WO2016088252A1 - Sample collection mechanism and supercritical fluid device provided with said sample collection mechanism - Google Patents

Sample collection mechanism and supercritical fluid device provided with said sample collection mechanism Download PDF

Info

Publication number
WO2016088252A1
WO2016088252A1 PCT/JP2014/082262 JP2014082262W WO2016088252A1 WO 2016088252 A1 WO2016088252 A1 WO 2016088252A1 JP 2014082262 W JP2014082262 W JP 2014082262W WO 2016088252 A1 WO2016088252 A1 WO 2016088252A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
sample
flow path
temperature
recovery
Prior art date
Application number
PCT/JP2014/082262
Other languages
French (fr)
Japanese (ja)
Inventor
理沙 梶山
洋臣 後藤
森 隆弘
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2014/082262 priority Critical patent/WO2016088252A1/en
Priority to JP2016562170A priority patent/JP6406358B2/en
Publication of WO2016088252A1 publication Critical patent/WO2016088252A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/80Fraction collectors

Definitions

  • the present invention relates to a sample recovery mechanism for recovering a sample from a fluid flowing out from a device using a supercritical fluid such as a supercritical fluid chromatograph device, and a supercritical fluid device equipped with the sample recovery mechanism.
  • a supercritical fluid such as a supercritical fluid chromatograph device
  • SFC Supercritical Fluid Chromatography
  • SFC is a chromatographic apparatus in which carbon dioxide or the like is subjected to a certain temperature and pressure to form a supercritical fluid, and the supercritical fluid is used as a solvent.
  • Supercritical fluids have both liquid and gas properties and are characterized by being more diffusive and less viscous than liquids.
  • Carbon dioxide generally used in SFC has a critical pressure of 7.38 MPa, a critical temperature of 31.1 ° C., which is relatively close to room temperature, has no flammability or chemical reactivity, and has high purity at low cost. It is most commonly used for SFC because it is available.
  • Supercritical carbon dioxide (SCCO 2 ) has low-polarity properties close to hexane, and the polarity of the mobile phase can be greatly changed by adding a polar organic solvent such as methanol as a modifier. In order to keep the solvent in a supercritical state, it is necessary to keep the pressure in the flow path system high. For this reason, the SFC is provided with a pressure control valve called a back pressure regulator (BPR) downstream of the separation column and detector in order to keep the flow path system at a constant pressure.
  • BPR back pressure regulator
  • the fluid that has passed through the BPR is depressurized to atmospheric pressure, and carbon dioxide in the supercritical state or liquid state is vaporized after passing through the BPR. Therefore, the fluid flowing out from the outlet of the analysis channel is separated into a gas phase and a liquid phase. If only the liquid phase is taken out, the modifier in which the sample components are dissolved can be recovered.
  • the modifier in the fluid flowing out from the analysis flow path becomes aerosol due to the volume expansion accompanying the vaporization of carbon dioxide.
  • the liquid in the form of an aerosol has a large surface area and is easily evaporated. Since the evaporated liquid component is the same size as the gas and cannot be physically distinguished, gas-liquid separation using the weight of the droplet is impossible as before, and the evaporated liquid component is discharged to the outside together with carbon dioxide. As a result, the sample recovery rate decreases.
  • an object of the present invention is to increase the recovery rate of the liquid phase in the fluid flowing out from the analysis flow path.
  • the sample recovery mechanism recovers the liquid phase by separating the fluid flowing out from the analysis flow path of the supercritical fluid device into a gas phase and a liquid phase.
  • the sample recovery mechanism has a recovery container that recovers the fluid that has flowed out of the analysis flow path, and a pipe that connects between the outlet of the analysis flow path and the recovery container, and a modifier in the fluid that is introduced into the recovery container And a fluid introduction part that leads to a recovery container at a temperature at which the liquid exists.
  • piping due to the generation of dry ice and coagulation of the modifier at the outlet of the pressure control valve due to the heat of vaporization of carbon dioxide in the fluid that has passed through the pressure control valve that controls the back pressure of the analysis channel Since there is a concern about clogging, etc., measures such as heating the piping on the outlet side of the pressure control valve by a heating unit such as a heater are generally taken. However, if the piping is heated on the rear side of the pressure control valve, evaporation of the aerosolized modifier passes through the pressure control valve, and if the fluid is introduced as it is to the collection container, it evaporates.
  • Patent Document 1 proposals have been made for a method for growing and recovering an aerosol-modified modifier by passing through a pressure control valve. However, evaporation of an aerosolized modifier is conventionally performed. No proposal has been made on how to prevent the loss caused by.
  • the fluid introduction part in the sample recovery mechanism of the present invention may or may not be provided with a heating part on the rear side of the pressure control valve (between the outlet of the analysis channel and the recovery container).
  • the fluid flowing out from the analysis flow path is led to the collection container at a temperature at which the modifier exists as a liquid.
  • the temperature at which the modifier exists as a liquid is, for example, 20 ° C. or less.
  • the present inventors conducted experiments on the temperature of the fluid that passed through the pressure control valve and the recovery rate of the modifier.
  • a heating part for heating the piping is provided on the rear stage side of the pressure control valve of the supercritical fluid device.
  • the modifier methanol
  • the set temperature of the heating section is set to 60 ° C. and cooled to about ⁇ 25 ° C. by blowing cooling carbon dioxide to the pipe downstream of the heating section.
  • Recovery rate As a result of the experiment, (1) the recovery rate when the set temperature of the heating unit was 20 ° C. was 81.7%, whereas (2) the recovery rate when the set temperature of the heating unit was 60 ° C.
  • the present inventors have also found that the generation of dry ice and the coagulation of the modifier hardly occur even if a heating part is not provided on the rear side of the pressure control valve. Therefore, in the present invention, it is not necessary to provide a heating part on the rear stage side of the pressure control valve. Since the modifier in the fluid that has passed through the pressure control valve is cooled by the heat of vaporization of carbon dioxide, the modifier is sufficient by the heat of vaporization of carbon dioxide if the flow rate of carbon dioxide is a certain amount (for example, 10 ml / min) or more. It is not necessary to separately provide a cooling mechanism for cooling the modifier to a liquid state.
  • the sample introduction part of the present invention is a case where no heating part is provided on the rear side of the pressure control valve, and the modifier is sufficiently cooled by the heat of vaporization of carbon dioxide and the modifier is in a liquid state.
  • the condition including only the pipe connected between the pressure control valve and the recovery container is included.
  • the modifier may not be sufficiently cooled only by the heat of vaporization of carbon dioxide depending on conditions such as when the flow rate of carbon dioxide is small (for example, 10 ml / min or less). It is preferable to provide a cooling means for cooling the section. If a cooling means for cooling a section upstream of the collection container is provided, it is possible to further promote the droplet formation of the modifier in the fluid flowing into the collection container. The recovery efficiency of the sample components can be improved.
  • a part having a Peltier element and cooled by the Peltier element comes into contact with one section of the pipe to cool the section.
  • cooling means is a low-temperature thermostatic chamber that has a space for accommodating a section of piping and maintains the interior of the space at a cooling temperature.
  • Still another example of the cooling means is one that blows carbon dioxide for cooling to a section of piping.
  • an orifice portion in which an inner diameter of the pipe is narrowed to be smaller than other portions of the pipe can be cited. If an orifice part is provided between the pressure control valve and the recovery container, the pressure between the pressure control valve and the orifice part is maintained at a certain level, and carbon dioxide in the fluid that has passed through the pressure control valve is retained. It will not vaporize until it passes through the orifice. When the fluid in such a state passes through the orifice portion, the pressure of the fluid rapidly decreases, whereby carbon dioxide is vaporized, the fluid temperature decreases, and evaporation of the modifier in the fluid is suppressed. Thereby, the loss of the sample component due to the evaporation of the modifier is suppressed, and the recovery efficiency of the sample component in the fluid flowing out from the analysis channel is improved.
  • the supercritical fluid device includes an analysis channel through which a mixed fluid of carbon dioxide and a modifier flows as a mobile phase, a sample introduction unit for introducing a sample into the analysis channel, and a sample introduction unit on the analysis channel.
  • a separation column that is provided on the downstream side and separates the sample introduced from the sample introduction part into components, and a detection that is provided further downstream of the separation column on the analysis flow path and detects the sample components separated by the separation column.
  • a pressure control valve that controls the pressure in the analysis flow path to a pressure at which the mobile phase becomes a supercritical state downstream from the detector of the analysis flow path, and the mobile phase that has passed through the pressure control valve is recovered And a sample recovery mechanism according to the present invention.
  • the sample recovery mechanism includes a plurality of recovery containers, and any one of these recovery containers can be selectively connected to the outlet of the analysis channel.
  • a flow path switching valve configured as described above, so that the outlet of the analysis flow path is connected to a desired recovery container while the fluid containing the sample to be collected flows out of the analysis flow path.
  • a control unit for controlling the switching operation of the flow path switching valve based on the detection signal is further provided. Thereby, the sample component isolate
  • the flow rate of carbon dioxide is 10 ml / min or more
  • the heating mechanism for heating the fluid that has passed through the pressure control valve is not provided between the pressure control valve and the sample recovery mechanism.
  • the sample recovery mechanism may not be provided with a cooling means for cooling the fluid. If the flow rate of carbon dioxide is 10 ml / min or more, the fluid is sufficiently cooled by the heat of vaporization of carbon dioxide when passing through the pressure control valve to suppress the evaporation of the modifier. A sufficiently high recovery rate can be obtained.
  • a temperature sensor that detects the temperature of the fluid guided to the collection container by the sample collection mechanism may be further provided. If it does so, it can be checked whether the temperature of the fluid guide
  • the sample recovery mechanism of the present invention has a recovery container that recovers fluid that has passed through the pressure control valve on the downstream side of the pressure control valve, and a pipe that connects the pressure control valve and the recovery container. And a fluid introduction part that guides the fluid that has passed through the recovery container to a temperature at which the modifier in the fluid exists as a liquid, so that evaporation of the modifier in the fluid that has passed through the pressure control valve is suppressed.
  • the recovery rate of sample components is improved.
  • the supercritical fluid device of the present invention includes the sample recovery mechanism of the present invention, disappearance due to the evaporation of the modifier is suppressed, and a high sample recovery rate can be obtained.
  • a carbon dioxide feeding flow path 2 for feeding liquid state carbon dioxide 8 by a pump 6 and a methanol feeding path 4 for feeding methanol 12 as a modifier by a pump 10 are connected to a mixer 14.
  • An analysis flow path 16 is connected to the mixer 14.
  • a sample injection unit 18 such as an autosampler, a separation column 20, a detector 22, and a pressure control valve 24 for injecting a sample into the analysis channel 16 are arranged in this order from the mixer 14 side.
  • the detector 22 is, for example, an ultraviolet detector.
  • a sample recovery mechanism 26 is connected to the flow path on the outlet side of the pressure control valve 24 (the outlet of the analysis flow path 16), and the sample component flowing out from the analysis flow path 16 is recovered by the sample recovery mechanism 26. ing.
  • Carbon dioxide and methanol are mixed by the mixer 14 and introduced into the analysis channel 16 as a mobile phase.
  • the carbon dioxide feed channel 2, the methanol feed channel 4, and the mixer 14 constitute a mobile phase feeding unit.
  • the analysis flow path 16 is controlled to have an internal pressure of 7 MPa or more by the pressure control valve 24, and the mobile phase introduced into the analysis flow path 16 is in a supercritical fluid state.
  • the sample injected by the sample injection unit 18 is transported to the separation column 20 by the mobile phase that has become a supercritical fluid, separated for each component, and detected by the detector 22.
  • the sample component detected by the detector 22 flows out of the analysis channel 16 through the pressure control valve 24 together with the mobile phase, and is recovered by the sample recovery mechanism 26.
  • the sample recovery mechanism 26 is controlled by the control unit 28.
  • the control unit 28 is realized by a computer.
  • the computer can be realized by, for example, a dedicated computer of a supercritical fluid device to which the sample recovery mechanism is applied or a general-purpose personal computer.
  • the control unit 28 is configured to capture the detection signal of the detector 22 and control the sample recovery mechanism 26 based on the detection signal to recover the liquid containing the target sample component.
  • the pumps 6 and 10 may independently perform drive control so that the liquid supply flow rate becomes a set flow rate, or may be a dedicated computer such as a system controller that controls the entire supercritical fluid device or The drive may be controlled by a general-purpose personal computer.
  • the downstream end of the analysis flow path 16 is connected to the common port of the switching valve 30.
  • the switching valve 30 has a plurality of selection ports, and can selectively connect between a common port to which the analysis flow path 16 is connected and any one selection port.
  • the drain 17 for discharge is connected to one selection port of the switching valve 30, and the fluid introduction flow path 32 is connected to each of the remaining plurality of selection ports.
  • the fluid introduction channel 32 communicates with the recovery container 34.
  • four collection containers 34 are connected to the switching valve 30, but any number of collection containers 34 may be used.
  • This sample recovery mechanism 26A is based on the detection signal obtained by the detector 22 (see FIG. 1) at the timing when the fluid containing the sample component separated by the separation column 20 flows out from the outlet of the analysis channel 16. Any one collection container 34 is connected to the outlet of the analysis flow path 16. In the recovery container 34, methanol (modifier) in the fluid flowing out from the analysis flow path 16 is recovered as a liquid. When the sample component is not contained in the fluid flowing out from the analysis channel 16, the outlet of the analysis channel 16 is connected to the drain 17 and discharged.
  • the carbon dioxide in the fluid that has passed through the pressure control valve 24 is vaporized, and the methanol is aerosolized.
  • the aerosolized methanol is easily evaporated.
  • a section of the piping that forms the fluid introduction flow path 32 is in contact with a cooling plate 36 that is temperature-controlled at a predetermined temperature (for example, 5 ° C.) by a Peltier element, and cools the fluid guided to the recovery container 34.
  • a predetermined temperature for example, 5 ° C.
  • FIG. 3 shows an embodiment in which the fluid flowing through the fluid introduction channel 32 is cooled using a low temperature thermostat.
  • one section of the piping forming the fluid introduction flow path 32 is a coiled portion 38, and the coiled portion 38 of each piping is accommodated in a common low temperature thermostat 40.
  • the low temperature thermostat 40 is configured to maintain the internal space at a constant temperature (for example, 5 ° C.). As a result, the fluid passing through the coiled portion 38 is cooled, the evaporation of the methanol (modifier) in the fluid is prevented, and the methanol is guided to the recovery container 34 in a liquid state.
  • a temperature sensor that detects the temperature of the fluid guided to the collection container 34 may be provided. By providing such a temperature sensor, it becomes easy to confirm whether or not the modifier is at a temperature that exists in a liquid state. Examples thereof are shown in FIGS.
  • the piping of the drain 17 on the outlet side of the analysis channel 16 is also cooled by the cooling plate 36, and the temperature of the fluid flowing through the drain 17 is detected by the temperature sensor 64.
  • the cooling mechanism 36a is provided on the upper side of the switching valve 30, and the temperature of the fluid that has passed through the cooling mechanism 36a is detected by the temperature sensor 64 on the upstream side of the switching valve 30 (the embodiment of FIG. 12). ) Or the temperature sensor 64 on the downstream side of the switching valve 30 (the embodiment shown in FIG. 13).
  • a temperature sensor 64 that detects the temperature of the fluid that has passed through the cooling mechanism 36 is provided, and the output of the temperature sensor 64 is taken into the control unit 28 (see FIG. 1), so that the control unit 28 can be connected to the analysis channel 16 from As a pre-stage for collecting the outflowing fluid in the collection container 34, it waits until the temperature of the fluid that has passed through the cooling mechanism 36 becomes equal to or lower than a predetermined temperature that is set as a temperature at which the modifier evaporation is suppressed.
  • the user can sort it by starting recovery to the recovery container 34 or lighting a predetermined lamp. It is possible to provide a function to notify that a new state has been reached.
  • FIG. 4 shows an embodiment in which cooling of the fluid led to the recovery container 34 is performed using cooling carbon dioxide.
  • each section of the fluid introduction channel 32 is sandwiched between both aluminum blocks of a cooling block 56 configured by superposing two aluminum blocks.
  • a pipe 58 from a cylinder 54 for supplying carbon dioxide for cooling is connected to one end of the cooling block 56 by a fixing member made of, for example, a mail nut and ferrule.
  • a pipe 60 for discharging carbon dioxide is connected to the other end of the cooling block 56 by a fixing member made of, for example, a mail nut and ferrule.
  • a flow path 62 is formed so as to guide the cooling carbon dioxide supplied through the pipe 58 to the pipe 60 on the other end side while spraying one section of all the fluid introduction flow paths 32. .
  • the carbon dioxide sealed in the cylinder 54 in a liquid state is reduced to atmospheric pressure and vaporized when passing through the pipe 58, supplied to the flow path 62 in a gas state, and discharged to the outside through the pipe 60.
  • the cooling block 56 is cooled by the adiabatic expansion of carbon dioxide when carbon dioxide is supplied to the flow path 62, and the fluid temperature in one section of the fluid introduction flow path 32 sandwiched between the cooling blocks 56 is lowered. The evaporation of is suppressed.
  • the cooling of the fluid guided to the recovery container 34 is not necessarily performed in the fluid introduction channel 32, but is performed in the analysis channel 16 between the pressure control valve 24 and the switching valve 30. It may be.
  • FIGS. 5, 6A and 6B show different examples of the structure of the fluid introduction flow path 32 having an orifice portion as a cooling means.
  • the fluid introduction channel 32 is constituted by an inlet pipe 32a and an outlet pipe 32b.
  • the inlet pipe 32 a and the outlet pipe 32 b are connected by a joint 47.
  • the downstream end of the inlet pipe 32a located on the upstream side is connected to the joint 47 by a fixing member 48a made of a mail nut and ferrule, and the upstream end of the outlet pipe 32b located on the downstream side is connected to the mail nut and ferrule. It is connected to the joint 47 by a fixing member 48b.
  • the downstream end of the inlet pipe 32a and the upstream end of the outlet pipe 32b are arranged to face each other.
  • the inner diameter of the portion 47a connecting the inlet pipe 32a and the outlet pipe 32b is smaller than the inner diameter of the inlet pipe 32a and the outlet pipe 32b. 46.
  • the fluid introduction flow path 32 is configured by direct connection of two pipes 32c and 32d.
  • the upstream side pipe 32c is narrowed in the inner diameter and outer diameter at the downstream end by swaging, and the upstream end of the downstream side pipe 32d in which the narrowed downstream end portion has a larger inner diameter. Is inserted inside.
  • the narrowed downstream end portion of the pipe 32 c forms the orifice portion 46.
  • the fluid introduction flow path 32 is constituted by a single pipe 32e, and the inner diameter in the middle of the pipe 32e is narrowed by pressing.
  • the narrowed portion of the pipe 32e forms an orifice portion 46.
  • the pressure between the pressure control valve 24 and the orifice part 46 is maintained at a somewhat high pressure, so that the carbon dioxide in the fluid that has passed through the pressure control valve 24 is reduced. It does not evaporate until it passes through the orifice 46.
  • the fluid temperature rapidly decreases due to the adiabatic expansion of carbon dioxide, and the evaporation of the modifier is suppressed.
  • the modifier in the fluid flowing out from the analysis flow path 16 is guided to the recovery container 34 in a liquid state, and is not discharged together with carbon dioxide from the upper surface opening of the recovery container.
  • a large pressure loss occurs when a large flow of fluid passes through the orifice 46 having a small inner diameter.
  • the back pressure that can be controlled by the pressure control valve 24 is about 10 MPa to 40 MPa, the pressure control by the pressure control valve 24 becomes impossible when the pressure loss in the orifice portion 46 becomes 10 MPa or more. Therefore, it is desirable that the inner diameter of the orifice portion 46 is set so that the pressure loss generated in the orifice portion 46 is 8 MPa or less.
  • a temperature adjustment unit 49 is provided on the rear side of the pressure control valve 24, and the temperature adjustment unit The recovery rate of methanol when the set temperature of 49 was changed from 20 ° C. to 60 ° C. was evaluated.
  • the temperature adjusting unit 49 includes a heater for heating and a Peltier element for cooling, and these elements adjust the piping temperature on the outlet side of the pressure control valve 24 to a set temperature.
  • the experiment was performed for the case where the pipe 50 having the orifice portion 46 was connected to the downstream side of the temperature adjusting portion 49 (FIG. 7A) and the case where the pipe 52 having no orifice portion was connected.
  • a pipe having an inner diameter of 1 mm and a length of 50 cm is arranged in the temperature adjustment section 49, and in the apparatus of FIG. 7A, the distance from the outlet of the temperature adjustment section 49 to the orifice section is 50 cm.
  • the flow rate of methanol was 1 ml / min
  • the flow rate of carbon dioxide was 4 ml / min
  • methanol flowing out from the outlet 50a (FIG. 7A) of the pipe 50 and the outlet 52a (FIG. 7B) of the pipe 52 was collected for 3 minutes.
  • Fig. 8 shows the graph obtained by this experiment.
  • the orifice 46 is not provided (in the case of FIG. 7B)
  • the methanol recovery rate was 63.3% when the set temperature of the temperature adjustment unit 49 was 20 ° C., but the methanol recovery was increased as the set temperature increased. The rate gradually decreased, and when the set temperature was 60 ° C., only a recovery rate of 10.0% was obtained. From these results, it was confirmed that the fluid temperature greatly affects the modifier recovery rate, and that the modifier recovery rate is improved by lowering the fluid temperature.
  • the recovery rate when the set temperature of the temperature control part 49 is 20 ° C. was 88.3%.
  • the orifice portion 46 is not provided, a tendency for the recovery rate to decrease as the set temperature of the temperature adjusting portion 49 is increased was confirmed.
  • the recovery rate is 83.3%. The rate was obtained. This is because the vaporization of the carbon dioxide that has passed through the orifice portion 46 reduces the fluid temperature and suppresses the evaporation of methanol, and a high recovery rate is obtained without the methanol being evaporated due to the temperature of the temperature adjusting portion 49. It is thought.
  • the recovery rate of the sample when changing the set temperature of the temperature control unit 49 from 3 ° C. to 60 ° C. was evaluated.
  • the flow rate of methanol is 1 ml / min
  • the flow rate of carbon dioxide is 4 ml / min
  • 20 ⁇ L of caffeine with a concentration of 2 mg / mL is injected as a sample, and the peak area of the detection signal of the UV detector 22 obtained at that time is measured.
  • the solvent (methanol) containing caffeine was recovered from the fluid flowing out from the outlets 50a and 50b of the pipes 50 and 52 on the outlet side of the temperature control unit 49. Methanol was further added to the recovered solvent to adjust to 1 mL, and 20 ⁇ L of the adjusted solvent was again injected into the apparatus, and the peak area was measured (this measured value was the second measured value). That said.)
  • FIG. 9 shows the relationship between the set temperature of the temperature adjustment unit 49 and the sample recovery rate obtained by this experiment.
  • the recovery rate when the set temperature of the temperature adjustment part 49 is 3 ° C. was 106.1%, but as the set temperature is increased, The recovery rate decreased, and when the set temperature was 60 ° C., only a recovery rate of 2.7% was obtained.
  • the recovery rate is high when the set temperature of the temperature control unit 49 is low, and the recovery rate is low when the set temperature of the temperature control unit 49 is high. Therefore, it is considered that when the fluid temperature becomes high and methanol evaporates, the sample is also lost.
  • the recovery rate is 107.7% when the set temperature of the temperature adjustment part 49 is 5 ° C., and the orifice part 46 is provided.
  • the recovery rate of the sample tends to decrease as the set temperature of the temperature control unit 49 increases, but when the set temperature of the temperature control unit 49 is 60 ° C., a recovery rate of 89% is obtained. I was able to. From the above, in order to improve the recovery rate of the sample, it is effective to lower the temperature of the recovered fluid, and it is shown that providing the orifice part 46 is one of the means. .
  • the fluid between the pressure control valve 24 and the recovery container can be used without using cooling means such as an orifice. Without heating, it was confirmed that the evaporation of the modifier can be suppressed by the heat of vaporization of carbon dioxide, and the recovery rate of the sample can be improved.
  • the present invention is characterized in that the fluid that has passed through the pressure control valve is guided to the recovery container in a state in which the temperature is the temperature at which the modifier exists as a liquid.
  • the fluid flowing out from the piping as disclosed in Patent Document 1 and Patent Document 2 is caused to flow down along the inner peripheral surface of the container, thereby utilizing centrifugal force. You may implement in combination with the method etc. which promote liquefaction of a modifier.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

This sample collection mechanism is provided with: a collection container that is downstream from a pressure control valve and collects fluid having passed through the pressure control valve; and a fluid guiding part that has piping for connecting the pressure control valve and collection container and guides the fluid having passed through the pressure control valve to the collection container after bringing the fluid to a temperature at which a modifier in the fluid exists as a liquid.

Description

試料回収機構及びその試料回収機構を備えた超臨界流体装置Sample recovery mechanism and supercritical fluid apparatus equipped with the sample recovery mechanism
 本発明は、超臨界流体クロマトグラフ装置などの超臨界流体を用いる装置から流出する流体から試料を回収する試料回収機構とその試料回収機構を備えた超臨界流体装置に関するものである。 The present invention relates to a sample recovery mechanism for recovering a sample from a fluid flowing out from a device using a supercritical fluid such as a supercritical fluid chromatograph device, and a supercritical fluid device equipped with the sample recovery mechanism.
 近年、超臨界流体クロマトグラフ装置(以下、SFC:Supercritical Fluid Chromatography)が注目されている。SFCは、二酸化炭素などに一定の温度及び圧力をかけて超臨界流体とし、その超臨界流体を溶媒として行なうクロマトグラフ装置である。超臨界流体は液体と気体の両方の性質をもち、液体よりも拡散性が高く粘性が低いという特徴がある。かかる超臨界流体を溶媒として用いることで、高速・高分離・高感度での分析が可能となる。 Recently, a supercritical fluid chromatograph (SFC: Supercritical Fluid Chromatography) has attracted attention. SFC is a chromatographic apparatus in which carbon dioxide or the like is subjected to a certain temperature and pressure to form a supercritical fluid, and the supercritical fluid is used as a solvent. Supercritical fluids have both liquid and gas properties and are characterized by being more diffusive and less viscous than liquids. By using such a supercritical fluid as a solvent, analysis at high speed, high separation, and high sensitivity becomes possible.
 SFCにおいて一般的に用いられる二酸化炭素は、臨界圧力が7.38MPaであり、臨界温度が31.1℃と比較的常温に近く、引火性や化学反応性がなく、純度の高いものが安価に手に入ることなどから、SFCに最もよく利用されている。超臨界二酸化炭素(SCCO2)はヘキサンに近い低極性の物性をもっており、メタノールのような極性有機溶媒をモディファイアとして添加することによって、移動相の極性を大きく変化させることができる。溶媒を超臨界状態に保つためには、流路系の圧力を高圧に保つ必要がある。このため、SFCには、流路系を一定圧力で保つために、分離カラムや検出器よりも下流側に背圧レギュレータ(BPR)と呼ばれる圧力制御バルブを備えている。 Carbon dioxide generally used in SFC has a critical pressure of 7.38 MPa, a critical temperature of 31.1 ° C., which is relatively close to room temperature, has no flammability or chemical reactivity, and has high purity at low cost. It is most commonly used for SFC because it is available. Supercritical carbon dioxide (SCCO 2 ) has low-polarity properties close to hexane, and the polarity of the mobile phase can be greatly changed by adding a polar organic solvent such as methanol as a modifier. In order to keep the solvent in a supercritical state, it is necessary to keep the pressure in the flow path system high. For this reason, the SFC is provided with a pressure control valve called a back pressure regulator (BPR) downstream of the separation column and detector in order to keep the flow path system at a constant pressure.
 分取SFCやSFEでは、二酸化炭素とモディファイアの混合流体に溶解している試料を回収するために、分析流路から流出する流体を捕集するようになっている。二酸化炭素には溶解力がないため、試料成分のほぼすべてがモディファイアに溶解している。したがって、分析流路から流出した流体のうちモディファイアに相当する部分を回収すれば、試料成分をすべて回収することができる。 In preparative SFC and SFE, in order to collect the sample dissolved in the mixed fluid of carbon dioxide and modifier, the fluid flowing out from the analysis flow path is collected. Since carbon dioxide has no dissolving power, almost all of the sample components are dissolved in the modifier. Therefore, all the sample components can be recovered by recovering the portion corresponding to the modifier in the fluid flowing out from the analysis flow path.
WO2008/011416WO2008 / 011416 特開2010-78532号公報JP 2010-78532 A
 BPRを通過した流体は大気圧に減圧され、超臨界状態又は液体状態の二酸化炭素がBPRを通過した後で気化するため、分析流路の出口から流出した流体を気相と液相に分離して液相のみを取り出せば、試料成分の溶解したモディファイアを回収することができる。 The fluid that has passed through the BPR is depressurized to atmospheric pressure, and carbon dioxide in the supercritical state or liquid state is vaporized after passing through the BPR. Therefore, the fluid flowing out from the outlet of the analysis channel is separated into a gas phase and a liquid phase. If only the liquid phase is taken out, the modifier in which the sample components are dissolved can be recovered.
 従来から、分析流路から流出した流体を気相と液相に分離して液相のみを回収する試料回収機構として種々のものが提案されている(例えば、特許文献1、特許文献2参照。)。従来の試料回収機構は、分析流路からの流体の出口を回収容器や気液分離用の容器の内壁面に沿わせるようにして配置し、その出口から流出する流体中の液滴成分をその内壁面に沿って自重により流下させ、気体成分をその容器の上部から排出するように構成されている。 Conventionally, various sample recovery mechanisms for recovering only the liquid phase by separating the fluid flowing out from the analysis flow path into a gas phase and a liquid phase have been proposed (see, for example, Patent Document 1 and Patent Document 2). ). The conventional sample recovery mechanism is arranged so that the outlet of the fluid from the analysis channel is along the inner wall surface of the recovery container or gas-liquid separation container, and the droplet component in the fluid flowing out from the outlet is It is comprised so that it may flow down with dead weight along an inner wall surface, and a gaseous component may be discharged | emitted from the upper part of the container.
 しかし、分析流路から流出した流体中のモディファイアは二酸化炭素の気化に伴う体積膨張によりエアロゾル化してしまう。エアロゾルとなった液体は表面積が大きくなり、蒸発しやすい状態となる。蒸発した液体成分は気体と同じサイズとなり物理的な見分けが付かなくなるため、従来のように液滴の自重を利用した気液分離が不可能となり、蒸発した液体成分は二酸化炭素とともに外部へ排出されてしまい、試料の回収率が低下してしまう。 However, the modifier in the fluid flowing out from the analysis flow path becomes aerosol due to the volume expansion accompanying the vaporization of carbon dioxide. The liquid in the form of an aerosol has a large surface area and is easily evaporated. Since the evaporated liquid component is the same size as the gas and cannot be physically distinguished, gas-liquid separation using the weight of the droplet is impossible as before, and the evaporated liquid component is discharged to the outside together with carbon dioxide. As a result, the sample recovery rate decreases.
 そこで、本発明は、分析流路から流出する流体中の液相の回収率を高めることを目的とするものである。 Therefore, an object of the present invention is to increase the recovery rate of the liquid phase in the fluid flowing out from the analysis flow path.
 本発明にかかる試料回収機構は、超臨界流体装置の分析流路から流出した流体を気相と液相に分離して液相を回収するものである。該試料回収機構は、分析流路から流出した流体を回収する回収容器と、分析流路の出口と回収容器との間を接続する配管を有し、回収容器に導入される流体中のモディファイアが液体で存在する温度にして回収容器に導く流体導入部と、を備えている。 The sample recovery mechanism according to the present invention recovers the liquid phase by separating the fluid flowing out from the analysis flow path of the supercritical fluid device into a gas phase and a liquid phase. The sample recovery mechanism has a recovery container that recovers the fluid that has flowed out of the analysis flow path, and a pipe that connects between the outlet of the analysis flow path and the recovery container, and a modifier in the fluid that is introduced into the recovery container And a fluid introduction part that leads to a recovery container at a temperature at which the liquid exists.
 超臨界流体装置においては、分析流路の背圧を制御する圧力制御バルブを通過した流体中の二酸化炭素の気化熱によって、圧力制御バルブの出口部分におけるドライアイスの発生やモディファイアの凝固による配管の詰まりなどが懸念されていたため、圧力制御バルブの出口側の配管をヒータなどの加熱部によって加熱するなどの対策が採られることが一般的である。しかし、圧力制御バルブの後段側で配管の加熱を行なうと、圧力制御バルブを通過してエアロゾル化したモディファイアの蒸発を促進することになり、流体をそのままの状態で回収容器に導くと蒸発したモディファイアの一部が二酸化炭素とともに回収容器の外部へ排出されてしまい、試料成分の回収率が低下する。特許文献1や特許文献2のように、圧力制御バルブを通過してエアロゾル化したモディファイアを液滴成長させて回収する方法についての提案は従来からなされているが、エアロゾル化したモディファイアの蒸発による損失を防止する方法についての提案はなされていなかった。 In a supercritical fluid device, piping due to the generation of dry ice and coagulation of the modifier at the outlet of the pressure control valve due to the heat of vaporization of carbon dioxide in the fluid that has passed through the pressure control valve that controls the back pressure of the analysis channel Since there is a concern about clogging, etc., measures such as heating the piping on the outlet side of the pressure control valve by a heating unit such as a heater are generally taken. However, if the piping is heated on the rear side of the pressure control valve, evaporation of the aerosolized modifier passes through the pressure control valve, and if the fluid is introduced as it is to the collection container, it evaporates. A part of the modifier is discharged to the outside of the collection container together with carbon dioxide, and the sample component recovery rate is lowered. As in Patent Document 1 and Patent Document 2, proposals have been made for a method for growing and recovering an aerosol-modified modifier by passing through a pressure control valve. However, evaporation of an aerosolized modifier is conventionally performed. No proposal has been made on how to prevent the loss caused by.
 本発明の試料回収機構における流体導入部は、圧力制御バルブの後段側(分析流路の出口と回収容器との間)に加熱部が設けられていても設けられていなくてもよいが、いずれの場合にせよ、分析流路から流出した流体をモディファイアが液体で存在する温度にして回収容器に導く。ここで、モディファイアが液体で存在する温度とは、例えば20℃以下である。 The fluid introduction part in the sample recovery mechanism of the present invention may or may not be provided with a heating part on the rear side of the pressure control valve (between the outlet of the analysis channel and the recovery container). In this case, the fluid flowing out from the analysis flow path is led to the collection container at a temperature at which the modifier exists as a liquid. Here, the temperature at which the modifier exists as a liquid is, for example, 20 ° C. or less.
 本発明者らは、圧力制御バルブを通過した流体の温度とモディファイアの回収率の実験を行なった。かかる実験では、超臨界流体装置の圧力制御バルブの後段側に配管を加熱する加熱部を設け、(1)加熱部の設定温度を20℃にした場合、(2)加熱部の設定温度60℃にした場合、(3)加熱部の設定温度を60℃にし、その加熱部よりも下流側の配管に冷却用の二酸化炭素を吹き付けることによって約-25℃に冷却した場合、におけるモディファイア(メタノール)の回収率を求めた。その実験の結果、(1)加熱部の設定温度を20℃にした場合の回収率は81.7%であったのに対し、(2)加熱部の設定温度60℃にした場合の回収率は76.7%であり、加熱部の設定温度を高くすると回収率が低下した。これに対し、(3)加熱部の設定温度を60℃にしてその加熱部よりも下流側の配管を約-25℃に冷却すると93.3%の回収率が得られた。かかる実験結果から、モディファイアの回収率に分析流路から流出した流体の温度が大きく影響していることがわかった。本発明は、かかる知見に基づいてなされたものである。 The present inventors conducted experiments on the temperature of the fluid that passed through the pressure control valve and the recovery rate of the modifier. In such an experiment, a heating part for heating the piping is provided on the rear stage side of the pressure control valve of the supercritical fluid device. (1) When the set temperature of the heating part is 20 ° C. (3) The modifier (methanol) when the set temperature of the heating section is set to 60 ° C. and cooled to about −25 ° C. by blowing cooling carbon dioxide to the pipe downstream of the heating section. ) Recovery rate. As a result of the experiment, (1) the recovery rate when the set temperature of the heating unit was 20 ° C. was 81.7%, whereas (2) the recovery rate when the set temperature of the heating unit was 60 ° C. Was 76.7%, and the recovery rate decreased when the set temperature of the heating part was increased. On the other hand, (3) when the set temperature of the heating part was set to 60 ° C. and the piping downstream of the heating part was cooled to about −25 ° C., a recovery rate of 93.3% was obtained. From these experimental results, it has been found that the temperature of the fluid flowing out from the analysis flow channel greatly affects the recovery rate of the modifier. The present invention has been made based on such knowledge.
 本発明者らはまた、圧力制御バルブの後段側に加熱部を設けなくてもドライアイスの発生やモディファイアの凝固がほとんど起こらないことを見出した。したがって、本発明では、圧力制御バルブの後段側に加熱部を設けることを要しない。圧力制御バルブを通過した流体中のモディファイアが二酸化炭素の気化熱によって冷却されるため、二酸化炭素の流量が一定量(例えば10ml/min)以上であればモディファイアが二酸化炭素の気化熱によって十分に冷却され、モディファイアを液体状態にするための冷却機構を別途設ける必要はない。すなわち、本発明の試料導入部としては、圧力制御バルブの後段側に加熱部が設けられていない場合であって、モディファイアが二酸化炭素の気化熱によって十分に冷却されモディファイアが液体の状態で回収容器に導かれる条件が適用される場合には、圧力制御バルブと回収容器との間を接続する配管によってのみ構成されているものも含む。 The present inventors have also found that the generation of dry ice and the coagulation of the modifier hardly occur even if a heating part is not provided on the rear side of the pressure control valve. Therefore, in the present invention, it is not necessary to provide a heating part on the rear stage side of the pressure control valve. Since the modifier in the fluid that has passed through the pressure control valve is cooled by the heat of vaporization of carbon dioxide, the modifier is sufficient by the heat of vaporization of carbon dioxide if the flow rate of carbon dioxide is a certain amount (for example, 10 ml / min) or more. It is not necessary to separately provide a cooling mechanism for cooling the modifier to a liquid state. That is, the sample introduction part of the present invention is a case where no heating part is provided on the rear side of the pressure control valve, and the modifier is sufficiently cooled by the heat of vaporization of carbon dioxide and the modifier is in a liquid state. In the case where the conditions guided to the recovery container are applied, the condition including only the pipe connected between the pressure control valve and the recovery container is included.
 二酸化炭素の流量が小さい(例えば10ml/min以下)場合など条件によって二酸化炭素の気化熱のみではモディファイアを十分に冷却することができないことがあるため、配管のうち回収容器よりも上流側の一区間を冷却する冷却手段を備えていることが好ましい。回収容器よりも上流側の一区間を冷却する冷却手段を備えていれば、回収容器に流入する流体中のモディファイアの液滴化をより促進することができ、分析流路から流出した流体中の試料成分の回収効率を向上させることができる。 The modifier may not be sufficiently cooled only by the heat of vaporization of carbon dioxide depending on conditions such as when the flow rate of carbon dioxide is small (for example, 10 ml / min or less). It is preferable to provide a cooling means for cooling the section. If a cooling means for cooling a section upstream of the collection container is provided, it is possible to further promote the droplet formation of the modifier in the fluid flowing into the collection container. The recovery efficiency of the sample components can be improved.
 上記冷却手段の一例として、ペルチェ素子を有し該ペルチェ素子によって冷却される部分が前記配管の一区間に接触して該区間を冷却するものが挙げられる。 As an example of the cooling means, a part having a Peltier element and cooled by the Peltier element comes into contact with one section of the pipe to cool the section.
 上記冷却手段の他の例として、配管の一区間を収容する空間を有し該空間内部を冷却温度に維持する低温恒温槽が挙げられる。 Another example of the cooling means is a low-temperature thermostatic chamber that has a space for accommodating a section of piping and maintains the interior of the space at a cooling temperature.
 上記冷却手段のさらに他の例として、配管の一区間に対して冷却用の二酸化炭素を吹き付けるものが挙げられる。 Still another example of the cooling means is one that blows carbon dioxide for cooling to a section of piping.
 冷却手段のさらに他の例としては、配管において内径が該配管の他の部分よりも小さく絞られたオリフィス部が挙げられる。圧力制御バルブと回収容器との間にオリフィス部が設けられていると、圧力制御バルブとオリフィス部との間の圧力がある程度高い状態で維持され、圧力制御バルブを通過した流体中の二酸化炭素がオリフィスを通過するまで気化しなくなる。かかる状態の流体がオリフィス部を通過すると、流体の圧力が急激に低下することによって二酸化炭素が気化し、流体温度が低下して流体中のモディファイアの蒸発が抑制される。これにより、モディファイアの蒸発による試料成分の損失が抑制され、分析流路から流出した流体中の試料成分の回収効率が向上する。 As still another example of the cooling means, an orifice portion in which an inner diameter of the pipe is narrowed to be smaller than other portions of the pipe can be cited. If an orifice part is provided between the pressure control valve and the recovery container, the pressure between the pressure control valve and the orifice part is maintained at a certain level, and carbon dioxide in the fluid that has passed through the pressure control valve is retained. It will not vaporize until it passes through the orifice. When the fluid in such a state passes through the orifice portion, the pressure of the fluid rapidly decreases, whereby carbon dioxide is vaporized, the fluid temperature decreases, and evaporation of the modifier in the fluid is suppressed. Thereby, the loss of the sample component due to the evaporation of the modifier is suppressed, and the recovery efficiency of the sample component in the fluid flowing out from the analysis channel is improved.
 本発明にかかる超臨界流体装置は、二酸化炭素とモディファイアの混合流体が移動相として流れる分析流路と、分析流路中に試料を導入する試料導入部と、分析流路上における試料導入部の下流側に設けられ、試料導入部から導入された試料を成分ごとに分離する分離カラムと、分析流路上における分離カラムのさらに下流側に設けられ、分離カラムで分離された試料成分を検出する検出器と、分析流路の検出器よりも下流側で該分析流路内の圧力を移動相が超臨界状態となる圧力に制御する圧力制御バルブと、圧力制御バルブを通過した移動相を回収する本発明の試料回収機構と、を備えたものである。 The supercritical fluid device according to the present invention includes an analysis channel through which a mixed fluid of carbon dioxide and a modifier flows as a mobile phase, a sample introduction unit for introducing a sample into the analysis channel, and a sample introduction unit on the analysis channel. A separation column that is provided on the downstream side and separates the sample introduced from the sample introduction part into components, and a detection that is provided further downstream of the separation column on the analysis flow path and detects the sample components separated by the separation column. A pressure control valve that controls the pressure in the analysis flow path to a pressure at which the mobile phase becomes a supercritical state downstream from the detector of the analysis flow path, and the mobile phase that has passed through the pressure control valve is recovered And a sample recovery mechanism according to the present invention.
 本発明の超臨界流体装置の好ましい実施の態様は、試料回収機構が回収容器を複数個備えているとともに、それらの回収容器のいずれか一つを分析流路の出口に選択的に接続しうるように構成された流路切替バルブをさらに備え、回収すべき試料を含む流体が分析流路から流出している間に分析流路の出口を所望の回収容器に接続するように、検出器の検出信号に基づいて流路切替バルブの切替え動作を制御する制御部をさらに備えている。これにより、分離カラムで分離された試料成分を個別の回収容器に自動的に回収することができる。 In a preferred embodiment of the supercritical fluid device of the present invention, the sample recovery mechanism includes a plurality of recovery containers, and any one of these recovery containers can be selectively connected to the outlet of the analysis channel. A flow path switching valve configured as described above, so that the outlet of the analysis flow path is connected to a desired recovery container while the fluid containing the sample to be collected flows out of the analysis flow path. A control unit for controlling the switching operation of the flow path switching valve based on the detection signal is further provided. Thereby, the sample component isolate | separated with the separation column can be automatically collect | recovered to a separate collection container.
 本発明の超臨界流体装置は、二酸化炭素の流量は10ml/min以上であり、圧力制御バルブと試料回収機構との間に圧力制御バルブを通過した流体を加熱する加熱機構が設けられていない場合には、試料回収機構に流体を冷却する冷却手段が設けられていなくてもよい。二酸化炭素の流量が10ml/min以上であれば、圧力制御バルブを通過したときの二酸化炭素の気化熱によって流体が十分に冷却されてモディファイアの蒸発が抑制されるので、冷却手段がなくても十分に高い回収率を得ることができる。 In the supercritical fluid device of the present invention, the flow rate of carbon dioxide is 10 ml / min or more, and the heating mechanism for heating the fluid that has passed through the pressure control valve is not provided between the pressure control valve and the sample recovery mechanism. The sample recovery mechanism may not be provided with a cooling means for cooling the fluid. If the flow rate of carbon dioxide is 10 ml / min or more, the fluid is sufficiently cooled by the heat of vaporization of carbon dioxide when passing through the pressure control valve to suppress the evaporation of the modifier. A sufficiently high recovery rate can be obtained.
 試料回収機構によって回収容器に導かれる流体の温度を検出する温度センサをさらに備えていてもよい。そうすれば、回収容器に導かれる流体の温度が、モディファイアが液体で存在する温度になっているか否かを確認することができる。 A temperature sensor that detects the temperature of the fluid guided to the collection container by the sample collection mechanism may be further provided. If it does so, it can be checked whether the temperature of the fluid guide | induced to a collection | recovery container is the temperature which a modifier exists in a liquid.
 本発明の試料回収機構は、圧力制御バルブの下流側で圧力制御バルブを通過した流体を回収する回収容器と、圧力制御バルブと回収容器との間を接続する配管を有し、圧力制御バルブを通過した流体を、該流体中のモディファイアが液体で存在する温度にして回収容器に導く流体導入部と、を備えているので、圧力制御バルブを通過した流体中のモディファイアの蒸発が抑制され、試料成分の回収率が向上する。 The sample recovery mechanism of the present invention has a recovery container that recovers fluid that has passed through the pressure control valve on the downstream side of the pressure control valve, and a pipe that connects the pressure control valve and the recovery container. And a fluid introduction part that guides the fluid that has passed through the recovery container to a temperature at which the modifier in the fluid exists as a liquid, so that evaporation of the modifier in the fluid that has passed through the pressure control valve is suppressed. The recovery rate of sample components is improved.
 本発明の超臨界流体装置は、本発明の試料回収機構を備えているので、モディファイアの蒸発による消失が抑制され、高い試料の回収率を得ることができる。 Since the supercritical fluid device of the present invention includes the sample recovery mechanism of the present invention, disappearance due to the evaporation of the modifier is suppressed, and a high sample recovery rate can be obtained.
試料回収機構を備えた超臨界流体装置の一実施例を示す流路構成図である。It is a flow-path block diagram which shows one Example of the supercritical fluid apparatus provided with the sample collection mechanism. 試料回収機構の一実施例を示す概略構成図である。It is a schematic block diagram which shows one Example of a sample collection | recovery mechanism. 試料回収機構の他の実施例を示す概略構成図である。It is a schematic block diagram which shows the other Example of a sample collection | recovery mechanism. 試料回収機構のさらに他の実施例を示す概略構成図である。It is a schematic block diagram which shows the further another Example of a sample collection | recovery mechanism. オリフィスを有する流体導入流路の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the fluid introduction flow path which has an orifice. オリフィス部を有する流体導入流路の構造の他の例を示す断面図である。It is sectional drawing which shows the other example of the structure of the fluid introduction flow path which has an orifice part. オリフィス部を有する流体導入流路の構造のさらに他の例を示す断面図である。It is sectional drawing which shows the further another example of the structure of the fluid introduction flow path which has an orifice part. 流体温度と回収率との関係を検証するための実験装置の構成を示す流路構成図(オリフィス部あり)である。It is a flow-path block diagram (with an orifice part) which shows the structure of the experimental apparatus for verifying the relationship between fluid temperature and a recovery rate. 流体温度と回収率との関係を検証するための実験装置の構成を示す流路構成図(オリフィス部なし)である。It is a flow-path block diagram (no orifice part) which shows the structure of the experimental apparatus for verifying the relationship between fluid temperature and a recovery rate. 流体温度とモディファイア回収率との関係を示すグラフである。It is a graph which shows the relationship between fluid temperature and modifier recovery. 流体温度と試料回収率との関係を示すグラフである。It is a graph which shows the relationship between fluid temperature and sample collection rate. メタノール回収率に対する二酸化炭素流量の影響を示すグラフである。It is a graph which shows the influence of the carbon dioxide flow rate with respect to a methanol recovery rate. 冷却機構を通過したモディファイアの温度を検知する機能を備えた試料回収機構の一実施例を示す概略構成図である。It is a schematic block diagram which shows one Example of the sample collection | recovery mechanism provided with the function to detect the temperature of the modifier which passed the cooling mechanism. 冷却機構を通過したモディファイアの温度を検知する機能を備えた試料回収機構の他の実施例を示す概略構成図である。It is a schematic block diagram which shows the other Example of the sample collection | recovery mechanism provided with the function to detect the temperature of the modifier which passed the cooling mechanism. 冷却機構を通過したモディファイアの温度を検知する機能を備えた試料回収機構のさらに他の実施例を示す概略構成図である。It is a schematic block diagram which shows the further another Example of the sample collection | recovery mechanism provided with the function to detect the temperature of the modifier which passed the cooling mechanism.
 試料回収機構を備えた超臨界流体装置の一実施形態について図1を用いて説明する。 An embodiment of a supercritical fluid device equipped with a sample recovery mechanism will be described with reference to FIG.
 液体状態の二酸化炭素8をポンプ6により送液する二酸化炭素送液流路2と、モディファイアであるメタノール12をポンプ10により送液するメタノール送液流路4がミキサ14に接続されている。ミキサ14には分析流路16が接続されている。分析流路16上には、ミキサ14側から順に、この分析流路16に試料を注入する例えばオートサンプラなどの試料注入部18、分離カラム20、検出器22及び圧力制御バルブ24が配置されている。検出器22は、例えば紫外線検出器である。圧力制御バルブ24の出口側の流路(分析流路16の出口)に試料回収機構26が接続されており、分析流路16から流出する試料成分が試料回収機構26によって回収されるようになっている。 A carbon dioxide feeding flow path 2 for feeding liquid state carbon dioxide 8 by a pump 6 and a methanol feeding path 4 for feeding methanol 12 as a modifier by a pump 10 are connected to a mixer 14. An analysis flow path 16 is connected to the mixer 14. On the analysis channel 16, a sample injection unit 18 such as an autosampler, a separation column 20, a detector 22, and a pressure control valve 24 for injecting a sample into the analysis channel 16 are arranged in this order from the mixer 14 side. Yes. The detector 22 is, for example, an ultraviolet detector. A sample recovery mechanism 26 is connected to the flow path on the outlet side of the pressure control valve 24 (the outlet of the analysis flow path 16), and the sample component flowing out from the analysis flow path 16 is recovered by the sample recovery mechanism 26. ing.
 二酸化炭素とメタノールはミキサ14で混合され、移動相として分析流路16に導入される。二酸化炭素送液流路2、メタノール送液流路4及びミキサ14は移動相送液部を構成している。分析流路16は圧力制御バルブ24によって内圧が7MPa以上に制御されており、分析流路16に導入された移動相は超臨界流体の状態となる。試料注入部18により注入された試料は超臨界流体となった移動相によって分離カラム20に搬送され、成分ごとに分離され、検出器22により検出される。検出器22により検出された試料成分は移動相とともに圧力制御バルブ24を経て分析流路16から流出し、試料回収機構26によって回収される。 Carbon dioxide and methanol are mixed by the mixer 14 and introduced into the analysis channel 16 as a mobile phase. The carbon dioxide feed channel 2, the methanol feed channel 4, and the mixer 14 constitute a mobile phase feeding unit. The analysis flow path 16 is controlled to have an internal pressure of 7 MPa or more by the pressure control valve 24, and the mobile phase introduced into the analysis flow path 16 is in a supercritical fluid state. The sample injected by the sample injection unit 18 is transported to the separation column 20 by the mobile phase that has become a supercritical fluid, separated for each component, and detected by the detector 22. The sample component detected by the detector 22 flows out of the analysis channel 16 through the pressure control valve 24 together with the mobile phase, and is recovered by the sample recovery mechanism 26.
 試料回収機構26は制御部28によって制御されるようになっている。制御部28は、コンピュータにより実現される。そのコンピュータは、例えばこの試料回収機構が適用される超臨界流体装置の専用コンピュータ又は汎用のパーソナルコンピュータにより実現することができる。制御部28は、検出器22の検出信号を取り込み、その検出信号に基づいて試料回収機構26を制御し、目的の試料成分を含む液を回収するように構成されている。 The sample recovery mechanism 26 is controlled by the control unit 28. The control unit 28 is realized by a computer. The computer can be realized by, for example, a dedicated computer of a supercritical fluid device to which the sample recovery mechanism is applied or a general-purpose personal computer. The control unit 28 is configured to capture the detection signal of the detector 22 and control the sample recovery mechanism 26 based on the detection signal to recover the liquid containing the target sample component.
 ポンプ6と10は送液流量が設定された流量となるようにその駆動制御を独自に行なうものであってもよいし、この超臨界流体装置の全体を制御するシステムコントローラなどの専用のコンピュータ又は汎用のパーソナルコンピュータによってその駆動が制御されるものであってもよい。 The pumps 6 and 10 may independently perform drive control so that the liquid supply flow rate becomes a set flow rate, or may be a dedicated computer such as a system controller that controls the entire supercritical fluid device or The drive may be controlled by a general-purpose personal computer.
 試料回収機構の第1の実施例について図2を用いて説明する。 A first embodiment of the sample recovery mechanism will be described with reference to FIG.
 試料回収機構26Aでは、分析流路16の下流端が切替バルブ30の共通ポートに接続されている。切替バルブ30は複数の選択ポートを有し、分析流路16が接続されている共通ポートといずれか一つの選択ポートとの間を選択的に切り替えて接続することができるようになっている。 In the sample recovery mechanism 26A, the downstream end of the analysis flow path 16 is connected to the common port of the switching valve 30. The switching valve 30 has a plurality of selection ports, and can selectively connect between a common port to which the analysis flow path 16 is connected and any one selection port.
 切替バルブ30の一つの選択ポートには排出用のドレイン17が接続され、残りの複数の選択ポートにそれぞれ流体導入流路32が接続されている。流体導入流路32は回収容器34に通じている。この実施例では、切替バルブ30に4つの回収容器34が接続されているが、回収容器34の数はいくらであってもよい。 The drain 17 for discharge is connected to one selection port of the switching valve 30, and the fluid introduction flow path 32 is connected to each of the remaining plurality of selection ports. The fluid introduction channel 32 communicates with the recovery container 34. In this embodiment, four collection containers 34 are connected to the switching valve 30, but any number of collection containers 34 may be used.
 この試料回収機構26Aは、検出器22(図1を参照。)で得られる検出信号に基づいて、分離カラム20で分離された試料成分を含む流体が分析流路16の出口から流出するタイミングで、分析流路16の出口にいずれか一つの回収容器34を接続するようになっている。回収容器34には分析流路16から流出した流体中のメタノール(モディファイア)が液体として回収される。分析流路16から流出する流体中に試料成分が含まれていないときは、分析流路16の出口をドレイン17に接続して排出する。 This sample recovery mechanism 26A is based on the detection signal obtained by the detector 22 (see FIG. 1) at the timing when the fluid containing the sample component separated by the separation column 20 flows out from the outlet of the analysis channel 16. Any one collection container 34 is connected to the outlet of the analysis flow path 16. In the recovery container 34, methanol (modifier) in the fluid flowing out from the analysis flow path 16 is recovered as a liquid. When the sample component is not contained in the fluid flowing out from the analysis channel 16, the outlet of the analysis channel 16 is connected to the drain 17 and discharged.
 圧力制御バルブ24を通過した流体中の二酸化炭素は気化し、メタノールはエアロゾル化する。エアロゾル化したメタノールは蒸発しやすい状態となっている。この実施例では、流体導入流路32をなす配管の一区間がペルチェ素子によって所定の温度(例えば5℃)に温度制御される冷却板36に接しており、回収容器34に導かれる流体を冷却してメタノールの蒸発を抑制している。 The carbon dioxide in the fluid that has passed through the pressure control valve 24 is vaporized, and the methanol is aerosolized. The aerosolized methanol is easily evaporated. In this embodiment, a section of the piping that forms the fluid introduction flow path 32 is in contact with a cooling plate 36 that is temperature-controlled at a predetermined temperature (for example, 5 ° C.) by a Peltier element, and cools the fluid guided to the recovery container 34. Thus, evaporation of methanol is suppressed.
 なお、回収容器34に導かれる流体を冷却するための冷却手段はこれに限定されない。図3は低温恒温槽を利用して流体導入流路32を流れる流体を冷却する実施例を示している。この実施例の試料回収機構26Bでは、流体導入流路32をなす配管の一区間がコイル状部分38となっており、各配管のコイル状部分38が共通の低温恒温槽40内に収容されている。低温恒温槽40は内部空間を一定温度(例えば5℃)に維持するように構成されている。これにより、コイル状部分38を通過する流体が冷却され、その流体中のメタノール(モディファイア)の蒸発が防止され、メタノールが液体の状態で回収容器34に導かれる。 In addition, the cooling means for cooling the fluid led to the collection container 34 is not limited to this. FIG. 3 shows an embodiment in which the fluid flowing through the fluid introduction channel 32 is cooled using a low temperature thermostat. In the sample recovery mechanism 26B of this embodiment, one section of the piping forming the fluid introduction flow path 32 is a coiled portion 38, and the coiled portion 38 of each piping is accommodated in a common low temperature thermostat 40. Yes. The low temperature thermostat 40 is configured to maintain the internal space at a constant temperature (for example, 5 ° C.). As a result, the fluid passing through the coiled portion 38 is cooled, the evaporation of the methanol (modifier) in the fluid is prevented, and the methanol is guided to the recovery container 34 in a liquid state.
 回収容器34に導かれる流体の温度を検知する温度センサを設けてもよい。かかる温度センサを設けることで、モディファイアが液体の状態で存在する温度になっているか否かを確認することが容易になる。その実施例を図11-図13に示す。 A temperature sensor that detects the temperature of the fluid guided to the collection container 34 may be provided. By providing such a temperature sensor, it becomes easy to confirm whether or not the modifier is at a temperature that exists in a liquid state. Examples thereof are shown in FIGS.
 図11の実施例では、分析流路16の出口側のドレイン17の配管も冷却板36によって冷却されるようにし、そのドレイン17を流れる流体の温度を温度センサ64によって検知するようになっている。図12と図13の実施例では、切替バルブ30の上段側に冷却機構36aを設け、冷却機構36aを経た流体の温度を、切替バルブ30の上流側の温度センサ64で(図12の実施例)、又は切替バルブ30の下流側の温度センサ64で(図13の実施例)、検知するようになっている。 In the embodiment of FIG. 11, the piping of the drain 17 on the outlet side of the analysis channel 16 is also cooled by the cooling plate 36, and the temperature of the fluid flowing through the drain 17 is detected by the temperature sensor 64. . 12 and 13, the cooling mechanism 36a is provided on the upper side of the switching valve 30, and the temperature of the fluid that has passed through the cooling mechanism 36a is detected by the temperature sensor 64 on the upstream side of the switching valve 30 (the embodiment of FIG. 12). ) Or the temperature sensor 64 on the downstream side of the switching valve 30 (the embodiment shown in FIG. 13).
 冷却機構36を経た流体の温度を検知する温度センサ64を設け、温度センサ64の出力が制御部28(図1参照)に取り込まれるようにすることで、制御部28に、分析流路16から流出する流体を回収容器34に回収する前段階として、冷却機構36を経た流体の温度が、モディファイアの蒸発が抑制される温度として設定された所定温度以下になるまで待機し、冷却機構36を経た流体の温度がその所定温度以下になったことが温度センサ60によって検知されたときに、回収容器34への回収を開始したり、所定のランプを点灯させるなどしてユーザに分取が可能な状態となったことを知らせるといった機能をもたせることができる。 A temperature sensor 64 that detects the temperature of the fluid that has passed through the cooling mechanism 36 is provided, and the output of the temperature sensor 64 is taken into the control unit 28 (see FIG. 1), so that the control unit 28 can be connected to the analysis channel 16 from As a pre-stage for collecting the outflowing fluid in the collection container 34, it waits until the temperature of the fluid that has passed through the cooling mechanism 36 becomes equal to or lower than a predetermined temperature that is set as a temperature at which the modifier evaporation is suppressed. When it is detected by the temperature sensor 60 that the temperature of the fluid that has passed is below the predetermined temperature, the user can sort it by starting recovery to the recovery container 34 or lighting a predetermined lamp. It is possible to provide a function to notify that a new state has been reached.
 図4は回収容器34に導かれる流体の冷却を冷却用二酸化炭素を利用して行なう実施例を示している。 FIG. 4 shows an embodiment in which cooling of the fluid led to the recovery container 34 is performed using cooling carbon dioxide.
 この実施例の試料回収機構26Cは、流体導入流路32のそれぞれの一区間が2つのアルミブロックが重ね合わされて構成された冷却ブロック56の両アルミブロックの間に挟み込まれている。冷却ブロック56の一端に、冷却用の二酸化炭素を供給するボンベ54からの配管58が例えばメイルナット及びフェルルからなる固定部材によって接続されている。冷却ブロック56の他端に、二酸化炭素排出用の配管60が例えばメイルナット及びフェルルからなる固定部材によって接続されている。冷却ブロック56の内部に、配管58を通じて供給される冷却用の二酸化炭素をすべての流体導入流路32の一区間に吹き付けながら他端側の配管60へ導くように流路62が形成されている。 In the sample recovery mechanism 26C of this embodiment, each section of the fluid introduction channel 32 is sandwiched between both aluminum blocks of a cooling block 56 configured by superposing two aluminum blocks. A pipe 58 from a cylinder 54 for supplying carbon dioxide for cooling is connected to one end of the cooling block 56 by a fixing member made of, for example, a mail nut and ferrule. A pipe 60 for discharging carbon dioxide is connected to the other end of the cooling block 56 by a fixing member made of, for example, a mail nut and ferrule. Inside the cooling block 56, a flow path 62 is formed so as to guide the cooling carbon dioxide supplied through the pipe 58 to the pipe 60 on the other end side while spraying one section of all the fluid introduction flow paths 32. .
 ボンベ54に液体状態で封入されている二酸化炭素は、配管58を通過する際に大気圧に減圧されて気化し、気体の状態で流路62に供給され、配管60を通じて外部へ排出される。二酸化炭素が流路62へ供給される際の二酸化炭素の断熱膨張によって冷却ブロック56が冷却され、冷却ブロック56に挟み込まれている流体導入流路32の一区間内の流体温度が低下し、メタノールの蒸発が抑制される。 The carbon dioxide sealed in the cylinder 54 in a liquid state is reduced to atmospheric pressure and vaporized when passing through the pipe 58, supplied to the flow path 62 in a gas state, and discharged to the outside through the pipe 60. The cooling block 56 is cooled by the adiabatic expansion of carbon dioxide when carbon dioxide is supplied to the flow path 62, and the fluid temperature in one section of the fluid introduction flow path 32 sandwiched between the cooling blocks 56 is lowered. The evaporation of is suppressed.
 なお、回収容器34に導かれる流体の冷却は必ずしも流体導入流路32において行われるようになっている必要はなく、圧力制御バルブ24と切替バルブ30との間の分析流路16において行われるようになっていてもよい。 The cooling of the fluid guided to the recovery container 34 is not necessarily performed in the fluid introduction channel 32, but is performed in the analysis channel 16 between the pressure control valve 24 and the switching valve 30. It may be.
 また、回収容器34に導かれる流体の冷却は、流路の内径を部分的に細く絞ったオリフィスを利用して行なうこともできる。図5、図6A及び図6Bはそれぞれ冷却手段としてのオリフィス部を有する流体導入流路32の構造についての別々の例を示している。 Further, the cooling of the fluid guided to the recovery container 34 can be performed using an orifice in which the inner diameter of the flow path is partially narrowed. FIGS. 5, 6A and 6B show different examples of the structure of the fluid introduction flow path 32 having an orifice portion as a cooling means.
 図5の例では、流体導入流路32が入口管32aと出口管32bによって構成されている。入口管32aと出口管32bは継手47により連結されている。上流側に位置する入口管32aの下流側端部はメイルナット及びフェルルからなる固定部材48aによって継手47に接続されており、下流側に位置する出口管32bの上流側端部はメイルナット及びフェルルからなる固定部材48bによって継手47に接続されている。継手47内において入口管32aの下流端と出口管32bの上流端とが対向して配置されている。継手47において入口管32aと出口管32bとを接続する部分47aの内径は入口管32a及び出口管32bの内径よりも小さくなっており、この部分が流体導入流路32の内径を小さく絞るオリフィス部46をなしている。 In the example of FIG. 5, the fluid introduction channel 32 is constituted by an inlet pipe 32a and an outlet pipe 32b. The inlet pipe 32 a and the outlet pipe 32 b are connected by a joint 47. The downstream end of the inlet pipe 32a located on the upstream side is connected to the joint 47 by a fixing member 48a made of a mail nut and ferrule, and the upstream end of the outlet pipe 32b located on the downstream side is connected to the mail nut and ferrule. It is connected to the joint 47 by a fixing member 48b. In the joint 47, the downstream end of the inlet pipe 32a and the upstream end of the outlet pipe 32b are arranged to face each other. In the joint 47, the inner diameter of the portion 47a connecting the inlet pipe 32a and the outlet pipe 32b is smaller than the inner diameter of the inlet pipe 32a and the outlet pipe 32b. 46.
 図6Aの例では、流体導入流路32が2つの配管32cと32dの直接的な連結により構成されている。上流側の配管32cはスウェージング加工によってその下流端の内径及び外径が細く絞られており、細く絞られた下流端部分がそれよりも大きい内径を有する下流側の配管32dの上流側端部の内側に挿入されている。配管32cの細く絞られた下流端部分がオリフィス部46をなしている。 In the example of FIG. 6A, the fluid introduction flow path 32 is configured by direct connection of two pipes 32c and 32d. The upstream side pipe 32c is narrowed in the inner diameter and outer diameter at the downstream end by swaging, and the upstream end of the downstream side pipe 32d in which the narrowed downstream end portion has a larger inner diameter. Is inserted inside. The narrowed downstream end portion of the pipe 32 c forms the orifice portion 46.
 図6Bの例では、流体導入流路32が一本の配管32eによって構成されており、その配管32eの途中の内径がプレス加工によって細く絞られている。配管32eの細く絞られた部分がオリフィス部46をなしている。 In the example of FIG. 6B, the fluid introduction flow path 32 is constituted by a single pipe 32e, and the inner diameter in the middle of the pipe 32e is narrowed by pressing. The narrowed portion of the pipe 32e forms an orifice portion 46.
 以上のようにしてオリフィス部46が設けられることで、圧力制御バルブ24とオリフィス部46との間の圧力がある程度高い圧力に維持されるので、圧力制御バルブ24を通過した流体中の二酸化炭素がオリフィス部46を通過するまで気化しなくなる。流体がオリフィス部46を通過すると、二酸化炭素の断熱膨張によって流体温度が急激に低下し、モディファイアの蒸発が抑制される。これにより、分析流路16から流出した流体中のモディファイアは液体状態で回収容器34に導かれ、回収容器の上面開口から二酸化炭素とともに排出されることはない。 By providing the orifice part 46 as described above, the pressure between the pressure control valve 24 and the orifice part 46 is maintained at a somewhat high pressure, so that the carbon dioxide in the fluid that has passed through the pressure control valve 24 is reduced. It does not evaporate until it passes through the orifice 46. When the fluid passes through the orifice portion 46, the fluid temperature rapidly decreases due to the adiabatic expansion of carbon dioxide, and the evaporation of the modifier is suppressed. Thereby, the modifier in the fluid flowing out from the analysis flow path 16 is guided to the recovery container 34 in a liquid state, and is not discharged together with carbon dioxide from the upper surface opening of the recovery container.
 内径の小さなオリフィス部46を大流量の流体が通過すると大きな圧力損失が発生する。一般的に、圧力制御バルブ24が制御可能な背圧は10MPa~40MPa程度であるため、オリフィス部46における圧力損失が10MPa以上になると圧力制御バルブ24による圧力制御が不可能となる。したがって、オリフィス部46の内径は、オリフィス部46において発生する圧力損失が8MPa以下になるように設定されていることが望ましい。 A large pressure loss occurs when a large flow of fluid passes through the orifice 46 having a small inner diameter. Generally, since the back pressure that can be controlled by the pressure control valve 24 is about 10 MPa to 40 MPa, the pressure control by the pressure control valve 24 becomes impossible when the pressure loss in the orifice portion 46 becomes 10 MPa or more. Therefore, it is desirable that the inner diameter of the orifice portion 46 is set so that the pressure loss generated in the orifice portion 46 is 8 MPa or less.
 以下に、圧力制御バルブ24を通過した流体の温度と回収率との関係について検証した結果について説明する。 Hereinafter, the results of verifying the relationship between the temperature of the fluid that has passed through the pressure control valve 24 and the recovery rate will be described.
 まず、流体の温度がモディファイア(メタノール)の回収率に及ぼす影響を確認するため、図7A及び図7Bに示すように、圧力制御バルブ24の後段側に温度調節部49を設け、温度調節部49の設定温度を20℃から60℃まで変化させた際のメタノールの回収率を評価した。温度調節部49は加熱用のヒータと冷却用のペルチェ素子を有し、これらの素子によって圧力制御バルブ24の出口側の配管温度を設定温度に調節するものである。 First, in order to confirm the influence of the temperature of the fluid on the recovery rate of the modifier (methanol), as shown in FIGS. 7A and 7B, a temperature adjustment unit 49 is provided on the rear side of the pressure control valve 24, and the temperature adjustment unit The recovery rate of methanol when the set temperature of 49 was changed from 20 ° C. to 60 ° C. was evaluated. The temperature adjusting unit 49 includes a heater for heating and a Peltier element for cooling, and these elements adjust the piping temperature on the outlet side of the pressure control valve 24 to a set temperature.
 この実験では、温度調節部49の下流側に、オリフィス部46をもつ配管50を接続した場合(図7A)と、オリフィス部を有しない配管52を接続した場合について実験を行なった。温度調節部49内には内径1mm、長さ50cmの配管を配置し、図7Aの装置においては、温度調節部49の出口からオリフィス部までの距離を50cmとした。メタノールの流量を1ml/min、二酸化炭素の流量を4ml/minとし、配管50の出口50a(図7A)と配管52の出口52a(図7B)から流出するメタノールの回収を3分間実施した。 In this experiment, the experiment was performed for the case where the pipe 50 having the orifice portion 46 was connected to the downstream side of the temperature adjusting portion 49 (FIG. 7A) and the case where the pipe 52 having no orifice portion was connected. A pipe having an inner diameter of 1 mm and a length of 50 cm is arranged in the temperature adjustment section 49, and in the apparatus of FIG. 7A, the distance from the outlet of the temperature adjustment section 49 to the orifice section is 50 cm. The flow rate of methanol was 1 ml / min, the flow rate of carbon dioxide was 4 ml / min, and methanol flowing out from the outlet 50a (FIG. 7A) of the pipe 50 and the outlet 52a (FIG. 7B) of the pipe 52 was collected for 3 minutes.
 図8にこの実験により得られたグラフを示す。オリフィス46が設けられていない場合(図7Bの場合)、温度調節部49の設定温度が20℃のときのメタノール回収率は63.3%であったが、設定温度が高くなるにしたがってメタノール回収率は徐々に低下し、設定温度が60℃のときには10.0%の回収率しか得られなかった。かかる結果から、流体温度がモディファイアの回収率に与える影響は大きく、流体の温度を低くすることでモディファイアの回収率が向上することが確認された。 Fig. 8 shows the graph obtained by this experiment. When the orifice 46 is not provided (in the case of FIG. 7B), the methanol recovery rate was 63.3% when the set temperature of the temperature adjustment unit 49 was 20 ° C., but the methanol recovery was increased as the set temperature increased. The rate gradually decreased, and when the set temperature was 60 ° C., only a recovery rate of 10.0% was obtained. From these results, it was confirmed that the fluid temperature greatly affects the modifier recovery rate, and that the modifier recovery rate is improved by lowering the fluid temperature.
 他方、オリフィス部46が設けられている場合、温度調節部49の設定温度が20℃のときの回収率は88.3%であった。オリフィス部46が設けられていない場合と同様に温度調節部49の設定温度を高くするにしたがって回収率が低下する傾向が確認されたが、設定温度が60℃のときでも83.3%の回収率が得られた。これは、オリフィス部46を通過した二酸化炭素の気化により流体温度が低下してメタノールの蒸発が抑制され、メタノールが温度調節部49の温度の影響を受けて蒸発することなく高い回収率が得られたと考えられる。 On the other hand, when the orifice part 46 is provided, the recovery rate when the set temperature of the temperature control part 49 is 20 ° C. was 88.3%. As in the case where the orifice portion 46 is not provided, a tendency for the recovery rate to decrease as the set temperature of the temperature adjusting portion 49 is increased was confirmed. However, even when the set temperature is 60 ° C., the recovery rate is 83.3%. The rate was obtained. This is because the vaporization of the carbon dioxide that has passed through the orifice portion 46 reduces the fluid temperature and suppresses the evaporation of methanol, and a high recovery rate is obtained without the methanol being evaporated due to the temperature of the temperature adjusting portion 49. It is thought.
 次に、図7A及び図7Bの装置を用いて流体温度が試料の回収率に与える影響を検証する実験を行なった。温度調節部49の設定温度を3℃から60℃まで変化させた際の試料の回収率を評価した。メタノールの流量を1ml/min、二酸化炭素の流量4ml/minとし、試料として濃度2mg/mLのカフェインを20μL注入し、そのときに得られるUV検出器22の検出信号のピーク面積の測定を行なった(この測定値を第1測定値という。)。その後、温度調節部49の出口側の配管50,52の出口50a,50bから流出する流体のうちカフェインを含む溶媒(メタノール)を回収した。回収した溶媒にさらにメタノールを追加して1mLになるように調整し、調整後の溶媒のうちの20μLを再び装置に注入してそのピーク面積の測定を行なった(この測定値を第2測定値という。)。 Next, an experiment was conducted to verify the influence of the fluid temperature on the recovery rate of the sample using the apparatus shown in FIGS. 7A and 7B. The recovery rate of the sample when changing the set temperature of the temperature control unit 49 from 3 ° C. to 60 ° C. was evaluated. The flow rate of methanol is 1 ml / min, the flow rate of carbon dioxide is 4 ml / min, 20 μL of caffeine with a concentration of 2 mg / mL is injected as a sample, and the peak area of the detection signal of the UV detector 22 obtained at that time is measured. (This measured value is referred to as a first measured value.) Then, the solvent (methanol) containing caffeine was recovered from the fluid flowing out from the outlets 50a and 50b of the pipes 50 and 52 on the outlet side of the temperature control unit 49. Methanol was further added to the recovered solvent to adjust to 1 mL, and 20 μL of the adjusted solvent was again injected into the apparatus, and the peak area was measured (this measured value was the second measured value). That said.)
 この実験では、第1測定値と第2測定値の比率(第2測定値/第1測定値)が1/50となっていれば100%の回収率が得られていることになる。測定は誤差を含むので100%を超えることもある。図9はこの実験により得られた温度調節部49の設定温度と試料の回収率との関係を示したものである。オリフィス部46が設けられていない場合(図7Bの場合)、温度調節部49の設定温度が3℃のときの回収率は106.1%であったが、設定温度を高くしていくにしたがって回収率は低下し、設定温度が60℃のときでは2.7%の回収率しか得られなかった。試料の回収率についても、メタノールの回収率と同様に、温度調節部49の設定温度が低温のときは回収率が高く、温度調節部49の設定温度が高温のときは回収率が低くなっていることから、流体温度が高くなってメタノールが蒸発するとそれとともに試料も消失していると考えられる。 In this experiment, if the ratio between the first measurement value and the second measurement value (second measurement value / first measurement value) is 1/50, a recovery rate of 100% is obtained. Since the measurement includes an error, it may exceed 100%. FIG. 9 shows the relationship between the set temperature of the temperature adjustment unit 49 and the sample recovery rate obtained by this experiment. When the orifice part 46 is not provided (in the case of FIG. 7B), the recovery rate when the set temperature of the temperature adjustment part 49 is 3 ° C. was 106.1%, but as the set temperature is increased, The recovery rate decreased, and when the set temperature was 60 ° C., only a recovery rate of 2.7% was obtained. Regarding the sample recovery rate, similarly to the methanol recovery rate, the recovery rate is high when the set temperature of the temperature control unit 49 is low, and the recovery rate is low when the set temperature of the temperature control unit 49 is high. Therefore, it is considered that when the fluid temperature becomes high and methanol evaporates, the sample is also lost.
 他方、オリフィス部46が設けられている場合(図7Aの場合)には、温度調節部49の設定温度が5℃のときの回収率は107.7%であり、オリフィス部46が設けられていない場合と同様に、温度調節部49の設定温度が高くなるにつれて試料の回収率が低下する傾向はみられたものの、温度調節部49の設定温度が60℃のときには89%の回収率を得ることができた。以上のことから、試料の回収率を向上させるためには、回収される流体の温度を低くすることが有効であり、オリフィス部46を設けることもその手段の一つであることが示された。  On the other hand, when the orifice part 46 is provided (in the case of FIG. 7A), the recovery rate is 107.7% when the set temperature of the temperature adjustment part 49 is 5 ° C., and the orifice part 46 is provided. As in the case where there is no temperature, the recovery rate of the sample tends to decrease as the set temperature of the temperature control unit 49 increases, but when the set temperature of the temperature control unit 49 is 60 ° C., a recovery rate of 89% is obtained. I was able to. From the above, in order to improve the recovery rate of the sample, it is effective to lower the temperature of the recovered fluid, and it is shown that providing the orifice part 46 is one of the means. .
 また、二酸化炭素の流量が比較的大きい場合(例えば10ml/min~150ml/min)には、二酸化炭素の気化熱によって流体温度が十分に低下するため、以上の実施例において説明した冷却手段36,40,46を用いなくてもメタノールの蒸発が抑制され、高い試料回収率が得られると考えられる。そこで、上記のような冷却手段を設けることなく、二酸化炭素の流量を変化させたときのメタノールの回収率を評価する実験を行なった。 Further, when the flow rate of carbon dioxide is relatively large (for example, 10 ml / min to 150 ml / min), the fluid temperature is sufficiently lowered by the heat of vaporization of carbon dioxide, so that the cooling means 36, described in the above embodiment, Even if 40 and 46 are not used, it is considered that evaporation of methanol is suppressed and a high sample recovery rate can be obtained. Therefore, an experiment was conducted to evaluate the methanol recovery rate when the flow rate of carbon dioxide was changed without providing the cooling means as described above.
 この実験では図7Bと同じ構成の装置を用いているが、メタノールの流量が大きいため、流体の流出する配管出口に内径6mm、長さ15cmのチューブを接続し、メタノールの飛散を防止しながら実施した。二酸化炭素の流量を10ml/min、20ml/min、50ml/min、100ml/min、150ml/minにし、各流量において温度調節部49の温度を10℃~60℃に設定したときのメタノールの回収率を求めた。 In this experiment, an apparatus having the same configuration as in FIG. 7B is used, but since the flow rate of methanol is large, a tube having an inner diameter of 6 mm and a length of 15 cm is connected to the outlet of the pipe from which the fluid flows out, while preventing methanol from scattering. did. The recovery rate of methanol when the flow rate of carbon dioxide is 10 ml / min, 20 ml / min, 50 ml / min, 100 ml / min, 150 ml / min, and the temperature of the temperature control unit 49 is set to 10 ° C. to 60 ° C. at each flow rate. Asked.
 この実験結果を図10に示す。温度調節部49の設定温度が10℃のときは全流量において100%のメタノール回収率が得られた。設定温度の上昇に伴って回収率が低下するものの、流量が大きい場合は流量が小さい場合に比べて回収率の低下する割合が小さく、温度調節部49の設定温度から受ける影響は小さいことがわかった。二酸化炭素の流量が大きい場合は二酸化炭素の気化熱によって流体が積極的に冷却されるため、冷却手段を用いた場合と同様にメタノールの蒸発が十分に抑制され、回収率が向上したと考えられる。以上の結果から、二酸化炭素の流量が比較的大きい場合(例えば10ml/min~150ml/min)には、オリフィスなどの冷却手段を用いなくても、圧力制御バルブ24と回収容器との間で流体の加熱を行なわなければ、二酸化炭素の気化熱によってモディファイアの蒸発を抑制することができ、試料の回収率の向上が図れることが確認された。 The experimental results are shown in FIG. When the set temperature of the temperature control unit 49 was 10 ° C., 100% methanol recovery was obtained at all flow rates. Although the recovery rate decreases as the set temperature rises, it can be seen that when the flow rate is large, the rate of decrease in the recovery rate is small compared to when the flow rate is small, and the influence from the set temperature of the temperature controller 49 is small. It was. When the flow rate of carbon dioxide is large, the fluid is actively cooled by the heat of vaporization of carbon dioxide, so that the evaporation of methanol is sufficiently suppressed as in the case of using a cooling means, and the recovery rate is considered to be improved. . From the above results, when the flow rate of carbon dioxide is relatively large (for example, 10 ml / min to 150 ml / min), the fluid between the pressure control valve 24 and the recovery container can be used without using cooling means such as an orifice. Without heating, it was confirmed that the evaporation of the modifier can be suppressed by the heat of vaporization of carbon dioxide, and the recovery rate of the sample can be improved.
 以上において説明したように、本発明は圧力制御バルブを通過した流体を、その温度をモディファイアが液体で存在する温度にした状態で回収容器に導くことを特徴としているが、より確実にモディファイアを液体状態で回収するために、特許文献1や特許文献2に開示されているような、配管から流出した流体を容器の内周面を沿わせて流下させることで、遠心力を利用してモディファイアの液化を促す方法などと組み合わせて実施してもよい。 As described above, the present invention is characterized in that the fluid that has passed through the pressure control valve is guided to the recovery container in a state in which the temperature is the temperature at which the modifier exists as a liquid. In order to recover the liquid in a liquid state, the fluid flowing out from the piping as disclosed in Patent Document 1 and Patent Document 2 is caused to flow down along the inner peripheral surface of the container, thereby utilizing centrifugal force. You may implement in combination with the method etc. which promote liquefaction of a modifier.
   2   二酸化炭素送液流路
   4   メタノール送液流路
   6,10   ポンプ
   8   二酸化炭素
   12   メタノール
   14   ミキサ
   16   分析流路
   17   ドレイン
   18   試料注入部
   20   分離カラム
   22   検出器
   24   圧力制御バルブ
   26A,26B,26C   試料回収機構
   28   制御部
   30   切替バルブ
   32,50,54   流体導入流路
   32a,32b,32c,32d,32e   配管
   34   回収容器
   36   冷却手段
   38   コイル状部分
   40   低温恒温槽
   46   オリフィス部
   47   継手
   48a,48b   固定部材
   49   温度調節部
2 Carbon dioxide feed channel 4 Methanol feed channel 6,10 Pump 8 Carbon dioxide 12 Methanol 14 Mixer 16 Analysis channel 17 Drain 18 Sample injection part 20 Separation column 22 Detector 24 Pressure control valve 26A, 26B, 26C Sample Recovery mechanism 28 Control section 30 Switching valve 32, 50, 54 Fluid introduction flow path 32a, 32b, 32c, 32d, 32e Piping 34 Recovery container 36 Cooling means 38 Coiled portion 40 Low temperature thermostat 46 Orifice section 47 Joint 48a, 48b fixed Member 49 Temperature control part

Claims (10)

  1.  超臨界流体装置の分析流路から流出した流体を気相と液相に分離して液相を回収する試料回収機構であって、
     前記分析流路から流出した流体を回収する回収容器と、
     前記分析流路の出口と前記回収容器との間を接続する配管を有し、前記回収容器に導入される流体中のモディファイアが液体で存在する温度にして前記回収容器に導く流体導入部と、を備えている試料回収機構。
    A sample recovery mechanism for recovering a liquid phase by separating a fluid flowing out from an analysis flow path of a supercritical fluid device into a gas phase and a liquid phase,
    A collection container for collecting the fluid flowing out from the analysis flow path;
    A fluid introduction part having a pipe connecting between the outlet of the analysis flow path and the recovery container, and introducing the modifier in the fluid introduced into the recovery container to a temperature at which the modifier exists as a liquid; A sample recovery mechanism.
  2.  前記流体導入部は、前記配管のうち前記回収容器よりも上流側で流体を冷却する冷却手段を備えている請求項1に記載の試料回収機構。 The sample recovery mechanism according to claim 1, wherein the fluid introduction unit includes a cooling unit that cools the fluid upstream of the recovery container in the pipe.
  3.  前記冷却手段は、ペルチェ素子を有し該ペルチェ素子によって冷却される部分が前記配管の一区間に接触して該区間を冷却するものである請求項2に記載の試料回収機構。 3. The sample recovery mechanism according to claim 2, wherein the cooling means has a Peltier element and a part cooled by the Peltier element comes into contact with a section of the pipe to cool the section.
  4.  前記冷却手段は、前記配管の一区間を収容する空間を有し該空間内部を冷却温度に維持する低温恒温槽である請求項2に記載の試料回収機構。 3. The sample recovery mechanism according to claim 2, wherein the cooling means is a low-temperature thermostatic chamber that has a space for accommodating a section of the piping and maintains the inside of the space at a cooling temperature.
  5.  前記冷却手段は、前記配管の一区間に対して冷却用の二酸化炭素を吹き付けるものである請求項2に記載の試料回収機構。 The sample recovery mechanism according to claim 2, wherein the cooling means sprays carbon dioxide for cooling on a section of the pipe.
  6.  前記冷却手段は、前記配管において内径が該配管の他の部分よりも小さく絞られたオリフィス部である請求項2に記載の試料回収機構。 3. The sample recovery mechanism according to claim 2, wherein the cooling means is an orifice portion in which the inner diameter of the pipe is narrowed to be smaller than the other part of the pipe.
  7.  二酸化炭素とモディファイアの混合流体が移動相として流れる分析流路と、
     前記分析流路中に試料を導入する試料導入部と、
     前記分析流路上における前記試料導入部の下流側に設けられ、前記試料導入部から導入された試料を成分ごとに分離する分離カラムと、
     前記分析流路上における前記分離カラムのさらに下流側に設けられ、前記分離カラムで分離された試料成分を検出する検出器と、
     前記分析流路の前記検出器よりも下流側で該分析流路内の圧力を前記移動相が超臨界状態となる圧力に制御する圧力制御バルブと、
     前記圧力制御バルブを通過した移動相を回収する請求項1から6のいずれか一項に記載の試料回収機構と、を備えた超臨界流体装置。
    An analysis flow path in which a mixed fluid of carbon dioxide and a modifier flows as a mobile phase;
    A sample introduction part for introducing a sample into the analysis flow path;
    A separation column that is provided on the downstream side of the sample introduction part on the analysis flow path and separates the sample introduced from the sample introduction part for each component;
    A detector that is provided further downstream of the separation column on the analysis flow path and detects a sample component separated by the separation column;
    A pressure control valve that controls the pressure in the analysis flow path downstream of the detector of the analysis flow path to a pressure at which the mobile phase is in a supercritical state;
    A supercritical fluid device comprising: the sample recovery mechanism according to any one of claims 1 to 6, which recovers a mobile phase that has passed through the pressure control valve.
  8.  前記試料回収機構は回収容器を複数個備えているとともに、それらの前記回収容器のいずれか一つを前記分析流路の出口に選択的に接続しうるように構成された流路切替バルブをさらに備え、
     回収すべき試料を含む流体が前記分析流路から流出している間に前記分析流路の出口を所望の回収容器に接続するように、前記検出器の検出信号に基づいて前記流路切替バルブの切替え動作を制御する制御部をさらに備えた請求項7に記載の超臨界流体装置。
    The sample recovery mechanism includes a plurality of recovery containers, and further includes a channel switching valve configured to selectively connect any one of the recovery containers to the outlet of the analysis channel. Prepared,
    The flow path switching valve based on the detection signal of the detector so that the outlet of the analysis flow path is connected to a desired recovery container while the fluid containing the sample to be collected flows out of the analysis flow path. The supercritical fluid device according to claim 7, further comprising a control unit that controls the switching operation of.
  9.  前記二酸化炭素の流量は10ml/min以上であり、
     前記圧力制御バルブと前記試料回収機構との間に前記圧力制御バルブを通過した流体を10℃よりも高い温度に加熱する加熱機構が設けられておらず、
     前記試料回収機構は流体を冷却する冷却手段を備えていない請求項7又は8に記載の超臨界流体装置。
    The flow rate of the carbon dioxide is 10 ml / min or more,
    There is no heating mechanism for heating the fluid that has passed through the pressure control valve to a temperature higher than 10 ° C. between the pressure control valve and the sample recovery mechanism,
    The supercritical fluid device according to claim 7 or 8, wherein the sample recovery mechanism does not include a cooling means for cooling the fluid.
  10.  前記試料回収機構によって前記回収容器に導かれる流体の温度を検出する温度センサをさらに備えている請求項7から9のいずれか一項に記載の超臨界流体装置。 The supercritical fluid device according to any one of claims 7 to 9, further comprising a temperature sensor that detects a temperature of a fluid guided to the recovery container by the sample recovery mechanism.
PCT/JP2014/082262 2014-12-05 2014-12-05 Sample collection mechanism and supercritical fluid device provided with said sample collection mechanism WO2016088252A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/082262 WO2016088252A1 (en) 2014-12-05 2014-12-05 Sample collection mechanism and supercritical fluid device provided with said sample collection mechanism
JP2016562170A JP6406358B2 (en) 2014-12-05 2014-12-05 Sample recovery mechanism and supercritical fluid apparatus equipped with the sample recovery mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/082262 WO2016088252A1 (en) 2014-12-05 2014-12-05 Sample collection mechanism and supercritical fluid device provided with said sample collection mechanism

Publications (1)

Publication Number Publication Date
WO2016088252A1 true WO2016088252A1 (en) 2016-06-09

Family

ID=56091224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082262 WO2016088252A1 (en) 2014-12-05 2014-12-05 Sample collection mechanism and supercritical fluid device provided with said sample collection mechanism

Country Status (2)

Country Link
JP (1) JP6406358B2 (en)
WO (1) WO2016088252A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019053887A1 (en) * 2017-09-15 2020-05-28 株式会社島津製作所 Supercritical fluid device
US20210116425A1 (en) * 2018-04-13 2021-04-22 Shimadzu Corporation Extract recovery method and analysis method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115703A (en) * 1991-10-30 1993-05-14 Mitsubishi Kakoki Kaisha Ltd Supercritical fluid chromatographic separation method
JPH1048191A (en) * 1996-08-05 1998-02-20 Shimadzu Corp Gas chromatograph
JP2002071534A (en) * 2000-06-26 2002-03-08 Berger Instruments Inc Method and apparatus for collecting sapmle from fluid flow
JP2007120972A (en) * 2005-10-25 2007-05-17 Jasco Corp Supercritical system
JP2009544042A (en) * 2006-07-17 2009-12-10 サー インスツルメンツ, インコーポレイテッド Process flow stream collection system
WO2014083639A1 (en) * 2012-11-28 2014-06-05 株式会社島津製作所 Supercritical fluid processing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115703A (en) * 1991-10-30 1993-05-14 Mitsubishi Kakoki Kaisha Ltd Supercritical fluid chromatographic separation method
JPH1048191A (en) * 1996-08-05 1998-02-20 Shimadzu Corp Gas chromatograph
JP2002071534A (en) * 2000-06-26 2002-03-08 Berger Instruments Inc Method and apparatus for collecting sapmle from fluid flow
JP2007120972A (en) * 2005-10-25 2007-05-17 Jasco Corp Supercritical system
JP2009544042A (en) * 2006-07-17 2009-12-10 サー インスツルメンツ, インコーポレイテッド Process flow stream collection system
WO2014083639A1 (en) * 2012-11-28 2014-06-05 株式会社島津製作所 Supercritical fluid processing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019053887A1 (en) * 2017-09-15 2020-05-28 株式会社島津製作所 Supercritical fluid device
US20210116425A1 (en) * 2018-04-13 2021-04-22 Shimadzu Corporation Extract recovery method and analysis method
US12092618B2 (en) * 2018-04-13 2024-09-17 Shimadzu Corporation Extract recovery method and analysis method using polymer beads in a trap when using supercritical extraction

Also Published As

Publication number Publication date
JP6406358B2 (en) 2018-10-17
JPWO2016088252A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
JP5683107B2 (en) Process flow stream collection system
US11022350B2 (en) Cooling loop with a supercritical fluid system using compressed refrigerant fluid flow with a positive Joule-Thomson coefficient
JP5999194B2 (en) Supercritical fluid processing equipment
US10765968B2 (en) Systems and methods for supercritical fluid chromatography
JP6406358B2 (en) Sample recovery mechanism and supercritical fluid apparatus equipped with the sample recovery mechanism
JP6332550B2 (en) Supercritical fluid device
JPWO2016042618A1 (en) Gas-liquid separator and supercritical fluid device
JP4715765B2 (en) Liquid concentrating system and liquid concentrator used therefor
US20240247843A1 (en) Cooling loop with a supercritical fluid system using compressed refrigerant fluid flow with a positive joule thomson coefficient
JP6428410B2 (en) Liquefied carbon dioxide pump and supercritical fluid chromatograph equipped with it
JP6863457B2 (en) Gas chromatograph
WO2023125494A1 (en) High-efficiency supercritical device
JP4867722B2 (en) Liquid concentrator
JP3209072U (en) Supercritical fluid device
US10585077B2 (en) Cooling liquid eluent of a carbon dioxide chromatography system after gas-liquid separation
US10717024B2 (en) Gas liquid separator and associated systems and methods
EP3532834B1 (en) Expansion regulation in carbon dioxide based chromatographic systems
JP2526244B2 (en) Chromatography-analysis method
JP2007085830A (en) Concentrator and chromatography apparatus using the same
WO2016092662A1 (en) Method for collecting sample flowing out from supercritical fluid apparatus and sample collection mechanism
WO2020250317A1 (en) Liquefied carbon dioxide feeding device and supercritical fluid apparatus
JP5785744B2 (en) Liquid separation device
JP5964579B2 (en) Method for separating mixed liquid
JP2009236590A (en) Gas chromatograph device and gas component desorption method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016562170

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907212

Country of ref document: EP

Kind code of ref document: A1