WO2016088379A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2016088379A1
WO2016088379A1 PCT/JP2015/006008 JP2015006008W WO2016088379A1 WO 2016088379 A1 WO2016088379 A1 WO 2016088379A1 JP 2015006008 W JP2015006008 W JP 2015006008W WO 2016088379 A1 WO2016088379 A1 WO 2016088379A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
evaporator
refrigerant
defrost operation
defrost
Prior art date
Application number
PCT/JP2015/006008
Other languages
French (fr)
Japanese (ja)
Inventor
秀徳 松井
滋人 田中
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2016088379A1 publication Critical patent/WO2016088379A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost

Definitions

  • the present invention relates to a container refrigeration apparatus for cooling the inside of a container used for marine transportation or the like, a cooling apparatus for cooling the inside of a refrigerator or a freezer, and a refrigeration apparatus such as an air conditioner capable of heating a room.
  • the present invention relates to a technique for shortening the time required for detecting the frost formation of the evaporator and quickly ending the defrost operation.
  • containers used for marine transportation or the like are generally configured by attaching a container refrigeration apparatus to a container body (see, for example, Patent Document 1).
  • the container refrigeration apparatus includes a refrigerant circuit configured by sequentially connecting a compressor, a condenser, an expansion mechanism, and an evaporator, and the operation of a refrigeration cycle performed by circulating the refrigerant through the refrigerant circuit. Cool the container.
  • the refrigeration apparatus of Patent Document 1 has a controller including pull-down operation means and defrost operation means. And a controller is comprised so that a defrost operation may be performed for every fixed time with a timer during a pull-down operation.
  • the problem that the time required for defrosting from detection of frost formation is not limited to the pull-down operation, but may occur in the normal cooling operation as well.
  • the problem that the time required for frost detection and defrosting becomes longer is not limited to the container refrigeration apparatus, but also in the cooling apparatus that cools the inside of a refrigerator or a freezer or the air conditioning apparatus that can heat a room. May occur.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide an evaporator in a refrigeration apparatus such as a container refrigeration apparatus, a refrigerator such as a refrigerator, and a refrigeration apparatus such as an air conditioner. It is possible to quickly detect the frost formation of the water, prevent the start of the defrost operation from being delayed unnecessarily, and end the defrost operation quickly.
  • a temperature control target chamber (1a), a compressor (30), a condenser (31), an expansion mechanism (32), and an evaporator (33) are connected in order to perform a refrigeration cycle operation.
  • a refrigeration apparatus including a refrigerant circuit (20) for controlling the temperature of the inside of the temperature control target chamber (1a) and a control device (100) for controlling the refrigerant circuit (20).
  • the control device (100) includes a defrosting operation control unit (106) for controlling the defrosting operation, and the air blowing temperature or the suction temperature and the refrigerant outlet temperature in the evaporator (33) are controlled.
  • a defrosting operation control unit (106) for controlling the defrosting operation, and the air blowing temperature or the suction temperature and the refrigerant outlet temperature in the evaporator (33) are controlled.
  • the temperature difference between the air blowing temperature or the suction temperature and the refrigerant outlet temperature in the evaporator (33) is a predetermined threshold (for example, the outlet temperature of the evaporator (33) and the refrigerant outlet temperature).
  • the temperature difference threshold of 5 ° C. and the temperature difference threshold between the suction temperature of the evaporator (33) and the outlet temperature of the refrigerant is 10 ° C.) or more. Detected frost formation. This is because the heat transfer rate is reduced due to frost formation on the evaporator (33), the refrigerant does not evaporate to the outlet of the evaporator (33), and the outlet temperature of the refrigerant is lowered. It is possible. And it becomes possible to detect rapidly that the evaporator (33) frosted by doing in this way.
  • the control device (100) includes a pull-down operation control unit (105) that performs a pull-down operation for rapidly cooling the temperature control target chamber (1a).
  • the defrost operation control is performed during operation.
  • control device (100) is configured according to the air volume of the evaporator fan (36) disposed in the vicinity of the evaporator (33).
  • the threshold value is changed, and the threshold value is increased when the air volume becomes larger than the current value.
  • the threshold value is changed according to the air volume of the evaporator fan (36), frost formation is detected based on the threshold value, and defrosting operation is controlled.
  • any one of the first to third aspects when the control device (100) detects frost formation within a predetermined time after performing the defrost operation, thereafter, The defrosting operation is prohibited until the power is turned off.
  • the control when defrosting is detected again within a predetermined time after the defrosting is completed, the control is performed such that the defrosting is not performed. This is because the possibility of false detection is high, such as the evaporator (33) being dirty.
  • the evaporator when it is determined that the temperature difference between the air blowing temperature or the suction temperature and the refrigerant outlet temperature in the evaporator (33) is equal to or greater than a predetermined threshold, the evaporator (33 The defrost operation control for starting the defrost operation is performed by the defrost operation control unit (106). In this way, defrosting operation is not performed based on the set time of the timer, but by using the above temperature difference, frost formation can be detected quickly and defrost operation can be started. The operation time in the lowered state can be minimized. That is, the defrosting operation can be completed quickly.
  • the temperature difference between the air blowing temperature or the suction temperature and the refrigerant outlet temperature in the evaporator (33) is not affected by factors such as intrusion heat, cargo heat capacity, and cooling capacity, which are short. Highly effective in detecting frost formation over time.
  • defrosting can be started earlier than before, defrosting can be started with a small amount of frost formation.
  • the defrosting operation time itself can be shortened, so that the time required for defrosting can be shortened more reliably, and the defrosting completion temperature can be lowered, so that the cooling operation can be resumed smoothly.
  • the defrost operation when the defrost operation is performed during the pull-down operation in the container refrigeration apparatus and the refrigerator or refrigerator cooling apparatus, it is quickly detected that the evaporator (33) has formed frost. Therefore, the defrosting operation can be completed quickly during pull-down, and the pull-down time can be shortened.
  • the temperature difference between the air blowing temperature and the refrigerant outlet temperature in the evaporator (33) increases.
  • frost detection can be quickly performed even when the air volume changes, and the defrosting operation can be completed quickly.
  • FIG. 1 is a longitudinal sectional view of a state in which a container refrigeration apparatus according to an embodiment of the present invention is mounted on a container body.
  • FIG. 2 is a schematic perspective view of the container refrigeration apparatus of FIG. 1 viewed from the outside.
  • FIG. 3 is a refrigerant circuit diagram of the container refrigeration apparatus of FIG.
  • FIG. 4A is a graph showing the operations of the pull-down operation and the defrost operation of the present embodiment
  • FIG. 4B is a graph showing the operations of the pull-down operation and the defrost operation of the comparative example.
  • This embodiment relates to a container refrigeration apparatus.
  • the container refrigeration apparatus (10) of the present embodiment cools (temperature control) the inside of a container used for marine transportation or the like.
  • the container refrigeration apparatus (10) includes a refrigerant circuit having a compressor (30), a condenser (31), and an evaporator (33).
  • the container refrigeration apparatus (10) also serves as a lid that closes the side opening surface of the container main body (temperature control target chamber) (1a).
  • the casing (13) of the container refrigeration apparatus (10) includes a casing body (11) and a casing (13) that partition the outside of the container outside the container and the inside of the container (inside the temperature control target chamber). ) And a partition plate (14) provided on the back (inside of the cabinet).
  • the casing body (11) is formed in a double structure of an aluminum inner casing (11a) and an FRP outer casing (11b). And the heat insulation layer (11c) which consists of a foaming agent is formed between the said inner casing (11a) and the outer casing (11b).
  • a bulging portion (12) bulging to the inside of the cabinet is formed at the lower part of the casing body (11). And while the inside of the said bulging part (12) is comprised by the storage space outside a store
  • the compressor (30), the condenser (31), and the external fan (35) are stored, and the electrical component box (15) is stored.
  • An evaporator (33) and an internal fan (evaporator fan) (36) are attached to the space (S2). Moreover, it is comprised between the said bulging part (12) and a partition plate (14) by the air path (S3) through which internal air flows.
  • the upper end of the air passage (S3) communicates with the internal storage space (S2), while the lower end communicates with the interior.
  • the container refrigeration apparatus (10) includes a refrigerant circuit (20) that performs a cooling cycle by circulating the refrigerant.
  • the refrigerant circuit (20) includes a main circuit (21), a hot gas bypass circuit (22), a reheat circuit (80), and a supercooling circuit (23).
  • the main circuit (21) is configured by connecting a compressor (30), a condenser (31), a main expansion valve (32), and an evaporator (33) in series by a refrigerant pipe in order. Perform cycle operation.
  • the compressor (30) has a motor (not shown) that drives the compression mechanism.
  • the rotation speed of the motor of the compressor (30) is controlled in multiple stages by an inverter.
  • the compressor (30) is a variable capacity compressor that is configured to have a variable operating rotational speed.
  • the inverter circuit board connected to the compressor (30) is housed in the electrical component box (15).
  • the condenser (31) and the evaporator (33) are both fin-and-tube heat exchangers.
  • the condenser (31) is arranged outside the warehouse as described above. In the condenser (31), heat is exchanged between the outside air and the refrigerant.
  • the evaporator (33) is arranged in the cabinet as described above. In the evaporator (33), the air in the warehouse and the refrigerant exchange heat.
  • a drain pan (37) (not shown in FIG. 1) is provided below the evaporator (33).
  • the drain pan (37) is formed in a flat container shape whose upper side is open. Inside the drain pan (37), frost and ice blocks that have fallen off from the evaporator (33), condensed water condensed from the air, and the like are collected.
  • the main expansion valve (32) is configured such that the opening degree can be adjusted in multiple stages by a pulse motor.
  • the condenser (31) is provided with an external fan (35), while the evaporator (33) is provided with an internal fan (36).
  • the internal fan (36) is configured to supply the cooling air cooled by the evaporator (33) into the internal space.
  • the external fan (35) and the internal fan (36) are provided with an external fan motor (35a) and an internal fan motor (36a), respectively.
  • the high pressure gas pipe (24) between the compressor (30) and the condenser (31) is provided with a fourth open / close valve (38) and a check valve (CV) in this order.
  • the fourth on-off valve (38) is configured such that the opening degree can be adjusted in multiple stages by a pulse motor.
  • the check valve (CV) allows the refrigerant to flow in the direction of the arrow shown in FIG. 3 and prohibits the reverse flow.
  • the high pressure liquid pipe (25) between the condenser (31) and the main expansion valve (32) includes a receiver (41), a second on-off valve (49), a dryer (43), and a supercooling heat exchanger ( 44) and so on.
  • the receiver (41) is provided on the downstream side of the condenser (31), and is configured to allow the refrigerant that has flowed through the condenser (31) to flow into the saturated liquid and the saturated gas.
  • the second on-off valve (49) is an openable / closable solenoid valve.
  • the dryer (43) is configured to capture moisture in the liquid refrigerant that has flowed through the condenser (31).
  • a liquid seal prevention pipe (90) connected to the downstream side of the main expansion valve (32) is connected to the upstream side of the condenser (31).
  • the liquid seal prevention pipe (90) is provided with a liquid seal on-off valve (91).
  • the supercooling heat exchanger (44) cools the liquid refrigerant that has flowed through the condenser (31).
  • the supercooling heat exchanger (44) has a primary side passage (45) and a secondary side passage (46). That is, in the supercooling heat exchanger (44), the refrigerant flowing through the primary side passage (45) and the refrigerant flowing through the secondary side passage exchange heat.
  • the primary side passage (45) is connected to the high-pressure liquid pipe (25) of the main circuit (21), and the secondary side passage (46) is connected to the supercooling branch pipe (26) of the supercooling circuit (23). Has been.
  • the inflow end of the supercooling branch pipe (26) is connected between the receiver (41) and the second on-off valve (49) in the high-pressure liquid pipe (25).
  • the outflow end of the supercooling branch pipe (26) is connected to a compression chamber (intermediate compression chamber) in the middle of compression (intermediate pressure state) of the compressor (30). That is, the subcooling branch pipe (26) is a passage through which a part of the liquid refrigerant in the high-pressure liquid pipe (25) is divided and flows into the intermediate compression chamber of the compressor (30).
  • a first on-off valve (47) and a supercooling expansion valve (48) are provided on the inflow side of the secondary passage (46) in the supercooling branch pipe (26).
  • the first on-off valve (47) is an openable / closable solenoid valve.
  • the supercooling expansion valve (48) can be adjusted in multiple stages by a pulse motor, and constitutes a decompression mechanism for decompressing the refrigerant.
  • the hot gas bypass circuit (22) has one main passage (50) and two branch passages (51, 52) branched from the main passage (50).
  • the two branch passages (51, 52) are referred to as a first branch passage (51) and a second branch passage (52).
  • the inflow end of the main passage (50) is connected between the fourth on-off valve (38) in the high-pressure gas pipe (24) and the discharge side of the compressor (30).
  • a third on-off valve (53) is provided in the main passage (50).
  • the third on-off valve (53) is an openable / closable solenoid valve.
  • the first branch passage (51) has one end connected to the outflow end of the main passage (50) and the other end connected to the low-pressure liquid pipe (27) between the main expansion valve (32) and the evaporator (33). It is connected.
  • the second branch passage (52) has one end connected to the outflow end of the main passage (50) and the other end connected to the low-pressure liquid pipe (27).
  • the second branch passage (52) is composed of a refrigerant pipe that is longer than the first branch passage (51).
  • the second branch passage (52) has a drain pan heater (54) arranged meandering along the bottom of the drain pan (37).
  • the drain pan heater (54) is configured to heat the inside of the drain pan (37) with a refrigerant.
  • the hot gas bypass circuit (22) supplies the refrigerant compressed by the compressor (30) (the high-temperature gas refrigerant discharged from the compressor (30)) to the evaporator (33).
  • a bypass circuit is configured.
  • the reheat circuit (80) has a reheat passage (82).
  • the inflow end of the reheat passage (82) is connected between the fourth on-off valve (38) in the high-pressure gas pipe (24) and the discharge side of the compressor (30).
  • the reheat passage (82) is provided with a fifth on-off valve (81).
  • the fifth on-off valve (81) is an openable / closable solenoid valve.
  • the reheat passage (82) has a reheat heat exchanger (83) and a capillary tube. In the dehumidifying operation, the reheat heat exchanger (83) exchanges heat between the discharged refrigerant that has flowed in and the air that has been cooled and dehumidified by the evaporator (33), and heats the air. .
  • the reheat heat exchanger (83) is a fin-and-tube heat exchanger.
  • the capillary tube decompresses the refrigerant that has flowed out of the reheat heat exchanger (83).
  • the reheat circuit (80) supplies a part of the refrigerant (high-temperature gas refrigerant discharged from the compressor (30)) compressed by the compressor (30) to the reheat heat exchanger (83).
  • the circuit for doing is comprised.
  • the refrigerant circuit (20) is also provided with various sensors.
  • the high pressure gas pipe (24) is provided with a high pressure sensor (60), a high pressure switch (61), and a discharge temperature sensor (62).
  • the high pressure sensor (60) detects the pressure of the high pressure gas refrigerant discharged from the compressor (30).
  • the discharge temperature sensor (62) detects the temperature of the high-pressure gas refrigerant discharged from the compressor (30).
  • the low pressure gas pipe (28) between the evaporator (33) and the compressor (30) is provided with a low pressure sensor (63) and a suction temperature sensor (64).
  • the low pressure sensor (63) detects the pressure of the low pressure gas refrigerant sucked into the compressor (30).
  • the suction temperature sensor (64) detects the temperature of the low-pressure gas refrigerant sucked into the compressor (30).
  • the subcooling branch pipe (26) is provided with an inflow temperature sensor (65) on the inflow side of the secondary side passage (46) and an outflow temperature sensor (66) on the outflow side of the secondary side passage (46). It has been.
  • the inflow temperature sensor (65) detects the temperature of the refrigerant immediately before flowing into the secondary side passage (46).
  • the outflow temperature sensor (66) detects the temperature of the refrigerant immediately after flowing out of the secondary side passage (46).
  • the low-pressure liquid pipe (27) is provided with an inflow temperature sensor (67) on the inflow side of the evaporator (33). This inflow temperature sensor (67) detects the temperature (EIS) of the refrigerant immediately before flowing into the evaporator (33).
  • the low pressure gas pipe (28) is provided with an outflow temperature sensor (68) on the outflow side of the evaporator (33). This outflow temperature sensor (68) detects the temperature (EOS) of the refrigerant immediately after flowing out of the evaporator (33).
  • an outside air temperature sensor (69) is provided on the suction side of the condenser (31).
  • the outside air temperature sensor (69) detects the temperature of the outside air just before being sucked into the condenser (31) (that is, the temperature of the outside air).
  • a suction temperature sensor (70) is provided on the suction side of the evaporator (33), and an outlet temperature sensor (71) is provided on the outlet side of the evaporator (33).
  • the suction temperature sensor (70) detects the temperature (RS) of the internal air immediately before passing through the evaporator (33).
  • the blowing temperature sensor (71) detects the temperature of the internal air immediately after passing through the evaporator (33) (blowing air temperature (SS)).
  • the container refrigeration apparatus (10) is provided with a controller (100) as a control unit for controlling the refrigerant circuit (20).
  • the controller (100) includes a compressor control unit (101) for controlling the frequency N of the inverter that drives the compressor (30), and a compressor (100) according to the operating state of the internal fan (36). 30), a rotation speed control unit (102) for controlling the operation rotation speed N, a valve control unit (103) for controlling various valves (32, 38, 47 to 49, 53, 81), and each fan ( 35, 36) and a fan control unit (104) is provided.
  • the controller (100) also includes a pull-down operation control unit (105) that performs pull-down operation for rapidly cooling the inside of the container, and defrosting when it detects that the evaporator (33) is frosted during the pull-down operation.
  • a defrost operation control unit (106) that performs operation is provided.
  • the compressor control unit (101) is for controlling the operation speed (inverter operation frequency) (N) of the compressor (30) in the cooling operation.
  • the compressor control unit (101) controls the operation speed (N) of the compressor (30) so that the blown air temperature (SS) becomes the target temperature (SP) of the blown air.
  • the target temperature (SP) is appropriately set between ⁇ 30 ° C. and + 30 ° C.
  • the operation speed N of the compressor (30) is lowered while the blown air If the temperature (SS) is higher than the target temperature (SP), control for increasing the operation speed (N) of the compressor (30) is performed.
  • the rotation number control unit (102) sets the operation rotation number (N) of the compressor (30) to a predetermined value. It is adjusted by lowering by A. Specifically, when the cooling load in the container store decreases, the fan control unit (104) switches the rotation of the store fan (36) from the high state to the low state. If it carries out like this, since the cooling capacity of the container refrigeration apparatus (10) will become excess, a rotation speed control part (102) will reduce the driving
  • the flow rate of the refrigerant circulating in the refrigerant circuit (20) is reduced by the operating speed (NA) of the compressor (30), and the cooling capacity of the container refrigeration apparatus (10) is reduced. For this reason, the cooling capacity of the container refrigeration apparatus (10) and the cooling load in the container warehouse are balanced.
  • the controller (100) detects the detection value of the outlet temperature sensor (71) and the detection of the outflow temperature sensor (68) during the pull-down operation performed by the pull-down operation control unit (105) with higher cooling capacity than during normal operation.
  • the temperature difference (SS ⁇ EOS) between the air blowing temperature (SS) and the refrigerant outlet temperature (EOS) in the evaporator (33) is a predetermined threshold value (a specific value in this embodiment is 5 ° C.). ) If it is determined that it is above, it is determined that the evaporator (33) is frosted. The reason for this is that when the evaporator (33) is not frosted, the air and the refrigerant efficiently exchange heat, so the temperature difference between the air and the refrigerant is small.
  • the heat transfer rate decreases, so the air temperature does not drop much even when the evaporation temperature is low, and the temperature difference between the air blowing temperature (SS) and the refrigerant outlet temperature (EOS) is large. It is to become. And when this temperature difference becomes more than said threshold value, the said defrost operation control part (106) performs control which starts a defrost operation.
  • the controller (100) changes the threshold value according to the air volume of the internal fan (36) disposed in the vicinity of the evaporator (33), and increases the threshold value when the air volume exceeds the current value. Take control. This is because when the air volume is larger than the current value, the temperature difference (SS-EOS) between the outlet temperature (SS) of the evaporator (33) and the outlet temperature (EOS) of the refrigerant increases.
  • the threshold value is increased in order to perform appropriate defrost detection while the temperature difference (SS-EOS) increases.
  • the defrost operation control unit (106) controls the defrost operation until the power is turned off thereafter. Do. This is because if frost formation is detected again within a predetermined time (for example, 1 hour) after the defrost operation has been completed normally, frost formation is detected when the evaporator is dirty. Since the possibility is high, in this case, the defrost operation is not performed.
  • the reheat heat exchanger (83) is provided, and while the refrigerant is flowing through the reheat heat exchanger (83), the blowing temperature of the evaporator (3) rises and the blowing temperature Although the temperature difference (SS-EOS) between (SS) and the refrigerant outlet temperature (EOS) increases, it is determined that frost is not formed and defrost operation is not performed.
  • SS-EOS temperature difference between (SS) and the refrigerant outlet temperature (EOS)
  • the abnormality of the outflow temperature sensor (68) and the outlet temperature sensor (71) is checked, and the temperature difference between the outlet temperature (SS) of the evaporator (33) and the outlet temperature (EOS) of the refrigerant. Even if (SS-EOS) exceeds the above threshold, defrost operation is not performed unless the outflow temperature sensor (68) and the blowout temperature sensor (71) are normal. Specifically, when the detection value of the blowout temperature sensor (71) shifts high or when the detection value of the outflow temperature sensor (68) shifts low, the temperature difference is actually smaller than the threshold value. Since it may be determined that the threshold value is exceeded, the defrost operation is not performed in that case. Therefore, although not illustrated in the present embodiment, one sensor for checking the detection values of the outflow temperature sensor (68) and the blowout temperature sensor (71) is provided.
  • the controller (100) is configured such that the temperature of the outlet temperature (SS) of the evaporator (33) and the outlet temperature (EOS) of the refrigerant.
  • An average value of the difference for 10 minutes is obtained, and if this average value is equal to or greater than the threshold value, defrost operation is performed.
  • the refrigerant temperature at the outlet of the evaporator (33) decreases, so the temperature difference between the outlet temperature (SS) and the refrigerant outlet temperature (EOS) increases, resulting in a dry operation.
  • the refrigerant at the outlet of the evaporator (33) is warmed by air, so that the temperature difference between the blowing temperature (SS) and the refrigerant outlet temperature (EOS) becomes small. Therefore, an average value of the temperature difference for 10 minutes is obtained, and it is determined whether or not the defrost operation is performed based on the obtained value. This prevents false detection of frost formation when the evaporator (33) is not frosted, and false detection of frost formation when it is frosted. it can.
  • the defrost is terminated when the outlet temperature (EOS) of the refrigerant in the evaporator (33) rises above a predetermined temperature.
  • the controller (100) determines that there is no undissolved when the outlet temperature (EOS) is 5 ° C. or higher, and ends the defrost.
  • the time elapsed after the defrost operation is completed is measured by a timer, and even when the frost detection is not detected, the defrost operation is performed if the set time of the timer elapses.
  • the detection value of the suction temperature sensor (70) does not decrease more than 0.2 ° C. per hour (this value is an example) at the time of the pull-down, the evaporator is frosted. It may be determined that the control is performed, and the same control as in the prior art for starting defrosting may be performed.
  • the operation of the container refrigeration apparatus (10) is roughly classified into “cooling operation”, “defrost operation”, “dehumidification operation”, and “pull-down operation”.
  • the cooling operation is an operation for cooling the interior of the container to a relatively low temperature. That is, the cooling operation is an operation for refrigeration / cooling the interior of the container in order to preserve the transported goods (for example, fresh food) stored in the container body (1a).
  • the defrost operation the refrigerant discharged from the compressor (30) is passed through the hot gas bypass circuit (22) to melt the frost adhering to the surface of the heat transfer tube of the evaporator (33) (defrosting).
  • Driving the refrigerant discharged from the compressor (30) is passed through the hot gas bypass circuit (22) to melt the frost adhering to the surface of the heat transfer tube of the evaporator (33) (defrosting).
  • the defrost operation is executed, for example, every time a predetermined set time elapses from the start of the cooling operation, and the cooling operation is resumed after the defrost operation is completed.
  • the pull-down operation is an operation for rapidly cooling the interior to a set temperature, and the defrost operation is also performed when the evaporator is frosted during the pull-down operation.
  • the first on-off valve (47) and the second on-off valve (49) are opened, and the third on-off valve (53) and the fifth on-off valve (81) are closed. .
  • the fourth on-off valve (38) is fully opened, and the opening degrees of the supercooling expansion valve (48) and the main expansion valve (32) are adjusted as appropriate. Further, the compressor (30), the outside fan (35) and the inside fan (36) are operated.
  • the refrigerant compressed by the compressor (30) is condensed by the condenser (31) and then passes through the receiver (41).
  • a part of the refrigerant that has passed through the receiver (41) flows through the low-pressure liquid pipe (27) as it is, and the rest is divided into the supercooling branch pipe (26).
  • the refrigerant that has flowed through the low-pressure liquid pipe (27) is supercooled by the supercooling heat exchanger (44), then depressurized by the main expansion valve (32), and flows through the evaporator (33).
  • the refrigerant absorbs heat from the internal air and evaporates. Thereby, the air in a warehouse is cooled.
  • the refrigerant evaporated in the evaporator (33) is sucked into the compressor (30) and compressed again.
  • the refrigerant divided into the supercooling branch pipe (26) passes through the supercooling expansion valve (48) and is reduced to an intermediate pressure, and then passes through the secondary passage (46) of the supercooling heat exchanger (44). Flowing. In the supercooling heat exchanger (44), heat is exchanged between the refrigerant flowing through the primary passage (45) and the refrigerant flowing through the secondary passage (46). As a result, the refrigerant in the primary passage (45) is subcooled, while the refrigerant in the secondary passage (46) evaporates. The refrigerant that has flowed out of the secondary passage (46) is sucked into the compression chamber in the intermediate pressure state from the intermediate port of the compressor (30).
  • the capacity of the compressor (30) is increased and the interior is rapidly cooled. At that time, if the evaporator (33) is frosted, the defrost operation is also performed.
  • the following is the difference between the air blowing temperature (SS) and the refrigerant outlet temperature (EOS) in the evaporator (33) (SS-EOS) for the pull-down operation and the frost detection and defrosting operations performed at that time. ) And the control of the comparative example performed using only the timer will be described.
  • FIG. 4A shows the control of this embodiment
  • FIG. 4B shows the control of the comparative example
  • the vertical axis represents temperature
  • the horizontal axis represents time.
  • the operating conditions are an outside air temperature of 30 ° C. and a set temperature (SP) in the cabinet of ⁇ 25 ° C.
  • Time (T1) is the time when the pre-cooling is finished in the absence of cargo. In this state, the internal air is cooled to ⁇ 25 ° C.
  • the refrigeration apparatus (10) is turned off, the container door is opened, and the loading operation is performed.
  • the inside temperature rises, and accordingly, the air suction temperature (RS) and the outlet side refrigerant temperature (EOS) in the evaporator (33) also rise to almost the outside air temperature.
  • Pull-down operation starts from time (T2).
  • T2 time (T2).
  • the temperature in the warehouse is lowered, and the air temperature (RS) and the refrigerant temperature (EOS) are also lowered.
  • the evaporator (33) is gradually frosted, the heat transfer coefficient of the evaporator (33) is lowered, so that the blown air temperature (SS) is hardly lowered.
  • the refrigerant temperature (EOS) at the outlet of the evaporator (33) decreases, the temperature difference (SS ⁇ ) between the air blowing temperature (SS) and the refrigerant outlet temperature (EOS) in the evaporator (33). EOS) is getting bigger.
  • the temperature difference (SS-EOS) is represented by a broken line as an average value every 10 minutes.
  • the defrost operation start condition of the present embodiment is satisfied, so the defrost operation is started at time (T3).
  • T3 time when 4 hours have elapsed since the start of the pull-down operation.
  • the pull-down operation is resumed and the interior is cooled.
  • T5 the pull-down is completed, and the inside of the refrigerator is cooled to -25 ° C.
  • the pull-down operation is completed in 3 hours from the end of the defrost.
  • the pre-cooling ends at time (T1)
  • the loading operation ends at time (T2)
  • the pull-down operation starts.
  • the pull-down operation is started again, and the interior is cooled. Then, at time (T5 '), the pull-down ends and the interior is cooled to -25 ° C. In the example shown in the figure, the pull-down operation is completed in 3 hours from the end of the defrost.
  • the defrost operation control unit (106) when it is determined that the temperature difference between the air blowing temperature and the refrigerant outlet temperature in the evaporator (33) is equal to or greater than a predetermined threshold, it is detected that the evaporator (33) has formed frost. Then, by performing defrost operation control for starting the defrost operation by the defrost operation control unit (106), frost formation can be detected quickly in a short time, and the defrost operation can be started. The driving time at the can be minimized. Therefore, the defrosting operation during pull-down can be completed quickly, and consequently the pull-down operation can be completed quickly.
  • the temperature difference between the air blowing temperature and the refrigerant outlet temperature in the evaporator (33) is not affected by factors such as intrusion heat, cargo heat capacity, and cooling capacity, so it is reliable in a short time. Frost can be detected.
  • defrosting can be started earlier than before, defrosting can be started with a small amount of frost formation.
  • the defrosting operation time itself can be shortened, the time required for defrosting can be shortened more reliably, and the defrosting completion temperature can be lowered, so that the pull-down can be restarted smoothly.
  • the outdoor heat exchanger is a defrost target during heating operation, but generally the outdoor temperature exchanger (evaporator) outlet temperature sensor is not provided. Therefore, the control of the present embodiment is not generally performed by the air conditioner.
  • the sensor normally provided in the container refrigeration apparatus (10) since the sensor normally provided in the container refrigeration apparatus (10) is used, a new sensor is unnecessary and the configuration is not complicated.
  • the blowing temperature sensor which detects the blowing air temperature of the evaporator at the time of heating is provided, it is possible to perform control similar to this embodiment.
  • the frost detection and the defrost operation of the above embodiment may be performed not only during the pull-down operation but also during the normal cooling operation.
  • the defrost operation is The operation may be performed using an electric heater.
  • the temperature difference (SS ⁇ EOS) between the air blowing temperature (SS) and the refrigerant outlet temperature (EOS) in the evaporator (33) is determined to be 5 ° C. or more as a predetermined threshold. In this case, it is determined that the evaporator (33) is frosted, but the above threshold value is merely an example, and may be set to an appropriate value according to the apparatus.
  • the threshold value is made constant, and when the temperature difference becomes abnormal within one hour from the defrost operation, the defrost operation is stopped as a false detection, but after the defrost operation, You may make it perform learning control which correct
  • this invention cools the inside of the refrigerator and the freezer.
  • the present invention is also applicable to a cooling device that performs heating and an air conditioner that can heat a room. That is, the present invention can be applied to a refrigeration apparatus in a broad sense including refrigeration and air conditioning. In the case of an air conditioner, the present invention can be applied to defrost during heating operation.
  • the suction temperature (RS) is used instead of the outlet temperature (SS) of the evaporator (33), and the evaporator (33 ) Detects that the evaporator (33) has formed frost when it is determined that the temperature difference (RS-EOS) between the air suction temperature (RS) and the refrigerant outlet temperature (EOS) is equal to or greater than a predetermined threshold. Then, the defrost operation may be started.
  • the suction temperature (RS) is slightly higher than the blowout temperature (SS), it changes in almost the same way as the blowout temperature (SS). Therefore, the suction temperature (RS) of the air in the evaporator (33)
  • a predetermined threshold When the control of this modification is performed, the suction temperature (RS) is generally higher than the blowing temperature (SS) as described above. Therefore, in the embodiment using the blowing temperature (SS),
  • the threshold value may be changed as appropriate, for example, a value set to 5 ° C. as the predetermined threshold value is set to 10 ° C., for example.
  • an intake temperature sensor is generally provided for detecting the intake temperature of the evaporator during heating, the air intake temperature (RS) and the refrigerant outlet temperature (EOS) in the evaporator (33)
  • RS-EOS refrigerant outlet temperature
  • the control to detect that the evaporator (33) has formed frost and start the defrost operation is performed by using a dedicated sensor for the air conditioner. It is possible to carry out without providing.
  • the present invention relates to a container refrigeration apparatus for cooling the interior of a container used for marine transportation or the like, a cooling apparatus for cooling the interior of a refrigerator or a freezer, and an air conditioner capable of heating a room.
  • a refrigeration apparatus such as an apparatus, it is useful for a technique for shortening the time required to detect frost formation in an internal heat exchanger (evaporator) and quickly ending defrost operation.

Abstract

A refrigeration device (10) wherein: a defrosting operation control unit (106) is provided, said defrosting operation control unit beginning a defrosting operation when it is determined that the temperature difference (SS-EOS) between the discharge temperature (SS) or the suction temperature (RS) of air and the outlet temperature (EOS) of a coolant in an evaporator (33) is equal to or greater than a prescribed threshold value; frosting of the evaporator (33) can be detected quickly; and thus, the defrosting operation can be completed quickly.

Description

冷凍装置Refrigeration equipment
 本発明は、海上輸送等に用いられるコンテナの庫内を冷却するためのコンテナ用冷凍装置、冷蔵庫や冷凍庫の庫内を冷却する冷却装置、及び室内を暖房可能な空気調和装置などの冷凍装置に関し、特に、蒸発器の着霜の検知に要する時間を短縮してデフロスト運転を迅速に終わらせる技術に関するものである。 The present invention relates to a container refrigeration apparatus for cooling the inside of a container used for marine transportation or the like, a cooling apparatus for cooling the inside of a refrigerator or a freezer, and a refrigeration apparatus such as an air conditioner capable of heating a room. In particular, the present invention relates to a technique for shortening the time required for detecting the frost formation of the evaporator and quickly ending the defrost operation.
 従来、例えば、海上輸送等に用いられるコンテナは、一般にコンテナ本体にコンテナ用冷凍装置を取り付けることにより構成されている(例えば、特許文献1参照)。このコンテナ用冷凍装置は、圧縮機と凝縮器と膨張機構と蒸発器とを順に接続することにより構成された冷媒回路を備え、この冷媒回路を冷媒が循環することにより行われる冷凍サイクルの動作により、コンテナの庫内を冷却する。 Conventionally, for example, containers used for marine transportation or the like are generally configured by attaching a container refrigeration apparatus to a container body (see, for example, Patent Document 1). The container refrigeration apparatus includes a refrigerant circuit configured by sequentially connecting a compressor, a condenser, an expansion mechanism, and an evaporator, and the operation of a refrigeration cycle performed by circulating the refrigerant through the refrigerant circuit. Cool the container.
 特許文献1の冷凍装置は、プルダウン運転手段とデフロスト運転手段を含むコントローラを有している。そして、コントローラは、プルダウン運転中にデフロスト運転をタイマーで一定時間ごとに実行するように構成されている。 The refrigeration apparatus of Patent Document 1 has a controller including pull-down operation means and defrost operation means. And a controller is comprised so that a defrost operation may be performed for every fixed time with a timer during a pull-down operation.
特開平09-096475号公報JP 09-096475 A
 しかしながら、上記の構成では、蒸発器への着霜によって冷却能力が低下して、庫内を設定温度まで冷却できない状態であっても、タイマーでしかデフロストが実施されないため、実際には蒸発器に着霜しているのにデフロストの行われない時間が長くなる場合があった。このような場合、庫内が冷えにくい着霜状態で長時間にわたってプルダウン運転が行われることになっていた。このように、従来の技術では、着霜の検知とデフロスト運転に要する時間が必要以上に長くなることがあった。 However, in the above configuration, even if the cooling capacity is reduced due to frost formation on the evaporator, and the interior cannot be cooled to the set temperature, defrosting is performed only with a timer. There was a case where the time when defrosting was not performed even though frosting occurred. In such a case, the pull-down operation has been performed for a long time in a frosting state in which the inside of the refrigerator is difficult to cool. Thus, in the conventional technology, the time required for frost detection and defrost operation may be longer than necessary.
 また、従来は、冷凍運転(吸込温度が-20℃以下の運転)のプルダウン時等に、吸込温度センサの検出値が1時間に0.2℃以上低下しない場合に蒸発器に着霜していると判断し、デフロストを開始する制御が行われることもあるが、この場合は、誤検知を防止する制御を行うために、着霜の検知とデフロストに要する時間が長くなっていた。 Conventionally, when pulling down the refrigeration operation (operation where the suction temperature is -20 ° C or lower) or the like, if the detected value of the suction temperature sensor does not drop more than 0.2 ° C in one hour, the evaporator forms frost. However, in this case, it takes a long time to detect frost and to defrost in order to perform control to prevent erroneous detection.
 なお、着霜の検知からデフロストに要する時間が長くなる問題は、プルダウン運転に限らず、通常の冷却運転であっても同様に生じるおそれがある。また、着霜の検知とデフロストに要する時間が長くなる問題は、コンテナ用冷凍装置に限らず、冷蔵庫や冷凍庫の庫内を冷却する上記冷却装置や、室内を暖房可能な上記空気調和装置においても生じるおそれがある。 In addition, the problem that the time required for defrosting from detection of frost formation is not limited to the pull-down operation, but may occur in the normal cooling operation as well. In addition, the problem that the time required for frost detection and defrosting becomes longer is not limited to the container refrigeration apparatus, but also in the cooling apparatus that cools the inside of a refrigerator or a freezer or the air conditioning apparatus that can heat a room. May occur.
 本発明は、このような問題点に鑑みてなされたものであり、その目的は、コンテナ用冷凍装置、冷蔵庫などの庫内を冷却する冷却装置、及び空気調和装置などの冷凍装置において、蒸発器の着霜を迅速に検知できるようにしてデフロスト運転の開始が不必要に遅れるのを防止し、デフロスト運転を迅速に終わらせることである。 The present invention has been made in view of such problems, and an object of the present invention is to provide an evaporator in a refrigeration apparatus such as a container refrigeration apparatus, a refrigerator such as a refrigerator, and a refrigeration apparatus such as an air conditioner. It is possible to quickly detect the frost formation of the water, prevent the start of the defrost operation from being delayed unnecessarily, and end the defrost operation quickly.
 本開示の第1の態様は、温度制御対象室(1a)と、圧縮機(30)と凝縮器(31)と膨張機構(32)と蒸発器(33)とが順に接続されて冷凍サイクル動作を行い上記温度制御対象室(1a)の内部を温度制御する冷媒回路(20)と、該冷媒回路(20)を制御する制御装置(100)とを備えた冷凍装置を前提としている。 In the first aspect of the present disclosure, a temperature control target chamber (1a), a compressor (30), a condenser (31), an expansion mechanism (32), and an evaporator (33) are connected in order to perform a refrigeration cycle operation. And a refrigeration apparatus including a refrigerant circuit (20) for controlling the temperature of the inside of the temperature control target chamber (1a) and a control device (100) for controlling the refrigerant circuit (20).
 そして、この冷凍装置は、上記制御装置(100)が、デフロスト運転を制御するデフロスト運転制御部(106)を備え、蒸発器(33)における空気の吹出温度または吸込温度と冷媒の出口温度との温度差が所定の閾値以上であると判断した場合に上記蒸発器(33)に着霜したと検知し、上記デフロスト運転制御部(106)によりデフロスト運転を開始するデフロスト運転制御を行うことを特徴としている。 In the refrigeration apparatus, the control device (100) includes a defrosting operation control unit (106) for controlling the defrosting operation, and the air blowing temperature or the suction temperature and the refrigerant outlet temperature in the evaporator (33) are controlled. When it is determined that the temperature difference is equal to or greater than a predetermined threshold value, it is detected that the evaporator (33) has formed frost, and the defrost operation control for starting the defrost operation is performed by the defrost operation control unit (106). It is said.
 この第1の態様では、蒸発器(33)における空気の吹出温度または吸込温度と冷媒の出口温度との温度差が所定の閾値(例えば、蒸発器(33)の吹出温度と冷媒の出口温度との温度差の閾値を5℃、蒸発器(33)の吸込温度と冷媒の出口温度との温度差の閾値を10℃とする)以上であると判断した場合に、上記蒸発器(33)に着霜したと検知される。これは、蒸発器(33)の着霜により熱伝達率が低下して冷媒が蒸発器(33)の出口までに蒸発しなくなり、冷媒の出口温度が低下するために、上記温度差が大きくなると考えられるからである。そして、このようにすることにより、蒸発器(33)が着霜したことを迅速に検知することが可能になる。 In the first aspect, the temperature difference between the air blowing temperature or the suction temperature and the refrigerant outlet temperature in the evaporator (33) is a predetermined threshold (for example, the outlet temperature of the evaporator (33) and the refrigerant outlet temperature). The temperature difference threshold of 5 ° C. and the temperature difference threshold between the suction temperature of the evaporator (33) and the outlet temperature of the refrigerant is 10 ° C.) or more. Detected frost formation. This is because the heat transfer rate is reduced due to frost formation on the evaporator (33), the refrigerant does not evaporate to the outlet of the evaporator (33), and the outlet temperature of the refrigerant is lowered. It is possible. And it becomes possible to detect rapidly that the evaporator (33) frosted by doing in this way.
 本開示の第2の態様は、第1の態様において、上記制御装置(100)が、温度制御対象室(1a)を急速に冷却するプルダウン運転を行うプルダウン運転制御部(105)を備え、プルダウン運転中に上記デフロスト運転制御を行うことを特徴としている。 According to a second aspect of the present disclosure, in the first aspect, the control device (100) includes a pull-down operation control unit (105) that performs a pull-down operation for rapidly cooling the temperature control target chamber (1a). The defrost operation control is performed during operation.
 この第2の態様では、コンテナ用冷凍装置、及び冷凍庫や冷蔵庫の冷却装置においてプルダウン運転中にデフロスト運転を行う場合に、蒸発器(33)が着霜したことを迅速に検知することが可能になる。 In the second aspect, when the defrost operation is performed during the pull-down operation in the container refrigeration apparatus and the refrigerator or refrigerator cooling apparatus, it is possible to quickly detect that the evaporator (33) is frosted. Become.
 本開示の第3の態様は、第1または第2の態様において、上記制御装置(100)が、上記蒸発器(33)の近傍に配置される蒸発器ファン(36)の風量に応じて上記閾値を変更し、風量が現在値よりも多くなると上記閾値を大きくすることを特徴としている。 According to a third aspect of the present disclosure, in the first or second aspect, the control device (100) is configured according to the air volume of the evaporator fan (36) disposed in the vicinity of the evaporator (33). The threshold value is changed, and the threshold value is increased when the air volume becomes larger than the current value.
 この第3の態様では、蒸発器ファン(36)の風量に応じて上記閾値が変更され、その閾値に基づいて着霜検知を行い、デフロスト運転が制御される。 In the third aspect, the threshold value is changed according to the air volume of the evaporator fan (36), frost formation is detected based on the threshold value, and defrosting operation is controlled.
 本開示の第4の態様は、第1から第3の態様の何れか1つにおいて、上記制御装置(100)が、デフロスト運転を行ってから所定時間以内に着霜を検知すると、それ以降は電源がオフになるまでデフロスト運転を禁止することを特徴としている。 According to a fourth aspect of the present disclosure, in any one of the first to third aspects, when the control device (100) detects frost formation within a predetermined time after performing the defrost operation, thereafter, The defrosting operation is prohibited until the power is turned off.
 この第4の態様では、デフロストが終わってから所定時間以内に再度着霜を検知すると、デフロストを行わない制御となる。このようにしているのは、蒸発器(33)が汚れているなど、誤検知の可能性が高いためである。 In the fourth aspect, when defrosting is detected again within a predetermined time after the defrosting is completed, the control is performed such that the defrosting is not performed. This is because the possibility of false detection is high, such as the evaporator (33) being dirty.
 本開示の第1の態様によれば、蒸発器(33)における空気の吹出温度または吸込温度と冷媒の出口温度との温度差が所定の閾値以上であると判断した場合に上記蒸発器(33)に着霜したと検知され、上記デフロスト運転制御部(106)によりデフロスト運転を開始するデフロスト運転制御が行われる。このようにタイマーの設定時間に基づいてデフロスト運転を行うのではなく、上記温度差を利用することにより、短時間で迅速に着霜を検知でき、デフロスト運転を開始できるから、着霜によって能力が低下した状態での運転時間を最小限に抑えられる。つまり、デフロスト運転を迅速に終わらせることが可能になる。 According to the first aspect of the present disclosure, when it is determined that the temperature difference between the air blowing temperature or the suction temperature and the refrigerant outlet temperature in the evaporator (33) is equal to or greater than a predetermined threshold, the evaporator (33 The defrost operation control for starting the defrost operation is performed by the defrost operation control unit (106). In this way, defrosting operation is not performed based on the set time of the timer, but by using the above temperature difference, frost formation can be detected quickly and defrost operation can be started. The operation time in the lowered state can be minimized. That is, the defrosting operation can be completed quickly.
 特に、蒸発器(33)における空気の吹出温度または吸込温度と冷媒の出口温度との温度差は、侵入熱、積み荷の熱容量、及び冷却能力などの誤検知の要因の影響を受けないため、短時間で確実に着霜を検知できる効果が高い。 In particular, the temperature difference between the air blowing temperature or the suction temperature and the refrigerant outlet temperature in the evaporator (33) is not affected by factors such as intrusion heat, cargo heat capacity, and cooling capacity, which are short. Highly effective in detecting frost formation over time.
 さらに、デフロストの開始を従来よりも早めることができるから、着霜量の少ない状態でデフロストを開始できることになる。このことにより、デフロスト運転時間そのものを短縮することが可能になるからデフロストに要する時間をより確実に短縮できるし、デフロスト完了温度も低くできるから、冷却運転の再開もスムーズに行える。 Furthermore, since defrosting can be started earlier than before, defrosting can be started with a small amount of frost formation. As a result, the defrosting operation time itself can be shortened, so that the time required for defrosting can be shortened more reliably, and the defrosting completion temperature can be lowered, so that the cooling operation can be resumed smoothly.
 本開示の第2の態様によれば、コンテナ用冷凍装置、及び冷凍庫や冷蔵庫の冷却装置においてプルダウン運転中にデフロスト運転を行う場合に、蒸発器(33)に着霜したことを迅速に検知することが可能になるから、プルダウン中にデフロスト運転を迅速に終わらせることができるし、ひいてはプルダウン時間も短縮できる。 According to the second aspect of the present disclosure, when the defrost operation is performed during the pull-down operation in the container refrigeration apparatus and the refrigerator or refrigerator cooling apparatus, it is quickly detected that the evaporator (33) has formed frost. Therefore, the defrosting operation can be completed quickly during pull-down, and the pull-down time can be shortened.
 本開示の第3の態様によれば、例えば蒸発器ファン(36)の風量が現在値よりも多くなると蒸発器(33)における空気の吹出温度と冷媒の出口温度との温度差が大きくなるのに対して、風量に応じた閾値を設定しておくことにより、風量が変わっても着霜検知を迅速に行い、デフロスト運転を迅速に終わらせることができる。 According to the third aspect of the present disclosure, for example, when the air volume of the evaporator fan (36) is larger than the current value, the temperature difference between the air blowing temperature and the refrigerant outlet temperature in the evaporator (33) increases. On the other hand, by setting a threshold value corresponding to the air volume, frost detection can be quickly performed even when the air volume changes, and the defrosting operation can be completed quickly.
 本開示の第4の態様によれば、デフロストが終わってから所定時間以内に再度着霜を検知すると、誤検知の可能性が高いため、デフロストを行わない制御となる。このことにより、無駄なデフロスト運転を防止できる。 According to the fourth aspect of the present disclosure, when frost formation is detected again within a predetermined time after the defrosting is completed, there is a high possibility of erroneous detection. This can prevent useless defrost operation.
図1は、本発明の実施形態に係るコンテナ用冷凍装置をコンテナ本体に装着した状態の縦断面図である。FIG. 1 is a longitudinal sectional view of a state in which a container refrigeration apparatus according to an embodiment of the present invention is mounted on a container body. 図2は、図1のコンテナ用冷凍装置を外側から視た概略斜視図である。FIG. 2 is a schematic perspective view of the container refrigeration apparatus of FIG. 1 viewed from the outside. 図3は、図1のコンテナ用冷凍装置の冷媒回路図である。FIG. 3 is a refrigerant circuit diagram of the container refrigeration apparatus of FIG. 図4(A)は、本実施形態のプルダウン運転とデフロスト運転の動作を示すグラフ、図4(B)は、比較例のプルダウン運転とデフロスト運転の動作を示すグラフである。FIG. 4A is a graph showing the operations of the pull-down operation and the defrost operation of the present embodiment, and FIG. 4B is a graph showing the operations of the pull-down operation and the defrost operation of the comparative example.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。本実施形態は、コンテナ用冷凍装置に関するものである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. This embodiment relates to a container refrigeration apparatus.
 図1及び図2に示すように、本実施形態のコンテナ用冷凍装置(10)は、海上輸送等に用いられるコンテナの庫内を冷却(温度制御)するものである。上記コンテナ用冷凍装置(10)は、圧縮機(30)と凝縮器(31)と蒸発器(33)とを有する冷媒回路を備えている。また、コンテナ用冷凍装置(10)は、コンテナ本体(温度制御対象室)(1a)の側方の開口面を閉塞する蓋体を兼用している。 As shown in FIGS. 1 and 2, the container refrigeration apparatus (10) of the present embodiment cools (temperature control) the inside of a container used for marine transportation or the like. The container refrigeration apparatus (10) includes a refrigerant circuit having a compressor (30), a condenser (31), and an evaporator (33). Moreover, the container refrigeration apparatus (10) also serves as a lid that closes the side opening surface of the container main body (temperature control target chamber) (1a).
 上記コンテナ用冷凍装置(10)のケーシング(13)は、コンテナ外である庫外側と、コンテナ内である庫内(温度制御対象室の内部)側とを仕切るケーシング本体(11)及びケーシング(13)の背面(庫内側)に設けられる仕切り板(14)等を備えている。 The casing (13) of the container refrigeration apparatus (10) includes a casing body (11) and a casing (13) that partition the outside of the container outside the container and the inside of the container (inside the temperature control target chamber). ) And a partition plate (14) provided on the back (inside of the cabinet).
 上記ケーシング本体(11)は、アルミニウム製の庫内ケーシング(11a)とFRPの庫外ケーシング(11b)との二重構造に形成されている。そして、上記庫内ケーシング(11a)と庫外ケーシング(11b)との間に発泡剤よりなる断熱層(11c)が形成されている。 The casing body (11) is formed in a double structure of an aluminum inner casing (11a) and an FRP outer casing (11b). And the heat insulation layer (11c) which consists of a foaming agent is formed between the said inner casing (11a) and the outer casing (11b).
 さらに、上記ケーシング本体(11)の下部には、庫内側に膨出した膨出部(12)が形成されている。そして、上記膨出部(12)の内部が庫外収納空間(S1)に構成される一方、上記ケーシング(13)の背面の上部には、膨出部(12)の上方に位置する庫内収納空間(S2)が形成されている。 Furthermore, a bulging portion (12) bulging to the inside of the cabinet is formed at the lower part of the casing body (11). And while the inside of the said bulging part (12) is comprised by the storage space outside a store | warehouse | chamber (S1), the upper part of the back surface of the said casing (13) has the inside located in the upper part of the bulging part (12) A storage space (S2) is formed.
 上記庫外収納空間(S1)には、圧縮機(30)、凝縮器(31)及び庫外ファン(35)が収納されると共に、電装品ボックス(15)が収納される一方、庫内収納空間(S2)には、蒸発器(33)及び庫内ファン(蒸発器ファン)(36)が取り付けられている。また、上記膨出部(12)と仕切り板(14)との間は、庫内空気が流れる空気通路(S3)に構成されている。該空気通路(S3)の上端は、庫内収納空間(S2)に連通する一方、下端が庫内に連通している。 In the external storage space (S1), the compressor (30), the condenser (31), and the external fan (35) are stored, and the electrical component box (15) is stored. An evaporator (33) and an internal fan (evaporator fan) (36) are attached to the space (S2). Moreover, it is comprised between the said bulging part (12) and a partition plate (14) by the air path (S3) through which internal air flows. The upper end of the air passage (S3) communicates with the internal storage space (S2), while the lower end communicates with the interior.
 図3に示すように、上記コンテナ用冷凍装置(10)は、冷媒が循環して冷却サイクルを行う冷媒回路(20)を備えている。この冷媒回路(20)は、主回路(21)と、ホットガスバイパス回路(22)とレヒート回路(80)と過冷却回路(23)とを有している。 As shown in FIG. 3, the container refrigeration apparatus (10) includes a refrigerant circuit (20) that performs a cooling cycle by circulating the refrigerant. The refrigerant circuit (20) includes a main circuit (21), a hot gas bypass circuit (22), a reheat circuit (80), and a supercooling circuit (23).
 上記主回路(21)は、圧縮機(30)と凝縮器(31)と主膨張弁(32)と蒸発器(33)とが順に冷媒配管によって直列に接続されて構成され、蒸気圧縮式冷凍サイクルの動作を行う。 The main circuit (21) is configured by connecting a compressor (30), a condenser (31), a main expansion valve (32), and an evaporator (33) in series by a refrigerant pipe in order. Perform cycle operation.
 上記圧縮機(30)は、圧縮機構を駆動するモータ(図示省略)を有している。この圧縮機(30)のモータの回転数は、インバータによって多段階に制御される。つまり、圧縮機(30)は、運転回転数が可変に構成された可変容量圧縮機である。この圧縮機(30)に接続された上記インバータの回路基板は、上記電装品ボックス(15)に収納されている。 The compressor (30) has a motor (not shown) that drives the compression mechanism. The rotation speed of the motor of the compressor (30) is controlled in multiple stages by an inverter. In other words, the compressor (30) is a variable capacity compressor that is configured to have a variable operating rotational speed. The inverter circuit board connected to the compressor (30) is housed in the electrical component box (15).
 上記凝縮器(31)および蒸発器(33)は、いずれもフィン・アンド・チューブ熱交換器で構成されている。凝縮器(31)は、上記のように庫外に配置されている。凝縮器(31)では、庫外の空気と冷媒とが熱交換する。蒸発器(33)は、上記のように庫内に配置されている。蒸発器(33)では、庫内の空気と冷媒とが熱交換する。また、蒸発器(33)の下方には、図1には示していないがドレンパン(37)が設けられている。ドレンパン(37)は、上側が開放された扁平な容器状に形成されている。ドレンパン(37)の内部には、蒸発器(33)から剥がれ落ちた霜や氷塊や、空気中から凝縮した結露水等が回収される。 The condenser (31) and the evaporator (33) are both fin-and-tube heat exchangers. The condenser (31) is arranged outside the warehouse as described above. In the condenser (31), heat is exchanged between the outside air and the refrigerant. The evaporator (33) is arranged in the cabinet as described above. In the evaporator (33), the air in the warehouse and the refrigerant exchange heat. Further, a drain pan (37) (not shown in FIG. 1) is provided below the evaporator (33). The drain pan (37) is formed in a flat container shape whose upper side is open. Inside the drain pan (37), frost and ice blocks that have fallen off from the evaporator (33), condensed water condensed from the air, and the like are collected.
 主膨張弁(32)は、開度がパルスモータによって多段階に調節可能に構成されている。また、上記凝縮器(31)には、庫外ファン(35)が設けられる一方、蒸発器(33)には、庫内ファン(36)が設けられている。該庫内ファン(36)は、蒸発器(33)で冷却された冷却空気を庫内に供給するように構成されている。上記庫外ファン(35)および庫内ファン(36)には、それぞれ庫外ファンモータ(35a)および庫内ファンモータ(36a)が設けられている。 The main expansion valve (32) is configured such that the opening degree can be adjusted in multiple stages by a pulse motor. The condenser (31) is provided with an external fan (35), while the evaporator (33) is provided with an internal fan (36). The internal fan (36) is configured to supply the cooling air cooled by the evaporator (33) into the internal space. The external fan (35) and the internal fan (36) are provided with an external fan motor (35a) and an internal fan motor (36a), respectively.
 上記圧縮機(30)と凝縮器(31)との間の高圧ガス管(24)には、第4開閉弁(38)と逆止弁(CV)とが順に設けられている。第4開閉弁(38)は、開度がパルスモータによって多段階に調節可能に構成されている。逆止弁(CV)は、図3に示す矢印の方向への冷媒の流れを許容し、その逆の流れを禁止している。 The high pressure gas pipe (24) between the compressor (30) and the condenser (31) is provided with a fourth open / close valve (38) and a check valve (CV) in this order. The fourth on-off valve (38) is configured such that the opening degree can be adjusted in multiple stages by a pulse motor. The check valve (CV) allows the refrigerant to flow in the direction of the arrow shown in FIG. 3 and prohibits the reverse flow.
 上記凝縮器(31)と主膨張弁(32)との間の高圧液管(25)には、レシーバ(41)と第2開閉弁(49)とドライヤ(43)と過冷却熱交換器(44)とが順に設けられている。上記レシーバ(41)は、凝縮器(31)の下流側に設けられ、凝縮器(31)を流れた冷媒を流入させ、飽和液と飽和ガスとに分離するように構成されている。上記第2開閉弁(49)は、開閉自在な電磁弁で構成されている。上記ドライヤ(43)は、凝縮器(31)を流れた液冷媒中の水分を捕捉するように構成されている。凝縮器(31)の上流側には、主膨張弁(32)の下流側に接続される液封防止管(90)が接続されている。この液封防止管(90)には液封開閉弁(91)が設けられている。 The high pressure liquid pipe (25) between the condenser (31) and the main expansion valve (32) includes a receiver (41), a second on-off valve (49), a dryer (43), and a supercooling heat exchanger ( 44) and so on. The receiver (41) is provided on the downstream side of the condenser (31), and is configured to allow the refrigerant that has flowed through the condenser (31) to flow into the saturated liquid and the saturated gas. The second on-off valve (49) is an openable / closable solenoid valve. The dryer (43) is configured to capture moisture in the liquid refrigerant that has flowed through the condenser (31). A liquid seal prevention pipe (90) connected to the downstream side of the main expansion valve (32) is connected to the upstream side of the condenser (31). The liquid seal prevention pipe (90) is provided with a liquid seal on-off valve (91).
 上記過冷却熱交換器(44)は、凝縮器(31)を流れた液冷媒を冷却するものである。過冷却熱交換器(44)は、1次側通路(45)と2次側通路(46)を有している。つまり、過冷却熱交換器(44)では、1次側通路(45)を流れる冷媒と2次側通路を流れる冷媒とが熱交換する。1次側通路(45)は、主回路(21)の高圧液管(25)に接続され、2次側通路(46)は、過冷却回路(23)の過冷却分岐管(26)に接続されている。過冷却分岐管(26)の流入端は、高圧液管(25)におけるレシーバ(41)と第2開閉弁(49)の間に接続している。過冷却分岐管(26)の流出端は、圧縮機(30)の圧縮途中(中間圧力状態)の圧縮室(中間圧縮室)と接続されている。つまり、過冷却分岐管(26)は、高圧液管(25)の液冷媒の一部が分流し圧縮機(30)の中間圧縮室へ流入する通路である。過冷却分岐管(26)における2次側通路(46)の流入側には、第1開閉弁(47)と過冷却膨張弁(48)とが設けられている。第1開閉弁(47)は、開閉自在な電磁弁で構成されている。過冷却膨張弁(48)は、開度がパルスモータによって多段階に調節可能であり、冷媒を減圧する減圧機構を構成している。 The supercooling heat exchanger (44) cools the liquid refrigerant that has flowed through the condenser (31). The supercooling heat exchanger (44) has a primary side passage (45) and a secondary side passage (46). That is, in the supercooling heat exchanger (44), the refrigerant flowing through the primary side passage (45) and the refrigerant flowing through the secondary side passage exchange heat. The primary side passage (45) is connected to the high-pressure liquid pipe (25) of the main circuit (21), and the secondary side passage (46) is connected to the supercooling branch pipe (26) of the supercooling circuit (23). Has been. The inflow end of the supercooling branch pipe (26) is connected between the receiver (41) and the second on-off valve (49) in the high-pressure liquid pipe (25). The outflow end of the supercooling branch pipe (26) is connected to a compression chamber (intermediate compression chamber) in the middle of compression (intermediate pressure state) of the compressor (30). That is, the subcooling branch pipe (26) is a passage through which a part of the liquid refrigerant in the high-pressure liquid pipe (25) is divided and flows into the intermediate compression chamber of the compressor (30). A first on-off valve (47) and a supercooling expansion valve (48) are provided on the inflow side of the secondary passage (46) in the supercooling branch pipe (26). The first on-off valve (47) is an openable / closable solenoid valve. The supercooling expansion valve (48) can be adjusted in multiple stages by a pulse motor, and constitutes a decompression mechanism for decompressing the refrigerant.
 上記ホットガスバイパス回路(22)は、1本の主通路(50)と、該主通路(50)から分岐する2本の分岐通路(51,52)とを有している。この2本の分岐通路(51,52)は、第1分岐通路(51)と第2分岐通路(52)という。主通路(50)の流入端は、高圧ガス管(24)における第4開閉弁(38)と圧縮機(30)の吐出側との間に接続している。主通路(50)には、第3開閉弁(53)が設けられている。第3開閉弁(53)は、開閉自在な電磁弁で構成されている。 The hot gas bypass circuit (22) has one main passage (50) and two branch passages (51, 52) branched from the main passage (50). The two branch passages (51, 52) are referred to as a first branch passage (51) and a second branch passage (52). The inflow end of the main passage (50) is connected between the fourth on-off valve (38) in the high-pressure gas pipe (24) and the discharge side of the compressor (30). A third on-off valve (53) is provided in the main passage (50). The third on-off valve (53) is an openable / closable solenoid valve.
 上記第1分岐通路(51)は、一端が主通路(50)の流出端に接続され、他端が主膨張弁(32)と蒸発器(33)との間の低圧液管(27)に接続されている。同様に、第2分岐通路(52)も、一端が主通路(50)の流出端に接続され、他端が低圧液管(27)に接続されている。第2分岐通路(52)は、第1分岐通路(51)よりも長い冷媒配管で構成されている。また、第2分岐通路(52)は、ドレンパン(37)の底部に沿うように蛇行して配置されたドレンパンヒータ(54)を有している。ドレンパンヒータ(54)は、ドレンパン(37)の内部を冷媒によって加熱するように構成されている。以上にようにして、ホットガスバイパス回路(22)は、圧縮機(30)で圧縮した冷媒(圧縮機(30)から吐出された高温のガス冷媒)を蒸発器(33)へ供給するためのバイパス回路を構成している。 The first branch passage (51) has one end connected to the outflow end of the main passage (50) and the other end connected to the low-pressure liquid pipe (27) between the main expansion valve (32) and the evaporator (33). It is connected. Similarly, the second branch passage (52) has one end connected to the outflow end of the main passage (50) and the other end connected to the low-pressure liquid pipe (27). The second branch passage (52) is composed of a refrigerant pipe that is longer than the first branch passage (51). The second branch passage (52) has a drain pan heater (54) arranged meandering along the bottom of the drain pan (37). The drain pan heater (54) is configured to heat the inside of the drain pan (37) with a refrigerant. As described above, the hot gas bypass circuit (22) supplies the refrigerant compressed by the compressor (30) (the high-temperature gas refrigerant discharged from the compressor (30)) to the evaporator (33). A bypass circuit is configured.
 上記レヒート回路(80)は、レヒート通路(82)を有している。レヒート通路(82)の流入端は、高圧ガス管(24)における第4開閉弁(38)と圧縮機(30)の吐出側との間に接続している。レヒート通路(82)には、第5開閉弁(81)が設けられている。この第5開閉弁(81)は、開閉自在な電磁弁で構成されている。上記レヒート通路(82)は、レヒート熱交換器(83)とキャピラリチューブとを有している。レヒート熱交換器(83)は、除湿運転時において、流入させた吐出冷媒と、蒸発器(33)で冷却除湿させた後の空気との間で熱交換させ、該空気を加熱するものである。レヒート熱交換器(83)は、フィン・アンド・チューブ熱交換器で構成されている。キャピラリチューブは、レヒート熱交換器(83)を流出した冷媒を減圧させるものである。以上のようにして、レヒート回路(80)は、圧縮機(30)で圧縮した冷媒(圧縮機(30)から吐出された高温のガス冷媒)の一部をレヒート熱交換器(83)へ供給するための回路を構成している。 The reheat circuit (80) has a reheat passage (82). The inflow end of the reheat passage (82) is connected between the fourth on-off valve (38) in the high-pressure gas pipe (24) and the discharge side of the compressor (30). The reheat passage (82) is provided with a fifth on-off valve (81). The fifth on-off valve (81) is an openable / closable solenoid valve. The reheat passage (82) has a reheat heat exchanger (83) and a capillary tube. In the dehumidifying operation, the reheat heat exchanger (83) exchanges heat between the discharged refrigerant that has flowed in and the air that has been cooled and dehumidified by the evaporator (33), and heats the air. . The reheat heat exchanger (83) is a fin-and-tube heat exchanger. The capillary tube decompresses the refrigerant that has flowed out of the reheat heat exchanger (83). As described above, the reheat circuit (80) supplies a part of the refrigerant (high-temperature gas refrigerant discharged from the compressor (30)) compressed by the compressor (30) to the reheat heat exchanger (83). The circuit for doing is comprised.
 上記冷媒回路(20)には、各種のセンサ類も設けられている。具体的に、高圧ガス管(24)には、高圧圧力センサ(60)と高圧圧力スイッチ(61)と吐出温度センサ(62)とが設けられている。高圧圧力センサ(60)は、圧縮機(30)から吐出される高圧ガス冷媒の圧力を検出する。吐出温度センサ(62)は、圧縮機(30)から吐出される高圧ガス冷媒の温度を検出する。蒸発器(33)と圧縮機(30)の間の低圧ガス管(28)には、低圧圧力センサ(63)と吸入温度センサ(64)とが設けられている。低圧圧力センサ(63)は、圧縮機(30)に吸入される低圧ガス冷媒の圧力を検出する。吸入温度センサ(64)は、圧縮機(30)に吸入される低圧ガス冷媒の温度を検出する。 The refrigerant circuit (20) is also provided with various sensors. Specifically, the high pressure gas pipe (24) is provided with a high pressure sensor (60), a high pressure switch (61), and a discharge temperature sensor (62). The high pressure sensor (60) detects the pressure of the high pressure gas refrigerant discharged from the compressor (30). The discharge temperature sensor (62) detects the temperature of the high-pressure gas refrigerant discharged from the compressor (30). The low pressure gas pipe (28) between the evaporator (33) and the compressor (30) is provided with a low pressure sensor (63) and a suction temperature sensor (64). The low pressure sensor (63) detects the pressure of the low pressure gas refrigerant sucked into the compressor (30). The suction temperature sensor (64) detects the temperature of the low-pressure gas refrigerant sucked into the compressor (30).
 上記過冷却分岐管(26)には、2次側通路(46)の流入側に流入温度センサ(65)が、2次側通路(46)の流出側に流出温度センサ(66)がそれぞれ設けられている。流入温度センサ(65)は、2次側通路(46)に流入する直前の冷媒の温度を検出する。また、流出温度センサ(66)は、2次側通路(46)を流出した直後の冷媒の温度を検出する。 The subcooling branch pipe (26) is provided with an inflow temperature sensor (65) on the inflow side of the secondary side passage (46) and an outflow temperature sensor (66) on the outflow side of the secondary side passage (46). It has been. The inflow temperature sensor (65) detects the temperature of the refrigerant immediately before flowing into the secondary side passage (46). The outflow temperature sensor (66) detects the temperature of the refrigerant immediately after flowing out of the secondary side passage (46).
 上記低圧液管(27)には、蒸発器(33)の流入側に流入温度センサ(67)が設けられている。この流入温度センサ(67)は、蒸発器(33)に流入する直前の冷媒の温度(EIS)を検出する。低圧ガス管(28)には、蒸発器(33)の流出側に流出温度センサ(68)が設けられている。この流出温度センサ(68)は、蒸発器(33)から流出した直後の冷媒の温度(EOS)を検出する。 The low-pressure liquid pipe (27) is provided with an inflow temperature sensor (67) on the inflow side of the evaporator (33). This inflow temperature sensor (67) detects the temperature (EIS) of the refrigerant immediately before flowing into the evaporator (33). The low pressure gas pipe (28) is provided with an outflow temperature sensor (68) on the outflow side of the evaporator (33). This outflow temperature sensor (68) detects the temperature (EOS) of the refrigerant immediately after flowing out of the evaporator (33).
 上記コンテナの庫外には、凝縮器(31)の吸込側に外気温度センサ(69)が設けられている。外気温度センサ(69)は、凝縮器(31)に吸い込まれる直前の庫外空気の温度(即ち、外気の温度)を検出する。コンテナの庫内には、蒸発器(33)の吸込側に吸込温度センサ(70)が設けられ、蒸発器(33)の吹出側に吹出温度センサ(71)が設けられている。吸込温度センサ(70)は、蒸発器(33)を通過する直前の庫内空気の温度(RS)を検出する。吹出温度センサ(71)は、蒸発器(33)を通過した直後の庫内空気の温度(吹出空気温度(SS))を検出する。 Outside the container, an outside air temperature sensor (69) is provided on the suction side of the condenser (31). The outside air temperature sensor (69) detects the temperature of the outside air just before being sucked into the condenser (31) (that is, the temperature of the outside air). Inside the container, a suction temperature sensor (70) is provided on the suction side of the evaporator (33), and an outlet temperature sensor (71) is provided on the outlet side of the evaporator (33). The suction temperature sensor (70) detects the temperature (RS) of the internal air immediately before passing through the evaporator (33). The blowing temperature sensor (71) detects the temperature of the internal air immediately after passing through the evaporator (33) (blowing air temperature (SS)).
 上記コンテナ用冷凍装置(10)には、冷媒回路(20)を制御するための制御部としてコントローラ(100)が設けられている。そして、コントローラ(100)には、圧縮機(30)を駆動するインバータの周波数Nを制御するための圧縮機制御部(101)と、庫内ファン(36)の運転状態に応じて圧縮機(30)の運転回転数Nを制御する回転数制御部(102)と、各種弁(32,38,47~49,53,81)を制御するための弁制御部(103)と、各ファン(35,36)を制御するためのファン制御部(104)とが設けられている。また、コントローラ(100)には、コンテナの庫内を急速に冷却するプルダウン運転を行うプルダウン運転制御部(105)と、プルダウン運転中などに蒸発器(33)に着霜したことを検知するとデフロスト運転を行うデフロスト運転制御部(106)とが設けられている。 The container refrigeration apparatus (10) is provided with a controller (100) as a control unit for controlling the refrigerant circuit (20). The controller (100) includes a compressor control unit (101) for controlling the frequency N of the inverter that drives the compressor (30), and a compressor (100) according to the operating state of the internal fan (36). 30), a rotation speed control unit (102) for controlling the operation rotation speed N, a valve control unit (103) for controlling various valves (32, 38, 47 to 49, 53, 81), and each fan ( 35, 36) and a fan control unit (104) is provided. The controller (100) also includes a pull-down operation control unit (105) that performs pull-down operation for rapidly cooling the inside of the container, and defrosting when it detects that the evaporator (33) is frosted during the pull-down operation. A defrost operation control unit (106) that performs operation is provided.
 上記圧縮機制御部(101)は、冷却動作において、圧縮機(30)の運転回転数(インバータの運転周波数)(N)を制御するためのものである。圧縮機制御部(101)は、吹出空気温度(SS)が吹出空気の目標温度(SP)となるように上記圧縮機(30)の運転回転数(N)を制御する。また、本実施形態では、目標温度(SP)は-30℃~+30℃までの間で適宜設定される。 The compressor control unit (101) is for controlling the operation speed (inverter operation frequency) (N) of the compressor (30) in the cooling operation. The compressor control unit (101) controls the operation speed (N) of the compressor (30) so that the blown air temperature (SS) becomes the target temperature (SP) of the blown air. In the present embodiment, the target temperature (SP) is appropriately set between −30 ° C. and + 30 ° C.
 具体的に、コンテナ庫内へ吹き出される吹出空気の温度(吹出空気温度(SS))が目標温度(SP)よりも低ければ、圧縮機(30)の運転回転数Nを下げる一方、吹出空気温度(SS)が目標温度(SP)よりも高ければ、圧縮機(30)の運転回転数(N)を上げる制御が行われる。 Specifically, if the temperature of the blown-out air blown into the container warehouse (the blown air temperature (SS)) is lower than the target temperature (SP), the operation speed N of the compressor (30) is lowered while the blown air If the temperature (SS) is higher than the target temperature (SP), control for increasing the operation speed (N) of the compressor (30) is performed.
 上記回転数制御部(102)は、ファン制御部(104)が庫内ファン(36)の回転をハイ状態からロー状態に切り換えると、圧縮機(30)の運転回転数(N)を所定値Aだけ低下させて調節するものである。具体的には、コンテナ庫内の冷却負荷が低下すると、ファン制御部(104)は庫内ファン(36)の回転をハイ状態からロー状態に切り換える。こうすると、コンテナ用冷凍装置(10)の冷却能力が過剰となるため、回転数制御部(102)は、圧縮機(30)の運転回転数(N)を所定値Aだけ低下させる。こうすると、圧縮機(30)の運転回転数(N-A)によって冷媒回路(20)を循環する冷媒の流量が低下し、コンテナ用冷凍装置(10)の冷却能力が下がる。このため、コンテナ用冷凍装置(10)の冷却能力とコンテナ庫内の冷却負荷とがバランスする。 When the fan control unit (104) switches the rotation of the internal fan (36) from the high state to the low state, the rotation number control unit (102) sets the operation rotation number (N) of the compressor (30) to a predetermined value. It is adjusted by lowering by A. Specifically, when the cooling load in the container store decreases, the fan control unit (104) switches the rotation of the store fan (36) from the high state to the low state. If it carries out like this, since the cooling capacity of the container refrigeration apparatus (10) will become excess, a rotation speed control part (102) will reduce the driving | running rotation speed (N) of a compressor (30) by the predetermined value A. As a result, the flow rate of the refrigerant circulating in the refrigerant circuit (20) is reduced by the operating speed (NA) of the compressor (30), and the cooling capacity of the container refrigeration apparatus (10) is reduced. For this reason, the cooling capacity of the container refrigeration apparatus (10) and the cooling load in the container warehouse are balanced.
 上記コントローラ(100)は、プルダウン運転制御部(105)により通常の運転中よりも冷却能力を高めて行うプルダウン運転中に、吹出温度センサ(71)の検出値と流出温度センサ(68)の検出値とから、蒸発器(33)における空気の吹出温度(SS)と冷媒の出口温度(EOS)との温度差(SS-EOS)が所定の閾値(本実施形態における具体的な値は5℃)以上であると判断した場合には、蒸発器(33)に着霜していると判断する。このようにしている理由は、蒸発器(33)に着霜していない場合は空気と冷媒が効率よく熱交換するので空気と冷媒の温度差が小さいのに対して、蒸発器(33)に着霜している場合は熱伝達率が低下するので、蒸発温度が低くなっても空気温度があまり下がらず、空気の吹出温度(SS)と冷媒の出口温度(EOS)との温度差が大きくなるためである。そして、この温度差が上記の閾値以上になると、上記デフロスト運転制御部(106)によりデフロスト運転を開始する制御が行われる。 The controller (100) detects the detection value of the outlet temperature sensor (71) and the detection of the outflow temperature sensor (68) during the pull-down operation performed by the pull-down operation control unit (105) with higher cooling capacity than during normal operation. The temperature difference (SS−EOS) between the air blowing temperature (SS) and the refrigerant outlet temperature (EOS) in the evaporator (33) is a predetermined threshold value (a specific value in this embodiment is 5 ° C.). ) If it is determined that it is above, it is determined that the evaporator (33) is frosted. The reason for this is that when the evaporator (33) is not frosted, the air and the refrigerant efficiently exchange heat, so the temperature difference between the air and the refrigerant is small. When frost is formed, the heat transfer rate decreases, so the air temperature does not drop much even when the evaporation temperature is low, and the temperature difference between the air blowing temperature (SS) and the refrigerant outlet temperature (EOS) is large. It is to become. And when this temperature difference becomes more than said threshold value, the said defrost operation control part (106) performs control which starts a defrost operation.
 また、上記コントローラ(100)は、上記蒸発器(33)の近傍に配置される庫内ファン(36)の風量に応じて上記閾値を変更し、風量が現在値よりも多くなると閾値を大きくする制御を行う。これは、風量が現在値よりも多くなると、蒸発器(33)の吹出温度(SS)と冷媒の出口温度(EOS)の温度差(SS-EOS)が大きくなるからであり、本実施形態では、上記温度差(SS-EOS)が大きくなるのに対して適切な除霜検知を行うために上記閾値を大きくしている。 The controller (100) changes the threshold value according to the air volume of the internal fan (36) disposed in the vicinity of the evaporator (33), and increases the threshold value when the air volume exceeds the current value. Take control. This is because when the air volume is larger than the current value, the temperature difference (SS-EOS) between the outlet temperature (SS) of the evaporator (33) and the outlet temperature (EOS) of the refrigerant increases. The threshold value is increased in order to perform appropriate defrost detection while the temperature difference (SS-EOS) increases.
 さらに、コントローラ(100)は、デフロスト運転を行ってから所定時間以内に着霜を検知すると、上記デフロスト運転制御部(106)により、それ以降は電源がオフになるまでデフロスト運転を禁止する制御を行う。これは、デフロスト運転が正常に終了した後に、所定時間(例えば1時間)以内に再度着霜を検知すると、蒸発器が汚れているような場合に着霜を検知したと考えられ、誤検知の可能性が高いことから、その場合はデフロスト運転を行わないようにしたものである。 Further, when the controller (100) detects frost formation within a predetermined time after the defrost operation, the defrost operation control unit (106) controls the defrost operation until the power is turned off thereafter. Do. This is because if frost formation is detected again within a predetermined time (for example, 1 hour) after the defrost operation has been completed normally, frost formation is detected when the evaporator is dirty. Since the possibility is high, in this case, the defrost operation is not performed.
 また、本実施形態では、レヒート熱交換器(83)が設けられており、このレヒート熱交換器(83)に冷媒を流している間は蒸発器(3)の吹出温度が上昇し、吹出温度(SS)と冷媒の出口温度(EOS)の温度差(SS-EOS)が大きくなるが、その場合は着霜していないと判断してデフロスト運転は行わない。 Moreover, in this embodiment, the reheat heat exchanger (83) is provided, and while the refrigerant is flowing through the reheat heat exchanger (83), the blowing temperature of the evaporator (3) rises and the blowing temperature Although the temperature difference (SS-EOS) between (SS) and the refrigerant outlet temperature (EOS) increases, it is determined that frost is not formed and defrost operation is not performed.
 さらに、本実施形態では、流出温度センサ(68)と吹出温度センサ(71)の異常をチェックしており、蒸発器(33)の吹出温度(SS)と冷媒の出口温度(EOS)の温度差(SS-EOS)が上記閾値以上になっても、流出温度センサ(68)と吹出温度センサ(71)が正常である場合以外はデフロスト運転を行わない。具体的には、吹出温度センサ(71)の検出値が高くずれた場合や流出温度センサ(68)の検出値が低くずれた場合には、上記温度差が実際には上記閾値より小さくても閾値以上であると判断される可能性があるので、その場合にはデフロスト運転を行わないこととしている。そのために、本実施形態では、図示していないが、流出温度センサ(68)と吹出温度センサ(71)の検出値をチェックするためのセンサが1つずつ設けられている。 Furthermore, in this embodiment, the abnormality of the outflow temperature sensor (68) and the outlet temperature sensor (71) is checked, and the temperature difference between the outlet temperature (SS) of the evaporator (33) and the outlet temperature (EOS) of the refrigerant. Even if (SS-EOS) exceeds the above threshold, defrost operation is not performed unless the outflow temperature sensor (68) and the blowout temperature sensor (71) are normal. Specifically, when the detection value of the blowout temperature sensor (71) shifts high or when the detection value of the outflow temperature sensor (68) shifts low, the temperature difference is actually smaller than the threshold value. Since it may be determined that the threshold value is exceeded, the defrost operation is not performed in that case. Therefore, although not illustrated in the present embodiment, one sensor for checking the detection values of the outflow temperature sensor (68) and the blowout temperature sensor (71) is provided.
 また、上記コントローラ(100)は、蒸発器(33)の冷媒の状態が湿りと乾きで交互に変化する場合、蒸発器(33)の吹出温度(SS)と冷媒の出口温度(EOS)の温度差の10分間の平均値を求め、この平均値が上記閾値以上であればデフロスト運転を行う。例えば、湿り運転になっている場合は、蒸発器(33)の出口の冷媒温度が下がるため、吹出温度(SS)と冷媒の出口温度(EOS)の温度差が大きくなり、乾き運転になっている場合は、蒸発器(33)の出口の冷媒が空気で温まるため、吹出温度(SS)と冷媒の出口温度(EOS)の温度差が小さくなる。そこで、上記温度差の10分間の平均値を求めて、その値によってデフロスト運転を行うかどうかを判断している。こうすることにより、蒸発器(33)に着霜していないときに着霜していると誤検知したり、着霜しているときに着霜していないと誤検知したりするのを防止できる。 In addition, when the refrigerant state of the evaporator (33) is alternately changed between wet and dry, the controller (100) is configured such that the temperature of the outlet temperature (SS) of the evaporator (33) and the outlet temperature (EOS) of the refrigerant. An average value of the difference for 10 minutes is obtained, and if this average value is equal to or greater than the threshold value, defrost operation is performed. For example, in the wet operation, the refrigerant temperature at the outlet of the evaporator (33) decreases, so the temperature difference between the outlet temperature (SS) and the refrigerant outlet temperature (EOS) increases, resulting in a dry operation. If so, the refrigerant at the outlet of the evaporator (33) is warmed by air, so that the temperature difference between the blowing temperature (SS) and the refrigerant outlet temperature (EOS) becomes small. Therefore, an average value of the temperature difference for 10 minutes is obtained, and it is determined whether or not the defrost operation is performed based on the obtained value. This prevents false detection of frost formation when the evaporator (33) is not frosted, and false detection of frost formation when it is frosted. it can.
 また、デフロスト運転を開始した後は、蒸発器(33)における冷媒の出口温度(EOS)が所定温度以上に上がるとデフロストを終了する。具体的には、コントローラ(100)は、上記出口温度(EOS)が5℃以上になると溶け残りがないと判断し、デフロストを終了する。 In addition, after starting the defrost operation, the defrost is terminated when the outlet temperature (EOS) of the refrigerant in the evaporator (33) rises above a predetermined temperature. Specifically, the controller (100) determines that there is no undissolved when the outlet temperature (EOS) is 5 ° C. or higher, and ends the defrost.
 なお、本実施形態では、デフロスト運転が終了してから経過した時間をタイマーで計測しており、上記着霜検知がされなかった場合でも、タイマーの設定時間が経過すればデフロスト運転が行われる。また、上記着霜検知の制御に加えて、上記プルダウン時に吸込温度センサ(70)の検出値が1時間に0.2℃(この数値は一例である)以上低下しない場合に蒸発器に着霜していると判断し、デフロストを開始する従来と同様の制御を行うようにしてもよい。 In this embodiment, the time elapsed after the defrost operation is completed is measured by a timer, and even when the frost detection is not detected, the defrost operation is performed if the set time of the timer elapses. Further, in addition to the control of the frost detection, when the detection value of the suction temperature sensor (70) does not decrease more than 0.2 ° C. per hour (this value is an example) at the time of the pull-down, the evaporator is frosted. It may be determined that the control is performed, and the same control as in the prior art for starting defrosting may be performed.
   -運転動作-
 次に、上記コンテナ用冷凍装置(10)の運転動作について説明する。このコンテナ用冷凍装置(10)の運転動作は、「冷却運転」と「デフロスト運転」と「除湿運転」と「プルダウン運転」に大別される。冷却運転は、コンテナの庫内を比較的低い温度に冷却する運転である。つまり、冷却運転は、コンテナ本体(1a)に収容された輸送物(例えば生鮮食品等)を保存するために庫内を冷蔵/冷却する運転である。また、デフロスト運転は、圧縮機(30)の吐出冷媒をホットガスバイパス回路(22)に流して、蒸発器(33)の伝熱管等の表面に付着した霜を融かすための運転(除霜運転)である。デフロスト運転は、一般には、例えば冷却運転の開始から所定の設定時間が経過する毎に実行され、デフロスト運転の終了後には、冷却運転が再開される。プルダウン運転は、庫内を設定温度まで急速に冷却する運転であり、このプルダウン運転中に蒸発器に着霜したときもデフロスト運転が行われる。
-Driving operation-
Next, the operation of the container refrigeration apparatus (10) will be described. The operation of the container refrigeration apparatus (10) is roughly classified into “cooling operation”, “defrost operation”, “dehumidification operation”, and “pull-down operation”. The cooling operation is an operation for cooling the interior of the container to a relatively low temperature. That is, the cooling operation is an operation for refrigeration / cooling the interior of the container in order to preserve the transported goods (for example, fresh food) stored in the container body (1a). In the defrost operation, the refrigerant discharged from the compressor (30) is passed through the hot gas bypass circuit (22) to melt the frost adhering to the surface of the heat transfer tube of the evaporator (33) (defrosting). Driving). In general, the defrost operation is executed, for example, every time a predetermined set time elapses from the start of the cooling operation, and the cooling operation is resumed after the defrost operation is completed. The pull-down operation is an operation for rapidly cooling the interior to a set temperature, and the defrost operation is also performed when the evaporator is frosted during the pull-down operation.
 本実施形態では、冷却運転の基本動作と、プルダウン運転及びプルダウン運転中に行われるデフロスト運転について説明する。 In this embodiment, the basic operation of the cooling operation and the defrost operation performed during the pull-down operation and the pull-down operation will be described.
 冷却運転における基本的な冷却動作では、第1開閉弁(47)および第2開閉弁(49)が開放状態となり、第3開閉弁(53)および第5開閉弁(81)が閉鎖状態となる。第4開閉弁(38)は全開状態となり、過冷却膨張弁(48)および主膨張弁(32)の開度が適宜調節される。また、圧縮機(30)、庫外ファン(35)および庫内ファン(36)が運転される。 In the basic cooling operation in the cooling operation, the first on-off valve (47) and the second on-off valve (49) are opened, and the third on-off valve (53) and the fifth on-off valve (81) are closed. . The fourth on-off valve (38) is fully opened, and the opening degrees of the supercooling expansion valve (48) and the main expansion valve (32) are adjusted as appropriate. Further, the compressor (30), the outside fan (35) and the inside fan (36) are operated.
 圧縮機(30)で圧縮された冷媒は、凝縮器(31)で凝縮した後、レシーバ(41)を通過する。レシーバ(41)を通過した冷媒は、一部が低圧液管(27)をそのまま流れ、残りは過冷却分岐管(26)に分流する。低圧液管(27)を流れた冷媒は、過冷却熱交換器(44)で過冷却されてから主膨張弁(32)で減圧され、蒸発器(33)を流れる。蒸発器(33)では、冷媒が庫内空気から吸熱して蒸発する。これにより、庫内空気が冷却される。蒸発器(33)で蒸発した冷媒は、圧縮機(30)に吸入されて再び圧縮される。 The refrigerant compressed by the compressor (30) is condensed by the condenser (31) and then passes through the receiver (41). A part of the refrigerant that has passed through the receiver (41) flows through the low-pressure liquid pipe (27) as it is, and the rest is divided into the supercooling branch pipe (26). The refrigerant that has flowed through the low-pressure liquid pipe (27) is supercooled by the supercooling heat exchanger (44), then depressurized by the main expansion valve (32), and flows through the evaporator (33). In the evaporator (33), the refrigerant absorbs heat from the internal air and evaporates. Thereby, the air in a warehouse is cooled. The refrigerant evaporated in the evaporator (33) is sucked into the compressor (30) and compressed again.
 過冷却分岐管(26)に分流した冷媒は、過冷却膨張弁(48)を通過して中間圧にまで減圧された後、過冷却熱交換器(44)の2次側通路(46)を流れる。過冷却熱交換器(44)では、1次側通路(45)を流れる冷媒と2次側通路(46)を流れる冷媒とが熱交換する。その結果、1次側通路(45)の冷媒が過冷却される一方、2次側通路(46)の冷媒が蒸発する。2次側通路(46)を流出した冷媒は、圧縮機(30)の中間ポートより中間圧力状態の圧縮室に吸入される。 The refrigerant divided into the supercooling branch pipe (26) passes through the supercooling expansion valve (48) and is reduced to an intermediate pressure, and then passes through the secondary passage (46) of the supercooling heat exchanger (44). Flowing. In the supercooling heat exchanger (44), heat is exchanged between the refrigerant flowing through the primary passage (45) and the refrigerant flowing through the secondary passage (46). As a result, the refrigerant in the primary passage (45) is subcooled, while the refrigerant in the secondary passage (46) evaporates. The refrigerant that has flowed out of the secondary passage (46) is sucked into the compression chamber in the intermediate pressure state from the intermediate port of the compressor (30).
 プルダウン運転中は圧縮機(30)の能力を上げて庫内が急速に冷却され、その際に蒸発器(33)に着霜すると、デフロスト運転も行われる。以下に、プルダウン運転とその際に行われる着霜検知及びデフロスト運転の動作について、蒸発器(33)における空気の吹出温度(SS)と冷媒の出口温度(EOS)との温度差(SS-EOS)に基づいて行う本実施形態の制御と、タイマーのみを用いて行う比較例の制御とを比較して説明する。 During the pull-down operation, the capacity of the compressor (30) is increased and the interior is rapidly cooled. At that time, if the evaporator (33) is frosted, the defrost operation is also performed. The following is the difference between the air blowing temperature (SS) and the refrigerant outlet temperature (EOS) in the evaporator (33) (SS-EOS) for the pull-down operation and the frost detection and defrosting operations performed at that time. ) And the control of the comparative example performed using only the timer will be described.
 図4(A)は本実施形態の制御を示し、図4(B)は比較例の制御を示している。図4(A),(B)において、縦軸は温度、横軸は時間である。また、運転条件は、外気温度が30℃、庫内の設定温度(SP)が-25℃とする。 FIG. 4A shows the control of this embodiment, and FIG. 4B shows the control of the comparative example. 4A and 4B, the vertical axis represents temperature and the horizontal axis represents time. The operating conditions are an outside air temperature of 30 ° C. and a set temperature (SP) in the cabinet of −25 ° C.
 まず、本実施形態の制御について図4(A)を用いて説明する。時間(T1)は、積み荷がない状態でプレクールが終了した時間である。この状態で、庫内空気は-25℃に冷却されている。次に、時間(T1)から時間(T2)まで、冷凍装置(10)をオフにしてコンテナの扉を開放し、積み荷の積み込み作業が行われる。この間には庫内温度が上昇し、それに伴って蒸発器(33)における空気の吸込温度(RS)と出口側の冷媒温度(EOS)もほぼ外気温度まで上昇する。 First, the control of this embodiment will be described with reference to FIG. Time (T1) is the time when the pre-cooling is finished in the absence of cargo. In this state, the internal air is cooled to −25 ° C. Next, from time (T1) to time (T2), the refrigeration apparatus (10) is turned off, the container door is opened, and the loading operation is performed. During this time, the inside temperature rises, and accordingly, the air suction temperature (RS) and the outlet side refrigerant temperature (EOS) in the evaporator (33) also rise to almost the outside air temperature.
 時間(T2)からプルダウン運転が開始される。プルダウン運転が開始されると庫内の温度が低下していき、上記空気温度(RS)と冷媒温度(EOS)も低下していく。一方、蒸発器(33)に徐々に着霜していくと、蒸発器(33)の熱伝達率が低下するため、吹き出し空気温度(SS)が下がりにくくなる。このとき、蒸発器(33)の出口の冷媒温度(EOS)は下がっていくので、蒸発器(33)における空気の吹出温度(SS)と冷媒の出口温度(EOS)との温度差(SS-EOS)が大きくなっていく。なお、この温度差(SS-EOS)を折れ線で表しているのは10分ごとの平均値である。 Pull-down operation starts from time (T2). When the pull-down operation is started, the temperature in the warehouse is lowered, and the air temperature (RS) and the refrigerant temperature (EOS) are also lowered. On the other hand, when the evaporator (33) is gradually frosted, the heat transfer coefficient of the evaporator (33) is lowered, so that the blown air temperature (SS) is hardly lowered. At this time, since the refrigerant temperature (EOS) at the outlet of the evaporator (33) decreases, the temperature difference (SS−) between the air blowing temperature (SS) and the refrigerant outlet temperature (EOS) in the evaporator (33). EOS) is getting bigger. The temperature difference (SS-EOS) is represented by a broken line as an average value every 10 minutes.
 上記温度差(SS-EOS)が5℃以上になると、本実施形態のデフロスト運転の開始条件が満たされるので、時間(T3)においてデフロスト運転が開始される。図の例ではプルダウン運転の開始から4時間が経過した時点である。 When the temperature difference (SS-EOS) is 5 ° C. or higher, the defrost operation start condition of the present embodiment is satisfied, so the defrost operation is started at time (T3). In the example shown in the figure, it is the time when 4 hours have elapsed since the start of the pull-down operation.
 デフロスト運転が開始されると、蒸発器(33)にホットガスが流れるので、上記出口温度(EOS)が上昇するとともに庫内温度も上昇し、それに伴って吸込温度(RS)も上昇する。上記出口温度(EOS)が5℃になると、霜が溶けたと判断し、デフロスト運転を終了する(時間(T4))。図の例では、時間(T3)から時間(T4)まで20分が経過している。 When the defrost operation is started, hot gas flows through the evaporator (33), so that the outlet temperature (EOS) rises and the internal temperature rises, and the suction temperature (RS) rises accordingly. When the outlet temperature (EOS) reaches 5 ° C., it is determined that the frost has melted, and the defrost operation is terminated (time (T4)). In the example of the figure, 20 minutes have passed from time (T3) to time (T4).
 デフロストが終了するとプルダウン運転が再開され、庫内が冷却されていく。そして、時間(T5)においてプルダウンが終了し、庫内が-25℃に冷却された状態となる。図の例ではデフロストの終了から3時間でプルダウン運転が終了している。 When the defrost is completed, the pull-down operation is resumed and the interior is cooled. At time (T5), the pull-down is completed, and the inside of the refrigerator is cooled to -25 ° C. In the example shown in the figure, the pull-down operation is completed in 3 hours from the end of the defrost.
 一方、図4(B)に示す比較例においても、時間(T1)でプレクールが終了し、時間(T2)で積み込み作業が終了してプルダウン運転が開始される。 On the other hand, also in the comparative example shown in FIG. 4B, the pre-cooling ends at time (T1), the loading operation ends at time (T2), and the pull-down operation starts.
 プルダウン運転が開始されると、タイマーで設定された時間が経過するまで(時間(T3’)になるまで)はデフロスト運転が行われない。図4(A)では時間(T3)で着霜が検知されているので、このT3の時点で、蒸発器(33)の熱伝達率が、着霜していない状態と比べて既に低下しており、時間(T3)から時間(T3’)までは、蒸発器(33)における冷媒の出口温度(EOS)が下がることになる。これに対して、着霜した状態では、上記吹出温度(SS)も庫内温度も低下しにくく、吸込温度(RS)も低下しにくくなる。そして、上記温度差(SS-EOS)は5℃を大きく超えてしまうが、冷却能力が低下したままデフロスト運転の開始時間(T3’)を迎えてしまう。その後、上記温度差(SS-EOS)は5℃からどんどん上昇してしまう。 When pull-down operation is started, defrost operation is not performed until the time set by the timer has elapsed (until time (T3 ')). In FIG. 4A, since frost formation is detected at time (T3), at this time T3, the heat transfer coefficient of the evaporator (33) has already decreased compared to the state where frost formation has not occurred. Thus, the refrigerant outlet temperature (EOS) in the evaporator (33) decreases from time (T3) to time (T3 ′). On the other hand, in the frosted state, it is difficult for the blowing temperature (SS) and the internal temperature to decrease, and the suction temperature (RS) is also difficult to decrease. The temperature difference (SS−EOS) greatly exceeds 5 ° C., but the defrosting start time (T3 ′) is reached with the cooling capacity being lowered. After that, the temperature difference (SS-EOS) increases from 5 ° C.
 図4(B)の比較例において時間(T3’)でデフロスト運転が開始されるとき、図4(A)に示す本実施形態の制御で時間(T3)においてデフロスト運転が開始される状態に比べて、着霜量が多くなっている。そのため、この比較例では、霜を十分に溶かすために上記出口温度(EOS)が20℃以上になることをデフロストの終了条件としており、必然的にデフロスト運転が開始してから終了するまでの時間(T4’-T3’)も長くなる。この例では、デフロストの開始時間(T3’)から終了時間(T4’)まで30分が経過している。 In the comparative example of FIG. 4B, when the defrost operation is started at time (T3 ′), compared to the state in which the defrost operation is started at time (T3) by the control of the present embodiment shown in FIG. 4A. The amount of frost formation is increasing. Therefore, in this comparative example, in order to sufficiently melt frost, the outlet temperature (EOS) is set to 20 ° C. or more as a defrost termination condition, and inevitably the time from the start of the defrost operation to the termination. (T4′−T3 ′) also becomes longer. In this example, 30 minutes have passed from the defrost start time (T3 ') to the end time (T4').
 時間(T4’)でデフロストが終了すると再度プルダウン運転が開始され、庫内が冷却されていく。そして、時間(T5’)においてプルダウンが終了し、庫内が-25℃に冷却される。図の例ではデフロストの終了から3時間でプルダウン運転が終了している。 When the defrost is completed at time (T4 '), the pull-down operation is started again, and the interior is cooled. Then, at time (T5 '), the pull-down ends and the interior is cooled to -25 ° C. In the example shown in the figure, the pull-down operation is completed in 3 hours from the end of the defrost.
  -実施形態の効果-
 本実施形態によれば、蒸発器(33)における空気の吹出温度と冷媒の出口温度との温度差が所定の閾値以上であると判断した場合に上記蒸発器(33)に着霜したと検知し、上記デフロスト運転制御部(106)によりデフロスト運転を開始するデフロスト運転制御を行うことにより、短時間で迅速に着霜を検知でき、デフロスト運転を開始できるから、着霜によって能力が低下した状態での運転時間を最小限に抑えられる。したがって、プルダウン中のデフロスト運転を迅速に終わらせることができ、ひいてはプルダウン運転を迅速に終わらせることができる。
-Effects of the embodiment-
According to the present embodiment, when it is determined that the temperature difference between the air blowing temperature and the refrigerant outlet temperature in the evaporator (33) is equal to or greater than a predetermined threshold, it is detected that the evaporator (33) has formed frost. Then, by performing defrost operation control for starting the defrost operation by the defrost operation control unit (106), frost formation can be detected quickly in a short time, and the defrost operation can be started. The driving time at the can be minimized. Therefore, the defrosting operation during pull-down can be completed quickly, and consequently the pull-down operation can be completed quickly.
 特に、蒸発器(33)における空気の吹出温度と冷媒の出口温度との温度差は、侵入熱、積み荷の熱容量、及び冷却能力などの誤検知の要因の影響を受けないため、短時間で確実に着霜を検知できる。 In particular, the temperature difference between the air blowing temperature and the refrigerant outlet temperature in the evaporator (33) is not affected by factors such as intrusion heat, cargo heat capacity, and cooling capacity, so it is reliable in a short time. Frost can be detected.
 さらに、デフロストの開始を従来よりも早めることができるから、着霜量の少ない状態でデフロストを開始できることになる。このことにより、デフロスト運転時間そのものを短縮することが可能になり、デフロストに要する時間をより確実に短縮できるうえ、デフロスト完了温度も低くできるからプルダウンの再開をスムーズに行える。 Furthermore, since defrosting can be started earlier than before, defrosting can be started with a small amount of frost formation. As a result, the defrosting operation time itself can be shortened, the time required for defrosting can be shortened more reliably, and the defrosting completion temperature can be lowered, so that the pull-down can be restarted smoothly.
 また、空気調和装置では、暖房運転時に室外熱交換器がデフロスト対象となるが、一般に、室外熱交換器(蒸発器)の吹出温度センサは設けられない。そのため、本実施形態の制御を空気調和装置で行うことは一般には行われていない。これに対して、本実施形態では、コンテナ用冷凍装置(10)に通常設けられるセンサを用いているので、新たなセンサが不要であり、構成が複雑になることもない。ただし、空気調和装置であっても暖房時の蒸発器の吹出空気温度を検出する吹出温度センサを設けると、本実施形態と同様の制御を行うことは可能である。 In the air conditioner, the outdoor heat exchanger is a defrost target during heating operation, but generally the outdoor temperature exchanger (evaporator) outlet temperature sensor is not provided. Therefore, the control of the present embodiment is not generally performed by the air conditioner. On the other hand, in this embodiment, since the sensor normally provided in the container refrigeration apparatus (10) is used, a new sensor is unnecessary and the configuration is not complicated. However, even if it is an air conditioning apparatus, if the blowing temperature sensor which detects the blowing air temperature of the evaporator at the time of heating is provided, it is possible to perform control similar to this embodiment.
 また、庫内ファン(36)の風量が多くなると蒸発器(33)における空気の吹出温度と冷媒の出口温度との温度差が大きくなるのに対して、風量に応じた閾値を設定しておくことにより、風量が変わっても着霜検知を迅速に行えるから、デフロスト運転を迅速に終わらせることができる。 In addition, when the air volume of the internal fan (36) increases, the temperature difference between the air blowing temperature and the refrigerant outlet temperature in the evaporator (33) increases, whereas a threshold value corresponding to the air volume is set. As a result, even if the air volume changes, frost formation can be detected quickly, so that the defrost operation can be completed quickly.
 さらに、本実施形態では、デフロストが終わってから所定時間以内に再度着霜を検知すると、蒸発器(33)が汚れているなどが原因で誤検知した可能性が高いため、デフロストを行わない制御となるようにしている。このことにより、無駄なデフロスト運転を防止できる。 Further, in the present embodiment, when frost formation is detected again within a predetermined time after the defrosting is completed, there is a high possibility that the evaporator (33) is erroneously detected due to contamination or the like. It is trying to become. This can prevent useless defrost operation.
 《その他の実施形態》
 上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.
 例えば、上記実施形態の着霜検知とデフロスト運転は、プルダウン運転時に限らず、通常の冷却運転時に行ってもよい。 For example, the frost detection and the defrost operation of the above embodiment may be performed not only during the pull-down operation but also during the normal cooling operation.
 また、上記実施形態では、蒸発器(33)における空気の吹出温度(SS)と冷媒の出口温度(EOS)との温度差(SS-EOS)が所定の閾値以上であると判断した場合に上記蒸発器(33)に着霜したと検知し、圧縮機(30)の吐出ガス冷媒を蒸発器(33)に供給して霜を除去するホットガスデフロストを行う例を説明したが、デフロスト運転は、電気ヒータを用いて行う運転であってもよい。 In the above embodiment, when it is determined that the temperature difference (SS−EOS) between the air blowing temperature (SS) and the refrigerant outlet temperature (EOS) in the evaporator (33) is equal to or greater than a predetermined threshold value, Although it has been detected that the evaporator (33) is frosted and the hot gas defrost is performed by supplying the discharge gas refrigerant of the compressor (30) to the evaporator (33) to remove the frost, the defrost operation is The operation may be performed using an electric heater.
 また、上記実施形態では、蒸発器(33)における空気の吹出温度(SS)と冷媒の出口温度(EOS)との温度差(SS-EOS)が所定の閾値として5℃以上であると判断した場合に蒸発器(33)に着霜していると判断するようにしているが、上記の閾値は例示であり、装置に応じて適切な値に設定すればよい。 In the above embodiment, the temperature difference (SS−EOS) between the air blowing temperature (SS) and the refrigerant outlet temperature (EOS) in the evaporator (33) is determined to be 5 ° C. or more as a predetermined threshold. In this case, it is determined that the evaporator (33) is frosted, but the above threshold value is merely an example, and may be set to an appropriate value according to the apparatus.
 また、上記実施形態では、閾値を一定にし、デフロスト運転から1時間以内に上記温度差が閾値異常になった場合は誤検知であるとしてデフロスト運転を中止するようにしているが、デフロスト運転後の上記温度差を基準として上記閾値を補正する学習制御を行うようにしてもよい。 Further, in the above embodiment, the threshold value is made constant, and when the temperature difference becomes abnormal within one hour from the defrost operation, the defrost operation is stopped as a false detection, but after the defrost operation, You may make it perform learning control which correct | amends the said threshold value on the basis of the said temperature difference.
 また、上記実施形態では、海上輸送等に用いられるコンテナの庫内を冷却するためのコンテナ用冷凍装置に本発明を適用した例を説明したが、本発明は、冷蔵庫や冷凍庫の庫内を冷却する冷却装置や、室内を暖房可能な空気調和装置にも適用可能である。つまり、本発明は、冷凍や空調を含む広義の冷凍装置について適用することが可能である。空気調和装置の場合には、暖房運転時のデフロストについて本発明を適用できる。 Moreover, although the said embodiment demonstrated the example which applied this invention to the container refrigeration apparatus for cooling the inside of the container of the container used for marine transportation etc., this invention cools the inside of the refrigerator and the freezer. The present invention is also applicable to a cooling device that performs heating and an air conditioner that can heat a room. That is, the present invention can be applied to a refrigeration apparatus in a broad sense including refrigeration and air conditioning. In the case of an air conditioner, the present invention can be applied to defrost during heating operation.
 さらに、上記実施形態では、蒸発器(33)における空気の吹出温度(SS)と冷媒の出口温度(EOS)との温度差(SS-EOS)が所定の閾値以上であると判断した場合に上記蒸発器(33)に着霜したと検知し、デフロスト運転を開始するようにしているが、蒸発器(33)の吹出温度(SS)の代わりに吸込温度(RS)を用い、蒸発器(33)における空気の吸込温度(RS)と冷媒の出口温度(EOS)との温度差(RS-EOS)が所定の閾値以上であると判断した場合に上記蒸発器(33)に着霜したと検知し、デフロスト運転を開始するようにしてもよい。 Further, in the above embodiment, when it is determined that the temperature difference (SS−EOS) between the air blowing temperature (SS) and the refrigerant outlet temperature (EOS) in the evaporator (33) is equal to or greater than a predetermined threshold value, It detects that the evaporator (33) has formed frost and starts defrosting. However, the suction temperature (RS) is used instead of the outlet temperature (SS) of the evaporator (33), and the evaporator (33 ) Detects that the evaporator (33) has formed frost when it is determined that the temperature difference (RS-EOS) between the air suction temperature (RS) and the refrigerant outlet temperature (EOS) is equal to or greater than a predetermined threshold. Then, the defrost operation may be started.
 その場合、吸込温度(RS)は吹出温度(SS)よりも温度が若干高くなるものの吹出温度(SS)とほぼ同様の変化をするので、蒸発器(33)における空気の吸込温度(RS)と冷媒の出口温度(EOS)との温度差(RS-EOS)が所定の閾値以上であると判断した場合にデフロスト運転を開始すると上記実施形態と同様の効果を奏することは可能である。なお、この変形例の制御を行う場合、上述のように上記吸込温度(RS)は上記吹出温度(SS)よりも一般に高温であるので、上記吹出温度(SS)を用いていた上記実施形態では所定の閾値として5℃に定めていた値を、例えば10℃に定めるなど、閾値を適宜変更するとよい。 In that case, although the suction temperature (RS) is slightly higher than the blowout temperature (SS), it changes in almost the same way as the blowout temperature (SS). Therefore, the suction temperature (RS) of the air in the evaporator (33) When the defrost operation is started when it is determined that the temperature difference (RS−EOS) with respect to the refrigerant outlet temperature (EOS) is equal to or greater than a predetermined threshold, it is possible to achieve the same effect as the above embodiment. When the control of this modification is performed, the suction temperature (RS) is generally higher than the blowing temperature (SS) as described above. Therefore, in the embodiment using the blowing temperature (SS), The threshold value may be changed as appropriate, for example, a value set to 5 ° C. as the predetermined threshold value is set to 10 ° C., for example.
 また、空気調和装置の場合は一般に暖房時の蒸発器の吸込温度を検出する吸込温度センサが設けられるので、蒸発器(33)における空気の吸込温度(RS)と冷媒の出口温度(EOS)との温度差(RS-EOS)が所定の閾値以上であると判断した場合に上記蒸発器(33)に着霜したと検知してデフロスト運転を開始する制御は、空気調和装置に専用のセンサを設けなくても実施することが可能である。 In the case of an air conditioner, since an intake temperature sensor is generally provided for detecting the intake temperature of the evaporator during heating, the air intake temperature (RS) and the refrigerant outlet temperature (EOS) in the evaporator (33) When it is determined that the temperature difference (RS-EOS) is greater than or equal to a predetermined threshold, the control to detect that the evaporator (33) has formed frost and start the defrost operation is performed by using a dedicated sensor for the air conditioner. It is possible to carry out without providing.
 なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 In addition, the above embodiment is an essentially preferable example, and is not intended to limit the scope of the present invention, its application, or its use.
 以上説明したように、本発明は、海上輸送等に用いられるコンテナの庫内を冷却するためのコンテナ用冷凍装置、冷蔵庫や冷凍庫の庫内を冷却する冷却装置、及び室内を暖房可能な空気調和装置などの冷凍装置において、庫内熱交換器(蒸発器)の着霜の検知に要する時間を短縮してデフロスト運転を迅速に終わらせる技術について有用である。 As described above, the present invention relates to a container refrigeration apparatus for cooling the interior of a container used for marine transportation or the like, a cooling apparatus for cooling the interior of a refrigerator or a freezer, and an air conditioner capable of heating a room. In a refrigeration apparatus such as an apparatus, it is useful for a technique for shortening the time required to detect frost formation in an internal heat exchanger (evaporator) and quickly ending defrost operation.
 1a コンテナ本体(温度制御対象室)
 10 コンテナ用冷凍装置
 20 冷媒回路
 30 圧縮機
 31 凝縮器
 32 主膨張弁(膨張機構)
 33 蒸発器
 36 庫内ファン(蒸発器ファン)
 100 コントローラ(制御装置)
 105 プルダウン運転制御部
 106 デフロスト運転制御部
1a Container body (temperature controlled room)
10 Refrigeration equipment for containers 20 Refrigerant circuit 30 Compressor 31 Condenser 32 Main expansion valve (expansion mechanism)
33 Evaporator 36 Internal fan (evaporator fan)
100 controller (control device)
105 Pull-down operation control unit 106 Defrost operation control unit

Claims (4)

  1.  温度制御対象室(1a)と、圧縮機(30)と凝縮器(31)と膨張機構(32)と蒸発器(33)とが順に接続されて冷凍サイクル動作を行い上記温度制御対象室(1a)の内部を温度制御する冷媒回路(20)と、該冷媒回路(20)を制御する制御装置(100)とを備えた冷凍装置であって、
     上記制御装置(100)は、デフロスト運転を制御するデフロスト運転制御部(106)を備え、蒸発器(33)における空気の吹出温度または吸込温度と冷媒の出口温度との温度差が所定の閾値以上であると判断した場合に上記蒸発器(33)に着霜したと検知し、上記デフロスト運転制御部(106)によりデフロスト運転を開始するデフロスト運転制御を行うことを特徴とする冷凍装置。
    The temperature control target chamber (1a), the compressor (30), the condenser (31), the expansion mechanism (32), and the evaporator (33) are connected in order to perform the refrigeration cycle operation. ) A refrigeration apparatus comprising a refrigerant circuit (20) for controlling the temperature inside, and a control device (100) for controlling the refrigerant circuit (20),
    The control device (100) includes a defrost operation control unit (106) for controlling the defrost operation, and a temperature difference between the air blowing temperature or the suction temperature and the refrigerant outlet temperature in the evaporator (33) is a predetermined threshold value or more. The refrigeration apparatus is characterized in that when it is determined that the evaporator (33) is frosted, the defrost operation control is performed by the defrost operation control unit (106) to start the defrost operation.
  2.  請求項1において、
     上記制御装置(100)は、温度制御対象室(1a)を急速に冷却するプルダウン運転を行うプルダウン運転制御部(105)を備え、プルダウン運転中に上記デフロスト運転制御を行うことを特徴とする冷凍装置。
    In claim 1,
    The control device (100) includes a pull-down operation control unit (105) that performs a pull-down operation for rapidly cooling the temperature control target chamber (1a), and performs the defrost operation control during the pull-down operation. apparatus.
  3.  請求項1または2において、
     上記制御装置(100)は、上記蒸発器(33)の近傍に配置される蒸発器ファン(36)の風量に応じて上記閾値を変更し、風量が現在値よりも多くなると上記閾値を大きくすることを特徴とする冷凍装置。
    In claim 1 or 2,
    The said control apparatus (100) changes the said threshold value according to the air volume of the evaporator fan (36) arrange | positioned in the vicinity of the said evaporator (33), and when the air volume becomes larger than the present value, the said threshold value is enlarged. A refrigeration apparatus characterized by that.
  4.  請求項1から3の何れか1つにおいて、
     上記制御装置(100)は、デフロスト運転を行ってから所定時間以内に着霜を検知すると、それ以降は電源がオフになるまでデフロスト運転を禁止することを特徴とする冷凍装置。
     
    In any one of Claims 1-3,
    When the control device (100) detects frost formation within a predetermined time after performing the defrost operation, the control device (100) thereafter prohibits the defrost operation until the power is turned off.
PCT/JP2015/006008 2014-12-05 2015-12-03 Refrigeration device WO2016088379A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014247219 2014-12-05
JP2014-247219 2014-12-05

Publications (1)

Publication Number Publication Date
WO2016088379A1 true WO2016088379A1 (en) 2016-06-09

Family

ID=56091341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006008 WO2016088379A1 (en) 2014-12-05 2015-12-03 Refrigeration device

Country Status (2)

Country Link
JP (1) JP6149921B2 (en)
WO (1) WO2016088379A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923357A (en) * 2016-11-10 2019-06-21 Lg电子株式会社 Refrigerator and its control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021245792A1 (en) * 2020-06-02 2021-12-09 三菱電機株式会社 Cooling device
CN114264096B (en) * 2021-12-30 2024-03-12 西安建筑科技大学 Defrosting control method based on sharp point mutation model

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420985U (en) * 1990-06-11 1992-02-21
JPH0996475A (en) * 1995-09-29 1997-04-08 Daikin Ind Ltd Refrigerator for container
JP2009168290A (en) * 2008-01-11 2009-07-30 Denso Corp Heat pump device, hot water supply device equipped with the heat pump device, and control method of the heat pump device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103683U (en) * 1989-02-03 1990-08-17
JP4435226B2 (en) * 2007-02-09 2010-03-17 三菱電機株式会社 Refrigeration equipment
JP6020034B2 (en) * 2012-10-23 2016-11-02 富士電機株式会社 Vending machine cooling system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420985U (en) * 1990-06-11 1992-02-21
JPH0996475A (en) * 1995-09-29 1997-04-08 Daikin Ind Ltd Refrigerator for container
JP2009168290A (en) * 2008-01-11 2009-07-30 Denso Corp Heat pump device, hot water supply device equipped with the heat pump device, and control method of the heat pump device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923357A (en) * 2016-11-10 2019-06-21 Lg电子株式会社 Refrigerator and its control method
CN109923357B (en) * 2016-11-10 2022-04-01 Lg电子株式会社 Refrigerator and control method thereof
US11384975B2 (en) 2016-11-10 2022-07-12 Lg Electronics Inc. Refrigerator and control method thereof

Also Published As

Publication number Publication date
JP2016109419A (en) 2016-06-20
JP6149921B2 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
JP5664741B2 (en) Container refrigeration equipment
JP4289427B2 (en) Refrigeration equipment
JP5472391B2 (en) Container refrigeration equipment
WO2012014374A1 (en) Refrigeration device
JP2011252702A5 (en)
JP5110192B1 (en) Refrigeration equipment
JP5594425B2 (en) Refrigeration equipment
JP4760974B2 (en) Refrigeration equipment
JP6729674B2 (en) Refrigeration equipment for containers
JP2014020715A (en) Refrigerator
JP6545252B2 (en) Refrigeration cycle device
JP6149921B2 (en) Refrigeration equipment
JP5370551B1 (en) Container refrigeration equipment
JP6709363B2 (en) refrigerator
JP6448991B2 (en) refrigerator
JP2007309585A (en) Refrigerating device
JP5417397B2 (en) refrigerator
JP5722160B2 (en) Cooling storage
US10408513B2 (en) Oil line control system
JP6846599B2 (en) refrigerator
JP2012026590A (en) Refrigerating apparatus
JP2013139948A (en) Refrigeration device and method for detecting filling of wrong refrigerant
KR20170072776A (en) Refrigerator
JP2013122328A (en) Refrigeration device for container
JP2012032063A (en) Refrigerating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865783

Country of ref document: EP

Kind code of ref document: A1