WO2016086412A1 - 光波导 - Google Patents

光波导 Download PDF

Info

Publication number
WO2016086412A1
WO2016086412A1 PCT/CN2014/093140 CN2014093140W WO2016086412A1 WO 2016086412 A1 WO2016086412 A1 WO 2016086412A1 CN 2014093140 W CN2014093140 W CN 2014093140W WO 2016086412 A1 WO2016086412 A1 WO 2016086412A1
Authority
WO
WIPO (PCT)
Prior art keywords
slit
refractive index
vertical
ridge
horizontal
Prior art date
Application number
PCT/CN2014/093140
Other languages
English (en)
French (fr)
Inventor
王健
桂成程
贺继方
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/093140 priority Critical patent/WO2016086412A1/zh
Priority to CN201480081906.9A priority patent/CN107076923A/zh
Publication of WO2016086412A1 publication Critical patent/WO2016086412A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths

Definitions

  • Embodiments of the present invention relate to the field of optical waveguides and, more particularly, to an optical waveguide.
  • OEIC OptoElectronic Integrated Circuit
  • Silicon-based Optical Waveguide uses silicon (refractive index n ⁇ 3.5@1550nm) as the waveguide ridge material and low refractive index material such as silicon dioxide (refractive index n ⁇ 1.5@1550nm) as the waveguide substrate material.
  • a high refractive index difference is formed between the waveguide substrate and the ridge. This high refractive index difference results in an exponential reduction in the size of the silicon-based optical device compared to conventional silicon-based optical devices.
  • a silicon dioxide waveguide typically requires a bend radius of 1000 microns to achieve very low Leakage Loss, while for a silicon waveguide, a 10 micron bend radius can meet the same performance requirements.
  • silicon materials are also the basic materials for integrated circuit fabrication.
  • silicon-based optical waveguides can be compatible with Complementary Metal Oxide Semiconductor (CMOS) processes, which means the fabrication of silicon-based optical waveguide devices.
  • CMOS Complementary Metal Oxide Semiconductor
  • silicon-based devices can also process signals in the all-optical field, avoiding the rate limitations imposed by conventional "optical-electric-optical" processing of signals in the electrical field, so silicon-based devices also have fast speed characteristics.
  • Silicon-based technologies are widely recognized as key technologies in the future of optical communications, optical computing, and optical sensing due to their small size, fast speed, and compatibility with CMOS processes.
  • a silicon-based optical waveguide based on a silicon-on-insulator (SOI) material on an insulating substrate can limit the transmitted light field to a micro-nano structure ridge in the order of micrometers due to a high refractive index difference, thereby improving a silicon-based device.
  • Nonlinearity Due to the continuity of the electrical displacement vector (ie, the discontinuity of the electric field), the silicon-based slit waveguide can limit the optical field to a slit region of several tens of nanometers, which can further improve the nonlinearity of the device.
  • current silicon-based slot waveguide structures are limited to light in a single polarization state, which is required for the polarization state of the input light, which increases the additional loss of input light.
  • Embodiments of the present invention provide an optical waveguide, so that the limitation of the polarization state of the input light by the slot waveguide can be avoided, and the additional loss of the input light can be reduced.
  • an optical waveguide comprising: a substrate using a first material; a ridge disposed on a surface of the substrate, the ridge adopting a second material, and the refractive index of the first material is less than a refractive index of the two materials; a slit waveguide disposed in the ridge, the slit waveguide including at least one vertical slit and at least one horizontal slit, the vertical slit adopting a third material, the horizontal slit adopting a a fourth material having a refractive index smaller than a refractive index of the second material, the fourth material having a refractive index smaller than a refractive index of the second material, the vertical slit being perpendicular to a surface of the substrate, the horizontal slit
  • the surfaces of the substrates are parallel.
  • an absolute value of a difference between a refractive index of the first material and a refractive index of the second material is greater than a first threshold, and a refractive index of the third material is different from a second material
  • the absolute value of the difference in refractive index is greater than the second threshold, and the absolute value of the difference between the refractive index of the fourth material and the refractive index of the second material is greater than a third threshold.
  • a Kerr coefficient of the third material is greater than a Kerr coefficient of the second material, and a Kerr coefficient of the fourth material is greater than that of the second material Kerr coefficient.
  • the second material is any one of the following materials: silicon, silicon nitride.
  • the third material is any one of the following materials: silicon nanocrystal, silicon nitride, organic high molecular polymer; fourth The material is any one of the following materials: silicon nanocrystals, silicon nitride, and organic high molecular polymers.
  • the first material is any one of the following materials: silicon dioxide, silicon nanocrystal, silicon nitride, organic polymer polymerization Things.
  • the slot waveguide is a U-shaped slot waveguide comprising two vertical slits and one horizontal slit.
  • the width of the vertical slit ranges from [5 nm, 80 nm]
  • the height of the vertical slit ranges from [100 nm, 200 nm
  • the horizontal slit has a width in the range of [200 nm, 400 nm]
  • the horizontal slit has a height in the range of [5 nm, 80 nm].
  • two or more vertical slits have the same width; or two or more horizontal slits
  • the height is the same; or the width of the at least one vertical slit is the same as the height of the at least one horizontal slit.
  • the second material has a refractive index range of [1.5, 4].
  • Embodiments of the present invention utilize a refractive index difference between a material of a substrate and a ridge and a refractive index difference between a material of a slit and a ridge by providing at least one vertical slit and at least one horizontal slit in a ridge of the optical waveguide.
  • Transverse Magnetic (TM) mode light can be confined in the horizontal slit
  • Transverse Electric (TE) mode light can be confined in the vertical slit, so that the slit waveguide pair input light can be avoided.
  • the limitation of the polarization state can reduce the extra loss of input light.
  • Figure 1 is a schematic illustration of an optical waveguide in accordance with one embodiment of the present invention.
  • Fig. 2 is a plan view showing the simulation of an optical waveguide in which a slit waveguide is U-shaped according to an embodiment of the present invention.
  • Fig. 3 is a plan view showing the structure of an optical waveguide according to another embodiment of the present invention.
  • Fig. 4 is a plan view showing the structure of an optical waveguide according to still another embodiment of the present invention.
  • Fig. 5 is a plan view showing the structure of an optical waveguide according to still another embodiment of the present invention.
  • FIG. 1 is a schematic illustration of an optical waveguide in accordance with one embodiment of the present invention.
  • the optical waveguide of FIG. 1 includes a substrate 11, a ridge 12, and a slit waveguide 13.
  • the substrate 11 may be made of a first material.
  • the ridge 12 is disposed on the surface 111 of the substrate 11.
  • the ridge 12 can employ a second material.
  • the refractive index of the first material is less than the refractive index of the second material.
  • the slit waveguide 13 is disposed within the ridge 12.
  • the slit waveguide 13 includes at least one vertical slit and at least one horizontal slit.
  • a third material may be used for the vertical slit and a fourth material may be used for the horizontal slit.
  • the refractive index of the third material is less than the refractive index of the second material, and the refractive index of the fourth material is less than the refractive index of the second material.
  • the vertical slit is perpendicular to the surface 111 of the substrate 11, and the horizontal slit is parallel to the surface 111 of the substrate 11.
  • Embodiments of the present invention utilize a refractive index difference between a material of a substrate and a ridge and a refractive index difference between a material of a slit and a ridge by providing at least one vertical slit and at least one horizontal slit in a ridge of the optical waveguide.
  • the TM mode light can be confined in the horizontal slit, and the TE mode light can be confined in the vertical slit, which can avoid the limitation of the polarization state of the input light by the slit waveguide, and can reduce the additional loss of the input light.
  • the refractive index of the first material is less than the refractive index of the second material, that is, the refractive index of the substrate material is less than the refractive index of the ridge material, which limits the light to the ridge portion.
  • the refractive index of the third material is smaller than the refractive index of the second material
  • the refractive index of the fourth material is smaller than the refractive index of the second material, that is, the refractive index of the vertical slit material is smaller than the refractive index of the ridge material, and the horizontal slit material
  • the refractive index is smaller than the refractive index of the ridge material.
  • the electric field Due to the continuity of the electrical displacement vector, in the edge region where the high and low refractive index materials are in contact, the electric field has a mutation, and the slit waveguide can restrict the optical field of the electric field abrupt region to the slit. Thereby, the light field of the slit can be enhanced.
  • Embodiments of the present invention limit light of any polarization state to horizontal slits and/or vertical slits by using at least one vertical slit and at least one horizontal slit in the ridge of the optical waveguide, using high and low refractive index differences, The ability to reduce the effective area of light can greatly improve the nonlinearity of the entire device.
  • embodiments of the present invention do not limit the number of vertical slits and the number of horizontal slits. Due to the presence of at least one horizontal slit, the slit waveguide forms a high and low refractive index difference in the vertical direction, so that the polarization direction is TM mode light perpendicular to the surface of the substrate, and there is an electric field at the interface between the horizontal slit and the ridge.
  • the slit waveguide forms a high and low refractive index difference in the horizontal direction, so that the polarization direction is parallel to
  • the TE mode light on the surface of the substrate has a sudden change in electric field at the interface of the two different materials, the vertical slit and the ridge, so that most of the TE mode light can be confined to the vertical slit.
  • the slit waveguide of the embodiment of the present invention includes at least one vertical slit and at least one horizontal slit, which may At the same time, the TM mode light is confined to the horizontal slit, and the TE mode light is confined to the vertical slit, that is, the light of any polarization state can be restricted to the horizontal slit and/or the vertical slit, and the polarization state of the input light is not Requirements, which can reduce the extra loss of input light, can improve the nonlinearity of the entire device.
  • the number of horizontal slits and the number of vertical slits may be the same or different.
  • the number of slits is increased, more light can be confined in the slit, which can further improve the nonlinearity of the device.
  • the absolute value of the difference between the refractive index of the first material and the refractive index of the second material may be greater than a first threshold, and the absolute value of the difference between the refractive index of the third material and the refractive index of the second material may be greater than a second threshold, fourth The absolute value of the difference between the refractive index of the material and the refractive index of the second material may be greater than a third threshold.
  • first threshold is larger, more light can be confined to the ridge portion.
  • the second threshold is larger, more light can be confined in the vertical slit.
  • the third threshold is larger, more light can be confined to the horizontal slit.
  • the refractive index of the horizontal slit material the stronger the limiting effect on the TM mode light, and the larger the light field of the horizontal slit.
  • the smaller the refractive index of the vertical slit material the stronger the limiting effect on the TE mode light, and the larger the light field of the vertical slit.
  • the substrate material, the ridge material and the slit material are not limited in the embodiment of the present invention, as long as the refractive index of the first material (ie, the substrate material) is smaller than the refractive index of the second material (ie, the ridge material), the third material (ie, the vertical slit material) has a refractive index smaller than that of the second material (ie, the ridge material), and the fourth material (ie, the horizontal slit material) has a refractive index smaller than that of the second material (ie, the ridge material).
  • the third material and the first material may be the same material or different materials.
  • the fourth material and the first material may be the same material or different materials.
  • the third material and the fourth material may be the same material or different materials.
  • different horizontal slits may also use different materials.
  • different vertical slits may also use different materials.
  • the embodiments of the present invention do not limit this. In order to make the manufacturing process simple, usually the third material and the fourth material are the same.
  • the third material may be any one of the following materials: silicon nanocrystals, silicon nitride, and organic high molecular polymers.
  • the fourth material may be any one of the following materials: silicon nanocrystals, silicon nitride, organic high molecular polymers.
  • the first material may also be any of the following materials: silicon dioxide, silicon nanocrystals, silicon nitride, organic high molecular polymers.
  • the second material may have a refractive index range of [1.5, 4].
  • the second material can be silicon or silicon nitride.
  • the first material when the second material is silicon, the first material may be silicon dioxide, the third material may be an organic high molecular polymer, and the fourth material may be an organic high molecular polymer.
  • the second material when the second material is silicon nitride, the first material may be silicon nanocrystals, the third material may be an organic high molecular polymer, and the fourth material may be an organic high molecular polymer.
  • the embodiment of the present invention only exemplifies the case where the second material is silicon, the first material is silicon dioxide, and the third material and the fourth material are all organic polymer polymers, but the invention is not limited thereto. herein.
  • the Kerr coefficient of the third material is greater than the Kerr coefficient of the second material
  • the Kerr coefficient of the fourth material is greater than the Kerr coefficient of the second material.
  • the Kerr coefficient of the third material is greater than 4.5 x 10 -18 m 2 /W
  • the Kerr coefficient of the fourth material is greater than 4.5 x 10 -18 m 2 /W.
  • the nonlinearity of the device is proportional to the Kerr coefficient of the material and inversely proportional to the effective area of the light.
  • Embodiments of the present invention can provide a majority of light to a horizontal slit and/or a vertical slit by using at least one vertical slit and at least one horizontal slit in the ridge of the optical waveguide, with high and low refractive index differences
  • the effective effective area of the light is reduced, and at the same time, the Kerr coefficient of the slit material is greater than the Kerr coefficient of the ridge material, which can further improve the nonlinearity of the entire device.
  • the widths of the horizontal slits when there are two or more horizontal slits, the widths of the horizontal slits may be the same or different, and the heights of the horizontal slits may be the same or different.
  • the widths of the vertical slits when there are two or more vertical slits, the widths of the vertical slits may be the same or different, and the heights of the vertical slits may be the same or different.
  • the height of the at least one horizontal slit and the width of the at least one vertical slit may be the same or different.
  • the slit width in the embodiment of the present invention represents a linear distance from one end to the other end of the slit in the horizontal direction
  • the slit height represents a linear distance from one end to the other end of the slit in the vertical direction.
  • the vertical slit is perpendicular to the surface of the substrate, which means that the angle formed by the vertical slit and the surface of the substrate satisfies a substantially vertical condition, for example, vertical due to a difference in manufacturing process.
  • the angle formed by the slit to the surface of the substrate is in the range of [85°, 95°], which is still considered to be “vertical” in the embodiment of the present invention and falls within the scope of protection of the present invention.
  • the horizontal slit is parallel to the surface of the substrate, which means that the angle formed by the horizontal slit and the surface of the substrate satisfies substantially parallel conditions, for example, the horizontal slit is caused by the difference in manufacturing process.
  • the angle formed by the surface of the substrate is [-5°, 5°], which is still considered to be "parallel" in the embodiment of the present invention, and falls within the protection scope of the present invention.
  • the embodiment of the present invention does not limit the number of vertical slits and the number of horizontal slits. Moreover, the horizontal slit and the vertical slit may or may not be connected. As long as at least one horizontal slit and at least one vertical slit are present.
  • the embodiment of the present invention does not limit the width of the substrate and the width of the ridge.
  • the ridge covers a portion of the surface of the substrate.
  • the width of the substrate is in the order of micrometers, and the width of the ridge ranges from [ 400 nm, 600 nm].
  • Fig. 2 is a plan view showing the simulation of an optical waveguide in which a slit waveguide is U-shaped according to an embodiment of the present invention.
  • the optical waveguide of FIG. 2 includes a substrate 21, a ridge 22, and a U-shaped slit waveguide 23.
  • the direction of light transmission in Figure 2 is perpendicular to the plane in Figure 2.
  • the substrate 21 in which the slit waveguide is a U-shaped optical waveguide may be filled with a silicon dioxide material
  • the ridge 22 may be filled with a silicon material
  • the U-shaped slit waveguide 23 may be a gram. Filled with an organic polymer having a high coefficient.
  • the U-shaped slit waveguide 23 includes a horizontal slit and two vertical slits, and one end of the horizontal slit is connected to the two lower ends of the two vertical slits, respectively.
  • the width W of the horizontal slit of the U-shaped waveguide ranges from [200 nm, 400 nm] (less than the width of the ridge), and the height Ws of the horizontal slit ranges from [ 5nm, 80nm], the width Ws of the two vertical slits are all in the range of [5nm, 80nm], and the height H of the two vertical slits is in the range of [100nm, 200nm] (less than the ridge height).
  • the TM mode light can be simulated using a COMSOL-RF module-mixed mode wave.
  • the refractive index of the substrate material of the U-shaped optical waveguide of the slit waveguide is smaller than the refractive index of the ridge material, and the refractive index difference can confine the light to the middle of the ridge.
  • the electric field direction is the vertical direction for the TM mode light
  • the vertical slit material has a refractive index smaller than the refractive index of the ridge material at the edge of the vertical direction of the high and low refractive index contact.
  • the electric field In the region, due to the continuity of the electric displacement vector, the electric field will be abrupt in the vertical direction.
  • the high and low refractive index difference can limit the part of the TM mode light in the electric field abrupt region to the horizontal slit, which can enhance the optical field of the horizontal slit.
  • the TE mode light can be simulated using a COMSOL-RF module-mixed mode wave.
  • the refractive index of the substrate material of the U-shaped optical waveguide of the slit waveguide is smaller than the refractive index of the ridge material, and the refractive index difference can confine the light to the middle of the ridge.
  • the electric field direction is horizontal for the TE mode light, and the horizontal direction of the high-low refractive index contact is due to the refractive index of the vertical slit material being smaller than the refractive index of the ridge material.
  • the electric field will be abruptly changed in the horizontal direction, high and low refraction
  • the rate difference can limit part of the TE mode light to the vertical slit, thereby enabling the light field of the vertical slit to be enhanced.
  • the refractive index of the substrate material is smaller than the refractive index of the ridge material, and the light can be confined to the middle of the ridge, and for the slit waveguide, after the slit waveguide is disposed inside the ridge, A part of the light field is confined in the slit, so that the light field of the slit is enhanced, and a part of the light field is still present in the middle of the ridge, because the two vertical slits of the U-shaped slit waveguide are located in the middle of the ridge. On both sides, therefore, for TE mode light, in addition to the enhancement of the light field in the vertical slit, bright spots may appear in the middle of the ridge.
  • the position of the vertical slit and the position of the horizontal slit are not limited in the embodiment of the present invention.
  • the size of silicon-based devices can be designed according to the communication band. Generally, the wavelength of the communication band is on the order of micrometers, the size of the silicon-based device is smaller than the communication wavelength, the ridge in the waveguide is on the order of nanometers, and the wavelength of the communication band is larger than the size of the waveguide. Due to the high refractive index difference of the silicon-based device, the light is well limited in the device.
  • the TM mode light can be confined in the horizontal slit
  • the TE is The mode light is confined within the vertical slit such that the light field is confined to the slit region and light can be transmitted in the horizontal slit and the vertical slit.
  • the number of horizontal slits or vertical slits is increased, more light can be confined in the slit, and the additional loss of light can be reduced as much as possible, which can further improve the nonlinearity of the device.
  • the horizontal slit and the vertical slit are both disposed near the middle of the ridge, the effect of the slit on the light can be enhanced.
  • the embodiment of the present invention does not limit the number of vertical slits and the number of horizontal slits, and the horizontal slits and the vertical slits may or may not be connected. It is within the scope of the invention as long as at least one horizontal slit and at least one vertical slit are present.
  • the slit waveguide may have a structure as shown in FIG. 3, the slit waveguide may also have the structure shown in FIG. 4, and the slit waveguide may also have the structure shown in FIG.
  • Fig. 3 is a plan view showing the structure of an optical waveguide according to another embodiment of the present invention.
  • the optical waveguide of FIG. 3 includes a substrate 31, a ridge 32, and a slit waveguide 33.
  • the direction of light transmission in Figure 3 is perpendicular to the plane in Figure 3.
  • the slit waveguide 33 includes a horizontal slit and a vertical slit.
  • the horizontal slits and the vertical slits may be intersected into an L-shaped structure as shown in FIG.
  • Fig. 4 is a plan view showing the structure of an optical waveguide according to still another embodiment of the present invention.
  • the optical waveguide of FIG. 4 includes a substrate 31, a ridge 32, and a slit waveguide 33.
  • the direction of light transmission in Figure 4 is perpendicular to the plane in Figure 4.
  • the slit waveguide 33 includes a horizontal slit and a vertical slit.
  • the horizontal slits and the vertical slits may be crossed into a cross structure as shown in FIG.
  • Fig. 5 is a plan view showing the structure of an optical waveguide according to still another embodiment of the present invention.
  • the optical waveguide of FIG. 5 includes a substrate 31, a ridge 32, and a slit waveguide 33.
  • the direction of light transmission in Figure 5 is perpendicular to the plane in Figure 5.
  • the slit waveguide 33 includes two horizontal slits and two vertical slits.
  • the two horizontal slits and the two vertical slits may cross each other into a well-word structure as shown in FIG.
  • the substrate adopts the first material
  • the ridge can adopt the second material
  • the vertical slit can adopt the third material
  • the horizontal slit can adopt the fourth material.
  • the material the refractive index of the first material is less than the refractive index of the second material
  • the refractive index of the third material is less than the refractive index of the second material
  • the refractive index of the fourth material is less than the refractive index of the second material.
  • an absolute value of a difference between a refractive index of the first material and a refractive index of the second material may be greater than a first threshold, and a refractive index of the third material and a refractive index of the second material
  • the absolute value of the difference may be greater than a second threshold, and the absolute value of the difference between the refractive index of the fourth material and the refractive index of the second material may be greater than a third threshold.
  • the Kerr coefficient of the third material is greater than the Kerr coefficient of the second material
  • the Kerr coefficient of the fourth material is greater than the Kerr coefficient of the second material
  • the second material is any one of the following materials: silicon, silicon nitride.
  • the third material is any one of the following materials: silicon nanocrystal, silicon nitride, organic high molecular polymer; and the fourth material is any one of the following materials: : Silicon nanocrystals, silicon nitride, organic polymer.
  • the first material is any one of the following materials: silicon dioxide, silicon nanocrystals, silicon nitride, and an organic high molecular polymer.
  • two or more vertical slits have the same width; or two or more horizontal slits have the same height; or at least one vertical
  • the width of the slit is the same as the height of at least one horizontal slit.
  • the second material may have a refractive index range of [1.5, 4].
  • Silicon-based photonic integration technology is widely regarded as the key to future optical communication, optical computing, and optical sensing because of its small size, fast speed, low cost, good stability, and compatibility with CMOS processes. technology. Therefore, the embodiment of the present invention is exemplified only by taking a silicon-based slit waveguide as an example, but the present invention is not limited thereto.
  • an embodiment or “an embodiment” as used throughout the specification means Particular features, structures or characteristics relating to the embodiments are included in at least one embodiment of the invention. Thus, “in one embodiment” or “in an embodiment” or “an” In addition, these particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种光波导,该光波导包括衬底(11),该衬底采用第一材料;设置在该衬底(11)的表面(111)上的脊(12),该脊(12)采用第二材料,第一材料的折射率小于第二材料的折射率;设置在该脊(12)内的狭缝波导(13),该狭缝波导(13)包括至少一个竖直狭缝和至少一个水平狭缝,该竖直狭缝采用第三材料,该水平狭缝采用第四材料,第三材料的折射率小于第二材料的折射率,第四材料的折射率小于第二材料的折射率,该竖直狭缝与该衬底的表面(111)垂直,该水平狭缝与该衬底的表面(111)平行。通过在光波导的脊(12)内设置至少一个竖直狭缝和至少一个水平狭缝,利用光波导材料的折射率差将光限制在狭缝中,可以避免狭缝波导(13)对输入光的偏振态的限制,能够减少输入光额外的损耗。

Description

光波导 技术领域
本发明实施例涉及光波导领域,并且更具体地,涉及一种光波导。
背景技术
硅电子器件在电子行业占据主导地位。近年来,硅基光子集成技术已经发展成为除磷化铟(InP)、砷化镓(GaAs)之外的另一大光子集成体系。将光学器件与电子器件集成到一块芯片上,实现光电集成(OptoElectronic Integrated Circuit,OEIC)是集成光学领域追求的目标。
硅基光波导(Silicon-based Optical Waveguide)以硅(折射率n≈3.5@1550nm)为波导脊材料,以二氧化硅(折射率n≈1.5@1550nm)等低折射率材料为波导衬底材料,在波导衬底和脊之间形成高折射率差。这一高折射率差使得硅基光器件的尺寸与传统二氧化硅基光器件相比,获得了指数级的减小。以波导弯曲半径为例,二氧化硅波导通常需要1000微米的弯曲半径才能实现极低的泄露损耗(Leakage Loss),而对于硅波导来说,10微米的弯曲半径即可满足同样的性能需求。不仅如此,硅材料还是集成电路制作的基本材料,硅基光波导的加工工艺能够与互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)工艺相兼容,这就意味着硅基光波导器件的制作成本较低,且易实现。另外,硅基器件还可以在全光领域对信号进行处理,可以避免采用传统的“光-电-光”在电领域处理信号时带来的速率限制,所以硅基器件还具有速度快的特性。正由于硅基器件具有尺寸小、速度快以及与CMOS工艺相兼容的特性,因此硅光技术被普遍看作未来光通信、光计算和光传感等领域的关键技术。
基于绝缘衬底上的硅(Silicon-On-Insulator,SOI)材料的硅基光波导由于高折射率差,可以将传输光场限制在微米量级的微纳结构脊中,能够提高硅基器件的非线性。由于电位移矢量的连续性(即,电场的不连续性),硅基狭缝波导可以将光场限制在几十纳米的狭缝区域,可以进一步提高器件的非线性。但是,目前硅基狭缝波导结构仅限于单个偏振态的光,对于输入光的偏振态有要求,这样会增加输入光的额外的损耗。
发明内容
本发明实施例提供一种光波导,从而可以避免狭缝波导对输入光的偏振态的限制,能够减少输入光额外的损耗。
第一方面,提供了一种光波导,包括:衬底,该衬底采用第一材料;设置在该衬底的表面上的脊,该脊采用第二材料,第一材料的折射率小于第二材料的折射率;设置在该脊内的狭缝波导,该狭缝波导包括至少一个竖直狭缝和至少一个水平狭缝,该竖直狭缝采用第三材料,该水平狭缝采用第四材料,第三材料的折射率小于第二材料的折射率,第四材料的折射率小于第二材料的折射率,该竖直狭缝与该衬底的表面垂直,该水平狭缝与该衬底的表面平行。
结合第一方面,在第一方面的一种实现方式中,第一材料的折射率与第二材料的折射率之差的绝对值大于第一阈值,第三材料的折射率与第二材料的折射率之差的绝对值大于第二阈值,第四材料的折射率与第二材料的折射率之差的绝对值大于第三阈值。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,第三材料的克尔系数大于第二材料的克尔系数,第四材料的克尔系数大于第二材料的克尔系数。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,第二材料为下列材料中的任意一种:硅、氮化硅。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,第三材料为下列材料中的任意一种:硅纳米晶、氮化硅、有机高分子聚合物;第四材料为下列材料中的任意一种:硅纳米晶、氮化硅、有机高分子聚合物。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,第一材料为下列材料中的任意一种:二氧化硅、硅纳米晶、氮化硅、有机高分子聚合物。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,狭缝波导为包括两个竖直狭缝和一个水平狭缝构成的U型狭缝波导。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该竖直狭缝的宽度范围为[5nm,80nm],该竖直狭缝的高度范围为[100nm,200nm],该水平狭缝的宽度范围为[200nm,400nm],该水平狭缝的高度范围为[5nm,80nm]。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,两个或两个以上的竖直狭缝的宽度相同;或者,两个或两个以上的水平狭缝的高度相同;或者,至少一个竖直狭缝的宽度和至少一个水平狭缝的高度相同。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,第二材料的折射率范围为[1.5,4]。
本发明的实施例通过在光波导的脊内设置至少一个竖直狭缝和至少一个水平狭缝,利用衬底和脊两部分材料的折射率差以及狭缝和脊两部分材料的折射率差,可以将横磁(Transverse Magnetic,TM)模光限制在水平狭缝内,并能够将横电(Transverse Electric,TE)模光限制在竖直狭缝内,这样可以避免狭缝波导对输入光的偏振态的限制,能够减少输入光的额外损耗。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例的光波导的示意图。
图2是本发明一个实施例的狭缝波导为U型的光波导仿真时的平面结构图。
图3是本发明另一实施例的光波导的平面结构图。
图4是本发明再一实施例的光波导的平面结构图。
图5是本发明再一实施例的光波导的平面结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
图1是本发明一个实施例的光波导的示意图。图1的光波导包括衬底11、脊12和狭缝波导13。
衬底11可采用第一材料。
脊12设置在衬底11的表面111上。该脊12可采用第二材料。第一材料的折射率小于第二材料的折射率。
狭缝波导13设置在脊12内。该狭缝波导13包括至少一个竖直狭缝和至少一个水平狭缝。竖直狭缝可采用第三材料,水平狭缝可采用第四材料。第三材料的折射率小于第二材料的折射率,第四材料的折射率小于第二材料的折射率。竖直狭缝与衬底11的表面111垂直,水平狭缝与衬底11的表面111平行。
本发明的实施例通过在光波导的脊内设置至少一个竖直狭缝和至少一个水平狭缝,利用衬底和脊两部分材料的折射率差以及狭缝和脊两部分材料的折射率差,可以将TM模光限制在水平狭缝内,并能够将TE模光限制在竖直狭缝内,这样可以避免狭缝波导对输入光的偏振态的限制,能够减少输入光额外的损耗。
具体地,第一材料的折射率小于第二材料的折射率,也就是衬底材料的折射率小于脊材料的折射率,该折射率差可以把光限制在脊部分。第三材料的折射率小于第二材料的折射率,第四材料的折射率小于第二材料的折射率,也就是竖直狭缝材料的折射率小于脊材料的折射率,水平狭缝材料的折射率小于脊材料的折射率,由于电位移矢量的连续性,在高低折射率两种材料接触的边缘区域,使得电场有一个突变,狭缝波导可以将电场突变区域的光场限制在狭缝里,从而能够使得狭缝的光场增强。
本发明的实施例通过在光波导的脊内设置至少一个竖直狭缝和至少一个水平狭缝,利用高低折射率差将任意偏振态的光限制在水平狭缝和/或竖直狭缝,能够使光的有效作用面积减小,可以很大程度上提高整个器件的非线性。
应理解,本发明实施例对竖直狭缝的数目和水平狭缝的数目不做限制。由于存在至少一个水平狭缝,狭缝波导在竖直方向上形成高低折射率差,使得偏振方向为垂直于衬底表面的TM模光在水平狭缝和脊两种不同的材料交界面有电场的突变,从而可以将大部分TM模光限制在中间的水平狭缝;同理,由于存在至少一个竖直狭缝,狭缝波导在水平方向上形成高低折射率差,使得偏振方向为平行于衬底表面的TE模光在竖直狭缝和脊两种不同的材料交界面有电场的突变,从而能够将大部分TE模光限制在竖直狭缝。因此,本发明实施例的狭缝波导包括至少一个竖直狭缝和至少一个水平狭缝,可以 同时将TM模光限制在水平狭缝,将TE模光限制在竖直狭缝,即可以将任意偏振态的光限制在水平狭缝和/或竖直狭缝,对输入光的偏振态没有要求,从而能够减少输入光额外的损耗,可以提高整个器件的非线性。
应理解,水平狭缝的数目和竖直狭缝的数目可以相同,也可以不同。当狭缝数目增多时,可以将更多的光限制在狭缝中,能够进一步提高器件的非线性。
第一材料的折射率与第二材料的折射率之差的绝对值可大于第一阈值,第三材料的折射率与第二材料的折射率之差的绝对值可大于第二阈值,第四材料的折射率与第二材料的折射率之差的绝对值可大于第三阈值。当第一阈值越大时,可以将更多的光限制在脊部分。当第二阈值越大时,能够将更多的光限制在竖直狭缝里。当第三阈值越大时,能够将更多的光限制在水平狭缝。水平狭缝材料的折射率越小,对TM模光的限制作用就会越强,水平狭缝的光场就会越大。同理,竖直狭缝材料的折射率越小,对TE模光的限制作用就会越强,竖直狭缝的光场就会越大。
本发明实施例对衬底材料、脊材料和狭缝材料都不做限制,只要满足第一材料(即衬底材料)的折射率小于第二材料(即脊材料)的折射率,第三材料(即竖直狭缝材料)的折射率小于第二材料(即脊材料)的折射率,第四材料(即水平狭缝材料)的折射率小于第二材料(即脊材料)的折射率即可。第三材料和第一材料可以为相同材料,也可以为不同材料,同理,第四材料和第一材料可以为相同材料,也可以为不同材料。
另外,第三材料和第四材料可以采用相同的材料,也可以采用不同的材料。当水平狭缝有两个或两个以上时,不同的水平狭缝也可以采用不同的材料。同理,当竖直狭缝有两个或两个以上时,不同的竖直狭缝也可以采用不同的材料。本发明实施例对此不做限制。为了制作工艺简单,通常第三材料和第四材料相同。
可选地,作为本发明的一个实施例,第三材料可以为下列材料中的任意一种:硅纳米晶、氮化硅、有机高分子聚合物。第四材料可以为下列材料中的任意一种:硅纳米晶、氮化硅、有机高分子聚合物。第一材料也可以为下列材料中的任意一种:二氧化硅、硅纳米晶、氮化硅、有机高分子聚合物。
可选地,作为本发明的一个实施例,第二材料的折射率范围可以为[1.5,4]。例如,第二材料可以为硅或者氮化硅。
例如,当第二材料为硅时,第一材料可以为二氧化硅,第三材料可以为有机高分子聚合物,第四材料可以为有机高分子聚合物。当第二次材料为氮化硅时,第一材料可以为硅纳米晶,第三材料可以为有机高分子聚合物,第四材料可以为有机高分子聚合物。应理解,本发明实施例仅以第二材料为硅,第一材料为二氧化硅,第三材料和第四材料都为有机高分子聚合物为例进行示例性说明,但本发明并不限定于此。
可选地,在本发明的一个实施例中,第三材料的克尔系数大于第二材料的克尔系数,第四材料的克尔系数大于第二材料的克尔系数。例如,当第二材料为硅时,第三材料的克尔系数大于4.5×10-18m2/W,第四材料的克尔系数大于4.5×10-18m2/W。器件的非线性与材料的克尔系数成正比,与光的有效作用面积成反比。本发明的实施例通过在光波导的脊内设置至少一个竖直狭缝和至少一个水平狭缝,利用高低折射率差将大部分光限制在水平狭缝和/或竖直狭缝,可以使光的有效作用面积减小,同时,利用狭缝材料的克尔系数大于脊材料的克尔系数,能够进一步提高整个器件的非线性。
可选地,作为本发明的一个实施例,当存在两个或两个以上的水平狭缝时,水平狭缝的宽度可以相同,也可以不同,水平狭缝的高度可以相同,也可以不同。当存在两个或两个以上的竖直狭缝时,竖直狭缝的宽度可以相同,也可以不同,竖直狭缝的高度可以相同,也可以不同。至少一个水平狭缝的高度和至少一个竖直狭缝的宽度可以相同,也可以不同。
本发明实施例中的狭缝宽度表示水平方向上从狭缝的一端到另一端的直线距离,狭缝高度表示竖直方向上从狭缝的一端到另一端的直线距离。
应理解,本发明实施例中的“垂直”和“平行”等概念可以允许适当的工艺误差。例如,本发明实施例中竖直狭缝与衬底的表面垂直,是指竖直狭缝与衬底的表面所成的角度满足基本垂直的条件,例如,由于制造工艺的差别,使得竖直狭缝与衬底表面所成的角度范围为[85°,95°],仍视为本发明实施例中的“垂直”,落在本发明的保护范围之内。同理,本发明实施例中水平狭缝与衬底的表面平行,是指水平狭缝与衬底的表面所成的角度满足基本平行的条件,例如,由于制造工艺的差别,使得水平狭缝与衬底表面所成的角度范围为[-5°,5°],仍视为本发明实施例中的“平行”,落在本发明的保护范围之内。
应理解,本发明实施例对竖直狭缝的数目和水平狭缝的数目不做限制, 而且,水平狭缝和竖直狭缝可以连接,也可以不连接。只要存在至少一个水平狭缝和至少一个竖直狭缝即可。
应理解,本发明实施例对衬底的宽度和脊的宽度不做限定,脊覆盖衬底表面的一部分,一般地,衬底的宽度在微米量级取值,脊的宽度取值范围为[400nm,600nm]。
图2是本发明一个实施例的狭缝波导为U型的光波导仿真时的平面结构图。图2的光波导包括衬底21、脊22和U型狭缝波导23。图2中光的传输方向垂直于图2中的平面。
可选地,本发明的一个实施例中,狭缝波导为U型的光波导的衬底21可采用二氧化硅材料填充,脊22可采用硅材料填充,U型狭缝波导23可采用克尔系数较高的有机高分子聚合物填充。
U型狭缝波导23包括一个水平狭缝和两个竖直狭缝,水平狭缝的一端分别与两个竖直狭缝的两个下端相连接。可选地,作为本发明的一个实施例,U型波导的水平狭缝的宽度W取值范围为[200nm,400nm](小于脊的宽度),水平狭缝的高度Ws的取值范围为[5nm,80nm],两个竖直狭缝的宽度Ws的取值范围都为[5nm,80nm],两个竖直狭缝的高度H的取值范围都为[100nm,200nm](小于脊的高度)。
基于图2示出的狭缝波导结构和参数,可以使用COMSOL-射频模块-混合模波对TM模光进行仿真。狭缝波导为U型的光波导的衬底材料折射率小于脊材料折射率,折射率差可以把光限制在脊的中间位置。在脊内部设置U型的狭缝波导之后,对于TM模光,电场方向为竖直方向,由于水平狭缝材料的折射率小于脊材料的折射率,在高低折射率接触的竖直方向的边缘区域,由于电位移矢量的连续性,电场在竖直方向上会出现突变,高低折射率差可以把电场突变区域的部分TM模光限制在水平狭缝,能够使水平狭缝的光场增强。
基于图2示出的狭缝波导结构和参数,可以使用COMSOL-射频模块-混合模波对TE模光进行仿真。狭缝波导为U型的光波导的衬底材料折射率小于脊材料折射率,折射率差可以把光限制在脊的中间位置。在脊内部设置了U型的狭缝波导之后,对于TE模光,电场方向为水平方向,由于竖直狭缝材料的折射率小于脊材料的折射率,在高低折射率接触的水平方向的边缘区域,由于电位移矢量的连续性,电场在水平方向上会出现突变,高低折射 率差可以把部分TE模光限制在竖直狭缝,从而能够使得竖直狭缝的光场增强。
对于普通光波导,包括衬底和脊,衬底材料的折射率小于脊材料的折射率,可以把光限制在脊的中间位置,而对于狭缝波导,在脊内部设置了狭缝波导之后,有一部分的光场限制在狭缝中,使得狭缝的光场增强,还有一部分的光场仍然存在于脊的中间位置,由于U型狭缝波导的两个竖直狭缝位于脊中间位置的两侧,所以,对TE模光,除了竖直狭缝中光场增强之外,脊中间位置还可能出现亮斑。
本发明实施例对竖直狭缝的位置和水平狭缝的位置不做限定。硅基器件的尺寸可以根据通信波段来设计。一般地,通信波段波长为微米量级,硅基器件的尺寸比通信波长小,波导中脊为纳米量级,通信波段的波长大于波导的尺寸。由于硅基器件的高折射率差使得光很好的限制在器件中,对于一束照射到波导中光来说,根据矢量分解的原理,可以将TM模光限制在水平狭缝内,将TE模光限制在竖直狭缝内中,从而使得光场限制在狭缝区域,光可以在水平狭缝和竖直狭缝中进行传输。当水平狭缝或竖直狭缝数目增多时,可以将更多的光限制在狭缝中,能够尽可能地减少光的额外损耗,可以进一步提高器件的非线性。当水平狭缝和竖直狭缝都设置在脊的靠近中间的位置时,可以增强狭缝对光的限制效果。
本发明实施例对竖直狭缝的数目和水平狭缝的数目不做限制,而且,水平狭缝和竖直狭缝可以连接,也可以不连接。只要存在至少一个水平狭缝和至少一个竖直狭缝都在本发明的保护范围之内。例如,狭缝波导可以为如图3所示的结构,狭缝波导也可以为图4所示的结构,狭缝波导还可以为图5所示的结构。
图3是本发明另一实施例的光波导的平面结构图。图3的光波导包括衬底31、脊32和狭缝波导33。图3中光的传输方向垂直于图3中的平面。
这里,狭缝波导33包括一个水平狭缝和一个竖直狭缝。水平狭缝和竖直狭缝可以交叉成如图3所示的L型结构。
图4是本发明再一实施例的光波导的平面结构图。图4的光波导包括衬底31、脊32和狭缝波导33。图4中光的传输方向垂直于图4中的平面。
这里,狭缝波导33包括一个水平狭缝和一个竖直狭缝。水平狭缝和竖直狭缝可以交叉成如图4示的十字结构。
图5是本发明再一实施例的光波导的平面结构图。图5的光波导包括衬底31、脊32和狭缝波导33。图5中光的传输方向垂直于图5中的平面。
这里,狭缝波导33包括两个水平狭缝和两个竖直狭缝。两个水平狭缝和两个竖直狭缝可以相互交叉成如图5示的井字结构。
具体地,如图3,图4,图5所示的光波导,如果衬底采用第一材料,脊可采用第二材料,竖直狭缝可采用第三材料,水平狭缝可采用第四材料,第一材料的折射率小于第二材料的折射率,第三材料的折射率小于第二材料的折射率,第四材料的折射率小于第二材料的折射率。
可选地,作为本发明的一个实施例,第一材料的折射率与第二材料的折射率之差的绝对值可大于第一阈值,第三材料的折射率与第二材料的折射率之差的绝对值可大于第二阈值,第四材料的折射率与第二材料的折射率之差的绝对值可大于第三阈值。
可选地,作为本发明的另一实施例,第三材料的克尔系数大于第二材料的克尔系数,第四材料的克尔系数大于第二材料的克尔系数。
可选地,作为本发明的另一实施例,第二材料为下列材料中的任意一种:硅、氮化硅。
可选地,作为本发明的另一实施例,第三材料为下列材料中的任意一种:硅纳米晶、氮化硅、有机高分子聚合物;第四材料为下列材料中的任意一种:硅纳米晶、氮化硅、有机高分子聚合物。
可选地,作为本发明的另一实施例,第一材料为下列材料中的任意一种:二氧化硅、硅纳米晶、氮化硅、有机高分子聚合物。
可选地,作为本发明的另一实施例,两个或两个以上的竖直狭缝的宽度相同;或者,两个或两个以上的水平狭缝的高度相同;或者,至少一个竖直狭缝的宽度和至少一个水平狭缝的高度相同。
可选地,作为本发明的另一实施例,第二材料的折射率范围可以为[1.5,4]。
由于硅基器件具有尺寸小、速度快、价格便宜、稳定性好以及可以与CMOS工艺相兼容的特性,因此硅基光子集成技术被普遍看作未来光通信、光计算和光传感等领域的关键技术。因此,本发明的实施例仅以硅基狭缝波导为例进行示例性说明,但本发明并不限定于此。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与 实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种光波导,其特征在于,包括:
    衬底,所述衬底采用第一材料;
    设置在所述衬底的表面上的脊,所述脊采用第二材料,所述第一材料的折射率小于所述第二材料的折射率;
    设置在所述脊内的狭缝波导,所述狭缝波导包括至少一个竖直狭缝和至少一个水平狭缝,所述竖直狭缝采用第三材料,所述水平狭缝采用第四材料,所述第三材料的折射率小于所述第二材料的折射率,所述第四材料的折射率小于所述第二材料的折射率,所述竖直狭缝与所述衬底的表面垂直,所述水平狭缝与所述衬底的表面平行。
  2. 如权利要求1所述的光波导,其特征在于,所述第一材料的折射率与所述第二材料的折射率之差的绝对值大于第一阈值,所述第三材料的折射率与所述第二材料的折射率之差的绝对值大于第二阈值,所述第四材料的折射率与所述第二材料的折射率之差的绝对值大于第三阈值。
  3. 如权利要求1或2所述的光波导,其特征在于,所述第三材料的克尔系数大于所述第二材料的克尔系数,所述第四材料的克尔系数大于所述第二材料的克尔系数。
  4. 如权利要求1至3中任一项所述的光波导,其特征在于,所述第二材料为下列材料中的任意一种:硅、氮化硅。
  5. 如权利要求1至4中任一项所述的光波导,其特征在于,所述第三材料为下列材料中的任意一种:硅纳米晶、氮化硅、有机高分子聚合物;所述第四材料为下列材料中的任意一种:硅纳米晶、氮化硅、有机高分子聚合物。
  6. 如权利要求1至5中任一项所述的光波导,其特征在于,所述第一材料为下列材料中的任意一种:二氧化硅、硅纳米晶、氮化硅、有机高分子聚合物。
  7. 如权利要求1至6中任一项所述的光波导,其特征在于,所述狭缝波导为包括两个竖直狭缝和一个水平狭缝构成的U型狭缝波导。
  8. 如权利要求7所述的光波导,其特征在于,所述竖直狭缝的宽度范围为[5nm,80nm],所述竖直狭缝的高度范围为[100nm,200nm],所述水平 狭缝的宽度范围为[200nm,400nm],所述水平狭缝的高度范围为[5nm,80nm]。
  9. 如权利要求1至6中任一项所述的光波导,其特征在于,
    两个或两个以上的竖直狭缝的宽度相同;或者,
    两个或两个以上的水平狭缝的高度相同;或者,
    所述至少一个竖直狭缝的宽度和所述至少一个水平狭缝的高度相同。
  10. 如权利要求1至9所述的光波导,其特征在于,所述第二材料的折射率范围为[1.5,4]。
PCT/CN2014/093140 2014-12-05 2014-12-05 光波导 WO2016086412A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/093140 WO2016086412A1 (zh) 2014-12-05 2014-12-05 光波导
CN201480081906.9A CN107076923A (zh) 2014-12-05 2014-12-05 光波导

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/093140 WO2016086412A1 (zh) 2014-12-05 2014-12-05 光波导

Publications (1)

Publication Number Publication Date
WO2016086412A1 true WO2016086412A1 (zh) 2016-06-09

Family

ID=56090854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093140 WO2016086412A1 (zh) 2014-12-05 2014-12-05 光波导

Country Status (2)

Country Link
CN (1) CN107076923A (zh)
WO (1) WO2016086412A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346950A (zh) * 2019-06-06 2019-10-18 浙江大学 一种基于交叉狭缝波导的电控去偏器
US10690849B2 (en) 2016-06-06 2020-06-23 The Trustees Of Columbia University In The City Of New York Integrated micro-lens waveguide and methods of making and using same
CN113093330A (zh) * 2021-03-24 2021-07-09 深圳大学 非线性狭缝光波导和及其制备方法和应用
CN114296185A (zh) * 2022-02-14 2022-04-08 西北工业大学 一种集成微纳粒子和光波导的光子学器件结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101178486A (zh) * 2006-11-09 2008-05-14 国际商业机器公司 调制光学信号的方法和设备
CN101308235A (zh) * 2008-07-08 2008-11-19 浙江大学 基于狭缝波导的硅基热无关阵列波导光栅
CN101718890A (zh) * 2009-12-07 2010-06-02 浙江大学 基于注氧技术的十字狭缝波导的制备方法
CN102608701A (zh) * 2012-03-06 2012-07-25 北京航空航天大学 一种介质狭缝光波导
CN103576413A (zh) * 2013-11-05 2014-02-12 华中科技大学 一种高非线性的微环波导光器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101178486A (zh) * 2006-11-09 2008-05-14 国际商业机器公司 调制光学信号的方法和设备
CN101308235A (zh) * 2008-07-08 2008-11-19 浙江大学 基于狭缝波导的硅基热无关阵列波导光栅
CN101718890A (zh) * 2009-12-07 2010-06-02 浙江大学 基于注氧技术的十字狭缝波导的制备方法
CN102608701A (zh) * 2012-03-06 2012-07-25 北京航空航天大学 一种介质狭缝光波导
CN103576413A (zh) * 2013-11-05 2014-02-12 华中科技大学 一种高非线性的微环波导光器件

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10690849B2 (en) 2016-06-06 2020-06-23 The Trustees Of Columbia University In The City Of New York Integrated micro-lens waveguide and methods of making and using same
US11073659B2 (en) 2016-06-06 2021-07-27 The Trustees Of Columbia University In The City Of New York Integrated micro-lens waveguide and methods of making and using same
CN110346950A (zh) * 2019-06-06 2019-10-18 浙江大学 一种基于交叉狭缝波导的电控去偏器
CN110346950B (zh) * 2019-06-06 2020-08-28 浙江大学 一种基于交叉狭缝波导的电控去偏器
CN113093330A (zh) * 2021-03-24 2021-07-09 深圳大学 非线性狭缝光波导和及其制备方法和应用
CN114296185A (zh) * 2022-02-14 2022-04-08 西北工业大学 一种集成微纳粒子和光波导的光子学器件结构
CN114296185B (zh) * 2022-02-14 2024-05-31 西北工业大学 一种集成微纳粒子和光波导的光子学器件结构

Also Published As

Publication number Publication date
CN107076923A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
US10921517B2 (en) Electro-optic waveguide device and optical module
US10393967B2 (en) Optical waveguide, corresponding coupling arrangement and method providing transverse propagation path
WO2016086412A1 (zh) 光波导
US9274272B2 (en) Photonic device and methods of formation
KR102201856B1 (ko) 도파관 라우팅 구성 및 방법
CN104885003A (zh) 光波导元件以及光调制器
CN108563030B (zh) 一种偏振分束器
US9612413B2 (en) Method and apparatus providing a coupled photonic structure
Walker et al. Optimized gallium arsenide modulators for advanced modulation formats
CN109425931B (zh) 平滑波导结构和制造方法
US11048042B2 (en) Curved waveguide configuration to suppress mode conversion
Reed et al. High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions
US10996493B2 (en) Optoelectronic components and method for producing an optoelectronic component
CN106468810B (zh) 一种光斑转换器及光学装置
Mohamed et al. Vertical silicon nanowires based directional coupler optical router
Dai et al. Polarization characteristics of low-loss nano-core buried optical waveguides and directional couplers
CN115755275A (zh) 一种基于亚波长结构的小型化狭缝波导模式转换器件
US20090129737A1 (en) Folded cavity optoelectronic devices
Badr et al. All-silicon directional coupler electro-optic modulator utilizing transparent conducting oxides
WO2019113369A1 (en) Adiabatically coupled photonic systems with vertically tapered waveguides
US11796738B2 (en) Temperature-insensitive Mach-Zehnder interferometer
Bian et al. Hybrid vanadate silicon nanophotonic platform for extreme light management at telecom bands
Kim et al. Very low voltage InGaAlAs/InAlAs MQW core electro-optic modulators fabricated with conventional processing
Sheng et al. A compact and CMOS compatible MMI coupler with very low excess loss
Kim et al. Experimental Investigation of Intensity Modulation of a Graphene-covered Silicon-based Hybrid Plasmonic Waveguide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907343

Country of ref document: EP

Kind code of ref document: A1