WO2016084878A1 - Underwater lighting apparatus - Google Patents

Underwater lighting apparatus Download PDF

Info

Publication number
WO2016084878A1
WO2016084878A1 PCT/JP2015/083174 JP2015083174W WO2016084878A1 WO 2016084878 A1 WO2016084878 A1 WO 2016084878A1 JP 2015083174 W JP2015083174 W JP 2015083174W WO 2016084878 A1 WO2016084878 A1 WO 2016084878A1
Authority
WO
WIPO (PCT)
Prior art keywords
underwater
light
underwater lighting
cleaning
air supply
Prior art date
Application number
PCT/JP2015/083174
Other languages
French (fr)
Japanese (ja)
Inventor
宮原 隆和
Original Assignee
株式会社エルム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エルム filed Critical 株式会社エルム
Publication of WO2016084878A1 publication Critical patent/WO2016084878A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V31/00Gas-tight or water-tight arrangements
    • F21V31/03Gas-tight or water-tight arrangements with provision for venting

Definitions

  • the present invention relates to an illuminating device including a large number of underwater units that are laid underwater and have a function of preventing water from entering, and has a function of preventing contamination of light transmission windows of the underwater units.
  • Non-patent document 1 Non-patent document 2
  • the problem to be solved by the present invention is to provide an underwater illumination device having a function of preventing dirt composed of algae, moss, aquatic organisms, etc. from adhering to a light transmitting portion of a large number of underwater illumination units. It is.
  • An underwater lighting device which has been made to solve the above problems, a) a light source capable of emitting visible light and ultraviolet light, and an underwater lighting unit having an airtight case having a window that transmits light from the light source; b) an air supply tube connected to an opening provided in the airtight case; c) an air supply device for supplying gas to the air supply tube.
  • the underwater lighting device it is further desirable to coat the surface of the window with a photocatalytic substance layer.
  • a photocatalytic substance layer titanium oxide, zinc oxide, or a mixture thereof can be used.
  • the coating can be formed by a method such as application or vapor deposition.
  • the pressure in the airtight case may be set higher than the pressure (water pressure) in water where the underwater lighting unit is placed. it can. By doing so, even if an airtight leak occurs in the airtight case, it is possible to prevent water from entering the underwater lighting unit and to prevent damage to the light source, the circuit thereof, and the like.
  • a simple waterproof case equivalent to IP67 made of metal, plastic, or the like can be used as the airtight case.
  • the power of the light source may depend on a battery (primary battery, secondary battery) provided inside the underwater lighting unit, but is separately disposed on land, underwater, etc. It is desirable to be with the air supply device.) It is desirable to supply from a power source.
  • the electric wire for supplying the electric power may be provided separately from the air supply tube, or may be inserted into the air supply tube. Or conversely, an air supply tube may be built in the electric wire. This makes it possible to use the underwater lighting unit for a long period of time (implementation of underwater lighting).
  • the underwater lighting unit when used for a long period of time, depending on the environment, algae, moss, aquatic organisms, etc. may adhere to the surface of the window, and the light from the light source does not pass through the window sufficiently, resulting in a sufficient lighting effect It becomes impossible.
  • the light source since the light source has a function of emitting ultraviolet rays, this prevents algae, moss, aquatic organisms, etc. from adhering to the surface of the window, and even if used over a long period of time. A decrease in the amount of emitted light can be minimized.
  • the effect is further enhanced by coating the surface of the window with a photocatalytic material layer.
  • the underwater lighting device is further connected with a signal wire for transmitting a signal for independently controlling light emission of the light source (flashing, light emission intensity, emission color including visible light and ultraviolet light, etc.). Is desirable.
  • a signal wire for transmitting a signal for independently controlling light emission of the light source (flashing, light emission intensity, emission color including visible light and ultraviolet light, etc.).
  • the power supply wire is provided, it is desirable to be connected with it, and if the power supply wire is inserted into the air supply tube as described above, it is desirable to insert it together with it. .
  • communication may be performed by superimposing a signal on the power wire, instead of inserting them separately.
  • the light emission control signal may be superimposed on the electric power line when the electric power line is drawn separately from the air supply tube.
  • the air supply device is provided with a pressure sensor, a control unit, and a pump, and the control unit controls the start and stop of the pump based on the detection result of the pressure sensor.
  • the underwater lighting device further includes, when using a plurality of the underwater lighting units, connecting them in a loop shape or a matrix shape with the air supply tube, and providing a gas distributor in the air supply device, It is desirable to feed gas in parallel from the gas distributor to the plurality of underwater lighting units.
  • a loop / matrix connection it is possible to increase the resistance to damage accidents such as an air supply tube.
  • the underwater lighting device since ultraviolet rays are emitted from the light source in the underwater lighting unit, biological stains made of algae, moss, aquatic organisms, and the like are unlikely to adhere to the window.
  • a photocatalytic material layer By coating the surface of the window with a photocatalytic material layer, the adhesion of dirt is further prevented, and the underwater lighting unit can be used in water for a longer period of time.
  • the top view of the pond which laid the underwater lighting unit for demonstrating one Example of this invention It is a side view which shows the example of installation of an underwater lighting unit, (a) is the example of installation by a pile, (b) is the example of installation by a mount. It is sectional drawing which shows the example of composition of the connecting line which connects underwater lighting units, (a) is an example which inserted a signal wire and a power line in an air supply tube, (b) is in a multi-core cabtyre cable. An example of inserting an air supply tube.
  • the top view (a) and side view (b) which show the typical structural example of the moving mechanism of a robot cleaning ship.
  • the top view (a) which shows the other structural example of the moving mechanism of a robot cleaning ship, and the detailed drawings (b) and (c) of two examples of the drive source.
  • the top view (a) which shows the further another structural example of the moving mechanism of a robot cleaning ship, the side view (b), and the top view (c) of the centrifugal pump which is a drive source.
  • the side view (a) and bottom view (b) which show the structural example of the cleaning mechanism of a robot cleaning ship, the enlarged side view (c), and the enlarged plan view (d) of the elevator mechanism part.
  • the block diagram which shows the structure of the controller of a robot cleaning ship. Explanatory drawing which shows an example of the form of a DMX signal.
  • FIG. 1 is a view showing an embodiment of an underwater illumination system 10 including an apparatus according to the present invention, and shows a state in which several tens to thousands of underwater lighting units 11 are laid in a pond, a canal, an irrigation canal, and a harbor. Yes.
  • the underwater lighting unit 11 may be placed directly on the bottom of the water, but when laying on the bottom of the sea or pond, as shown in Fig. 2 (a), a pile driven into the bottom of the water It fixes on 17 or puts the mount 18 on the bottom of the water and fixes it on it as shown in FIG. 2 (b).
  • FIGS. 10 (a) and 10 (b) An example of the structure of the underwater lighting unit 11 is shown in FIGS. 10 (a) and 10 (b).
  • a light transmitting window 112 made of glass is provided on one surface of a disk-shaped airtight case 111, and a plurality of visible light emitters 113 are arranged inside.
  • Each visible light emitter 113 is composed of LEDs of R (red), G (green), and B (blue), and can emit light of any color by adjusting their emission intensity.
  • these underwater lighting units 11 laid underwater include a power supply, a control device including a light emission control device 151, a base station 15 provided with an air supply device, a power line, and a signal line.
  • the underwater illumination units 11 are connected to each other via the connecting line 12.
  • FIG. 3A shows the power line 12b and the signal line 12c (and the ground line 12d) inserted through the air supply tube 12a.
  • FIG. 3B shows the power line 12b, the signal line 12c and the ground line 12d bundled together.
  • the air supply tube 12f is inserted into the cabtire cable 12e.
  • all the underwater lighting units 11 are connected in series, but this may be a loop or a matrix. Further, the base station 15 may be provided in water.
  • the underwater lighting unit 11 In the underwater illumination system 10, since the light emitted by these underwater lighting units 11 needs to reach the eyes of humans to see on land, the underwater lighting unit 11 is generally installed at a depth of 50 to 2 m. For this reason, the sunlight also reaches the underwater lighting unit 11 sufficiently, and algae, moss, underwater organisms, etc. grow on the surface over a long period of time, and regular cleaning is required.
  • four outer rings 22a to 22d and four motors 23a to 23d for rotating the outer rings 22a to 22d in the forward and reverse directions are provided around the main body 21 of the cleaning ship. By adjusting the speed and direction of rotation, the main body 21 can be moved freely in any direction of 360 degrees.
  • FIG. 5A is a plan view of an example in which four propeller-type drive sources 32a to 32d are provided around the main body 21, and FIGS. 5B and 5C are diagrams of the propeller-type drive source.
  • the drive source in FIG. 5B employs a method of changing the rotation direction of the motor 33 that drives the propeller 35 by the bevel gear 34 etc. by 90 degrees (bending the rotation shaft by 90 degrees)
  • FIG. I is an example of a duct-type drive source that employs a method in which a vertical water flow generated by the propeller 35 is converted into a horizontal direction by a duct 36 without bending the rotating shaft of the motor 33.
  • the cleaning ship body 21 can be moved in any direction by forward / reverse control and rotational speed control of the motors 33 of the four drive sources 32a to 32d.
  • FIG. 1 An example of such a mechanism is shown in FIG.
  • This example employs a centrifugal pump system that sucks water from below as a moving mechanism and discharges it from the side using a turbine. By rotating the case 42 of the centrifugal pump 41, the direction can be freely adjusted. The main body is moved by discharging water. Therefore, each of the two moving mechanisms 41 a and 41 b is provided with a motor 45 that rotates the case 42 (discharge port) in addition to the motor 44 that rotates the turbine 43.
  • only one drive source may be used and the direction thereof may be changed by 360 degrees.
  • This cleaning device 50 includes an elevator mechanism 51 that can move the cleaning mechanism up and down according to the depth of the underwater illumination unit 11 that is an object underwater, and a rotating cleaning brush 54 that is at the lower end of the cleaning mechanism.
  • the cleaning unit 53 has a driving unit (motor) 55 that rotates the brush 54, and a sensor that detects the underwater illumination unit 11 to be cleaned.
  • the support 62 is supported by the four rollers 61 so as to be movable up and down, and the support 62 is provided with a length corresponding to the required vertical motion distance.
  • the rack gear 63 is attached, and the rack gear 63 is driven by a pinion gear 65 attached to the shaft of a motor 64 with a speed reducer.
  • the speed reducer of the motor 64 is preferably a worm gear system in order to give a holding force even when the power is cut off.
  • the rotational drive unit 55 of the cleaning brush 54 is attached to the upper end of the support 62 and the rotational force transmission shaft 66 is inserted into the support 62.
  • the drive source can be arranged at the lower end of the support 62 and the distance from the cleaning brush 54 can be reduced.
  • a plurality of plates are used to accurately position the cleaning unit 53 on the underwater lighting unit 11 and to prevent the cleaning ship body 21 from rotating due to the reaction force of the rotation of the brush 54.
  • a fixing mechanism is provided by the structure 56.
  • the method described below is based on the four optical sensors PDU1 to PDU4 provided at the four corners of the robot cleaning ship body 21 and the same four optical sensors PDL1 to PDL4 provided on the base of the cleaning unit 53. Can also function in three of each.
  • the optical sensors PDU1 to PDU4 and PDL1 to PDL4 are made so as to selectively capture a light signal blinking at a predetermined high frequency generated by the target underwater lighting unit 11, and can be used for sunlight or nighttime. Since it is not affected by light that does not blink like illumination light, the robot cleaning ship 20 can be guided even on a bright day.
  • FIG. 8 shows an example of the configuration of the controller 70 of the robot cleaning ship 20. Only the AC signal components having specific frequencies obtained from the plurality of optical sensors PDU1 to PDU4 and PDL1 to PDL4 are amplified and transmitted to the control unit (CPU) 71.
  • CPU control unit
  • a signal conditioner 72 having an amplifier with a band limiting filter and a rectifier circuit, and a plurality of motor controls for controlling the rotation direction and speed of various motors M1 to M6 such as the motor for the moving mechanism, the motor for the elevator mechanism, and the motor for the cleaning mechanism
  • a circuit 73 a GPS receiver 75 that can know the approximate position of the robot cleaning ship 20, an orientation sensor 76 that can detect the direction, movement direction, and movement speed of the robot cleaning ship 20, an acceleration sensor, and a gyro sensor 77, a battery for supplying electric power used by the robot cleaning ship 20, a charging circuit thereof, and a power supply circuit thereof
  • FIG. 8 shows an example in which a rectifier circuit is provided as the signal conditioner 72.
  • a rectifier circuit is provided as the signal conditioner 72.
  • the AC signals obtained from the optical sensors PDU1 to PDU4 and PDL1 to PDL4 are used. Band-limited amplification and AD conversion can be performed as is.
  • the robot cleaning ship 20 sent from the cleaning ship base 14 described later to the target water surface by an arm, a crane or the like first moves to the rough position instructed by communication from the base station 15 by GPS. Then, the optical sensors PDU1 to PDU4 of the robot cleaning ship body 21 receive the high-frequency lighting emitted from the underwater lighting unit 11 to be cleaned. The signals obtained from these four sensors PDU1 to PDU4 are compared, and the operation of moving the cleaning vessel 20 to the side receiving the strongest light is repeated. Finally, when the signals from the four sensors PDU1 to PDU4 become equal, It is possible to reach directly above the target underwater lighting unit 11.
  • the cleaning unit 53 is lowered.
  • the robot cleaning vessel 20 is configured so that the light receiving intensities of all the optical sensors PDL1 to PDL4 are equal to each other in the same manner as the ship position control described above.
  • the cleaning unit 53 is lowered while performing fine positioning.
  • the draft of the robot cleaning ship 20 is lowered, the load of the motor 64 that raises or lowers the column 62 is changed, or the pressure sensor provided on the column 62 or its instruction unit. If it is confirmed that the cleaning unit 53 and the underwater lighting unit 11 are in contact with each other with an appropriate contact pressure, the descent of the cleaning unit 53 is stopped and the cleaning motor 55 is rotated.
  • the robot cleaning ship 20 When the robot cleaning ship 20 is positioned immediately above the home position position indicator light, it is transferred to the storage / charging unit provided on the water or on the ground by a crane or an arm, and stored and charged until the next cleaning operation.
  • the underwater lighting unit 11 has a self-position notification function as described above. is there. Next, the realization method is demonstrated.
  • FIG. 9 is a diagram showing the contents of a communication protocol called DMX, which is frequently used for control of a luminaire that can be remotely controlled.
  • DMX a communication protocol
  • the lamp in each underwater lighting unit 11 receives all the signals, takes out only the data at its own address set by DipSW or the like, and operates according to the data.
  • the communication start signal is zero when the subsequent data is for controlling the brightness of the lamp, etc.
  • start code a predetermined communication start signal
  • the subsequent data is It is understood that this is a cleaning instruction, and the lamp at the address position where the data is a preset numerical value is in an AC lighting mode for requesting the robot cleaning ship 20 to perform cleaning.
  • the underwater lighting unit 11a closest to the loading position (home position 13) is turned on.
  • the robot cleaning ship 20 detects the same signal, the robot cleaning ship 20 moves immediately above the underwater illumination unit 11a and cleans the underwater illumination unit 11a for a specified time.
  • the underwater illumination unit 11a When the specified time has elapsed, the underwater illumination unit 11a is turned off, and the next underwater illumination unit 11b is turned on.
  • the robot cleaning ship 20 can move toward the next underwater lighting unit 11b by communication, but the cleaning operation of the underwater lighting unit 11a is completed by detecting the AC lighting signal of the underwater lighting unit 11b, and the next underwater lighting unit 11b is detected. It can also move to cleaning of the illumination unit 11b. In this way, the cleaning of the adjacent underwater lighting units 11 is continued and the cleaning of the last underwater lighting unit 11x is finished, or when the power of the built-in secondary battery falls below a specified value, for charging and storage. Return to base 14.
  • the underwater lighting unit that indicates the position of the home position 13 (home position display only or combined with the underwater lighting unit 11) Starts AC lighting.
  • the robot cleaning boat 20 senses AC lighting of the underwater lighting unit indicating the position of the home position 13 with a sensor, and stands still on the underwater lighting unit and stands by.
  • the standby state is transmitted to the land base station 15 by the communication function, it is collected in the base 14 by a mechanism such as an arm or a crane, and is standby / charged.
  • the underwater lighting unit 11 used for a long time underwater has algae, moss, aquatic organisms, and the like attached to the surface, particularly the surface of the light transmission window, and therefore is regularly used by the robot cleaning ship 20 as described above. Although it is necessary to perform cleaning, cleaning of the large number of underwater lighting units 11 takes a long time even when cleaning is performed by the robot cleaning ship 20, and the illumination system 10 cannot be operated during that time.
  • the surface of the glass plate 112a of the light transmission window 112 is coated with a titanium oxide film 112b by applying a titanium oxide paint or coating agent (FIG. 10 (c)).
  • a light emitter 114 (FIGS. 10A and 10B) that generates ultraviolet rays including a wavelength that activates the titanium oxide coating 112b is provided inside the underwater illumination unit 11. Then, the ultraviolet light emitter 114 is turned on at an appropriate timing, and organic matter such as algae and microorganisms adhering to the outside of the light transmission window 112 is decomposed to prevent the window from being stained.
  • the material of the coating 112b (the material of the photocatalytic substance layer) may be zinc oxide or a mixture thereof instead of titanium oxide.
  • vapor deposition is possible in addition to painting and application.
  • the underwater lighting unit 11 since the underwater lighting unit 11 is intended for illumination in water or from water to water, it is necessary to ensure transparency to a degree that allows considerable transmission of light emitted by the visible light emitter 113. desirable.
  • an ultraviolet LED can be used as the ultraviolet light emitter 114.
  • the light emission of the ultraviolet light emitter 114 is controlled by the light emission control device 151 of the base station 15 together with the visible light emitter 113.
  • the ultraviolet light emitter 114 may emit light at the same time as any one of the visible light emitters 113 of the underwater illumination unit 11 emits light. Regardless of this, the underwater illumination unit 11 is not used. Control may be performed so that light is emitted at regular intervals during the interval (while the visible light emitter 113 does not emit light). In consideration of the lifetime of the ultraviolet light emitter itself and the adverse effects on the components that are exposed to ultraviolet light inside the apparatus, it is better that the lighting time of the ultraviolet light emitter 114 is short.
  • the optimal value varies depending on the water quality (fresh water, seawater, brackish water), water temperature, water pollution, or the type of contaminating organisms that grow on the installation site, but germ cells such as spores, eggs, and sperm attached to the glass surface. It is possible to repeat a cycle in which lights are turned on for a period of time that kills or damages seeds, seeds, and larvae generated from the seeds, and the lights are turned off until they are attached again and grow into a living organism having a strong shell. Specifically, it may be turned on once a day for 5 minutes to 1 hour, or once per hour for about 1 minute.
  • the titanium oxide-based film 112b on the surface of the glass plate 112a is not essential, and adhesion of algae, microorganisms, and the like can be prevented only by irradiation with ultraviolet rays from the inside of the underwater illumination unit 11.
  • the titanium oxide-based film 112b is not coated, it is necessary to increase the time of ultraviolet irradiation as compared with the case of coating in the same environment.

Abstract

In order to prevent the occurrence of contamination such as algae, moss, and aquatic organisms on light-transmitting windows 112 in underwater lighting units 11 which are installed in large quantities, UV-light-emitting bodies 114 are included, in addition to visible-light-emitting bodies 113, in light sources provided inside the underwater lighting units 11. Emitting ultraviolet light prevents the occurrence of contamination such as algae, moss, and aquatic organisms on the light-transmitting windows 112. Also, coating the surface of the light-transmitting windows 112 with a titanium-oxide-based coating film 112b can further enhance the contamination-prevention effect.

Description

水中照明装置Underwater lighting equipment
 本発明は、水中に敷設され、水が浸入しない機能を持つ多数の水中ユニットを含む照明装置において、それら水中ユニットの光透過窓の汚れを防止する機能を有することを特徴とする照明装置に関する。 The present invention relates to an illuminating device including a large number of underwater units that are laid underwater and have a function of preventing water from entering, and has a function of preventing contamination of light transmission windows of the underwater units.
 水中から水面上に光を投影したり、或いは水中の自然物や人工物を照明するため、従来より、水中に設置可能な水中照明装置が各種考案されている。更に、照明システムを複数の照明ユニットに分け、各照明ユニットを様々に配置し、且つ、各照明ユニット毎に独立に色や明るさを調整することのできる照明装置も製造され、使用されている(非特許文献1、非特許文献2)。 Various underwater lighting devices that can be installed in the water have been devised in order to project light from the water onto the surface of the water or to illuminate natural and artificial objects in the water. Furthermore, the lighting system is divided into a plurality of lighting units, each lighting unit is arranged in various ways, and lighting devices that can independently adjust the color and brightness for each lighting unit are also manufactured and used. (Non-patent document 1, Non-patent document 2).
 このような照明装置を長期間水中で使用すると、その表面に藻や苔、水生生物等が付着する。特に、それらが光透過面に付着すると発光光量の低下を招くため、定期的な清掃が必要になる。この清掃は、対象の数が数個ないし数十個であれば人力でも可能だが、数が数百~数千個になり、更に1~2週間に1度の頻度で清掃する必要があるとなると人件費が多額となるため、その対策が必要である。 If such a lighting device is used in water for a long period of time, algae, moss, aquatic organisms, etc. will adhere to its surface. In particular, if they adhere to the light transmission surface, the amount of emitted light is reduced, so that periodic cleaning is required. This cleaning can be done manually if the number of objects is several to several tens, but the number will be several hundred to several thousand, and it will be necessary to clean once a week or two. If so, the labor cost will be large, so countermeasures are necessary.
 本発明が解決しようとする課題は、大量に敷設した水中照明ユニットの光透過部等に藻や苔、水生生物等からなる汚れが付着することを防止する機能を有する水中照明装置を提供することである。 The problem to be solved by the present invention is to provide an underwater illumination device having a function of preventing dirt composed of algae, moss, aquatic organisms, etc. from adhering to a light transmitting portion of a large number of underwater illumination units. It is.
 上記課題を解決するために成された本発明に係る水中照明装置は、
 a) 内部に備えられた、可視光及び紫外線を発光可能な光源と、該光源の光を透過する窓を有する気密ケースを有する水中照明ユニットと、
 b) 前記気密ケースに設けられた開口に接続される送気チューブと、
 c) 前記送気チューブに気体を送り込む給気装置と
 を有することを特徴とする。
An underwater lighting device according to the present invention, which has been made to solve the above problems,
a) a light source capable of emitting visible light and ultraviolet light, and an underwater lighting unit having an airtight case having a window that transmits light from the light source;
b) an air supply tube connected to an opening provided in the airtight case;
c) an air supply device for supplying gas to the air supply tube.
 本発明に係る水中照明装置はさらに、前記窓の表面に光触媒物質層をコーティングしておくことが望ましい。光触媒物質層の材料としては、酸化チタン、酸化亜鉛、或いはそれらの混合物質を使用することができる。コーティングは、塗布や蒸着等の方法で形成することができる。 In the underwater lighting device according to the present invention, it is further desirable to coat the surface of the window with a photocatalytic substance layer. As a material for the photocatalytic substance layer, titanium oxide, zinc oxide, or a mixture thereof can be used. The coating can be formed by a method such as application or vapor deposition.
 本発明に係る水中照明装置では、水中照明ユニットの気密ケース内に気体を送り込むことにより、気密ケース内の圧力をその水中照明ユニットが置かれる水中の圧力(水圧)よりも高くしておくことができる。こうすることにより、仮にこの気密ケースに気密漏れが生じたとしても、水中照明ユニットに水が侵入することを防ぎ、中の光源やその回路等が傷むことを防止することができる。そして、このように内部から与圧し、内外の圧力差を小さくするため、気密ケースとしては、金属やプラスチック等によるIP67相当程度の簡易防水ケースを使用することができる。 In the underwater lighting device according to the present invention, by sending gas into the airtight case of the underwater lighting unit, the pressure in the airtight case may be set higher than the pressure (water pressure) in water where the underwater lighting unit is placed. it can. By doing so, even if an airtight leak occurs in the airtight case, it is possible to prevent water from entering the underwater lighting unit and to prevent damage to the light source, the circuit thereof, and the like. In order to apply pressure from the inside and reduce the pressure difference between the inside and the outside in this way, a simple waterproof case equivalent to IP67 made of metal, plastic, or the like can be used as the airtight case.
 本発明に係る水中照明装置では、前記光源の電力は、水中照明ユニットの内部に設けた電池(一次電池、二次電池)に依ってもよいが、陸上や水中等に別途配置された(前記給気装置と一緒の所であることが望ましい。)電力源から供給することが望ましい。その場合、該電力を供給するための電線は、前記送気チューブとは別に設けてもよいし、前記送気チューブ内に挿通しておくこともできる。或いは逆に、電線の中に送気チューブを内蔵するという形態でもよい。これにより、長期間に亘る水中照明ユニットの使用(水中照明の実施)が可能となる。 In the underwater lighting device according to the present invention, the power of the light source may depend on a battery (primary battery, secondary battery) provided inside the underwater lighting unit, but is separately disposed on land, underwater, etc. It is desirable to be with the air supply device.) It is desirable to supply from a power source. In that case, the electric wire for supplying the electric power may be provided separately from the air supply tube, or may be inserted into the air supply tube. Or conversely, an air supply tube may be built in the electric wire. This makes it possible to use the underwater lighting unit for a long period of time (implementation of underwater lighting).
 こうして長期間に亘って水中照明ユニットを使用した場合、環境によっては窓の表面に藻や苔、水生生物等が付着し、光源の光が十分に窓を通過せずに十分な照明効果が得られなくなってくる。しかし本発明に係る水中照明装置では、光源が紫外線を発光する機能を有するため、これにより窓の表面に藻や苔、水生生物等が付着するのが防止され、長期間に亘り使用しても発光光量の低下を最小限に抑えることができるようになる。窓の表面に光触媒物質層をコーティングすることにより、その効果は一層高くなる。 In this way, when the underwater lighting unit is used for a long period of time, depending on the environment, algae, moss, aquatic organisms, etc. may adhere to the surface of the window, and the light from the light source does not pass through the window sufficiently, resulting in a sufficient lighting effect It becomes impossible. However, in the underwater lighting device according to the present invention, since the light source has a function of emitting ultraviolet rays, this prevents algae, moss, aquatic organisms, etc. from adhering to the surface of the window, and even if used over a long period of time. A decrease in the amount of emitted light can be minimized. The effect is further enhanced by coating the surface of the window with a photocatalytic material layer.
 本発明に係る水中照明装置は更に、前記光源の発光(点滅や発光強度、可視光と紫外線を含む発光色など。)を独立に制御するための信号を伝送する信号電線を接続しておくことが望ましい。この場合、前記電力供給電線が設けられているのであればそれと一緒にし、電力供給電線が上記のように送気チューブ内に挿通されているのであれば、それと一緒に挿通しておくことが望ましい。 The underwater lighting device according to the present invention is further connected with a signal wire for transmitting a signal for independently controlling light emission of the light source (flashing, light emission intensity, emission color including visible light and ultraviolet light, etc.). Is desirable. In this case, if the power supply wire is provided, it is desirable to be connected with it, and if the power supply wire is inserted into the air supply tube as described above, it is desirable to insert it together with it. .
 送気チューブ内に信号電線と電力電線を挿通する場合、それらを別個に挿通するのではなく、電力電線に信号を重畳させて通信を行うようにしてもよい。もちろん、送気チューブとは別に電力電線を引く場合にも、発光制御信号を電力電線に重畳させるようにしてもよい。 When inserting a signal wire and a power wire into the air supply tube, communication may be performed by superimposing a signal on the power wire, instead of inserting them separately. Of course, the light emission control signal may be superimposed on the electric power line when the electric power line is drawn separately from the air supply tube.
 更に、前記給気装置に圧力センサと制御部とポンプを設け、該制御部が、圧力センサの検出結果に基づきポンプの起動及び停止を制御するようにすることが望ましい。 Furthermore, it is desirable that the air supply device is provided with a pressure sensor, a control unit, and a pump, and the control unit controls the start and stop of the pump based on the detection result of the pressure sensor.
 本発明に係る水中照明装置は更に、前記水中照明ユニットを複数台使用する場合、それらを前記送気チューブでループ状又はマトリックス状に接続するとともに、前記給気装置に気体分配器を設け、該気体分配器から複数の水中照明ユニットに並列に気体を送り込むようにすることが望ましい。このようなループ状/マトリックス状接続とすることにより、送気チューブ等の破損事故に対する耐性を高めることができる。 The underwater lighting device according to the present invention further includes, when using a plurality of the underwater lighting units, connecting them in a loop shape or a matrix shape with the air supply tube, and providing a gas distributor in the air supply device, It is desirable to feed gas in parallel from the gas distributor to the plurality of underwater lighting units. By adopting such a loop / matrix connection, it is possible to increase the resistance to damage accidents such as an air supply tube.
 本発明に係る水中照明装置では、水中照明ユニット内の光源から紫外線が放出されるため、窓に藻や苔、水生生物等からなる生物系の汚れが付着しにくい。この窓の表面に光触媒物質層をコーティングしておくことにより、この汚れの付着はさらに防止され、この水中照明ユニットをより長期間、水中で使用することができるようになる。
 なお、このような汚れの付着を防止するためには、紫外線は常時発光させておく必要はなく、可視光の発光とは独立に、一定の周期毎或いは何らかのタイミングで発光させるような制御をすることでも十分である。
In the underwater lighting device according to the present invention, since ultraviolet rays are emitted from the light source in the underwater lighting unit, biological stains made of algae, moss, aquatic organisms, and the like are unlikely to adhere to the window. By coating the surface of the window with a photocatalytic material layer, the adhesion of dirt is further prevented, and the underwater lighting unit can be used in water for a longer period of time.
In order to prevent such adhesion of dirt, it is not necessary to always emit ultraviolet light, and control is performed so that light is emitted at regular intervals or at some timing independently of visible light emission. That's enough.
本発明の一実施例を説明するための、水中照明ユニットを敷設した池の平面図。The top view of the pond which laid the underwater lighting unit for demonstrating one Example of this invention. 水中照明ユニットの敷設例を示す側面図であり、(a)は杭による敷設例、(b)は、架台による敷設例。It is a side view which shows the example of installation of an underwater lighting unit, (a) is the example of installation by a pile, (b) is the example of installation by a mount. 水中照明ユニット同士を接続する接続線の構成例を示す断面図であり、(a)は送気チューブ内に信号線や電源線を挿通した例、(b)は多芯キャブタイヤケーブルの中に送気チューブを挿通した例。It is sectional drawing which shows the example of composition of the connecting line which connects underwater lighting units, (a) is an example which inserted a signal wire and a power line in an air supply tube, (b) is in a multi-core cabtyre cable. An example of inserting an air supply tube. ロボット清掃船の移動機構の代表的な構成例を示す平面図(a)及び側面図(b)。The top view (a) and side view (b) which show the typical structural example of the moving mechanism of a robot cleaning ship. ロボット清掃船の移動機構の他の構成例を示す平面図(a)、並びにその駆動源の2つの例の詳細図(b)及び(c)。The top view (a) which shows the other structural example of the moving mechanism of a robot cleaning ship, and the detailed drawings (b) and (c) of two examples of the drive source. ロボット清掃船の移動機構の更に他の構成例を示す平面図(a)、側面図(b)、及び駆動源である遠心型ポンプの平面図(c)。The top view (a) which shows the further another structural example of the moving mechanism of a robot cleaning ship, the side view (b), and the top view (c) of the centrifugal pump which is a drive source. ロボット清掃船の清掃機構の構成例を示す側面図(a)及び底面図(b)、並びにそのエレベータ機構部の拡大側面図(c)及び拡大平面図(d)。The side view (a) and bottom view (b) which show the structural example of the cleaning mechanism of a robot cleaning ship, the enlarged side view (c), and the enlarged plan view (d) of the elevator mechanism part. ロボット清掃船のコントローラの構成を示すブロック図。The block diagram which shows the structure of the controller of a robot cleaning ship. DMX信号の形態の一例を示す説明図。Explanatory drawing which shows an example of the form of a DMX signal. 水中照明ユニットの一例の平面図(a)、X-X'縦断面図(b)、及び光透過窓の断面図(c)。The top view (a) of an example of an underwater lighting unit, XX 'longitudinal cross-sectional view (b), and sectional drawing (c) of a light transmissive window.
 図1は本発明に係る装置を含む水中イルミネーションシステム10の一実施形態を示す図で、池や運河、用水路、港湾に数十個から数千個の水中照明ユニット11を敷設した状態を示している。プール等の水底が平坦な場合は水中照明ユニット11は水底に直接置かれる場合もあるが、海底や池の底等に敷設する場合は図2(a)に示すように、水底に打ち込んだ杭17の上に固定したり、図2(b)に示すように、水底に架台18を置いて、その上に固定する。 FIG. 1 is a view showing an embodiment of an underwater illumination system 10 including an apparatus according to the present invention, and shows a state in which several tens to thousands of underwater lighting units 11 are laid in a pond, a canal, an irrigation canal, and a harbor. Yes. When the bottom of the pool is flat, the underwater lighting unit 11 may be placed directly on the bottom of the water, but when laying on the bottom of the sea or pond, as shown in Fig. 2 (a), a pile driven into the bottom of the water It fixes on 17 or puts the mount 18 on the bottom of the water and fixes it on it as shown in FIG. 2 (b).
 水中照明ユニット11の構造の一例を図10(a)及び(b)に示す。円盤状の気密ケース111の片面にガラス製の光透過窓112を設け、内部に可視光発光体113を複数配置した構造を有する。各可視光発光体113はR(赤)G(緑)B(青)のLEDから成り、それらの発光強度を調整することにより、任意の色を発光することができる。 An example of the structure of the underwater lighting unit 11 is shown in FIGS. 10 (a) and 10 (b). A light transmitting window 112 made of glass is provided on one surface of a disk-shaped airtight case 111, and a plurality of visible light emitters 113 are arranged inside. Each visible light emitter 113 is composed of LEDs of R (red), G (green), and B (blue), and can emit light of any color by adjusting their emission intensity.
 図1に示すように、水中に敷設されたこれら水中照明ユニット11は、地上に置かれた、電源、発光制御装置151を含む制御装置及び給気装置を備える基地局15と、電力線、信号線及び送気チューブを束ねた連結線12で接続されており、水中照明ユニット11同士も連結線12で接続されている。連結線12の構成例を図3に示す。図3(a)は送気チューブ12a内に電力線12bと信号線12c(及びアース線12d)を挿通したものであり、図3(b)は電力線12b、信号線12c及びアース線12dを束ねたキャブタイヤケーブル12e内に送気チューブ12fを挿通したものである。 As shown in FIG. 1, these underwater lighting units 11 laid underwater include a power supply, a control device including a light emission control device 151, a base station 15 provided with an air supply device, a power line, and a signal line. In addition, the underwater illumination units 11 are connected to each other via the connecting line 12. A configuration example of the connecting line 12 is shown in FIG. FIG. 3A shows the power line 12b and the signal line 12c (and the ground line 12d) inserted through the air supply tube 12a. FIG. 3B shows the power line 12b, the signal line 12c and the ground line 12d bundled together. The air supply tube 12f is inserted into the cabtire cable 12e.
 なお、図1では水中照明ユニット11は全て直列に接続されているが、これはループ状やマトリックス状であってもよい。また、基地局15は水中に設けられていてもよい。 In FIG. 1, all the underwater lighting units 11 are connected in series, but this may be a loop or a matrix. Further, the base station 15 may be provided in water.
 水中イルミネーションシステム10では、これら水中照明ユニット11が発する光が陸上で見物する人間の目に届く必要があるので、水中照明ユニット11は概ね水深50 cmから2 mの位置に設置する。このため、水中照明ユニット11には太陽の光も十分に到達し、長期間のうちには表面には藻や苔、水中生物等が育つことになり、定期的な清掃が必要になる。 In the underwater illumination system 10, since the light emitted by these underwater lighting units 11 needs to reach the eyes of humans to see on land, the underwater lighting unit 11 is generally installed at a depth of 50 to 2 m. For this reason, the sunlight also reaches the underwater lighting unit 11 sufficiently, and algae, moss, underwater organisms, etc. grow on the surface over a long period of time, and regular cleaning is required.
 この清掃は、敷設されている場所の水質や水深、水温、太陽光の当たり具合等によるが、2週間に1回程度の頻度で実施する必要がある。大量の水中照明ユニット11を人力で清掃すると長時間を要するため、このような頻度で清掃を行うとすると、維持費が高額になる。更に、敷設水深が1 mを越えると清掃作業は潜水を要するため、維持費がさらに高額になり、また、真冬の水中作業は非常に辛い作業である。 こ の This cleaning needs to be carried out about once every two weeks, depending on the water quality, depth, water temperature, sunlight exposure, etc. Since it takes a long time to clean a large amount of the underwater lighting unit 11 by human power, if cleaning is performed at such a frequency, the maintenance cost becomes high. In addition, when the laying water depth exceeds 1 m, the cleaning work requires diving, so the maintenance cost is even higher, and the mid-winter underwater work is very difficult.
 この作業を自動化するため、本発明者はロボット清掃装置(清掃船)20を考案した。そして、効率よく作業できるようにするため、このロボット清掃船20は、一般的な船のように移動しながら方向を変えるのではなく、現在の位置から360度どちらの方向にも自由に動くことができるようにした。このような清掃船20の移動機構の代表的な例を図4(a)、(b)に示す。この例では、清掃船本体21の周囲に4つの外輪22a~22dと、これら外輪22a~22dをそれぞれ正逆に回転させる4つのモーター23a~23dを備えたもので、それぞれのモーター23a~23dの速度や回転方向を調整することにより、清掃船本体21を360度いずれの方向にでも自由に動かすことができる。 In order to automate this work, the present inventor devised a robot cleaning device (cleaning ship) 20. And in order to be able to work efficiently, this robot cleaning ship 20 does not change direction while moving like a general ship, but can move freely in either direction 360 degrees from the current position. I was able to. A typical example of such a moving mechanism of the cleaning boat 20 is shown in FIGS. In this example, four outer rings 22a to 22d and four motors 23a to 23d for rotating the outer rings 22a to 22d in the forward and reverse directions are provided around the main body 21 of the cleaning ship. By adjusting the speed and direction of rotation, the main body 21 can be moved freely in any direction of 360 degrees.
 移動機構にはこの他にも多くの形態のものが利用可能である。例えば、図5(a)は本体21の周囲に4つのプロペラ式の駆動源32a~32dを設けた例の平面図で、図5(b)及び図5(c)はそのプロペラ式駆動源の具体的な構造の例を示すものである。図5(b)の駆動源は傘歯歯車34等によりプロペラ35を駆動するモーター33の回転方向を90度変える(回転軸を90度曲げる)方法を採用したものであり、図5(c)はモーター33の回転軸を曲げることなく、プロペラ35により生成される垂直方向の水流をダクト36により水平方向に変換する方式を採用したダクト方式駆動源の例である。いずれも、4つの駆動源32a~32dの各モーター33の正逆制御と回転数制御により、清掃船本体21を任意の方向に動かすことができる。 Many other types of moving mechanisms are available. For example, FIG. 5A is a plan view of an example in which four propeller-type drive sources 32a to 32d are provided around the main body 21, and FIGS. 5B and 5C are diagrams of the propeller-type drive source. An example of a specific structure is shown. The drive source in FIG. 5B employs a method of changing the rotation direction of the motor 33 that drives the propeller 35 by the bevel gear 34 etc. by 90 degrees (bending the rotation shaft by 90 degrees), and FIG. Is an example of a duct-type drive source that employs a method in which a vertical water flow generated by the propeller 35 is converted into a horizontal direction by a duct 36 without bending the rotating shaft of the motor 33. In any case, the cleaning ship body 21 can be moved in any direction by forward / reverse control and rotational speed control of the motors 33 of the four drive sources 32a to 32d.
 以上はいずれも、本体の周囲の4方向に固定した駆動源を持つ例であるが、駆動源を2つにし、それらの方向を変える機構を設けるような機構としてもよい。そのような機構の一例を図6に示す。この例は移動機構として、下方から水を吸い込み、タービンを使って側方から吐出する遠心型ポンプ方式を採用したものであり、この遠心型ポンプ41のケース42を回転させることにより、自在の方向に水を吐出して本体を移動させるものである。そのため、2台の移動機構41a、41bには、それぞれ、タービン43を回転させるモーター44の他に、ケース42(吐出口)を回転させるモーター45が設けられている。 All of the above are examples having a drive source fixed in four directions around the main body, but a mechanism may be provided in which two drive sources are provided and a mechanism for changing those directions is provided. An example of such a mechanism is shown in FIG. This example employs a centrifugal pump system that sucks water from below as a moving mechanism and discharges it from the side using a turbine. By rotating the case 42 of the centrifugal pump 41, the direction can be freely adjusted. The main body is moved by discharging water. Therefore, each of the two moving mechanisms 41 a and 41 b is provided with a motor 45 that rotates the case 42 (discharge port) in addition to the motor 44 that rotates the turbine 43.
 なお、駆動源としては、この遠心型ポンプ41の代わりに、図5(b)に示したプロペラ方式や、図5(c)に示したダクト方式を用いても構わない。 In addition, as a drive source, you may use the propeller system shown in FIG.5 (b) instead of this centrifugal pump 41, or the duct system shown in FIG.5 (c).
 また、図示しないが、駆動源を1台だけとし、その方向を360度変えられるようにしてもよい。 Although not shown, only one drive source may be used and the direction thereof may be changed by 360 degrees.
 次に、清掃船20に搭載される清掃装置50の例を図7に示す。この清掃装置50は、水中にある対象物である水中照明ユニット11の深さに応じて清掃機構を上下することができるエレベータ機構51と、清掃機構の下端部にあり、回転する清掃用ブラシ54を持つ清掃部53と、同ブラシ54を回転させる駆動部(モーター)55と、清掃の対象になる水中照明ユニット11を検出するセンサ等よりなる。 Next, an example of the cleaning device 50 mounted on the cleaning ship 20 is shown in FIG. This cleaning device 50 includes an elevator mechanism 51 that can move the cleaning mechanism up and down according to the depth of the underwater illumination unit 11 that is an object underwater, and a rotating cleaning brush 54 that is at the lower end of the cleaning mechanism. The cleaning unit 53 has a driving unit (motor) 55 that rotates the brush 54, and a sensor that detects the underwater illumination unit 11 to be cleaned.
 エレベータ機構51には様々な機構を利用することができるが、図7の例では4つのローラー61で支柱62を上下動自在に支持し、同支柱62に、必要な上下動距離に相当する長さのラックギア63を取り付け、同ラックギア63を減速機付のモーター64の軸に付けたピニオンギア65により駆動する方式を採用している。モーター64の減速機は、電源断時にも保持力を持たせるために、ウォームギア方式が望ましい。 Although various mechanisms can be used for the elevator mechanism 51, in the example of FIG. 7, the support 62 is supported by the four rollers 61 so as to be movable up and down, and the support 62 is provided with a length corresponding to the required vertical motion distance. The rack gear 63 is attached, and the rack gear 63 is driven by a pinion gear 65 attached to the shaft of a motor 64 with a speed reducer. The speed reducer of the motor 64 is preferably a worm gear system in order to give a holding force even when the power is cut off.
 また、図7の例では、清掃用ブラシ54の回転駆動部55は支柱62の上端部に取り付け、支柱62の中に回転力伝達用シャフト66を挿通しているが、駆動源として防水構造又は水中用モーターを使うことにより、駆動源を支柱62の下端部に配置し、清掃用ブラシ54との距離を縮めることもできる。 In the example of FIG. 7, the rotational drive unit 55 of the cleaning brush 54 is attached to the upper end of the support 62 and the rotational force transmission shaft 66 is inserted into the support 62. By using the underwater motor, the drive source can be arranged at the lower end of the support 62 and the distance from the cleaning brush 54 can be reduced.
 清掃機構50の下端部には、清掃部53を水中照明ユニット11に正確に位置決めするためと、ブラシ54の回転の反力により清掃船本体21が回転しないようにするために、複数枚の板状構造体56による固定機構が設けられている。 At the lower end of the cleaning mechanism 50, a plurality of plates are used to accurately position the cleaning unit 53 on the underwater lighting unit 11 and to prevent the cleaning ship body 21 from rotating due to the reaction force of the rotation of the brush 54. A fixing mechanism is provided by the structure 56.
 次に、ロボット清掃船20を対象の水中照明ユニット11に誘導する方法を説明する。以下に説明する方法は、ロボット清掃船本体21の4隅に設けた4つの光センサPDU1~PDU4と、清掃部53のベースに設けた同じく4つの光センサPDL1~PDL4によるものであるが、これらはそれぞれ3つでも機能を果たすことができる。 Next, a method for guiding the robot cleaning ship 20 to the target underwater lighting unit 11 will be described. The method described below is based on the four optical sensors PDU1 to PDU4 provided at the four corners of the robot cleaning ship body 21 and the same four optical sensors PDL1 to PDL4 provided on the base of the cleaning unit 53. Can also function in three of each.
 当該光センサPDU1~PDU4及びPDL1~PDL4は、対象になる水中照明ユニット11が発生する予め決められた高周波で点滅する光信号を選択的に捉えるように作られたものであり、太陽光や夜間照明光のように点滅しない光には影響を受けないので、明るい日中でもロボット清掃船20を誘導することができるようになっている。 The optical sensors PDU1 to PDU4 and PDL1 to PDL4 are made so as to selectively capture a light signal blinking at a predetermined high frequency generated by the target underwater lighting unit 11, and can be used for sunlight or nighttime. Since it is not affected by light that does not blink like illumination light, the robot cleaning ship 20 can be guided even on a bright day.
 図8はロボット清掃船20のコントローラ70の構成例で、前述した複数の光センサPDU1~PDU4及びPDL1~PDL4から得られる特定周波数の交流信号成分だけを増幅し制御部(CPU)71に伝える、帯域制限フィルター付き増幅器と整流回路を備えたシグナルコンディショナー72と、前記移動機構用モーターやエレベータ機構用モーター、清掃機構用モーター等の各種モーターM1~M6の回転方向や速度を制御する複数のモーター制御回路73と、ロボット清掃船20の大まかな位置を知ることのできるGPS受信部75と、ロボット清掃船20の方向や移動方向・移動速度を検出することのできる方位センサ76や加速度センサ・ジャイロセンサ77と、ロボット清掃船20が使用する電力を供給するバッテリーとその充電回路及びその電源回路を備える電源ユニット78と、基地局15と通信するための通信装置74を備えている。図8においてはシグナルコンディショナー72として整流回路を設ける例を示したが、高速のADコンバータや処理速度の速いCPUを使用することにより、光センサPDU1~PDU4及びPDL1~PDL4から得られた交流信号を帯域制限増幅し、そのままAD変換して処理することもできる。 FIG. 8 shows an example of the configuration of the controller 70 of the robot cleaning ship 20. Only the AC signal components having specific frequencies obtained from the plurality of optical sensors PDU1 to PDU4 and PDL1 to PDL4 are amplified and transmitted to the control unit (CPU) 71. A signal conditioner 72 having an amplifier with a band limiting filter and a rectifier circuit, and a plurality of motor controls for controlling the rotation direction and speed of various motors M1 to M6 such as the motor for the moving mechanism, the motor for the elevator mechanism, and the motor for the cleaning mechanism A circuit 73, a GPS receiver 75 that can know the approximate position of the robot cleaning ship 20, an orientation sensor 76 that can detect the direction, movement direction, and movement speed of the robot cleaning ship 20, an acceleration sensor, and a gyro sensor 77, a battery for supplying electric power used by the robot cleaning ship 20, a charging circuit thereof, and a power supply circuit thereof A power supply unit 78, and a communication device 74 for communicating with the base station 15. FIG. 8 shows an example in which a rectifier circuit is provided as the signal conditioner 72. However, by using a high-speed AD converter or a CPU with a high processing speed, the AC signals obtained from the optical sensors PDU1 to PDU4 and PDL1 to PDL4 are used. Band-limited amplification and AD conversion can be performed as is.
 後述する清掃船基地14からアームやクレーン等で対象水面に送り出されたロボット清掃船20は、まず、基地局15から通信により指示された大まかな位置にGPSにより移動する。そして、清掃対象の水中照明ユニット11が発する高周波点灯光をロボット清掃船本体21の光センサPDU1~PDU4が受光する。この4つのセンサPDU1~PDU4から得られる信号を比較し、最も強く受光する側に清掃船20を移動するという動作を繰り返して最後に4つのセンサPDU1~PDU4からの信号が同等になったところで、概ね対象になる水中照明ユニット11の真上に到達できることになる。 The robot cleaning ship 20 sent from the cleaning ship base 14 described later to the target water surface by an arm, a crane or the like first moves to the rough position instructed by communication from the base station 15 by GPS. Then, the optical sensors PDU1 to PDU4 of the robot cleaning ship body 21 receive the high-frequency lighting emitted from the underwater lighting unit 11 to be cleaned. The signals obtained from these four sensors PDU1 to PDU4 are compared, and the operation of moving the cleaning vessel 20 to the side receiving the strongest light is repeated. Finally, when the signals from the four sensors PDU1 to PDU4 become equal, It is possible to reach directly above the target underwater lighting unit 11.
 次に、清掃部53を下げることになるが、この際に、加速度センサ・ジャイロセンサ77や方位センサ76を利用してロボット清掃船20の位置や方向を保つと共に、正確な位置決めをするために、清掃部53のベースに取り付けた3つ以上の光センサPDL1~PDL4を使い、上述した船位置制御と同様に全ての光センサPDL1~PDL4の受光強度が同等になるようにロボット清掃船20の微細な位置決めをしながら、清掃部53を下げる。 Next, the cleaning unit 53 is lowered. At this time, in order to maintain the position and direction of the robot cleaning ship 20 using the acceleration sensor / gyro sensor 77 and the direction sensor 76, and to perform accurate positioning. Using the three or more optical sensors PDL1 to PDL4 attached to the base of the cleaning unit 53, the robot cleaning vessel 20 is configured so that the light receiving intensities of all the optical sensors PDL1 to PDL4 are equal to each other in the same manner as the ship position control described above. The cleaning unit 53 is lowered while performing fine positioning.
 清掃部53が対象になる水中照明ユニット11に接触すると、ロボット清掃船20の喫水が下がることや、支柱62を上下させるモーター64の負荷の変化や、支柱62やその指示部に設けた圧力センサの変化より、清掃部53と水中照明ユニット11が適切な接触圧で接触したことを確認したら、清掃部53の降下を停止し、清掃用のモーター55を回転させる。 When the cleaning unit 53 comes into contact with the target underwater lighting unit 11, the draft of the robot cleaning ship 20 is lowered, the load of the motor 64 that raises or lowers the column 62 is changed, or the pressure sensor provided on the column 62 or its instruction unit. If it is confirmed that the cleaning unit 53 and the underwater lighting unit 11 are in contact with each other with an appropriate contact pressure, the descent of the cleaning unit 53 is stopped and the cleaning motor 55 is rotated.
 規定時間清掃を続けるか、又は、通信を経由して基地局15から次の水中照明ユニット11への移動命令を受信するか、あるいは、次の水中照明ユニット11が招聘モードで点灯したのを検出したら、現在の作業を停止し、清掃部53を規定高さまで引き上げてから、次の目的地に移動し、同様の作業を繰り返す。 Continue cleaning for a specified time, or receive a movement command from the base station 15 to the next underwater lighting unit 11 via communication, or detect that the next underwater lighting unit 11 is lit in the invitation mode Then, the current work is stopped, the cleaning unit 53 is raised to a specified height, and then moved to the next destination, and the same work is repeated.
 電源ユニット78が内蔵する電池の充電容量が規定値を下回るか、全ての水中照明ユニット11の清掃を終了したら、GPSを利用してホームポジション13(図1)近傍まで帰り、ホームポジション13近傍に達したら、水中照明ユニット11と概ね同等の水深に取付けられたホームポジション位置表示灯が交流点灯し、ロボット清掃船20は同ホームポジション位置表示灯の直上に静止する。 When the charge capacity of the battery built in the power supply unit 78 falls below the specified value or when all the underwater lighting units 11 have been cleaned, return to the vicinity of the home position 13 (FIG. 1) using GPS, and return to the vicinity of the home position 13. When it reaches, the home position position indicator lamp mounted at a depth substantially equal to that of the underwater lighting unit 11 is turned on by alternating current, and the robot cleaning ship 20 stops immediately above the home position position indicator lamp.
 ロボット清掃船20がホームポジション位置表示灯の直上に位置したら、クレーンやアーム等により水上あるいは地上に設けた収納部兼充電部に移載され、次回清掃作業までの間、保管・充電される。 When the robot cleaning ship 20 is positioned immediately above the home position position indicator light, it is transferred to the storage / charging unit provided on the water or on the ground by a crane or an arm, and stored and charged until the next cleaning operation.
 このようにロボット清掃船20が水中照明ユニット11の位置を正確に検出し、自動的に清掃するためには、上述したように水中照明ユニット11が自位置告知機能を持つことは非常に有益である。次に、その実現方法を説明する。 Thus, in order for the robot cleaning ship 20 to accurately detect the position of the underwater lighting unit 11 and automatically clean it, it is very beneficial that the underwater lighting unit 11 has a self-position notification function as described above. is there. Next, the realization method is demonstrated.
 図9は、リモート制御可能な照明器具の制御に多用されるDMXと呼ばれる通信プロトコルの内容を示す図で、88μsecのBreakと8μsecのMAB(Mark After Break)からなる通信スタート信号の後、その後の信号の意味などを示すStart Codeに引き続き、Ch1からCh512までの8ビットデータが送り出される。各水中照明ユニット11内の灯具は、この全信号を受け取り、DipSW等により設定された自分のアドレス番目のデータだけを取り出し、同データに従った動作をする。 FIG. 9 is a diagram showing the contents of a communication protocol called DMX, which is frequently used for control of a luminaire that can be remotely controlled. After a communication start signal consisting of 88 μsec Break and 8 μsec MAB (Mark After Break), Following the Start-Code that indicates the meaning of the signal, 8-bit data from Ch1 to Ch512 is sent out. The lamp in each underwater lighting unit 11 receives all the signals, takes out only the data at its own address set by DipSW or the like, and operates according to the data.
 通信スタート信号は、引き続くデータが灯具の明るさ制御等の際にはゼロであるが、本実施例による水中照明ユニット11は、予め定めた通信スタート信号(スタートコード)を受け取ると、引き続くデータは清掃指示であると理解し、同データが予め設定された数値であるアドレス位置の灯具はロボット清掃船20に清掃を要求するための交流点灯モードになる。 The communication start signal is zero when the subsequent data is for controlling the brightness of the lamp, etc. However, when the underwater lighting unit 11 according to this embodiment receives a predetermined communication start signal (start code), the subsequent data is It is understood that this is a cleaning instruction, and the lamp at the address position where the data is a preset numerical value is in an AC lighting mode for requesting the robot cleaning ship 20 to perform cleaning.
 この機能を利用して、ロボット清掃船20が図1の基地14からクレーンやアーム等で設置水面上に投入されると、投入位置(ホームポジション13)に最も近い水中照明ユニット11aが交流点灯する。ロボット清掃船20が同信号を検出すると、水中照明ユニット11aの直上に移動し、規定時間だけその水中照明ユニット11aを清掃する。 Using this function, when the robot cleaning boat 20 is thrown into the installation water surface from the base 14 shown in FIG. 1 with a crane, an arm, or the like, the underwater lighting unit 11a closest to the loading position (home position 13) is turned on. . When the robot cleaning ship 20 detects the same signal, the robot cleaning ship 20 moves immediately above the underwater illumination unit 11a and cleans the underwater illumination unit 11a for a specified time.
 規定時間が経過すると、水中照明ユニット11aは消灯し、次の水中照明ユニット11bが交流点灯する。ロボット清掃船20は通信により次の水中照明ユニット11bに向かって移動することもできるが、水中照明ユニット11bの交流点灯信号を検出することにより水中照明ユニット11aの清掃作業を終了し、次の水中照明ユニット11bの清掃に移動することもできる。このように、順次隣接する水中照明ユニット11の清掃を続け、最後の水中照明ユニット11xの清掃を終了するか、あるいは、内蔵する二次電池の電力が規定値を下回ると、充電・保管のために基地14に戻す。 When the specified time has elapsed, the underwater illumination unit 11a is turned off, and the next underwater illumination unit 11b is turned on. The robot cleaning ship 20 can move toward the next underwater lighting unit 11b by communication, but the cleaning operation of the underwater lighting unit 11a is completed by detecting the AC lighting signal of the underwater lighting unit 11b, and the next underwater lighting unit 11b is detected. It can also move to cleaning of the illumination unit 11b. In this way, the cleaning of the adjacent underwater lighting units 11 is continued and the cleaning of the last underwater lighting unit 11x is finished, or when the power of the built-in secondary battery falls below a specified value, for charging and storage. Return to base 14.
 基地14への帰還の際は、GPSを使って予め設定された進路に従いホームポジション13近傍まで移動すると、ホームポジション13の位置を示す水中照明ユニット(ホームポジション表示専用或いは水中照明ユニット11と兼用)が交流点灯を開始する。ロボット清掃船20は、ホームポジション13の位置を示す水中照明ユニットの交流点灯をセンサーで感知して、同水中照明ユニットの真上に静止し待機する。待機していることを通信機能により陸上の基地局15に伝えると、アームやクレーン等の機構により基地14に回収し、待機・充電する。 When returning to the base 14, use the GPS to move to the vicinity of the home position 13 according to a preset route. The underwater lighting unit that indicates the position of the home position 13 (home position display only or combined with the underwater lighting unit 11) Starts AC lighting. The robot cleaning boat 20 senses AC lighting of the underwater lighting unit indicating the position of the home position 13 with a sensor, and stands still on the underwater lighting unit and stands by. When the standby state is transmitted to the land base station 15 by the communication function, it is collected in the base 14 by a mechanism such as an arm or a crane, and is standby / charged.
 このように、長期間水中で使用する水中照明ユニット11は、その表面、特に光透過窓の表面に藻や苔、水生生物等が付着するため、上記のようなロボット清掃船20で定期的に清掃を行う必要があるが、ロボット清掃船20による清掃であっても、多数の水中照明ユニット11の清掃には長い時間を要し、その間、イルミネーションシステム10を稼働することはできない。 As described above, the underwater lighting unit 11 used for a long time underwater has algae, moss, aquatic organisms, and the like attached to the surface, particularly the surface of the light transmission window, and therefore is regularly used by the robot cleaning ship 20 as described above. Although it is necessary to perform cleaning, cleaning of the large number of underwater lighting units 11 takes a long time even when cleaning is performed by the robot cleaning ship 20, and the illumination system 10 cannot be operated during that time.
 そこで、このような清掃の間隔をできるだけ長くするため、水中照明ユニット11の光透過窓112の表面にそもそも藻や苔、水生生物等が付着しないようにすることが考えられる。そのような方法の一つに、光透過窓112のガラス板112aの表面に酸化チタン系の塗装・コーティング剤を塗布する等により酸化チタン系皮膜112bをコーティングしておき(図10(c))、水中照明ユニット11の内部に、その酸化チタン系被膜112bを活性化する波長を含む紫外線を発生する発光体114(図10(a)、(b))を設けておくという方法がある。そして、適当なタイミングでこの紫外線発光体114を点灯し、光透過窓112の外側に付着する藻や微生物等の有機物を分解することにより、窓の汚れを防止することができる。 Therefore, in order to make such a cleaning interval as long as possible, it is conceivable that algae, moss, aquatic organisms and the like are not attached to the surface of the light transmission window 112 of the underwater lighting unit 11 in the first place. As one of such methods, the surface of the glass plate 112a of the light transmission window 112 is coated with a titanium oxide film 112b by applying a titanium oxide paint or coating agent (FIG. 10 (c)). There is a method in which a light emitter 114 (FIGS. 10A and 10B) that generates ultraviolet rays including a wavelength that activates the titanium oxide coating 112b is provided inside the underwater illumination unit 11. Then, the ultraviolet light emitter 114 is turned on at an appropriate timing, and organic matter such as algae and microorganisms adhering to the outside of the light transmission window 112 is decomposed to prevent the window from being stained.
 被膜112bの材料(光触媒物質層の材料)は、酸化チタンに変えて、酸化亜鉛又はそれらの混合物としてもよい。また、コーティングの方法としては、塗装・塗布の他、蒸着も可能である。いずれにせよ、水中照明ユニット11は、水中における又は水中から水上へのイルミネーションを目的とするものであるため、可視光発光体113の発する光を相当透過する程度の透明度を確保しておくことが望ましい。 The material of the coating 112b (the material of the photocatalytic substance layer) may be zinc oxide or a mixture thereof instead of titanium oxide. As a coating method, vapor deposition is possible in addition to painting and application. In any case, since the underwater lighting unit 11 is intended for illumination in water or from water to water, it is necessary to ensure transparency to a degree that allows considerable transmission of light emitted by the visible light emitter 113. desirable.
 紫外線発光体114としては、紫外線LEDを用いることができる。紫外線発光体114は、可視光発光体113と共に基地局15の発光制御装置151により発光が制御される。紫外線発光体114は、水中照明ユニット11のいずれかの可視光発光体113が発光するのと同時に発光させるようにしてもよいし、それとは無関係に、むしろこの水中照明ユニット11が使用されていない間(可視光発光体113が発光しない間)に一定時間毎に発光するように制御してもよい。なお、紫外線発光体自体の寿命、及び、装置内部で紫外線の当たる部品等に与える悪影響を考慮すると、紫外線発光体114の点灯時間は短い方がよい。従って、水質(淡水、海水、汽水)や、水温、水の汚濁度、或いは設置場所に生育する汚染生物の種類により最適値は異なるが、ガラス表面に付着した胞子、卵、精子等の生殖細胞や種子、及びそれから生じた幼生などを死滅させるか障害を与えるだけの時間点灯し、それらが再度付着し強固な殻等を持つ生物体に育つ直前まで消灯するサイクルを繰り返せば良い。具体的には一日に一度、5分から1時間点灯するか、1時間に一度1分程度点灯すれば良い。 As the ultraviolet light emitter 114, an ultraviolet LED can be used. The light emission of the ultraviolet light emitter 114 is controlled by the light emission control device 151 of the base station 15 together with the visible light emitter 113. The ultraviolet light emitter 114 may emit light at the same time as any one of the visible light emitters 113 of the underwater illumination unit 11 emits light. Regardless of this, the underwater illumination unit 11 is not used. Control may be performed so that light is emitted at regular intervals during the interval (while the visible light emitter 113 does not emit light). In consideration of the lifetime of the ultraviolet light emitter itself and the adverse effects on the components that are exposed to ultraviolet light inside the apparatus, it is better that the lighting time of the ultraviolet light emitter 114 is short. Therefore, the optimal value varies depending on the water quality (fresh water, seawater, brackish water), water temperature, water pollution, or the type of contaminating organisms that grow on the installation site, but germ cells such as spores, eggs, and sperm attached to the glass surface. It is possible to repeat a cycle in which lights are turned on for a period of time that kills or damages seeds, seeds, and larvae generated from the seeds, and the lights are turned off until they are attached again and grow into a living organism having a strong shell. Specifically, it may be turned on once a day for 5 minutes to 1 hour, or once per hour for about 1 minute.
 ガラス板112aの表面の酸化チタン系皮膜112bは必須ではなく、水中照明ユニット11内部からの紫外線の照射のみによっても、藻や微生物等の付着は防止することができる。ただし、酸化チタン系皮膜112bをコーティングしない場合、同じ環境下であればコーティングした場合よりも紫外線照射の時間を増やすことが必要である。 The titanium oxide-based film 112b on the surface of the glass plate 112a is not essential, and adhesion of algae, microorganisms, and the like can be prevented only by irradiation with ultraviolet rays from the inside of the underwater illumination unit 11. However, when the titanium oxide-based film 112b is not coated, it is necessary to increase the time of ultraviolet irradiation as compared with the case of coating in the same environment.
10…水中イルミネーションシステム
 11…水中照明ユニット
  112…光透過窓
   112a…ガラス板
   112b…酸化チタン系被膜
  113…可視光発光体
  114…紫外線発光体
12…連結線
13…ホームポジション
14…清掃船基地
15…基地局
 151…発光制御装置
20…ロボット清掃船
21…ロボット清掃船本体
DESCRIPTION OF SYMBOLS 10 ... Underwater illumination system 11 ... Underwater illumination unit 112 ... Light transmission window 112a ... Glass plate 112b ... Titanium oxide film 113 ... Visible light emitter 114 ... Ultraviolet light emitter 12 ... Connection line 13 ... Home position 14 ... Cleaning ship base 15 ... Base station 151 ... Light emission control device 20 ... Robot cleaning ship 21 ... Robot cleaning ship body

Claims (4)

  1.  a) 内部に備えられた、可視光及び紫外線を発光可能な光源と、該光源の光を透過する窓を有する気密ケースを有する水中照明ユニットと、
     b) 前記気密ケースに設けられた開口に接続される送気チューブと、
     c) 前記送気チューブに気体を送り込む給気装置と
     を有することを特徴とする水中照明装置。
    a) a light source capable of emitting visible light and ultraviolet light, and an underwater lighting unit having an airtight case having a window that transmits light from the light source;
    b) an air supply tube connected to an opening provided in the airtight case;
    c) An underwater illumination device comprising: an air supply device that supplies gas to the air supply tube.
  2.  前記窓の表面に光触媒物質層がコーティングされていることを特徴とする請求項1に記載の水中照明装置。 The underwater lighting device according to claim 1, wherein a photocatalytic material layer is coated on a surface of the window.
  3.  前記光触媒物質層が酸化チタンから成ることを特徴とする請求項2に記載の水中照明装置。 The underwater lighting device according to claim 2, wherein the photocatalytic substance layer is made of titanium oxide.
  4.  複数の前記水中照明ユニットが前記送気チューブでループ状又はマトリックス状に接続されているとともに、前記給気装置が気体分配器を備えており、該気体分配器から前記複数の水中照明ユニットに並列に気体を送り込むようになっている請求項1~3のいずれかに記載の水中照明装置。 A plurality of the underwater lighting units are connected in a loop shape or a matrix shape by the air supply tube, and the air supply device includes a gas distributor, and is parallel to the plurality of underwater lighting units from the gas distributor. The underwater illumination device according to any one of claims 1 to 3, wherein a gas is fed into the water.
PCT/JP2015/083174 2014-11-28 2015-11-26 Underwater lighting apparatus WO2016084878A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014241380 2014-11-28
JP2014-241380 2014-11-28

Publications (1)

Publication Number Publication Date
WO2016084878A1 true WO2016084878A1 (en) 2016-06-02

Family

ID=56074430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083174 WO2016084878A1 (en) 2014-11-28 2015-11-26 Underwater lighting apparatus

Country Status (1)

Country Link
WO (1) WO2016084878A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962675U (en) * 1972-09-08 1974-06-01
JPS5113683U (en) * 1974-07-18 1976-01-31
JPH0589701A (en) * 1991-09-27 1993-04-09 Matsushita Electric Works Ltd Floodlighting equipment
JP2006281082A (en) * 2005-03-31 2006-10-19 Univ Nagoya Organism pollution countermeasure apparatus
JP2006309969A (en) * 2005-04-26 2006-11-09 Inax Corp Rod-shaped light-emitting body
JP2008027841A (en) * 2006-07-25 2008-02-07 Bisan:Kk Underwater illumination device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962675U (en) * 1972-09-08 1974-06-01
JPS5113683U (en) * 1974-07-18 1976-01-31
JPH0589701A (en) * 1991-09-27 1993-04-09 Matsushita Electric Works Ltd Floodlighting equipment
JP2006281082A (en) * 2005-03-31 2006-10-19 Univ Nagoya Organism pollution countermeasure apparatus
JP2006309969A (en) * 2005-04-26 2006-11-09 Inax Corp Rod-shaped light-emitting body
JP2008027841A (en) * 2006-07-25 2008-02-07 Bisan:Kk Underwater illumination device

Similar Documents

Publication Publication Date Title
CA2859167C (en) Submerged chemical indicator and holder
KR101142144B1 (en) Fish lamp device
US10154657B2 (en) Lighting system and control for aquaculture
CN104803445B (en) Ultraviolet sterilizer under water
US20210130006A1 (en) Flight indication apparatuses, systems and associated methods
CN111838045B (en) Intelligent feeding system in marine cage culture complex
JP2016508033A5 (en)
KR20150015962A (en) Adherence preventive apparatus of aquatic organisms for hull
CN104395739A (en) Inspection and repair module
WO2016084878A1 (en) Underwater lighting apparatus
JP2008187987A (en) Water quality-cleaning system by utilizing sunlight
KR101716643B1 (en) fish farm sterilizing device using LED lamp
CN106813159A (en) A kind of changeable colour LED underwater fishing lamps system and the attracting method based on the system
CN204625248U (en) Ultraviolet sterilizer under water
KR100501927B1 (en) suspended type painting apparatus
ES2216683B1 (en) PERFECTED SUBMERSIBLE CAGE.
CN205648699U (en) Chicken farm control breeding device based on internet of things
CN1164926C (en) Video image probing rod
TWI706106B (en) Underwater light control system
KR20120006743A (en) Warter suface movable lighting display system
KR101025829B1 (en) A dome camera having the lamp
CN218607434U (en) Intelligent ultraviolet disinfection equipment
CN215380827U (en) A scalable automatic feeding device for aquaculture
CN210825525U (en) Device and system for preventing and treating water bloom
CN219063340U (en) Lighting control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP