WO2016084900A1 - Heat pipe, and cooling mechanism for rotating machine - Google Patents

Heat pipe, and cooling mechanism for rotating machine Download PDF

Info

Publication number
WO2016084900A1
WO2016084900A1 PCT/JP2015/083247 JP2015083247W WO2016084900A1 WO 2016084900 A1 WO2016084900 A1 WO 2016084900A1 JP 2015083247 W JP2015083247 W JP 2015083247W WO 2016084900 A1 WO2016084900 A1 WO 2016084900A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat pipe
shaft
central axis
wall surface
Prior art date
Application number
PCT/JP2015/083247
Other languages
French (fr)
Japanese (ja)
Inventor
望月 正孝
横山 雄一
ランディープ シン
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2016084900A1 publication Critical patent/WO2016084900A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/225Heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks

Definitions

  • the present invention relates to a heat pipe and a cooling mechanism of a rotary machine using the heat pipe, and more particularly to an internal structure of the heat pipe.
  • Patent Document 1 discloses an in-wheel motor for a vehicle including a heat pipe.
  • the rotation of the motor is transmitted to a shaft connected to the wheel via a reduction gear in the wheel casing.
  • the shaft has a through hole extending along the longitudinal direction.
  • a part of the through hole is a flow path for cooling oil, and a straight tubular heat pipe is inserted in the other part.
  • One end of the heat pipe is exposed to the outside of the wheel.
  • the cooling oil circulates between the heat generating portion of the motor and the through hole by the centrifugal force generated by the rotation of the wheel and the action of the oil pump.
  • the heat generated by the motor is transmitted to the heat pipe and finally dissipated to the outside of the wheel.
  • the working fluid sealed inside evaporates in the heat receiving part and condenses in the heat radiating part, so that heat is transferred.
  • the working fluid evaporates in the heat receiving portion in contact with the cooling oil, and the working fluid condenses in the heat radiating portion exposed to the outside of the wheel.
  • condensation occurs in a state where the inner wall of the hollow part of the heat pipe is covered with the liquid film of the working fluid (such condensation is called film-like condensation).
  • film condensation it is known that the liquid film of the working fluid becomes a thermal resistance, so that the thicker the liquid film of the working fluid, the higher the thermal resistance and the lower the thermal conductivity. Therefore, in order to improve the heat transfer performance of the heat pipe, it is important to prevent the working fluid liquid film from becoming thick in the heat radiating section.
  • This invention is made in view of the above, and provides the heat pipe which can suppress that the liquid film of a working fluid becomes thick in a thermal radiation part.
  • a first aspect of the present invention is a heat pipe, and includes a tubular container that is rotatable around a central axis extending in a longitudinal direction and has a working fluid therein.
  • the container includes a first end and a second end that are both ends in the longitudinal direction, and a second end in order in the longitudinal direction from the second end to the first end, and the container as it goes from the second end to the first end.
  • a heat-radiating part configured to increase the internal diameter of at least a part of the heat-dissipating element and to release heat to the outside; a heat-insulating part adjacent to the heat-dissipating part; And having.
  • the heat pipe of the first aspect is a so-called rotary heat pipe.
  • the wall surface of at least a part of the heat radiating portion of the hollow portion of the tubular container is inclined with respect to the central axis so as to move away from the central axis toward the first end. Receives a force toward the first end due to the centrifugal force in the direction away from the central axis.
  • the condensed working fluid is easily removed from the heat radiating portion, and the liquid film in the heat radiating portion can be prevented from becoming thick. Therefore, the thermal conductivity in the heat radiating portion is improved, and the heat transfer performance of the heat pipe is improved.
  • the inner wall surface of the heat receiving portion extends in parallel with the central axis.
  • the inner wall surface of at least a part of the heat radiating portion is inclined at an angle of 1 degree to 3 degrees with respect to the central axis.
  • a wick is provided on an inner wall surface parallel to the central axis in the container.
  • the wick has a sintered body of copper powder.
  • a cooling mechanism for a rotary machine the heat pipe according to any one of the first to fifth aspects, the heat pipe being accommodated or integrally formed with the heat pipe, and a central axis.
  • a shaft that can rotate with a heat pipe around it a water cooling jacket that covers the shaft with a heat radiating part and circulates the cooling water inside, and is fixed to either the water cooling jacket or the shaft inside the water cooling jacket, around the central axis And a plate member extending in a spiral shape.
  • a cooling mechanism for a rotary machine wherein the heat pipe according to any one of the first to fifth aspects and the heat pipe are accommodated or integrally formed with the heat pipe.
  • cooling mechanism for a rotating machine of the above aspect it is possible to provide a cooling mechanism for a rotating machine that has a heat pipe with improved heat transfer performance and that can further utilize the performance of the heat pipe. it can.
  • the shaft is fitted to the main shaft of a driving motor of the vehicle or is integrally formed with the main shaft.
  • FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A.
  • FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A.
  • FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A.
  • FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A.
  • FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A.
  • FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A.
  • FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A.
  • FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A.
  • FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A.
  • FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A.
  • FIG. 2B
  • FIG. 6B is a side view taken along line BB shown in FIG. 6A. It is an enlarged view of the A section shown in FIG. 6B.
  • a heat pipe according to an embodiment of the present invention is fitted to a shaft and rotates together with the shaft.
  • the present invention is not limited to the motor described in the following embodiments, and can be applied to shafts of rotating equipment such as engines, turbines, compressors, and pumps.
  • the heat pipe can be formed integrally with the shaft, and the shaft can be formed integrally with the main shaft of the drive motor.
  • the shaft of the present embodiment extends substantially horizontally, the extending direction of the shaft is not limited, and may extend, for example, in the vertical direction.
  • FIG. 1 is a schematic cross-sectional view showing a heat pipe according to a first embodiment fitted to a motor shaft.
  • 2A and 2B are schematic cross-sectional views showing the heat pipe taken out
  • FIG. 2A is a side cross-sectional view
  • FIG. 2B is a cross-sectional view along the line AA in FIG. 2A.
  • the motor 1 is a motor for driving an electric vehicle or a fuel cell vehicle.
  • the motor 1 includes a stator 3 fixed to a casing 6 and a rotor 4 that can rotate with respect to the stator 3.
  • the casing 6 is fixed to a vehicle body (not shown).
  • a rotating magnetic field is generated by exciting a winding (not shown) of the stator 3, and the rotor 4 rotates around the central axis C in synchronization with the rotating magnetic field.
  • a shaft 7 of the motor 1 is provided coaxially with the rotor 4.
  • the shaft 7 is a main shaft of the motor 1 for driving the vehicle, is fitted to the rotor 4, and can rotate around the central axis C together with the rotor 4.
  • the shaft 7 penetrates the opening 6a of the casing 6 and is connected to a vehicle axle, a wheel, and the like (not shown) via a transmission (not shown) as necessary.
  • the shaft 7 is held by the bearing 5 at two locations in the longitudinal direction L of the rotor 4.
  • a direction parallel to the central axis C is referred to as a longitudinal direction L.
  • the shaft 7 has a through hole 7a, and a tubular heat pipe 12 is fitted into the through hole 7a.
  • the heat pipe 12 includes a container 8, a wick 10 provided on the inner wall of the container 8, and a working fluid filled in the hollow portion 9 of the container 8.
  • the wick 10 is provided in the heat pipe 12 of this embodiment, the wick 10 is not an essential element of the heat pipe of the present invention.
  • the heat pipe of this invention should just have at least the container 8 and the working fluid with which the hollow part 9 of the container 8 was filled.
  • the container 8 is fitted in the through hole 7 a of the shaft 7, has a central axis C extending in the longitudinal direction L common to the motor 1 and the shaft 7, and can rotate around the central axis C together with the shaft 7.
  • the container 8 is inserted and fixed in the through hole 7 a of the shaft 7 through the silicon grease 11.
  • the silicon grease 11 is applied in advance to the inner wall surface 7b of the through hole 7a, and fills the gap between the inner wall surface 7b of the through hole 7a and the container 8.
  • the thickness of the silicon grease 11 is about 0.1 mm.
  • the silicon grease 11 fixes the container 8 in the through hole 7 a and transfers heat from the shaft 7 to the container 8.
  • the heat of the motor 1 is mainly generated from the rotating rotor 4 (iron loss, coil loss, etc.). Some heat is generated from the stator 3, and heat is also generated by sliding from the bearing 5. In the case of a motor with an output of about 75 kW mounted on an electric vehicle, the maximum rotation speed reaches 12000 rpm, and the transmission is decelerated to about 1/10 and transmitted to the axle. Heat generated from the motor rotating at high speed is 350 to 500W. A part of this heat is released to the surrounding air, but there are many parts in the vicinity of a motor mounted on an electric vehicle or the like, and the cooling efficiency by air is not high. For this reason, much of the heat generated by the motor 1 is transmitted to the shaft 7.
  • the container 8 has a heat radiating part S1, a heat insulating part S2, and a heat receiving part S3 along the longitudinal direction L.
  • a water cooling jacket 21 is attached to the end of the shaft 7 in order to enhance the heat dissipation effect of the heat dissipation portion S1.
  • cooling water circulates inside the water cooling jacket 21.
  • the heat receiving portion S3 means a section including at least a portion facing the rotor 4 in the longitudinal direction L of the container 8, and the heat radiating portion S1 faces the internal space of the water cooling jacket 21, that is, the cooling water in the longitudinal direction L of the container 8. It means the section that is.
  • a section between the heat receiving part S3 and the heat radiating part S1 in the longitudinal direction L of the container 8 is referred to as a heat insulating part S2.
  • the container 8 is made of a metal having high thermal conductivity, preferably copper, nickel or the like.
  • the container 8 is formed to rotate coaxially with the shaft 7, and has a first end 8 e and a second end 8 f along the longitudinal direction L.
  • the container 8 has a side wall 8a and end surfaces 8b and 8c, and a sealed hollow portion 9 extending in the longitudinal direction L is formed between the side wall 8a and the end surfaces 8b and 8c.
  • the hollow portion 9 faces the shaft 7 through the heat radiating portion S1, the heat insulating portion S2, and the heat receiving portion S3 of the container 8.
  • the hollow portion 9 has the shape of a rotating body having a central axis C common to the motor 1 and the shaft 7, and the heat radiating portion S1 has a truncated cone shape in which the inner diameter 35 gradually decreases as the distance from the heat receiving portion S3 increases. Except S1, it has a cylindrical shape with a constant inner diameter 35 along the longitudinal direction L. The shape of the hollow portion 9 will be further described later.
  • the hollow portion 9 is completely deaerated and then filled with a working fluid such as water or alcohol. In order to promote the evaporation of the working fluid, the hollow portion 9 may be decompressed.
  • a heat receiving part S3 that receives heat from the outside of the container 8, that is, through the shaft 7, from the motor 1 is located. That is, in the present embodiment, the heat receiving part S3 includes the first end 8e and is located between the first end 8e and the heat radiating part S1. In the longitudinal direction L of the container 8, a heat radiating portion S ⁇ b> 1 that radiates heat to the outside of the container 8 is configured.
  • the heat radiation part S1 includes a second end 8f.
  • the heat receiving portion S3 is located at the center portion in the longitudinal direction L of the container 8, but is not limited to this, and more generally, the heat radiating portion S1 from the second end 8f toward the first end 8e.
  • the heat receiving part S3 should just be located in order.
  • the inclination angle ⁇ is not constant in the heat radiating portion S1 and may be changed in the longitudinal direction L.
  • the wall surface 9a of the hollow part 9 may be inclined only by a part of the heat radiating part S1, or may be inclined by a part or all of the heat insulating part S2 in addition to the heat radiating part S1.
  • the wall surface 9a of the hollow portion 9 is inclined at a part or all of the heat insulating portion S2, it is desirable that the inclined portion is continuous from the heat radiating portion S1.
  • the wall surface 9a of the hollow portion 9 extends in parallel with the central axis C at the heat insulating portion S2 and the heat receiving portion S3.
  • the wall surface 9a of the hollow portion 9 extends in parallel with the central axis C at a part of the heat insulating portion S2 and the heat receiving portion S3.
  • the wall surface 9a of the hollow portion 9 is only the heat receiving portion S3 and extends in parallel with the central axis C.
  • the outer wall surface 8d of the container 8 is inclined at the same inclination angle ⁇ in accordance with the inclination of the wall surface 9a of the hollow portion 9. Therefore, the thickness of the side wall 8a of the container 8 is constant in the longitudinal direction L.
  • the inner wall surface 7 b of the shaft 7 facing the container 8 is inclined at the same inclination angle ⁇ as the wall surface 9 a of the hollow portion 9.
  • the outer wall surface 7c of the shaft 7 has a constant diameter along the longitudinal direction L, and the thickness of the side wall 7d of the shaft 7 increases toward the second end 8f in the heat radiation portion S1.
  • the thickness of the silicon grease 11 is constant over the entire length of the container 8, and the heat transfer characteristics of the silicon grease 11 are constant over the entire length of the container 8.
  • the inner wall surface 7b and the outer wall surface 7c of the shaft 7 may be inclined in accordance with the inclination of the wall surface 9a of the hollow portion 9.
  • the thickness of the side wall 7d of the shaft 7 is constant in the longitudinal direction L. Since the combined thickness of the shaft 7 and the container 8 is minimized, the cooling effect is enhanced.
  • the thickness of the silicon grease 11 is constant over the entire length of the container 8.
  • the thickness of the side wall 8a of the container 8 may increase as it goes toward the second end 8f in the heat radiation portion S1.
  • the side wall 7d of the shaft 7 has a constant inner diameter and the same outer diameter in the longitudinal direction L. Since the shaft 7 may be a simple hollow cylinder, it is easy to manufacture. Also in this case, the thickness of the silicon grease 11 is constant over the entire length of the container 8.
  • a wick 10 is provided on the wall surface 9a of the hollow portion 9 that is parallel to the central axis C.
  • the wick 10 is provided only on the wall surface parallel to the central axis C among the wall surfaces 9 a of the hollow portion 9.
  • the wall surface parallel to the central axis C does not include the heat radiating part S1 and is located closer to the first end 8e than the heat radiating part S1, and is provided over the entire length of the heat insulating part S2 and the heat receiving part S3 in this embodiment.
  • the wick 10 is provided on the entire circumference of the wall surface 9 a of the hollow portion 9. The wick 10 holds and moves the liquid by capillary force.
  • Wick 10 is formed of a copper sintered body.
  • a core (not shown) is inserted into the container 8.
  • a region of the hollow portion 9 in which the wall surface 9a is inclined with respect to the center line C (hereinafter referred to as an inclined region 9b.
  • the region corresponding to the heat radiating portion S1) is completely filled with a core.
  • the wall surface 9a extends in parallel to the center line C (hereinafter referred to as a parallel region 9c.
  • the region corresponds to the heat insulating portion S2 and the heat receiving portion S3).
  • a gap is formed between the wall surface 9a and the core.
  • the gap between the wall surface 9a of the hollow portion 9 and the core is filled with copper powder and sintered at a high temperature of about 1000 ° C.
  • the copper powder is not filled in the inclined region 9b, but only in the parallel region 9c.
  • the porosity (a value obtained by dividing the total volume of the gaps between the powders by the volume of the gaps) is about 50%.
  • the powders are fixed to each other by sintering, and a gap is secured between the powders.
  • the copper powder is firmly fixed to the wall surface 9 a of the hollow portion 9.
  • the porous wick 10 is formed.
  • the wick 10 formed in this manner has sufficient stability against centrifugal force due to rotation.
  • a copper wire can be filled in the gap instead of the copper powder.
  • the parallel region 9c between the wall surface 9a of the hollow portion 9 and the core is filled with the copper wire and sintered.
  • the wick 10 does not have to be formed over the entire length of the heat insulating portion S2 and the heat receiving portion S3, and is closer to the first end 8e than the heat radiating portion S1 of the container 8, and is parallel to the parallel region 9c (in this embodiment, the heat insulating portion S2 and It suffices if it is formed on at least a part of the heat receiving part S3).
  • the wick 10 is not formed in the inclined region 9b (in this embodiment, the heat radiation portion S1). That is, the wall surface 9a of the hollow portion 9 is exposed in the inclined region 9b.
  • the cooling water cools the working fluid inside the container 8 through the shaft 7 and the container 8.
  • the cooling water may be water or oil, but when the heat pipe 12 is used in an automobile, it is preferable to use a long life coolant (LLC) or a diluted solution obtained by diluting LLC with water in order to prevent the cooling water from freezing. .
  • LLC long life coolant
  • diluting LLC diluting LLC
  • the water cooling jacket 21 has an inlet 22 and an outlet 23 for cooling water, and the cooling water circulates inside the water cooling jacket 21 by a pump (not shown).
  • the cooling water inlet 22 is provided at the upper part of the water cooling jacket 21 and the outlet 23 is provided at the lower part with respect to the central axis C, but the arrangement may be reversed.
  • a plate member 24 that is fixed to the water cooling jacket 21 and extends spirally around the central axis C.
  • the plate member 24 forms a spiral flow path in the interior 21 a of the water cooling jacket 21, and increases the contact length and contact time with the cooling water shaft 7.
  • the plate member 24 may be fixed to the shaft 7.
  • the mechanical seal 25 is positioned by a sleeve 26 fitted to the shaft 7, a shoulder 21 b of the water cooling jacket 21, and a holding ring 27 that engages with the water cooling jacket 21.
  • a seal 28 is sealed between the sleeve 26 and the shaft 7.
  • the shaft 7 is supported by a bearing 29 and can rotate with respect to the water cooling jacket 21.
  • the bearing 29 is positioned by the shoulder 21 c of the water cooling jacket 21 and the holding ring 30.
  • the heat pipe 12, the shaft 7 and the water cooling jacket 21 constitute a cooling mechanism 2 of the rotating machine.
  • the operating principle of the heat pipe 12 is as follows. Referring to FIG. 1, heat H generated by a motor or the like is transmitted to the heat receiving portion S ⁇ b> 3 of the heat pipe 12 through the shaft 7. By this heat transfer, the working fluid enclosed in the hollow portion 9 of the heat pipe 12 evaporates. At this time, the working fluid absorbs latent heat (heat of vaporization) accompanying evaporation and increases internal energy. As a result, the heat pipe 12 efficiently absorbs heat generated by the motor 1 or the like. The evaporated working fluid diffuses and moves through the hollow portion 9 of the heat pipe 12, passes through the heat insulating portion S2, reaches the heat radiating portion S1, and is cooled there. This heat transfer condenses the evaporated working fluid. At this time, the working fluid releases latent heat (condensation heat) associated with condensation, and reduces internal energy.
  • the heat pipe 12 efficiently releases the heat generated by the motor 1 or the like.
  • the released heat is transmitted to the cooling water circulating in the water cooling jacket 21 according to the principle of heat exchange, and is finally radiated to the atmosphere via a radiator (not shown).
  • the working fluid condensed into a liquid phase adheres to the wall surface 9a of the hollow portion 9 of the heat pipe 12 by centrifugal force.
  • the gas-phase working fluid is continuously condensed and a new liquid-phase working fluid continues to be generated, so that the liquid-phase working fluid is pressed against the wall surface 9a of the hollow part 9 by centrifugal force, It moves so that it may be extruded on the wall surface 9a of the part 9 toward the heat receiving part S3.
  • the wick 10 is provided in the heat insulation part S2 and the heat receiving part S3, a driving force by a capillary force is applied, and the liquid-phase working fluid is transported along the wick 10 to the heat receiving part S3 and is evaporated again.
  • the condensation of the working fluid in the heat radiation part S1 is a film-like condensation.
  • the working fluid is condensed in a state where the liquid-phase working fluid adheres to the wall surface 9a of the hollow portion 9 that is the heat transfer surface.
  • the film-like condensation has a lower thermal conductivity than the drop-like condensation in which vapor condensation occurs when the liquid is attached to the heat transfer surface in the form of droplets.
  • the thermal conductivity of the film-like condensation has a correlation with the thickness of the liquid film, and that the thermal conductivity is improved as the thickness of the liquid film is smaller. Therefore, in order to improve the thermal conductivity of the film condensation, it is necessary to suppress the thickness of the liquid film of the working fluid as much as possible at the position where the condensation occurs.
  • FIG. 5A shows the heat pipe of this embodiment
  • FIG. 5B shows the heat pipe of the comparative example. While the inner wall of the heat pipe 12 of the present embodiment is inclined at the heat radiating portion S1, the heat pipe 112 of the comparative example has a uniform cross section in the longitudinal direction L, and the heat radiating portion S1 is inclined. Not.
  • the wick 10 is provided in the heat receiving part S3 and the heat insulating part S2.
  • the inner diameter 35 of the hollow portion 9 in the heat radiating portion S1 increases from the second end 8f toward the first end 8e.
  • the wall surface 9a of the hollow portion 9 is inclined with respect to the central axis C so as to be away from the central axis C as it goes from the second end 8f to the first end 8e at the heat radiating portion S1.
  • a part of the centrifugal force acts on the liquid-phase working fluid attached to the wall surface 9a of the hollow portion 9 in the heat radiating portion S1 as a driving force toward the larger inner diameter 35, and the liquid toward the first end 8e. Phase fluid flow is facilitated.
  • the centrifugal force F is generated in a direction orthogonal to the central axis C, and the component force Fsin ⁇ in the direction parallel to the wall surface 9a drives the liquid-phase working fluid toward the first end 8e along the wall surface 9a.
  • the liquid-phase working fluid continuously generated by film condensation in the heat radiating section S1 is continuously removed from the heat radiating section S1 by the centrifugal force component Fsin ⁇ , and the liquid-phase working fluid existing in the heat radiating section S1.
  • the thickness of the liquid film 31 is reduced and the thermal conductivity is improved.
  • the wall surface 9a of the hollow part 9 is not provided with the wick 10 in order to further promote the flow of the liquid-phase working fluid toward the first end 8e (heat receiving part S3). Since the air gap inside the wick 10 extends in a random direction, it may act to inhibit driving by centrifugal force. That is, the wick 10 may prevent the smooth liquid phase working fluid from moving due to centrifugal force.
  • the wall surface 9a of the hollow portion 9 is exposed at the heat radiating portion S1, and the movement of the liquid-phase working fluid is hardly hindered.
  • the wall surface 9a of the hollow part 9 is not inclined, and the driving force of the liquid-phase working fluid by the centrifugal force cannot be obtained.
  • the wick 10 is provided in the heat insulation part S2 and the heat receiving part S3, and the working fluid condensed into a liquid is conveyed in the longitudinal direction L by the capillary force.
  • the wall surface 9a of the heat radiating part S1 may be subjected to a surface smoothing process such as polishing or Teflon (registered trademark) processing.
  • the wall surface 9a of the hollow portion 9 is not inclined by the heat insulating portion S2 and the heat receiving portion S3 is also effective for suppressing the maximum diameter of the heat pipe 12.
  • the total length L1 of the heat pipe 12 is 300 mm
  • the diameter d1 is 15.9 mm
  • the length of the heat radiation part S1 is 10 to 50 mm.
  • the length of the heat radiation part S1 is 30 mm
  • FIG. 6A to 6C show a second embodiment of the present invention.
  • 6A is a schematic cross-sectional view of a heat pipe similar to that of the first embodiment
  • FIG. 6B is a side view taken along line BB of FIG. 6A
  • FIG. 6C is an enlarged view of a portion A shown in FIG. 6B. Yes.
  • the heat pipe 12 of this embodiment employs an air cooling system. Specifically, a large number of fins 32 are fixed to the outer wall surface 7c of the shaft 7 in the heat radiation part S1. The fin 32 rotates together with the shaft 7 and dissipates heat transferred from the heat pipe 12 through the shaft 7 into the air.
  • the fin 32 has a large number of depressions 33.
  • the recess 33 locally disturbs the air flow and promotes turbulent heat transfer on the surface of the fin 32.
  • turbulent heat transfer heat transfer is promoted by the random mixing of air masses, and the heat transfer rate is greatly improved compared to laminar heat transfer.
  • laminar heat transfer the air flow on the surface of the fin 32 is laminar, and heat transfer is less likely to occur, so the heat transfer rate is lower than in turbulent heat transfer.
  • the heat pipe 12, the shaft 7, and the fin 32 constitute a cooling mechanism 34 of the rotating machine.
  • the air cooling method and the water cooling method may be used in combination, and although not shown, the heat pipe 12 and the shaft 7 are extended in the heat radiating portion S1, and the water cooling jacket 21 described in the first embodiment on the shaft 7 is used.
  • the fins 32 described in the second embodiment can be arranged in series. In this case, in order to increase the heat transfer efficiency of the fin 32, it is desirable to provide the fin 32 at the end of the shaft 7 and the water cooling jacket 21 closer to the first end 8e than the fin 32.

Abstract

A heat pipe provided with a tubular container having a working fluid in the interior and capable of rotating about a central axis that extends in the longitudinal direction. The container has a first end and a second end, which are the two ends in the longitudinal direction, and, in sequence in the longitudinal direction from the second end to the first end: a heat dissipation part including the second end, the inside diameter of at least a part of the container increasing in the direction from the second end to the first end, and the heat dissipation part being configured so as to release heat to the exterior; a heat insulating part adjacent to the heat dissipation part; and a heat reception part adjacent to the heat insulating part, the heat reception part being configured so as to receive heat from the exterior.

Description

ヒートパイプ及び回転機械の冷却機構Heat pipe and rotating machine cooling mechanism
 本発明はヒートパイプとそれを用いた回転機械の冷却機構に関し、特にヒートパイプの内部構造に関する。
 本願は、2014年11月28日に、日本に出願された特願2014-241347号に基づき優先権を主張し、これらの内容をここに援用する。
The present invention relates to a heat pipe and a cooling mechanism of a rotary machine using the heat pipe, and more particularly to an internal structure of the heat pipe.
This application claims priority based on Japanese Patent Application No. 2014-241347 filed in Japan on November 28, 2014, the contents of which are incorporated herein by reference.
 近年自動車の電動化が進み、電気自動車や燃料電池車が実用化されつつある。これらの車両には駆動用モータが必要である。高速回転するモータでは発熱するロータの冷却が重要となる。 In recent years, the electrification of automobiles has progressed, and electric cars and fuel cell cars are being put into practical use. These vehicles require a drive motor. In a motor that rotates at high speed, it is important to cool the rotor that generates heat.
 特許文献1には、ヒートパイプを備える車両用のインホイールモータが開示されている。モータの回転はホイールケーシング内の減速機を介して、ホイールに連結されたシャフトに伝えられる。シャフトは長手方向に沿って延びる貫通孔を有している。貫通孔の一部は冷却用オイルの流路であり、他の部分には直管状のヒートパイプが挿入されている。ヒートパイプの一端はホイールの外部に露出している。冷却用オイルはホイールの回転によって生じる遠心力とオイルポンプの作用により、モータの発熱部と貫通孔との間を循環する。モータの発熱はヒートパイプに伝達され、最終的にホイールの外部に放散される。 Patent Document 1 discloses an in-wheel motor for a vehicle including a heat pipe. The rotation of the motor is transmitted to a shaft connected to the wheel via a reduction gear in the wheel casing. The shaft has a through hole extending along the longitudinal direction. A part of the through hole is a flow path for cooling oil, and a straight tubular heat pipe is inserted in the other part. One end of the heat pipe is exposed to the outside of the wheel. The cooling oil circulates between the heat generating portion of the motor and the through hole by the centrifugal force generated by the rotation of the wheel and the action of the oil pump. The heat generated by the motor is transmitted to the heat pipe and finally dissipated to the outside of the wheel.
日本国特開2009-190578号公報Japanese Unexamined Patent Publication No. 2009-190578
 ヒートパイプでは、内部に封入された作動流体が受熱部で蒸発し放熱部で凝縮することで熱の移動が行われる。特許文献1に記載のヒートパイプにおいては冷却用オイルと接する受熱部で作動流体が蒸発し、ホイールの外部に露出する放熱部で作動流体が凝縮する。放熱部においては、ヒートパイプの中空部の内壁が作動流体の液膜で覆われた状態で凝縮が生じている(このような凝縮を膜状凝縮という)。膜状凝縮において、作動流体の液膜は熱抵抗となるため、作動流体の液膜が厚いほど熱抵抗が大きくなり、熱伝導率が低下することが知られている。従って、ヒートパイプの熱伝達性能を高めるためには、放熱部において作動流体の液膜が厚くなることを抑えることが重要である。 In the heat pipe, the working fluid sealed inside evaporates in the heat receiving part and condenses in the heat radiating part, so that heat is transferred. In the heat pipe described in Patent Document 1, the working fluid evaporates in the heat receiving portion in contact with the cooling oil, and the working fluid condenses in the heat radiating portion exposed to the outside of the wheel. In the heat radiating part, condensation occurs in a state where the inner wall of the hollow part of the heat pipe is covered with the liquid film of the working fluid (such condensation is called film-like condensation). In the film condensation, it is known that the liquid film of the working fluid becomes a thermal resistance, so that the thicker the liquid film of the working fluid, the higher the thermal resistance and the lower the thermal conductivity. Therefore, in order to improve the heat transfer performance of the heat pipe, it is important to prevent the working fluid liquid film from becoming thick in the heat radiating section.
 本発明は、上記を鑑みてなされたものであり、放熱部において作動流体の液膜が厚くなることを抑えることができるヒートパイプを提供する。 This invention is made in view of the above, and provides the heat pipe which can suppress that the liquid film of a working fluid becomes thick in a thermal radiation part.
 本発明の第1態様は、ヒートパイプであって、長手方向に延びる中心軸の周りを回転可能であり、作動流体を内部に有する管状のコンテナを備える。コンテナは、長手方向の両端である第一端及び第二端と、第二端から第一端に向かう長手方向において、順に、第二端を含み、第二端から第一端に向かうにつれてコンテナの少なくとも一部の内径が増加し、外部へ熱を放出するよう構成された放熱部と、放熱部に隣接する断熱部と、断熱部に隣接し、外部から熱を受けるよう構成された受熱部と、を有する。 A first aspect of the present invention is a heat pipe, and includes a tubular container that is rotatable around a central axis extending in a longitudinal direction and has a working fluid therein. The container includes a first end and a second end that are both ends in the longitudinal direction, and a second end in order in the longitudinal direction from the second end to the first end, and the container as it goes from the second end to the first end. A heat-radiating part configured to increase the internal diameter of at least a part of the heat-dissipating element and to release heat to the outside; a heat-insulating part adjacent to the heat-dissipating part; And having.
 上記第1態様のヒートパイプは、いわゆる回転式のヒートパイプである。管状のコンテナの中空部の、少なくとも一部の放熱部の壁面は、第一端に向かうにつれて中心軸から離れるように中心軸に対して傾斜しているため、凝縮して液体となった作動流体は遠心力によって壁面が中心軸から離れる方向、すなわち第一端に向く力を受ける。この結果、凝縮した作動流体が放熱部から排除されやすくなり、放熱部における液膜が厚くなることを抑えることができる。従って、放熱部における熱伝導率が向上し、ヒートパイプの熱伝達性能が高められる。 The heat pipe of the first aspect is a so-called rotary heat pipe. The wall surface of at least a part of the heat radiating portion of the hollow portion of the tubular container is inclined with respect to the central axis so as to move away from the central axis toward the first end. Receives a force toward the first end due to the centrifugal force in the direction away from the central axis. As a result, the condensed working fluid is easily removed from the heat radiating portion, and the liquid film in the heat radiating portion can be prevented from becoming thick. Therefore, the thermal conductivity in the heat radiating portion is improved, and the heat transfer performance of the heat pipe is improved.
 本発明の第2態様は、上記第1態様のヒートパイプにおいて、受熱部の内壁面は、中心軸と平行に延びている。 In the second aspect of the present invention, in the heat pipe of the first aspect, the inner wall surface of the heat receiving portion extends in parallel with the central axis.
 本発明の第3態様は、上記第1または第2態様のヒートパイプにおいて、少なくとも一部の放熱部の内壁面は、中心軸に対して1度以上3度以下の角度で傾斜している。 According to a third aspect of the present invention, in the heat pipe of the first or second aspect, the inner wall surface of at least a part of the heat radiating portion is inclined at an angle of 1 degree to 3 degrees with respect to the central axis.
 本発明の第4態様は、上記第1から第3態様のいずれかのヒートパイプにおいて、コンテナにおいて、中心軸と平行な内壁面にウイックが設けられている。 According to a fourth aspect of the present invention, in the heat pipe according to any one of the first to third aspects, a wick is provided on an inner wall surface parallel to the central axis in the container.
 本発明の第5態様は、上記第4態様のヒートパイプにおいて、ウイックは銅の粉体の焼結体を有する。 According to a fifth aspect of the present invention, in the heat pipe of the fourth aspect, the wick has a sintered body of copper powder.
 本発明の第6態様は、回転機械の冷却機構であって、上記第1から第5態様のいずれかの態様のヒートパイプと、ヒートパイプを収容し、またはヒートパイプと一体形成され、中心軸の周りをヒートパイプとともに回転可能なシャフトと、放熱部でシャフトを覆い内部を冷却水が循環する水冷ジャケットと、水冷ジャケットの内部で水冷ジャケットとシャフトのいずれか一方に固定され、中心軸の周りをらせん状に延びる板部材と、を備える。 According to a sixth aspect of the present invention, there is provided a cooling mechanism for a rotary machine, the heat pipe according to any one of the first to fifth aspects, the heat pipe being accommodated or integrally formed with the heat pipe, and a central axis. A shaft that can rotate with a heat pipe around it, a water cooling jacket that covers the shaft with a heat radiating part and circulates the cooling water inside, and is fixed to either the water cooling jacket or the shaft inside the water cooling jacket, around the central axis And a plate member extending in a spiral shape.
 本発明の第7態様は、回転機械の冷却機構であって、上記第1から第5態様のいずれかの態様のヒートパイプと、ヒートパイプを収容し、またはヒートパイプと一体形成され、中心軸の周りをヒートパイプとともに回転可能なシャフトと、放熱部においてシャフトの外壁面に固定され、複数の窪みを備えるフィンと、を備える。 According to a seventh aspect of the present invention, there is provided a cooling mechanism for a rotary machine, wherein the heat pipe according to any one of the first to fifth aspects and the heat pipe are accommodated or integrally formed with the heat pipe. A shaft that can rotate with the heat pipe, and a fin that is fixed to the outer wall surface of the shaft at the heat radiating portion and includes a plurality of depressions.
 上記態様の回転機械の冷却機構によれば、熱伝達性能の高められたヒートパイプを備え、さらにヒートパイプの性能を生かすことのできる、冷却性能の向上した回転機械の冷却機構を提供することができる。 According to the cooling mechanism for a rotating machine of the above aspect, it is possible to provide a cooling mechanism for a rotating machine that has a heat pipe with improved heat transfer performance and that can further utilize the performance of the heat pipe. it can.
 本発明の第8態様は、上記第6または第7態様の回転機械の冷却機構において、シャフトが車両の駆動用モータの主軸に嵌装され、または主軸と一体形成されている。 According to an eighth aspect of the present invention, in the cooling mechanism for a rotary machine according to the sixth or seventh aspect, the shaft is fitted to the main shaft of a driving motor of the vehicle or is integrally formed with the main shaft.
 上記本発明に係る態様によれば、放熱部において作動流体の液膜が厚くなることを抑えることができるヒートパイプ及びそのようなヒートパイプを備える回転機械の冷却機構を提供することができる。 According to the above aspect of the present invention, it is possible to provide a heat pipe that can prevent the liquid film of the working fluid from becoming thicker in the heat radiating portion and a cooling mechanism for a rotary machine including such a heat pipe.
第1の実施形態に係るヒートパイプを用いたモータの冷却機構の概略断面図である。It is a schematic sectional drawing of the cooling mechanism of the motor using the heat pipe which concerns on 1st Embodiment. 図1に示すヒートパイプの概略断面図である。It is a schematic sectional drawing of the heat pipe shown in FIG. 図2AのA-A線に沿った断面図である。FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A. ヒートパイプの変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of a heat pipe. ヒートパイプの他の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the other modification of a heat pipe. 図1に示すヒートパイプの放熱部の近傍を拡大して示す概略断面図である。It is a schematic sectional drawing which expands and shows the vicinity of the thermal radiation part of the heat pipe shown in FIG. 本実施形態のヒートパイプを示す模式図である。It is a schematic diagram which shows the heat pipe of this embodiment. 比較例のヒートパイプを示す模式図である。It is a schematic diagram which shows the heat pipe of a comparative example. 第2の実施形態に係るヒートパイプを用いたモータの冷却機構の概略断面図である。It is a schematic sectional drawing of the cooling mechanism of the motor using the heat pipe which concerns on 2nd Embodiment. 図6Aに示すB-B線からみた側面図である。FIG. 6B is a side view taken along line BB shown in FIG. 6A. 図6Bに示すA部の拡大図である。It is an enlarged view of the A section shown in FIG. 6B.
 以下、本発明のヒートパイプの実施形態について、図面を参照して説明する。本発明の一実施形態に係るヒートパイプは、シャフトに嵌装され、シャフトとともに回転する。本発明は以下の実施形態で説明するモータに限定されず、エンジン、タービン、圧縮機、ポンプなどの回転機器のシャフトに適用することができる。ヒートパイプはシャフトと一体形成することができ、さらにシャフトを駆動モータの主軸と一体形成することもできる。本実施形態のシャフトは概ね水平に延びているが、シャフトの延びる方向は限定されず、例えば鉛直方向に延びていてもよい。 Hereinafter, embodiments of the heat pipe of the present invention will be described with reference to the drawings. A heat pipe according to an embodiment of the present invention is fitted to a shaft and rotates together with the shaft. The present invention is not limited to the motor described in the following embodiments, and can be applied to shafts of rotating equipment such as engines, turbines, compressors, and pumps. The heat pipe can be formed integrally with the shaft, and the shaft can be formed integrally with the main shaft of the drive motor. Although the shaft of the present embodiment extends substantially horizontally, the extending direction of the shaft is not limited, and may extend, for example, in the vertical direction.
 図1はモータのシャフトに嵌装された、第1の実施形態に係るヒートパイプを示す概略断面図である。図2A及び図2Bはヒートパイプを取り出して示す概略断面図であり、図2Aは側方断面図を、図2Bは図2AのA-A線に沿った断面図を示している。モータ1は一例では電気自動車や燃料電池車の駆動用のモータである。
 モータ1はケーシング6に固定されたステータ3と、ステータ3に対して回転可能なロータ4と、を有している。ケーシング6は車体(図示せず)に固定されている。ステータ3の巻線(図示せず)を励磁することで回転磁界が発生し、回転磁界と同期してロータ4が中心軸Cの周りを回転する。モータ1のシャフト7がロータ4と同軸に設けられている。シャフト7は車両の駆動用のモータ1の主軸であり、ロータ4に嵌装され、ロータ4とともに中心軸Cの周りを回転することができる。シャフト7はケーシング6の開口6aを貫通し、必要に応じて変速機(図示せず)を介し、車両の車軸、ホイール等(図示せず)に連結されている。シャフト7はロータ4の長手方向Lにおける2箇所で軸受5に保持されている。なお、本明細書において、中心軸Cと平行な方向を長手方向Lという。
FIG. 1 is a schematic cross-sectional view showing a heat pipe according to a first embodiment fitted to a motor shaft. 2A and 2B are schematic cross-sectional views showing the heat pipe taken out, FIG. 2A is a side cross-sectional view, and FIG. 2B is a cross-sectional view along the line AA in FIG. 2A. For example, the motor 1 is a motor for driving an electric vehicle or a fuel cell vehicle.
The motor 1 includes a stator 3 fixed to a casing 6 and a rotor 4 that can rotate with respect to the stator 3. The casing 6 is fixed to a vehicle body (not shown). A rotating magnetic field is generated by exciting a winding (not shown) of the stator 3, and the rotor 4 rotates around the central axis C in synchronization with the rotating magnetic field. A shaft 7 of the motor 1 is provided coaxially with the rotor 4. The shaft 7 is a main shaft of the motor 1 for driving the vehicle, is fitted to the rotor 4, and can rotate around the central axis C together with the rotor 4. The shaft 7 penetrates the opening 6a of the casing 6 and is connected to a vehicle axle, a wheel, and the like (not shown) via a transmission (not shown) as necessary. The shaft 7 is held by the bearing 5 at two locations in the longitudinal direction L of the rotor 4. In the present specification, a direction parallel to the central axis C is referred to as a longitudinal direction L.
 シャフト7は貫通孔7aを有し、貫通孔7aには管状のヒートパイプ12が嵌装されている。ヒートパイプ12はコンテナ8と、コンテナ8の内壁に設けられたウイック10と、コンテナ8の中空部9に充填された作動流体と、から構成されている。本実施形態のヒートパイプ12はウイック10が設けられているが、ウイック10は本発明のヒートパイプの必須の要素ではない。本発明のヒートパイプは少なくともコンテナ8と、コンテナ8の中空部9に充填された作動流体とを有していればよい。コンテナ8はシャフト7の貫通孔7aに嵌装され、モータ1及びシャフト7と共通の長手方向Lに延びる中心軸Cを有し、中心軸Cの周りをシャフト7とともに回転することができる。コンテナ8はシリコングリース11を介して、シャフト7の貫通孔7aに挿入され、固定されている。シリコングリース11は予め貫通孔7aの内壁面7bに塗布され、貫通孔7aの内壁面7bとコンテナ8との間の隙間を埋める。シリコングリース11の厚さは0.1mm程度である。シリコングリース11はコンテナ8を貫通孔7a内に固定させるとともに、シャフト7からコンテナ8に熱を伝達する。 The shaft 7 has a through hole 7a, and a tubular heat pipe 12 is fitted into the through hole 7a. The heat pipe 12 includes a container 8, a wick 10 provided on the inner wall of the container 8, and a working fluid filled in the hollow portion 9 of the container 8. Although the wick 10 is provided in the heat pipe 12 of this embodiment, the wick 10 is not an essential element of the heat pipe of the present invention. The heat pipe of this invention should just have at least the container 8 and the working fluid with which the hollow part 9 of the container 8 was filled. The container 8 is fitted in the through hole 7 a of the shaft 7, has a central axis C extending in the longitudinal direction L common to the motor 1 and the shaft 7, and can rotate around the central axis C together with the shaft 7. The container 8 is inserted and fixed in the through hole 7 a of the shaft 7 through the silicon grease 11. The silicon grease 11 is applied in advance to the inner wall surface 7b of the through hole 7a, and fills the gap between the inner wall surface 7b of the through hole 7a and the container 8. The thickness of the silicon grease 11 is about 0.1 mm. The silicon grease 11 fixes the container 8 in the through hole 7 a and transfers heat from the shaft 7 to the container 8.
 モータ1の熱は主に、回転するロータ4から発生する(鉄損、コイル損失等)。ステータ3からも若干の発熱が生じ、軸受5からも摺動による発熱が生じる。電気自動車に搭載される出力75kW程度のモータの場合、最大回転数が12000rpmに達し、変速機で約1/10に減速されて回転が車軸に伝えられる。高速回転するモータからの発熱は350~500Wになる。この熱の一部は周囲の空気に放出されるが、電気自動車等に搭載されるモータは近傍に多くの部品が存在しており、空気による冷却効率は高くない。このためモータ1で発生する熱の多くはシャフト7に伝えられる。 The heat of the motor 1 is mainly generated from the rotating rotor 4 (iron loss, coil loss, etc.). Some heat is generated from the stator 3, and heat is also generated by sliding from the bearing 5. In the case of a motor with an output of about 75 kW mounted on an electric vehicle, the maximum rotation speed reaches 12000 rpm, and the transmission is decelerated to about 1/10 and transmitted to the axle. Heat generated from the motor rotating at high speed is 350 to 500W. A part of this heat is released to the surrounding air, but there are many parts in the vicinity of a motor mounted on an electric vehicle or the like, and the cooling efficiency by air is not high. For this reason, much of the heat generated by the motor 1 is transmitted to the shaft 7.
 コンテナ8は長手方向Lに沿って、放熱部S1と、断熱部S2と、受熱部S3とを有している。放熱部S1の放熱効果を高めるため、シャフト7の端部に水冷ジャケット21が装着されている。後に詳細に述べるように、水冷ジャケット21の内部を冷却水が循環している。受熱部S3はコンテナ8の長手方向Lにおいてロータ4と対向している部分を少なくとも含む区間を意味し、放熱部S1はコンテナ8の長手方向Lにおいて水冷ジャケット21の内部空間、すなわち冷却水と対向している区間を意味する。また、コンテナ8の長手方向Lにおいて受熱部S3と放熱部S1の間の区間を断熱部S2という。 The container 8 has a heat radiating part S1, a heat insulating part S2, and a heat receiving part S3 along the longitudinal direction L. A water cooling jacket 21 is attached to the end of the shaft 7 in order to enhance the heat dissipation effect of the heat dissipation portion S1. As will be described in detail later, cooling water circulates inside the water cooling jacket 21. The heat receiving portion S3 means a section including at least a portion facing the rotor 4 in the longitudinal direction L of the container 8, and the heat radiating portion S1 faces the internal space of the water cooling jacket 21, that is, the cooling water in the longitudinal direction L of the container 8. It means the section that is. A section between the heat receiving part S3 and the heat radiating part S1 in the longitudinal direction L of the container 8 is referred to as a heat insulating part S2.
 コンテナ8は熱伝導率の高い金属、好ましくは銅、ニッケル等で形成されている。コンテナ8はシャフト7と同軸で回転するように形成されており、長手方向Lに沿った第一端8eと第二端8fを有している。コンテナ8は側壁8aと端面8b,8cとを有し、側壁8aと端面8b,8cの間に、密封された、長手方向Lに延びる中空部9が形成されている。中空部9はコンテナ8の放熱部S1、断熱部S2及び受熱部S3を介して、シャフト7と対向している。中空部9はモータ1及びシャフト7と共通の中心軸Cを有する回転体の形状を有し、放熱部S1では受熱部S3から離れるに従い内径35が徐々に縮小する円錐台形の形状を、放熱部S1以外では長手方向Lに沿って内径35が一定の円筒形の形状を有している。中空部9の形状についてはさらに後述する。中空部9は完全に脱気された後、水やアルコールなどの作動流体が充填されている。作動流体の蒸発を促すため、中空部9を減圧してもよい。 The container 8 is made of a metal having high thermal conductivity, preferably copper, nickel or the like. The container 8 is formed to rotate coaxially with the shaft 7, and has a first end 8 e and a second end 8 f along the longitudinal direction L. The container 8 has a side wall 8a and end surfaces 8b and 8c, and a sealed hollow portion 9 extending in the longitudinal direction L is formed between the side wall 8a and the end surfaces 8b and 8c. The hollow portion 9 faces the shaft 7 through the heat radiating portion S1, the heat insulating portion S2, and the heat receiving portion S3 of the container 8. The hollow portion 9 has the shape of a rotating body having a central axis C common to the motor 1 and the shaft 7, and the heat radiating portion S1 has a truncated cone shape in which the inner diameter 35 gradually decreases as the distance from the heat receiving portion S3 increases. Except S1, it has a cylindrical shape with a constant inner diameter 35 along the longitudinal direction L. The shape of the hollow portion 9 will be further described later. The hollow portion 9 is completely deaerated and then filled with a working fluid such as water or alcohol. In order to promote the evaporation of the working fluid, the hollow portion 9 may be decompressed.
 コンテナ8の長手方向Lにおいて、コンテナ8の外部から、すなわちシャフト7を介してモータ1から熱を受ける受熱部S3が位置している。すなわち、本実施形態では、受熱部S3は第一端8eを含み、第一端8eと放熱部S1との間に位置する。コンテナ8の長手方向Lにおいて、コンテナ8の外部へ熱を放熱する放熱部S1を構成している。放熱部S1は、第二端8fを含む。本実施形態ではコンテナ8の長手方向Lの中央部に受熱部S3が位置しているが、これに限定されず、より一般的には第二端8fから第一端8eに向けて放熱部S1、受熱部S3が順に位置していればよい。 In the longitudinal direction L of the container 8, a heat receiving part S3 that receives heat from the outside of the container 8, that is, through the shaft 7, from the motor 1 is located. That is, in the present embodiment, the heat receiving part S3 includes the first end 8e and is located between the first end 8e and the heat radiating part S1. In the longitudinal direction L of the container 8, a heat radiating portion S <b> 1 that radiates heat to the outside of the container 8 is configured. The heat radiation part S1 includes a second end 8f. In the present embodiment, the heat receiving portion S3 is located at the center portion in the longitudinal direction L of the container 8, but is not limited to this, and more generally, the heat radiating portion S1 from the second end 8f toward the first end 8e. The heat receiving part S3 should just be located in order.
 中空部9において、放熱部S1は、受熱部S3に向かうに従い内径35が大きくなり、受熱部S3は一定の内径35を有している。すなわち、中空部9の壁面9a(コンテナ8の内壁面)は、放熱部S1で、第二端8fから第一端8eまたは受熱部S3に向かうに従い中心軸Cから離れるように中心軸Cに対して傾斜している。図示の形態では、中空部9の壁面9aは放熱部S1の全域で、中心軸Cに対して一律の傾斜角度θ=3度で傾斜している。傾斜角度θは1度以上3度以下の範囲が望ましい。傾斜角度θは放熱部S1で一定でなく長手方向Lに変化していてもよい。中空部9の壁面9aは放熱部S1の一部のみで傾斜していてもよく、放熱部S1に加えて断熱部S2の一部または全部で傾斜していてもよい。中空部9の壁面9aが断熱部S2の一部または全部で傾斜している場合、傾斜部は放熱部S1から連続していることが望ましい。本実施形態では、中空部9の壁面9aは、断熱部S2と受熱部S3で中心軸Cと平行に延びている。図示しないが、他の実施形態では、中空部9の壁面9aは、断熱部S2の一部と受熱部S3で中心軸Cと平行に延びている。さらに他の実施形態では、中空部9の壁面9aは受熱部S3のみで、中心軸Cと平行に延びている。 In the hollow portion 9, the heat radiating portion S1 has an inner diameter 35 that increases toward the heat receiving portion S3, and the heat receiving portion S3 has a constant inner diameter 35. That is, the wall surface 9a of the hollow portion 9 (the inner wall surface of the container 8) is the heat radiating portion S1 with respect to the central axis C so as to move away from the central axis C as it goes from the second end 8f toward the first end 8e or the heat receiving portion S3. Is inclined. In the illustrated form, the wall surface 9a of the hollow portion 9 is inclined at a uniform inclination angle θ = 3 degrees with respect to the central axis C over the entire heat radiation portion S1. The inclination angle θ is preferably in the range of 1 degree to 3 degrees. The inclination angle θ is not constant in the heat radiating portion S1 and may be changed in the longitudinal direction L. The wall surface 9a of the hollow part 9 may be inclined only by a part of the heat radiating part S1, or may be inclined by a part or all of the heat insulating part S2 in addition to the heat radiating part S1. When the wall surface 9a of the hollow portion 9 is inclined at a part or all of the heat insulating portion S2, it is desirable that the inclined portion is continuous from the heat radiating portion S1. In the present embodiment, the wall surface 9a of the hollow portion 9 extends in parallel with the central axis C at the heat insulating portion S2 and the heat receiving portion S3. Although not shown, in another embodiment, the wall surface 9a of the hollow portion 9 extends in parallel with the central axis C at a part of the heat insulating portion S2 and the heat receiving portion S3. In still another embodiment, the wall surface 9a of the hollow portion 9 is only the heat receiving portion S3 and extends in parallel with the central axis C.
 本実施形態では中空部9の壁面9aの傾斜に合わせ、コンテナ8の外壁面8dも同じ傾斜角度θで傾斜している。従って、コンテナ8の側壁8aの厚さは長手方向Lで一定である。コンテナ8に対向するシャフト7の内壁面7bは中空部9の壁面9aと同じ傾斜角度θで傾斜している。シャフト7の外壁面7cは長手方向Lに沿って一定の直径を有しており、シャフト7の側壁7dの厚さは放熱部S1において、第二端8fに向かうにつれて増加している。シリコングリース11の厚さはコンテナ8の全長に渡って一定であり、シリコングリース11の熱伝達特性はコンテナ8の全長に渡って一定である。 In the present embodiment, the outer wall surface 8d of the container 8 is inclined at the same inclination angle θ in accordance with the inclination of the wall surface 9a of the hollow portion 9. Therefore, the thickness of the side wall 8a of the container 8 is constant in the longitudinal direction L. The inner wall surface 7 b of the shaft 7 facing the container 8 is inclined at the same inclination angle θ as the wall surface 9 a of the hollow portion 9. The outer wall surface 7c of the shaft 7 has a constant diameter along the longitudinal direction L, and the thickness of the side wall 7d of the shaft 7 increases toward the second end 8f in the heat radiation portion S1. The thickness of the silicon grease 11 is constant over the entire length of the container 8, and the heat transfer characteristics of the silicon grease 11 are constant over the entire length of the container 8.
 図3Aに示すように、シャフト7の内壁面7b及び外壁面7cが中空部9の壁面9aの傾斜に合わせて傾斜していてもよい。シャフト7の側壁7dの厚さは長手方向Lに一定である。シャフト7とコンテナ8を合せた厚さを最少にするため、冷却効果が高められる。シリコングリース11の厚さはコンテナ8の全長に渡って一定である。 3A, the inner wall surface 7b and the outer wall surface 7c of the shaft 7 may be inclined in accordance with the inclination of the wall surface 9a of the hollow portion 9. The thickness of the side wall 7d of the shaft 7 is constant in the longitudinal direction L. Since the combined thickness of the shaft 7 and the container 8 is minimized, the cooling effect is enhanced. The thickness of the silicon grease 11 is constant over the entire length of the container 8.
 図3Bに示すように、コンテナ8の側壁8aの厚さが放熱部S1において、第二端8fに向かうにつれて増加していてもよい。シャフト7の側壁7dは長手方向Lに一定の内径及び同じ外径を有している。シャフト7は単純な中空円筒でよいため製造が容易である。この場合も、シリコングリース11の厚さはコンテナ8の全長に渡って一定である。 As shown in FIG. 3B, the thickness of the side wall 8a of the container 8 may increase as it goes toward the second end 8f in the heat radiation portion S1. The side wall 7d of the shaft 7 has a constant inner diameter and the same outer diameter in the longitudinal direction L. Since the shaft 7 may be a simple hollow cylinder, it is easy to manufacture. Also in this case, the thickness of the silicon grease 11 is constant over the entire length of the container 8.
 再び図1,図2A,及び図2Bを参照すると、中空部9の壁面9aのうち中心軸Cと平行な壁面には、ウイック10が設けられている。好ましい実施形態では、ウイック10は中空部9の壁面9aのうち中心軸Cと平行な壁面だけに設けられている。中心軸Cと平行な壁面は、放熱部S1を含まず、放熱部S1よりも第一端8e寄りに位置しており、本実施形態では断熱部S2及び受熱部S3の全長に渡って設けられている。図2Bに示すように、ウイック10は中空部9の壁面9aの全周に設けられている。ウイック10は毛細管力により液体を保持し移動させる。 Referring again to FIG. 1, FIG. 2A, and FIG. 2B, a wick 10 is provided on the wall surface 9a of the hollow portion 9 that is parallel to the central axis C. In a preferred embodiment, the wick 10 is provided only on the wall surface parallel to the central axis C among the wall surfaces 9 a of the hollow portion 9. The wall surface parallel to the central axis C does not include the heat radiating part S1 and is located closer to the first end 8e than the heat radiating part S1, and is provided over the entire length of the heat insulating part S2 and the heat receiving part S3 in this embodiment. ing. As shown in FIG. 2B, the wick 10 is provided on the entire circumference of the wall surface 9 a of the hollow portion 9. The wick 10 holds and moves the liquid by capillary force.
 ウイック10は銅の焼結体で形成される。ウイック10を形成するためには、まずコンテナ8に中子(図示せず)を挿入する。中空部9のうち壁面9aが中心線Cに対して傾斜している領域(以下、傾斜領域9bという。本実施形態では放熱部S1に対応する領域である。)は完全に中子で埋められており、傾斜領域9bでは、壁面9aと中子の間に隙間がない。これに対し、中空部9のうち壁面9aが中心線Cと平行に延びている領域(以下、平行領域9cという。本実施形態では断熱部S2と受熱部S3に対応する領域である。)では壁面9aと中子の間に隙間が形成されている。 Wick 10 is formed of a copper sintered body. In order to form the wick 10, first, a core (not shown) is inserted into the container 8. A region of the hollow portion 9 in which the wall surface 9a is inclined with respect to the center line C (hereinafter referred to as an inclined region 9b. In this embodiment, the region corresponding to the heat radiating portion S1) is completely filled with a core. In the inclined region 9b, there is no gap between the wall surface 9a and the core. In contrast, in the hollow portion 9, the wall surface 9a extends in parallel to the center line C (hereinafter referred to as a parallel region 9c. In the present embodiment, the region corresponds to the heat insulating portion S2 and the heat receiving portion S3). A gap is formed between the wall surface 9a and the core.
 次に、中空部9の壁面9aと中子との間の隙間に銅の粉体を充填し、1000℃程度の高温で焼結する。銅の粉体は傾斜領域9bには充填されず、平行領域9cだけに充填される。直径50μm程度の銅の粉体を充填した場合、空間率(粉体間の空隙の全容積を隙間の容積で除した値)は50%程度である。焼結によって粉体同士が固着されるとともに、粉体の間に空隙が確保される。銅の粉体は中空部9の壁面9aにも強固に固定される。これによって多孔質のウイック10が形成される。このようにして形成されたウイック10は回転による遠心力に対し十分な安定性を有している。銅の粉体の代わりに銅線を隙間に充填することもできる。銅線を用いる場合も同様に、中空部9の壁面9aと中子との間の平行領域9cに銅線を充填し、焼結する。 Next, the gap between the wall surface 9a of the hollow portion 9 and the core is filled with copper powder and sintered at a high temperature of about 1000 ° C. The copper powder is not filled in the inclined region 9b, but only in the parallel region 9c. When copper powder having a diameter of about 50 μm is filled, the porosity (a value obtained by dividing the total volume of the gaps between the powders by the volume of the gaps) is about 50%. The powders are fixed to each other by sintering, and a gap is secured between the powders. The copper powder is firmly fixed to the wall surface 9 a of the hollow portion 9. As a result, the porous wick 10 is formed. The wick 10 formed in this manner has sufficient stability against centrifugal force due to rotation. A copper wire can be filled in the gap instead of the copper powder. Similarly, when using a copper wire, the parallel region 9c between the wall surface 9a of the hollow portion 9 and the core is filled with the copper wire and sintered.
 ウイック10は断熱部S2と受熱部S3の全長に渡って形成されていなくてもよく、コンテナ8の放熱部S1よりも第一端8e寄りに、平行領域9c(本実施形態では断熱部S2と受熱部S3)の少なくとも一部に形成されていればよい。これに対し、傾斜領域9b(本実施形態では放熱部S1)にはウイック10は形成されない。すなわち、傾斜領域9bでは中空部9の壁面9aは露出している。 The wick 10 does not have to be formed over the entire length of the heat insulating portion S2 and the heat receiving portion S3, and is closer to the first end 8e than the heat radiating portion S1 of the container 8, and is parallel to the parallel region 9c (in this embodiment, the heat insulating portion S2 and It suffices if it is formed on at least a part of the heat receiving part S3). On the other hand, the wick 10 is not formed in the inclined region 9b (in this embodiment, the heat radiation portion S1). That is, the wall surface 9a of the hollow portion 9 is exposed in the inclined region 9b.
 次に、図4を参照してヒートパイプの冷却機構について説明する。シャフト7の一端は水冷ジャケット21で覆われており、水冷ジャケット21の内部21aを冷却水が循環する。冷却水がシャフト7とコンテナ8を介してコンテナ8の内部の作動流体を冷却する。冷却水は水や油でもよいが、ヒートパイプ12が自動車に用いられる場合は、冷却水の凍結を防止するためにロングライフクーラント(LLC)またはLLCを水で薄めた希釈液を用いることが好ましい。 Next, the cooling mechanism of the heat pipe will be described with reference to FIG. One end of the shaft 7 is covered with a water cooling jacket 21, and the cooling water circulates inside the water cooling jacket 21. The cooling water cools the working fluid inside the container 8 through the shaft 7 and the container 8. The cooling water may be water or oil, but when the heat pipe 12 is used in an automobile, it is preferable to use a long life coolant (LLC) or a diluted solution obtained by diluting LLC with water in order to prevent the cooling water from freezing. .
 水冷ジャケット21は冷却水の入口22と出口23を有し、ポンプ(図示せず)によって冷却水が水冷ジャケット21の内部21aを循環する。ヒートパイプ12の長手方向Lにおいて、中心軸Cを基準として、冷却水の入口22は水冷ジャケット21の上部に、出口23は下部にそれぞれ設けられているが、その配置は逆でもよい。水冷ジャケット21とシャフト7の間には、水冷ジャケット21に固定され、中心軸Cの周りをらせん状に延びる板部材24が設けられている。板部材24は水冷ジャケット21の内部21aにらせん状の流路を形成し、冷却水のシャフト7との接触長及び接触時間を増加させる。板部材24はシャフト7に固定されていてもよい。 The water cooling jacket 21 has an inlet 22 and an outlet 23 for cooling water, and the cooling water circulates inside the water cooling jacket 21 by a pump (not shown). In the longitudinal direction L of the heat pipe 12, the cooling water inlet 22 is provided at the upper part of the water cooling jacket 21 and the outlet 23 is provided at the lower part with respect to the central axis C, but the arrangement may be reversed. Between the water cooling jacket 21 and the shaft 7, there is provided a plate member 24 that is fixed to the water cooling jacket 21 and extends spirally around the central axis C. The plate member 24 forms a spiral flow path in the interior 21 a of the water cooling jacket 21, and increases the contact length and contact time with the cooling water shaft 7. The plate member 24 may be fixed to the shaft 7.
 水冷ジャケット21の一端はメカニカルシール25で封止されている。メカニカルシール25はシャフト7に嵌められたスリーブ26と、水冷ジャケット21の肩部21bと、水冷ジャケット21に係合する保持リング27と、によって位置決めされている。スリーブ26とシャフト7の間はガスケット28でシールされている。シャフト7は軸受29で支持され、水冷ジャケット21に対して回転することができる。軸受29は水冷ジャケット21の肩部21cと保持リング30で位置決めされている。ヒートパイプ12とシャフト7と水冷ジャケット21は回転機械の冷却機構2を構成する。 One end of the water cooling jacket 21 is sealed with a mechanical seal 25. The mechanical seal 25 is positioned by a sleeve 26 fitted to the shaft 7, a shoulder 21 b of the water cooling jacket 21, and a holding ring 27 that engages with the water cooling jacket 21. A seal 28 is sealed between the sleeve 26 and the shaft 7. The shaft 7 is supported by a bearing 29 and can rotate with respect to the water cooling jacket 21. The bearing 29 is positioned by the shoulder 21 c of the water cooling jacket 21 and the holding ring 30. The heat pipe 12, the shaft 7 and the water cooling jacket 21 constitute a cooling mechanism 2 of the rotating machine.
 ヒートパイプ12の作動原理は以下の通りである。図1を参照すると、モータ等で生じた熱Hがシャフト7を通ってヒートパイプ12の受熱部S3に伝達される。この熱移動によりヒートパイプ12の中空部9に封入された作動流体が蒸発する。この際作動流体は、蒸発に伴う潜熱(気化熱)を吸収し、内部エネルギを増加させる。これによってヒートパイプ12はモータ1等で生じた熱を効率的に吸収する。蒸発した作動流体はヒートパイプ12の中空部9を拡散移動し、断熱部S2を通って放熱部S1に達し、そこで冷却される。この熱移動により、蒸発した作動流体が凝縮する。この際作動流体は、凝縮に伴う潜熱(凝縮熱)を放出し、内部エネルギを減少させる。 The operating principle of the heat pipe 12 is as follows. Referring to FIG. 1, heat H generated by a motor or the like is transmitted to the heat receiving portion S <b> 3 of the heat pipe 12 through the shaft 7. By this heat transfer, the working fluid enclosed in the hollow portion 9 of the heat pipe 12 evaporates. At this time, the working fluid absorbs latent heat (heat of vaporization) accompanying evaporation and increases internal energy. As a result, the heat pipe 12 efficiently absorbs heat generated by the motor 1 or the like. The evaporated working fluid diffuses and moves through the hollow portion 9 of the heat pipe 12, passes through the heat insulating portion S2, reaches the heat radiating portion S1, and is cooled there. This heat transfer condenses the evaporated working fluid. At this time, the working fluid releases latent heat (condensation heat) associated with condensation, and reduces internal energy.
 これによってヒートパイプ12はモータ1等で生じた熱を効率的に放出する。放出された熱は熱交換の原理によって、水冷ジャケット21内を循環する冷却水に伝達され、図示しないラジエータ等を介して最終的に大気に放熱される。凝縮して液相になった作動流体は遠心力によってヒートパイプ12の中空部9の壁面9aに付着している。放熱部S1では連続的に気相の作動流体が凝縮し、新たな液相の作動流体が発生し続けるため、液相の作動流体は遠心力によって中空部9の壁面9aに押し付けられながら、中空部9の壁面9a上を受熱部S3の方に押し出されるように移動する。断熱部S2と受熱部S3にはウイック10が設けられているため、毛細管力による駆動力が加えられ、液相の作動流体はウイック10に沿って受熱部S3に運搬され、再び蒸発する。 Thus, the heat pipe 12 efficiently releases the heat generated by the motor 1 or the like. The released heat is transmitted to the cooling water circulating in the water cooling jacket 21 according to the principle of heat exchange, and is finally radiated to the atmosphere via a radiator (not shown). The working fluid condensed into a liquid phase adheres to the wall surface 9a of the hollow portion 9 of the heat pipe 12 by centrifugal force. In the heat dissipating part S1, the gas-phase working fluid is continuously condensed and a new liquid-phase working fluid continues to be generated, so that the liquid-phase working fluid is pressed against the wall surface 9a of the hollow part 9 by centrifugal force, It moves so that it may be extruded on the wall surface 9a of the part 9 toward the heat receiving part S3. Since the wick 10 is provided in the heat insulation part S2 and the heat receiving part S3, a driving force by a capillary force is applied, and the liquid-phase working fluid is transported along the wick 10 to the heat receiving part S3 and is evaporated again.
 放熱部S1における作動流体の凝縮は膜状凝縮であると考えられる。すなわち、作動流体の凝縮は、伝熱面である中空部9の壁面9aに液相の作動流体が膜状に付着した状態で生じている。膜状凝縮は、液体が伝熱面に液滴状に付着した状態で蒸気の凝縮が生じる滴状凝縮に比べ、熱伝導率が悪い。また、膜状凝縮の熱伝導率は液膜の厚さと相関関係にあり、液膜の厚さが小さいほど熱伝導率が向上することが知られている。従って、膜状凝縮の熱伝導率を改善するためには、凝縮が生じる位置で作動流体の液膜の厚さをできるだけ抑えることが必要となる。 It is considered that the condensation of the working fluid in the heat radiation part S1 is a film-like condensation. In other words, the working fluid is condensed in a state where the liquid-phase working fluid adheres to the wall surface 9a of the hollow portion 9 that is the heat transfer surface. The film-like condensation has a lower thermal conductivity than the drop-like condensation in which vapor condensation occurs when the liquid is attached to the heat transfer surface in the form of droplets. In addition, it is known that the thermal conductivity of the film-like condensation has a correlation with the thickness of the liquid film, and that the thermal conductivity is improved as the thickness of the liquid film is smaller. Therefore, in order to improve the thermal conductivity of the film condensation, it is necessary to suppress the thickness of the liquid film of the working fluid as much as possible at the position where the condensation occurs.
 図5Aは本実施形態のヒートパイプを示し、図5Bは比較例のヒートパイプを示している。本実施形態のヒートパイプ12の内壁は放熱部S1で傾斜しているのに対し、比較例のヒートパイプ112は長手方向Lに均一の断面を有しており、放熱部S1に傾斜が設けられていない。いずれの例でも受熱部S3と断熱部S2にはウイック10が設けられている。 FIG. 5A shows the heat pipe of this embodiment, and FIG. 5B shows the heat pipe of the comparative example. While the inner wall of the heat pipe 12 of the present embodiment is inclined at the heat radiating portion S1, the heat pipe 112 of the comparative example has a uniform cross section in the longitudinal direction L, and the heat radiating portion S1 is inclined. Not. In any example, the wick 10 is provided in the heat receiving part S3 and the heat insulating part S2.
 本実施形態では、放熱部S1における中空部9の内径35は、第二端8fから第一端8eに向かうにつれて大きくなる。換言すれば、中空部9の壁面9aは、放熱部S1で、第二端8fから第一端8eに向かうにつれて中心軸Cから離れるように中心軸Cに対して傾斜している。このため、放熱部S1において中空部9の壁面9aに付着した液相の作動流体に、遠心力の一部が内径35の大きい方に向かう駆動力として作用し、第一端8eに向けた液相の作動流体の流れが促進される。 In the present embodiment, the inner diameter 35 of the hollow portion 9 in the heat radiating portion S1 increases from the second end 8f toward the first end 8e. In other words, the wall surface 9a of the hollow portion 9 is inclined with respect to the central axis C so as to be away from the central axis C as it goes from the second end 8f to the first end 8e at the heat radiating portion S1. For this reason, a part of the centrifugal force acts on the liquid-phase working fluid attached to the wall surface 9a of the hollow portion 9 in the heat radiating portion S1 as a driving force toward the larger inner diameter 35, and the liquid toward the first end 8e. Phase fluid flow is facilitated.
 図5Aを参照すると、遠心力Fは中心軸Cと直交する方向に生じ、壁面9aと平行な方向の分力Fsinθが液相の作動流体を壁面9aに沿って第一端8eに向けて駆動する。従って、放熱部S1で膜状凝縮によって連続的に発生する液相の作動流体は、遠心力の分力Fsinθによって連続的に放熱部S1から排除され、放熱部S1に存在する液相の作動流体31の液膜の厚さが減少し、熱伝導率が向上する。これに対し図5Bを参照すると、中空部9の壁面9aは中心軸Cと平行であるため、壁面9aと平行な方向の分力はゼロとなる。従って、同図に示すように図5Aと比べ厚い液相の作動流体31の膜が定常的に滞留し、熱伝導率が悪化する。 Referring to FIG. 5A, the centrifugal force F is generated in a direction orthogonal to the central axis C, and the component force Fsinθ in the direction parallel to the wall surface 9a drives the liquid-phase working fluid toward the first end 8e along the wall surface 9a. To do. Accordingly, the liquid-phase working fluid continuously generated by film condensation in the heat radiating section S1 is continuously removed from the heat radiating section S1 by the centrifugal force component Fsinθ, and the liquid-phase working fluid existing in the heat radiating section S1. The thickness of the liquid film 31 is reduced and the thermal conductivity is improved. On the other hand, referring to FIG. 5B, since the wall surface 9a of the hollow portion 9 is parallel to the central axis C, the component force in the direction parallel to the wall surface 9a is zero. Therefore, as shown in the figure, the film of the working fluid 31 having a thick liquid phase as compared with FIG. 5A stays steadily, and the thermal conductivity deteriorates.
 第一端8e(受熱部S3)に向けた液相の作動流体の流れをさらに促進するため、放熱部S1において、中空部9の壁面9aにはウイック10が設けられていない。ウイック10内部の空隙はランダムな方向に延びているため、遠心力による駆動を阻害するように作用する場合がある。すなわち、ウイック10は遠心力によるスムーズな液相の作動流体の移動を妨げる場合がある。 In the heat dissipating part S1, the wall surface 9a of the hollow part 9 is not provided with the wick 10 in order to further promote the flow of the liquid-phase working fluid toward the first end 8e (heat receiving part S3). Since the air gap inside the wick 10 extends in a random direction, it may act to inhibit driving by centrifugal force. That is, the wick 10 may prevent the smooth liquid phase working fluid from moving due to centrifugal force.
 本実施形態では、放熱部S1で中空部9の壁面9aが露出しており、液相の作動流体の動きが阻害されにくい。これに対し、断熱部S2及び受熱部S3では中空部9の壁面9aは傾斜しておらず、遠心力による液相の作動流体の駆動力は得られない。このため、断熱部S2及び受熱部S3にウイック10が設けられ、凝縮して液体になった作動流体が毛細管力によって長手方向Lに運搬される。放熱部S1における液相の作動流体の移動抵抗をさらに軽減するため、放熱部S1の壁面9aに研磨等による表面平滑化処理、テフロン(登録商標)加工など施してもよい。 In the present embodiment, the wall surface 9a of the hollow portion 9 is exposed at the heat radiating portion S1, and the movement of the liquid-phase working fluid is hardly hindered. On the other hand, in the heat insulating part S2 and the heat receiving part S3, the wall surface 9a of the hollow part 9 is not inclined, and the driving force of the liquid-phase working fluid by the centrifugal force cannot be obtained. For this reason, the wick 10 is provided in the heat insulation part S2 and the heat receiving part S3, and the working fluid condensed into a liquid is conveyed in the longitudinal direction L by the capillary force. In order to further reduce the movement resistance of the liquid-phase working fluid in the heat radiating part S1, the wall surface 9a of the heat radiating part S1 may be subjected to a surface smoothing process such as polishing or Teflon (registered trademark) processing.
 中空部9の壁面9aが断熱部S2と受熱部S3で傾斜していないことは、ヒートパイプ12の最大直径を抑制するためにも有効である。例えば図1において、一例ではヒートパイプ12の全長L1が300mm、直径d1が15.9mm、放熱部S1の長さが10~50mmである。放熱部S1の長さが30mmであると仮定すると、その他の部分の長さは270mmとなる。ヒートパイプ12の全長に渡って3度の傾斜が付いていると、2×270tan3°=28.3mmの直径増加につながる。1度の傾斜でも9.4mmの直径増加となり、ヒートパイプ12の直径d1=15.9mmと比べても極めて大きな値である。ヒートパイプ12の最大直径が増加するとそれを収容するシャフト7の直径もそれに応じて増加する必要があり、ひいてはモータ1の寸法増加にもつながる。これに伴うコストや車両設計への影響は多大である。さらに、中空部9の壁面9aが受熱部S3で大きく傾斜していると、液相の作動流体が長手方向Lの一方に偏りすぎて受熱部S3全体に作動流体が保持されないため、熱伝導率が低下する。中空部9の壁面9aが受熱部S3で中心軸Cと平行に延びている場合は、液相の作動流体が受熱部S3全体に均一に分布し、熱伝導率の低下を防止することができる。 The fact that the wall surface 9a of the hollow portion 9 is not inclined by the heat insulating portion S2 and the heat receiving portion S3 is also effective for suppressing the maximum diameter of the heat pipe 12. For example, in FIG. 1, in one example, the total length L1 of the heat pipe 12 is 300 mm, the diameter d1 is 15.9 mm, and the length of the heat radiation part S1 is 10 to 50 mm. Assuming that the length of the heat radiation part S1 is 30 mm, the length of the other part is 270 mm. If there is an inclination of 3 degrees over the entire length of the heat pipe 12, it leads to an increase in diameter of 2 × 270 tan 3 ° = 28.3 mm. Even with a tilt of 1 degree, the diameter increases by 9.4 mm, which is an extremely large value compared to the diameter d1 of the heat pipe 12 = 15.9 mm. When the maximum diameter of the heat pipe 12 increases, the diameter of the shaft 7 that accommodates the heat pipe 12 also needs to be increased accordingly, which leads to an increase in the size of the motor 1. This has a significant impact on cost and vehicle design. Furthermore, if the wall surface 9a of the hollow portion 9 is greatly inclined at the heat receiving portion S3, the liquid-phase working fluid is biased too much in the longitudinal direction L, and the working fluid is not held in the entire heat receiving portion S3. Decreases. When the wall surface 9a of the hollow portion 9 extends parallel to the central axis C in the heat receiving portion S3, the liquid-phase working fluid is evenly distributed throughout the heat receiving portion S3, and a decrease in thermal conductivity can be prevented. .
 図6A~図6Cは、本発明の第2の実施形態を示している。図6Aは第1の実施形態と同様のヒートパイプの概略断面図を、図6Bは図6AのB-B線からみた側面図を、図6Cは図6Bに示すA部の拡大図を示している。以下に述べる構成を除き、本発明の第2の実施形態は第1の実施形態と同じである。
 本実施形態のヒートパイプ12は空冷方式を採用している。具体的には、放熱部S1において、シャフト7の外壁面7cに多数のフィン32が固定されている。フィン32はシャフト7とともに回転し、ヒートパイプ12からシャフト7を介して伝達する熱を空気中に放熱する。
6A to 6C show a second embodiment of the present invention. 6A is a schematic cross-sectional view of a heat pipe similar to that of the first embodiment, FIG. 6B is a side view taken along line BB of FIG. 6A, and FIG. 6C is an enlarged view of a portion A shown in FIG. 6B. Yes. Except for the configuration described below, the second embodiment of the present invention is the same as the first embodiment.
The heat pipe 12 of this embodiment employs an air cooling system. Specifically, a large number of fins 32 are fixed to the outer wall surface 7c of the shaft 7 in the heat radiation part S1. The fin 32 rotates together with the shaft 7 and dissipates heat transferred from the heat pipe 12 through the shaft 7 into the air.
 フィン32は多数の窪み33を備えている。窪み33は空気の流れを局所的に攪乱し、フィン32の表面における乱流熱伝達を促進する。乱流熱伝達では空気塊がランダムに混合しあうことで熱移動が促進され、層流熱伝達と比べて熱伝熱率が大きく向上する。層流熱伝達ではフィン32の表面における空気の流れが層流であり、熱移動が生じにくいため、乱流熱伝達と比べて熱伝熱率が低下する。ヒートパイプ12とシャフト7とフィン32は回転機械の冷却機構34を構成する。 The fin 32 has a large number of depressions 33. The recess 33 locally disturbs the air flow and promotes turbulent heat transfer on the surface of the fin 32. In turbulent heat transfer, heat transfer is promoted by the random mixing of air masses, and the heat transfer rate is greatly improved compared to laminar heat transfer. In laminar heat transfer, the air flow on the surface of the fin 32 is laminar, and heat transfer is less likely to occur, so the heat transfer rate is lower than in turbulent heat transfer. The heat pipe 12, the shaft 7, and the fin 32 constitute a cooling mechanism 34 of the rotating machine.
 空冷方式と水冷方式を併用することも可能であり、図示は省略するが、放熱部S1においてヒートパイプ12とシャフト7とを延長し、シャフト7上に第1の実施形態で述べた水冷ジャケット21と第2の実施形態で述べたフィン32を直列に配置することができる。この場合、フィン32の熱伝達効率を高めるため、フィン32をシャフト7の端部に、水冷ジャケット21をフィン32よりも第一端8e寄りに設けることが望ましい。 The air cooling method and the water cooling method may be used in combination, and although not shown, the heat pipe 12 and the shaft 7 are extended in the heat radiating portion S1, and the water cooling jacket 21 described in the first embodiment on the shaft 7 is used. The fins 32 described in the second embodiment can be arranged in series. In this case, in order to increase the heat transfer efficiency of the fin 32, it is desirable to provide the fin 32 at the end of the shaft 7 and the water cooling jacket 21 closer to the first end 8e than the fin 32.
 1 モータ
 2 回転機械の冷却機構
 4 ロータ
 7 シャフト
 8 コンテナ
 9 中空部
 9a 中空部の壁面
 10 ウイック
 11 シリコングリース
 12 ヒートパイプ
 21 水冷ジャケット
 24 板部材
 32 フィン
 33 窪み
 C 中心軸
 L 長手方向
 S1 放熱部
 S2 断熱部
 S3 受熱部
DESCRIPTION OF SYMBOLS 1 Motor 2 Cooling mechanism of rotating machine 4 Rotor 7 Shaft 8 Container 9 Hollow part 9a Wall surface of hollow part 10 Wick 11 Silicon grease 12 Heat pipe 21 Water cooling jacket 24 Plate member 32 Fin 33 Indentation C Central axis L Longitudinal direction S1 Heat radiation part S2 Heat insulation part S3 Heat receiving part

Claims (8)

  1.  長手方向に延びる中心軸の周りを回転可能であり、作動流体を内部に有する管状のコンテナを備え、前記コンテナは、
     前記長手方向の両端である第一端及び第二端と、
     前記第二端から前記第一端に向かう前記長手方向において、順に、
     前記第二端を含み、前記第二端から前記第一端に向かうにつれて前記コンテナの少なくとも一部の内径が増加し、外部へ熱を放出するよう構成された放熱部と、
     前記放熱部に隣接する断熱部と、
     前記断熱部に隣接し、前記外部から熱を受けるよう構成された受熱部と、
    を有する、ヒートパイプ。
    Comprising a tubular container rotatable around a longitudinally extending central axis and having a working fluid therein,
    A first end and a second end which are both ends in the longitudinal direction;
    In the longitudinal direction from the second end toward the first end,
    Including the second end, an inner diameter of at least a part of the container increases from the second end toward the first end, and a heat dissipating part configured to release heat to the outside;
    A heat insulating part adjacent to the heat radiating part;
    A heat receiving portion adjacent to the heat insulating portion and configured to receive heat from the outside;
    Having a heat pipe.
  2.  前記受熱部の内壁面は、前記中心軸と平行に延びている、請求項1に記載のヒートパイプ。 The heat pipe according to claim 1, wherein an inner wall surface of the heat receiving portion extends in parallel with the central axis.
  3.  前記少なくとも一部の前記放熱部の前記内壁面は、前記中心軸に対して1度以上3度以下の角度で傾斜している、請求項1または2に記載のヒートパイプ。 The heat pipe according to claim 1 or 2, wherein the inner wall surface of the at least part of the heat radiating portion is inclined at an angle of 1 degree to 3 degrees with respect to the central axis.
  4.  前記コンテナにおいて、前記中心軸と平行な内壁面にウイックが設けられている、請求項1から3のいずれか1項に記載のヒートパイプ。 The heat pipe according to any one of claims 1 to 3, wherein in the container, a wick is provided on an inner wall surface parallel to the central axis.
  5.  前記ウイックは銅の粉体の焼結体を有する、請求項4に記載のヒートパイプ。 The heat pipe according to claim 4, wherein the wick has a sintered body of copper powder.
  6.  請求項1から5のいずれか1項に記載のヒートパイプと、
     前記ヒートパイプを収容し、または前記ヒートパイプと一体形成され、前記中心軸の周りを前記ヒートパイプとともに回転可能なシャフトと、
     前記放熱部で前記シャフトを覆い内部を冷却水が循環する水冷ジャケットと、
     前記水冷ジャケットの内部で前記水冷ジャケットと前記シャフトのいずれか一方に固定され、前記中心軸の周りをらせん状に延びる板部材と、を備える、
    回転機械の冷却機構。
    The heat pipe according to any one of claims 1 to 5,
    A shaft that accommodates the heat pipe or is integrally formed with the heat pipe and is rotatable around the central axis together with the heat pipe;
    A water-cooling jacket that covers the shaft with the heat radiating portion and in which cooling water circulates;
    A plate member fixed to one of the water cooling jacket and the shaft inside the water cooling jacket and extending spirally around the central axis;
    Cooling mechanism for rotating machinery.
  7.  請求項1から5のいずれか1項に記載のヒートパイプと、
     前記ヒートパイプを収容し、または前記ヒートパイプと一体形成され、前記中心軸の周りを前記ヒートパイプとともに回転可能なシャフトと、
     前記放熱部において前記シャフトの外壁面に固定され、複数の窪みを備えるフィンと、を備える、回転機械の冷却機構。
    The heat pipe according to any one of claims 1 to 5,
    A shaft that accommodates the heat pipe or is integrally formed with the heat pipe and is rotatable around the central axis together with the heat pipe;
    A cooling mechanism for a rotary machine, comprising: a fin that is fixed to an outer wall surface of the shaft in the heat radiating portion and includes a plurality of depressions.
  8.  前記シャフトが車両の駆動用モータの主軸に嵌装され、または前記主軸と一体形成されている、請求項6または7に記載の回転機械の冷却機構。 The cooling mechanism for a rotary machine according to claim 6 or 7, wherein the shaft is fitted to a main shaft of a driving motor of a vehicle or formed integrally with the main shaft.
PCT/JP2015/083247 2014-11-28 2015-11-26 Heat pipe, and cooling mechanism for rotating machine WO2016084900A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-241347 2014-11-28
JP2014241347A JP2016102616A (en) 2014-11-28 2014-11-28 Heat pipe and cooling mechanism of rotary machine

Publications (1)

Publication Number Publication Date
WO2016084900A1 true WO2016084900A1 (en) 2016-06-02

Family

ID=56074450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083247 WO2016084900A1 (en) 2014-11-28 2015-11-26 Heat pipe, and cooling mechanism for rotating machine

Country Status (2)

Country Link
JP (1) JP2016102616A (en)
WO (1) WO2016084900A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019208039A1 (en) * 2019-06-03 2020-12-03 Zf Friedrichshafen Ag Electric machine with a rotor cooling device
CN111245147B (en) * 2020-02-24 2021-09-14 东南大学溧阳研究院 Mixed cooling system of birotor stator yoke-free modular axial motor
WO2024013982A1 (en) * 2022-07-15 2024-01-18 日産自動車株式会社 Rotor shaft

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109405A (en) * 1974-01-31 1975-08-28
US3999400A (en) * 1970-07-10 1976-12-28 Gray Vernon H Rotating heat pipe for air-conditioning
JPS5211462A (en) * 1975-07-18 1977-01-28 Hitachi Ltd Heat pipe
JPS6156704B2 (en) * 1979-09-12 1986-12-03 Hitachi Ltd
JPH0834022A (en) * 1994-07-26 1996-02-06 Matsumura Seikei:Kk Temperature control device of mold
JPH1038299A (en) * 1996-02-23 1998-02-13 Sekisui Chem Co Ltd Bathroom unit with heat pipe
JPH11183070A (en) * 1997-12-18 1999-07-06 Fujikura Ltd Method for production of flat heat pipe
JP2007534874A (en) * 2004-01-30 2007-11-29 プラット アンド ホイットニー カナダ コーポレイション Anti-icing device and method for an aero engine nose cone
JP2009190578A (en) * 2008-02-14 2009-08-27 Toyota Motor Corp In-wheel motor for vehicles

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999400A (en) * 1970-07-10 1976-12-28 Gray Vernon H Rotating heat pipe for air-conditioning
JPS50109405A (en) * 1974-01-31 1975-08-28
JPS5211462A (en) * 1975-07-18 1977-01-28 Hitachi Ltd Heat pipe
JPS6156704B2 (en) * 1979-09-12 1986-12-03 Hitachi Ltd
JPH0834022A (en) * 1994-07-26 1996-02-06 Matsumura Seikei:Kk Temperature control device of mold
JPH1038299A (en) * 1996-02-23 1998-02-13 Sekisui Chem Co Ltd Bathroom unit with heat pipe
JPH11183070A (en) * 1997-12-18 1999-07-06 Fujikura Ltd Method for production of flat heat pipe
JP2007534874A (en) * 2004-01-30 2007-11-29 プラット アンド ホイットニー カナダ コーポレイション Anti-icing device and method for an aero engine nose cone
JP2009190578A (en) * 2008-02-14 2009-08-27 Toyota Motor Corp In-wheel motor for vehicles

Also Published As

Publication number Publication date
JP2016102616A (en) 2016-06-02

Similar Documents

Publication Publication Date Title
US9071098B2 (en) Centrifugal heat dissipation device and motor using same
US9331552B2 (en) Rotor assembly with heat pipe cooling system
RU2563702C2 (en) Electrical machine
US10871331B2 (en) Cooling device and motor utilizing a heating element to circulate cooling
JP6197592B2 (en) Motor cooling structure
KR101700769B1 (en) Electric motor and manufacturing method thereof
CN110243211B (en) Heat conduction pipe, rotor and rotating electrical machine
WO2016084900A1 (en) Heat pipe, and cooling mechanism for rotating machine
JP5169280B2 (en) In-wheel motor for vehicles
EP3715765B1 (en) Enclosure for an optoelectronic sensor and lidar sensor
US20160344263A1 (en) Electric machine
KR101908003B1 (en) Magnetic fluid sealing structure for high-speed rotation
JP2012514855A (en) Heat exchanger and related methods
JP6622509B2 (en) Electric motor cooling device
US9059607B2 (en) Gear-integrated electric motor and electric vehicle
EP3192693A1 (en) Hub motor and personal transportation vehicle comprising said motor
JP2009293743A (en) Warming up mechanism for vehicle transmission
US11515756B2 (en) Electric motor cooling system
JP2011237156A (en) Vibration type heat pipe
JP2007227437A (en) Cooling apparatus
JPH08298752A (en) Motor for electric vehicle
JP2010142064A (en) Device for cooling inverter and motor
CN111094823A (en) Cable drum
CN215452623U (en) Motor, heat conduction structure for motor heat dissipation and automobile
CN213879471U (en) Permanent magnet motor for air compressor and corresponding air compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15862802

Country of ref document: EP

Kind code of ref document: A1