WO2016086507A1 - 用于去除无机碳的设备和方法及用于检测总有机碳的装置和方法 - Google Patents

用于去除无机碳的设备和方法及用于检测总有机碳的装置和方法 Download PDF

Info

Publication number
WO2016086507A1
WO2016086507A1 PCT/CN2015/000844 CN2015000844W WO2016086507A1 WO 2016086507 A1 WO2016086507 A1 WO 2016086507A1 CN 2015000844 W CN2015000844 W CN 2015000844W WO 2016086507 A1 WO2016086507 A1 WO 2016086507A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
space
inorganic carbon
total organic
concentration
Prior art date
Application number
PCT/CN2015/000844
Other languages
English (en)
French (fr)
Inventor
邓守权
Original Assignee
通用电气公司
邓守权
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通用电气公司, 邓守权 filed Critical 通用电气公司
Priority to JP2017529034A priority Critical patent/JP2018501473A/ja
Priority to EP15865044.0A priority patent/EP3229016A4/en
Priority to CA2969357A priority patent/CA2969357A1/en
Publication of WO2016086507A1 publication Critical patent/WO2016086507A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Organic contamination in water
    • G01N33/1846Total carbon analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an apparatus and method for removing inorganic carbon and an apparatus and method for detecting total organic carbon.
  • the measured total organic carbon is actually non-purgeable organic carbon, which does not fully reflect the total organic carbon content in the water.
  • an embodiment of the invention relates to an apparatus for removing inorganic carbon, comprising: a first space for receiving a first water stream containing a first concentration of inorganic carbon and providing conversion by the inorganic carbon An incoming stream of carbon dioxide and a second concentration of inorganic carbon, said second concentration being lower than said first concentration; and a second space for receiving a second stream of water and absorbing from said first space The carbon dioxide.
  • embodiments of the present invention are directed to an apparatus for detecting total organic carbon, comprising: an apparatus for removing inorganic carbon according to an embodiment of the present invention; and a total organic carbon analyzer for receiving The flow is analyzed and the total organic carbon in the analytical stream is measured.
  • an embodiment of the present invention is directed to a method for removing inorganic carbon, comprising: receiving a first water stream containing a first concentration of inorganic carbon in a first space and providing conversion by the inorganic carbon The resulting carbon dioxide and the analytical stream comprising a second concentration of inorganic carbon, the second concentration being lower than the first concentration; receiving a second water stream in the second space and absorbing the carbon dioxide from the first space.
  • an embodiment of the present invention is directed to a method for detecting total organic carbon, comprising: a method for removing inorganic carbon according to an embodiment of the present invention; and measuring the analysis with a total organic carbon analyzer The total organic carbon of the stream.
  • FIG. 1-3 are schematic illustrations of apparatus for detecting total organic carbon, in accordance with some embodiments of the present invention.
  • Approximating terms in the present invention are used to modify the number, and the invention is not limited to the specific number, and includes a modified portion that is close to the quantity and that does not cause a change in the related basic function.
  • a numerical value is modified by "about”, “about” or the like, meaning that the invention is not limited to the precise value.
  • the approximation may correspond to the accuracy of the instrument that measures the value.
  • some embodiments of the present invention are directed to an apparatus 100, 200, 300 for removing inorganic carbon, comprising: a first space 101, 201, 301 for receiving a first concentration a first stream of inorganic carbon 102, 202, 302 and providing carbon dioxide 103, 203, 303 converted from said inorganic carbon and an analytical stream 104, 204, 304 containing a second concentration of inorganic carbon, said second concentration Lower than the first concentration; and a second space 105, 205, 305 for receiving the second water stream 106, 206, 306 and absorbing the carbon dioxide 103 from the first space 101, 201, 301, 203, 303.
  • the apparatus 100 includes an inner tube 110 defining the first space 101 therein and an outer tube 111 sleeved outside the inner tube 110, the second space 105. Located between the inner tube 110 and the outer tube 111 and surrounding the first space 101.
  • the tube wall 107 of the inner tube 110 is a separate structure separating the first water stream 102 and the second water stream 106 and passing through the carbon dioxide 103.
  • the materials, shapes and configurations of the inner tube and the outer tube may be identical or different.
  • the inner tube 110 and the outer tube 111 both extend in a straight line.
  • the inner tube and the outer tube are evenly distributed.
  • one of the inner tube and the outer tube is a straight tube and the other is a curved tube.
  • the inner tube and the outer tube may be partially straight, partially curved.
  • the first space encloses the second space. In some embodiments, the first space and the second space partially overlap.
  • the apparatus 200 includes a conduit 210 defining a first space 201 and extending therein, and accommodating the conduit 210 therein and defining a second therebetween Container 211 of space 205.
  • the first space 201 is located within the duct 210 and is surrounded by the second space 205.
  • the tube wall 207 of the conduit 210 is a separate structure that separates the first water stream 202 from the second water stream 206 and passes through the carbon dioxide 203.
  • the separation structures 107, 207 can be made of any material that is capable of passing gas but not liquid.
  • the separation structure 107, 207 comprises polypropylene, polytetrafluoroethylene, or a polyethylene material.
  • the inner tube 110 and the tube 210 are Teflon tube.
  • the apparatus 300 includes a first container having a distance from each other defining the first space 301 and the second space 305 therein and connected by a channel 307. 310 and a second container 311.
  • the passage 307 transfers the carbon dioxide 303 from the first space 301 to the second space 305.
  • the first water stream 102, 202, 302 is a stream of water in which the inorganic carbon needs to be removed.
  • the first stream 102, 202, 302 may contain other materials or may be free of other materials.
  • the first stream of water 102, 202, 302 contains water, inorganic carbon, volatile organics, and non-volatile organics.
  • the inorganic carbon in the first water stream 102, 202, 302 is converted to the carbon dioxide 103, 203, 303 in a suitable manner.
  • reactants 108, 208, 308 are provided to the first space 101, 201, 301 to convert the inorganic carbon to the carbon dioxide 103, 203, 303.
  • the reactants 108, 208, 308 are acidic compounds such as phosphoric acid, hydrochloric acid, sulfuric acid, or any combination thereof.
  • the generation of the carbon dioxide 103, 203, 303 creates a difference in air pressure between the first space 101, 201, 301 and the second space 105, 205, 305, which thereby passes through the separation structure 107, 207 And the passage 307 entering the second space 105, 205, 305 from the first space 101, 201, 301 is absorbed by the second space 105, 205, 305, and causes the inorganic carbon concentration to be lower than the first water flow
  • the second water stream 106, 206, 306 helps absorb the carbon dioxide 103, 203, 303.
  • the second water stream 106, 206, 306 is identical to the first water stream 102, 202, 302 such that the first space 101, 201, 301 and the second space 105, 205, 305
  • the difference in air pressure is mainly caused by the generation of the carbon dioxide 103, 203, 303 in the first space 101, 201, 301, the first space 101, 201, 301 and the second space 105, 205
  • the gas flowing between 305 is mainly the carbon dioxide 103, 203, 303.
  • reactants 109, 209, 309 are provided to the second space 105, 205, 305 to assist in absorbing the carbon dioxide 103, 203, 303.
  • the reactants 109, 209, 309 comprise a basic compound such as sodium hydroxide, potassium hydroxide, lithium hydroxide or any combination thereof.
  • the reactants 109, 209, 309 comprise a complex that prevents precipitation, such as ethylenediaminetetraacetic acid, ethylenediaminetetraacetate (disodium edetate or tetrasodium).
  • Ethylenediamine tetramethylene phosphate sodium triacetate, amine trimethyl phosphate, diethylene triamine pentacarboxylate, diethylene triamine pentamethyl phosphonate, citric acid, or any combination thereof.
  • the apparatus 100, 200, 300 includes agitation that can be agitated in the first space 101, 201, 301 or the second space 105, 205, 305 to promote the production or absorption of carbon dioxide.
  • Component (not shown).
  • the total organic carbon of the analytical streams 104, 204, 304 can be measured using any total organic carbon detection method and apparatus.
  • Some embodiments of the invention relate to apparatus 10, 20, 30 and methods for detecting total organic carbon.
  • the apparatus 10, 20, 30 includes the apparatus 100, 200, 300 and total organic carbon analyzers 400, 500, 600.
  • the total organic carbon analyzers 400, 500, 600 can be any total organic carbon analyzer or sensor, such as General Electric Analytical Instruments Co., Ltd., Bode City, Colorado, USA. M series total organic carbon analyzer (such as M9 total organic carbon analyzer, M5310 total organic carbon analyzer, etc.) or CheckPoint sensor.
  • the total organic carbon analyzers 400, 500, 600 receive the analytical streams 104, 204, 304, which are acidified, oxidized, measured by a membrane conductivity detector, etc., respectively, to produce total carbon and total inorganic carbon.
  • the total inorganic carbon value, the total carbon value, and the total organic carbon value of the analysis streams 104, 204, 304 are output after the carbon dioxide, the calculated total carbon, and the total inorganic carbon are obtained by a process such as total organic carbon.
  • the total organic carbon analyzer 400, 500, 600 may be oxidized by ultraviolet rays when measuring total carbon, or may be added with an oxidizing agent such as persulfate or the like, and may also be subjected to high temperature catalytic combustion oxidation.
  • An apparatus and method for removing inorganic carbon utilizes a pressure difference between the first space and the second space to convert the carbon dioxide of the inorganic carbon of the first space into the second space Absorption, to achieve the purpose of removing inorganic carbon.
  • the second water stream aids in the absorption of the carbon dioxide.
  • the concentrations of the volatile organic substances in the first space and the second space are the same, so that the volatile organic substances are not significantly lost when the inorganic substances are removed, and the total detection involved in the embodiments of the present invention
  • the membrane conductivity detector measured a total organic carbon value of 400 ppb and an inorganic carbon of 704 ppb, which is a reference value for the total organic carbon and inorganic carbon of the formulated aqueous chloroform solution.
  • the AF elbow is used to obtain an apparatus for removing inorganic carbon as illustrated in FIG.
  • a further prepared aqueous solution of chloroform is introduced into the first space in the elbow and the second space outside the elbow and the second space in the container at a flow rate of about 0.5 microliter per minute.
  • About 6 moles per liter of phosphoric acid is added to the first space, and the second space is supplied with sodium hydroxide having a pH of 7% aqueous solution of chloroform and about 0.01 mole per liter of ethylenediaminetetraacetic acid.
  • the analytical stream obtained from the first space was passed to the same total organic carbon analyzer as in Comparative Example 1 at a flow rate of about 0.5 ml per minute, and the total organic carbon was measured to be 375 ppb, and the inorganic carbon was 327 ppb, which was visible and compared with Comparative Example 1.
  • Comparative Example 1 Compared with the baseline value, when the inorganic carbon of the chloroform aqueous solution is reduced by a large amount, the amount of organic carbon reduction is negligible, and the total organic carbon value obtained is more reliable and accurate.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

一种用于去除无机碳的设备(100,200,300)包括:第一空间(101,201,301),其用于接收含有第一浓度的无机碳的第一水流(102,202,302)并提供由所述无机碳转化而来的二氧化碳(103,203,303)和含有第二浓度的无机碳的分析流(104,204,304),所述第二浓度低于所述第一浓度;及,第二空间(105,205,305),其用于接收第二水流(106,206,306)并吸收来自所述第一空间(101,201,301)的所述二氧化碳(103,203,303)。一种用于去除无机碳的方法和用于检测总有机碳的装置和方法也被公开了。

Description

用于去除无机碳的设备和方法及用于检测总有机碳的装置和方法 技术领域
本发明涉及用于去除无机碳的设备和方法及用于检测总有机碳的装置和方法。
背景技术
现在一般以把无机碳转化为二氧化碳后抽真空的方式去除水中的无机碳,但是用此类方法时会常常将水中的其他物质例如挥发性有机物一并抽除,因此并不理想。
尤其是在检测总有机碳时,当挥发性有机物被抽走后,所测得的总有机碳实际为不可吹扫有机碳,不能全面反映水中的有机碳总含量。
所以,需要提供新的用于去除无机碳的设备和方法及用于检测总有机碳的装置和方法。
发明内容
本发明的目的是提供一种新的用于去除无机碳的设备和方法及用于检测总有机碳的装置和方法。
一方面,本发明的实施例涉及一种用于去除无机碳的设备,其包括:第一空间,其用于接收含有第一浓度的无机碳的第一水流并提供由所述无机碳转化而来的二氧化碳和含有第二浓度的无机碳的分析流,所述第二浓度低于所述第一浓度;及,第二空间,其用于接收第二水流并吸收来自所述第一空间的所述二氧化碳。
另一方面,本发明的实施例涉一种用于检测总有机碳的装置,其包括:本发明实施例所涉及用于去除无机碳的设备;及总有机碳分析仪,其用于接收所述分析流并测量所述分析流中的总有机碳。
再一方面,本发明的实施例涉及一种用于去除无机碳的方法,其包括:在第一空间接收含有第一浓度的无机碳的第一水流并提供由所述无机碳转化 而来的二氧化碳和含有第二浓度的无机碳的分析流,所述第二浓度低于所述第一浓度;在第二空间接收第二水流并吸收来自所述第一空间的所述二氧化碳。
又一方面,本发明的实施例涉及一种用于检测总有机碳的方法,包括:本发明的实施例涉及的用于去除无机碳的方法;及,用总有机碳分析仪测量所述分析流的总有机碳。
附图说明
参考附图阅读下面的详细描述,可以帮助理解本发明的特征、方面及优点,其中:
图1-3是根据本发明的一些实施例的用于检测总有机碳的装置的示意图。
具体实施方式
除非本发明中清楚另行定义,用到的科学和技术术语的含义为本发明所属技术领域的技术人员所通常理解的含义。本发明中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来彼此区分。本发明中使用的“包括”、“包含”、“具有”、或“含有”以及类似的词语是指除了列于其后的项目及其等同物外,其他的项目也可在范围以内。
本发明中的近似用语用来修饰数量,表示本发明并不限定于所述具体数量,还包括与所述数量接近的、可接受的、不会导致相关基本功能的改变的修正的部分。相应的,用“大约”、“约”等修饰一个数值,意为本发明不限于所述精确数值。在某些实施例中,近似用语可能对应于测量数值的仪器的精度。
在说明书和权利要求中,除非清楚地另外指出,所有项目的单复数不加以限制。除非上下文另外清楚地说明,术语“或”、“或者”并不意味着排他,而是指存在提及项目(例如成分)中的至少一个,并且包括提及项目的组合可以存在的情况。
本发明说明书中提及“一些实施例”等等,表示所述与本发明相关的一种特定要素(例如特征、结构和/或特点)被包含在本说明书所述的至少一个实施例中,可能或不可能出现于其他实施例中。另外,需要理解的是,所述发 明要素可以任何适合的方式结合。
请参图1、2和3,本发明的一些实施例涉及用于去除无机碳的设备100,200,300,其包括:第一空间101,201,301,其用于接收含有第一浓度的无机碳的第一水流102,202,302并提供由所述无机碳转化而来的二氧化碳103,203,303和含有第二浓度的无机碳的分析流104,204,304,所述第二浓度低于所述第一浓度;及,第二空间105,205,305,其用于接收第二水流106,206,306并吸收来自所述第一空间101,201,301的所述二氧化碳103,203,303。
一些实施例中,如图1所示,所述设备100包括定义所述第一空间101于其内的内管110和套在所述内管110外的外管111,所述第二空间105位于所述内管110和所述外管111之间并将所述第一空间101包围。所述内管110的管壁107为分隔所述第一水流102和所述第二水流106且通过所述二氧化碳103的分离结构。
所述内管和所述外管用料、形状和构造可一致也可迥异。图1中,所述内管110和所述外管111均直线延伸。一些实施例中,所述内管和所述外管均蜿蜒分布。一些实施例中,所述内管和所述外管中之一为直管,另一为弯管。一些实施例中,所述内管和所述外管可部分直管、部分弯管。
一些实施例中,所述第一空间将所述第二空间包围。一些实施例中,所述第一空间和所述第二空间部分重叠。
一些实施例中,如图2所示,所述设备200包括定义所述第一空间201于其内并弯曲延伸的管道210和容纳所述管道210于其内并在二者之间定义第二空间205的容器211。所述第一空间201位于所述管道210内并被所述第二空间205包围。所述管道210的管壁207为分隔所述第一水流202和所述第二水流206且通过所述二氧化碳203的分离结构。
所述分离结构107,207可由任何气体能通过但液体不能通过的材料制得。一些实施例中,所述分离结构107,207包括聚丙烯、聚四氟乙烯、或聚乙烯材料。一些实施例中,所述内管110、所述管道210为特氟隆
Figure PCTCN2015000844-appb-000001
管。
一些实施例中,如图3所示,所述设备300包括相互间有一定距离、分别定义所述第一空间301和所述第二空间305于其内、且由通道307连接的第一容器310和第二容器311。所述通道307把所述二氧化碳303从所述第一空间301传输到所述第二空间305。
所述第一水流102,202,302为其中的无机碳需要去除的水流。除水和无机碳之外,所述第一水流102,202,302可含其他物质,也可不含其他物质。一些实施例中,所述第一水流102,202,302含有水、无机碳、挥发性有机物和非挥发性有机物。
在所述第一空间101,201,301内,所述第一水流102,202,302中的无机碳以适当的方式转化为所述二氧化碳103,203,303。一些实施例中,向所述第一空间101,201,301提供反应物108,208,308以将所述无机碳转化为所述二氧化碳103,203,303。一些实施例中,所述反应物108,208,308为酸性化合物,例如磷酸、盐酸、硫酸、或其任意组合。
所述二氧化碳103,203,303的生成在所述第一空间101,201,301和所述第二空间105,205,305之间产生了气压的差异,其从而通过所述分离结构107,207和通道307由所述第一空间101,201,301进入所述第二空间105,205,305被所述第二空间105,205,305吸收,并导致无机碳浓度低于所述第一水流102,202,302的所述分析流104,204,304的产生。
一些实施例中,所述第二水流106,206,306帮助吸收所述二氧化碳103,203,303。一些实施例中,所述第二水流106,206,306与所述第一水流102,202,302相同,从而所述第一空间101,201,301和所述第二空间105,205,305之间的气压差异主要由所述二氧化碳103,203,303在所述第一空间101,201,301的产生所造成,所述第一空间101,201,301和所述第二空间105,205,305之间流动的气体主要是所述二氧化碳103,203,303。
一些实施例中,向所述第二空间105,205,305提供反应物109,209,309以协助吸收所述二氧化碳103,203,303。一些实施例中,所述反应物109,209,309包含碱性化合物,如氢氧化钠、氢氧化钾、氢氧化锂或其任意组合。一些实施例中,所述反应物109,209,309包含可防止沉淀的络合物,例如乙二胺四乙酸、乙二胺四乙酸盐(乙二胺四乙酸二钠或四钠等)、乙二胺四甲叉磷酸钠、氨三乙酸钠、胺三甲叉磷酸盐、二乙烯三胺五羧酸盐、二乙烯三胺五甲叉膦酸盐、柠檬酸、或其任意组合。
一些实施例中,所述设备100,200,300包括可在所述第一空间101,201,301或所述第二空间105,205,305进行搅拌以促进所述二氧化碳的产生或吸收的搅拌元件(未图示)。
在用本发明的实施例涉及的设备和方法去除无机碳后,可用任何总有机 碳检测方法和设备测量所述分析流104,204,304的总有机碳。本发明的一些实施例涉及用于检测总有机碳的装置10,20,30和方法。一些实施例中,所述装置10,20,30包括所述设备100,200,300和总有机碳分析仪400,500,600。所述总有机碳分析仪400,500,600可为任何总有机碳分析仪或者传感器,例如美国科罗拉多州博德市的通用电气分析仪器有限公司的
Figure PCTCN2015000844-appb-000002
M系列总有机碳分析仪(如M9总有机碳分析仪、M5310总有机碳分析仪等)或CheckPoint传感器。
一些实施例中,所述总有机碳分析仪400,500,600接收所述分析流104,204,304,经酸化、氧化、用膜电导率检测器等分别测量总碳和总无机碳产生的二氧化碳、计算总碳和总无机碳的差值得到总有机碳等工序后输出所述分析流104,204,304的总无机碳值、总碳值和总有机碳值。一些实施例中,所述总有机碳分析仪400,500,600测量总碳的时候可用紫外线进行氧化,也可加入氧化剂,如过硫酸盐等,还可高温催化燃烧氧化。
本发明实施例涉及的去除无机碳的设备和方法利用所述第一空间和所述第二空间之间的压力差把所述第一空间的无机碳转化的所述二氧化碳在所述第二空间吸收,达到去除无机碳的目的。一些实施例中,所述第二水流帮助所述二氧化碳的吸收。一些实施例中,所述第一空间和所述第二空间的挥发性有机物的浓度相同,从而在去除无机物的时候,所述挥发性有机物不会显著损失,本发明实施例涉及的检测总有机碳的装置和方法能够更准确的测量总有机碳。
实验示例
以下实验示例可以为本领域中具有一般技能的人实施本发明提供参考。这些例子并不限制权利要求的范围。
把100%氯仿加入水中配制成约400ppb(parts per billion,十亿分之一)以碳计的氯仿水溶液。
对比例1
取一股前述的配制的氯仿水溶液,以大约0.5毫升每分钟的流速在不去除无机碳的情况下进入一总有机碳分析仪,其中加6摩尔每升的磷酸进行酸化,用紫外线氧化,用膜电导率检测器测量,得到总有机碳数值为400ppb,无机碳为704ppb,此为配制的氯仿水溶液的总有机碳和无机碳的测量基准值。
对比例2
另取一股前述的配制的氯仿水溶液,加约6摩尔每升的磷酸,抽真空吹扫去除无机碳后,以大约0.5毫升每分钟的流速进入与对比例1中相同的总有机碳分析仪,测得其总有机碳为158ppb,无机碳为16ppb,可见与对比例1得到的测量基准值相比,在氯仿水溶液中无机碳被抽真空吹扫去除的同时,过半的有机碳(挥发性有机物)也损失了,测得的总有机碳远低于测量基准值。
例1
在一容器(玻璃烧杯)内放置一特氟隆
Figure PCTCN2015000844-appb-000003
AF弯管,以得到如图2所示意的用于去除无机碳的设备。
再取一股前述的配制的氯仿水溶液,以约0.5微升每分钟的流速分别通入弯管内的第一空间和弯管外、容器内的第二空间。向第一空间加入约6摩尔每升的磷酸,向第二空间提供使氯仿水溶液pH>7的氢氧化钠和约0.01摩尔每升的乙二胺四乙酸。
从第一空间得到的分析流以大约0.5毫升每分钟的流速进入与对比例1相同的总有机碳分析仪,测得其总有机碳为375ppb,无机碳为327ppb,可见与对比例1的测量基准值相比,在氯仿水溶液无机碳降低多半的情况下,有机碳减少的量微不足道,从而得到的总有机碳数值更为可靠、准确。
虽然结合特定的实施例对本发明进行了表明,但本领域的技术人员可以理解,对本发明可以作出许多修改和变型。因此,要认识到,权利要求书的意图在于覆盖在本发明真正构思和范围内的所有这些修改和变型。

Claims (10)

  1. 一种用于去除无机碳的设备,其包括:
    第一空间,其用于接收含有第一浓度的无机碳的第一水流并提供由所述无机碳转化而来的二氧化碳和含有第二浓度的无机碳的分析流,所述第二浓度低于所述第一浓度;及,
    第二空间,其用于接收第二水流并吸收来自所述第一空间的所述二氧化碳。
  2. 如权利要求1所述的用于去除无机碳的设备,其特征在于所述第一空间和所述第二空间具有相同浓度的可挥发性有机物。
  3. 如权利要求1所述的用于去除无机碳的设备,其特征在于其包括用于分隔所述第一水流和所述第二水流且通过所述二氧化碳的分离结构。
  4. 如权利要求1所述的用于去除无机碳的设备,其特征在于其包括用于把所述二氧化碳从所述第一空间传输到所述第二空间的通道。
  5. 一种用于检测总有机碳的装置,其包括:
    如权利要求1至4中任一项所述的设备;及
    总有机碳分析仪,其用于接收所述分析流并测量所述分析流中的总有机碳。
  6. 一种用于去除无机碳的方法,其包括:
    在第一空间接收含有第一浓度的无机碳的第一水流并提供由所述无机碳转化而来的二氧化碳和含有第二浓度的无机碳的分析流,所述第二浓度低于所述第一浓度;
    在第二空间接收第二水流并吸收来自所述第一空间的所述二氧化碳。
  7. 如权利要求6所述的用于去除无机碳的方法,其特征在于所述第一空间和所述第二空间具有相同浓度的可挥发性有机物。
  8. 如权利要求6所述的用于去除无机碳的方法,其特征在于其包括向所述第一空间提供反应物以将所述无机碳转化为所述二氧化碳。
  9. 如权利要求6所述的用于去除无机碳的方法,其特征在于其包括向所述第二空间提供反应物以吸收所述二氧化碳。
  10. 一种用于检测总有机碳的方法,包括:
    如权利要求6至9中任意一项所述的用于去除无机碳的方法;及,
    用总有机碳分析仪测量所述分析流的总有机碳。
PCT/CN2015/000844 2014-12-03 2015-12-03 用于去除无机碳的设备和方法及用于检测总有机碳的装置和方法 WO2016086507A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017529034A JP2018501473A (ja) 2014-12-03 2015-12-03 無機炭素を除去するためのデバイス及び方法、並びに全有機炭素を検出するための装置及び方法
EP15865044.0A EP3229016A4 (en) 2014-12-03 2015-12-03 Device and method used for removing inorganic carbon, and apparatus and method used for detecting total organic carbon
CA2969357A CA2969357A1 (en) 2014-12-03 2015-12-03 Device and method for removing inorganic carbon and apparatus and method for measuring total organic carbon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410724329.2A CN105716927A (zh) 2014-12-03 2014-12-03 用于去除无机碳的设备和方法及用于检测总有机碳的装置和方法
CN201410724329.2 2014-12-03

Publications (1)

Publication Number Publication Date
WO2016086507A1 true WO2016086507A1 (zh) 2016-06-09

Family

ID=56090888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000844 WO2016086507A1 (zh) 2014-12-03 2015-12-03 用于去除无机碳的设备和方法及用于检测总有机碳的装置和方法

Country Status (5)

Country Link
EP (1) EP3229016A4 (zh)
JP (1) JP2018501473A (zh)
CN (1) CN105716927A (zh)
CA (1) CA2969357A1 (zh)
WO (1) WO2016086507A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112986453B (zh) * 2021-05-11 2021-07-20 中国科学院地质与地球物理研究所 一种对石笋中的有机碳同位素进行高分辨率测定的方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0471067A1 (en) * 1990-03-02 1992-02-19 Sievers Research, Inc. Method and apparatus for the determination of dissolved carbon in water
JP2006300633A (ja) * 2005-04-19 2006-11-02 Shimadzu Corp 全有機体炭素測定装置
WO2008114410A1 (ja) * 2007-03-20 2008-09-25 Shimadzu Corporation 全有機体炭素測定装置
CN102042981A (zh) * 2010-11-09 2011-05-04 厦门大学 溶解无机碳原位测定仪
CN203324080U (zh) * 2013-07-05 2013-12-04 苏州埃兰分析仪器有限公司 总无机碳反应气体冷却脱水装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820823A (en) * 1990-03-02 1998-10-13 Sievers Instruments, Inc. Method and apparatus for the measurement of dissolved carbon
JP2822711B2 (ja) * 1991-07-29 1998-11-11 株式会社島津製作所 有機炭素測定装置
WO1997021096A1 (en) * 1995-12-04 1997-06-12 Sievers Instruments, Inc. Method and apparatus for the measurement of dissolved carbon
JPWO2006126296A1 (ja) * 2005-05-26 2008-12-25 株式会社島津製作所 全有機体炭素測定方法、全窒素量測定方法及びそれらの測定方法に用いる測定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0471067A1 (en) * 1990-03-02 1992-02-19 Sievers Research, Inc. Method and apparatus for the determination of dissolved carbon in water
US5132094A (en) * 1990-03-02 1992-07-21 Sievers Instruments, Inc. Method and apparatus for the determination of dissolved carbon in water
JP2006300633A (ja) * 2005-04-19 2006-11-02 Shimadzu Corp 全有機体炭素測定装置
WO2008114410A1 (ja) * 2007-03-20 2008-09-25 Shimadzu Corporation 全有機体炭素測定装置
CN102042981A (zh) * 2010-11-09 2011-05-04 厦门大学 溶解无机碳原位测定仪
CN203324080U (zh) * 2013-07-05 2013-12-04 苏州埃兰分析仪器有限公司 总无机碳反应气体冷却脱水装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3229016A4 *

Also Published As

Publication number Publication date
EP3229016A4 (en) 2018-05-09
CN105716927A (zh) 2016-06-29
CA2969357A1 (en) 2016-06-09
EP3229016A1 (en) 2017-10-11
JP2018501473A (ja) 2018-01-18

Similar Documents

Publication Publication Date Title
US9410872B2 (en) Exhaust gas flowmeter and exhaust gas analyzing system
US7830508B2 (en) Method and assembly for determining soot particles in a gas stream
CN106290163B (zh) 一种大气中五氧化二氮和硝酸浓度在线监测系统及监测方法
CN206772932U (zh) 一种在线检测混合气体浓度的装置
Dinh et al. Moisture removal techniques for a continuous emission monitoring system: A review
CN102564823A (zh) 连续测定海水/高盐废水toc浓度的装置及方法
WO2016086507A1 (zh) 用于去除无机碳的设备和方法及用于检测总有机碳的装置和方法
EP2420846A3 (en) Chemical analysis apparatus
CN204028046U (zh) 膜富集采样装置
CN105699160A (zh) 一种去除载气中痕量汞的方法及装置
CN104267092A (zh) 一种利用质谱仪测试铪同位素的方法
JP5147920B2 (ja) 排ガス採取器具及びこれを用いたアンモニア採取方法
CN206515230U (zh) 一种同时测量空气中亚硝酸、臭氧、二氧化氮的设备
CN105548507A (zh) 大气颗粒物中硫酸盐的测定装置及其测定方法
CN103674927A (zh) 温度波动条件下拉曼光谱定量检测中的修正方法
JP4188096B2 (ja) 測定装置
CN111521605A (zh) 一种测定气相臭氧浓度的简易装置和方法
CN207689371U (zh) 微型化超低记忆效应原子荧光痕量测汞仪
CN110411961A (zh) 一种测定水中痕量氰化物的装置与方法
CN205506789U (zh) 大气颗粒物中硫酸盐的测定装置
CN113654853B (zh) 一种适用于高湿烟气的so3分区分类采样装置与采样方法
JP7337349B2 (ja) アルデヒド測定装置、アセトアルデヒド測定管
CN107037115A (zh) 一种icp‑ms氢化物进样系统及其检测氢化物的方法
US7608230B2 (en) Sample conditioning system for removing selenium from a gas stream
CN216433672U (zh) 一种尾气在线采样稀释装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865044

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015865044

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017529034

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2969357

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE