WO2016086698A1 - 可调多频段天线和天线调试方法 - Google Patents

可调多频段天线和天线调试方法 Download PDF

Info

Publication number
WO2016086698A1
WO2016086698A1 PCT/CN2015/089069 CN2015089069W WO2016086698A1 WO 2016086698 A1 WO2016086698 A1 WO 2016086698A1 CN 2015089069 W CN2015089069 W CN 2015089069W WO 2016086698 A1 WO2016086698 A1 WO 2016086698A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
unit
control unit
control
impedance
Prior art date
Application number
PCT/CN2015/089069
Other languages
English (en)
French (fr)
Inventor
尹飞
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/532,416 priority Critical patent/US20170331188A1/en
Publication of WO2016086698A1 publication Critical patent/WO2016086698A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to an adjustable multi-band antenna and an antenna debugging method.
  • the spiral antennas usually used in early external antennas mainly adjust the bandwidth by adjusting the density of the spring coils and the size of the coils.
  • This type of antenna has better performance, but it affects the aesthetics of the mobile phone.
  • mobile communication terminal products, especially mobile phones have become more and more popular.
  • mobile phones are an essential item for us, and we have more and more requirements for mobile phone functions.
  • GPS, Bluetooth, and WIFI are all integrated on mobile phones, and the number of antennas in mobile phones has also increased.
  • antennas are becoming more and more important.
  • the size of the antenna has always been a crucial factor in determining the bandwidth of the antenna.
  • the built-in antennas commonly used in mobile terminal antennas at home and abroad are Monopole antennas, IFA antennas and PIFA antennas.
  • the Monopole antenna body needs to be cleaned under the main body, and has the advantages of small size and low height. These antennas are all single frequency bands and cannot expand the bandwidth of the antenna without changing the size of the antenna.
  • the prior art does not provide a solution for expanding the antenna without increasing the size of the antenna. A wide and effective solution.
  • the embodiment of the invention provides an adjustable multi-band antenna and an antenna debugging method, so as to at least solve the technical problem of how to expand the bandwidth of the antenna without increasing the antenna volume in the related art.
  • an embodiment of the present invention provides an adjustable multi-band antenna, including: a first antenna unit, a second antenna unit, a first antenna impedance unit, a second antenna impedance unit, a first control unit, and an antenna matching. a unit and a second control unit;
  • the first antenna unit is coupled to the first antenna impedance unit, the first antenna impedance unit is coupled to the first control unit, and the first control unit is coupled to the radio frequency circuit;
  • the second antenna unit and the second antenna unit a control unit is connected, the second control unit is connected to the first control unit by the antenna matching unit, and the second control unit is grounded by the second antenna impedance unit;
  • the first control unit is configured to control conduction between the first antenna unit and the radio frequency circuit, and conduction between the second antenna unit and the radio frequency circuit;
  • the second control unit is configured to control connection of the second antenna unit with the antenna matching unit and the second antenna impedance unit.
  • the first antenna unit is provided with a plurality of first connection ends
  • the first antenna impedance unit includes: a plurality of antenna impedance networks; and the first connection end passes through one of the antenna impedance networks and the a first control unit is connected; the second antenna unit is provided with a second connection end, and the second antenna unit is connected to the second control unit by the second connection end;
  • the first control unit is configured to control conduction between the first connection end and the radio frequency circuit, and conduction between the second antenna unit and the radio frequency circuit;
  • the second control unit is configured to control the second connection end and the antenna matching unit, The connection of the second antenna impedance unit.
  • the first control unit is configured to control conduction of the connection end with the radio frequency circuit and conduction of the second antenna unit and the radio frequency circuit by means of a switch closing and/or opening.
  • the first control unit is configured to control conduction between the first connection end and the radio frequency circuit and conduction between the second connection end and the radio frequency circuit according to the first control signal.
  • the second control unit is configured to control the connection of the second connection end with the antenna matching unit and the second antenna impedance unit by means of a switch closing and/or opening.
  • the second control unit is configured to control connection of the second connection end with the antenna matching unit and the second antenna impedance unit according to a second control signal by means of a switch closing and/or opening.
  • the embodiment of the present invention further provides an antenna debugging method.
  • the antenna is the adjustable multi-band antenna with the first connection end and the second connection, and includes the following steps:
  • the frequency band of the first antenna unit is optimized by adjusting an antenna impedance network that is conductive with the RF circuit.
  • the embodiment of the present invention further provides an antenna debugging method.
  • the antenna is the adjustable multi-band antenna with the first connection end and the second connection, and includes the following steps:
  • a resonance point is generated by adjusting an antenna trace of the second antenna unit, and an impedance of the first antenna unit is changed by adjusting a second antenna impedance unit.
  • the embodiment of the present invention further provides an antenna debugging method.
  • the antenna is the adjustable multi-band antenna with the first connection end and the second connection, and includes the following steps:
  • the antenna matching unit is adjusted by adjusting an antenna trace of the second antenna unit to generate a resonance point.
  • the embodiment of the present invention provides an adjustable multi-band antenna and an antenna debugging method.
  • the adjustable multi-band antenna of the embodiment of the present invention includes: a first antenna unit, a second antenna unit, a first antenna impedance unit, and a second antenna.
  • the first antenna unit is coupled to the first antenna impedance unit, the first antenna impedance unit is coupled to the first control unit, and the first The control unit is connected to the radio frequency circuit;
  • the second antenna unit is connected to the second control unit, the second control unit is connected to the first control unit by the antenna matching unit, and the second control unit passes The second antenna impedance unit is grounded;
  • the first control unit is configured to control conduction between the first antenna unit and the radio frequency circuit, and conduction between the second antenna unit and the radio frequency circuit;
  • the second control unit is configured to control connection between the second antenna unit and the antenna matching unit and the second antenna impedance unit;
  • FIG. 1 is a schematic structural diagram of an adjustable multi-band antenna according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of another adjustable multi-band antenna according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic flowchart of a first antenna debugging method according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic flowchart of a second antenna debugging method according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic flowchart diagram of a third antenna debugging method according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of an antenna system according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic diagram of wiring of an antenna on a PCB according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic diagram of a working frequency band of a first antenna according to Embodiment 4 of the present invention.
  • FIG. 9 is a schematic diagram of a working frequency band of a second antenna according to Embodiment 4 of the present invention.
  • FIG. 10 is a schematic diagram of a third antenna operating frequency band provided by Embodiment 4 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • this embodiment provides an adjustable multi-band antenna, which may be a monopole antenna, as shown in FIG. 1, including: An antenna unit, a second antenna unit, a first antenna impedance unit, a second antenna impedance unit, a first control unit, an antenna matching unit, and a second control unit;
  • the first antenna unit is coupled to the first antenna impedance unit, the first antenna impedance unit is coupled to the first control unit, and the first control unit is coupled to the radio frequency circuit;
  • the second antenna unit is coupled to the first a second control unit is connected to the first control unit by the antenna matching unit, and the second control unit is grounded by the second antenna impedance unit;
  • the first control unit is configured to control conduction between the first antenna unit and the radio frequency circuit, and conduction between the second antenna unit and the radio frequency circuit;
  • the second control unit is configured to control connection of the second antenna unit with the antenna matching unit and the second antenna impedance unit.
  • the user can change the antenna form by using the first control unit and the second control unit, thereby realizing changing the antenna form, thereby resonating different frequency bands; and changing the antenna form and the antenna
  • the antenna impedance can also be completed by changing the antenna impedance by the first antenna impedance unit, the second antenna impedance unit or the antenna matching unit.
  • the antenna of the embodiment can change the antenna form and the antenna without changing the antenna volume.
  • the impedance increases the antenna frequency band and expands the antenna bandwidth, thereby realizing the multi-band of the mobile phone antenna, and meeting the development trend of miniaturization and ultra-thinness of the mobile terminal.
  • the form of the antenna mainly includes the following three types.
  • the first antenna unit is separately used as an antenna, that is, the second antenna unit is not conductive with the radio frequency circuit, and is disconnected from the antenna matching unit and the second antenna impedance unit, and the first antenna unit is electrically connected to the radio frequency circuit;
  • the lower first antenna unit can generate a resonant frequency band for the pair.
  • the second antenna unit is separately used as an antenna, that is, the first antenna unit and the radio frequency circuit are not conductive, and the second antenna unit is electrically connected to the radio frequency circuit through the antenna matching unit, and the first antenna unit and the radio frequency circuit are not conductive; Underneath, a resonant frequency band can be generated.
  • the first antenna unit and the second antenna unit are collectively used as an antenna, wherein the second antenna unit is grounded through the second antenna impedance unit, and the second antenna unit is a coupling unit of the first antenna unit, belonging to a part of the first antenna unit. Both generate a resonant frequency band.
  • the embodiment may further change the radiation state of the first antenna unit to further generate a plurality of resonant frequency bands.
  • the embodiment may further change the radiation state of the first antenna unit to further generate a plurality of resonant frequency bands.
  • a plurality of connecting ends of the first antenna unit for example, a spring foot
  • the conduction of the radio frequency circuit changes the radiation state of the first antenna unit.
  • the first antenna unit is provided with a plurality of first connection ends
  • the first antenna impedance unit includes: a plurality of antenna impedance networks; and one of the first connection ends passes through one of the antenna impedances
  • the network is connected to the first control unit;
  • the second antenna unit is provided with a second connection end, and the second antenna unit is connected to the second control unit through the second connection end;
  • the first control unit is configured to control conduction between the first connection end and the radio frequency circuit, and conduction between the second antenna unit and the radio frequency circuit;
  • the second control unit is configured to control connection of the second connection end with the antenna matching unit and the second antenna impedance unit.
  • the antenna of the embodiment may further generate a plurality of different resonant frequency bands by controlling the conduction between the connection end of the first antenna unit and the radio frequency circuit after changing the form or at the same time.
  • the first control unit can be selected to be connected to the radio frequency circuit to change the radiation state of the first antenna unit, thereby generating different resonant frequency bands;
  • the radiation state of the first antenna unit can also be changed by selecting the corresponding connection terminal to be electrically connected to the radio frequency circuit, thereby changing the resonance frequency band generated by both the first antenna unit and the second antenna unit.
  • the antenna impedance can also be completed by changing the antenna impedance through the antenna impedance network, the second antenna impedance unit or the antenna matching unit.
  • the first control unit in the antenna of the embodiment is configured to control conduction between the connection end and the radio frequency circuit, and the second antenna unit and the radio frequency circuit by means of a switch closing and/or opening Turn on.
  • the first control unit may be a multiplexer control unit, each of which is connected in series with an antenna impedance network and a first connection end.
  • the first control unit is configured to control the first connection end according to a first control signal Conduction with a radio frequency circuit, and conduction of the second connection end with the radio frequency circuit.
  • the first control signal may be sent by the CPU to the first control unit, and the first control signal may adopt GPIO, MIPI or other controllable signals.
  • connection of the second connection end to the antenna matching unit and the second antenna impedance unit can also be controlled by means of switch closure and/or disconnection.
  • the second control unit may also control the connection of the second connection end with the antenna matching unit and the second antenna impedance unit according to a second control signal by means of a switch closing and/or opening.
  • the second control signal can be generated by the CPU, and GPIO, MIPI or other controllable signals can be used.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • This embodiment provides an antenna debugging method.
  • the antenna is the antenna shown in FIG. 2, as shown in FIG. 3, and includes the following steps:
  • Step 301 The first control terminal is selected by the first control unit to be electrically connected to the radio frequency circuit.
  • Step 302 Disconnect the second connection end from the antenna matching unit and the second antenna impedance unit by using a second control unit.
  • Step 303 generating a resonance point by adjusting an antenna trace of the first antenna unit, and then debugging a bandwidth of the first antenna unit by adjusting an antenna impedance network that is not conductive with the radio frequency circuit;
  • Step 304 Optimize the frequency band of the first antenna unit by adjusting an antenna impedance network that is connected to the radio frequency circuit.
  • the antenna form debugged by the above debugging method is that the first antenna unit is used as an antenna alone to generate a resonant frequency band.
  • the embodiment also provides an antenna debugging method.
  • the antenna is the antenna shown in FIG. 2, as shown in FIG. 4, and includes the following steps:
  • Step 401 Select, by the first control unit, that the corresponding first connection end is electrically connected to the radio frequency circuit;
  • Step 402 Connect the second connection end to the second antenna impedance unit by using a second control unit;
  • Step 403 Generate a resonance point by adjusting an antenna trace of the first antenna unit, and then debug a bandwidth of the first antenna unit by adjusting an antenna impedance network that is not conductive with the radio frequency circuit;
  • Step 404 Optimize a frequency band of the first antenna unit by adjusting an antenna impedance network that is connected to the radio frequency circuit;
  • Step 405 Generate a resonance point by adjusting an antenna trace of the second antenna unit, and change an impedance of the first antenna unit by adjusting a second antenna impedance unit.
  • the antenna form debugged by using the above debugging method is that the first antenna unit and the second antenna unit are collectively used as an antenna to generate a resonant frequency band, wherein the second antenna unit is a coupling unit of the first antenna unit.
  • the embodiment also provides an antenna debugging method.
  • the antenna is the antenna shown in FIG. 2, as shown in FIG. 5, and includes the following steps:
  • Step 501 Connect the second connection end to the antenna matching unit by using the second control unit.
  • Step 502 The first control unit is disconnected from the radio frequency circuit by the first control unit, so that the second connection end is electrically connected to the radio frequency circuit.
  • Step 503 Adjust a resonance point by adjusting an antenna trace of the second antenna unit to adjust the antenna matching unit.
  • the antenna form debugged by using the above debugging method is that the second antenna unit is used as an antenna alone to generate a resonant frequency band.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the embodiment provides an antenna system, including: antenna 1, antenna 2, and antenna. Impedance network, antenna matching unit, antenna impedance network, first switch, second switch and CPU; wherein antenna 1 has two contact legs E and F, as shown in FIG. 7 on antenna 1 and antenna 2 on PCB
  • the wiring of the antenna 1 is connected to the first switch through the antenna impedance network, the foot F of the antenna 1 is connected to the first switch through the antenna impedance network; the foot G of the antenna 2 is connected with the second switch, and the second switch is passed
  • the antenna impedance network is grounded, and is connected to the first switch through the antenna matching unit;
  • the first control unit is configured to control the conduction of the legs E, F and the radio frequency path according to the control signals A and B sent by the CPU, and control the conduction between the foot G and the radio frequency path;
  • the second control unit is configured to control the foot G and the antenna matching unit, or to ground according to the control signals C, D sent by the CPU.
  • the radiation state of the antenna 1 can be changed by the first switch selecting E or F and the radio frequency path to be turned on, thereby resonating different frequency bands.
  • the first switch can adopt the currently popular MIPI control radio frequency switch chip, wherein A and B are respectively MIPI clock and data control signals.
  • the second switch can adopt an SP2T switch.
  • the antenna of the embodiment can control the first switch and the second switch through the CPU, change the conduction state of the elastic foot and the impedance network of the related elastic foot to realize multi-band debugging of the antenna in various radiation forms under different conditions.
  • the antenna 2 is a separate and independent radiating unit, which has two forms: one form: the antenna 2 has its own antenna matching as an independent antenna, mainly completing the resonance of the high frequency part, and another form. That is, the switch control unit switches the pin G to the ground connection path, and the antenna 2 acts as a coupling unit radiator of the antenna 1 to generate resonance.
  • the antenna shown in Figure 6 can produce five antenna forms:
  • the antenna 2 is disconnected, and the E-part antenna of the antenna 1 is used as a signal-feeding monopole antenna, which generates a resonance F1; specifically, the second foot switch disconnects the foot G of the antenna 2, and the first switch selects the bomb through the first switch.
  • the foot E is electrically connected to the radio frequency path, and corresponds to the first antenna form of the first embodiment.
  • the antenna 2 is electrically connected to the ground, and the monopole antenna + antenna 2 coupling radiator of the antenna 1 is used as a signal feed point to generate a resonance frequency band F2; specifically, the spring foot G of the antenna 2 is switched to the ground through the second switch.
  • the first leg is selected to be electrically connected to the radio frequency path, and a third antenna form is corresponding to the embodiment.
  • the antenna 2 is disconnected, and the F-part of the antenna 1 is used as a signal-feeding monopole antenna, which generates a resonant frequency band F3; specifically, the second foot switch disconnects the foot G of the antenna 2, and the first switch selects the foot.
  • F is electrically connected to the radio frequency path, and corresponds to the first antenna form in the first embodiment.
  • the antenna 2 is electrically connected to the ground, and the monopole antenna + antenna 2 coupling radiator of the antenna 1 is used as a signal feed point to generate a resonance frequency band F4; specifically, the spring foot G of the antenna 2 is switched to the ground through the second switch.
  • the first pin is selected to be electrically connected to the radio frequency path, and corresponds to the third antenna form in the first embodiment.
  • the antenna 1 is broken, and the antenna 2 is used as an antenna alone (generally resonating the high frequency part) to generate the resonant frequency band F5; specifically, the E, F foot is disconnected through the first switch, and the foot G and the RF path are Turning on, the foot G is switched to be connected to the antenna matching unit through the second switch; corresponding to the second antenna form in the first embodiment.
  • the antenna of this embodiment can generate five resonant frequency bands, namely F1+F2+F3+F4+F5.
  • the frequency band is effectively increased, and the antenna bandwidth is expanded, thereby realizing the multi-band of the mobile phone antenna, and satisfying the development trend of miniaturization and ultra-thinness of the mobile terminal.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • Debug 1 As shown in Figure 2, the first switch and the second switch are controlled by the main chip, and the F-foot of the Ant1 is connected to the RF main path, the E-leg is connected to the impedance network, and the ANT2 is disconnected.
  • the antenna state is the point F point as the signal feeding point
  • the monopole antenna of the doubly-fed point connected to the impedance matching network is first, and then the resonance point is first adjusted by adjusting the antenna trace, and then the impedance network of the E-leg is adjusted. At this point, it can be used as an antenna match to debug the antenna bandwidth.
  • the impedance index network of the F-foot is adjusted to optimize the relevant indicators.
  • the frequency band debugging is completed, as shown in FIG. 8 , which is the VSWR tested in the final antenna mode, and the antenna form works in
  • GSM850 (824MHz-894MHz)
  • GSM900 (880-960MHz)
  • GSM1800 (1710-1880MHz)
  • Debug 2 The state of the antenna ANT1 remains unchanged. The state of the antenna ANT2 is controlled by the main chip, and the ANT2 is connected to the impedance network and then grounded.
  • the debugging method refers to the debugging 1, and the antenna ANT2 is used as an ANT1 coupling unit at a time, which belongs to the ANT1 part. By adjusting the ANT2 trace, the coupling resonates out of other frequency bands. Finally, the impedance network connected to ANT2 and ground can be debugged. By adjusting the network, the impedance of the antenna ANT1 is changed to optimize the relevant frequency band. This debugging step is just a general debugging process and is not fixed.
  • Debugging 3 The E pin of ANT1 is used as the signal feeding point, the F pin is connected as the impedance network, and the antenna ANT2 is controlled to be disconnected by the GPIO port.
  • the debugging method is debug 1. It should be noted that the debugging needs to take into account the above two antenna states, as shown in Figure 9, which is the VSWR obtained by the final antenna test.
  • the antenna form works at B13 (746-787MHz) B14 (758-798MHz).
  • Debug 4 Through software control, the antenna form is the E-foot of ANT1 as the signal feeding point, and the F-pin is connected as the impedance network. ANT2 is connected to the impedance network and then grounded as the coupling parasitic unit.
  • Debug 5 Through software control, the two legs of ANT1 are disconnected from the RF path, and the ANT2 foot is connected to the RF path. At this time, ANT2 is used as a monopole antenna alone. By adjusting the antenna trace and matching the antenna, generally The antenna resonates at a high frequency, as shown in Figure 10, which is the final test VSWR in this form. This antenna form operates at B2 (1850-1990 Mhz) B34 (2010-2025 MHz) B40 (2300-2400 MHz) B7 (2500-2620 MHz).
  • the antenna form has been debugged in the GSM850/GSM900/GSM1800/B13/B14/B2/B34/B40/B7 frequency bands in three states.
  • the RF driver is reconfigured to ensure each frequency band. For the best condition.
  • the tunable multi-band antenna and antenna debugging method provided by the embodiment of the present invention has the following beneficial effects: the adjustable multi-band antenna can be used by the user to change the antenna form and the antenna impedance without changing the antenna volume.
  • the antenna frequency band is increased, and the antenna bandwidth is expanded, thereby realizing multi-band of the mobile phone antenna, and meeting the development trend of miniaturization and ultra-thinness of the mobile terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种可调多频段天线和天线调试方法。本发明的可调多频段天线,包括:第一天线单元、第二天线单元、第一天线阻抗单元、第二天线阻抗单元、第一控制单元、天线匹配单元和第二控制单元;第一天线单元与第一天线阻抗单元连接,第一天线阻抗单元与第一控制单元连接,以及第一控制单元连接至射频电路;第二天线单元与第二控制单元连接,第二控制单元通过天线匹配单元与第一控制单元连接、通过第二天线阻抗单元接地;第一控制单元设置为控制第一天线单元与射频电路的导通、和第二天线单元与所述射频电路的导通;第二控制单元设置为控制第二天线单元与天线匹配单元、第二天线阻抗单元的连接;本发明的天线能够在不增大天线体积的前提下拓展天线的带宽。

Description

可调多频段天线和天线调试方法 技术领域
本发明涉及通讯技术领域,尤其涉及一种可调多频段天线和天线调试方法。
背景技术
早期外置天线通常采用的螺旋天线,主要是通过调节弹簧线圈的疏密,以及线圈的大小来调节带宽。这种天线形式有着较佳的性能,但影响了手机的美观。随着现代通信技术的发展,人民生活水平的不断提高,移动通信终端产品尤其手机的越发普及,目前手机对于我们来说已是随身必带的物品,而且我们对手机功能要求越来越多,GPS,蓝牙,WIFI目前都已集成在手机上,手机中的天线个数也就随之增加,尤其对4G时代MIMO技术的应用,天线越发显得重要。天线的体积一直以来都是决定天线的带宽的一个至关重要的因素,天线尺寸越小,高度越低,带宽也就越窄,天线效率也就越低,如何在有限的空间里,在不增大天线体积的前提下,如何拓展天线的带宽是当今对天线设计的难点,也是主要工作任务。天线作为手机的一个器件,其性能受到它的周边的喇叭,摄像头,LCD,金属外壳等因素的影响,以及PCB板的布局,每款手机的布局都是不一样,所以每款手机的天线必须要量身打造。
目前国内外移动终端天线通常采用的内置天线为Monopole天线、IFA天线与PIFA天线这三种天线,Monopole天线主体下面需要净空,优点是体积小,高度低。这些天线都是单一频段,在不改变天线体积的情况下是无法拓展天线的带宽的
因此,现有技术并没有给出解决在不增大天线体积的前提下拓展天线的带 宽的有效方案。
发明内容
本发明实施例提供了一种可调多频段天线和天线调试方法,以至少解决相关技术中在不增大天线体积的前提下,如何拓展天线的带宽的技术问题。
为解决上述技术问题,本发明实施例提供一种可调多频段天线,包括:第一天线单元、第二天线单元、第一天线阻抗单元、第二天线阻抗单元、第一控制单元、天线匹配单元和第二控制单元;
所述第一天线单元与第一天线阻抗单元,所述第一天线阻抗单元与第一控制单元连接,以及所述第一控制单元连接至射频电路;所述第二天线单元与所述第二控制单元连接,所述第二控制单元通过所述天线匹配单元与所述第一控制单元连接,所述第二控制单元通过所述第二天线阻抗单元接地;
所述第一控制单元设置为控制所述第一天线单元与所述射频电路的导通、和所述第二天线单元与所述射频电路的导通;
所述第二控制单元设置为控制所述第二天线单元与所述天线匹配单元、所述第二天线阻抗单元的连接。
进一步地,所述第一天线单元设有多个第一连接端,所述第一天线阻抗单元包括:多个天线阻抗网络;一个所述第一连接端通过一个所述天线阻抗网络与所述第一控制单元连接;所述第二天线单元设有一个第二连接端,所述第二天线单元通过所述第二连接端与所述第二控制单元连接;
所述第一控制单元设置为控制所述第一连接端与射频电路的导通、和所述第二天线单元与所述射频电路的导通;
所述第二控制单元设置为控制所述第二连接端与所述天线匹配单元、所述 第二天线阻抗单元的连接。
进一步地,所述第一控制单元设置为通过开关闭合和/或断开的方式控制所述连接端与射频电路的导通、和所述第二天线单元与所述射频电路的导通。
进一步地,所述第一控制单元设置为根据第一控制信号控制所述第一连接端与射频电路的导通、和所述第二连接端与所述射频电路的导通。
进一步地,所述第二控制单元设置为通过开关闭合和/或断开的方式控制所述第二连接端与所述天线匹配单元、所述第二天线阻抗单元的连接。
进一步地,所述第二控制单元设置为根据第二控制信号通过开关闭合和/或断开的方式控制所述第二连接端与所述天线匹配单元、所述第二天线阻抗单元的连接。
同样为了解决上述技术问题,本发明实施例还提供了一种天线调试方法,所述天线为上述设有第一连接端和第二连接的可调多频段天线,包括如下步骤:
通过第一控制单元选择对应的所述第一连接端与射频电路导通;
通过第二控制单元断开所述第二连接端与所述天线匹配单元、所述第二天线阻抗单元的连接;
通过调节第一天线单元的天线走线产生谐振点,然后通过调节与射频电路不导通的天线阻抗网络来调试所述第一天线单元的带宽;
通过调节与射频电路导通的天线阻抗网络优化第一天线单元的频段。
同样为了解决上述技术问题,本发明实施例还提供了一种天线调试方法,所述天线为上述设有第一连接端和第二连接的可调多频段天线,包括如下步骤:
通过第一控制单元选择对应的所述第一连接端与射频电路导通;
通过第二控制单元使所述第二连接端与所述第二天线阻抗单元连接;
通过调节第一天线单元的天线走线产生谐振点,然后通过调节与射频电路不导通的天线阻抗网络来调试所述第一天线单元的带宽;
通过调节与射频电路导通的天线阻抗网络优化第一天线单元的频段;
通过调节第二天线单元的天线走线产生谐振点,通过调节第二天线阻抗单元改变第一天线单元的阻抗。
同样为了解决上述技术问题,本发明实施例还提供了一种天线调试方法,所述天线为上述设有第一连接端和第二连接的可调多频段天线,包括如下步骤:
通过所述第二控制单元使所述第二连接端与所述天线匹配单元连接;
通过所述第一控制单元使所有所述第一连接端与射频电路不导通,使所述第二连接端与所述射频电路导通;
通过调节第二天线单元的天线走线产生谐振点,调节所述天线匹配单元。
本发明的有益效果是:
本发明实施例提供了一种可调多频段天线和天线调试方法;本发明实施例的可调多频段天线,包括:第一天线单元、第二天线单元、第一天线阻抗单元、第二天线阻抗单元、第一控制单元、天线匹配单元和第二控制单元;所述第一天线单元与第一天线阻抗单元连接,所述第一天线阻抗单元与第一控制单元连接,以及所述第一控制单元连接至射频电路;所述第二天线单元与所述第二控制单元连接,所述第二控制单元通过所述天线匹配单元与所述第一控制单元连接,所述第二控制单元通过所述第二天线阻抗单元接地;所述第一控制单元设置为控制所述第一天线单元与所述射频电路的导通、和所述第二天线单元与所述射频电路的导通;所述第二控制单元设置为控制所述第二天线单元与所述天线匹配单元、所述第二天线阻抗单元的连接;本发明提供的可调多频段天线可以供用户在不改变天线体积的情况下,通过改变天线形式和天线阻抗增加天线频段,拓展了天线带宽,从而实现手机天线的多频段,满足移动终端小型化、超薄化的发展趋势。
附图说明
图1为本发明实施例一提供的一种可调多频段天线的结构示意图;
图2为本发明实施例一提供的另一种可调多频段天线的结构示意图;
图3为本发明实施例二提供的第一种天线调试方法的流程示意图;
图4为本发明实施例二提供的第二种天线调试方法的流程示意图;
图5为本发明实施例二提供的第三种天线调试方法的流程示意图;
图6为本发明实施例三提供的一种天线系统的结构示意图;
图7为本发明实施例三提供的一种天线在PCB板上布线示意图;
图8为本发明实施例四提供的第一种天线工作频段示意图;
图9为本发明实施例四提供的第二种天线工作频段示意图;
图10本发明实施例四提供的第三种天线工作频段示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。
实施例一:
考虑到在不增大天线体积的前提下,如何拓展天线的带宽的技术问题,本实施例提供了一种可调多频段天线,该天线可以为monopole天线,如图1所示,包括:第一天线单元、第二天线单元、第一天线阻抗单元、第二天线阻抗单元、第一控制单元、天线匹配单元和第二控制单元;
所述第一天线单元与第一天线阻抗单元连接,所述第一天线阻抗单元与第一控制单元连接,以及所述第一控制单元连接至射频电路;所述第二天线单元与所述第二控制单元连接,所述第二控制单元通过所述天线匹配单元与所述第一控制单元连接,所述第二控制单元通过所述第二天线阻抗单元接地;
所述第一控制单元设置为控制所述第一天线单元与所述射频电路的导通、和所述第二天线单元与所述射频电路的导通;
所述第二控制单元设置为控制所述第二天线单元与所述天线匹配单元、所述第二天线阻抗单元的连接。
应用本实施例提供的可调多频段天线,用户可以通过第一控制单元和第二控制单元来改变天线形式,从而实现改变天线形式,由此谐振出不同的频段;且在改变天线形式和天线辐射状态之后,还可以通过第一天线阻抗单元、第二天线阻抗单元或天线匹配单元改变天线阻抗来完成天线调试本实施例的天线可以在不改变天线体积的情况下,通过改变天线形式和天线阻抗增加天线频段,拓展了天线带宽,从而实现手机天线的多频段,满足移动终端小型化、超薄化的发展趋势。
在本实施例中天线的形式主要包括以下三种,
1、第一天线单元单独作为天线,即第二天线单元与射频电路不导通,断开与天线匹配单元和第二天线阻抗单元的连接,第一天线单元与射频电路导通;在此形式下第一天线单元可以产生对于的谐振频段。
2、第二天线单元单独作为天线,即第一天线单元与射频电路不导通,第二天线单元通过天线匹配单元与射频电路导通,第一天线单元与射频电路不导通;在次情况下,可以产生谐振频段。
3、第一天线单元和第二天线单元共同作为天线,其中第二天线单元通过第二天线阻抗单元接地,此时第二天线单元为第一天线单元的耦合单元,属于第一天线单元的一部分,二者产生谐振频段。
在改变天线形式的基础上,本实施例还可以改变第一天线单元的辐射状态进一步产生多个谐振频段,优先地,本实施例通过控制第一天线单元多个连接端(例如弹脚)与射频电路的导通来改变第一天线单元的辐射状态。如图2所示,具体地:
在上述天线的基础上,所述第一天线单元设有多个第一连接端,所述第一天线阻抗单元包括:多个天线阻抗网络;一个所述第一连接端通过一个所述天线阻抗网络与所述第一控制单元连接;所述第二天线单元设有一个第二连接端,所述第二天线单元通过所述第二连接端与所述第二控制单元连接;
所述第一控制单元设置为控制所述第一连接端与射频电路的导通、和所述第二天线单元与所述射频电路的导通;
所述第二控制单元设置为控制所述第二连接端与所述天线匹配单元、所述第二天线阻抗单元的连接。
此时本实施例的天线在改变形式之后或者同时,还可以通过控制第一天线单元的连接端与射频电路的导通来进一步产生多个不同的谐振频段。例如:
在天线处于第一种形式下,可以通过第一控制单元选择对应的连接端与射频电路导通来改变第一天线单元的辐射状态,从而产生不同的谐振频段;
在天线处于第三种形式下,还可以通过选择对应的连接端与射频电路导通来改变第一天线单元的辐射状态,从而改变第一天线单元和第二天线单元两者产生的谐振频段。
应用本实施例的天线,在改变天线形式和天线辐射状态之后,还可以通过天线阻抗网络、第二天线阻抗单元或天线匹配单元改变天线阻抗来完成天线调试。
优先地,本实施例天线中所述第一控制单元设置为通过开关闭合和/或断开的方式控制所述连接端与射频电路的导通、和所述第二天线单元与所述射频电路的导通。此时,所述第一控制单元可以为多路开关控制单元,每一路与一个天线阻抗网络、一个第一连接端串联。
优先地,所述第一控制单元设置为根据第一控制信号控制所述第一连接端 与射频电路的导通、和所述第二连接端与所述射频电路的导通。
在本实施例中,可以通过CPU产生第一控制信号发送给第一控制单元,第一控制信号可采用GPIO、MIPI或其他可控信号。
在本实施例中同样对于第二控制单元,也可以通过开关闭合和/或断开的方式控制所述第二连接端与所述天线匹配单元、所述第二天线阻抗单元的连接。
具体地,第二控制单元也可以根据第二控制信号通过开关闭合和/或断开的方式控制所述第二连接端与所述天线匹配单元、所述第二天线阻抗单元的连接。
其中,第二控制信号可以由CPU产生,可采用GPIO、MIPI或其他可控信号。
实施例二:
本实施例提供了一种天线调试方法,所述天线为上述如图2所示的天线,如图3所示,包括如下步骤:
步骤301:通过第一控制单元选择对应的所述第一连接端与射频电路导通;
步骤302:通过第二控制单元断开所述第二连接端与所述天线匹配单元、所述第二天线阻抗单元的连接;
步骤303:通过调节第一天线单元的天线走线产生谐振点,然后通过调节与射频电路不导通的天线阻抗网络来调试所述第一天线单元的带宽;
步骤304:通过调节与射频电路导通的天线阻抗网络优化第一天线单元的频段。
利用上述调试方法调试后的天线形式为:第一天线单元单独作为天线,产生谐振频段。
本实施例还提供了一种天线调试方法,所述天线为上述如图2所示的天线,如图4所示,包括如下步骤:
步骤401:通过第一控制单元选择对应的所述第一连接端与射频电路导通;
步骤402:通过第二控制单元使所述第二连接端与所述第二天线阻抗单元连接;
步骤403:通过调节第一天线单元的天线走线产生谐振点,然后通过调节与射频电路不导通的天线阻抗网络来调试所述第一天线单元的带宽;
步骤404:通过调节与射频电路导通的天线阻抗网络优化第一天线单元的频段;
步骤405:通过调节第二天线单元的天线走线产生谐振点,通过调节第二天线阻抗单元改变第一天线单元的阻抗。
利用上述调试方法调试后的天线形式为:第一天线单元和第二天线单元共同作为天线,产生谐振频段,其中第二天线单元为第一天线单元的耦合单元。
本实施例还提供了一种天线调试方法,所述天线为上述如图2所示的天线,如图5所示,包括如下步骤:
步骤501:通过所述第二控制单元使所述第二连接端与所述天线匹配单元连接;
步骤502:通过所述第一控制单元使所有所述第一连接端与射频电路不导通,使所述第二连接端与所述射频电路导通;
步骤503:通过调节第二天线单元的天线走线产生谐振点,调节所述天线匹配单元。
利用上述调试方法调试后的天线形式为:第二天线单元单独作为天线,产生谐振频段。
实施例三:
如图6所示,本实施例提供了一种天线系统,包括:天线1、天线2、天线 阻抗网络、天线匹配单元、天线阻抗网络、第一开关、第二开关和CPU;其中天线1有2个接触弹脚E和F,如图7所示为在天线1和天线2在PCB板上的布线;天线1的弹脚E通过天线阻抗网络与第一开关连接,天线1的脚F通过天线阻抗网络与第一开关连接;天线2的弹脚G与第二开关连接,第二开关通过天线阻抗网络接地,且通过天线匹配单元与第一开关连接;
第一控制单元设置为根据CPU发送的控制信号A、B控制弹脚E、F与射频通路的导通,以及控制弹脚G与射频通路的导通;
第二控制单元设置为根据CPU发送的控制信号C、D来控制弹脚G与天线匹配单元、或者接地。
在本实施例中,可以通过第一开关选择E或F与射频通路导通来改变天线1的辐射状态,由此谐振出不同的频段。
本实施例中第一开关可采用目前流行的MIPI控制射频开关芯片,其中A与B分别为MIPI的clock和data控制信号。本实施例中第二开关可以采用SP2T开关。本实施例的天线可以通过CPU来控制第一开关和第二开关,改变弹脚的导通状态和相关弹脚的阻抗网络来实现该天线在不同情况下的多种辐射形式实现多频段调试。
在本实施例中,天线2是单独独立的辐射单元,其由两种形式:一种形式为:天线2作为独立的天线拥有自身的天线匹配,主要完成高频部分的谐振,另一种形式就是第而开关控制单元将弹脚G切换到与地相连通路,此时天线2作为天线1的耦合单元辐射体,产生谐振。
图6所示的天线可以产生5种天线形式:
1、天线2断开,以天线1的E部分作为信号馈点的monopole天线,其产生谐振F1;具体地,通过第二开关断开天线2的弹脚G,通过第一开关选择弹 脚E与射频通路导通,对应实施例一第一种天线形式。
2、天线2与地导通,以天线1的E作为信号馈点的monopole天线+天线2耦合辐射体产生谐振频段F2;具体地,通过第二开关将天线2的弹脚G切换至接地,通过第一开关选择弹脚E与射频通路导通,对应实施例一种第三种天线形式。
3、天线2断开,以天线1的F部分作为信号馈点的monopole天线,其产生谐振频段F3;具体地,通过第二开关断开天线2的弹脚G,通过第一开关选择弹脚F与射频通路导通,对应实施例一中第一种天线形式。
4、天线2与地导通,以天线1的F作为信号馈点的monopole天线+天线2耦合辐射体产生谐振频段F4;具体地,通过第二开关将天线2的弹脚G切换至接地,通过第一开关选择弹脚F与射频通路导通,对应实施例一中第三种天线形式。
5、天线1断口,天线2单独作为一根天线(一般谐振出高频部分),产生谐振频段F5;具体地,通过第一开关断开E、F弹脚,且将弹脚G与射频通路导通,通过第二开关将弹脚G切换至与天线匹配单元连;对应实施例一中第二种天线形式。
可见,本实施例的天线可以产生五种谐振频段,即F1+F2+F3+F4+F5。这样在没有额外增加天线体积的情况,通过改变天线形式及天线阻抗,有效增加频段,拓展了天线带宽,从而实现手机天线的多频段,满足移动终端小型化、超薄化的发展趋势。
实施例四:
本实施例介绍图2所示天线的调试过程:
调试1:如图2所示,通过主芯片控制第一开关和第二开关,选择Ant1的F弹脚与RF主路导通,E弹脚与阻抗网络相连,ANT2的弹脚断开,此时天线状态为以F点作为信号馈电点,E弹脚与阻抗匹配网络相连的双馈点的monopole天线,首先通过调节天线的走线产生谐振点,然后通过调节E弹脚的阻抗网络,此时可以把它充当天线匹配来调试天线带宽,最后通过调节F弹脚的阻抗网络来优化相关指标。最后完成频段调试,如图8所示,为最终天线该模式下测试的VSWR,该种天线形式工作在
GSM850(824MHz-894MHz)GSM900(880-960MHz)GSM1800(1710-1880MHz)
调试2:天线ANT1状态保持不变,通过主芯片来控制天线ANT2状态,使ANT2与阻抗网络相连然后接地,调试方法参照调试1,区别在一此时天线ANT2作为ANT1耦合单元,属于ANT1一部分,通过调节ANT2走线,耦合谐振出其他频段。最后可以调试ANT2与地相连的阻抗网络通过调节该网络改变天线ANT1阻抗,优化相关频段。此调试步骤只是一般调试流程,并不固定。
调试3:以ANT1的E弹脚作为信号馈电点,F脚作为需阻抗网络相连接,天线ANT2通过GPIO口控制第二开关使之断开,调试方法如调试1。其中需注意的是该调试需要兼顾以上二种天线状态,如图9所示,是最终天线测试得到的VSWR,该种天线形式工作在B13(746-787MHz)B14(758-798MHz)。
调试4:通过软件控制,使天线形式为以ANT1的E弹脚作为信号馈电点,F脚作为阻抗网络相连接,其中ANT2与阻抗网络相连然后接地作为耦合寄生单元,调试步骤参照调试2。
调试5:通过软件控制,使ANT1的二个弹脚与射频通路断开,ANT2弹脚与射频通路导通,此时ANT2单独作为一个monopole天线,通过调节该天线走线以及该天线匹配,一般该天线谐振高频,如图10所示,是该形式下最终测试VSWR, 该种天线形式工作在B2(1850-1990Mhz)B34(2010-2025MHz)B40(2300-2400MHz)B7(2500-2620MHz)。
在完成以上调试,此天线形式在3种状态下已经调试出GSM850/GSM900/GSM1800/B13/B14/B2/B34/B40/B7频段,最后根据调试结果,来重新配置射频驱动,保证每个频段为最佳的状态。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
工业实用性
如上所述,本发明实施例提供的一种可调多频段天线和天线调试方法具有以下有益效果:可调多频段天线可以供用户在不改变天线体积的情况下,通过改变天线形式和天线阻抗增加天线频段,拓展了天线带宽,从而实现手机天线的多频段,满足移动终端小型化、超薄化的发展趋势。

Claims (9)

  1. 一种可调多频段天线,包括:第一天线单元、第二天线单元、第一天线阻抗单元、第二天线阻抗单元、第一控制单元、天线匹配单元和第二控制单元;
    所述第一天线单元与第一天线阻抗单元连接,所述第一天线阻抗单元与第一控制单元连接,以及所述第一控制单元连接至射频电路;所述第二天线单元与所述第二控制单元连接,所述第二控制单元通过所述天线匹配单元与所述第一控制单元连接,所述第二控制单元通过所述第二天线阻抗单元接地;
    所述第一控制单元设置为控制所述第一天线单元与所述射频电路的导通、和所述第二天线单元与所述射频电路的导通;
    所述第二控制单元设置为控制所述第二天线单元与所述天线匹配单元、所述第二天线阻抗单元的连接。
  2. 如权利要求1所述的可调多频段天线,其中,所述第一天线单元设有多个第一连接端,所述第一天线阻抗单元包括:多个天线阻抗网络;一个所述第一连接端通过一个所述天线阻抗网络与所述第一控制单元连接;所述第二天线单元设有一个第二连接端,所述第二天线单元通过所述第二连接端与所述第二控制单元连接;
    所述第一控制单元设置为控制所述第一连接端与射频电路的导通、和所述第二天线单元与所述射频电路的导通;
    所述第二控制单元设置为控制所述第二连接端与所述天线匹配单元、所述第二天线阻抗单元的连接。
  3. 如权利要求2所述的可调多频段天线,其中,所述第一控制单元设置为通过开关闭合和/或断开的方式控制所述连接端与射频电路的导通、和所述第二天线单元与所述射频电路的导通。
  4. 如权利要求3所述的可调多频段天线,其中,所述第一控制单元设置为根据第一控制信号控制所述第一连接端与射频电路的导通、和所述第二连接端与所述射频电路的导通。
  5. 如权利要求2-4任一所述的可调多频段天线,其中,所述第二控制单元设置为通过开关闭合和/或断开的方式控制所述第二连接端与所述天线匹配单元、所述第二天线阻抗单元的连接。
  6. 如权利要求5所述的可调多频段天线,其中,所述第二控制单元设置为根据第二控制信号通过开关闭合和/或断开的方式控制所述第二连接端与所述天线匹配单元、所述第二天线阻抗单元的连接。
  7. 一种天线调试方法,所述天线为如权利要求2-6任一项所述的可调多频段天线,包括如下步骤:
    通过第一控制单元选择对应的所述第一连接端与射频电路导通;
    通过第二控制单元断开所述第二连接端与所述天线匹配单元、所述第二天线阻抗单元的连接;
    通过调节第一天线单元的天线走线产生谐振点,然后通过调节与射频电路不导通的天线阻抗网络来调试所述第一天线单元的带宽;
    通过调节与射频电路导通的天线阻抗网络优化第一天线单元的频段。
  8. 一种天线调试方法,所述天线为如权利要求2-6任一项所述的可调多频段天线,包括如下步骤:
    通过第一控制单元选择对应的所述第一连接端与射频电路导通;
    通过第二控制单元使所述第二连接端与所述第二天线阻抗单元连接;
    通过调节第一天线单元的天线走线产生谐振点,然后通过调节与射频电路不导通的天线阻抗网络来调试所述第一天线单元的带宽;
    通过调节与射频电路导通的天线阻抗网络优化第一天线单元的频段;
    通过调节第二天线单元的天线走线产生谐振点,通过调节第二天线阻抗单元改变第一天线单元的阻抗。
  9. 一种天线调试方法,所述天线为如权利要求2-6任一项所述的可调多频段天线,包括如下步骤:
    通过所述第二控制单元使所述第二连接端与所述天线匹配单元连接;
    通过所述第一控制单元使所有所述第一连接端与射频电路不导通,使所述 第二连接端与所述射频电路导通;
    通过调节第二天线单元的天线走线产生谐振点,调节所述天线匹配单元。
PCT/CN2015/089069 2014-12-02 2015-09-07 可调多频段天线和天线调试方法 WO2016086698A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/532,416 US20170331188A1 (en) 2014-12-02 2015-09-07 Adjustable multi-band antenna and antenna debugging method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410723218.X 2014-12-02
CN201410723218.XA CN105720380B (zh) 2014-12-02 2014-12-02 可调多频段天线和天线调试方法

Publications (1)

Publication Number Publication Date
WO2016086698A1 true WO2016086698A1 (zh) 2016-06-09

Family

ID=56090962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089069 WO2016086698A1 (zh) 2014-12-02 2015-09-07 可调多频段天线和天线调试方法

Country Status (3)

Country Link
US (1) US20170331188A1 (zh)
CN (1) CN105720380B (zh)
WO (1) WO2016086698A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018068610A1 (zh) * 2016-10-13 2018-04-19 中兴通讯股份有限公司 一种天线匹配电路、频段的选择方法和装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106961023B (zh) * 2017-03-02 2020-07-14 惠州Tcl移动通信有限公司 一种天线兼容系统
CN107888693B (zh) * 2017-11-21 2021-06-01 海信集团有限公司 Nb-iot设备调试方法及服务器
CN108055410A (zh) * 2017-12-29 2018-05-18 广东欧珀移动通信有限公司 天线切换电路、天线切换方法以及电子装置
CN109548045B (zh) * 2018-11-13 2021-12-10 广东万和新电气股份有限公司 设备调试方法、装置、系统及存储介质
CN109830815B (zh) * 2018-12-24 2021-04-02 瑞声科技(南京)有限公司 天线系统及应用该天线系统的移动终端
CN111313986B (zh) * 2020-02-26 2022-10-21 捷开通讯(深圳)有限公司 一种测试电路结构及天线测试方法
EP4106210B1 (en) * 2020-03-06 2024-05-08 Huawei Technologies Co., Ltd. Transceiver device, wireless communication device, and chip set
CN112202470A (zh) * 2020-10-09 2021-01-08 珠海格力电器股份有限公司 移动终端的天线设备及其控制方法、装置和移动终端
CN113485173B (zh) * 2021-06-11 2022-08-19 荣耀终端有限公司 一种开关切换方法及相关装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740874A (zh) * 2008-11-11 2010-06-16 华硕电脑股份有限公司 多频段天线装置
US20130222206A1 (en) * 2012-02-29 2013-08-29 Pantech Co., Ltd. Multiband portable terminal and method for controlling thereof
CN103326104A (zh) * 2012-03-19 2013-09-25 三星电子株式会社 用于电子设备的内置天线

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740874A (zh) * 2008-11-11 2010-06-16 华硕电脑股份有限公司 多频段天线装置
US20130222206A1 (en) * 2012-02-29 2013-08-29 Pantech Co., Ltd. Multiband portable terminal and method for controlling thereof
CN103326104A (zh) * 2012-03-19 2013-09-25 三星电子株式会社 用于电子设备的内置天线

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018068610A1 (zh) * 2016-10-13 2018-04-19 中兴通讯股份有限公司 一种天线匹配电路、频段的选择方法和装置

Also Published As

Publication number Publication date
CN105720380B (zh) 2020-02-11
CN105720380A (zh) 2016-06-29
US20170331188A1 (en) 2017-11-16

Similar Documents

Publication Publication Date Title
WO2016086698A1 (zh) 可调多频段天线和天线调试方法
CN103236583B (zh) 一种增强带宽的新型lte金属框天线
KR101687632B1 (ko) 휴대용 단말기의 가변형 내장 안테나 장치
US9276320B2 (en) Multi-band antenna
CN105576340B (zh) 移动装置及其制造方法
EP2942834B1 (en) Antenna apparatus and terminal device
US20150207211A1 (en) Conductive Loop Antennas
JP2009510900A (ja) マルチバンドの折り曲げモノポール・アンテナ
CN203398262U (zh) 一种超宽带的新型lte金属框天线
CN101997165B (zh) 一种封闭型多频段天线及其无线通讯装置
CN103928766B (zh) 一种手机及其天线
CN103928752A (zh) 一种手机及其天线
WO2014086163A1 (zh) 一种带有寄生天线的宽频手机天线及手机
CN107994321B (zh) 一种带开口谐振环的双频偶极子天线
CN105703846A (zh) 检测移动终端使用状态自适应调整天线状态的系统及方法
US8639194B2 (en) Tunable antenna with a conductive, physical component co-located with the antenna
US9191471B2 (en) Wireless communication device
CN105490025B (zh) 一种天线频段调整装置及其方法
CN107069219B (zh) 一种全金属壳4g宽频天线
WO2013189351A2 (zh) 一种天线
CN203839510U (zh) 一种手机及其天线
CN203367465U (zh) 一种超宽带的新型lte金属框天线
US11115511B1 (en) Communication device having configurable housing assembly with multiple antennas
CN101997166B (zh) 一种环形多频段天线及其无线通讯装置
CN201853809U (zh) 一种环形多频段天线及其无线通讯装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866212

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15532416

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866212

Country of ref document: EP

Kind code of ref document: A1