WO2016084857A1 - Method for producing 3-hydroxy propionic acid, and transformant - Google Patents

Method for producing 3-hydroxy propionic acid, and transformant Download PDF

Info

Publication number
WO2016084857A1
WO2016084857A1 PCT/JP2015/083107 JP2015083107W WO2016084857A1 WO 2016084857 A1 WO2016084857 A1 WO 2016084857A1 JP 2015083107 W JP2015083107 W JP 2015083107W WO 2016084857 A1 WO2016084857 A1 WO 2016084857A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
transformant
gene encoding
protease
producing
Prior art date
Application number
PCT/JP2015/083107
Other languages
French (fr)
Japanese (ja)
Other versions
WO2016084857A8 (en
Inventor
崇之 田中
正浩 漆原
英毅 東田
薫 竹川
明子 陶山
Original Assignee
旭硝子株式会社
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社, 国立大学法人九州大学 filed Critical 旭硝子株式会社
Publication of WO2016084857A1 publication Critical patent/WO2016084857A1/en
Publication of WO2016084857A8 publication Critical patent/WO2016084857A8/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention uses 3-hydroxypropionic acid (3) by using a transformant incorporating a foreign gene using Schizosaccharomyces pombe (hereinafter sometimes referred to as “S. pombe”) as a host. -To a method for producing HP).
  • S. pombe Schizosaccharomyces pombe
  • 3-HP is a very useful compound as a raw material for various chemical products such as acrylic esters.
  • 3-HP can be produced through a fermentation process with microorganisms.
  • MCR malonyl CoA reductase
  • 3-HP is produced from malonyl CoA.
  • 3-HP is produced from glycerin via 3-hydroxypropionaldehyde (3-HPA).
  • a transformant having a gene encoding a foreign MCR gene and a foreign acetyl-CoA carboxylase (hereinafter also referred to as ACC) (hereinafter also referred to as ACC gene) introduced into pombe is cultured without neutralization.
  • ACC foreign acetyl-CoA carboxylase
  • Patent Document 2 discloses S.I. In Pombe, it is described that the production efficiency of heterologous proteins can be improved by using an improved host in which at least one gene selected from genes encoding a specific protease is deleted or inactivated.
  • S.M A method for producing 3-HP with high productivity without the need for neutralization with alkali using a Pombe transformant, and S. cerevisiae suitable for the method.
  • An object is to provide a transformant of pombe.
  • the method for producing 3-HP according to the present invention is described in A transformant having an exogenous MCR gene and an exogenous ACC gene using Pombe as a host is cultured in a liquid medium containing acetic acid or acetate and the total concentration thereof being 10 to 50 mM. It is characterized in that 3-hydroxypropionic acid is obtained from the medium.
  • the transformant further has a gene (hereinafter also referred to as ACS gene) encoding a foreign acetyl-CoA synthetase (hereinafter also referred to as ACS). It is preferable.
  • the transformant is preferably a transformant from which at least one gene encoding a protease inherent in the host has been deleted or inactivated.
  • the gene encoding the deleted or inactivated protease is selected from the group consisting of a gene encoding a metalloprotease, a gene encoding a serine protease, a gene encoding a cysteine protease, and a gene encoding an aspartic protease.
  • the foreign gene is preferably incorporated into a chromosome, and the foreign gene is preferably incorporated into a plasmid.
  • the liquid medium preferably contains glucose or sucrose, and the total concentration thereof is 1 to 50% by mass.
  • the culture is further continued after the pH of the liquid medium is lowered to 3.5 or less due to the culture. It is also preferable to continue the culture without neutralizing the hydroxypropionic acid.
  • the transformant according to the present invention comprises Pombe is used as a host, it has a foreign MCR gene and a foreign ACC gene, and at least one gene encoding a protease inherent in the host is deleted or inactivated.
  • the transformant according to the present invention preferably further has a foreign ACS gene.
  • the transformant according to the present invention includes a gene encoding the deleted or inactivated protease, a gene encoding a metalloprotease, a gene encoding a serine protease, a gene encoding a cysteine protease, and an aspartic protease
  • it is a gene selected from the group consisting of genes encoding ps3, isp6 gene, ppp53 gene, ppp16 gene, ppp22 gene, sxa2 gene, ppp80 gene and ppp20 gene. Is more preferable.
  • the foreign gene is preferably integrated into a chromosome or a plasmid.
  • 3-HP can be produced efficiently by culturing the transformant without requiring neutralization treatment.
  • 3-HP can be efficiently produced by culturing the transformant according to the present invention.
  • FIG. 1 is a schematic diagram of the structure of a pREP1-CaMCR-FLAG vector.
  • 1 is a schematic diagram of the structure of a pREP2-cut6-FLAG vector.
  • 1 is a schematic diagram of the structure of a 1-hsp9p-CaMCR-LPIT vector.
  • FIG. 2 is a schematic diagram of the structure of a 2-hsp9p-cut6-LPIT vector.
  • FIG. 3 is a schematic diagram of the structure of the pREP1-CaMCR vector.
  • FIG. 4 is a schematic diagram of the structure of the pREP2-cut6 vector.
  • FIG. 4 is a schematic diagram of the structure of the pREPAde-ACS2 vector.
  • 1 is a schematic diagram of the structure of a pREPAde-acs1 vector.
  • the manufacturing method of 3-HP according to the present invention is S.I.
  • a transformant having a foreign MCR gene and a foreign ACC gene using Pombe as a host is cultured in a liquid medium containing acetic acid or acetate, and 3-hydroxypropionic acid is obtained from the liquid medium. It is characterized by that.
  • malonyl CoA is produced from acetyl CoA by ACC
  • 3-HP is produced from this malonyl CoA by MCR.
  • the amount of acetyl CoA produced by acetic acid incorporated into the transformant increases, resulting in an increase in the amount of 3-HP produced.
  • 3-HP can be produced efficiently by culturing the transformant in a liquid medium having a total concentration of acetic acid or acetate of 10 to 50 mM. .
  • the transformant cultured in the method for producing 3-HP according to the present invention is S. cerevisiae. It is a transformant having a foreign MCR gene and a foreign ACC gene using Pombe as a host. By these foreign genes, 3-HP is produced from acetyl CoA in the transformant.
  • a foreign gene is not a structural gene originally possessed by a host (a structural gene contained in a chromosome of a natural host before transformation), but a transformation operation, etc.
  • the structural gene introduced by A gene introduced by a transformation operation or the like is a foreign gene in the present invention even if it is a gene originally possessed by the host.
  • the foreign gene may be introduced into a chromosome, or may be incorporated into a plasmid and introduced into the cytoplasm.
  • S. host is a yeast belonging to the genus Schizosaccharomyces (fission yeast), and is a microorganism particularly excellent in acid resistance compared to other yeasts.
  • S. Pombe is superior to other yeasts such as Saccharomyces cerevisiae to produce 3-HP under a high concentration of glucose, and is also suitable for high-density culture (culture using a large amount of yeast). I understood it. Therefore, S. By using a Pombe transformant, 3-HP can be produced with extremely high productivity.
  • the transformant used in the present invention has the MCR gene.
  • S. Pombe does not naturally have the MCR gene. Therefore, S.
  • the MCR gene derived from organisms other than Pombe can be obtained by genetic engineering.
  • a transformant is obtained by introducing into pombe. Examples of the MCR gene introduced into the transformant include S. cerevisiae. It may be a structural gene that can express a protein that exhibits MCR activity when introduced into pombe, and may be an MCR gene derived from any species. Moreover, the foreign MCR gene possessed by the transformant may be one type or two or more types.
  • Examples of the MCR encoded by the MCR gene introduced as a foreign gene include, for example, Chloroflexus aurantiacus, Chloroflexus ⁇ aggregans, Roseiflexus castenholzii, and Roseiflexus. ⁇ SP (Roseiflexus sp.), Roseiflexus SP ⁇ Strain RS-1 (Roseiflexussp. Strain RS-1), Erythrobacter sp., Erythrobacter strain NAP1 (Erythrobactersp.
  • MCR Modified body of these MCR may be sufficient.
  • MCR variants include polypeptides having an MCR activity consisting of an amino acid sequence in which one or several amino acids of these MCR amino acid sequences are substituted, added, or deleted.
  • a polypeptide comprising an amino acid sequence having an amino acid sequence of 80% or more, preferably 85% or more, more preferably 90% or more, and still more preferably 95% or more, and an MCR activity with these MCR amino acid sequences. It is done.
  • the MCR possessed by the transformant used in the present invention is preferably MCR derived from Chloroflexus aurantiacus (CaMCR, SEQ ID NO: 1).
  • the transformant used in the present invention has a foreign ACC gene.
  • the ACC gene introduced into the transformant include S. cerevisiae. It may be a structural gene that can express a protein that exhibits ACC activity when introduced into pombe, and may be an ACC gene derived from any species. Moreover, the number of the foreign ACC gene which this transformant has may be one, and two or more types may be sufficient as it.
  • Examples of ACC encoded by the ACC gene introduced as a foreign gene include S. Pombe, Saccharomyces cerevisiae, Bacillus cereus, Bacillus subtilis, Bos taurus, Brevibacterium thiogenitalis, Lactobacillus plantarum, plant Lactobacillus Candida lipolytica, Candida catenulata, Candida gropengiesseri, Candida rugosa, Candida sonorensis, Candida sonorensis (Candida andsonorensis) methanosorbosa, Candida curvata, Kluyveromyces marxianus, Kluyveromyces thermotolerans, I Ittchenkia orientalis, Rhodotorula sglutinis, Pichia haplophila, Aspergillus clavatus, Aspergillus ⁇ ⁇ sperm, sperm Aspergillus terreus, Aspergillus oryzae, Aspergillus ochraceus, Aspergillus
  • the modified body of these ACC may be sufficient.
  • the modified ACC include a polypeptide having an ACC activity, which is composed of an amino acid sequence in which one or several amino acids of these ACC amino acid sequences are substituted, added, or deleted.
  • Examples of ACC possessed by the transformant used in the present invention include S. cerevisiae. Pombe-derived ACC (SEQ ID NO: 2) is preferred.
  • S. The gene encoding Pombe ACC is the cut6 gene.
  • the transformant used in the present invention preferably has a foreign ACS gene in addition to the MCR gene and the ACC gene.
  • a sufficient amount of ACS is expressed in the transformant, the amount of acetyl CoA converted from acetic acid increases, resulting in an increase in the production of 3-HP.
  • ACS encoded by the ACS gene introduced as a foreign gene examples include S.I. Examples include ACS derived from Pombe and Saccharomyces cerevisiae. These ACS variants may also be used. ACS variants include, for example, polypeptides having an ACS activity consisting of an amino acid sequence in which one or several amino acids of these ACS amino acid sequences are substituted, added, or deleted. Polypeptides comprising an ACS amino acid sequence and an amino acid sequence having 80% or more, preferably 85% or more, more preferably 90% or more, and still more preferably 95% or more, and have ACS activity. It is done.
  • the ACC possessed by the transformant used in the present invention includes Saccharomyces cerevisiae-derived ACS (ACS2, SEQ ID NO: 3) or S. cerevisiae. Pombe derived ACS (acs1, SEQ ID NO: 4) is preferred.
  • the transformant used in the present invention is preferably a transformant in which at least one of a gene encoding a protease (hereinafter also referred to as a protease gene) is deleted or inactivated. S. By inhibiting the protease activity of at least one protease gene inherent in Pombe, the production efficiency of MCR and ACC is improved, and the production amount of 3-HP is further increased.
  • the transformant used in the present invention encodes a gene encoding serine protease (hereinafter also referred to as serine protease gene), a gene encoding aminopeptidase (hereinafter also referred to as aminopeptidase gene), and carboxypeptidase.
  • the transformant used in the present invention may be one in which only one type of protease gene has been deleted, or one in which two or more types of protease genes have been deleted.
  • a transformant in which at least one gene selected from the group consisting of a metalloprotease gene, a serine protease gene, a cysteine protease gene, and an aspartic protease gene has been deleted is preferable. From the metalloprotease gene and the serine protease gene A transformant from which at least one gene selected from the group consisting of at least one gene selected from the group consisting of a cysteine protease gene and an aspartic protease gene has been deleted is also preferred.
  • protease genes of Pombe include the following. Metalloprotease genes: cdb4 (SPAC23H4.09), mas2 (SPBC18E5.12c), pgp1 (SPCC1259.10), ppp20 (SPAC4F10.02), ppp22 (SPBC14C8.03), ppp51 (SPAC22G7.01c), ppp52 (SPBC18A7. 01), ppp53 (SPAP14E8.04).
  • Serine protease genes isp6 (SPAC4A8.04), ppp16 (SPBC1711.12), psp3 (SPAC1006.01), sxa2 (SPAC1296.03c).
  • Cysteine protease genes ppp80 (SPAC19B12.08), pca1 (SPCC1840.04), cut1 (SPCC5E4.04), gpi8 (SPCC11E10.02c). Aspartic protease genes: sxa1 (SPAC26A3.01), yps1 (SPCC1795. 09), ppp81 (SPAC25B8.17).
  • the metalloprotease gene deleted in the transformant used in the present invention is preferably at least one selected from the group consisting of cdb4 gene, pgp1 gene, ppp20 gene, ppp22 gene, ppp52 gene and ppp53 gene, and cdb4 More preferred is at least one selected from the group consisting of a gene, a ppp22 gene, and a ppp53 gene.
  • the serine protease gene deleted in the transformant used in the present invention is preferably at least one selected from the group consisting of the isp6 gene, the ppp16 gene, the psp3 gene and the sxa2 gene.
  • the cysteine protease gene deleted in the transformant used in the present invention the ppp80 gene is preferable.
  • the transformant used in the present invention is at least one gene selected from the group consisting of cdb4 gene, ppp22 gene and ppp53 gene, and at least selected from the group consisting of isp6 gene, ppp16 gene, psp3 gene and sxa2 gene.
  • Those in which 3 or more genes in total of 2 types of genes are deleted are preferable, and a total of 3 or more types including at least one gene selected from the group consisting of ppp53 gene and cdb4 gene, isp6 gene and psp3 gene
  • Those in which the gene is deleted are more preferred. For example, those in which at least three genes of psp3 gene, isp6 gene and ppp53 gene are deleted are more preferable.
  • the transformant used in the present invention is preferably one in which four or more genes including the ppp53 gene, isp6 gene, psp3 gene and ppp16 gene are deleted, and the ppp53 gene, isp6 gene, psp3 gene, More preferably, 5 or more types of genes including the ppp16 gene and the ppp22 gene are deleted, and 6 or more types of genes including the ppp53 gene, isp6 gene, psp3 gene, ppp16 gene, ppp22 gene and sxa2 gene are deleted.
  • the psp3 gene, the isp6 gene, the ppp53 gene, the ppp16 gene, the ppp22 gene, the sxa2 gene, the ppp80 gene and the ppp20 gene are deleted. Preferred.
  • the transformant according to the present invention is a host strain of S. cerevisiae. It can be produced by introducing an MCR gene and an ACC gene (if necessary, an ACS gene) into a pombe by a genetic engineering method. When a plurality of foreign genes are introduced, all of them may be introduced simultaneously into the host or sequentially (in any order).
  • gene recombination methods using yeast as a host various expression systems, particularly expression vectors, secretion signal gene-introduced expression vectors, and the like have been developed in order to more stably and efficiently express heterologous proteins. These can be widely applied in the production of such transformants. For example, S.M.
  • Examples of expression systems using pombe as a host include Japanese Patent No. 2776085, Japanese Patent Application Laid-Open No. 07-163373, Japanese Patent Application Laid-Open No. 10-215867, Japanese Patent Application Laid-Open No. 10-215867, Japanese Patent Application Laid-Open No. -192094, JP-A-2000-262284, WO 96/023890, etc. are known, and these expression systems can be widely used in the method for producing the transformant according to the present invention.
  • the pombe may be a wild type or a mutant type in which a specific gene is deleted or inactivated depending on the use.
  • a method for deleting or inactivating a specific gene a known method can be used. Specifically, the gene can be deleted by using the Latour method (described in Nucleic Acids Res, 2006, 34, e11, International Publication No. 2007/063919).
  • mutation isolation methods using mutants Yeast Molecular Genetics Experimental Method, 1996, Society Press Center
  • random mutation methods using PCR PCR Methods Application, Vol. 2, pages 28-33, 1992
  • the part where a specific gene is deleted or inactivated may be an ORF (open reading frame) part or an expression regulatory sequence part.
  • a particularly preferred method is a method of deletion or inactivation by PCR-mediated homologous recombination method (Yeast, Vol. 14, pages 943-951, 1998) in which the ORF portion of the structural gene is replaced with a marker gene.
  • yeast hosts of the genus Schizosaccharomyces from which a specific gene has been deleted or inactivated are described in, for example, International Publication No. 2002/101038, International Publication No. 2007/015470, International Publication No. 2013/137277, etc. .
  • the host used in the present invention include S. cerevisiae.
  • at least one protease gene originally possessed by Pombe is deleted or inactivated, and at least one gene selected from the group consisting of a serine protease gene, an aminopeptidase gene, a carboxypeptidase gene, and a dipeptidase gene is present.
  • At least one gene selected from the group consisting of metalloprotease gene, serine protease gene, cysteine protease gene and aspartic protease gene is deleted or inactivated Is more preferable, from the group consisting of psp3 gene, isp6 gene, ppp53 gene, ppp16 gene, ppp22 gene, sxa2 gene, ppp80 gene and ppp20 gene Which at least one gene has been deleted or inactivated barrel more preferably more.
  • S. is used as a host. It is preferable to use a pombe having a marker for selecting a transformant. For example, it is preferable to use a host in which a specific nutritional component is essential for growth because a certain gene is missing. When a transformant is produced by transforming with a vector containing the target gene sequence, by incorporating this missing gene (an auxotrophic complementary marker) into the vector, the transformant is required for host nutrition. Sex disappears. Due to the difference in auxotrophy between the host and the transformant, a transformant can be obtained by distinguishing the two.
  • a gene encoding orotidine phosphate decarboxylase (hereinafter also referred to as ura4 gene) has been deleted or inactivated and has become uracil-requiring.
  • ura4 gene which is an auxotrophic complementary marker
  • pombe as a host
  • a transformant in which the vector is incorporated can be obtained by selecting those that have lost uracil requirement.
  • the gene that becomes auxotrophic due to deletion in the host is not limited to the ura4 gene as long as it is used for selection of transformants, and a gene encoding isopropylmalate dehydrogenase (hereinafter also referred to as leu1 gene). It may be.
  • Each foreign gene is S. cerevisiae. It is introduced into the pombe chromosome or plasmid. In particular, it is preferably introduced into the chromosome. By introducing a foreign gene into the chromosome, a transformant having excellent passage stability can be obtained. A plurality of foreign genes can also be introduced into the chromosome.
  • a method of introducing a foreign gene into a host by a genetic engineering method a known method can be used.
  • the foreign gene is S. cerevisiae.
  • a method for introduction into the pombe chromosome a method of introduction by homologous recombination using a vector having an expression cassette having a foreign gene and a recombination site is preferred.
  • An expression cassette is a combination of DNAs necessary for expressing a target protein, and includes a structural gene encoding the target protein, a promoter functioning in the host, and a terminator.
  • the expression cassette used in the production of the transformant used in the present invention is a foreign gene, S. cerevisiae or the like.
  • a promoter that functions in Pombe Including a terminator that functions within the pombe.
  • the expression cassette may contain any one or more of 5′-untranslated region and 3′-untranslated region.
  • the auxotrophic complementary marker may be included.
  • Multiple expression genes may be present in one expression cassette.
  • the number of foreign genes in one expression cassette is preferably 1-8, and more preferably 1-5.
  • the MCR gene and the ACC gene may be introduced into the host by separate expression cassettes, or both genes may be introduced into the host by one expression cassette.
  • the gene encoded by the wild type may be used as it is.
  • the wild type gene sequence was transformed into S. cerevisiae. It may be modified to a codon frequently used in pombe.
  • S. Examples of promoters that function in pombe include S. cerevisiae. Pombe's inherent promoter (preferably having high transcription initiation activity) or S.
  • a promoter eg, a virus-derived promoter
  • Two or more promoters may be present in the vector.
  • promoters inherent to Pombe include alcohol dehydrogenase gene promoter, nmt1 gene promoter involved in thiamine metabolism, fructose-1, 6-bisphosphatase gene promoter involved in glucose metabolism, and invertase gene involved in catabolite repression. Examples include promoters (see International Publication No. 99/23223 pamphlet), heat shock protein gene promoters (see International Publication No. 2007/26617 pamphlet, International Publication No. 2014/030644), and the like. S.
  • promoters that Pombe does not originally include are promoters derived from animal cell viruses described in JP-A-5-15380, JP-A-7-163373, and JP-A-10-234375, and hCMV A promoter, SV40 promoter is preferred.
  • S. Pombe's inherent terminator and S.P. A terminator that Pombe does not have can be used. Two or more terminators may be present in the vector. Examples of the terminator include human terminators described in JP-A-5-15380, JP-A-7-163373, and JP-A-10-234375, and human lipocortin I terminator is preferable. .
  • the transformant used in the present invention has an expression cassette containing a foreign gene in the chromosome or as an extrachromosomal gene. Having an expression cassette in the chromosome means that the expression cassette is incorporated at one or more positions in the chromosome of the host cell, and having as an extrachromosomal gene means having a plasmid containing the expression cassette in the cell. That is.
  • a transformant containing each expression cassette is used as a host using a vector containing each expression cassette. It is obtained by transforming pombe.
  • the vector can be produced by incorporating the expression cassette into a vector having a circular DNA structure or a linear DNA structure.
  • the vector may contain a sequence for replication in the host cell, that is, an autonomously replicating sequence (AutonomouslynomReplicating). Sequence: ARS) is preferred.
  • ARS autonomously replicating sequence
  • the vector is assumed to have a linear DNA structure and no ARS. It is preferable to be introduced into.
  • the vector may be a vector composed of linear DNA, or a vector having a circular DNA structure provided with a restriction enzyme recognition sequence for cleavage into linear DNA upon introduction into a host.
  • the vector is a plasmid having ARS, it can be introduced into the host after forming a linear DNA structure by deleting the ARS part or a linear DNA structure in which the function of ARS is inactivated by cleaving the ARS part.
  • the vector preferably has a marker for selecting a transformant.
  • the marker include ura4 gene and leu1 gene.
  • the vector is S. cerevisiae.
  • the recombination site of the vector is S. This is a site having a base sequence that allows homologous recombination to be performed on a target site for homologous recombination in the pombe chromosome.
  • the target site is S. pneumoniae. This is a target site for integrating the expression cassette in the pombe chromosome.
  • the target site can be freely set by setting the recombination site of the vector to a base sequence that allows homologous recombination to be performed on the target site.
  • the homology between the base sequence of the recombination site and the base sequence of the target site needs to be 70% or more.
  • the homology between the base sequence of the recombination site and the base sequence of the target site is preferably 90% or more, and more preferably 95% or more from the viewpoint that homologous recombination is likely to occur.
  • the expression cassette is incorporated into the target site by homologous recombination.
  • the length (number of bases) of the recombination site is preferably 20 to 2000 bp. If the length of the recombination site is 20 bp or more, homologous recombination is likely to occur.
  • the length of the recombination site is 2000 bp or less, it is easy to prevent the vector from becoming too long and causing homologous recombination to hardly occur.
  • the length of the recombination site is more preferably 100 bp or more, and further preferably 200 bp or more. Further, the length of the recombination site is more preferably 800 bp or less, and further preferably 400 bp or less.
  • the vector may have other DNA regions in addition to the expression cassette and the recombination site.
  • a replication initiation region called “ori” necessary for replication in E. coli and an antibiotic resistance gene (neomycin resistance gene, etc.) can be mentioned. These are genes usually required when constructing a vector using Escherichia coli.
  • the replication initiation region is preferably removed when the vector is integrated into the host chromosome as described later.
  • the vector When integrating a foreign gene into a chromosome, the vector is S. cerevisiae.
  • a linear DNA structure That is, in the case of a vector having a circular DNA structure such as a commonly used plasmid DNA, S. It is preferable to introduce into pombe cells.
  • the position for opening the vector having a circular DNA structure is within the recombination site.
  • the recombination sites partially exist at both ends of the opened vector, and the entire vector is integrated into the target site of the chromosome by homologous recombination.
  • the vector may be constructed by a method other than the method of cutting a vector having a circular DNA structure, as long as it can have a linear DNA structure in which a part of the recombination site exists at each end.
  • the vector for example, plasmids derived from E. coli such as pBR322, pBR325, pUC118, pUC119, pUC18, and pUC19 are preferably used.
  • the plasmid vector used for homologous recombination preferably has a replication initiation region called “ori” that is necessary for replication in E. coli.
  • ori replication initiation region
  • the method for constructing the vector from which the replication initiation region has been removed is not particularly limited, but the method described in JP-A-2000-262284 is preferably used.
  • a method is preferred in which a precursor vector in which a replication initiation region is inserted at the cleavage site in the recombination site is constructed so that the replication initiation region is excised at the same time as the linear DNA structure as described above. Thereby, a vector from which the replication initiation region has been easily removed can be obtained.
  • a method may be used in which a precursor vector having an expression cassette and a recombination site is constructed, and a vector used for homologous recombination is obtained by removing the replication initiation region from the precursor vector by a normal genetic engineering technique.
  • Target sites that incorporate the vector are S. cerevisiae. It may be present only at one location in the pombe chromosome, or may be present at two or more locations. When two or more target sites exist, S.P.
  • the vector can be integrated at two or more positions on the pombe chromosome.
  • a plurality of foreign genes are included in one expression cassette, a plurality of foreign genes can be incorporated into one target site.
  • an expression cassette can be incorporated into two or more target sites using two or more vectors having recombination sites corresponding to the respective target sites. In this manner, S.
  • a plurality of foreign genes can be incorporated into the pombe chromosome, thereby increasing the expression level of MRC or ACC encoded by the foreign gene and improving 3-HP productivity.
  • an expression cassette containing an MRC gene is incorporated into a vector having a first target site
  • an expression cassette containing an ACC gene is incorporated into a vector having a second target site
  • the transformant according to the present invention can be obtained by transforming pombe as a host.
  • the target site described in the method described in JP-A No. 2000-262284 can be used.
  • Two or more vectors having different integration sites can be used to integrate the vectors into different target sites.
  • this method is complicated when the vector is integrated at two or more sites on the chromosome.
  • base sequence parts that are substantially identical to each other in a plurality of locations in a chromosome can be used as target sites and the vectors can be incorporated into the target sites in these multiple locations, a vector can be used in two or more locations on the chromosome using one type of vector. Can be incorporated.
  • Base sequences that are substantially identical to each other means that the homology of the base sequences is 90% or more.
  • the homology between the target sites is preferably 95% or more.
  • the length of the base sequences that are substantially identical to each other is a length that includes the recombination site of the vector, and is preferably 1000 bp or more.
  • the foreign genes are dispersed and incorporated into multiple target sites In this case, when the transformant grows, the foreign gene is less likely to drop off from the chromosome at a time, and the maintenance stability in the passage of the transformant is improved.
  • a transposon gene Tf2 is preferable as a target site present in a plurality of locations in a chromosome.
  • Tf2 is the S.T.
  • a vector can be incorporated into only one location of Tf2 present in 13 locations on a chromosome.
  • a transformant having two or more foreign genes can be obtained by incorporating a vector having two or more foreign genes.
  • a transformant having two or more foreign genes can be obtained by incorporating a vector into two or more locations of Tf2.
  • a transformant having more foreign genes can be obtained by incorporating a vector having two or more foreign genes. If the vector is incorporated at all 13 positions of Tf2, the burden on the survival and growth of the transformant may be too great.
  • the vector is preferably incorporated at 8 sites or less of 13 Tf2, and more preferably at 5 sites or less.
  • Transformation method Any known transformation method may be used as the transformation method.
  • the transformation method include conventionally known methods such as lithium acetate method, electroporation method, spheroplast method, glass bead method, and the method described in JP-A-2005-198612.
  • a commercially available yeast transformation kit may also be used.
  • the obtained transformant is usually selected after homologous recombination.
  • the selection method include the following methods. Screening is performed with a medium capable of selecting transformants using the auxotrophic marker, and a plurality of colonies obtained are selected. Next, after they are separately liquid cultured, the expression level of the heterologous protein in each liquid medium is examined, and a transformant with a higher expression level of the heterologous protein is selected.
  • the number of vectors integrated into the chromosome and the number of expression cassettes can be examined. The number of vectors integrated into the chromosome can be adjusted to some extent by adjusting the integration conditions. Depending on the size (number of bases) and structure of the vector, the integration efficiency and the number of integrations may change.
  • the concentration of acetic acid or acetate in the liquid medium inoculating the transformant is higher than that in the case of culturing in a liquid medium to which acetic acid or the like is not added.
  • the concentration may be any as long as the amount is high, and can be appropriately determined in consideration of the genotype of the transformant to be cultured and the other composition of the liquid medium, particularly the concentration of glucose or sucrose.
  • the concentration of acetic acid or acetate in the liquid medium is preferably 10 to 50 mM, more preferably 10 to 40 mM, and further preferably 20 to 30 mM.
  • liquid medium used for the production of 3-HP a known yeast culture medium containing sugar is used so that the concentration of acetic acid or acetate is within a predetermined range.
  • the liquid medium include S.I. Contains a nitrogen source, inorganic salts, etc. that can be utilized by Pombe; Those capable of efficiently cultivating the pombe are preferred.
  • a natural medium or a synthetic medium may be used.
  • sugars such as glucose, fructose, sucrose, and maltose.
  • nitrogen source include inorganic acids such as ammonia, ammonium chloride, and ammonium acetate, or ammonium salts of inorganic acids, peptone, casamino acid, yeast extract, and the like.
  • inorganic salts include magnesium phosphate, magnesium sulfate, sodium chloride and the like.
  • a fermentation promoting factor such as proteolipid can be included.
  • a liquid medium containing glucose or sucrose as sugar.
  • the concentration of glucose or sucrose in the liquid medium (100% by mass) at the initial stage of culture is preferably 1% by mass or more, more preferably 1 to 50% by mass, and further preferably 2 to 16% by mass. It is preferable to continue the culture by adding glucose as necessary, because the glucose concentration is lowered by the culture.
  • the glucose concentration at the end of the culture may be 1% by mass or less.
  • the productivity of 3-HP is further improved.
  • the production efficiency of 3-HP is further improved by setting the glucose in the liquid medium to 16% by mass or less.
  • the initial bacterial cell concentration of the transformant in the liquid medium is preferably 0.1 to 5 g / L in terms of dry cell weight. More preferably, the initial cell concentration of the transformant in the liquid medium is 0.2 to 2 g / L in terms of dry cell weight.
  • High productivity can be achieved in a short time by increasing the initial cell concentration.
  • the initial bacterial cell concentration is too high, problems such as bacterial cell aggregation and a reduction in purification efficiency may occur.
  • the absorbance of light (OD 600) values of wavelength 600nm was measured by JASCO Corporation Ltd. visible ultraviolet spectrometer V550.
  • a known yeast culture method can be used for the culture, for example, shaking culture, stirring culture, or the like.
  • the culture temperature is preferably 23 to 37 ° C.
  • the culture time can be determined as appropriate.
  • the culture may be batch culture or continuous culture.
  • the cells can be separated from the liquid medium to obtain a liquid medium containing 3-HP.
  • the continuous culture method for example, a part of the liquid medium is extracted from the culture tank being cultured, and 3-HP is separated from the extracted liquid medium, and the culture supernatant is recovered, and glucose and A method of continuously culturing by repeatedly adding a new liquid medium or the like and returning it to the culture tank can be mentioned. By performing continuous culture, the productivity of 3-HP is further improved.
  • 3-HP can be produced without neutralization even if the pH is lowered due to the accumulation of 3-HP (pH of about 2 to 4). Therefore, even after the pH of the liquid medium becomes 3.5 or less, 3-HP can be produced by continuous culture that continues the culture.
  • the pH at the end of culture and the pH in continuous culture are preferably 3.5 or less, and particularly preferably 2.3 to 3.5. In order to increase the productivity of 3-HP, it is preferable to continue the cultivation after the pH of the liquid medium becomes 3.5 or lower. Since the transformant used in the present invention has excellent acid resistance, the culture can be continued without neutralizing 3-HP in the liquid medium produced by the transformant.
  • 3-HP For obtaining 3-HP from the liquid medium, a known method is used. In particular, it is preferable to obtain 3-HP by separating the liquid medium and 3-HP without neutralizing 3-HP in the liquid medium. For example, by separating the bacterial cells from the liquid medium after completion of the culture by centrifugation, extracting with diethyl ether or ethyl acetate after adjusting the pH to 1 or less, a method of leaching after adsorbing to an ion exchange resin and washing, activated carbon And a method of removing impurities using, a method of distilling after reacting with an alcohol in the presence of an acid catalyst, and a method of separating using a separation membrane.
  • 3-HP can be obtained by neutralizing 3-HP in the liquid medium and then separating the liquid medium and the 3-HP salt.
  • 3-HP can be obtained by converting 3-HP in a liquid medium into a calcium salt or a lithium salt and crystallizing the neutralized salt.
  • a recombinant vector pREP1-CaMCR-FLAG (12471 bp, FIG. 1) carrying a CaMCR-FLAG expression cassette was prepared.
  • the pREP1-CaMCR-FLAG vector was prepared as a DNA fragment consisting of the base sequence shown in SEQ ID NO: 5 by DNA synthesis.
  • a recombinant vector pREP2-cut6-FLAG (15166 bp, FIG. 2) carrying the cut6-FLAG expression cassette was prepared.
  • the pREP2-cut6-FLAG vector was prepared as a DNA fragment consisting of the base sequence shown in SEQ ID NO: 6 by RT-PCR using RNA extracted from the MGF438 strain as a template.
  • the ARC039 strain and the MGF438 strain were transformed with the pREP1-CaMCR-FLAG vector, respectively.
  • the transformant was streaked on an MM-leu plate (a plate obtained by removing leucine from an MM (minimum medium) plate) and cultured at 30 ° C., and 5 colonies were selected from the obtained colonies, and each MM-leu medium ( A medium obtained by removing leucine from the MM medium was inoculated and cultured at 30 ° C.
  • ARC039 strain and MGF438 strain were transformed with pREP2-cut6-FLAG vector, respectively.
  • the transformant was streaked on an MM-ura plate (a plate obtained by removing uracil from the MM plate) and cultured at 30 ° C., and one of the obtained colonies was selected, and each MM-ura medium (MM medium to uracil) was selected. And was cultured at 30 ° C.
  • a sample buffer for SDS-PAGE was added to the cells recovered from the obtained culture and incubated at 99 ° C. for 3 minutes to prepare a sample for SDS-PAGE.
  • the SDS-PAGE sample was applied to a polyacrylamide gel, and transferred to a PVDF membrane after SDS-PAGE. Immunoblotting was performed on the PVDF membrane to which the protein was transferred using an HRP-labeled anti-FLAG antibody (Anti-DDDDK-tag mAb-HRP-DirecT, manufactured by Institute of Pharmaceutical Biology).
  • FIG. 3 shows the result of immunoblotting of the transformant introduced with the pREP1-CaMCR-FLAG vector
  • FIG. 4 shows the result of immunoblotting of the transformant introduced with the pREP2-cut6-FLAG vector.
  • Example 1 S.
  • the MSP0080 strain (genotype: h - leu1-32 ura4-D18) in which the psp3 gene, isp6 gene, ppp53 gene, ppp16 gene, ppp22 gene, sxa2 gene, ppp80 gene, and ppp20 gene have been deleted by the Latour method psp3-D13 isp6-D14 oma1-D10 ppp16-D20 fma2-D13 sxa2-D15 aap1-D17 ppp80-D11) and the gene encoding CaMCR
  • 3-HP using a transformant incorporating the pombe-derived cut6 gene, the effects of glucose concentration and acetic acid concentration in the liquid medium used for cultivation on 3-HP production were examined.
  • a recombinant vector 1-hsp9p-CaMCR-LPIt (11052 bp, FIG. 5, SEQ ID NO: 7) in which a gene encoding CaMCR is incorporated between the hsp9 promoter and the LPI terminator and between the hsp9 promoter and the LPI terminator S.
  • a recombinant vector 2-hsp9p-cut6-LPIt (13749 bp, FIG. 6, SEQ ID NO: 8) in which the pombe-derived cut6 gene was incorporated was prepared by DNA synthesis.
  • the MSP0080 strain was transformed with the 1-hsp9p-CaMCR-LPIT vector and the 2-hsp9p-cut6-LPIT vector, and transformants into which both vectors were introduced were selected.
  • the transformant was designated as an MCR / ACC-1 expression strain.
  • a recombinant vector pREP1-CaMCR (12431 bp, FIG. 7, SEQ ID NO: 9) in which a gene encoding CaMCR is incorporated between the nmt1 promoter and the nmt1 terminator, and a cut6 gene is incorporated between the nmt1 promoter and the nmt1 terminator.
  • Recombinant vector pREP2-de6 (15114 bp, FIG.
  • a strain in which the ade7 gene of the MSP0080 strain was disrupted to impart adenine requirement was transformed with the pREP1-CaMCR vector and the pREP2-cut6 vector, and transformants into which all of the two vectors had been introduced were selected.
  • the transformant was designated as an MCR / ACC-2 expression strain.
  • the MCR / ACC-2 expression strain was transformed with the pREPAde-ACS2 vector, and a transformant into which the vector was introduced was selected.
  • the transformant was designated as an MCR / ACC / ACS2 expression strain.
  • the MCR / ACC-2 expression strain was transformed with the pREPAde-acs1 vector, and a transformant into which the vector was introduced was selected.
  • the transformant was designated as an MCR / ACC / acs1 expression strain.
  • MCR / ACC-1 expression strain and MCR / ACC / ACS2 expression strain were cultured using a liquid medium having various concentrations of glucose and acetic acid, and the amount of 3-HP produced was measured and compared.
  • the 3-HP concentration (mM) of the culture solution after completion of the culture was measured under the following HPLC conditions.
  • MM-leu-ura-adeneine medium a medium obtained by removing leucine, uracil and adenine from the MM medium
  • Tables 1 and 2 show the measurement results of 3-HP concentration (mM) of each fermentation broth.
  • 3-HP production was higher when the concentration of acetic acid in the liquid medium inoculating the cells was 20 mM than when 0 mM, but the concentration of acetic acid was higher. When too much, 3-HP production was inhibited.
  • the acetic acid concentration is 20 mM
  • the amount of 3-HP produced increases depending on the glucose concentration.
  • the MCR / ACC-1 expression strain when the acetic acid concentration is 20 mM and the glucose concentration is 15%, 0.033 mM of 3-HP was produced.
  • the MSP0080 strain contains a gene encoding CaMCR and S. cerevisiae.
  • a transformant into which the pombe-derived cut6 gene was introduced a gene encoding CaMCR;
  • the amount of 3-HP produced by the transformants into which the pombe-derived cut6 gene and the gene encoding ACS2 from Saccharomyces cerevisiae were introduced was compared.
  • the 3-CR production amount of the MCR / ACC-2 expression strain was 15.9 mM
  • the 3-HP production amount of the MCR / ACC / ACS2 expression strain was 27.9 mM
  • the MCR / ACC-2 expression strain The 3-HP production was improved 1.75 times in the MCR / ACC / ACS2 expression strain. From these results, it was found that the amount of 3-HP produced when fermented in the presence of acetic acid can be increased by overexpressing ACS2.
  • the 3-CR production amount of the MCR / ACC-2 expression strain was 18.7 mM
  • the 3-HP production amount of the MCR / ACC / acs1 expression strain was 29.3 mM
  • the MCR / ACC-2 expression strain The 3-HP production was improved 1.56 times in the MCR / ACC / acs1-expressing strain. From these results, it was found that the amount of 3-HP produced when fermenting in the presence of acetic acid can be increased by overexpressing acs1. It should be noted that the entire content of the specification, claims, abstract and drawings of Japanese Patent Application No. 2014-238629 filed on November 26, 2014 is cited here as the disclosure of the specification of the present invention. Incorporated.

Abstract

 Provided are: a method for producing 3-HP at high productivity without requiring neutralization by an alkali, using an S. pombe transformant; and an S. pombe transformant suitable for use in said method. This method for producing 3-hydroxy propionic acid is characterized by using a Schizosaccharomyces pombe as a host, culturing a transformant having an exogenous malonyl CoA reductase gene and an exogenous acetyl CoA carboxylase gene in a liquid culture medium containing acetic acid or acetate and having a total concentration thereof of 10-50mM, to obtain 3-hydroxy propionic acid from said liquid culture medium.

Description

3-ヒドロキシプロピオン酸の製造方法、および形質転換体Method for producing 3-hydroxypropionic acid, and transformant
 本発明は、シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe、以下、「S.ポンベ」ということがある。)を宿主とし、外来遺伝子を組込んだ形質転換体を用いて、3-ヒドロキシプロピオン酸(3-HP)を製造する方法に関する。 The present invention uses 3-hydroxypropionic acid (3) by using a transformant incorporating a foreign gene using Schizosaccharomyces pombe (hereinafter sometimes referred to as “S. pombe”) as a host. -To a method for producing HP).
 3-HPは、アクリル酸エステルなど様々な化学製品の原料として非常に有用な化合物である。3-HPは、微生物による発酵工程を経て製造できる。たとえば、マロニルCoAレダクターゼ(以下、MCRともいう。)をコードする遺伝子(以下、MCR遺伝子ともいう。)を導入した微生物では、マロニルCoAから3-HPが産生される。また、グリセロールデヒドラターゼ、アルデヒドデヒドロゲナーゼ等をコードする遺伝子を導入した微生物では、グリセリンから3-ヒドロキシプロピオンアルデヒド(3-HPA)を介して3-HPが産生される。 3-HP is a very useful compound as a raw material for various chemical products such as acrylic esters. 3-HP can be produced through a fermentation process with microorganisms. For example, in a microorganism into which a gene encoding malonyl CoA reductase (hereinafter also referred to as MCR) (hereinafter also referred to as MCR gene) is introduced, 3-HP is produced from malonyl CoA. In addition, in a microorganism into which a gene encoding glycerol dehydratase, aldehyde dehydrogenase or the like has been introduced, 3-HP is produced from glycerin via 3-hydroxypropionaldehyde (3-HPA).
 微生物に3-HPを産生させた場合、産生された3-HPにより、培養培地が酸性となる。該微生物の耐酸性が低い場合には、培養培地のpH低下に伴い微生物自体の生育が抑制される結果、3-HPの産生量も低下してしまうため、一般的には、培養培地のpHを中和しながら培養する必要がある。しかし、中和した場合には、3-HPは塩として回収されるため、3-HPに変換するための工程が必要になる。そこで、中和を必要とせずに3-HP生産が可能になることから、3-HPを産生させる微生物としては、耐酸性の高いものが好ましい。たとえば、特許文献1には、耐酸性の高いS.ポンベに、外来のMCR遺伝子と外来のアセチルCoAカルボキシラーゼ(以下、ACCともいう。)をコードする遺伝子(以下、ACC遺伝子ともいう。)を導入した形質転換体を、中和をせずに培養することにより、3-HPが産生されたことが記載されている。 When 3-HP is produced by a microorganism, the culture medium becomes acidic due to the produced 3-HP. When the acid resistance of the microorganism is low, the growth of the microorganism itself is suppressed as the pH of the culture medium decreases, and as a result, the production amount of 3-HP also decreases. It is necessary to culture while neutralizing. However, when neutralized, since 3-HP is recovered as a salt, a step for converting to 3-HP is required. Thus, since 3-HP production is possible without the need for neutralization, microorganisms that produce 3-HP are preferably those with high acid resistance. For example, Patent Document 1 discloses S.A. A transformant having a gene encoding a foreign MCR gene and a foreign acetyl-CoA carboxylase (hereinafter also referred to as ACC) (hereinafter also referred to as ACC gene) introduced into pombe is cultured without neutralization. Thus, it was described that 3-HP was produced.
 一方で、酵母などの真核細胞微生物を用いた異種タンパク質生産系においては、目的の異種蛋白質の生産効率を向上させるべく、異種タンパク質生産に不要または有害な宿主のゲノム部分の一部または全部を削除または不活性化した改良宿主を用いることが知られている。たとえば、特許文献2には、S.ポンベにおいて、特定のプロテアーゼをコードする遺伝子から選ばれる少なくとも1種の遺伝子を削除または不活性化した改良宿主を用いることにより、異種タンパク質の生産効率を向上させられることが記載されている。 On the other hand, in a heterologous protein production system using eukaryotic microorganisms such as yeast, in order to improve the production efficiency of the desired heterologous protein, part or all of the genome part of the host that is unnecessary or harmful to heterologous protein production is removed. It is known to use improved hosts that have been deleted or inactivated. For example, Patent Document 2 discloses S.I. In Pombe, it is described that the production efficiency of heterologous proteins can be improved by using an improved host in which at least one gene selected from genes encoding a specific protease is deleted or inactivated.
国際公開第2013/137277号International Publication No. 2013/137277 国際公開第2007/015470号International Publication No. 2007/015470
 本発明では、S.ポンベの形質転換体を用いて、アルカリによる中和を必要とせずに高い生産性で3-HPを産生する方法、および該方法に好適なS.ポンベの形質転換体を提供することを目的とする。 In the present invention, S.M. A method for producing 3-HP with high productivity without the need for neutralization with alkali using a Pombe transformant, and S. cerevisiae suitable for the method. An object is to provide a transformant of pombe.
 本発明に係る3-HPの製造方法は、S.ポンベを宿主とし、外来のMCR遺伝子および外来のACC遺伝子を有している形質転換体を、酢酸または酢酸塩を含みそれらの合計の濃度が10~50mMである液体培地中で培養し、該液体培地から3-ヒドロキシプロピオン酸を取得することを特徴とする。
 本発明に係る3-HPの製造方法においては、前記形質転換体がさらに外来のアセチルCoAシンセターゼ(以下、ACSともいう。)をコードする遺伝子(以下、ACS遺伝子ともいう。)を有していることが好ましい。
 本発明に係る3-HPの製造方法においては、前記形質転換体が、前記宿主が本来有するプロテアーゼをコードする遺伝子の少なくとも1種が削除または不活性化されている形質転換体であることが好ましい。前記削除または不活性化されているプロテアーゼをコードする遺伝子は、メタロプロテアーゼをコードする遺伝子、セリンプロテアーゼをコードする遺伝子、システインプロテアーゼをコードする遺伝子およびアスパラギン酸プロテアーゼをコードする遺伝子からなる群から選ばれる遺伝子であることがより好ましく、psp3遺伝子、isp6遺伝子、ppp53遺伝子、ppp16遺伝子、ppp22遺伝子、sxa2遺伝子、ppp80遺伝子およびppp20遺伝子からなる群から選ばれる遺伝子であることがさらに好ましい。
 また、本発明に係る3-HPの製造方法においては、前記外来遺伝子が染色体に組み込まれていることが好ましく、前記外来遺伝子がプラスミドに組み込まれていることも好ましい。
 また、本発明に係る3-HPの製造方法においては、前記液体培地が、グルコースまたはスクロースを含み、それらの合計の濃度が1~50質量%であることが好ましい。
 また、本発明に係る3-HPの製造方法においては、培養により前記液体培地のpHが低下して3.5以下になった後にさらに培養を継続することが好ましく、前記液体培地中の3-ヒドロキシプロピオン酸を中和することなく培養を継続することも好ましい。
The method for producing 3-HP according to the present invention is described in A transformant having an exogenous MCR gene and an exogenous ACC gene using Pombe as a host is cultured in a liquid medium containing acetic acid or acetate and the total concentration thereof being 10 to 50 mM. It is characterized in that 3-hydroxypropionic acid is obtained from the medium.
In the method for producing 3-HP according to the present invention, the transformant further has a gene (hereinafter also referred to as ACS gene) encoding a foreign acetyl-CoA synthetase (hereinafter also referred to as ACS). It is preferable.
In the method for producing 3-HP according to the present invention, the transformant is preferably a transformant from which at least one gene encoding a protease inherent in the host has been deleted or inactivated. . The gene encoding the deleted or inactivated protease is selected from the group consisting of a gene encoding a metalloprotease, a gene encoding a serine protease, a gene encoding a cysteine protease, and a gene encoding an aspartic protease. More preferred is a gene, and more preferred is a gene selected from the group consisting of psp3 gene, isp6 gene, ppp53 gene, ppp16 gene, ppp22 gene, sxa2 gene, ppp80 gene and ppp20 gene.
In the method for producing 3-HP according to the present invention, the foreign gene is preferably incorporated into a chromosome, and the foreign gene is preferably incorporated into a plasmid.
In the method for producing 3-HP according to the present invention, the liquid medium preferably contains glucose or sucrose, and the total concentration thereof is 1 to 50% by mass.
In the method for producing 3-HP according to the present invention, it is preferable that the culture is further continued after the pH of the liquid medium is lowered to 3.5 or less due to the culture. It is also preferable to continue the culture without neutralizing the hydroxypropionic acid.
 本発明に係る形質転換体は、S.ポンベを宿主とし、外来のMCR遺伝子および外来のACC遺伝子を有し、かつ前記宿主が本来有するプロテアーゼをコードする遺伝子少なくとも1種が削除または不活性化されていることを特徴とする。
 本発明に係る形質転換体としては、さらに外来のACS遺伝子を有することが好ましい。
 本発明に係る形質転換体としては、前記削除または不活性化されているプロテアーゼをコードする遺伝子が、メタロプロテアーゼをコードする遺伝子、セリンプロテアーゼをコードする遺伝子、システインプロテアーゼをコードする遺伝子およびアスパラギン酸プロテアーゼをコードする遺伝子からなる群から選ばれる遺伝子であることが好ましく、psp3遺伝子、isp6遺伝子、ppp53遺伝子、ppp16遺伝子、ppp22遺伝子、sxa2遺伝子、ppp80遺伝子およびppp20遺伝子からなる群から選ばれる遺伝子であることがより好ましい。
 また、本発明に係る形質転換体としては、前記外来遺伝子が染色体またはプラスミドに組み込まれていることが好ましい。
The transformant according to the present invention comprises Pombe is used as a host, it has a foreign MCR gene and a foreign ACC gene, and at least one gene encoding a protease inherent in the host is deleted or inactivated.
The transformant according to the present invention preferably further has a foreign ACS gene.
The transformant according to the present invention includes a gene encoding the deleted or inactivated protease, a gene encoding a metalloprotease, a gene encoding a serine protease, a gene encoding a cysteine protease, and an aspartic protease Preferably, it is a gene selected from the group consisting of genes encoding ps3, isp6 gene, ppp53 gene, ppp16 gene, ppp22 gene, sxa2 gene, ppp80 gene and ppp20 gene. Is more preferable.
In the transformant according to the present invention, the foreign gene is preferably integrated into a chromosome or a plasmid.
 本発明に係る3-HPの製造方法により、中和処理を要することなく、形質転換体を培養することにより、効率よく3-HPを製造できる。
 また、本発明に係る形質転換体を培養することにより、効率よく3-HPを製造できる。
By the method for producing 3-HP according to the present invention, 3-HP can be produced efficiently by culturing the transformant without requiring neutralization treatment.
In addition, 3-HP can be efficiently produced by culturing the transformant according to the present invention.
pREP1-CaMCR-FLAGベクターの構造の模式図である。1 is a schematic diagram of the structure of a pREP1-CaMCR-FLAG vector. pREP2-cut6-FLAGベクターの構造の模式図である。1 is a schematic diagram of the structure of a pREP2-cut6-FLAG vector. FIG. 参考例1において、pREP1-CaMCR-FLAGベクターを導入した形質転換体の抗FLAG抗体を用いたイムノブロットの結果を示した図である。In Reference Example 1, it is a figure showing the results of an immunoblot using an anti-FLAG antibody of a transformant introduced with the pREP1-CaMCR-FLAG vector. 参考例1において、pREP2-cut6-FLAGベクターを導入した形質転換体の抗FLAG抗体を用いたイムノブロットの結果を示した図である。In Reference Example 1, it is a figure showing the results of an immunoblot using an anti-FLAG antibody of a transformant introduced with the pREP2-cut6-FLAG vector. 1-hsp9p-CaMCR-LPItベクターの構造の模式図である。1 is a schematic diagram of the structure of a 1-hsp9p-CaMCR-LPIT vector. FIG. 2-hsp9p-cut6-LPItベクターの構造の模式図である。2 is a schematic diagram of the structure of a 2-hsp9p-cut6-LPIT vector. FIG. pREP1-CaMCRベクターの構造の模式図である。FIG. 3 is a schematic diagram of the structure of the pREP1-CaMCR vector. pREP2-cut6ベクターの構造の模式図である。FIG. 4 is a schematic diagram of the structure of the pREP2-cut6 vector. pREPAde-ACS2ベクターの構造の模式図である。FIG. 4 is a schematic diagram of the structure of the pREPAde-ACS2 vector. pREPAde-acs1ベクターの構造の模式図である。1 is a schematic diagram of the structure of a pREPAde-acs1 vector. FIG.
 本発明に係る3-HPの製造方法は、S.ポンベを宿主とし、外来のMCR遺伝子および外来のACC遺伝子を有している形質転換体を、酢酸または酢酸塩を含有する液体培地中で培養し、該液体培地から3-ヒドロキシプロピオン酸を取得することを特徴とする。MCR遺伝子およびACC遺伝子を有している形質転換体では、アセチルCoAからACCによりマロニルCoAが産生され、このマロニルCoAからMCRにより3-HPが産生される。また、該形質転換体を酢酸存在下で培養することにより、該形質転換体に取り込まれた酢酸により、アセチルCoAの産生量が増大する結果、3-HPの産生量も多くなる。ただし、酢酸量が多すぎる場合には、かえって3-HPの産生が抑制されてしまう。本発明に係る3-HPの製造方法においては、該形質転換体を、酢酸または酢酸塩の合計の濃度が10~50mMである液体培地中で培養することにより、効率よく3-HPを製造できる。 The manufacturing method of 3-HP according to the present invention is S.I. A transformant having a foreign MCR gene and a foreign ACC gene using Pombe as a host is cultured in a liquid medium containing acetic acid or acetate, and 3-hydroxypropionic acid is obtained from the liquid medium. It is characterized by that. In the transformant having the MCR gene and the ACC gene, malonyl CoA is produced from acetyl CoA by ACC, and 3-HP is produced from this malonyl CoA by MCR. In addition, by culturing the transformant in the presence of acetic acid, the amount of acetyl CoA produced by acetic acid incorporated into the transformant increases, resulting in an increase in the amount of 3-HP produced. However, when the amount of acetic acid is too large, the production of 3-HP is suppressed. In the method for producing 3-HP according to the present invention, 3-HP can be produced efficiently by culturing the transformant in a liquid medium having a total concentration of acetic acid or acetate of 10 to 50 mM. .
[形質転換体]
 本発明に係る3-HPの製造方法において培養する形質転換体は、S.ポンベを宿主とし、外来のMCR遺伝子および外来のACC遺伝子を有している形質転換体である。これらの外来遺伝子により、該形質転換体内ではアセチルCoAから3-HPが産生される。
[Transformant]
The transformant cultured in the method for producing 3-HP according to the present invention is S. cerevisiae. It is a transformant having a foreign MCR gene and a foreign ACC gene using Pombe as a host. By these foreign genes, 3-HP is produced from acetyl CoA in the transformant.
 なお、本発明および本願明細書において、外来遺伝子とは、宿主が本来有している構造遺伝子(形質転換前の天然型の宿主の染色体に含まれている構造遺伝子)ではなく、形質転換操作等により導入された構造遺伝子を意味する。宿主が本来有している遺伝子であっても、形質転換操作等により導入された遺伝子は、本発明における外来遺伝子である。
 また、外来遺伝子は染色体に導入してもよく、プラスミドに組み込んで細胞質に導入してもよい。
In the present invention and the present specification, a foreign gene is not a structural gene originally possessed by a host (a structural gene contained in a chromosome of a natural host before transformation), but a transformation operation, etc. Means the structural gene introduced by A gene introduced by a transformation operation or the like is a foreign gene in the present invention even if it is a gene originally possessed by the host.
Further, the foreign gene may be introduced into a chromosome, or may be incorporated into a plasmid and introduced into the cytoplasm.
<S.ポンベ>
 宿主であるS.ポンベは、シゾサッカロミセス属に属する酵母(分裂酵母)であり、他の酵母に比べて特に耐酸性に優れる微生物である。また、S.ポンベは、サッカロミセス・セレビシエ(Saccharomyces cerevisiae)等の他の酵母に比べ、高濃度のグルコース下における3-HPの生産性に優れ、高密度培養(大量の酵母を用いた培養)にも適していることがわかった。そのため、S.ポンベの形質転換体を用いることにより、極めて高い生産性で3-HPを製造できる。
<S. Pombe>
S. host. Pombe is a yeast belonging to the genus Schizosaccharomyces (fission yeast), and is a microorganism particularly excellent in acid resistance compared to other yeasts. S. Pombe is superior to other yeasts such as Saccharomyces cerevisiae to produce 3-HP under a high concentration of glucose, and is also suitable for high-density culture (culture using a large amount of yeast). I understood it. Therefore, S. By using a Pombe transformant, 3-HP can be produced with extremely high productivity.
 なお、S.ポンベの染色体の全塩基配列は、サンガー研究所のデータベース「GeneDB」に「Schizosaccharomyces pombe Gene DB (http://www.genedb.org/genedb/pombe/)」として、収録され、公開されている。本明細書記載のS.ポンベの遺伝子の配列データは前記データベースから遺伝子名や前記系統名で検索して、入手できる。 S. The entire base sequence of the Pombe chromosome is recorded and published as “Schizosaccharomyces pombe Gene DB” (http://www.genedb.org/genedb/pombe/) in the database “GeneDB” of the Sanger Institute. As described in S.A. The sequence data of the pombe gene can be obtained by searching from the database by the gene name or the strain name.
<MCR遺伝子>
 本発明において用いられる形質転換体は、MCR遺伝子を有する。S.ポンベは本来MCR遺伝子を有していない。したがって、S.ポンベ以外の生物由来のMCR遺伝子を遺伝子工学的方法でS.ポンベに導入して形質転換体を得る。該形質転換体に導入されるMCR遺伝子としては、S.ポンベに導入した場合にMCR活性を発揮するタンパク質を発現させ得る構造遺伝子であればよく、いずれの生物種由来のMCR遺伝子であってもよい。また、該形質転換体が有する外来のMCR遺伝子は、1種類であってもよく、2種類以上であってもよい。
<MCR gene>
The transformant used in the present invention has the MCR gene. S. Pombe does not naturally have the MCR gene. Therefore, S. The MCR gene derived from organisms other than Pombe can be obtained by genetic engineering. A transformant is obtained by introducing into pombe. Examples of the MCR gene introduced into the transformant include S. cerevisiae. It may be a structural gene that can express a protein that exhibits MCR activity when introduced into pombe, and may be an MCR gene derived from any species. Moreover, the foreign MCR gene possessed by the transformant may be one type or two or more types.
 外来遺伝子として導入されるMCR遺伝子がコードするMCRとしては、たとえば、クロロフレクサス・オーランティアカス(Chloroflexus aurantiacus)、クロロフレクサス・アグレガンス(Chloroflexus aggregans)、ロセイフレクサス・カステンホルジイ(Roseiflexus castenholzii)、ロセイフレクサス・エスピー(Roseiflexus sp.)、ロセイフレクサスエスピー・ストレインRS-1(Roseiflexussp. Strain RS-1)、エリスロバクター・エスピー(Erythrobacter sp.)、エリスロバクターエスピー・ストレインNAP1(Erythrobactersp. Strain NAP1)、ガンマ・プロテオバクテリウム(gamma proteobacterium)、メタロスファエラ・セデュラ(Metallosphaera sedula)、スルフォロバス・トコダイ(Sulfolobus tokodaii)、スルフォロバス・メタリカス(Sulfolobus metallicus)、スルフォロバス・エスピー(Sulfolobus sp.)、アシディアヌス・ブリーエリイ(Acidianus brierleyi)、アシディアヌス・インフェルノス(Acidianus infernos)、アシディアヌス・アンビバレンス(Acidianus ambivalens)、スティギオロバス・アソリカス(Stygiolobus azoricus)、およびピロロバス・フマリ(Pyrolobus fumarii)に由来のMCR等が挙げられる。また、これらのMCRの改変体であってもよい。MCRの改変体としては、たとえば、これらのMCRのアミノ酸配列の1もしくは数個のアミノ酸が置換、付加、または欠失したアミノ酸配列からなり、かつMCR活性を有するポリペプチドが挙げられる。これらのMCRのアミノ酸配列と80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上の配列同一性を有するアミノ酸配列からなり、かつMCR活性を有するポリペプチドが挙げられる。本発明において用いられる形質転換体が有するMCRとしては、クロロフレクサス・オーランティアカス由来のMCR(CaMCR、配列番号1)が好ましい。 Examples of the MCR encoded by the MCR gene introduced as a foreign gene include, for example, Chloroflexus aurantiacus, Chloroflexus 、 aggregans, Roseiflexus castenholzii, and Roseiflexus.・ SP (Roseiflexus sp.), Roseiflexus SP ・ Strain RS-1 (Roseiflexussp. Strain RS-1), Erythrobacter sp., Erythrobacter strain NAP1 (Erythrobactersp. Strain NAP1), Gamma・ Proteobacterium (gamma proteobacterium), Metallosphaera sedula, Sulfolobus tokodaii, Sulfolobus metallicus, Sulfolobus Suspolobus sp., Acidianus brierleyi, Acidianus infernos, Acidianus ambivalens, Stygiolobus robus, riculobususroro and MCR derived from fumarii). Moreover, the modified body of these MCR may be sufficient. Examples of the MCR variants include polypeptides having an MCR activity consisting of an amino acid sequence in which one or several amino acids of these MCR amino acid sequences are substituted, added, or deleted. A polypeptide comprising an amino acid sequence having an amino acid sequence of 80% or more, preferably 85% or more, more preferably 90% or more, and still more preferably 95% or more, and an MCR activity with these MCR amino acid sequences. It is done. The MCR possessed by the transformant used in the present invention is preferably MCR derived from Chloroflexus aurantiacus (CaMCR, SEQ ID NO: 1).
<ACC遺伝子>
 本発明において用いられる形質転換体は、外来のACC遺伝子を有する。該形質転換体に導入されるACC遺伝子としては、S.ポンベに導入した場合にACC活性を発揮するタンパク質を発現させ得る構造遺伝子であればよく、いずれの生物種由来のACC遺伝子であってもよい。また、該形質転換体が有する外来のACC遺伝子は、1種類であってもよく、2種類以上であってもよい。
<ACC gene>
The transformant used in the present invention has a foreign ACC gene. Examples of the ACC gene introduced into the transformant include S. cerevisiae. It may be a structural gene that can express a protein that exhibits ACC activity when introduced into pombe, and may be an ACC gene derived from any species. Moreover, the number of the foreign ACC gene which this transformant has may be one, and two or more types may be sufficient as it.
 外来遺伝子として導入されるACC遺伝子がコードするACCとしては、たとえば、S.ポンベ、サッカロミセス・セレビシエ、バチラス・セレウス(Bacillus cereus)、バチラス・サブチリス(Bacillus subtilis)、ボス・タウラス(Bos taurus)、ブレビバクテリウム・チオゲニタリス(Brevibacterium thiogenitalis)、ラクトバチラス・プランタラム(Lactobacillus plantarum)、キャンディダ・リポリチカ(Candida lipolytica)、キャンディダ・カテヌラタ(Candida catenulata)、キャンディダ・グロペンギエセリ(Candida gropengiesseri)、キャンディダ・ルゴサ(Candida rugosa)、キャンディダ・ソノレンシス(Candida sonorensis)、キャンディダ・メタノソルボサ(Candida methanosorbosa)、キャンディダ・カルバタ(Candida curvata)、クリベロマイセス・マルキシアヌス(Kluyveromyces marxianus)、クリベロマイセス・サーモトレランス(Kluyveromyces thermotolerans)、イタッツェンキア・オリエンタリス(Ittatchenkia orientalis)、ロドトルラ・グルチニス(Rhodotorula glutinis)、ピキア・ハプロフィラ(Pichia haplophila)、アスペルギルス・クレバタス(Aspergillus clavatus)、アスペルギルス・フミガタス(Aspergillus fumigatus)、アスペルギルス・フラバス(Aspergillus flavus)、アスペルギルス・テレウス(Aspergillus terreus)、アスペルギルス・オリゼ(Aspergillus oryzae)、アスペルギルス・オケラセウス(Aspergillus ochraceus)、アスペルギルス・ニガー(Aspergillus niger)、クリプトスポリディウム・パルバム(Cryptosporidium parvum)、ドロソフィラ・メラノガスター(Drosophila melanogaster)、ホモ・サピエンス(Homo sapiens)、エシュケリキア・コリ(Escherichia coli)、エシュケリキア・ブラッタエ(Escherichia blattae)、ホルデウム・バルガレ(Hordeum vulgare)、マイコバクテリウム・アビウム(Mycobacterium avium)、マイコバクテリウム・フレイ(Mycobacterium phlei)、セタリア・ビリヂス(Setaria viridis)、ソラナム・ツベロサム(Solanum tuberosum)、スピナシア・オレラセア(Spinacia oleracea)、スタフィロコッカス・オーレウス(Staphylococcus aureus)、ストレプトマイセス・コエリカラー(Streptomyces coelicolor)、スルフォロバス・メタリカス、タキフグ・エスピー(Takifugu sp.)、プロピオニバクテリウム・シェラマニ(Propionibacterium shermanii)、シュードモナス・アエルギノサ(Pseudomonas aeruginosa)、シュードモナス・フルオレスセンス(Pseudomonas fluorescens)、シュードモナス・エスピー(Pseudomonas sp.)、クロロフレクサス・オーランティアカス、クロロフレクサス・アグレガンス、メタロスファエラ・セデュラ、ロドスポリジウム・トルロイデス(Rhodosporidium toruloides)、クリプトコッカス・カルバタス(Cryptococcus curvatus)、トリコスポラン・クタネウム(Trichosporon cutaneum)、リポマイセス・スタルケイ(Lipomyces starkeyi)、およびコリネバクテリウム・グルタミカム(Corynebacterium glutamicum)に由来のACC等が挙げられる。また、これらのACCの改変体であってもよい。ACCの改変体としては、たとえば、これらのACCのアミノ酸配列の1もしくは数個のアミノ酸が置換、付加、または欠失したアミノ酸配列からなり、かつACC活性を有するポリペプチドが挙げられる。これらのACCのアミノ酸配列と80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上の配列同一性を有するアミノ酸配列からなり、かつACC活性を有するポリペプチドが挙げられる。本発明において用いられる形質転換体が有するACCとしては、S.ポンベ由来のACC(配列番号2)が好ましい。なお、S.ポンベのACCをコードする遺伝子は、cut6遺伝子である。 Examples of ACC encoded by the ACC gene introduced as a foreign gene include S. Pombe, Saccharomyces cerevisiae, Bacillus cereus, Bacillus subtilis, Bos taurus, Brevibacterium thiogenitalis, Lactobacillus plantarum, plant Lactobacillus Candida lipolytica, Candida catenulata, Candida gropengiesseri, Candida rugosa, Candida sonorensis, Candida sonorensis (Candida andsonorensis) methanosorbosa, Candida curvata, Kluyveromyces marxianus, Kluyveromyces thermotolerans, I Ittchenkia orientalis, Rhodotorula sglutinis, Pichia haplophila, Aspergillus clavatus, Aspergillus フ ラ sperm, sperm Aspergillus terreus, Aspergillus oryzae, Aspergillus ochraceus, Aspergillus niger, Cryptosporidium parvros, gastrodia Homo sapiens, Escherichia coli, Escherichia blattae, hordeum Bardere (Hordeum vulgare), Mycobacterium avium, Mycobacterium phlei, Setaria viridis, Solanum tuberosum, Spinacia olerac (ea) Staphylococcus aureus, Streptomyces coelicolor, Sulfolobus metallicus, Takifugu esp., Propionibacterium shermanae, udomonas ), Pseudomonas fluorescens, Pseudomonas sp., Chloroflexus orientiacus, Chloroflexus agregan , Metallosfaela cedura, Rhodosporidium toruloides, Cryptococcus curvatus, Trichosporon cutaneum, Lipomyces starkeyi, and bacterium C. ACC derived from Moreover, the modified body of these ACC may be sufficient. Examples of the modified ACC include a polypeptide having an ACC activity, which is composed of an amino acid sequence in which one or several amino acids of these ACC amino acid sequences are substituted, added, or deleted. A polypeptide comprising an amino acid sequence having an amino acid sequence of 80% or more, preferably 85% or more, more preferably 90% or more, and still more preferably 95% or more, and an ACC activity with these ACC amino acid sequences. It is done. Examples of ACC possessed by the transformant used in the present invention include S. cerevisiae. Pombe-derived ACC (SEQ ID NO: 2) is preferred. S. The gene encoding Pombe ACC is the cut6 gene.
<ACS遺伝子>
 本発明において用いられる形質転換体は、MCR遺伝子とACC遺伝子に加えて、外来のACS遺伝子を有することが好ましい。形質転換体内で充分量のACSが発現していることにより、酢酸から変換されるアセチルCoA量が多くなり、結果として3-HPの生産量も多くなる。
<ACS gene>
The transformant used in the present invention preferably has a foreign ACS gene in addition to the MCR gene and the ACC gene. When a sufficient amount of ACS is expressed in the transformant, the amount of acetyl CoA converted from acetic acid increases, resulting in an increase in the production of 3-HP.
 外来遺伝子として導入されるACS遺伝子がコードするACSとしては、たとえば、S.ポンベ、サッカロミセス・セレビシエに由来のACS等が挙げられる。また、これらのACSの改変体であってもよい。ACSの改変体としては、たとえば、これらのACSのアミノ酸配列の1もしくは数個のアミノ酸が置換、付加、または欠失したアミノ酸配列からなり、かつACS活性を有するポリペプチドが挙げられる。これらのACSのアミノ酸配列と80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上の配列同一性を有するアミノ酸配列からなり、かつACS活性を有するポリペプチドが挙げられる。本発明において用いられる形質転換体が有するACCとしては、サッカロミセス・セレビシエ由来のACS(ACS2、配列番号3)またはS.ポンベ由来のACS(acs1、配列番号4)が好ましい。 Examples of ACS encoded by the ACS gene introduced as a foreign gene include S.I. Examples include ACS derived from Pombe and Saccharomyces cerevisiae. These ACS variants may also be used. ACS variants include, for example, polypeptides having an ACS activity consisting of an amino acid sequence in which one or several amino acids of these ACS amino acid sequences are substituted, added, or deleted. Polypeptides comprising an ACS amino acid sequence and an amino acid sequence having 80% or more, preferably 85% or more, more preferably 90% or more, and still more preferably 95% or more, and have ACS activity. It is done. The ACC possessed by the transformant used in the present invention includes Saccharomyces cerevisiae-derived ACS (ACS2, SEQ ID NO: 3) or S. cerevisiae. Pombe derived ACS (acs1, SEQ ID NO: 4) is preferred.
<プロテアーゼ遺伝子>
 本発明において用いられる形質転換体としては、プロテアーゼをコードする遺伝子(以下、プロテアーゼ遺伝子ともいう。)のうちの少なくとも1種が削除または不活性化されているものが好ましい。形質転換体内においてS.ポンベが本来有する少なくとも1種のプロテアーゼ遺伝子のプロテアーゼ活性が阻害されていることにより、MCRおよびACCの生産効率が向上し、3-HPの生産量がより高まる。本発明において用いられる形質転換体としては、セリンプロテアーゼをコードする遺伝子(以下、セリンプロテアーゼ遺伝子ともいう。)、アミノペプチダーゼをコードする遺伝子(以下、アミノペプチダーゼ遺伝子ともいう。)、カルボキシペプチダーゼをコードする遺伝子(以下、カルボキシペプチダーゼ遺伝子ともいう。)およびジペプチダーゼをコードする遺伝子(以下、ジペプチダーゼ遺伝子ともいう。)からなる群から選ばれる1種以上の遺伝子が削除または不活性化されているものが好ましい。
<Protease gene>
The transformant used in the present invention is preferably a transformant in which at least one of a gene encoding a protease (hereinafter also referred to as a protease gene) is deleted or inactivated. S. By inhibiting the protease activity of at least one protease gene inherent in Pombe, the production efficiency of MCR and ACC is improved, and the production amount of 3-HP is further increased. The transformant used in the present invention encodes a gene encoding serine protease (hereinafter also referred to as serine protease gene), a gene encoding aminopeptidase (hereinafter also referred to as aminopeptidase gene), and carboxypeptidase. A gene in which one or more genes selected from the group consisting of a gene (hereinafter also referred to as carboxypeptidase gene) and a gene encoding dipeptidase (hereinafter also referred to as dipeptidase gene) have been deleted or inactivated. preferable.
 本発明において用いられる形質転換体としては、1種類のプロテアーゼ遺伝子のみが削除等されたものであってもよく、2種類以上のプロテアーゼ遺伝子が削除等されたものであってもよい。なかでも、メタロプロテアーゼ遺伝子、セリンプロテアーゼ遺伝子、システインプロテアーゼ遺伝子およびアスパラギン酸プロテアーゼ遺伝子からなる群から選択される少なくとも1種の遺伝子が削除等された形質転換体が好ましく、メタロプロテアーゼ遺伝子およびセリンプロテアーゼ遺伝子からなる群から選択される少なくとも1種の遺伝子とシステインプロテアーゼ遺伝子およびアスパラギン酸プロテアーゼ遺伝子からなる群から選択される少なくとも1種の遺伝子とが削除等された形質転換体も好ましい。 The transformant used in the present invention may be one in which only one type of protease gene has been deleted, or one in which two or more types of protease genes have been deleted. Among them, a transformant in which at least one gene selected from the group consisting of a metalloprotease gene, a serine protease gene, a cysteine protease gene, and an aspartic protease gene has been deleted is preferable. From the metalloprotease gene and the serine protease gene A transformant from which at least one gene selected from the group consisting of at least one gene selected from the group consisting of a cysteine protease gene and an aspartic protease gene has been deleted is also preferred.
 S.ポンベの該4種のプロテアーゼ遺伝子としては、たとえば以下のものが挙げられる。メタロプロテアーゼ遺伝子:cdb4(SPAC23H4.09)、mas2(SPBC18E5.12c)、pgp1(SPCC1259.10)、ppp20(SPAC4F10.02)、ppp22(SPBC14C8.03)、ppp51(SPAC22G7.01c)、ppp52(SPBC18A7.01)、ppp53(SPAP14E8.04)。セリンプロテアーゼ遺伝子:isp6(SPAC4A8.04)、ppp16(SPBC1711.12)、psp3(SPAC1006.01)、sxa2(SPAC1296.03c)。システインプロテアーゼ遺伝子:ppp80(SPAC19B12.08)、pca1(SPCC1840.04)、cut1(SPCC5E4.04)、gpi8(SPCC11E10.02c)。アスパラギン酸プロテアーゼ遺伝子:sxa1(SPAC26A3.01)、yps1(SPCC1795. 09)、ppp81(SPAC25B8.17)。 S. Examples of the four protease genes of Pombe include the following. Metalloprotease genes: cdb4 (SPAC23H4.09), mas2 (SPBC18E5.12c), pgp1 (SPCC1259.10), ppp20 (SPAC4F10.02), ppp22 (SPBC14C8.03), ppp51 (SPAC22G7.01c), ppp52 (SPBC18A7. 01), ppp53 (SPAP14E8.04). Serine protease genes: isp6 (SPAC4A8.04), ppp16 (SPBC1711.12), psp3 (SPAC1006.01), sxa2 (SPAC1296.03c). Cysteine protease genes: ppp80 (SPAC19B12.08), pca1 (SPCC1840.04), cut1 (SPCC5E4.04), gpi8 (SPCC11E10.02c). Aspartic protease genes: sxa1 (SPAC26A3.01), yps1 (SPCC1795. 09), ppp81 (SPAC25B8.17).
 本発明において用いられる形質転換体において削除等されているメタロプロテアーゼ遺伝子としては、cdb4遺伝子、pgp1遺伝子、ppp20遺伝子、ppp22遺伝子、ppp52遺伝子およびppp53遺伝子からなる群から選ばれる少なくとも1種が好ましく、cdb4遺伝子、ppp22遺伝子およびppp53遺伝子からなる群から選ばれる少なくとも1種がより好ましい。
 本発明において用いられる形質転換体において削除等されているセリンプロテアーゼ遺伝子としては、isp6遺伝子、ppp16遺伝子、psp3遺伝子およびsxa2遺伝子からなる群から選ばれる少なくとも1種が好ましい。
 本発明において用いられる形質転換体において削除等されているシステインプロテアーゼ遺伝子としては、ppp80遺伝子が好ましい。
The metalloprotease gene deleted in the transformant used in the present invention is preferably at least one selected from the group consisting of cdb4 gene, pgp1 gene, ppp20 gene, ppp22 gene, ppp52 gene and ppp53 gene, and cdb4 More preferred is at least one selected from the group consisting of a gene, a ppp22 gene, and a ppp53 gene.
The serine protease gene deleted in the transformant used in the present invention is preferably at least one selected from the group consisting of the isp6 gene, the ppp16 gene, the psp3 gene and the sxa2 gene.
As the cysteine protease gene deleted in the transformant used in the present invention, the ppp80 gene is preferable.
 本発明において用いられる形質転換体としては、cdb4遺伝子、ppp22遺伝子およびppp53遺伝子からなる群から選ばれる少なくとも1種の遺伝子と、isp6遺伝子、ppp16遺伝子、psp3遺伝子およびsxa2遺伝子からなる群から選ばれる少なくとも2種の遺伝子の合計3種以上の遺伝子が削除等されているものが好ましく、ppp53遺伝子およびcdb4遺伝子からなる群から選ばれる少なくとも1種の遺伝子とisp6遺伝子とpsp3遺伝子とを含む合計3種以上の遺伝子が削除等されているものがより好ましい。たとえば、psp3遺伝子、isp6遺伝子、ppp53遺伝子の少なくとも3種の遺伝子が削除等されているものがさらに好ましい。 The transformant used in the present invention is at least one gene selected from the group consisting of cdb4 gene, ppp22 gene and ppp53 gene, and at least selected from the group consisting of isp6 gene, ppp16 gene, psp3 gene and sxa2 gene. Those in which 3 or more genes in total of 2 types of genes are deleted are preferable, and a total of 3 or more types including at least one gene selected from the group consisting of ppp53 gene and cdb4 gene, isp6 gene and psp3 gene Those in which the gene is deleted are more preferred. For example, those in which at least three genes of psp3 gene, isp6 gene and ppp53 gene are deleted are more preferable.
 本発明において用いられる形質転換体としては、さらに、ppp53遺伝子、isp6遺伝子、psp3遺伝子およびppp16遺伝子を含む4種以上の遺伝子が削除等されているものが好ましく、ppp53遺伝子、isp6遺伝子、psp3遺伝子、ppp16遺伝子およびppp22遺伝子を含む5種以上の遺伝子が削除等されているものがより好ましく、ppp53遺伝子、isp6遺伝子、psp3遺伝子、ppp16遺伝子、ppp22遺伝子およびsxa2遺伝子を含む6種以上の遺伝子が削除等されているものがさらに好ましく、psp3遺伝子、isp6遺伝子、ppp53遺伝子、ppp16遺伝子、ppp22遺伝子、sxa2遺伝子、ppp80遺伝子およびppp20遺伝子が削除等されているものがよりさらに好ましい。 The transformant used in the present invention is preferably one in which four or more genes including the ppp53 gene, isp6 gene, psp3 gene and ppp16 gene are deleted, and the ppp53 gene, isp6 gene, psp3 gene, More preferably, 5 or more types of genes including the ppp16 gene and the ppp22 gene are deleted, and 6 or more types of genes including the ppp53 gene, isp6 gene, psp3 gene, ppp16 gene, ppp22 gene and sxa2 gene are deleted. More preferably, the psp3 gene, the isp6 gene, the ppp53 gene, the ppp16 gene, the ppp22 gene, the sxa2 gene, the ppp80 gene and the ppp20 gene are deleted. Preferred.
<形質転換体の製造>
 本発明に係る形質転換体は、宿主となるS.ポンベに、MCR遺伝子とACC遺伝子(必要に応じて、ACS遺伝子)を遺伝子工学的方法で導入することにより製造できる。複数の外来遺伝子を導入する場合、全てを同時に宿主に導入してもよく、順次(順不同)導入してもよい。酵母を宿主として用いた遺伝子組換え法に関しては、異種タンパク質をより安定に効率よく発現させるために種々の発現システム、特に発現ベクター、分泌シグナル遺伝子導入発現ベクター等が開発されており、本発明に係る形質転換体の製造においては、これらを広く応用可能である。例えば、S.ポンベを宿主とした発現システムとしては、特許2776085号公報、特開平07-163373号公報、特開平10-215867号公報、特開平10-215867号公報、特開平11-192094号公報、特開11-192094号公報、特開2000-262284号公報、国際公開第96/023890号等が知られており、本発明に係る形質転換体を製造する方法には広くこれら発現システムが利用できる。
<Manufacture of transformant>
The transformant according to the present invention is a host strain of S. cerevisiae. It can be produced by introducing an MCR gene and an ACC gene (if necessary, an ACS gene) into a pombe by a genetic engineering method. When a plurality of foreign genes are introduced, all of them may be introduced simultaneously into the host or sequentially (in any order). Regarding gene recombination methods using yeast as a host, various expression systems, particularly expression vectors, secretion signal gene-introduced expression vectors, and the like have been developed in order to more stably and efficiently express heterologous proteins. These can be widely applied in the production of such transformants. For example, S.M. Examples of expression systems using pombe as a host include Japanese Patent No. 2776085, Japanese Patent Application Laid-Open No. 07-163373, Japanese Patent Application Laid-Open No. 10-215867, Japanese Patent Application Laid-Open No. 10-215867, Japanese Patent Application Laid-Open No. -192094, JP-A-2000-262284, WO 96/023890, etc. are known, and these expression systems can be widely used in the method for producing the transformant according to the present invention.
 宿主とするS.ポンベは、野生型であってもよく、用途に応じて特定の遺伝子を欠失または失活させた変異型であってもよい。特定の遺伝子を欠失または失活させる方法としては、公知の方法を用いられる。具体的には、Latour法(Nucreic Acids Res誌、2006年、34巻、e11頁、国際公開第2007/063919号に記載)を用いることにより遺伝子を欠失させられる。また、変異剤を用いた突然変異分離法(酵母分子遺伝学実験法、1996年、学会出版センター)や、PCRを利用したランダム変異法(PCR Methods Application誌、第2巻、28-33ページ、1992年)等により遺伝子の一部に変異を導入することにより該遺伝子を失活させられる。また、特定の遺伝子の削除または不活性化を行う部分はORF(オープンリーディングフレーム)部分であってもよく、発現調節配列部分であってもよい。特に好ましい方法は、構造遺伝子のORF部分をマーカー遺伝子に置換するPCR媒介相同組換え法(Yeast誌、第14巻、943-951ページ、1998年)による削除または不活性化の方法である。 S. host The pombe may be a wild type or a mutant type in which a specific gene is deleted or inactivated depending on the use. As a method for deleting or inactivating a specific gene, a known method can be used. Specifically, the gene can be deleted by using the Latour method (described in Nucleic Acids Res, 2006, 34, e11, International Publication No. 2007/063919). In addition, mutation isolation methods using mutants (Yeast Molecular Genetics Experimental Method, 1996, Society Press Center) and random mutation methods using PCR (PCR Methods Application, Vol. 2, pages 28-33, 1992) etc., the gene can be inactivated by introducing a mutation into a part of the gene. In addition, the part where a specific gene is deleted or inactivated may be an ORF (open reading frame) part or an expression regulatory sequence part. A particularly preferred method is a method of deletion or inactivation by PCR-mediated homologous recombination method (Yeast, Vol. 14, pages 943-951, 1998) in which the ORF portion of the structural gene is replaced with a marker gene.
 特定遺伝子を欠失または失活させたシゾサッカロミセス属酵母宿主としては、たとえば、国際公開第2002/101038号、国際公開第2007/015470号、国際公開第2013/137277号等に記載されている。本発明において用いられる宿主としては、S.ポンベが本来有する少なくとも1種のプロテアーゼ遺伝子が削除または不活性化されているものが好ましく、セリンプロテアーゼ遺伝子、アミノペプチダーゼ遺伝子、カルボキシペプチダーゼ遺伝子およびジペプチダーゼ遺伝子からなる群から選ばれる少なくとも1種の遺伝子が削除または不活性化されているものがより好ましく、メタロプロテアーゼ遺伝子、セリンプロテアーゼ遺伝子、システインプロテアーゼ遺伝子およびアスパラギン酸プロテアーゼ遺伝子からなる群から選ばれる少なくとも1種の遺伝子が削除または不活性化されているものがさらに好ましく、psp3遺伝子、isp6遺伝子、ppp53遺伝子、ppp16遺伝子、ppp22遺伝子、sxa2遺伝子、ppp80遺伝子およびppp20遺伝子からなる群から選ばれる少なくとも1種の遺伝子が削除または不活性化されているものがよりさらに好ましい。 Examples of yeast hosts of the genus Schizosaccharomyces from which a specific gene has been deleted or inactivated are described in, for example, International Publication No. 2002/101038, International Publication No. 2007/015470, International Publication No. 2013/137277, etc. . Examples of the host used in the present invention include S. cerevisiae. Preferably, at least one protease gene originally possessed by Pombe is deleted or inactivated, and at least one gene selected from the group consisting of a serine protease gene, an aminopeptidase gene, a carboxypeptidase gene, and a dipeptidase gene is present. More preferably deleted or inactivated, wherein at least one gene selected from the group consisting of metalloprotease gene, serine protease gene, cysteine protease gene and aspartic protease gene is deleted or inactivated Is more preferable, from the group consisting of psp3 gene, isp6 gene, ppp53 gene, ppp16 gene, ppp22 gene, sxa2 gene, ppp80 gene and ppp20 gene Which at least one gene has been deleted or inactivated barrel more preferably more.
 さらに宿主として使用するS.ポンベには、形質転換体を選択するためのマーカーを有するものを用いることが好ましい。たとえば、ある遺伝子が欠落していることにより特定の栄養成分が生育に必須である宿主を使用することが好ましい。目的遺伝子配列を含むベクターにより形質転換をして形質転換体を作製する場合、ベクターにこの欠落している遺伝子(栄養要求性相補マーカー)を組み込んでおくことにより、形質転換体では宿主の栄養要求性が消失する。宿主と形質転換体の栄養要求性の相違により、両者を区別して形質転換体を得られる。 Furthermore, S. is used as a host. It is preferable to use a pombe having a marker for selecting a transformant. For example, it is preferable to use a host in which a specific nutritional component is essential for growth because a certain gene is missing. When a transformant is produced by transforming with a vector containing the target gene sequence, by incorporating this missing gene (an auxotrophic complementary marker) into the vector, the transformant is required for host nutrition. Sex disappears. Due to the difference in auxotrophy between the host and the transformant, a transformant can be obtained by distinguishing the two.
 たとえば、オロチジンリン酸デカルボキシラーゼをコードする遺伝子(以下、ura4遺伝子ともいう。)が欠失または失活してウラシル要求性となっているS.ポンベを宿主とし、栄養要求性相補マーカーであるura4遺伝子を有するベクターにより形質転換した後、ウラシル要求性が消失したものを選択することにより、ベクターが組み込まれた形質転換体を得られる。宿主において欠落により栄養要求性となる遺伝子は、形質転換体の選択に用いられるものであればura4遺伝子には限定されず、イソプロピルリンゴ酸デヒドロゲナーゼをコードする遺伝子(以下、leu1遺伝子ともいう。)等であってもよい。 For example, a gene encoding orotidine phosphate decarboxylase (hereinafter also referred to as ura4 gene) has been deleted or inactivated and has become uracil-requiring. After transforming with a vector having the ura4 gene, which is an auxotrophic complementary marker, using pombe as a host, a transformant in which the vector is incorporated can be obtained by selecting those that have lost uracil requirement. The gene that becomes auxotrophic due to deletion in the host is not limited to the ura4 gene as long as it is used for selection of transformants, and a gene encoding isopropylmalate dehydrogenase (hereinafter also referred to as leu1 gene). It may be.
<外来遺伝子導入方法>
 各外来遺伝子はS.ポンベの染色体またはプラスミドに導入される。特に、染色体に導入されることが好ましい。染色体に外来遺伝子を導入することにより継代の維持安定性に優れた形質転換体が得られる。また、外来遺伝子は染色体に複数導入することもできる。
<Foreign gene introduction method>
Each foreign gene is S. cerevisiae. It is introduced into the pombe chromosome or plasmid. In particular, it is preferably introduced into the chromosome. By introducing a foreign gene into the chromosome, a transformant having excellent passage stability can be obtained. A plurality of foreign genes can also be introduced into the chromosome.
 遺伝子工学的方法で宿主に外来遺伝子を導入する方法としては、公知の方法を使用できる。外来遺伝子をS.ポンベの染色体に導入する方法としては、外来遺伝子を有する発現カセットと組換え部位とを有するベクターを用い、相同組換え法により導入する方法が好ましい。 As a method of introducing a foreign gene into a host by a genetic engineering method, a known method can be used. The foreign gene is S. cerevisiae. As a method for introduction into the pombe chromosome, a method of introduction by homologous recombination using a vector having an expression cassette having a foreign gene and a recombination site is preferred.
<発現カセット>
 発現カセットとは、目的の蛋白質を発現するために必要なDNAの組み合わせであり、目的の蛋白質をコードする構造遺伝子と宿主内で機能するプロモーターとターミネーターを含む。本発明において用いられる形質転換体の製造において用いられる発現カセットは、外来遺伝子と、S.ポンベ内で機能するプロモーターとS.ポンベ内で機能するターミネーターとを含む。該発現カセットは、5’-非翻訳領域、3’-非翻訳領域のいずれか1つ以上が含まれていてもよい。さらに、前記栄養要求性相補マーカーが含まれていてもよい。1の発現カセットには複数の外来遺伝子が存在していてもよい。1の発現カセット中の外来遺伝子の数は1~8が好ましく、1~5がより好ましい。また、1の発現カセット中に複数の外来遺伝子が含まれている場合、2種類以上の外来遺伝子を含んでいてもよい。具体的には、該形質転換体の製造において、MCR遺伝子およびACC遺伝子は、それぞれ別個の発現カセットにより宿主に導入してもよく、両遺伝子を1の発現カセットにより宿主に導入してもよい。
<Expression cassette>
An expression cassette is a combination of DNAs necessary for expressing a target protein, and includes a structural gene encoding the target protein, a promoter functioning in the host, and a terminator. The expression cassette used in the production of the transformant used in the present invention is a foreign gene, S. cerevisiae or the like. A promoter that functions in Pombe Including a terminator that functions within the pombe. The expression cassette may contain any one or more of 5′-untranslated region and 3′-untranslated region. Furthermore, the auxotrophic complementary marker may be included. Multiple expression genes may be present in one expression cassette. The number of foreign genes in one expression cassette is preferably 1-8, and more preferably 1-5. When a plurality of foreign genes are included in one expression cassette, two or more types of foreign genes may be included. Specifically, in the production of the transformant, the MCR gene and the ACC gene may be introduced into the host by separate expression cassettes, or both genes may be introduced into the host by one expression cassette.
 発現カセットに含めるMCR遺伝子とACC遺伝子(必要に応じて、ACS遺伝子)の遺伝子配列としては、野生型がコードする遺伝子をそのまま用いてもよいが、宿主として用いるS.ポンベ内での発現量を増大させるために、野生型の遺伝子配列を、S.ポンベにおいて使用頻度の高いコドンに改変してもよい。 As the gene sequences of the MCR gene and the ACC gene (ACS gene if necessary) included in the expression cassette, the gene encoded by the wild type may be used as it is. In order to increase the expression level in pombe, the wild type gene sequence was transformed into S. cerevisiae. It may be modified to a codon frequently used in pombe.
 S.ポンベ内で機能するプロモーターとターミネーターは、本発明に係る形質転換体により3-HPが蓄積して酸性になっても(pH6以下になっても)、形質転換体内で機能して外来遺伝子がコードするタンパク質の発現を維持できるものであればよい。S.ポンベ内で機能するプロモーターとしては、S.ポンベが本来有するプロモーター(転写開始活性が高いものが好ましい)やS.ポンベが本来有しないプロモーター(ウイルス由来のプロモーターなど)を使用できる。なお、プロモーターはベクター内に2種以上存在していてもよい。 S. Promoters and terminators that function in the pombe function in the transformant even if 3-HP accumulates by the transformant according to the present invention and become acidic (pH 6 or lower), and the foreign gene is encoded. Any protein can be used as long as it can maintain the expression of the protein. S. Examples of promoters that function in pombe include S. cerevisiae. Pombe's inherent promoter (preferably having high transcription initiation activity) or S. A promoter (eg, a virus-derived promoter) that Pombe does not originally have can be used. Two or more promoters may be present in the vector.
 S.ポンベが本来有するプロモーターとしては、たとえば、アルコールデヒドロゲナーゼ遺伝子プロモーター、チアミンの代謝に関与するnmt1遺伝子プロモーター、グルコースの代謝に関与するフルクトース-1、6-ビスホスファターゼ遺伝子プロモーター、カタボライト抑制に関与するインベルターゼ遺伝子のプロモーター(国際公開第99/23223号パンフレット参照)、熱ショック蛋白質遺伝子プロモーター(国際公開第2007/26617号パンフレット参照、国際公開第2014/030644号)などが挙げられる。
 S.ポンベが本来有しないプロモーターとしては、たとえば、特開平5-15380号公報、特開平7-163373号公報、特開平10-234375号公報に記載されている動物細胞ウイルス由来のプロモーターが挙げられ、hCMVプロモーター、SV40プロモーターが好ましい。
S. Examples of promoters inherent to Pombe include alcohol dehydrogenase gene promoter, nmt1 gene promoter involved in thiamine metabolism, fructose-1, 6-bisphosphatase gene promoter involved in glucose metabolism, and invertase gene involved in catabolite repression. Examples include promoters (see International Publication No. 99/23223 pamphlet), heat shock protein gene promoters (see International Publication No. 2007/26617 pamphlet, International Publication No. 2014/030644), and the like.
S. Examples of promoters that Pombe does not originally include are promoters derived from animal cell viruses described in JP-A-5-15380, JP-A-7-163373, and JP-A-10-234375, and hCMV A promoter, SV40 promoter is preferred.
 S.ポンベ内で機能するターミネーターとしては、S.ポンベが本来有するターミネーターやS.ポンベが本来有しないターミネーターを使用できる。なお、ターミネーターはベクター内に2種以上存在していてもよい。
 ターミネーターとしては、たとえば、特開平5-15380号公報、特開平7-163373号公報、特開平10-234375号公報に記載されているヒト由来のターミネーターが挙げられ、ヒトリポコルチンIのターミネーターが好ましい。
S. As a terminator functioning in the pombe, S. Pombe's inherent terminator and S.P. A terminator that Pombe does not have can be used. Two or more terminators may be present in the vector.
Examples of the terminator include human terminators described in JP-A-5-15380, JP-A-7-163373, and JP-A-10-234375, and human lipocortin I terminator is preferable. .
<ベクター>
 本発明において用いられる形質転換体は、外来遺伝子を含む発現カセットを、染色体中に有するか、または染色体外遺伝子として有する。発現カセットを染色体中に有するとは、宿主細胞の染色体中の1カ所以上に発現カセットが組み込まれていることであり、染色体外遺伝子として有するとは、発現カセットを含むプラスミドを細胞内に有するということである。各発現カセットを含む形質転換体は、各発現カセットを含むベクターを用いて宿主であるS.ポンベを形質転換することにより得られる。
<Vector>
The transformant used in the present invention has an expression cassette containing a foreign gene in the chromosome or as an extrachromosomal gene. Having an expression cassette in the chromosome means that the expression cassette is incorporated at one or more positions in the chromosome of the host cell, and having as an extrachromosomal gene means having a plasmid containing the expression cassette in the cell. That is. A transformant containing each expression cassette is used as a host using a vector containing each expression cassette. It is obtained by transforming pombe.
 該ベクターは、環状DNA構造または線状DNA構造を有するベクターに、該発現カセットを組み込むことにより製造できる。該発現カセットが、宿主の細胞内で染色体外遺伝子として保持される形質転換体を作製する場合には、該ベクターは、宿主細胞内で複製されるための配列、即ち、自律複製配列(Autonomously Replicating Sequence:ARS)を含むプラスミドであることが好ましい。一方で、該発現カセットが、宿主細胞の染色体中に組み込まれた形質転換体を作製する場合には、該ベクターは、線状DNA構造であり、かつARSを有していないものとして、宿主細胞へ導入されることが好ましい。たとえば、該ベクターは、線状DNAからなるベクターであってもよく、宿主への導入時に、線状DNAに切り開くための制限酵素認識配列を備える環状DNA構造のベクターであってもよい。該ベクターがARSを有するプラスミドの場合、ARS部分を削除して線状DNA構造、またはARS部分を開裂させることによりARSの機能を失活させた線状DNA構造とした後、宿主へ導入できる。 The vector can be produced by incorporating the expression cassette into a vector having a circular DNA structure or a linear DNA structure. When the expression cassette produces a transformant that is maintained as an extrachromosomal gene in the host cell, the vector may contain a sequence for replication in the host cell, that is, an autonomously replicating sequence (AutonomouslynomReplicating). Sequence: ARS) is preferred. On the other hand, when producing a transformant in which the expression cassette is integrated into the host cell chromosome, the vector is assumed to have a linear DNA structure and no ARS. It is preferable to be introduced into. For example, the vector may be a vector composed of linear DNA, or a vector having a circular DNA structure provided with a restriction enzyme recognition sequence for cleavage into linear DNA upon introduction into a host. When the vector is a plasmid having ARS, it can be introduced into the host after forming a linear DNA structure by deleting the ARS part or a linear DNA structure in which the function of ARS is inactivated by cleaving the ARS part.
 該ベクターは、形質転換体を選択するためのマーカーを有することが好ましい。該マーカーとしては、たとえば、ura4遺伝子、leu1遺伝子が挙げられる。 The vector preferably has a marker for selecting a transformant. Examples of the marker include ura4 gene and leu1 gene.
 該ベクターをS.ポンベの染色体に導入する場合、該ベクターの組換え部位は、S.ポンベの染色体における相同組換えの標的部位に対して相同組換えを行わせることのできる塩基配列を有する部位である。また、標的部位は、S.ポンベの染色体内で発現カセットを組み込む標的となる部位である。標的部位は、ベクターの組換え部位を該標的部位に対して相同組換えを行わせる塩基配列とすることにより自由に設定できる。
 前記組換え部位の塩基配列と標的部位の塩基配列との相同性は70%以上とすることが必要である。また、組換え部位の塩基配列と標的部位の塩基配列との相同性は、相同組換えが起きやすくなる点から、90%以上とすることが好ましく、95%以上であることがより好ましい。該組換え部位を有するベクターを用いることにより、発現カセットが相同組換えにより標的部位に組み込まれる。
 組換え部位の長さ(塩基数)は、20~2000bpであることが好ましい。組換え部位の長さが20bp以上であれば、相同組換えが起きやすくなる。また、組換え部位の長さが2000bp以下であれば、ベクターが長くなりすぎて相同組換えが起き難くなることを防ぎやすい。組換え部位の長さは100bp以上であることがより好ましく、200bp以上であることがさらに好ましい。また、組換え部位の長さは800bp以下であることがより好ましく、400bp以下であることがさらに好ましい。
The vector is S. cerevisiae. When introduced into the chromosome of Pombe, the recombination site of the vector is S. This is a site having a base sequence that allows homologous recombination to be performed on a target site for homologous recombination in the pombe chromosome. The target site is S. pneumoniae. This is a target site for integrating the expression cassette in the pombe chromosome. The target site can be freely set by setting the recombination site of the vector to a base sequence that allows homologous recombination to be performed on the target site.
The homology between the base sequence of the recombination site and the base sequence of the target site needs to be 70% or more. Further, the homology between the base sequence of the recombination site and the base sequence of the target site is preferably 90% or more, and more preferably 95% or more from the viewpoint that homologous recombination is likely to occur. By using a vector having the recombination site, the expression cassette is incorporated into the target site by homologous recombination.
The length (number of bases) of the recombination site is preferably 20 to 2000 bp. If the length of the recombination site is 20 bp or more, homologous recombination is likely to occur. Moreover, if the length of the recombination site is 2000 bp or less, it is easy to prevent the vector from becoming too long and causing homologous recombination to hardly occur. The length of the recombination site is more preferably 100 bp or more, and further preferably 200 bp or more. Further, the length of the recombination site is more preferably 800 bp or less, and further preferably 400 bp or less.
 ベクターは、前記発現カセットと組換え部位以外に他のDNA領域を有していてもよい。たとえば、大腸菌内での複製のために必要な「ori」と呼ばれる複製開始領域や抗生物質耐性遺伝子(ネオマイシン耐性遺伝子等)が挙げられる。これらは大腸菌を使用してベクターを構築する場合に通常必要とされる遺伝子である。ただし、前記複製開始領域は後述のようにベクターを宿主の染色体に組み込む際には除去されることが好ましい。 The vector may have other DNA regions in addition to the expression cassette and the recombination site. For example, a replication initiation region called “ori” necessary for replication in E. coli and an antibiotic resistance gene (neomycin resistance gene, etc.) can be mentioned. These are genes usually required when constructing a vector using Escherichia coli. However, the replication initiation region is preferably removed when the vector is integrated into the host chromosome as described later.
 染色体に外来遺伝子を組み込む場合、ベクターは、S.ポンベの細胞に導入する際には線状DNA構造で導入することが好ましい。すなわち、通常用いられるプラスミドDNA等の環状DNA構造を有するベクターである場合には、制限酵素でベクターを線状に切り開いた後にS.ポンベの細胞に導入することが好ましい。
 この場合、環状DNA構造を有するベクターを切り開く位置は、組換え部位内とする。これにより、切り開かれたベクターの両端にそれぞれ組換え部位が部分的に存在することとなり、相同組換えによりベクター全体が染色体の標的部位に組み込まれる。
 ベクターは、両端それぞれに組換え部位の一部が存在するような線状DNA構造とすることができれば、環状DNA構造を有するベクターを切り開く方法以外の方法で構築してもよい。
When integrating a foreign gene into a chromosome, the vector is S. cerevisiae. When introducing into a pombe cell, it is preferable to introduce it in a linear DNA structure. That is, in the case of a vector having a circular DNA structure such as a commonly used plasmid DNA, S. It is preferable to introduce into pombe cells.
In this case, the position for opening the vector having a circular DNA structure is within the recombination site. As a result, the recombination sites partially exist at both ends of the opened vector, and the entire vector is integrated into the target site of the chromosome by homologous recombination.
The vector may be constructed by a method other than the method of cutting a vector having a circular DNA structure, as long as it can have a linear DNA structure in which a part of the recombination site exists at each end.
 ベクターとしては、たとえば、pBR322、pBR325、pUC118、pUC119、pUC18、pUC19等の大腸菌由来のプラスミドを好適に用いられる。
 この場合、相同組換えに用いる際のプラスミドベクターは、大腸菌内での複製のために必要な「ori」と呼ばれる複製開始領域が除去されていることが好ましい。これにより、上述したベクターを染色体に組み込む際に、その組み込み効率を向上させられる。
 複製開始領域が除去されたベクターの構築方法は特に限定されないが、特開2000-262284号公報に記載されている方法を用いることが好ましい。すなわち、組換え部位内の切断箇所に複製開始領域が挿入された前駆体ベクターを構築しておき、前述のように線状DNA構造とすると同時に複製開始領域が切り出されるようにする方法が好ましい。これにより、簡便に複製開始領域が除去されたベクターを得られる。
 また、特開平5-15380号公報、特開平7-163373号公報、国際公開第96/23890号パンフレット、特開平10-234375号公報等に記載された発現ベクターやその構築方法を適用して、発現カセットおよび組換え部位を有する前駆体ベクターを構築し、さらに通常の遺伝子工学的手法で該前駆体ベクターから複製開始領域を除去して相同組換えに用いるベクターを得る方法であってもよい。
As the vector, for example, plasmids derived from E. coli such as pBR322, pBR325, pUC118, pUC119, pUC18, and pUC19 are preferably used.
In this case, the plasmid vector used for homologous recombination preferably has a replication initiation region called “ori” that is necessary for replication in E. coli. Thereby, when integrating the vector mentioned above into a chromosome, the integration efficiency can be improved.
The method for constructing the vector from which the replication initiation region has been removed is not particularly limited, but the method described in JP-A-2000-262284 is preferably used. That is, a method is preferred in which a precursor vector in which a replication initiation region is inserted at the cleavage site in the recombination site is constructed so that the replication initiation region is excised at the same time as the linear DNA structure as described above. Thereby, a vector from which the replication initiation region has been easily removed can be obtained.
Further, by applying the expression vector and the construction method thereof described in JP-A-5-15380, JP-A-7-163373, WO96 / 23890, JP-A-10-234375, Alternatively, a method may be used in which a precursor vector having an expression cassette and a recombination site is constructed, and a vector used for homologous recombination is obtained by removing the replication initiation region from the precursor vector by a normal genetic engineering technique.
<標的部位>
 ベクターを組み込む標的部位は、S.ポンベの染色体中の1箇所のみに存在していてもよく、2箇所以上に存在していてもよい。標的部位が2箇所以上存在している場合、S.ポンベの染色体の2箇所以上に該ベクターを組み込める。また、1の発現カセット中の外来遺伝子を複数とした場合には、標的部位の1箇所に複数の外来遺伝子を組み込める。さらに、2種以上の標的部位に、それぞれの標的部位に対応する組換え部位を有する2種以上のベクターを用いて、発現カセットを組み込むこともできる。該方法で、S.ポンベの染色体に複数の外来遺伝子を組み込むことができ、これにより外来遺伝子がコードするMRCまたはACCの発現量を増大させ、3-HPの生産性を向上できる。たとえば、MRC遺伝子を含む発現カセットを第1の標的部位を有するベクターに組み込み、ACC遺伝子を含む発現カセットを第2の標的部位を有するベクターに組み込み、該ベクターをS.ポンベを宿主として形質転換することにより、本発明に係る形質転換体が得られる。
<Target site>
Target sites that incorporate the vector are S. cerevisiae. It may be present only at one location in the pombe chromosome, or may be present at two or more locations. When two or more target sites exist, S.P. The vector can be integrated at two or more positions on the pombe chromosome. When a plurality of foreign genes are included in one expression cassette, a plurality of foreign genes can be incorporated into one target site. Furthermore, an expression cassette can be incorporated into two or more target sites using two or more vectors having recombination sites corresponding to the respective target sites. In this manner, S. A plurality of foreign genes can be incorporated into the pombe chromosome, thereby increasing the expression level of MRC or ACC encoded by the foreign gene and improving 3-HP productivity. For example, an expression cassette containing an MRC gene is incorporated into a vector having a first target site, an expression cassette containing an ACC gene is incorporated into a vector having a second target site, The transformant according to the present invention can be obtained by transforming pombe as a host.
 1箇所の標的部位に発現カセットを組み込む場合、たとえば特開2000-262284号公報に記載の方法記載の標的部位を使用できる。異なる組込み部位を有する2種以上のベクターを用いて、異なる標的部位にそれぞれベクターを組み込める。しかし、染色体の2箇所以上にベクターを組み込む場合、該方法は煩雑である。 When incorporating an expression cassette into one target site, for example, the target site described in the method described in JP-A No. 2000-262284 can be used. Two or more vectors having different integration sites can be used to integrate the vectors into different target sites. However, this method is complicated when the vector is integrated at two or more sites on the chromosome.
 染色体中に複数箇所存在する互いに実質的に同一の塩基配列部分を標的部位として、この複数箇所の標的部位にそれぞれベクターを組み込められれば、1種類のベクターを使用して染色体の2箇所以上にベクターを組み込める。互いに実質的に同一の塩基配列とは、塩基配列の相同性が90%以上であることを意味する。標的部位同士の相同性は95%以上であることが好ましい。また、互いに実質的に同一である塩基配列の長さは、前記ベクターの組換え部位を包含する長さであり、1000bp以上であることが好ましい。1箇所の標的部位に複数の外来遺伝子が組み込まれている場合に比較して、外来遺伝子の組み込み数が同一であっても、複数存在する標的部位に外来遺伝子が分散して組み込まれている場合には、形質転換体が増殖する際に外来遺伝子が染色体から1度に脱落することが少なくなり、形質転換体の継代における維持安定性が向上する。 If the base sequence parts that are substantially identical to each other in a plurality of locations in a chromosome can be used as target sites and the vectors can be incorporated into the target sites in these multiple locations, a vector can be used in two or more locations on the chromosome using one type of vector. Can be incorporated. Base sequences that are substantially identical to each other means that the homology of the base sequences is 90% or more. The homology between the target sites is preferably 95% or more. In addition, the length of the base sequences that are substantially identical to each other is a length that includes the recombination site of the vector, and is preferably 1000 bp or more. Compared to the case where multiple foreign genes are incorporated into one target site, even if the number of foreign genes incorporated is the same, the foreign genes are dispersed and incorporated into multiple target sites In this case, when the transformant grows, the foreign gene is less likely to drop off from the chromosome at a time, and the maintenance stability in the passage of the transformant is improved.
 染色体中に複数箇所存在する標的部位としては、トランスポゾン遺伝子Tf2が好ましい。Tf2は、S.ポンベの3本(一倍体)の染色体それぞれに合計13箇所存在するトランスポゾン遺伝子であり、長さ(塩基数)は約4900bpであり、それらの遺伝子間における塩基配列相同性は99.7%であることが知られている(下記文献参照)。
 Nathan J. Bowen et al, “Retrotransposons and Their Recognition of pol II Promoters: A Comprehensive Survey of the Transposable Elements From the Complete Genome Sequence of Schizosaccharomyces pombe”, Genome Res. 2003 13: 1984-1997
A transposon gene Tf2 is preferable as a target site present in a plurality of locations in a chromosome. Tf2 is the S.T. There are a total of 13 transposon genes in each of the three pombe (haploid) chromosomes, the length (number of bases) is about 4900 bp, and the base sequence homology between these genes is 99.7%. It is known (see the following literature).
Nathan J. Bowen et al, “Retrotransposons and Their Recognition of pol II Promoters: A Comprehensive Survey of the Transposable Elements From the Complete Genome Sequence of Schizosaccharomyces pombe”, Genome Res. 2003 13: 1984-1997
 染色体に13箇所存在するTf2の1箇所のみにベクターを組み込められる。この場合、2個以上の外来遺伝子を有するベクターを組み込むことにより、2個以上の外来遺伝子を有する形質転換体を得られる。また、Tf2の2箇所以上にベクターを組み込むことにより、2個以上の外来遺伝子を有する形質転換体を得られる。この場合、2個以上の外来遺伝子を有するベクターを組み込むことにより、さらに多くの外来遺伝子を有する形質転換体を得られる。Tf2の13箇所すべてにベクターが組み込まれると、形質転換体の生存や増殖に対する負荷が大きくなりすぎるおそれがある。好ましくは、13箇所のTf2の8箇所以下にベクターが組み込まれることが好ましく、5箇所以下にベクターが組み込まれることがより好ましい。 A vector can be incorporated into only one location of Tf2 present in 13 locations on a chromosome. In this case, a transformant having two or more foreign genes can be obtained by incorporating a vector having two or more foreign genes. In addition, a transformant having two or more foreign genes can be obtained by incorporating a vector into two or more locations of Tf2. In this case, a transformant having more foreign genes can be obtained by incorporating a vector having two or more foreign genes. If the vector is incorporated at all 13 positions of Tf2, the burden on the survival and growth of the transformant may be too great. Preferably, the vector is preferably incorporated at 8 sites or less of 13 Tf2, and more preferably at 5 sites or less.
<形質転換方法>
 形質転換方法は、公知の形質転換方法がいずれも用いられる。該形質転換方法としては、たとえば、酢酸リチウム法、エレクトロポレーション法、スフェロプラスト法、ガラスビーズ法など従来周知の方法や、特開2005-198612号公報記載の方法が挙げられる。また、市販の酵母形質転換用キットを用いてもよい。
<Transformation method>
Any known transformation method may be used as the transformation method. Examples of the transformation method include conventionally known methods such as lithium acetate method, electroporation method, spheroplast method, glass bead method, and the method described in JP-A-2005-198612. A commercially available yeast transformation kit may also be used.
 形質転換体の製造では、通常、相同組換えを行った後、得られた形質転換体を選択する。選択する方法としては、たとえば、以下に示す方法が挙げられる。前記栄養要求性マーカーにより形質転換体を選択できる培地によりスクリーニングし、得られたコロニーから複数を選択する。次に、それらを別々に液体培養した後、それぞれの液体培地における異種蛋白質の発現量を調べ、該異種蛋白質の発現量がより多い形質転換体を選択する。それら選択した形質転換体に対してパルスフィールドゲル電気泳動法によるゲノム解析を行うことにより、染色体に組み込まれたベクターの数や発現カセットの数を調べられる。
 染色体に組み込まれるベクターの数は組み込み条件などを調整することによりある程度は調整できる。ベクターの大きさ(塩基数)や構造により、組み込み効率や組み込み数も変化すると考えられる。
In the production of a transformant, the obtained transformant is usually selected after homologous recombination. Examples of the selection method include the following methods. Screening is performed with a medium capable of selecting transformants using the auxotrophic marker, and a plurality of colonies obtained are selected. Next, after they are separately liquid cultured, the expression level of the heterologous protein in each liquid medium is examined, and a transformant with a higher expression level of the heterologous protein is selected. By performing genome analysis by pulse field gel electrophoresis on the selected transformants, the number of vectors integrated into the chromosome and the number of expression cassettes can be examined.
The number of vectors integrated into the chromosome can be adjusted to some extent by adjusting the integration conditions. Depending on the size (number of bases) and structure of the vector, the integration efficiency and the number of integrations may change.
[3-HPの製造]
 本発明に係る3-HPの製造方法において、該形質転換体を植菌する液体培地の酢酸または酢酸塩の濃度は、酢酸等が無添加の液体培地で培養した場合よりも3-HPの生産量が高くなるような濃度であればよく、培養する形質転換体の遺伝子型および該液体培地のその他の組成、特にグルコースまたはスクロースの濃度等を考慮して適宜決定できる。該液体培地の酢酸または酢酸塩の濃度としては、10~50mMであることが好ましく、10~40mMであることがより好ましく、20~30mMであることがさらに好ましい。
[3-HP production]
In the method for producing 3-HP according to the present invention, the concentration of acetic acid or acetate in the liquid medium inoculating the transformant is higher than that in the case of culturing in a liquid medium to which acetic acid or the like is not added. The concentration may be any as long as the amount is high, and can be appropriately determined in consideration of the genotype of the transformant to be cultured and the other composition of the liquid medium, particularly the concentration of glucose or sucrose. The concentration of acetic acid or acetate in the liquid medium is preferably 10 to 50 mM, more preferably 10 to 40 mM, and further preferably 20 to 30 mM.
 3-HPの製造に用いる液体培地としては、糖を含有する公知の酵母培養培地を酢酸または酢酸塩の濃度が所定の範囲内になるように調整したものを用いられる。該液体培地としては、さらにS.ポンベが資化しうる窒素源、無機塩類等を含有し、S.ポンベの培養を効率良く行えるものが好ましい。該液体培地としては、天然培地を用いてもよく、合成培地を用いてもよい。 As the liquid medium used for the production of 3-HP, a known yeast culture medium containing sugar is used so that the concentration of acetic acid or acetate is within a predetermined range. Examples of the liquid medium include S.I. Contains a nitrogen source, inorganic salts, etc. that can be utilized by Pombe; Those capable of efficiently cultivating the pombe are preferred. As the liquid medium, a natural medium or a synthetic medium may be used.
 炭素源である糖としては、たとえば、グルコース、フルクトース、スクロース、マルトース等の糖が挙げられる。窒素源としては、たとえば、アンモニア、塩化アンモニウム、酢酸アンモニウム等の無機酸または無機酸のアンモニウム塩、ペプトン、カザミノ酸、イーストエキス等が挙げられる。無機塩類としては、たとえば、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム等が挙げられる。さらには、プロテオリピド等の発酵促進因子などを含ませられる。 Examples of the sugar that is a carbon source include sugars such as glucose, fructose, sucrose, and maltose. Examples of the nitrogen source include inorganic acids such as ammonia, ammonium chloride, and ammonium acetate, or ammonium salts of inorganic acids, peptone, casamino acid, yeast extract, and the like. Examples of inorganic salts include magnesium phosphate, magnesium sulfate, sodium chloride and the like. Furthermore, a fermentation promoting factor such as proteolipid can be included.
 本発明に係る3-HPの製造方法では、糖として特にグルコースまたはスクロースを含有する液体培地を用いることが好ましい。培養初期の液体培地(100質量%)中のグルコースまたはスクロースの濃度は1質量%以上が好ましく、1~50質量%がより好ましく、2~16質量%がさらに好ましい。培養によりグルコース濃度が低下することより、必要によりグルコースを添加して培養を継続することが好ましい。培養終期のグルコース濃度は1質量%以下となってもよい。また、3-HPを分離しながら液体培地を循環させて連続的に培養を行う場合には、前記グルコース濃度を維持することが好ましい。グルコース濃度を2質量%以上とすることにより、3-HPの生産性がより向上する。また、液体培地中のグルコースを16質量%以下とすることにより、3-HPの生産効率がより向上する。 In the method for producing 3-HP according to the present invention, it is preferable to use a liquid medium containing glucose or sucrose as sugar. The concentration of glucose or sucrose in the liquid medium (100% by mass) at the initial stage of culture is preferably 1% by mass or more, more preferably 1 to 50% by mass, and further preferably 2 to 16% by mass. It is preferable to continue the culture by adding glucose as necessary, because the glucose concentration is lowered by the culture. The glucose concentration at the end of the culture may be 1% by mass or less. In addition, when continuously culturing by circulating a liquid medium while separating 3-HP, it is preferable to maintain the glucose concentration. By making the glucose concentration 2% by mass or more, the productivity of 3-HP is further improved. In addition, the production efficiency of 3-HP is further improved by setting the glucose in the liquid medium to 16% by mass or less.
 また、3-HP製造の生産性を高くするために、高密度培養を行うことが好ましい。高密度培養では、液体培地中の形質転換体の初発菌体濃度を乾燥菌体重量換算値で表して0.1~5g/Lとすることが好ましい。液体培地中の形質転換体の初発菌体濃度を乾燥菌体重量換算値で表して0.2~2g/Lとすることがより好ましい。初発菌体濃度を高くすることにより短時間で高い生産性を達成できる。また、初発菌体濃度があまりに高すぎると菌体の凝集および精製効率の低下等の問題が生じるおそれがある。 Moreover, in order to increase the productivity of 3-HP production, it is preferable to perform high-density culture. In high-density culture, the initial bacterial cell concentration of the transformant in the liquid medium is preferably 0.1 to 5 g / L in terms of dry cell weight. More preferably, the initial cell concentration of the transformant in the liquid medium is 0.2 to 2 g / L in terms of dry cell weight. High productivity can be achieved in a short time by increasing the initial cell concentration. In addition, if the initial bacterial cell concentration is too high, problems such as bacterial cell aggregation and a reduction in purification efficiency may occur.
 なお、後述の実施例等で示す菌体濃度は、日本分光社製可視紫外分光器V550によって測定した波長600nmの光の吸光度(OD600)値である。 Incidentally, cell concentration indicated in the Examples etc. described later, the absorbance of light (OD 600) values of wavelength 600nm was measured by JASCO Corporation Ltd. visible ultraviolet spectrometer V550.
 培養には公知の酵母培養方法を用いることができ、たとえば振とう培養、攪拌培養等により行える。
 また、培養温度は、23~37℃であることが好ましい。また、培養時間は適宜決定できる。
 また、培養は、回分培養であってもよく、連続培養であってもよい。たとえば、回分培養で培養を行った後、菌体を液体培地から分離して、3-HPを含む液体培地を取得できる。また、連続培養法では、たとえば、培養中の培養槽から液体培地の一部を抜き出し、抜き出した液体培地から3-HPを分離するとともに、培養上清を回収し、該培養上清にグルコースおよび新たな液体培地等を加えて培養槽に戻すことを繰り返して、連続的に培養する方法が挙げられる。連続培養を行うことにより、3-HPの生産性がより向上する。
A known yeast culture method can be used for the culture, for example, shaking culture, stirring culture, or the like.
The culture temperature is preferably 23 to 37 ° C. Further, the culture time can be determined as appropriate.
Further, the culture may be batch culture or continuous culture. For example, after culturing in batch culture, the cells can be separated from the liquid medium to obtain a liquid medium containing 3-HP. In the continuous culture method, for example, a part of the liquid medium is extracted from the culture tank being cultured, and 3-HP is separated from the extracted liquid medium, and the culture supernatant is recovered, and glucose and A method of continuously culturing by repeatedly adding a new liquid medium or the like and returning it to the culture tank can be mentioned. By performing continuous culture, the productivity of 3-HP is further improved.
 本発明に係る3-HPの製造方法では、耐酸性に特に優れたS.ポンベの形質転換体を用いているため、3-HPの蓄積により低pH(pH2~4程度)となっても中和を行わずに3-HPを生産できる。そのため、液体培地のpHが3.5以下になった後も、さらに培養を継続する連続培養により3-HPを製造できる。培養終期のpHおよび連続培養におけるpHは、3.5以下が好ましく、特に2.3~3.5が好ましい。3-HPの生産性を高くするために、液体培地のpHが3.5以下になった後にさらに培養を継続することが好ましい。本発明において用いられる形質転換体は耐酸性が優れているため、該形質転換体により産生された液体培地中の3-HPを中和することなく培養を継続できる。 In the method for producing 3-HP according to the present invention, S.I. Since the Pombe transformant is used, 3-HP can be produced without neutralization even if the pH is lowered due to the accumulation of 3-HP (pH of about 2 to 4). Therefore, even after the pH of the liquid medium becomes 3.5 or less, 3-HP can be produced by continuous culture that continues the culture. The pH at the end of culture and the pH in continuous culture are preferably 3.5 or less, and particularly preferably 2.3 to 3.5. In order to increase the productivity of 3-HP, it is preferable to continue the cultivation after the pH of the liquid medium becomes 3.5 or lower. Since the transformant used in the present invention has excellent acid resistance, the culture can be continued without neutralizing 3-HP in the liquid medium produced by the transformant.
 液体培地からの3-HPの取得は、公知の方法を用いられる。特に、液体培地中の3-HPを中和することなく、液体培地と3-HPを分離して、3-HPを取得することが好ましい。たとえば、培養終了後の液体培地から遠心分離により菌体を分離し、pH1以下にした後にジエチルエーテルや酢酸エチル等により抽出する方法、イオン交換樹脂に吸着させて洗浄した後に溶出させる方法、活性炭を用いて不純物を除去する方法、酸触媒の存在下でアルコールと反応させた後に蒸留する方法、分離膜を用いて分離する方法が挙げられる。また、場合によっては液体培地中の3-HPを中和した後液体培地と3-HP塩を分離して、3-HPを取得することもできる。たとえば、液体培地中の3-HPをカルシウム塩またはリチウム塩に変換し、該中和塩を晶析する方法で3-HPを取得することもできる。 For obtaining 3-HP from the liquid medium, a known method is used. In particular, it is preferable to obtain 3-HP by separating the liquid medium and 3-HP without neutralizing 3-HP in the liquid medium. For example, by separating the bacterial cells from the liquid medium after completion of the culture by centrifugation, extracting with diethyl ether or ethyl acetate after adjusting the pH to 1 or less, a method of leaching after adsorbing to an ion exchange resin and washing, activated carbon And a method of removing impurities using, a method of distilling after reacting with an alcohol in the presence of an acid catalyst, and a method of separating using a separation membrane. In some cases, 3-HP can be obtained by neutralizing 3-HP in the liquid medium and then separating the liquid medium and the 3-HP salt. For example, 3-HP can be obtained by converting 3-HP in a liquid medium into a calcium salt or a lithium salt and crystallizing the neutralized salt.
 以下、実施例および比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。また、本実施例においては特に断りのない限り「%」は「質量%」を意味する。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited by the following description. In this example, “%” means “% by mass” unless otherwise specified.
[参考例1]
 野生型のS.ポンベARC039株(遺伝子型:h leu1-32 ura4-C190T)と、S.ポンベのうち、psp3遺伝子、isp6遺伝子、ppp53遺伝子、ppp16遺伝子、ppp22遺伝子、sxa2遺伝子、ppp80遺伝子、およびppp20遺伝子が削除されているMGF433株(遺伝子型:h leu1-32 ura4-D18 psp3::ura4(FOA) isp6::ura4(FOA) ppp53::ura4(FOA) ppp16::ura4(FOA) ppp22::ura4(FOA) sxa2::ura4(FOA) ppp80::ura4(FOA) ppp20::ura4)(特許文献2参照)をFOA処理してウラシル要求性にしたMGF438株(遺伝子型:h leu1-32 ura4-D18 psp3::ura4(FOA) isp6::ura4(FOA) ppp53::ura4(FOA) ppp16::ura4(FOA) ppp22::ura4(FOA) sxa2::ura4(FOA) ppp80::ura4(FOA) ppp20::ura4(FOA))に、CaMCR-FLAG(CaMCRのC末端にFLAGタグを付加したもの)の発現カセットまたはcut6-FLAG(S.ポンベ由来のACC(cut6)のC末端にFLAGタグを付加したもの)の発現カセットを導入し、発現を比較した。
[Reference Example 1]
Wild type S. cerevisiae Pombe ARC039 strain (genotype: h - leu1-32 ura4-C190T) Among pombe, the MGF433 strain in which the psp3 gene, isp6 gene, ppp53 gene, ppp16 gene, ppp22 gene, sxa2 gene, ppp80 gene and ppp20 gene have been deleted (genotype: h - leu1-32 ura4-D18 psp3 :: ura4 (FOA) isp6 :: ura4 (FOA) ppp53 :: ura4 (FOA) ppp16 :: ura4 (FOA) ppp22 :: ura4 (FOA) sxa2 :: ura4 (FOA) ppp80 :: ura4 (p20: p20: p4 ) (see Patent Document 2) the FOA treated MGF438 strain was uracil auxotrophy and (genotype: h - leu1-32 ura4-D18 psp3 :: ura4 (FOA) isp6 :: ura4 (FOA) ppp 3 :: ura4 (FOA) ppp16 :: ura4 (FOA) ppp22 :: ura4 (FOA) sxa2 :: ura4 (FOA) ppp80 :: ura4 (FOA) ppp20 :: ura4 (FOA)), CaMCR-FLAGCa The expression cassette of FLAG tag added to the C terminus of) or the expression cassette of cut6-FLAG (the FLAG tag added to the C terminus of S. pombe-derived ACC (cut 6)) was compared for expression. .
 まず、CaMCR-FLAG発現カセットを保持する組換えベクターpREP1-CaMCR-FLAG(12471bp、図1)を作製した。pREP1-CaMCR-FLAGベクターは、DNA合成により、配列番号5に示す塩基配列からなるDNA断片として作製した。
 同様にして、cut6-FLAG発現カセットを保持する組換えベクターpREP2-cut6-FLAG(15166bp、図2)を作製した。pREP2-cut6-FLAGベクターは、MGF438株から抽出したRNAを鋳型としたRT-PCRにより、配列番号6に示す塩基配列からなるDNA断片として作製した。
First, a recombinant vector pREP1-CaMCR-FLAG (12471 bp, FIG. 1) carrying a CaMCR-FLAG expression cassette was prepared. The pREP1-CaMCR-FLAG vector was prepared as a DNA fragment consisting of the base sequence shown in SEQ ID NO: 5 by DNA synthesis.
Similarly, a recombinant vector pREP2-cut6-FLAG (15166 bp, FIG. 2) carrying the cut6-FLAG expression cassette was prepared. The pREP2-cut6-FLAG vector was prepared as a DNA fragment consisting of the base sequence shown in SEQ ID NO: 6 by RT-PCR using RNA extracted from the MGF438 strain as a template.
 次いで、ARC039株およびMGF438株を、それぞれ、pREP1-CaMCR-FLAGベクターで形質転換した。形質転換物をMM-leuプレート(MM(最小培地)プレートからロイシンを除いたプレート)にストリークして30℃にて培養し、得られたコロニーから5個を選択し、それぞれMM-leu培地(MM培地からロイシンを除いた培地)に植え継ぎ、30℃にて培養した。
 また、ARC039株およびMGF438株を、それぞれ、pREP2-cut6-FLAGベクターで形質転換した。形質転換物をMM-uraプレート(MMプレートからウラシルを除いたプレート)にストリークして30℃にて培養し、得られたコロニーから1個を選択し、それぞれMM-ura培地(MM培地からウラシルを除いた培地)に植え継ぎ、30℃にて培養した。得られた培養物から回収された菌体にSDS-PAGE用サンプルバッファーを添加し、99℃で3分間インキュベートし、SDS-PAGE用サンプルを調製した。該SDS-PAGE用サンプルをポリアクリルアミドゲルにアプライし、SDS-PAGE後にPVDF膜へ転写した。タンパク質を転写したPVDF膜に対して、HRP標識抗FLAG抗体((株)医薬生物学研究所製、Anti-DDDDK-tag mAb-HRP-DirecT)を用い、イムノブロットを行った。
Subsequently, the ARC039 strain and the MGF438 strain were transformed with the pREP1-CaMCR-FLAG vector, respectively. The transformant was streaked on an MM-leu plate (a plate obtained by removing leucine from an MM (minimum medium) plate) and cultured at 30 ° C., and 5 colonies were selected from the obtained colonies, and each MM-leu medium ( A medium obtained by removing leucine from the MM medium was inoculated and cultured at 30 ° C.
In addition, ARC039 strain and MGF438 strain were transformed with pREP2-cut6-FLAG vector, respectively. The transformant was streaked on an MM-ura plate (a plate obtained by removing uracil from the MM plate) and cultured at 30 ° C., and one of the obtained colonies was selected, and each MM-ura medium (MM medium to uracil) was selected. And was cultured at 30 ° C. A sample buffer for SDS-PAGE was added to the cells recovered from the obtained culture and incubated at 99 ° C. for 3 minutes to prepare a sample for SDS-PAGE. The SDS-PAGE sample was applied to a polyacrylamide gel, and transferred to a PVDF membrane after SDS-PAGE. Immunoblotting was performed on the PVDF membrane to which the protein was transferred using an HRP-labeled anti-FLAG antibody (Anti-DDDDK-tag mAb-HRP-DirecT, manufactured by Institute of Pharmaceutical Biology).
 pREP1-CaMCR-FLAGベクターを導入した形質転換体のイムノブロットの結果を図3に、pREP2-cut6-FLAGベクターを導入した形質転換体のイムノブロットの結果を図4に、それぞれ示す。この結果、ARC039株を宿主とした形質転換体では、CaMCR-FLAGとcut6-FLAGのいずれもプロテアーゼにより著しく分解され、多数の分解物が検出されたが、MGF438株を宿主とした形質転換体では、CaMCR-FLAGとcut6-FLAGのいずれも分解が抑制されていた。 FIG. 3 shows the result of immunoblotting of the transformant introduced with the pREP1-CaMCR-FLAG vector, and FIG. 4 shows the result of immunoblotting of the transformant introduced with the pREP2-cut6-FLAG vector. As a result, in the transformant using ARC039 strain as a host, both CaMCR-FLAG and cut6-FLAG were significantly degraded by protease, and a large number of degradation products were detected. However, in the transformant using MGF438 strain as a host, In addition, degradation of both CaMCR-FLAG and cut6-FLAG was suppressed.
[実施例1]
 S.ポンベのうち、psp3遺伝子、isp6遺伝子、ppp53遺伝子、ppp16遺伝子、ppp22遺伝子、sxa2遺伝子、ppp80遺伝子、およびppp20遺伝子がLatour法で削除されているMSP0080株(遺伝子型:h leu1-32 ura4-D18 psp3-D13 isp6-D14 oma1-D10 ppp16-D20 fma2-D13 sxa2-D15 aap1-D17 ppp80-D11)にCaMCRをコードする遺伝子とS.ポンベ由来のcut6遺伝子とを組込んだ形質転換体を用いて3-HPを産生するに当たり、培養に用いる液体培地のグルコース濃度および酢酸濃度の3-HP産生に対する影響を調べた。
[Example 1]
S. Among the pombe, the MSP0080 strain (genotype: h - leu1-32 ura4-D18) in which the psp3 gene, isp6 gene, ppp53 gene, ppp16 gene, ppp22 gene, sxa2 gene, ppp80 gene, and ppp20 gene have been deleted by the Latour method psp3-D13 isp6-D14 oma1-D10 ppp16-D20 fma2-D13 sxa2-D15 aap1-D17 ppp80-D11) and the gene encoding CaMCR In producing 3-HP using a transformant incorporating the pombe-derived cut6 gene, the effects of glucose concentration and acetic acid concentration in the liquid medium used for cultivation on 3-HP production were examined.
<MCR/ACC-1発現株の作製>
 まず、hsp9プロモーターとLPIターミネーターの間にCaMCRをコードする遺伝子が組み込まれている組換えベクター1-hsp9p-CaMCR-LPIt(11052bp、図5、配列番号7)と、hsp9プロモーターとLPIターミネーターの間にS.ポンベ由来のcut6遺伝子が組み込まれている組換えベクター2-hsp9p-cut6-LPIt(13749bp、図6、配列番号8)とを、DNA合成により作製した。
 次いで、MSP0080株を、1-hsp9p-CaMCR-LPItベクターおよび2-hsp9p-cut6-LPItベクターで形質転換し、両ベクターを導入した形質転換体を選抜した。該形質転換体を、MCR/ACC-1発現株とした。
<Preparation of MCR / ACC-1 expression strain>
First, a recombinant vector 1-hsp9p-CaMCR-LPIt (11052 bp, FIG. 5, SEQ ID NO: 7) in which a gene encoding CaMCR is incorporated between the hsp9 promoter and the LPI terminator and between the hsp9 promoter and the LPI terminator S. A recombinant vector 2-hsp9p-cut6-LPIt (13749 bp, FIG. 6, SEQ ID NO: 8) in which the pombe-derived cut6 gene was incorporated was prepared by DNA synthesis.
Subsequently, the MSP0080 strain was transformed with the 1-hsp9p-CaMCR-LPIT vector and the 2-hsp9p-cut6-LPIT vector, and transformants into which both vectors were introduced were selected. The transformant was designated as an MCR / ACC-1 expression strain.
<MCR/ACC-2発現株およびMCR/ACC/ACS2発現株の作製>
 まず、nmt1プロモーターとnmt1ターミネーターの間にCaMCRをコードする遺伝子が組み込まれている組換えベクターpREP1-CaMCR(12431bp、図7、配列番号9)と、nmt1プロモーターとnmt1ターミネーターの間にcut6遺伝子が組み込まれている組換えベクターpREP2-cut6(15114bp、図8、配列番号10)と、nmt1プロモーターとnmt1ターミネーターの間にサッカロミセス・セレビシエ由来のACS2をコードする遺伝子が組み込まれている組換えベクターpREPAde-ACS2(10970bp、図9、配列番号11)と、nmt1プロモーターとnmt1ターミネーターの間にS・ポンべ由来のacs1をコードする遺伝子が組み込まれている組換えベクターpREPAde-acs1(10907bp、図10、配列番号12)とをDNA合成により作製した。
 次いで、MSP0080株のade7遺伝子を破壊してアデニン要求性を付与した株を、pREP1-CaMCRベクターおよびpREP2-cut6ベクターで形質転換し、2種のベクターが全て導入された形質転換体を選抜した。該形質転換体を、MCR/ACC-2発現株とした。
 次いで、MCR/ACC-2発現株を、pREPAde-ACS2ベクターで形質転換し、該ベクターを導入した形質転換体を選抜した。該形質転換体を、MCR/ACC/ACS2発現株とした。また、MCR/ACC-2発現株を、pREPAde-acs1ベクターで形質転換し、該ベクターを導入した形質転換体を選抜した。該形質転換体を、MCR/ACC/acs1発現株とした。
<Preparation of MCR / ACC-2 expression strain and MCR / ACC / ACS2 expression strain>
First, a recombinant vector pREP1-CaMCR (12431 bp, FIG. 7, SEQ ID NO: 9) in which a gene encoding CaMCR is incorporated between the nmt1 promoter and the nmt1 terminator, and a cut6 gene is incorporated between the nmt1 promoter and the nmt1 terminator. Recombinant vector pREP2-de6 (15114 bp, FIG. 8, SEQ ID NO: 10) and recombinant vector pREPAde-ACS2 in which a gene encoding ACS2 derived from Saccharomyces cerevisiae is incorporated between the nmt1 promoter and the nmt1 terminator (10970 bp, FIG. 9, SEQ ID NO: 11) and a recombinant vector in which a gene encoding acs1 derived from S. pombe is incorporated between the nmt1 promoter and the nmt1 terminator REPAde-acs1 (10907bp, 10, SEQ ID NO: 12) and was produced by DNA synthesis.
Subsequently, a strain in which the ade7 gene of the MSP0080 strain was disrupted to impart adenine requirement was transformed with the pREP1-CaMCR vector and the pREP2-cut6 vector, and transformants into which all of the two vectors had been introduced were selected. The transformant was designated as an MCR / ACC-2 expression strain.
Subsequently, the MCR / ACC-2 expression strain was transformed with the pREPAde-ACS2 vector, and a transformant into which the vector was introduced was selected. The transformant was designated as an MCR / ACC / ACS2 expression strain. Further, the MCR / ACC-2 expression strain was transformed with the pREPAde-acs1 vector, and a transformant into which the vector was introduced was selected. The transformant was designated as an MCR / ACC / acs1 expression strain.
<3-HP産生>
 MCR/ACC-1発現株およびMCR/ACC/ACS2発現株を、グルコースと酢酸の濃度が様々である液体培地を用いて培養し、産生された3-HP量を測定して比較した。
<3-HP production>
MCR / ACC-1 expression strain and MCR / ACC / ACS2 expression strain were cultured using a liquid medium having various concentrations of glucose and acetic acid, and the amount of 3-HP produced was measured and compared.
 具体的には、MCR/ACC-1発現株を、MM-leu-ura培地(MM培地からロイシンとウラシルを除いた培地)に植菌して、温度30℃、振盪速度200rpmの条件下で30時間培養を行った。
 次いで、培養終了後の液体培地から遠心分離処理により菌体を分離し、該菌体を表1に記載のグルコース濃度および酢酸濃度のMM-leu-ura培地に、初発菌体濃度がOD600=0.05)になるように接種し、144時間培養した。培養終了後の培養液の3-HP濃度(mM)を以下に示すHPLC条件で測定した。使用カラム:InertSustain C18 5μm、4.6 I.D.×250 mm
   (GLサイエンス社製)
溶離液:10mM NHPO (pH2.6、リン酸で調製)
注入量:10μl
流量:0.5ml/min
カラム温度:30℃
検出:UV(波長210nm)
Specifically, the MCR / ACC-1 expression strain was inoculated into an MM-leu-ura medium (a medium obtained by removing leucine and uracil from the MM medium), and the temperature was 30 ° C. and the shaking speed was 200 rpm. Time culture was performed.
Subsequently, the cells are separated from the liquid medium after the completion of the culture by centrifugation, and the cells are added to the MM-leu-ura medium having the glucose concentration and the acetic acid concentration shown in Table 1, and the initial cell concentration is OD 600 = 0.05) and cultured for 144 hours. The 3-HP concentration (mM) of the culture solution after completion of the culture was measured under the following HPLC conditions. Column used: Inert Sustain C18 5 μm, 4.6 ID × 250 mm
(Manufactured by GL Sciences)
Eluent: 10 mM NH 4 H 2 PO 4 (pH 2.6, prepared with phosphoric acid)
Injection volume: 10 μl
Flow rate: 0.5ml / min
Column temperature: 30 ° C
Detection: UV (wavelength 210nm)
 同様に、MCR/ACC/ACS2発現株を、MM-leu-ura-adenine培地(MM培地からロイシンとウラシルとアデニンを除いた培地)に植菌して、温度30℃、振盪速度200rpmの条件下で30時間培養を行った。
 次いで、培養終了後の液体培地から遠心分離処理により菌体を分離し、該菌体を表2に記載のグルコース濃度および酢酸濃度のMM-leu-ura-adenine培地に、初発菌体濃度がOD600=0.05)になるように接種したものを発酵液として、144時間発酵させた。発酵終了後の発酵液の3-HP濃度(mM)をHPLCで測定した。
Similarly, the MCR / ACC / ACS2 expression strain was inoculated into an MM-leu-ura-adeneine medium (a medium obtained by removing leucine, uracil and adenine from the MM medium) at a temperature of 30 ° C. and a shaking speed of 200 rpm. For 30 hours.
Subsequently, the cells are separated from the liquid medium after the completion of the culture by centrifugation, and the cells are added to the MM-leu-ura-adeneine medium having the glucose concentration and the acetic acid concentration shown in Table 2, with the initial cell concentration being OD. 600 = 0.05) and fermented for 144 hours. The 3-HP concentration (mM) of the fermentation broth after completion of fermentation was measured by HPLC.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 各発酵液の3-HP濃度(mM)の測定結果を表1および表2に示す。この結果、両株とも、いずれのグルコース濃度においても、菌体を接種する液体培地の酢酸濃度が0mMの場合よりも20mMの場合のほうが、3-HP産生量が多かったが、酢酸濃度が高くなりすぎると、3-HP産生は阻害された。また、酢酸濃度が20mMの場合には、グルコース濃度依存的に3-HPの産生量が多くなっており、特に、MCR/ACC-1発現株では、酢酸濃度20mM、グルコース濃度15%において、43.033mMもの3-HPが産生された。また、MCR/ACC/ACS2発現株では、酢酸濃度30mM、グルコース濃度12%の場合と、酢酸濃度40mM、グルコース濃度6%の場合に、26mM以上の3-HPが産生された。 Tables 1 and 2 show the measurement results of 3-HP concentration (mM) of each fermentation broth. As a result, in both strains, 3-HP production was higher when the concentration of acetic acid in the liquid medium inoculating the cells was 20 mM than when 0 mM, but the concentration of acetic acid was higher. When too much, 3-HP production was inhibited. In addition, when the acetic acid concentration is 20 mM, the amount of 3-HP produced increases depending on the glucose concentration. In particular, in the MCR / ACC-1 expression strain, when the acetic acid concentration is 20 mM and the glucose concentration is 15%, 0.033 mM of 3-HP was produced. In the MCR / ACC / ACS2 expression strain, 3-HP of 26 mM or more was produced when the acetic acid concentration was 30 mM and the glucose concentration was 12%, and when the acetic acid concentration was 40 mM and the glucose concentration was 6%.
[実施例2]
 MSP0080株に、CaMCRをコードする遺伝子とS.ポンベ由来のcut6遺伝子とを導入した形質転換体と、CaMCRをコードする遺伝子とS.ポンベ由来のcut6遺伝子とサッカロミセス・セレビシエ由来のACS2をコードする遺伝子とを導入した形質転換体の3-HP産生量を比較した。
[Example 2]
The MSP0080 strain contains a gene encoding CaMCR and S. cerevisiae. A transformant into which the pombe-derived cut6 gene was introduced; a gene encoding CaMCR; The amount of 3-HP produced by the transformants into which the pombe-derived cut6 gene and the gene encoding ACS2 from Saccharomyces cerevisiae were introduced was compared.
 具体的には、実施例1で製造したMCR/ACC-2発現株を、MM-leu-ura培地に植菌して、温度30℃、振盪速度200rpmの条件下で30時間培養を行った。
 次いで、培養終了後の液体培地から遠心分離処理により菌体を分離し、該菌体をグルコースおよび酢酸を含有するMM-leu-ura培地(グルコース濃度:9%、酢酸濃度:20mM)に、初発菌体濃度が(OD600=0.05)になるように接種したものを発酵液として、144時間発酵させた。発酵終了後の発酵液の3-HP濃度(mM)をHPLCで測定した。
Specifically, the MCR / ACC-2 expression strain produced in Example 1 was inoculated into an MM-leu-ura medium and cultured for 30 hours under conditions of a temperature of 30 ° C. and a shaking speed of 200 rpm.
Subsequently, the cells are separated from the liquid medium after the completion of the culture by centrifugation, and the cells are first introduced into an MM-leu-ura medium (glucose concentration: 9%, acetic acid concentration: 20 mM) containing glucose and acetic acid. Fermentation was carried out for 144 hours using a fermented liquid that was inoculated so that the bacterial cell concentration was (OD 600 = 0.05). The 3-HP concentration (mM) of the fermentation broth after completion of fermentation was measured by HPLC.
 また、実施例1で製造したMCR/ACC/ACS2発現株を、MM-leu-ura-adenine培地に植菌して、温度30℃、振盪速度200rpmの条件下で30時間培養を行った。
 次いで、培養終了後の液体培地から遠心分離処理により菌体を分離し、該菌体をグルコースおよび酢酸を含有するMM-leu-ura-adenine培地(グルコース濃度:9%、酢酸濃度:20mM)に、初発菌体濃度が(OD600=0.05)になるように接種したものを発酵液として、144時間発酵させた。発酵終了後の発酵液の3-HP濃度(mM)をHPLCで測定した。
Further, the MCR / ACC / ACS2 expression strain produced in Example 1 was inoculated into an MM-leu-ura-adeneine medium and cultured for 30 hours under conditions of a temperature of 30 ° C. and a shaking speed of 200 rpm.
Subsequently, the cells are separated from the liquid medium after the culture by centrifugation, and the cells are placed in an MM-leu-ura-adeneine medium (glucose concentration: 9%, acetic acid concentration: 20 mM) containing glucose and acetic acid. The fermented broth was inoculated so that the initial bacterial cell concentration was (OD 6OO = 0.05), and fermented for 144 hours. The 3-HP concentration (mM) of the fermentation broth after completion of fermentation was measured by HPLC.
 この結果、MCR/ACC-2発現株の3-HP生産量は15.9mMであり、MCR/ACC/ACS2発現株の3-HP生産量は27.9mMであり、MCR/ACC-2発現株よりもMCR/ACC/ACS2発現株のほうが、3-HP生産量が1.75倍向上した。これらの結果から、ACS2を過剰発現させることにより、酢酸存在下で発酵させた場合の3-HP生産量を増大させられることがわかった。 As a result, the 3-CR production amount of the MCR / ACC-2 expression strain was 15.9 mM, the 3-HP production amount of the MCR / ACC / ACS2 expression strain was 27.9 mM, and the MCR / ACC-2 expression strain The 3-HP production was improved 1.75 times in the MCR / ACC / ACS2 expression strain. From these results, it was found that the amount of 3-HP produced when fermented in the presence of acetic acid can be increased by overexpressing ACS2.
 また、実施例1で製造したMCR/ACC/acs1発現株を、MM-leu-ura-adenine培地に植菌して、温度30℃、振盪速度200rpmの条件下で30時間培養を行った。
 次いで、培養終了後の液体培地から遠心分離処理により菌体を分離し、該菌体をグルコースおよび酢酸を含有するMM-leu-ura-adenine培地(グルコース濃度:9%、酢酸濃度:20mM)に、初発菌体濃度が(OD600=0.05)になるように接種したものを発酵液として、144時間発酵させた。発酵終了後の発酵液の3-HP濃度(mM)をHPLCで測定した。
In addition, the MCR / ACC / acs1 expression strain produced in Example 1 was inoculated into an MM-leu-ura-adeneine medium and cultured for 30 hours under conditions of a temperature of 30 ° C. and a shaking speed of 200 rpm.
Subsequently, the cells are separated from the liquid medium after the culture by centrifugation, and the cells are placed in an MM-leu-ura-adeneine medium (glucose concentration: 9%, acetic acid concentration: 20 mM) containing glucose and acetic acid. The fermented broth was inoculated so that the initial bacterial cell concentration was (OD 6OO = 0.05), and fermented for 144 hours. The 3-HP concentration (mM) of the fermentation broth after completion of fermentation was measured by HPLC.
 この結果、MCR/ACC-2発現株の3-HP生産量は18.7mMであり、MCR/ACC/acs1発現株の3-HP生産量は29.3mMであり、MCR/ACC-2発現株よりもMCR/ACC/acs1発現株のほうが、3-HP生産量が1.56倍向上した。これらの結果から、acs1を過剰発現させることにより、酢酸存在下で発酵させた場合の3-HP生産量を増大させられることがわかった。
 なお、2014年11月26日に出願された日本特許出願2014-238629号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
As a result, the 3-CR production amount of the MCR / ACC-2 expression strain was 18.7 mM, the 3-HP production amount of the MCR / ACC / acs1 expression strain was 29.3 mM, and the MCR / ACC-2 expression strain The 3-HP production was improved 1.56 times in the MCR / ACC / acs1-expressing strain. From these results, it was found that the amount of 3-HP produced when fermenting in the presence of acetic acid can be increased by overexpressing acs1.
It should be noted that the entire content of the specification, claims, abstract and drawings of Japanese Patent Application No. 2014-238629 filed on November 26, 2014 is cited here as the disclosure of the specification of the present invention. Incorporated.

Claims (15)

  1.  シゾサッカロミセス・ポンベを宿主とし、外来のマロニルCoAレダクターゼをコードする遺伝子および外来のアセチルCoAカルボキシラーゼをコードする遺伝子を有している形質転換体を、酢酸または酢酸塩を含みそれらの合計の濃度が10~50mMである液体培地中で培養し、該液体培地から3-ヒドロキシプロピオン酸を取得することを特徴とする、3-ヒドロキシプロピオン酸の製造方法。 A transformant having a gene encoding exogenous malonyl-CoA reductase and a gene encoding exogenous acetyl-CoA carboxylase as a host, and containing acetic acid or acetate, and the total concentration thereof is Shizosaccharomyces pombe. A method for producing 3-hydroxypropionic acid, comprising culturing in a liquid medium of 10 to 50 mM and obtaining 3-hydroxypropionic acid from the liquid medium.
  2.  前記形質転換体が、さらに外来のアセチルCoAシンセターゼをコードする遺伝子を有している、請求項1に記載の3-ヒドロキシプロピオン酸の製造方法。 The method for producing 3-hydroxypropionic acid according to claim 1, wherein the transformant further has a gene encoding a foreign acetyl-CoA synthetase.
  3.  前記形質転換体が、前記宿主が本来有するプロテアーゼをコードする遺伝子の少なくとも1種が削除または不活性化されている形質転換体である、請求項1または2に記載の3-ヒドロキシプロピオン酸の製造方法。 The production of 3-hydroxypropionic acid according to claim 1 or 2, wherein the transformant is a transformant in which at least one gene encoding a protease inherent in the host has been deleted or inactivated. Method.
  4.  前記削除または不活性化されているプロテアーゼをコードする遺伝子が、メタロプロテアーゼをコードする遺伝子、セリンプロテアーゼをコードする遺伝子、システインプロテアーゼをコードする遺伝子およびアスパラギン酸プロテアーゼをコードする遺伝子からなる群から選ばれる遺伝子である、請求項3に記載の3-ヒドロキシプロピオン酸の製造方法。 The gene encoding the deleted or inactivated protease is selected from the group consisting of a gene encoding a metalloprotease, a gene encoding a serine protease, a gene encoding a cysteine protease, and a gene encoding an aspartic protease. The method for producing 3-hydroxypropionic acid according to claim 3, which is a gene.
  5.  前記削除または不活性化されているプロテアーゼをコードする遺伝子が、psp3遺伝子、isp6遺伝子、ppp53遺伝子、ppp16遺伝子、ppp22遺伝子、sxa2遺伝子、ppp80遺伝子およびppp20遺伝子からなる群から選ばれる遺伝子である、請求項3または4に記載の3-ヒドロキシプロピオン酸の製造方法。 The gene encoding the deleted or inactivated protease is a gene selected from the group consisting of psp3 gene, isp6 gene, ppp53 gene, ppp16 gene, ppp22 gene, sxa2 gene, ppp80 gene and ppp20 gene. Item 5. The method for producing 3-hydroxypropionic acid according to Item 3 or 4.
  6.  前記外来遺伝子が染色体に組み込まれている、請求項1~5のいずれか一項に記載の3-ヒドロキシプロピオン酸の製造方法。 The method for producing 3-hydroxypropionic acid according to any one of claims 1 to 5, wherein the foreign gene is integrated into a chromosome.
  7.  前記外来遺伝子がプラスミドに組み込まれている、請求項1~5のいずれか一項に記載の3-ヒドロキシプロピオン酸の製造方法。 The method for producing 3-hydroxypropionic acid according to any one of claims 1 to 5, wherein the foreign gene is incorporated into a plasmid.
  8.  前記液体培地が、グルコースまたはスクロースを含み、それらの合計の濃度が1~50質量%である、請求項1~7のいずれか一項に記載の3-ヒドロキシプロピオン酸の製造方法。 The method for producing 3-hydroxypropionic acid according to any one of claims 1 to 7, wherein the liquid medium contains glucose or sucrose, and the total concentration thereof is 1 to 50 mass%.
  9.  培養により前記液体培地のpHが低下して3.5以下になった後にもさらに培養を継続する、請求項1~8のいずれか一項に記載の3-ヒドロキシプロピオン酸の製造方法。 The method for producing 3-hydroxypropionic acid according to any one of claims 1 to 8, wherein the culture is further continued even after the pH of the liquid medium is lowered to 3.5 or less due to the culture.
  10.  前記液体培地中の3-ヒドロキシプロピオン酸を中和することなく培養を継続する、請求項1~9のいずれか一項に記載の3-ヒドロキシプロピオン酸の製造方法。 The method for producing 3-hydroxypropionic acid according to any one of claims 1 to 9, wherein the culture is continued without neutralizing 3-hydroxypropionic acid in the liquid medium.
  11.  シゾサッカロミセス・ポンベを宿主とし、外来のマロニルCoAレダクターゼをコードする遺伝子および外来のアセチルCoAカルボキシラーゼをコードする遺伝子を有し、かつ前記宿主が本来有するプロテアーゼをコードする遺伝子の少なくとも1種が削除または不活性化されていることを特徴とする形質転換体。 Schizo Saccharomyces pombe as a host, having a gene encoding a foreign malonyl-CoA reductase and a gene encoding a foreign acetyl-CoA carboxylase, and at least one gene encoding a protease inherent in the host is deleted or A transformant characterized by being inactivated.
  12.  前記形質転換体がさらに外来のアセチルCoAシンセターゼをコードする遺伝子を有する、請求項11に記載の形質転換体。 The transformant according to claim 11, wherein the transformant further has a gene encoding a foreign acetyl-CoA synthetase.
  13.  前記削除または不活性化されているプロテアーゼをコードする遺伝子が、メタロプロテアーゼをコードする遺伝子、セリンプロテアーゼをコードする遺伝子、システインプロテアーゼをコードする遺伝子およびアスパラギン酸プロテアーゼをコードする遺伝子からなる群から選ばれる遺伝子である、請求項11または12に記載の形質転換体。 The gene encoding the deleted or inactivated protease is selected from the group consisting of a gene encoding a metalloprotease, a gene encoding a serine protease, a gene encoding a cysteine protease, and a gene encoding an aspartic protease. The transformant according to claim 11 or 12, which is a gene.
  14.  前記削除または不活性化されているプロテアーゼをコードする遺伝子が、psp3遺伝子、isp6遺伝子、ppp53遺伝子、ppp16遺伝子、ppp22遺伝子、sxa2遺伝子、ppp80遺伝子およびppp20遺伝子からなる群から選ばれる遺伝子である、請求項11~13のいずれか一項に記載の形質転換体。 The gene encoding the deleted or inactivated protease is a gene selected from the group consisting of psp3 gene, isp6 gene, ppp53 gene, ppp16 gene, ppp22 gene, sxa2 gene, ppp80 gene and ppp20 gene. Item 14. The transformant according to any one of Items 11 to 13.
  15.  前記外来遺伝子が染色体またはプラスミドに組み込まれている、請求項11~14のいずれか一項に記載の形質転換体。 The transformant according to any one of claims 11 to 14, wherein the foreign gene is incorporated into a chromosome or a plasmid.
PCT/JP2015/083107 2014-11-26 2015-11-25 Method for producing 3-hydroxy propionic acid, and transformant WO2016084857A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-238629 2014-11-26
JP2014238629A JP2018011511A (en) 2014-11-26 2014-11-26 Method for producing 3-hydroxypropionic acid and transformant

Publications (2)

Publication Number Publication Date
WO2016084857A1 true WO2016084857A1 (en) 2016-06-02
WO2016084857A8 WO2016084857A8 (en) 2016-08-04

Family

ID=56074409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083107 WO2016084857A1 (en) 2014-11-26 2015-11-25 Method for producing 3-hydroxy propionic acid, and transformant

Country Status (2)

Country Link
JP (1) JP2018011511A (en)
WO (1) WO2016084857A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030526A1 (en) * 2016-08-12 2018-02-15 旭硝子株式会社 Transformant and method for producing 3-hydroxypropionic acid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015470A1 (en) * 2005-08-03 2007-02-08 Asahi Glass Company, Limited Yeast host, transformant and method of producing foreign protein
JP2012085635A (en) * 2010-03-23 2012-05-10 Nippon Shokubai Co Ltd Method for producing 3-hydroxypropionic acid
WO2013137277A1 (en) * 2012-03-14 2013-09-19 株式会社日本触媒 Method for producing 3-hydroxypropionic acid, genetically modified microorganism, and methods for producing acrylic acid, water-absorbable resin, acrylic acid ester and acrylic acid ester resin each utilizing said method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015470A1 (en) * 2005-08-03 2007-02-08 Asahi Glass Company, Limited Yeast host, transformant and method of producing foreign protein
JP2012085635A (en) * 2010-03-23 2012-05-10 Nippon Shokubai Co Ltd Method for producing 3-hydroxypropionic acid
WO2013137277A1 (en) * 2012-03-14 2013-09-19 株式会社日本触媒 Method for producing 3-hydroxypropionic acid, genetically modified microorganism, and methods for producing acrylic acid, water-absorbable resin, acrylic acid ester and acrylic acid ester resin each utilizing said method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AKIKO TOYAMA ET AL.: "Bunretsu Kobo Protease Idenshi Taju Hakaikabu ni yoru 3-hydroxypropionic Acid no Koseisan", PROCEEDINGS OF THE 2015 ANNUAL MEETING OF JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, 5 March 2015 (2015-03-05) *
SAITHONG P. ET AL.: "Prevention of bacterial contamination using acetate-tolerant Schizosaccharomyces pombe during bioethanol production from molasses", J. BIOSCI. BIOENG., vol. 108, no. 3, 2009, pages 216 - 9, XP026436941 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030526A1 (en) * 2016-08-12 2018-02-15 旭硝子株式会社 Transformant and method for producing 3-hydroxypropionic acid

Also Published As

Publication number Publication date
WO2016084857A8 (en) 2016-08-04
JP2018011511A (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP5772594B2 (en) Transformant, method for producing the same, and method for producing lactic acid
US10260077B2 (en) Increasing lipid production in oleaginous yeast
EP2128262A1 (en) Improved yeast strains for organic acid production
JP2018157814A (en) Novel strains of Pseudozyma Antarctica
US11214809B2 (en) Vector containing centromere DNA sequence and use thereof
JP6620375B2 (en) Transformant, method for producing the same, and method for producing lactic acid
WO2016084857A1 (en) Method for producing 3-hydroxy propionic acid, and transformant
JP6206408B2 (en) Schizosaccharomyces pombe mutant transformant and cloning vector
US8962277B2 (en) Production cell line
WO2018030526A1 (en) Transformant and method for producing 3-hydroxypropionic acid
KR101773123B1 (en) Genetically engineered yeast cell producing 2,3-butanediol and method of producing 2,3-butanediol using the same
JP2010115112A (en) Method of preparing yeast, the yeast, and method of producing lactic acid
JP2014212732A (en) Ricinoleic acid-producing yeast
US10597662B2 (en) Transformant and process for production thereof, and process for production of lactic acid
JP6620373B2 (en) Transformant, method for producing the same, and method for producing dicarboxylic acid having 4 carbon atoms
JP6515502B2 (en) Method for producing transformant, transformant, and vector kit for single locus integration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15862778

Country of ref document: EP

Kind code of ref document: A1