line. The cable core for a superconducting cable of the present invention can be used as a constituent member of a superconducting cable.
 1 超電導ケーブル
 10 超電導ケーブル用ケーブルコア 11 フォーマ
 12 超電導導体層 13 電気絶縁層 14 接地層
 15 保護層(耐アーク層)
 20 断熱管 21 内管 22 外管 24 防食層 L 液体冷媒
DESCRIPTION OF SYMBOLS 1 Superconducting cable 10 Cable core for superconducting cable 11 Former 12 Superconducting conductor layer 13 Electrical insulation layer 14 Ground layer 15 Protective layer (arc-proof layer)
20 Heat insulation pipe 21 Inner pipe 22 Outer pipe 24 Anticorrosion layer L Liquid refrigerant

Claims (6)

  1.  超電導導体層と、
     前記超電導導体層の外周に電気絶縁層を介して設けられる接地層と、
     前記接地層の外周に設けられる保護層とを備え、
     前記保護層は、高性能・高機能繊維、ポリプロピレン樹脂、ポリエチレン樹脂、ポリ四フッ化エチレン樹脂、シリコーン樹脂、アミノ樹脂、アラミド樹脂、ポリフェニレンサルファイド樹脂、ポリイミド樹脂、ポリアクリレート樹脂、シリコーンゴム及び金属から選択される1種以上の材料から構成される耐アーク層を含む超電導ケーブル用ケーブルコア。
    A superconducting conductor layer;
    A grounding layer provided on the outer periphery of the superconducting conductor layer via an electrical insulating layer;
    A protective layer provided on the outer periphery of the grounding layer,
    The protective layer is made of high performance / high performance fiber, polypropylene resin, polyethylene resin, polytetrafluoroethylene resin, silicone resin, amino resin, aramid resin, polyphenylene sulfide resin, polyimide resin, polyacrylate resin, silicone rubber and metal. A cable core for a superconducting cable including an arc-resistant layer composed of one or more selected materials.
  2.  前記耐アーク層は、前記材料から構成されるテープ材を巻回した巻回層を含む請求項1に記載の超電導ケーブル用ケーブルコア。 The cable core for a superconducting cable according to claim 1, wherein the arc-resistant layer includes a wound layer in which a tape material made of the material is wound.
  3.  前記耐アーク層は、複数の異なる材料から構成される多層構造であり、
     内周側から順に、ポリプロピレン樹脂とクラフト紙とを含む半合成紙から形成される半合成紙層と、ガラス繊維及びセラミックス繊維の少なくとも一方から形成される無機繊維層と、アラミド繊維から形成される有機繊維層とを含む請求項1又は請求項2に記載の超電導ケーブル用ケーブルコア。
    The arc resistant layer is a multilayer structure composed of a plurality of different materials,
    In order from the inner peripheral side, a semi-synthetic paper layer formed from semi-synthetic paper containing polypropylene resin and kraft paper, an inorganic fiber layer formed from at least one of glass fiber and ceramic fiber, and aramid fiber are formed. The cable core for a superconducting cable according to claim 1 or 2, comprising an organic fiber layer.
  4.  前記耐アーク層は、前記高性能・高機能繊維のうち、引張強さが1GPa以上である繊維から構成される高強度層を含む請求項1~請求項3のいずれか1項に記載の超電導ケーブル用ケーブルコア。 The superconducting device according to any one of claims 1 to 3, wherein the arc-resistant layer includes a high-strength layer composed of fibers having a tensile strength of 1 GPa or more among the high-performance and high-function fibers. Cable core for cable.
  5.  請求項1~請求項4のいずれか1項に記載の超電導ケーブル用ケーブルコアと、
     前記超電導ケーブル用ケーブルコアを収納する断熱管とを備える超電導ケーブル。
    A cable core for a superconducting cable according to any one of claims 1 to 4,
    A superconducting cable comprising a heat insulating tube for housing the cable core for the superconducting cable.
  6.  前記断熱管に複数の前記超電導ケーブル用ケーブルコアを備える請求項5に記載の超電導ケーブル。 The superconducting cable according to claim 5, wherein the heat insulating pipe includes a plurality of cable cores for the superconducting cable.
PCT/JP2015/078389 2014-12-04 2015-10-06 Superconducting cable and cable core for superconducting cable WO2016088446A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112015005492.8T DE112015005492T5 (en) 2014-12-04 2015-10-06 Superconducting cable and cable core for conductive cable

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-246090 2014-12-04
JP2014246090 2014-12-04
JP2015151640A JP2016110988A (en) 2014-12-04 2015-07-31 Superconductive cable, and cable core for superconductive cable
JP2015-151640 2015-07-31

Publications (1)

Publication Number Publication Date
WO2016088446A1 true WO2016088446A1 (en) 2016-06-09

Family

ID=56091402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078389 WO2016088446A1 (en) 2014-12-04 2015-10-06 Superconducting cable and cable core for superconducting cable

Country Status (1)

Country Link
WO (1) WO2016088446A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107151445A (en) * 2017-06-09 2017-09-12 芜湖航天特种电缆厂股份有限公司 A kind of undersea detection high-strength cable outer jacket and preparation method thereof
CN112175338A (en) * 2019-07-02 2021-01-05 青岛海尔电冰箱有限公司 Superconducting disk frame, material preparation process thereof and superconducting disk

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238427A (en) * 2009-03-30 2010-10-21 Sumitomo Electric Ind Ltd Direct-current superconducting cable

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238427A (en) * 2009-03-30 2010-10-21 Sumitomo Electric Ind Ltd Direct-current superconducting cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107151445A (en) * 2017-06-09 2017-09-12 芜湖航天特种电缆厂股份有限公司 A kind of undersea detection high-strength cable outer jacket and preparation method thereof
CN112175338A (en) * 2019-07-02 2021-01-05 青岛海尔电冰箱有限公司 Superconducting disk frame, material preparation process thereof and superconducting disk

Similar Documents

Publication Publication Date Title
KR102038707B1 (en) fire resistant cable for medium or high voltage and manufacturing method of the same
JP2016110988A (en) Superconductive cable, and cable core for superconductive cable
US8487184B2 (en) Communication cable
WO2011142303A1 (en) Superconducting cable
EP3257056B1 (en) Fire resistant cable
JP2018530853A (en) Superconducting wire
WO2006059447A1 (en) Superconducting cable
KR20140095155A (en) fire resistant cable
CN110462756A (en) Three-phase coaxial superconducting cable
WO2016088446A1 (en) Superconducting cable and cable core for superconducting cable
US10957469B2 (en) High voltage three-phase cable
US7763806B2 (en) Superconducting cable
JP2007200783A (en) Multiconductor superconductive cable
KR101352167B1 (en) Power cable having a shielding layer of high tensile fabrics
JP4720976B2 (en) Superconducting cable
JP7024657B2 (en) cable
CN206976065U (en) A kind of anti abrasive insulation ZR YJLV flame resistant cables of epidermis
JP6770459B2 (en) Superconducting cable
CN106856105A (en) A kind of fire resistant flexible computer cable of resistance to drawing
CN212847857U (en) Fluoroplastic insulating silicon rubber sheath high-temperature-resistant control cable
KR20150142167A (en) Electric wire of fire retardant using carbon fiber
CN220121529U (en) Medium-voltage longitudinal water-blocking high-flame-retardance power cable
CN211455364U (en) Silicon rubber insulation instrument cable
KR20140094096A (en) mica tape and fire resistant cable including the same
CN218939300U (en) High-temperature-resistant bending-resistant cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865580

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015005492

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865580

Country of ref document: EP

Kind code of ref document: A1