WO2016084745A1 - Mold, method for manufacturing mold, and antireflective film - Google Patents

Mold, method for manufacturing mold, and antireflective film Download PDF

Info

Publication number
WO2016084745A1
WO2016084745A1 PCT/JP2015/082735 JP2015082735W WO2016084745A1 WO 2016084745 A1 WO2016084745 A1 WO 2016084745A1 JP 2015082735 W JP2015082735 W JP 2015082735W WO 2016084745 A1 WO2016084745 A1 WO 2016084745A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
antireflection film
aluminum alloy
moth
less
Prior art date
Application number
PCT/JP2015/082735
Other languages
French (fr)
Japanese (ja)
Inventor
隆裕 中原
美穂 山田
箕浦 潔
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2016561562A priority Critical patent/JP6458051B2/en
Publication of WO2016084745A1 publication Critical patent/WO2016084745A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Definitions

  • the present invention relates to a mold, a method for manufacturing the mold, and an antireflection film.
  • the “mold” here includes molds used in various processing methods (stamping and casting), and is sometimes referred to as a stamper. It can also be used for printing (including nanoprinting).
  • An optical element such as a display device or a camera lens used for a television or a mobile phone is usually provided with an antireflection technique in order to reduce surface reflection and increase light transmission.
  • an antireflection technique in order to reduce surface reflection and increase light transmission. For example, when light passes through the interface of a medium with a different refractive index, such as when light enters the interface between air and glass, the amount of transmitted light is reduced due to Fresnel reflection, etc., and visibility is reduced. is there.
  • This method utilizes the principle of a so-called moth-eye structure, and the refractive index for light incident on the substrate is determined from the refractive index of the incident medium along the depth direction of the irregularities. By continuously changing the refractive index, the reflection in the wavelength region to be prevented from being reflected is suppressed.
  • the moth-eye structure has an advantage that it can exhibit an antireflection effect with a small incident angle dependency over a wide wavelength range, can be applied to many materials, and can form an uneven pattern directly on a substrate. As a result, a low-cost and high-performance antireflection film (or antireflection surface) can be provided.
  • Patent Documents 2 to 4 As a method for producing a moth-eye structure, a method using an anodized porous alumina layer obtained by anodizing aluminum has attracted attention (Patent Documents 2 to 4).
  • anodized porous alumina layer obtained by anodizing aluminum will be briefly described.
  • a method for producing a porous structure using anodization has attracted attention as a simple method capable of forming regularly ordered nano-sized cylindrical pores (fine concave portions).
  • an acidic or alkaline electrolyte such as sulfuric acid, oxalic acid, or phosphoric acid
  • a voltage is applied using this as an anode
  • oxidation and dissolution proceed simultaneously on the surface of the substrate, and pores are formed on the surface.
  • An oxide film having the following can be formed. These cylindrical pores are oriented perpendicular to the oxide film and exhibit self-organized regularity under certain conditions (voltage, type of electrolyte, temperature, etc.). Is expected.
  • the porous alumina layer formed under specific conditions takes an array in which almost regular hexagonal cells are two-dimensionally filled with the highest density when viewed from the direction perpendicular to the film surface.
  • Each cell has a pore in the center, and the arrangement of the pores has periodicity.
  • the cell is formed as a result of local dissolution and growth of the film, and dissolution and growth of the film proceed simultaneously at the bottom of the pores called a barrier layer.
  • the cell size that is, the distance between adjacent pores (center-to-center distance) corresponds to approximately twice the thickness of the barrier layer and is approximately proportional to the voltage during anodization.
  • the diameter of the pores depends on the type, concentration, temperature, etc.
  • the pores of such porous alumina have an arrangement with high regularity (having periodicity) under a specific condition, an arrangement with irregularity to some extent or an irregularity (having no periodicity) depending on the conditions. ).
  • Patent Document 2 discloses a method of forming an antireflection film (antireflection surface) using a stamper having an anodized porous alumina film on the surface.
  • Patent Document 3 discloses a technique for forming a tapered concave portion in which the pore diameter continuously changes by repeating aluminum anodization and pore diameter enlargement processing.
  • Patent Document 4 discloses a technique for forming an antireflection film using an alumina layer in which fine concave portions have stepped side surfaces.
  • an antireflection film (antireflection surface) is provided by providing a concavo-convex structure (macro structure) larger than the moth eye structure in addition to the moth eye structure (micro structure). ) Can be given an anti-glare (anti-glare) function.
  • the two-dimensional size of the convex portion constituting the concave and convex that exhibits the antiglare function is 1 ⁇ m or more and less than 100 ⁇ m.
  • the “two-dimensional size” of the convex portion refers to the area equivalent circle diameter of the convex portion when viewed from the normal direction of the surface. For example, when the convex portion has a conical shape, The two-dimensional size corresponds to the diameter of the bottom surface of the cone. The same applies to the “two-dimensional size” of the recess.
  • a mold for forming a moth-eye structure on the surface (hereinafter referred to as “moth-eye mold”) can be easily manufactured.
  • the surface of an anodized aluminum film is used as it is as a mold, the effect of reducing the manufacturing cost is great.
  • the surface structure of the moth-eye mold that can form the moth-eye structure is referred to as an “inverted moth-eye structure”.
  • a method using a photocurable resin is known. First, a photocurable resin is applied on the substrate. Subsequently, the uneven surface of the moth-eye mold subjected to the release treatment is pressed against the photocurable resin in a vacuum. Thereafter, a photocurable resin is filled into the concavo-convex structure. Subsequently, the photocurable resin in the concavo-convex structure is irradiated with ultraviolet rays to cure the photocurable resin.
  • the anti-glare structure is previously formed separately from the step of forming the inverted moth-eye structure. It is necessary to perform a step of forming a concavo-convex structure for forming.
  • a concavo-convex structure for forming an antiglare structure is formed by mechanical means such as sand blasting or shot peening with a glass beat, in addition to the process of forming an inverted moth-eye structure. It is described to do.
  • Patent Document 5 a method for easily manufacturing a mold for manufacturing an antireflection film in which a moth-eye structure is superimposed on an antiglare structure. According to Patent Document 5, a mold suitable for producing an antireflection film having a haze value of 1% or more and 5% or less can be produced.
  • the present applicant together with other applicants, discloses a method for producing a mold substrate having an aluminum alloy layer having high specularity in Patent Documents 6 and 7.
  • the “mold substrate” refers to an object to be anodized and etched in the mold manufacturing process.
  • an antireflection film having no unnecessary haze can be formed.
  • the entire disclosure of Patent Documents 5 to 7 is incorporated herein by reference.
  • An object of the present invention is to provide an antireflection film having a novel structure, a mold suitably used for producing such an antireflection film, and a method for producing the mold.
  • An antireflection film includes a plurality of first protrusions having a two-dimensional size of 50 nm or more and less than 300 nm and a height of 50 nm or more and 300 nm or less when viewed from the normal direction of the surface.
  • Each of the plurality of first protrusions includes a plurality of annular protrusion groups in which the plurality of first protrusions are annularly arranged at a distance between adjacent ones of 50 nm or more and less than 300 nm.
  • the plurality of regions surrounded by each of the annular convex group includes a plurality of first regions having an average value of a major axis and a minor axis of more than 300 nm and not more than 800 nm.
  • the plurality of first regions do not have the plurality of first protrusions.
  • the plurality of first regions include a first region having two or more second protrusions that are smaller in height than the plurality of first protrusions.
  • a mold according to another embodiment of the present invention has a porous alumina layer on the surface, and the porous alumina layer has a two-dimensional size of 50 nm or more and less than 300 nm when viewed from the normal direction of the surface, A plurality of first recesses having a length of 50 nm or more and 300 nm or less, each of the plurality of first recesses having a plurality of first recesses arranged in an annular shape with an inter-adjacent distance of 50 nm or more and less than 300 nm.
  • a plurality of regions surrounded by each of the plurality of annular recess groups includes a plurality of first regions having an average value of a major axis and a minor axis of more than 300 nm and not more than 800 nm.
  • the mold further includes an aluminum alloy layer under the porous alumina layer, and the aluminum alloy layer includes aluminum and titanium.
  • the total thickness of the aluminum alloy layer and the porous alumina layer is 2 ⁇ m or more.
  • the mold further has an inorganic underlayer under the aluminum alloy layer.
  • the inorganic underlayer is a silicon oxide layer, a tantalum oxide layer, or a titanium oxide layer.
  • the thickness of the inorganic underlayer is preferably 50 nm or more and 300 nm or less.
  • the mold further includes a buffer layer between the inorganic base layer and the aluminum alloy layer, and the buffer layer includes aluminum, titanium, and oxygen or nitrogen.
  • a mold manufacturing method is a method for manufacturing the mold according to any one of the above, wherein (a) an aluminum alloy layer having a thickness of 2 ⁇ m or more is formed on a substrate. (B) forming a porous alumina layer having a plurality of fine recesses by partially anodizing the aluminum alloy layer; and (c) after the step (b), the porous alumina. A step of bringing the layer into contact with an etching solution to enlarge the plurality of fine concave portions of the porous alumina layer; and (d) further anodizing after the step (c), thereby Growing a concave portion.
  • the electrolyte used in the step of forming the porous alumina layer is, for example, an aqueous solution containing an acid selected from the group consisting of oxalic acid, tartaric acid, phosphoric acid, chromic acid, citric acid, and malic acid.
  • an aqueous solution of 10% by mass of phosphoric acid, an organic acid such as formic acid, acetic acid or citric acid, or a mixed solution of chromium phosphoric acid can be used.
  • an antireflection film having a novel structure a mold suitably used for producing such an antireflection film, and a method for manufacturing the mold are provided.
  • an antireflection film having a haze value of 1% or more and 12% or less a mold suitably used for producing such an antireflection film, and a method of manufacturing the mold are provided. .
  • FIG. 4B is a schematic cross-sectional view taken along line 1C-1C ′ in FIG. (A)
  • (b) is a schematic diagram for demonstrating the manufacturing method of the type
  • (A) is a surface SEM image of a mold substrate
  • (b) is a surface SEM image of a moth-eye mold
  • (c) is a surface SEM image of an antireflection film (Example 1).
  • (A) to (c) are surface SEM images of the antireflection films (Examples 2 to 4) according to the embodiment of the present invention. It is a surface SEM image of the antireflection film of a comparative example. It is a SEM image of the mold base material from which the thickness of an aluminum alloy layer differs, (a) and (b) are 6 micrometers in thickness (Example 1), (c) and (d) are 4 micrometers in thickness (Example) 2), (e), and (f) are an SEM image of a surface of a mold substrate having an aluminum alloy layer having a thickness of 3 ⁇ m (Example 4) and an SEM image of a cross section.
  • (A) is the surface SEM image of the antireflection film of Example 1
  • (b) is the surface SEM image of the antireflection film of Example 5.
  • (A) And (b) is a schematic diagram for demonstrating the manufacturing method of the type
  • (A) is a cross-sectional SEM image of a high-purity aluminum layer having a thickness of 4 ⁇ m
  • (b) is a surface SEM image of a high-purity aluminum layer having a thickness of 2 ⁇ m
  • (c) is a high-temperature having a thickness of 4 ⁇ m. It is the surface SEM image of the anti-reflective film formed using the type
  • an antireflection film according to an embodiment of the present invention a mold suitably used for producing such an antireflection film, and a method of manufacturing the mold will be described with reference to the drawings.
  • Embodiments of the present invention are not limited to the embodiments exemplified below.
  • a moth-eye mold described in Patent Document 5 a manufacturing method thereof, and a method of manufacturing an antireflection film using the moth-eye mold will be described.
  • the mold substrate used for the production of the moth-eye mold is different from the embodiment according to the present invention, but the method for producing the moth-eye mold by alternately performing the anodic oxidation and the etching or the moth-eye mold is used.
  • the method of forming the antireflection film is common to the embodiment according to the present invention.
  • a mold substrate having an aluminum film (a high purity aluminum film) is used.
  • an aluminum film 18p deposited on a substrate 12 is prepared.
  • the aluminum film 18p is formed of high purity aluminum, for example, with a purity of 99.99% by mass or more.
  • the thickness of the aluminum film 18p is 0.5 ⁇ m or more and 5 ⁇ m or less, and a plurality of crystal grains 18pa having an average crystal grain size of 200 nm or more and 5 ⁇ m or less exist on the surface 18ps of the aluminum film 18p.
  • FIG. 12A schematically shows a crystal grain boundary 18pb existing on the surface 18ps of the aluminum film 18p.
  • the aluminum film 18p can be formed using, for example, a vacuum film forming method such as a sputtering method or an electron beam evaporation method.
  • anodic oxidation (AO) and etching (Et) are alternately repeated a plurality of times on the aluminum film 18p, thereby obtaining the moth-eye mold 900A having the porous alumina layer 22 shown in FIG.
  • FIG. 12 (b) shows the structure of the finally obtained porous alumina layer 22, but here, for the sake of simplicity, a common structure is used regardless of changes in the shape and size of the fine recesses 22p. Indicated by reference numerals.
  • the porous alumina layer 22 is formed corresponding to the uneven shape of the surface 18 ps of the aluminum film 18 p. That is, the surface of the porous alumina layer 22 has a plurality of convex portions corresponding to the plurality of crystal grains 18pa of the aluminum film 18p. Further, the fine recess 22p of the porous alumina layer 22 is formed at a position corresponding to the surface of the crystal grain 18pa and the crystal grain boundary 18pb. That is, the fine recess 22p is formed between the plurality of protrusions and on the surface of the plurality of protrusions.
  • the porous alumina layer 22 is formed by anodizing the surface 18 ps of the aluminum film 18 p with an oxalic acid aqueous solution (concentration 0.06 mass%, liquid temperature 5 ° C.) at an applied voltage of 80 V for 30 seconds.
  • anodic oxidation conditions for example, the type of electrolytic solution, the applied voltage, and the anodic oxidation time
  • the interval between the minute recesses, the depth of the minute recesses, and the like can be adjusted.
  • the electrolytic solution used in the step of forming the porous alumina layer is, for example, an aqueous solution containing an acid selected from the group consisting of oxalic acid, tartaric acid, phosphoric acid, chromic acid, citric acid, and malic acid.
  • the porous alumina layer 22 obtained by anodic oxidation is brought into contact with an alumina etchant so as to be etched by a predetermined amount, thereby enlarging the hole diameter of the fine recess 22p.
  • an alumina etchant so as to be etched by a predetermined amount, thereby enlarging the hole diameter of the fine recess 22p.
  • the side surfaces (also referred to as pore walls) of the fine recesses 22p and the barrier layer can be etched almost isotropically.
  • the amount of etching (that is, the size and depth of the fine recess 22p) can be controlled by adjusting the type, concentration, and etching time of the etching solution.
  • the fine recesses 22p are enlarged by performing etching for 25 minutes using phosphoric acid (concentration 1 mol / L, liquid temperature 30 ° C.).
  • phosphoric acid concentration 1 mol / L, liquid temperature 30 ° C.
  • an aqueous solution of an organic acid such as formic acid, acetic acid, or citric acid or a mixed aqueous solution of chromium phosphoric acid can be used as the etching solution.
  • the aluminum film 18p is partially anodized again to grow a fine recess 22p in the depth direction and to thicken the porous alumina layer 22.
  • the side surface of the fine recess 22p is stepped.
  • the pore diameter of the fine concave portion 22p is further expanded by etching the porous alumina layer 22 by bringing it into contact with an alumina etchant.
  • the moth-eye mold 900A (FIG. 12B) is obtained.
  • the moth-eye mold 900A as a result of the porous alumina layer 22 being formed on the surface 18ps of the aluminum film 18p, a plurality of convex portions corresponding to the surface shapes of the plurality of crystal grains 18pa of the aluminum film 18p are formed on the surface.
  • the surface of the moth-eye mold 900A has a plurality of fine spaces between the plurality of convex portions (the portion corresponding to the crystal grain boundary 18pb) and between the plurality of convex portions (the portion corresponding to the surface of the crystal grain 18pa).
  • a concave portion 22p is formed.
  • the moth-eye mold 900A has a shape in which the moth-eye structure inverted with the concavo-convex structure having a two-dimensional size of 200 nm or more and 5 ⁇ m or less is superimposed, when an antireflection film is produced using the moth-eye mold 900A, A shape in which the concavo-convex structure having a two-dimensional size of 200 nm to 5 ⁇ m on the surface of the moth-eye mold 900A is inverted is formed. This shape can exhibit an antiglare function. That is, by using the moth-eye mold 900A, an antireflection film capable of exhibiting an antiglare function can be produced.
  • the fine recess 22p preferably has a two-dimensional size of 50 nm or more and less than 500 nm when viewed from the normal direction of the surface.
  • the two-dimensional size (opening diameter: D p ) of the fine concave portions 22p and the distance between the fine concave portions 22p (inter-adjacent distance D int ) are approximately the same.
  • the fine concave portions 22p are densely packed, and assuming that the shape of the fine concave portions 22p when viewed from the normal direction of the surface is a circle, the adjacent circles overlap each other, and the adjacent fine concave portions 22p A collar may be formed between them.
  • the depth (D depth ) of the fine recess 22p is about 10 nm or more and less than 1000 nm (1 ⁇ m).
  • the pore interval is 50 nm or more and less than 500 nm. What is necessary is just to apply the voltage in which a fine recessed part is formed.
  • Patent Document 5 by adjusting the film formation conditions when forming an aluminum film having a thickness of 0.5 ⁇ m or more, a plurality of crystal grains having an average crystal grain size of 200 nm to 5 ⁇ m are formed on the surface.
  • An existing aluminum film can be formed.
  • the upper limit of the aluminum film thickness is preferably 5 ⁇ m or less from the viewpoint of productivity.
  • an aluminum film having a total thickness of 1 ⁇ m and an average crystal grain size of 200 nm (Example 1) or a thickness by performing a process of forming an aluminum layer having a thickness of 200 nm by a sputtering method five times.
  • An aluminum film having a total thickness of 4.2 ⁇ m and an average crystal grain size of 700 nm is produced by performing the step of forming an aluminum layer having a thickness of 420 nm by sputtering 10 times.
  • an antireflection film can be produced as follows.
  • the ultraviolet curable resin 32C is irradiated with ultraviolet rays through the moth-eye mold 900A in a state where the ultraviolet curable resin 32C is applied between the surface of the workpiece 42 and the moth-eye mold 900A.
  • the ultraviolet curable resin 32C is cured by irradiating (UV).
  • the ultraviolet curable resin 32C may be applied to the surface of the workpiece 42 or may be applied to the mold surface (surface having a moth-eye structure) of the moth-eye mold 900A.
  • an acrylic resin can be used as the ultraviolet curable resin.
  • the concavo-convex structure of the moth-eye mold 900A (a structure in which the inverted moth-eye structure is superimposed on the concavo-convex structure constituted by a plurality of convex portions) is transferred.
  • a cured product layer of the cured UV curable resin 32 ⁇ / b> C is formed on the surface of the workpiece 42.
  • an antireflection film is obtained in which the moth-eye structure is superimposed on the concavo-convex structure in which the concavo-convex structure constituted by a plurality of convex portions having an average two-dimensional size of 200 nm to 5 ⁇ m is inverted. That is, an antireflection film in which the moth-eye structure is superimposed on the concavo-convex structure exhibiting an antiglare function having an average two-dimensional size of 200 nm to 5 ⁇ m is obtained.
  • the haze value of the obtained antireflection film can be controlled by controlling the crystal grain size and distribution of the aluminum layer, for example, the haze value is 2% or more. It is not easy to control to 6% or less. This is because the structure of the high-purity aluminum layer is easily changed depending on the deposition conditions.
  • a high-purity aluminum layer having a thickness of 4 ⁇ m or 2 ⁇ m has discontinuously large crystal grains (“abnormal particles”) compared to most crystal grains. Are easily formed, and gaps are formed around the abnormal particles.
  • abnormal particles discontinuously large crystal grains
  • fine concave portions are also formed on the side surfaces (surfaces facing the gaps) of the abnormal particles. Therefore, when an antireflection film is formed using a mold having such a porous alumina layer, large convex portions having small convex portions on the side surfaces are formed as shown in FIG. Large convex portions correspond to gaps formed around abnormal particles.
  • Such relatively large convex portions of the antireflection film are easily broken by friction, and reduce the scratch resistance of the antireflection film.
  • the haze of such an antireflection film is relatively large. For example, it is not easy to mass-produce an antireflection film having a haze value of 12% or less with good reproducibility.
  • Patent Documents 6 and 7 disclose a method of forming an aluminum alloy layer having a highly specular surface and a method of manufacturing a moth-eye mold using a mold substrate having such an aluminum alloy layer. ing. When the moth-eye molds described in Patent Documents 6 and 7 are used, an antireflection film having no unnecessary haze can be formed.
  • the present inventor has studied a method for producing a moth-eye mold capable of producing an antireflection film having an appropriate haze value using a mold substrate having an aluminum alloy layer described in Patent Document 6.
  • the appropriate haze value is, for example, 2% or more and 6% or less, and when pasted on a recent high-definition display panel, it does not deteriorate a high-definition image and has clearness and anti-glare property. Is expressed.
  • FIG. 1A is a surface SEM image of the antireflection film according to the embodiment (Example 1 described later), and FIG. 1B is a schematic plan view showing the surface structure of the antireflection film according to the embodiment.
  • FIG. 1C is a schematic cross-sectional view taken along line 1C-1C ′ of FIG.
  • the antireflection film 32A As understood from the comparison between the SEM photograph of FIG. 1A and the schematic diagram of FIG. 1B, the antireflection film 32A according to the embodiment of the present invention is as viewed from the normal direction of the surface. It has a plurality of first protrusions 32a having a two-dimensional size of 50 nm or more and less than 300 nm and a height of 50 nm or more and 300 nm or less, and each of the plurality of first protrusions 32a is adjacent to each other by 50 nm or more and less than 300 nm.
  • the plurality of first convex portions 32a arranged in a ring at an inter-distance includes a plurality of annular convex portion groups, and the plurality of regions surrounded by each of the plurality of annular convex portion groups is an average of a major axis and a minor axis
  • a plurality of first regions R1 having a value greater than 300 nm and less than or equal to 800 nm are included.
  • the major axis and minor axis of each first region R1 are substantially elliptical shapes passing through the apex of the first convex part 32a constituting the annular convex part group in the SEM image (see the broken lines in FIGS. 1A and 1B).
  • the annular convex portion group includes the first convex portions 32a arranged in a double annular shape, the major axis and the minor axis are obtained based on a substantially elliptical shape passing through the apex of the inner first convex portion 32a.
  • the first convex portion 32a does not exist in the first region R1.
  • the first convex portion 32a and the second convex portion 32b are basically formed on a flat support portion 32s.
  • the conventional antireflection film having an antiglare function such as Patent Document 5, has a structure in which a moth-eye structure is superimposed on a relatively large uneven structure that exhibits the antiglare function, whereas the antireflection film 32A according to the embodiment is used. Does not have a relatively large uneven structure that exhibits an antiglare function.
  • first regions R1 in which the average value of the major axis and the minor axis formed by the first convex portion 32a is greater than 300 nm and less than or equal to 800 nm are arranged to form the first region R1.
  • the first convex portion 32a is considered to exhibit an antiglare function.
  • FIGS. 2A and 2B are schematic views for explaining a mold manufacturing method according to an embodiment of the present invention.
  • the substrate 12 includes an inorganic base layer 14 formed on the substrate 12 as necessary, and an aluminum alloy layer 18 formed on the inorganic base layer 14.
  • a mold substrate is prepared.
  • the surface of the substrate 12 may be, for example, any one of a plane, a curved surface, and a roll surface.
  • the material of the substrate 12 may be an acid-resistant insulator such as glass, ceramic, or plastic.
  • the base material 12 may be an aluminum material, for example. Or what provided the insulator on the metal which is not aluminum, for example may be used. From the viewpoint of mass productivity, it is preferable to use a roll-shaped aluminum substrate.
  • the inorganic underlayer 14 is, for example, a silicon oxide layer, a tantalum oxide layer, or a titanium oxide layer.
  • the thickness of the inorganic underlayer 14 is preferably 50 nm or more and 300 nm or less.
  • the aluminum alloy layer 18 contains aluminum (Al) and titanium (Ti).
  • Al—Ti an alloy containing aluminum and titanium
  • the Ti content in the aluminum alloy layer 18 is preferably more than 0% by mass and less than 2.0% by mass, and more preferably more than 0% by mass and less than 1.0% by mass. When the Ti content is 1.0% by mass or more, it may be difficult to form the annular convex group, and the Ti content is most preferably about 0.5% by mass.
  • Nd neodymium
  • the thickness of the aluminum alloy layer 18 is 2 ⁇ m or more. In such a thick aluminum alloy layer 18, V-shaped depressions are formed between crystal grains as schematically shown in FIG. The size of the crystal grains is approximately over 300 nm.
  • the aluminum alloy layer 18 may further contain N (nitrogen). N can be introduced into the aluminum alloy layer, for example, by mixing it in an atmospheric gas when depositing the aluminum alloy layer by sputtering.
  • the aluminum alloy layer contains nitrogen (Examples 1 to 3), the nitrogen content preferably does not exceed 5.7% by mass, and is further 1.2% by mass to 2.0% by mass. preferable.
  • a porous alumina layer 22 obtained by alternately repeating anodic oxidation and etching on the surface of such an aluminum alloy layer 18 is a comparison formed on the surface forming V-shaped depressions between crystal grains.
  • the first recess 22a is large (deep) and the second recess 22b is relatively small (shallow) formed on the flat surface of the crystal grains.
  • the two-dimensional size is 50 nm or more and less than 300 nm, and the depth is 50 nm or more and 300 nm or less.
  • Each of the plurality of first recesses 22a includes a plurality of annular recess groups in which the plurality of first recesses 22a are annularly arranged at a distance between adjacent portions of 50 nm or more and less than 300 nm.
  • the first convex portion 32a of the antireflection film 32A corresponds to the structure in which the first concave portion 22a is transferred. 1 (a) and 1 (b), it can be seen that the first protrusions 32a are arranged in a double ring shape. It can also be seen that the first region R1 in the antireflection film 32A is formed corresponding to the crystal grains of the aluminum alloy layer 18. Therefore, the size of the first region R1 in the antireflection film 32A can be controlled by controlling the size of the crystal grains in the aluminum alloy layer 18.
  • the size of the crystal grains can be controlled by controlling the thickness of the aluminum alloy layer.
  • the size of the crystal grains is controlled by controlling the thickness of the aluminum alloy layer. Is considered the most suitable for mass production.
  • an aluminum alloy layer containing 0.5% by mass of Ti (Examples 1 to 3 further includes N of 1.2% by mass to 2.0% by mass).
  • a mold substrate having aluminum alloy layers having different thicknesses was used, and anodization (0.3 mass% oxalic acid aqueous solution, 10 ° C., 80 V) and etching (10 mass% phosphoric acid aqueous solution) were used. , 30 [deg.] C.) alternately, and anodizing 5 times and etching 4 times, a moth-eye mold 100A (see FIG. 2B) was produced.
  • As the substrate 12 a glass substrate or an aluminum pipe (rolled aluminum substrate) was used.
  • a tantalum oxide (Ta 2 O 5 ) layer having a thickness of 200 nm was formed.
  • the aluminum alloy layer 18 was formed by using a DC magnetron sputtering apparatus and introducing nitrogen gas (N 2 ) in addition to argon (Ar) gas as a sputtering gas as necessary.
  • N 2 nitrogen gas
  • Ar argon
  • the surface temperature of the inorganic underlayer 14 was controlled at 80 ° C.
  • Typical conditions are a sputtering gas (Ar gas) flow rate of 440 sccm, a vacuum degree during sputtering of 0.4 Pa, and a nitrogen gas flow rate when nitrogen gas is introduced is 10 sccm (for details, see Patent Reference 7).
  • anodizing time and etching time are also shown in Table 1 below. Since the sample form of the comparative example is different from those of Examples 1 to 4, conditions such as anodizing time and etching time cannot be directly compared, but the anodizing time is about 33 seconds and the etching time is about 25. Minutes.
  • Each antireflection film was produced by the method described with reference to FIG.
  • a TAC (triacetyl cellulose) film was used as the workpiece 42.
  • Table 1 shows the haze value of each antireflection film.
  • the haze value was measured using an integrating sphere turbidimeter NDH-2000 manufactured by Nippon Denshoku Industries Co., Ltd.
  • the projection was parallel light.
  • the sum of the straight transmitted light and the diffuse transmitted light was defined as the total light transmitted light, and the ratio of the diffuse transmitted light to the total light transmitted light was defined as the haze value.
  • FIG. 3A shows an SEM image of the surface of the mold substrate used in Example 1
  • FIG. 3B shows an SEM image of the surface of the moth-eye mold of Example 1
  • FIG. Shows an SEM image of the surface of the antireflection film.
  • the mold base material of Example 1 shown in FIG. 3A has an aluminum alloy layer with a thickness of 6 ⁇ m. Particles having a particularly large particle size that are visible in the center and lower right of the SEM image in FIG. 3A are abnormal particles.
  • the porous alumina layer on the surface of the moth-eye mold of Example 1 shown in FIG. 3B has a two-dimensional size of 50 nm or more and less than 300 nm and a depth of 50 nm or more when viewed from the normal direction of the surface. It has a plurality of first recesses of 300 nm or less. Each of the plurality of first recesses includes a plurality of annular recess groups in which the plurality of first recesses are annularly arranged at a distance between adjacent portions of 50 nm or more and less than 300 nm. The first recesses are randomly and uniformly formed on the surface of the abnormal particles.
  • the antireflection film of Example 1 shown in FIG. 3C has a two-dimensional size of 50 nm or more and 300 nm when viewed from the normal direction of the surface. And a plurality of first convex portions 32a having a height of 50 nm or more and 300 nm or less.
  • Each of the plurality of first convex portions 32a includes a plurality of annular convex portion groups in which the plurality of first convex portions 32a are annularly arranged at an adjacent distance of 50 nm or more and less than 300 nm.
  • the plurality of regions surrounded by each include a plurality of first regions R1 having an average value of a major axis and a minor axis of more than 300 nm and 800 nm or less.
  • the annular convex group composed of the first convex part 32a whose broken line passes substantially through the apex has an average size, and is surrounded by this annular convex group.
  • the major axis of the first region was 850 nm
  • the minor axis was 650 nm
  • the average value of the major axis and the minor axis was 750 nm.
  • the plurality of first regions in the antireflection film of Example 1 includes many first regions having an average value of the major axis and the minor axis of 750 nm.
  • region shown in Table 1 is also an average value of the major axis and minor axis of a 1st area
  • the value of the average diameter of the annular region in Table 1 will be described in detail later.
  • the average diameter of the annular region in Table 1 of Example 1 was 723.8 nm, and the haze value of the antireflection film was 11.48%.
  • FIGS. 4 (a) to 4 (c) show SEM images of the surfaces of the antireflection films according to Examples 2 to 4.
  • FIG. The thicknesses of the aluminum alloy layers of the mold base materials used for producing the moth-eye molds of Examples 2 to 4 are 4 ⁇ m, 4 ⁇ m, and 3 ⁇ m, respectively. In Examples 2 and 3, aluminum alloy layers having the same thickness were used, but the film forming conditions were different.
  • the major axis of the first region (the region within the dashed line) surrounded by the annular convex portion group indicated by the broken line passing through the apex is 800 nm
  • the minor axis is 500 nm.
  • the average value of the major axis and the minor axis was 650 nm.
  • the average diameter of the annular region in Table 1 of Example 2 was 572 nm, and the haze value of the antireflection film was 4.38%.
  • the major axis of the first region (the region within the broken line) surrounded by the annular convex group indicated by the broken line passing through the apex is 600 nm and the minor diameter.
  • the average value of the major axis and the minor axis was 525 nm.
  • the average diameter of the annular region in Table 1 of Example 3 was 514.8 nm, and the haze value of the antireflection film of Example 3 was 5.63%.
  • Example 2 and Example 3 differ in the film forming conditions of the aluminum alloy layer.
  • two targets two sources
  • Example 3 using one target (one source) in sputtering, the film was allowed to stand for a certain time each time a film having a thickness of 1000 nm was formed, thereby suppressing an increase in the temperature of the surface of the mold substrate during sputtering.
  • This difference in the film forming conditions is considered to be the difference in the size of the crystal grains of the aluminum alloy layer.
  • the major axis of the first region (the region within the dashed line) surrounded by the annular convex portion group indicated by the broken line passing through the apex is 350 nm
  • the minor axis is 250 nm.
  • the average value of the major axis and the minor axis was 300 nm.
  • the average diameter of the annular region in Table 1 of Example 4 was 543.4 nm, and the haze value of the antireflection film of Example 4 was 2.29%.
  • FIG. 5 is a surface SEM image of the antireflection film of the comparative example.
  • the anti-reflection film of the comparative example is a clear-type anti-reflection film that is currently on the market and does not have an anti-glare function, and the first protrusions are irregularly arranged and the first region is not formed. .
  • the size of the area indicated by the broken line in FIG. 5 is about 200 nm, which is substantially equal to the distance between the adjacent first convex portions.
  • the haze value of the antireflection film of the comparative example is as very small as 0.52%.
  • FIG. 6 shows SEM images of mold bases having different thicknesses of aluminum alloy layers.
  • FIGS. 6 (a) and 6 (b) show a thickness of 6 ⁇ m (Example 1), and FIGS. 6 (c) and 6 (d).
  • FIG. 6 shows SEM images of mold bases having different thicknesses of aluminum alloy layers.
  • FIGS. 6 (a) and 6 (b) show a thickness of 6 ⁇ m (Example 1)
  • FIGS. 6 (c) and 6 (d) Is a SEM image of a mold substrate having an aluminum alloy layer having a thickness of 4 ⁇ m (Example 2) and FIGS. 6E and 6F having a thickness of 3 ⁇ m (Example 4). It is
  • FIGS. 7 is a surface SEM image of an antireflection film formed using a moth-eye mold produced using mold bases having different thicknesses of aluminum alloy layers.
  • FIGS. 7 (a) and 7 (b) are thicknesses. 7 ⁇ m (Example 1)
  • FIGS. 7 (c) and (d) are aluminum with a thickness of 4 ⁇ m (Example 2)
  • FIGS. 7 (e) and (f) are aluminum with a thickness of 3 ⁇ m (Example 4).
  • the aluminum alloy layer having a thickness of 6 ⁇ m has large abnormal particles.
  • the aluminum alloy layer having a thickness of 4 ⁇ m has abnormal particles as can be seen from the SEM images of FIGS. 6C and 6D, but the size is 6 ⁇ m. Much smaller than the size of abnormal particles in the aluminum alloy layer.
  • the aluminum alloy layer having a thickness of 3 ⁇ m does not have abnormal particles. Thus, when the thickness of the aluminum alloy layer exceeds 3 ⁇ m, abnormal particles are included, and as the thickness of the aluminum alloy layer increases, the abnormal particles also increase.
  • FIGS. 7A, 7B, 7C, and 7D When the surface SEM images of the antireflection film shown in FIGS. 7A, 7B, 7C, and 7D are viewed, the moth-eye for the moth eye manufactured using the mold base material having the aluminum alloy layer containing abnormal particles is shown.
  • a recess having a size corresponding to abnormal particles is formed in the antireflection film formed using the mold.
  • FIGS. 7A and 7B abnormal particles contained in an aluminum alloy layer having a thickness of 6 ⁇ m are very large (area circle equivalent diameter is 3 ⁇ m or more).
  • An annular ridge is formed.
  • 7C and 7D a recess having a size corresponding to the abnormal particle is formed, but an annular ridge is not seen.
  • the antireflection film having an annular ridge has low scratch resistance. That is, if the surface of the antireflection film is rubbed with, for example, a cloth (for example, Savina MX manufactured by KB Seiren Co., Ltd., savina is a registered trademark), the annular ridge is destroyed, and the surface may appear cloudy. is there. Therefore, such an antireflection film is not preferable for applications requiring scratch resistance (for example, portable terminals such as smartphones).
  • the photocurable resin when the concave portion has a size corresponding to abnormal particles, the photocurable resin is used for the moth-eye mold in the transfer process when forming the antireflection film. It tends to remain in the recess, and as a result, it may be difficult to use the moth-eye mold continuously.
  • the antireflection film is formed by the roll-to-roll method, there is a problem that the length of the continuous formation of the antireflection film is shortened and the production efficiency is lowered.
  • the thickness of the aluminum alloy layer of the mold base is preferably less than 6 ⁇ m, and more preferably 4 ⁇ m or less. Moreover, in order to suppress the formation of a recess having a size corresponding to abnormal particles, the thickness of the aluminum alloy layer is preferably 3 ⁇ m or less.
  • FIG. 8 is a surface SEM image of the antireflection film formed using a moth-eye mold produced using mold bases having different thicknesses of the aluminum alloy layer
  • FIG. 8A shows a thickness of 6 ⁇ m ( Example 1)
  • FIG. 8B is a surface SEM image of an antireflection film formed using a moth-eye mold produced using a mold substrate having an aluminum alloy layer having a thickness of 4 ⁇ m (Example 2). It is.
  • FIG. 8 is a surface SEM image of the antireflection film formed using a moth-eye mold produced using a mold substrate having an aluminum alloy layer having a thickness of 4 ⁇ m
  • FIG. 9 is a surface SEM image of an antireflection film formed by using a moth-eye mold produced using mold bases having different thicknesses of aluminum alloy layers, and FIG. 9A shows a thickness of 4 ⁇ m ( Example 3), FIG. 9B is a surface SEM image of an antireflection film formed using a moth-eye mold produced using a mold substrate having an aluminum alloy layer having a thickness of 3 ⁇ m (Example 4). It is.
  • FIG. 10 is a graph showing the relationship between the average diameter and the haze value of the region surrounded by the annular convex portions of the antireflection films of Examples 1 to 4 and Comparative Example.
  • a target region is selected so as not to include a region where a structure corresponding to abnormal particles is formed.
  • 10 are selected from the larger ones of the first areas, and the lengths of the major axis and the minor axis are measured.
  • the haze value of the antireflection film of Examples 2 and 3 is larger than the haze value of the antireflection film of Example 4.
  • the antireflection films of Examples 2 and 3 are compared with abnormal particles. This is presumably because there is a large structure (area circle equivalent diameter exceeds 1 ⁇ m), and the haze value increases accordingly.
  • the average value of the major axis and the minor axis of the first region is in the range of 500 nm to 600 nm, and the haze value is in the range of 2% to 6%.
  • the antireflection films of Examples 2 to 4 have clearness and exhibit antiglare properties, and are preferably used for high-definition display panels.
  • FIG. 11A shows a surface SEM image of the antireflection film of Example 1
  • FIG. 11B shows a surface SEM image of the antireflection film of Example 5.
  • an antireflection film was formed using a moth-eye mold produced in the same manner as in Example 1 (anodization time 33 seconds) except that the anodic oxidation time in the moth-eye mold manufacturing process was 45 seconds. Produced.
  • the height of the first protrusions in the antireflection film of Example 1 is 100 nm to 150 nm, and the height of the second protrusions in the region surrounded by the first protrusions. Is about 10 nm.
  • the height of the first convex portion in the antireflection film of Example 5 is 200 nm to 250 nm, and the second convex portion in the region surrounded by the first convex portion. The height is about 50 nm.
  • the first region surrounded by the first protrusions has an average value of the major axis and the minor axis of more than 300 nm and not more than 800 nm.
  • the antiglare property can be exhibited while having clearness.
  • the first convex portion and the second convex portion exhibit an antireflection function similarly to the conventional antireflection film having a moth-eye structure.
  • the present invention is used for an antireflection film, a mold suitably used for the production of such an antireflection film, and a method for manufacturing the mold.
  • the antireflection film is suitably used for a high-definition display panel.
  • Anti-reflective film 32s Support part 32a 1st convex part 32b 2nd convex part R1 1st area

Abstract

This antireflective film (32A) has a plurality of first protrusions (32a) which, viewed from the direction of the normal line of the surface, has a two-dimensional size of 50 nm to less than 300 nm, and a height of 50-300 nm. The plurality of first protrusions (32a) include a plurality of ring-shaped protrusion groups in each of which a plurality of the first protrusions (32a) are arrayed in a ring shape at interproximal distances of 50 nm to less than 300 nm. A plurality of areas respectively enclosed by the plurality of ring-shaped protrusion groups include a plurality of first regions (R1) in which the average value of the major axis and the minor axis is more than 300 nm but not more than 800 nm.

Description

型および型の製造方法ならびに反射防止膜Mold, mold manufacturing method and antireflection film
 本発明は、型および型の製造方法ならびに反射防止膜に関する。ここでいう「型」は、種々の加工方法(スタンピングやキャスティング)に用いられる型を包含し、スタンパということもある。また、印刷(ナノプリントを含む)にも用いられ得る。 The present invention relates to a mold, a method for manufacturing the mold, and an antireflection film. The “mold” here includes molds used in various processing methods (stamping and casting), and is sometimes referred to as a stamper. It can also be used for printing (including nanoprinting).
 テレビや携帯電話などに用いられる表示装置やカメラレンズなどの光学素子には、通常、表面反射を低減して光の透過量を高めるために反射防止技術が施されている。例えば、空気とガラスとの界面に光が入射する場合のように屈折率が異なる媒体の界面を光が通過する場合、フレネル反射などによって光の透過量が低減し、視認性が低下するからである。 2. Description of the Related Art An optical element such as a display device or a camera lens used for a television or a mobile phone is usually provided with an antireflection technique in order to reduce surface reflection and increase light transmission. For example, when light passes through the interface of a medium with a different refractive index, such as when light enters the interface between air and glass, the amount of transmitted light is reduced due to Fresnel reflection, etc., and visibility is reduced. is there.
 近年、反射防止技術として、凹凸の周期が可視光の波長(λ=380nm~780nm)以下に制御された微細な凹凸パターンを基板表面に形成する方法が注目されている(特許文献1~4を参照)。反射防止機能を発現する凹凸パターンを構成する凸部の2次元的な大きさは10nm以上500nm未満である。 In recent years, attention has been paid to a method of forming a fine uneven pattern on the substrate surface, in which the period of the unevenness is controlled to a wavelength of visible light (λ = 380 nm to 780 nm) or less as an antireflection technique (see Patent Documents 1 to 4). reference). The two-dimensional size of the convex portions constituting the concavo-convex pattern expressing the antireflection function is 10 nm or more and less than 500 nm.
 この方法は、いわゆるモスアイ(Moth-eye、蛾の目)構造の原理を利用したものであり、基板に入射した光に対する屈折率を凹凸の深さ方向に沿って入射媒体の屈折率から基板の屈折率まで連続的に変化させることによって反射防止したい波長域の反射を抑えている。 This method utilizes the principle of a so-called moth-eye structure, and the refractive index for light incident on the substrate is determined from the refractive index of the incident medium along the depth direction of the irregularities. By continuously changing the refractive index, the reflection in the wavelength region to be prevented from being reflected is suppressed.
 モスアイ構造は、広い波長域にわたって入射角依存性の小さい反射防止作用を発揮できるほか、多くの材料に適用でき、凹凸パターンを基板に直接形成できるなどの利点を有している。その結果、低コストで高性能の反射防止膜(または反射防止表面)を提供できる。 The moth-eye structure has an advantage that it can exhibit an antireflection effect with a small incident angle dependency over a wide wavelength range, can be applied to many materials, and can form an uneven pattern directly on a substrate. As a result, a low-cost and high-performance antireflection film (or antireflection surface) can be provided.
 モスアイ構造の製造方法として、アルミニウムを陽極酸化することによって得られる陽極酸化ポーラスアルミナ層を用いる方法が注目されている(特許文献2~4)。 As a method for producing a moth-eye structure, a method using an anodized porous alumina layer obtained by anodizing aluminum has attracted attention (Patent Documents 2 to 4).
 ここで、アルミニウムを陽極酸化することによって得られる陽極酸化ポーラスアルミナ層について簡単に説明する。従来から、陽極酸化を利用した多孔質構造体の製造方法は、規則正しく配列されたナノオーダーの円柱状の細孔(微細な凹部)を形成できる簡易な方法として注目されてきた。硫酸、蓚酸、または燐酸等の酸性電解液またはアルカリ性電解液中に基材を浸漬し、これを陽極として電圧を印加すると、基材の表面で酸化と溶解が同時に進行し、その表面に細孔を有する酸化膜を形成することができる。この円柱状の細孔は、酸化膜に対して垂直に配向し、一定の条件下(電圧、電解液の種類、温度等)では自己組織的な規則性を示すため、各種機能材料への応用が期待されている。 Here, the anodized porous alumina layer obtained by anodizing aluminum will be briefly described. Conventionally, a method for producing a porous structure using anodization has attracted attention as a simple method capable of forming regularly ordered nano-sized cylindrical pores (fine concave portions). When a substrate is immersed in an acidic or alkaline electrolyte such as sulfuric acid, oxalic acid, or phosphoric acid, and a voltage is applied using this as an anode, oxidation and dissolution proceed simultaneously on the surface of the substrate, and pores are formed on the surface. An oxide film having the following can be formed. These cylindrical pores are oriented perpendicular to the oxide film and exhibit self-organized regularity under certain conditions (voltage, type of electrolyte, temperature, etc.). Is expected.
 特定の条件下で形成されたポーラスアルミナ層は、膜面に垂直な方向から見たときに、ほぼ正六角形のセルが2次元的に最も高密度で充填された配列をとっている。それぞれのセルはその中央に細孔を有しており、細孔の配列は周期性を有している。セルは局所的な皮膜の溶解および成長の結果形成されるものであり、バリア層と呼ばれる細孔底部で、皮膜の溶解と成長とが同時に進行する。このとき、セルのサイズすなわち、隣接する細孔の間隔(中心間距離)は、バリア層の厚さのほぼ2倍に相当し、陽極酸化時の電圧にほぼ比例することが知られている。また、細孔の直径は、電解液の種類、濃度、温度等に依存するものの、通常、セルのサイズ(膜面に垂直な方向からみたときのセルの最長対角線の長さ)の1/3程度であることが知られている。このようなポーラスアルミナの細孔は、特定の条件下では高い規則性を有する(周期性を有する)配列、また、条件によってはある程度規則性の乱れた配列、あるいは不規則(周期性を有しない)な配列を形成する。 The porous alumina layer formed under specific conditions takes an array in which almost regular hexagonal cells are two-dimensionally filled with the highest density when viewed from the direction perpendicular to the film surface. Each cell has a pore in the center, and the arrangement of the pores has periodicity. The cell is formed as a result of local dissolution and growth of the film, and dissolution and growth of the film proceed simultaneously at the bottom of the pores called a barrier layer. At this time, it is known that the cell size, that is, the distance between adjacent pores (center-to-center distance) corresponds to approximately twice the thickness of the barrier layer and is approximately proportional to the voltage during anodization. In addition, although the diameter of the pores depends on the type, concentration, temperature, etc. of the electrolytic solution, it is usually 1/3 of the cell size (the length of the longest diagonal line when viewed from the direction perpendicular to the film surface). It is known to be a degree. The pores of such porous alumina have an arrangement with high regularity (having periodicity) under a specific condition, an arrangement with irregularity to some extent or an irregularity (having no periodicity) depending on the conditions. ).
 特許文献2は、陽極酸化ポーラスアルミナ膜を表面に有するスタンパを用いて、反射防止膜(反射防止表面)を形成する方法を開示している。 Patent Document 2 discloses a method of forming an antireflection film (antireflection surface) using a stamper having an anodized porous alumina film on the surface.
 また、特許文献3には、アルミニウムの陽極酸化と孔径拡大処理を繰り返すことによって、連続的に細孔径が変化するテーパー形状の凹部を形成する技術が開示されている。 Further, Patent Document 3 discloses a technique for forming a tapered concave portion in which the pore diameter continuously changes by repeating aluminum anodization and pore diameter enlargement processing.
 特許文献4には、微細な凹部が階段状の側面を有するアルミナ層を用いて反射防止膜を形成する技術が開示されている。 Patent Document 4 discloses a technique for forming an antireflection film using an alumina layer in which fine concave portions have stepped side surfaces.
 また、特許文献1、2および4に記載されているように、モスアイ構造(ミクロ構造)に加えて、モスアイ構造よりも大きな凹凸構造(マクロ構造)を設けることによって、反射防止膜(反射防止表面)にアンチグレア(防眩)機能を付与することができる。アンチグレア機能を発揮する凹凸を構成する凸部の2次元的な大きさは1μm以上100μm未満である。特許文献1、2および4の開示内容の全てを参考のために本明細書に援用する。ここで、凸部の「2次元的な大きさ」とは、表面の法線方向から見たときの凸部の面積円相当径を指し、例えば、凸部が円錐形の場合、凸部の2次元的な大きさは、円錐の底面の直径に相当する。凹部の「2次元的な大きさ」も同様である。 Further, as described in Patent Documents 1, 2, and 4, an antireflection film (antireflection surface) is provided by providing a concavo-convex structure (macro structure) larger than the moth eye structure in addition to the moth eye structure (micro structure). ) Can be given an anti-glare (anti-glare) function. The two-dimensional size of the convex portion constituting the concave and convex that exhibits the antiglare function is 1 μm or more and less than 100 μm. The entire disclosures of Patent Documents 1, 2, and 4 are incorporated herein by reference. Here, the “two-dimensional size” of the convex portion refers to the area equivalent circle diameter of the convex portion when viewed from the normal direction of the surface. For example, when the convex portion has a conical shape, The two-dimensional size corresponds to the diameter of the bottom surface of the cone. The same applies to the “two-dimensional size” of the recess.
 陽極酸化ポーラスアルミナ膜を利用することによって、モスアイ構造を表面に形成するための型(以下、「モスアイ用型」という。)を容易に製造することができる。特に、特許文献2および4に記載されているように、アルミニウムの陽極酸化膜の表面をそのまま型として利用すると、製造コストを低減する効果が大きい。モスアイ構造を形成することができるモスアイ用型の表面の構造を「反転されたモスアイ構造」ということにする。 By using the anodized porous alumina film, a mold for forming a moth-eye structure on the surface (hereinafter referred to as “moth-eye mold”) can be easily manufactured. In particular, as described in Patent Documents 2 and 4, when the surface of an anodized aluminum film is used as it is as a mold, the effect of reducing the manufacturing cost is great. The surface structure of the moth-eye mold that can form the moth-eye structure is referred to as an “inverted moth-eye structure”.
 モスアイ用型を用いた反射防止膜の製造方法としては、光硬化性樹脂を用いる方法が知られている。まず、基板上に光硬化性樹脂を付与する。続いて、離型処理を施したモスアイ用型の凹凸表面を真空中で光硬化性樹脂に押圧する。その後、光硬化性樹脂を凹凸構造中に充填する。続いて、凹凸構造中の光硬化性樹脂に紫外線を照射し、光硬化性樹脂を硬化する。その後、基板からモスアイ用型を分離することによって、モスアイ用型の凹凸構造が転写された光硬化性樹脂の硬化物層が基板の表面に形成される。光硬化性樹脂を用いた反射防止膜の製造方法は、例えば特許文献4に記載されている。 As a method for producing an antireflection film using a moth-eye mold, a method using a photocurable resin is known. First, a photocurable resin is applied on the substrate. Subsequently, the uneven surface of the moth-eye mold subjected to the release treatment is pressed against the photocurable resin in a vacuum. Thereafter, a photocurable resin is filled into the concavo-convex structure. Subsequently, the photocurable resin in the concavo-convex structure is irradiated with ultraviolet rays to cure the photocurable resin. Thereafter, by separating the moth-eye mold from the substrate, a cured product layer of a photocurable resin to which the concavo-convex structure of the moth-eye mold is transferred is formed on the surface of the substrate. A method for producing an antireflection film using a photocurable resin is described in Patent Document 4, for example.
 特許文献1、2および4に記載のアンチグレア構造にモスアイ構造が重畳された反射防止膜を製造するための型の製造方法は、反転されたモスアイ構造を形成する工程とは別に、予めアンチグレア構造を形成するための凹凸構造を形成する工程を行う必要がある。例えば、特許文献1には、反転されたモスアイ構造を形成する工程とは別に、サンド・ブラストやガラスビートでのショット・ピーニング等の機械的手段により、アンチグレア構造を形成するための凹凸構造を形成することが記載されている。 In the method of manufacturing a mold for manufacturing an antireflection film in which a moth-eye structure is superimposed on an anti-glare structure described in Patent Documents 1, 2, and 4, the anti-glare structure is previously formed separately from the step of forming the inverted moth-eye structure. It is necessary to perform a step of forming a concavo-convex structure for forming. For example, in Patent Document 1, a concavo-convex structure for forming an antiglare structure is formed by mechanical means such as sand blasting or shot peening with a glass beat, in addition to the process of forming an inverted moth-eye structure. It is described to do.
特表2001-517319号公報JP-T-2001-517319 特表2003-531962号公報Special Table 2003-531962 特開2005-156695号公報JP 2005-156695 A 国際公開第2006/059686号International Publication No. 2006/059686 国際公開第2011/052652号International Publication No. 2011/052652 国際公開第2012/137664号International Publication No. 2012/137664 国際公開第2013/183576号International Publication No. 2013/183576
 そこで、本出願人は、特許文献5に、アンチグレア構造にモスアイ構造が重畳された反射防止膜を製造するための型を簡単に製造する方法を開示している。特許文献5によると、ヘイズ値が1%以上5%以下の反射防止膜の作製に好適な型を製造することができる。 Therefore, the present applicant discloses in Patent Document 5 a method for easily manufacturing a mold for manufacturing an antireflection film in which a moth-eye structure is superimposed on an antiglare structure. According to Patent Document 5, a mold suitable for producing an antireflection film having a haze value of 1% or more and 5% or less can be produced.
 一方、本出願人は他の出願人とともに、特許文献6および7に、鏡面性の高いアルミニウム合金層を備える型基材の製造方法を開示している。なお、本明細書において、「型基材」とは、型の製造工程において、陽極酸化およびエッチングされる対象をいう。特許文献6および7に記載の型を用いると不要なヘイズを有しない反射防止膜を形成することができる。特許文献5~7の開示内容の全てを参考のために本明細書に援用する。 On the other hand, the present applicant, together with other applicants, discloses a method for producing a mold substrate having an aluminum alloy layer having high specularity in Patent Documents 6 and 7. In the present specification, the “mold substrate” refers to an object to be anodized and etched in the mold manufacturing process. When the molds described in Patent Documents 6 and 7 are used, an antireflection film having no unnecessary haze can be formed. The entire disclosure of Patent Documents 5 to 7 is incorporated herein by reference.
 本発明は、新規な構造を有する反射防止膜および、そのような反射防止膜の作製に好適に用いられる型、ならびに型の製造方法を提供することを目的とする。 An object of the present invention is to provide an antireflection film having a novel structure, a mold suitably used for producing such an antireflection film, and a method for producing the mold.
 本発明のある実施形態による反射防止膜は、表面の法線方向から見たときの2次元的な大きさが50nm以上300nm未満で、高さが50nm以上300nm以下の複数の第1凸部を有し、前記複数の第1凸部は、それぞれが、50nm以上300nm未満の隣接間距離で前記複数の第1凸部が環状に配列された、複数の環状凸部群を含み、前記複数の環状凸部群のそれぞれによって包囲された複数の領域は、長径と短径との平均値が300nm超800nm以下の複数の第1領域を含む。 An antireflection film according to an embodiment of the present invention includes a plurality of first protrusions having a two-dimensional size of 50 nm or more and less than 300 nm and a height of 50 nm or more and 300 nm or less when viewed from the normal direction of the surface. Each of the plurality of first protrusions includes a plurality of annular protrusion groups in which the plurality of first protrusions are annularly arranged at a distance between adjacent ones of 50 nm or more and less than 300 nm. The plurality of regions surrounded by each of the annular convex group includes a plurality of first regions having an average value of a major axis and a minor axis of more than 300 nm and not more than 800 nm.
 ある実施形態において、前記複数の第1領域は、前記複数の第1凸部を有しない。 In one embodiment, the plurality of first regions do not have the plurality of first protrusions.
 ある実施形態において、前記複数の第1領域は、前記複数の第1凸部よりも高さの小さい、2個以上の第2凸部を有する第1領域を含む。 In one embodiment, the plurality of first regions include a first region having two or more second protrusions that are smaller in height than the plurality of first protrusions.
 本発明の他の実施形態による型は、表面にポーラスアルミナ層を有し、前記ポーラスアルミナ層は、表面の法線方向から見たときの2次元的な大きさが50nm以上300nm未満で、深さが50nm以上300nm以下の複数の第1凹部を有し、前記複数の第1凹部は、それぞれが、50nm以上300nm未満の隣接間距離で前記複数の第1凹部が環状に配列された、複数の環状凹部群を含み、前記複数の環状凹部群のそれぞれによって包囲された複数の領域は、長径と短径との平均値が300nm超800nm以下の複数の第1領域を含む。 A mold according to another embodiment of the present invention has a porous alumina layer on the surface, and the porous alumina layer has a two-dimensional size of 50 nm or more and less than 300 nm when viewed from the normal direction of the surface, A plurality of first recesses having a length of 50 nm or more and 300 nm or less, each of the plurality of first recesses having a plurality of first recesses arranged in an annular shape with an inter-adjacent distance of 50 nm or more and less than 300 nm. And a plurality of regions surrounded by each of the plurality of annular recess groups includes a plurality of first regions having an average value of a major axis and a minor axis of more than 300 nm and not more than 800 nm.
 ある実施形態において、前記型は、前記ポーラスアルミナ層の下にアルミニウム合金層をさらに有し、前記アルミニウム合金層は、アルミニウムとチタンとを含む。 In one embodiment, the mold further includes an aluminum alloy layer under the porous alumina layer, and the aluminum alloy layer includes aluminum and titanium.
 ある実施形態において、前記アルミニウム合金層および前記ポーラスアルミナ層の合計の厚さは2μm以上である。 In one embodiment, the total thickness of the aluminum alloy layer and the porous alumina layer is 2 μm or more.
 ある実施形態において、前記型は、前記アルミニウム合金層の下に無機下地層をさらに有する。前記無機下地層は、酸化シリコン層、酸化タンタル層または酸化チタン層である。ある実施形態において、前記無機下地層の厚さは50nm以上300nm以下であることが好ましい。 In one embodiment, the mold further has an inorganic underlayer under the aluminum alloy layer. The inorganic underlayer is a silicon oxide layer, a tantalum oxide layer, or a titanium oxide layer. In one embodiment, the thickness of the inorganic underlayer is preferably 50 nm or more and 300 nm or less.
 前記型は、前記無機下地層と前記アルミニウム合金層との間に、緩衝層をさらに有し、前記緩衝層は、アルミニウムと、チタンと、酸素または窒素とを含む。 The mold further includes a buffer layer between the inorganic base layer and the aluminum alloy layer, and the buffer layer includes aluminum, titanium, and oxygen or nitrogen.
 本発明のさらに他の実施形態による型の製造方法は、上記のいずれかに記載の型を製造する方法であって、(a)基材上に厚さが2μm以上のアルミニウム合金層を形成する工程と、(b)前記アルミニウム合金層を部分的に陽極酸化することによって、複数の微細な凹部を有するポーラスアルミナ層を形成する工程と、(c)前記工程(b)の後に、前記ポーラスアルミナ層を、エッチング液に接触させることによって、前記ポーラスアルミナ層の前記複数の微細な凹部を拡大させる工程と、(d)前記工程(c)の後に、さらに陽極酸化することによって、前記複数の微細な凹部を成長させる工程とを包含する。 A mold manufacturing method according to still another embodiment of the present invention is a method for manufacturing the mold according to any one of the above, wherein (a) an aluminum alloy layer having a thickness of 2 μm or more is formed on a substrate. (B) forming a porous alumina layer having a plurality of fine recesses by partially anodizing the aluminum alloy layer; and (c) after the step (b), the porous alumina. A step of bringing the layer into contact with an etching solution to enlarge the plurality of fine concave portions of the porous alumina layer; and (d) further anodizing after the step (c), thereby Growing a concave portion.
 ポーラスアルミナ層を形成する工程で用いられる電解液は、例えば、蓚酸、酒石酸、燐酸、クロム酸、クエン酸、リンゴ酸からなる群から選択される酸を含む水溶液である。エッチング液としては、例えば10質量%の燐酸や、蟻酸、酢酸、クエン酸などの有機酸の水溶液やクロム燐酸混合水溶液を用いることができる。 The electrolyte used in the step of forming the porous alumina layer is, for example, an aqueous solution containing an acid selected from the group consisting of oxalic acid, tartaric acid, phosphoric acid, chromic acid, citric acid, and malic acid. As the etching solution, for example, an aqueous solution of 10% by mass of phosphoric acid, an organic acid such as formic acid, acetic acid or citric acid, or a mixed solution of chromium phosphoric acid can be used.
 本発明の実施形態によると、新規な構造を有する反射防止膜ならびに、そのような反射防止膜の作製に好適に用いられる型、および型の製造方法が提供される。本発明の実施形態によると、例えば、ヘイズ値が1%以上12%以下の反射防止膜、ならびに、そのような反射防止膜の作製に好適に用いられる型、および型の製造方法が提供される。 According to the embodiment of the present invention, an antireflection film having a novel structure, a mold suitably used for producing such an antireflection film, and a method for manufacturing the mold are provided. According to the embodiments of the present invention, for example, an antireflection film having a haze value of 1% or more and 12% or less, a mold suitably used for producing such an antireflection film, and a method of manufacturing the mold are provided. .
(a)は、本発明の実施形態による反射防止膜(実施例1)の表面SEM像であり、(b)は、反射防止膜の表面構造を示す模式的な平面図であり、(c)は、(b)の1C-1C’線に沿った模式的な断面図である。(A) is a surface SEM image of the antireflection film (Example 1) according to the embodiment of the present invention, (b) is a schematic plan view showing the surface structure of the antireflection film, and (c). FIG. 4B is a schematic cross-sectional view taken along line 1C-1C ′ in FIG. (a)および(b)は、本発明の実施形態による型の製造方法を説明するための模式図である。(A) And (b) is a schematic diagram for demonstrating the manufacturing method of the type | mold by embodiment of this invention. (a)は型基材の表面SEM像であり、(b)はモスアイ用型の表面SEM像であり、(c)は反射防止膜の表面SEM像である(実施例1)。(A) is a surface SEM image of a mold substrate, (b) is a surface SEM image of a moth-eye mold, and (c) is a surface SEM image of an antireflection film (Example 1). (a)~(c)は本発明の実施形態による反射防止膜(実施例2~4)の表面SEM像である。(A) to (c) are surface SEM images of the antireflection films (Examples 2 to 4) according to the embodiment of the present invention. 比較例の反射防止膜の表面SEM像である。It is a surface SEM image of the antireflection film of a comparative example. アルミニウム合金層の厚さが異なる型基材のSEM像であり、(a)および(b)は厚さが6μm(実施例1)、(c)および(d)は厚さが4μm(実施例2)、(e)および(f)は厚さが3μm(実施例4)のアルミニウム合金層を有する型基材の表面のSEM像および断面のSEM像である。It is a SEM image of the mold base material from which the thickness of an aluminum alloy layer differs, (a) and (b) are 6 micrometers in thickness (Example 1), (c) and (d) are 4 micrometers in thickness (Example) 2), (e), and (f) are an SEM image of a surface of a mold substrate having an aluminum alloy layer having a thickness of 3 μm (Example 4) and an SEM image of a cross section. アルミニウム合金層の厚さが異なる型基材を用いて作製されたモスアイ用型を用いて形成した反射防止膜の表面SEM像であり、(a)および(b)は厚さが6μm(実施例1)、(c)および(d)は厚さが4μm(実施例2)、(e)および(f)は厚さが3μm(実施例4)のアルミニウム合金層を有する型基材を用いて作製されたモスアイ用型を用いて形成した反射防止膜の表面SEM像である。It is the surface SEM image of the anti-reflective film formed using the type | mold for moth eyes produced using the type | mold base material from which the thickness of an aluminum alloy layer differs, (a) And (b) is 6 micrometers in thickness (Example) 1), (c) and (d) are 4 μm (Example 2), and (e) and (f) are mold substrates having an aluminum alloy layer having a thickness of 3 μm (Example 4). It is the surface SEM image of the anti-reflective film formed using the produced mold for moth eyes. アルミニウム合金層の厚さが異なる型基材を用いて作製されたモスアイ用型を用いて形成した反射防止膜の表面SEM像であり、(a)は厚さが6μm(実施例1)、(b)は厚さが4μm(実施例2)のアルミニウム合金層を有する型基材を用いて作製されたモスアイ用型を用いて形成した反射防止膜の表面SEM像である。It is the surface SEM image of the anti-reflective film formed using the type | mold for moth eyes produced using the type | mold base material from which the thickness of an aluminum alloy layer differs, (a) is thickness 6 micrometers (Example 1), ( b) is a surface SEM image of an antireflection film formed using a moth-eye mold produced using a mold substrate having an aluminum alloy layer having a thickness of 4 μm (Example 2). アルミニウム合金層の厚さが異なる型基材を用いて作製されたモスアイ用型を用いて形成した反射防止膜の表面SEM像であり、(a)は厚さが4μm(実施例3)、(b)は厚さが3μm(実施例4)のアルミニウム合金層を有する型基材を用いて作製されたモスアイ用型を用いて形成した反射防止膜の表面SEM像である。It is the surface SEM image of the anti-reflective film formed using the mold for moth-eye produced using the mold base material from which the thickness of an aluminum alloy layer differs, (a) is 4 micrometers in thickness (Example 3), ( b) is a surface SEM image of an antireflection film formed using a moth-eye mold produced using a mold substrate having an aluminum alloy layer having a thickness of 3 μm (Example 4). 実施例1~4および比較例の反射防止膜の環状凸部群によって包囲された領域の平均径とヘイズ値との関係を示すグラフである。6 is a graph showing the relationship between the average diameter and the haze value of the region surrounded by the annular convex group of antireflection films of Examples 1 to 4 and Comparative Example. (a)は実施例1の反射防止膜の表面SEM像であり、(b)は実施例5の反射防止膜の表面SEM像である。(A) is the surface SEM image of the antireflection film of Example 1, and (b) is the surface SEM image of the antireflection film of Example 5. (a)および(b)は、特許文献5に記載の、アンチグレア構造にモスアイ構造が重畳された反射防止膜を製造するための型の製造方法を説明するための模式図であり、(c)はその型を用いた反射防止膜の製造方法を説明するための模式図である。(A) And (b) is a schematic diagram for demonstrating the manufacturing method of the type | mold for manufacturing the antireflection film by which the moth-eye structure was superimposed on the anti-glare structure of patent document 5, (c) These are the schematic diagrams for demonstrating the manufacturing method of the anti-reflective film using the type | mold. (a)は厚さが4μmの高純度アルミニウム層の断面SEM像であり、(b)は厚さが2μmの高純度アルミニウム層の表面SEM像であり、(c)は厚さが4μmの高純度アルミニウム層を有する型基材を用いて作製されたモスアイ用型を用いて形成された反射防止膜の表面SEM像である。(A) is a cross-sectional SEM image of a high-purity aluminum layer having a thickness of 4 μm, (b) is a surface SEM image of a high-purity aluminum layer having a thickness of 2 μm, and (c) is a high-temperature having a thickness of 4 μm. It is the surface SEM image of the anti-reflective film formed using the type | mold for moth eyes produced using the type | mold base material which has a purity aluminum layer.
 以下、図面を参照して、本発明の実施形態による反射防止膜ならびに、そのような反射防止膜の作製に好適に用いられる型、および型の製造方法を説明する。本発明の実施形態は、以下に例示する実施形態に限定されない。 Hereinafter, an antireflection film according to an embodiment of the present invention, a mold suitably used for producing such an antireflection film, and a method of manufacturing the mold will be described with reference to the drawings. Embodiments of the present invention are not limited to the embodiments exemplified below.
 まず、特許文献5に記載のモスアイ用型およびその製造方法ならびに、そのモスアイ用型を用いた反射防止膜の製造方法を説明する。なお、モスアイ用型の製造に用いられる型基材は、本発明による実施形態と異なるが、陽極酸化とエッチングとを交互に行うことによってモスアイ用型を製造する方法や、モスアイ用型を用いて反射防止膜を形成する方法は、本発明による実施形態と共通する。特許文献5に記載のモスアイ用型の製造方法においては、アルミニウム膜(純度が高いアルミニウム膜)を有する型基材を用いていた。 First, a moth-eye mold described in Patent Document 5, a manufacturing method thereof, and a method of manufacturing an antireflection film using the moth-eye mold will be described. The mold substrate used for the production of the moth-eye mold is different from the embodiment according to the present invention, but the method for producing the moth-eye mold by alternately performing the anodic oxidation and the etching or the moth-eye mold is used. The method of forming the antireflection film is common to the embodiment according to the present invention. In the method for producing a moth-eye mold described in Patent Document 5, a mold substrate having an aluminum film (a high purity aluminum film) is used.
 特許文献5に記載の型の製造方法においては、まず、図12(a)に示すように、基材12上に堆積されたアルミニウム膜18pを用意する。アルミニウム膜18pは高純度アルミニウム、例えば、純度が99.99質量%以上で形成されている。アルミニウム膜18pの厚さは0.5μm以上5μm以下であり、アルミニウム膜18pの表面18psには、結晶粒径の平均値が、200nm以上5μm以下である複数の結晶粒18paが存在する。図12(a)に、アルミニウム膜18pの表面18psに存在する結晶粒界18pbを模式的に示す。アルミニウム膜18pは、例えば、スパッタリング法や電子線蒸着法などの真空成膜法を用いて形成することができる。 In the mold manufacturing method described in Patent Document 5, first, as shown in FIG. 12A, an aluminum film 18p deposited on a substrate 12 is prepared. The aluminum film 18p is formed of high purity aluminum, for example, with a purity of 99.99% by mass or more. The thickness of the aluminum film 18p is 0.5 μm or more and 5 μm or less, and a plurality of crystal grains 18pa having an average crystal grain size of 200 nm or more and 5 μm or less exist on the surface 18ps of the aluminum film 18p. FIG. 12A schematically shows a crystal grain boundary 18pb existing on the surface 18ps of the aluminum film 18p. The aluminum film 18p can be formed using, for example, a vacuum film forming method such as a sputtering method or an electron beam evaporation method.
 次に、アルミニウム膜18pに対して、陽極酸化(AO)およびエッチング(Et)を交互に複数回繰り返すことによって、図12(b)に示すポーラスアルミナ層22を有するモスアイ用型900Aが得られる。 Next, anodic oxidation (AO) and etching (Et) are alternately repeated a plurality of times on the aluminum film 18p, thereby obtaining the moth-eye mold 900A having the porous alumina layer 22 shown in FIG.
 まず、アルミニウム膜18pの表面を陽極酸化することによって、微細な凹部(細孔)22pを有するポーラスアルミナ層22が形成される。図12(b)は、最終的に得られたポーラスアルミナ層22の構造を示しているが、ここでは、簡単のために、微細な凹部22pの形状および大きさの変化に拘わらず、共通の参照符号で示す。 First, a porous alumina layer 22 having fine recesses (pores) 22p is formed by anodizing the surface of the aluminum film 18p. FIG. 12 (b) shows the structure of the finally obtained porous alumina layer 22, but here, for the sake of simplicity, a common structure is used regardless of changes in the shape and size of the fine recesses 22p. Indicated by reference numerals.
 ポーラスアルミナ層22は、アルミニウム膜18pの表面18psの凹凸形状に対応して形成される。すなわち、ポーラスアルミナ層22の表面は、アルミニウム膜18pの複数の結晶粒18paに対応する複数の凸部を有している。また、ポーラスアルミナ層22の微細な凹部22pは、結晶粒18paの表面および結晶粒界18pbに対応する位置に形成される。すなわち、微細な凹部22pは、複数の凸部の間および複数の凸部の表面に形成される。例えば、アルミニウム膜18pの表面18psを、蓚酸水溶液(濃度0.06質量%、液温5℃)を用いて、印加電圧80Vで30秒間陽極酸化を行うことにより、ポーラスアルミナ層22が形成される。陽極酸化条件(例えば、電解液の種類、印加電圧、陽極酸化時間)を調整することにより、微細な凹部間の間隔、微細な凹部の深さ等を調節できる。ポーラスアルミナ層を形成する工程で用いられる電解液は、例えば、蓚酸、酒石酸、燐酸、クロム酸、クエン酸、リンゴ酸からなる群から選択される酸を含む水溶液である。 The porous alumina layer 22 is formed corresponding to the uneven shape of the surface 18 ps of the aluminum film 18 p. That is, the surface of the porous alumina layer 22 has a plurality of convex portions corresponding to the plurality of crystal grains 18pa of the aluminum film 18p. Further, the fine recess 22p of the porous alumina layer 22 is formed at a position corresponding to the surface of the crystal grain 18pa and the crystal grain boundary 18pb. That is, the fine recess 22p is formed between the plurality of protrusions and on the surface of the plurality of protrusions. For example, the porous alumina layer 22 is formed by anodizing the surface 18 ps of the aluminum film 18 p with an oxalic acid aqueous solution (concentration 0.06 mass%, liquid temperature 5 ° C.) at an applied voltage of 80 V for 30 seconds. . By adjusting the anodic oxidation conditions (for example, the type of electrolytic solution, the applied voltage, and the anodic oxidation time), the interval between the minute recesses, the depth of the minute recesses, and the like can be adjusted. The electrolytic solution used in the step of forming the porous alumina layer is, for example, an aqueous solution containing an acid selected from the group consisting of oxalic acid, tartaric acid, phosphoric acid, chromic acid, citric acid, and malic acid.
 次に、陽極酸化によって得られたポーラスアルミナ層22をアルミナのエッチャントに接触させることによって所定の量だけエッチングすることにより微細な凹部22pの孔径を拡大する。ここで、ウェットエッチングを採用することによって、微細な凹部22pの側面(細孔壁ともいう。)およびバリア層をほぼ等方的にエッチングすることができる。エッチング液の種類、濃度、およびエッチング時間を調整することによって、エッチング量(すなわち、微細な凹部22pの大きさおよび深さ)を制御することができる。例えば、燐酸(濃度1mol/L、液温30℃)を用いて25分間エッチングを行うことにより、微細な凹部22pを拡大する。エッチング液としては、この他、例えば、蟻酸、酢酸、クエン酸などの有機酸の水溶液やクロム燐酸混合水溶液を用いることができる。 Next, the porous alumina layer 22 obtained by anodic oxidation is brought into contact with an alumina etchant so as to be etched by a predetermined amount, thereby enlarging the hole diameter of the fine recess 22p. Here, by employing wet etching, the side surfaces (also referred to as pore walls) of the fine recesses 22p and the barrier layer can be etched almost isotropically. The amount of etching (that is, the size and depth of the fine recess 22p) can be controlled by adjusting the type, concentration, and etching time of the etching solution. For example, the fine recesses 22p are enlarged by performing etching for 25 minutes using phosphoric acid (concentration 1 mol / L, liquid temperature 30 ° C.). In addition, for example, an aqueous solution of an organic acid such as formic acid, acetic acid, or citric acid or a mixed aqueous solution of chromium phosphoric acid can be used as the etching solution.
 その後、必要に応じて、再び、アルミニウム膜18pを部分的に陽極酸化することにより、微細な凹部22pを深さ方向に成長させるとともにポーラスアルミナ層22を厚くする。ここで、微細な凹部22pの成長は、既に形成されている微細な凹部22pの底部から始まるので、微細な凹部22pの側面は階段状になる。 Thereafter, if necessary, the aluminum film 18p is partially anodized again to grow a fine recess 22p in the depth direction and to thicken the porous alumina layer 22. Here, since the growth of the fine recess 22p starts from the bottom of the already formed fine recess 22p, the side surface of the fine recess 22p is stepped.
 さらにこの後、必要に応じて、ポーラスアルミナ層22をアルミナのエッチャントに接触させることによってエッチングすることにより微細な凹部22pの孔径をさらに拡大する。 Thereafter, if necessary, the pore diameter of the fine concave portion 22p is further expanded by etching the porous alumina layer 22 by bringing it into contact with an alumina etchant.
 このように、陽極酸化工程およびエッチング工程を繰り返すことによって、モスアイ用型900A(図12(b))が得られる。モスアイ用型900Aは、アルミニウム膜18pの表面18psにポーラスアルミナ層22が形成される結果、表面に、アルミニウム膜18pの複数の結晶粒18paの表面形状に対応する複数の凸部が形成されている。従って、モスアイ用型900Aの表面には、複数の凸部の間(結晶粒界18pbに対応する部分)および複数の凸部の表面(結晶粒18paの表面に対応する部分)に、複数の微細な凹部22pが形成されている。 Thus, by repeating the anodizing step and the etching step, the moth-eye mold 900A (FIG. 12B) is obtained. In the moth-eye mold 900A, as a result of the porous alumina layer 22 being formed on the surface 18ps of the aluminum film 18p, a plurality of convex portions corresponding to the surface shapes of the plurality of crystal grains 18pa of the aluminum film 18p are formed on the surface. . Accordingly, the surface of the moth-eye mold 900A has a plurality of fine spaces between the plurality of convex portions (the portion corresponding to the crystal grain boundary 18pb) and between the plurality of convex portions (the portion corresponding to the surface of the crystal grain 18pa). A concave portion 22p is formed.
 モスアイ用型900Aは、2次元的な大きさが200nm以上5μm以下である凹凸構造に反転されたモスアイ構造が重畳された形状を有するので、モスアイ用型900Aを用いて反射防止膜を作製すると、モスアイ用型900Aの表面の2次元的な大きさが200nm以上5μm以下である凹凸構造が反転された形状が形成される。この形状は、アンチグレア機能を発揮し得る。すなわち、モスアイ用型900Aを用いることにより、アンチグレア機能を発揮し得る反射防止膜を作製できる。 Since the moth-eye mold 900A has a shape in which the moth-eye structure inverted with the concavo-convex structure having a two-dimensional size of 200 nm or more and 5 μm or less is superimposed, when an antireflection film is produced using the moth-eye mold 900A, A shape in which the concavo-convex structure having a two-dimensional size of 200 nm to 5 μm on the surface of the moth-eye mold 900A is inverted is formed. This shape can exhibit an antiglare function. That is, by using the moth-eye mold 900A, an antireflection film capable of exhibiting an antiglare function can be produced.
 上述したように、例えば、上記特許文献1、2および4に記載のアンチグレア構造にモスアイ構造が重畳された反射防止膜を製造するための型の製造方法においては、反転されたモスアイ構造を形成する工程とは別に、アンチグレア構造を形成するための凹凸構造を形成する工程を行う必要がある。特許文献5に記載のモスアイ用型の製造方法によれば、アルミニウム膜を堆積する工程においてアンチグレア構造を形成するための凹凸構造が形成されたアルミニウム膜を用いるので、アンチグレア構造を形成するための凹凸構造を形成する工程を別に行うことなく、アンチグレア構造にモスアイ構造が重畳された反射防止膜を製造するためのモスアイ用型を簡単に製造することができる。 As described above, for example, in the mold manufacturing method for manufacturing the antireflection film in which the moth-eye structure is superimposed on the antiglare structure described in Patent Documents 1, 2, and 4, an inverted moth-eye structure is formed. In addition to the steps, it is necessary to perform a step of forming a concavo-convex structure for forming an antiglare structure. According to the method for manufacturing a moth-eye mold described in Patent Document 5, since an aluminum film having an uneven structure for forming an antiglare structure is used in the step of depositing an aluminum film, the unevenness for forming the antiglare structure is used. A moth-eye mold for manufacturing an antireflection film in which a moth-eye structure is superimposed on an anti-glare structure can be easily manufactured without performing a separate step of forming the structure.
 なお、反射防止性能の優れた反射防止膜を作製するためには、微細な凹部22pは、表面の法線方向から見たときの2次元的な大きさが50nm以上500nm未満であることが好ましい。モスアイ用型900Aでは、微細な凹部22pの2次元的な大きさ(開口部径:Dp)と微細な凹部22p間の間隔(隣接間距離Dint)とは同程度である。すなわち、微細な凹部22pは密に充填されており、表面の法線方向から見たときの微細な凹部22pの形状を円と仮定すると、隣接する円は互いに重なり合い、隣接する微細な凹部22pの間に鞍部が形成されてもよい。微細な凹部22pの深さ(Ddepth)は10nm以上1000nm(1μm)未満程度である。一般に、微細な凹部間の間隔は印加電圧の大きさにほぼ比例するので、2次元的な大きさが50nm以上500nm未満である細孔を形成するには、細孔間隔が50nm以上500nm未満の微細な凹部が形成される電圧を印加すればよい。 In order to produce an antireflection film with excellent antireflection performance, the fine recess 22p preferably has a two-dimensional size of 50 nm or more and less than 500 nm when viewed from the normal direction of the surface. . In the moth-eye mold 900A, the two-dimensional size (opening diameter: D p ) of the fine concave portions 22p and the distance between the fine concave portions 22p (inter-adjacent distance D int ) are approximately the same. That is, the fine concave portions 22p are densely packed, and assuming that the shape of the fine concave portions 22p when viewed from the normal direction of the surface is a circle, the adjacent circles overlap each other, and the adjacent fine concave portions 22p A collar may be formed between them. The depth (D depth ) of the fine recess 22p is about 10 nm or more and less than 1000 nm (1 μm). In general, since the interval between minute recesses is almost proportional to the magnitude of the applied voltage, in order to form a pore having a two-dimensional size of 50 nm or more and less than 500 nm, the pore interval is 50 nm or more and less than 500 nm. What is necessary is just to apply the voltage in which a fine recessed part is formed.
 特許文献5によると、0.5μm以上の厚さのアルミニウム膜を形成するときに成膜条件を調整することにより、結晶粒径の平均値が200nm以上5μm以下である複数の結晶粒が表面に存在するアルミニウム膜を形成できる。なお、アルミニウム膜の厚さの上限については、生産性の観点から、5μm以下であることが好ましいとされている。 According to Patent Document 5, by adjusting the film formation conditions when forming an aluminum film having a thickness of 0.5 μm or more, a plurality of crystal grains having an average crystal grain size of 200 nm to 5 μm are formed on the surface. An existing aluminum film can be formed. The upper limit of the aluminum film thickness is preferably 5 μm or less from the viewpoint of productivity.
 例えば、厚さが200nmのアルミニウム層をスパッタリング法で形成する工程を5回行うことにより、総厚が1μmで、結晶粒径の平均値が200nmであるアルミニウム膜(実施例1)や、厚さが420nmのアルミニウム層をスパッタリング法で形成する工程を10回行うことにより、総厚が4.2μmで、結晶粒径の平均値が700nmであるアルミニウム膜が作製されている。 For example, an aluminum film having a total thickness of 1 μm and an average crystal grain size of 200 nm (Example 1) or a thickness by performing a process of forming an aluminum layer having a thickness of 200 nm by a sputtering method five times. An aluminum film having a total thickness of 4.2 μm and an average crystal grain size of 700 nm is produced by performing the step of forming an aluminum layer having a thickness of 420 nm by sputtering 10 times.
 モスアイ用型900Aを用いて、以下の様にして、反射防止膜を製造することができる。 Using the moth-eye mold 900A, an antireflection film can be produced as follows.
 図12(c)に示す様に、被加工物42の表面と、モスアイ用型900Aとの間に、紫外線硬化樹脂32Cを付与した状態で、モスアイ用型900Aを介して紫外線硬化樹脂32Cに紫外線(UV)を照射することによって紫外線硬化樹脂32Cを硬化する。紫外線硬化樹脂32Cは、被加工物42の表面に付与しておいてもよいし、モスアイ用型900Aの型面(モスアイ構造を有する面)に付与しておいてもよい。紫外線硬化樹脂としては、例えばアクリル系樹脂を用いることができる。 As shown in FIG. 12C, the ultraviolet curable resin 32C is irradiated with ultraviolet rays through the moth-eye mold 900A in a state where the ultraviolet curable resin 32C is applied between the surface of the workpiece 42 and the moth-eye mold 900A. The ultraviolet curable resin 32C is cured by irradiating (UV). The ultraviolet curable resin 32C may be applied to the surface of the workpiece 42 or may be applied to the mold surface (surface having a moth-eye structure) of the moth-eye mold 900A. As the ultraviolet curable resin, for example, an acrylic resin can be used.
 その後、被加工物42からモスアイ用型900Aを分離することによって、モスアイ用型900Aの凹凸構造(複数の凸部により構成される凹凸構造に、反転されたモスアイ構造が重畳された構造)が転写された紫外線硬化樹脂32Cの硬化物層が被加工物42の表面に形成される。こうして、2次元的な大きさの平均値が200nm以上5μm以下である複数の凸部により構成される凹凸構造が反転された凹凸構造にモスアイ構造が重畳された反射防止膜が得られる。すなわち、2次元的な大きさの平均値が200nm以上5μm以下であるアンチグレア機能を発揮する凹凸構造に、モスアイ構造が重畳された反射防止膜が得られる。 Thereafter, by separating the moth-eye mold 900A from the workpiece 42, the concavo-convex structure of the moth-eye mold 900A (a structure in which the inverted moth-eye structure is superimposed on the concavo-convex structure constituted by a plurality of convex portions) is transferred. A cured product layer of the cured UV curable resin 32 </ b> C is formed on the surface of the workpiece 42. In this way, an antireflection film is obtained in which the moth-eye structure is superimposed on the concavo-convex structure in which the concavo-convex structure constituted by a plurality of convex portions having an average two-dimensional size of 200 nm to 5 μm is inverted. That is, an antireflection film in which the moth-eye structure is superimposed on the concavo-convex structure exhibiting an antiglare function having an average two-dimensional size of 200 nm to 5 μm is obtained.
 特許文献5に記載されているように、アルミニウム層の結晶粒径およびその分布を制御することによって、得られる反射防止膜のヘイズ値を制御することができるものの、例えば、ヘイズ値を2%以上6%以下に制御することは簡単ではない。これは、高純度アルミニウム層の構造が、堆積条件に依存して変わり易いことにある。 As described in Patent Document 5, although the haze value of the obtained antireflection film can be controlled by controlling the crystal grain size and distribution of the aluminum layer, for example, the haze value is 2% or more. It is not easy to control to 6% or less. This is because the structure of the high-purity aluminum layer is easily changed depending on the deposition conditions.
 例えば、図13(a)および(b)に示す様に、厚さが4μmまたは2μmの高純度アルミニウム層には、大部分の結晶粒と比べて不連続的に大きな結晶粒(「異常粒子」ということがある。)が形成されやすく、また、異常粒子の周囲に隙間が形成される。このようなアルミニウム層に対して、陽極酸化とエッチングとを交互に行うと、異常粒子の側面(隙間に面した面)にも微細な凹部が形成される。したがって、そのようなポーラスアルミナ層を有する型を用いて反射防止膜を形成すると、図13(c)に示す様に、側面に小さい凸部を有する大きな凸部が形成される。大きな凸部は、異常粒子の周囲に形成された隙間に対応する。反射防止膜が有するこのような比較的大きな凸部は、摩擦によって破壊されやすく、反射防止膜の耐擦傷性を低下させる。また、このような反射防止膜のヘイズは、比較的大きく、例えば12%以下のヘイズ値を有する反射防止膜を再現性よく量産することは容易ではない。 For example, as shown in FIGS. 13A and 13B, a high-purity aluminum layer having a thickness of 4 μm or 2 μm has discontinuously large crystal grains (“abnormal particles”) compared to most crystal grains. Are easily formed, and gaps are formed around the abnormal particles. When such an aluminum layer is alternately subjected to anodic oxidation and etching, fine concave portions are also formed on the side surfaces (surfaces facing the gaps) of the abnormal particles. Therefore, when an antireflection film is formed using a mold having such a porous alumina layer, large convex portions having small convex portions on the side surfaces are formed as shown in FIG. Large convex portions correspond to gaps formed around abnormal particles. Such relatively large convex portions of the antireflection film are easily broken by friction, and reduce the scratch resistance of the antireflection film. Moreover, the haze of such an antireflection film is relatively large. For example, it is not easy to mass-produce an antireflection film having a haze value of 12% or less with good reproducibility.
 一方、特許文献6および7には、鏡面性の高い表面を有するアルミニウム合金層を形成する方法およびそのようなアルミニウム合金層を有する型基材を用いて、モスアイ用型を製造する方法が開示されている。特許文献6および7に記載のモスアイ用型を用いると、不要なヘイズを有しない反射防止膜を形成することができる。 On the other hand, Patent Documents 6 and 7 disclose a method of forming an aluminum alloy layer having a highly specular surface and a method of manufacturing a moth-eye mold using a mold substrate having such an aluminum alloy layer. ing. When the moth-eye molds described in Patent Documents 6 and 7 are used, an antireflection film having no unnecessary haze can be formed.
 本発明者は、特許文献6に記載のアルミニウム合金層を有する型基材を用いて、適度なヘイズ値を有する反射防止膜を製造することができるモスアイ用型を製造する方法を検討した。適度なヘイズ値とは、例えば、2%以上6%以下であり、近年の高精細な表示パネルに貼ったときに、高精細な画像を劣化させず、クリア性を有しつつ、防眩性を発現する。 The present inventor has studied a method for producing a moth-eye mold capable of producing an antireflection film having an appropriate haze value using a mold substrate having an aluminum alloy layer described in Patent Document 6. The appropriate haze value is, for example, 2% or more and 6% or less, and when pasted on a recent high-definition display panel, it does not deteriorate a high-definition image and has clearness and anti-glare property. Is expressed.
 本発明の実施形態による反射防止膜の構造を図1(a)~(c)を参照して説明する。図1(a)は、実施形態による反射防止膜(後述の実施例1)の表面SEM像であり、図1(b)は、実施形態による反射防止膜の表面構造を示す模式的な平面図であり、図1(c)は、図1(b)の1C-1C’線に沿った模式的な断面図である。 The structure of the antireflection film according to the embodiment of the present invention will be described with reference to FIGS. FIG. 1A is a surface SEM image of the antireflection film according to the embodiment (Example 1 described later), and FIG. 1B is a schematic plan view showing the surface structure of the antireflection film according to the embodiment. FIG. 1C is a schematic cross-sectional view taken along line 1C-1C ′ of FIG.
 図1(a)のSEM写真と図1(b)の模式図とを対比させると理解されるように、本発明の実施形態による反射防止膜32Aは、表面の法線方向から見たときの2次元的な大きさが50nm以上300nm未満で、高さが50nm以上300nm以下の複数の第1凸部32aを有し、複数の第1凸部32aは、それぞれが、50nm以上300nm未満の隣接間距離で複数の第1凸部32aが環状に配列された、複数の環状凸部群を含み、複数の環状凸部群のそれぞれによって包囲された複数の領域は、長径と短径との平均値が300nm超800nm以下の複数の第1領域R1を含んでいる。個々の第1領域R1の長径および短径は、SEM像において環状凸部群を構成する第1凸部32aの頂点を通る略楕円形(図1(a)および(b)中の破線を参照)を描き、その略楕円形の最も長い径と最も短い径として求めることができる。環状凸部群が、2重に環状に配列された第1凸部32aを含む場合は、内側の第1凸部32aの頂点を通る略楕円形に基づいて長径および短径を求める。典型的には、第1領域R1内には第1凸部32aは存在しない。 As understood from the comparison between the SEM photograph of FIG. 1A and the schematic diagram of FIG. 1B, the antireflection film 32A according to the embodiment of the present invention is as viewed from the normal direction of the surface. It has a plurality of first protrusions 32a having a two-dimensional size of 50 nm or more and less than 300 nm and a height of 50 nm or more and 300 nm or less, and each of the plurality of first protrusions 32a is adjacent to each other by 50 nm or more and less than 300 nm. The plurality of first convex portions 32a arranged in a ring at an inter-distance includes a plurality of annular convex portion groups, and the plurality of regions surrounded by each of the plurality of annular convex portion groups is an average of a major axis and a minor axis A plurality of first regions R1 having a value greater than 300 nm and less than or equal to 800 nm are included. The major axis and minor axis of each first region R1 are substantially elliptical shapes passing through the apex of the first convex part 32a constituting the annular convex part group in the SEM image (see the broken lines in FIGS. 1A and 1B). ) And can be obtained as the longest and shortest diameters of the substantially elliptical shape. When the annular convex portion group includes the first convex portions 32a arranged in a double annular shape, the major axis and the minor axis are obtained based on a substantially elliptical shape passing through the apex of the inner first convex portion 32a. Typically, the first convex portion 32a does not exist in the first region R1.
 複数の第1領域R1には、第1凸部32aよりも高さの小さい第2凸部32bを有する第1領域R1や、第2凸部32bを有しない第1領域R1が存在する。また、第2凸部32bを有する第1領域R1の中には、2個以上の第2凸部32bを有する第1領域R1が存在する。 In the plurality of first regions R1, there are a first region R1 having a second convex portion 32b having a height smaller than that of the first convex portion 32a and a first region R1 having no second convex portion 32b. Further, in the first region R1 having the second convex portion 32b, there is a first region R1 having two or more second convex portions 32b.
 図1(c)に模式的に示す様に、第1凸部32aおよび第2凸部32bは、基本的には、平坦な支持部分32s上に形成されている。特許文献5などの従来のアンチグレア機能を有する反射防止膜は、アンチグレア機能を発現する比較的大きな凹凸構造にモスアイ構造が重畳された構造を有していたのに対し、実施形態による反射防止膜32Aは、アンチグレア機能を発現するような比較的大きな凹凸構造を有していない。反射防止膜32Aにおいては、第1凸部32aが形成する長径と短径との平均値が300nm超800nm以下の複数の第1領域R1が、言い換えると、第1領域R1を形成するよう配置された第1凸部32aが、アンチグレア機能を発現すると考えられる。 As schematically shown in FIG. 1C, the first convex portion 32a and the second convex portion 32b are basically formed on a flat support portion 32s. The conventional antireflection film having an antiglare function, such as Patent Document 5, has a structure in which a moth-eye structure is superimposed on a relatively large uneven structure that exhibits the antiglare function, whereas the antireflection film 32A according to the embodiment is used. Does not have a relatively large uneven structure that exhibits an antiglare function. In the antireflection film 32A, a plurality of first regions R1 in which the average value of the major axis and the minor axis formed by the first convex portion 32a is greater than 300 nm and less than or equal to 800 nm are arranged to form the first region R1. The first convex portion 32a is considered to exhibit an antiglare function.
 複数の第1領域R1を有する特徴的なモスアイ表面構造を有する反射防止膜32Aを形成できる型の製造方法の例を図2を参照して説明する。図2(a)および(b)は、本発明の実施形態による型の製造方法を説明するための模式図である。 An example of a mold manufacturing method capable of forming an antireflection film 32A having a characteristic moth-eye surface structure having a plurality of first regions R1 will be described with reference to FIG. FIGS. 2A and 2B are schematic views for explaining a mold manufacturing method according to an embodiment of the present invention.
 まず、図2(a)に示す様に、基材12と、基板12上に必要に応じて形成された無機下地層14と、無機下地層14上に形成されたアルミニウム合金層18とを有する型基材を用意する。基材12の表面は、例えば、平面、曲面、ロール面のいずれかであってもよい。また、基材12の材質は、例えば、ガラス、セラミック、プラスティックなどの耐酸性を有する絶縁物であってもよい。また、基材12は、例えば、アルミニウム材であってもよい。あるいは、例えばアルミニウムでない金属上に絶縁物を付与したものであってもよい。量産性の観点からは、ロール状のアルミニウム基材を用いることが好ましい。無機下地層14は、例えば、酸化シリコン層、酸化タンタル層または酸化チタン層である。無機下地層14の厚さは50nm以上300nm以下であることが好ましい。 First, as shown in FIG. 2A, the substrate 12 includes an inorganic base layer 14 formed on the substrate 12 as necessary, and an aluminum alloy layer 18 formed on the inorganic base layer 14. A mold substrate is prepared. The surface of the substrate 12 may be, for example, any one of a plane, a curved surface, and a roll surface. The material of the substrate 12 may be an acid-resistant insulator such as glass, ceramic, or plastic. Moreover, the base material 12 may be an aluminum material, for example. Or what provided the insulator on the metal which is not aluminum, for example may be used. From the viewpoint of mass productivity, it is preferable to use a roll-shaped aluminum substrate. The inorganic underlayer 14 is, for example, a silicon oxide layer, a tantalum oxide layer, or a titanium oxide layer. The thickness of the inorganic underlayer 14 is preferably 50 nm or more and 300 nm or less.
 アルミニウム合金層18は、アルミニウム(Al)とチタン(Ti)とを含む。以下、アルミニウムとチタンとを含む合金を「Al-Ti」と表記することがある。アルミニウム合金層18中のTiの含有率は、0質量%超2.0質量%以下が好ましく、0質量%超1.0質量%未満がさらに好ましい。Tiの含有率が1.0質量%以上になると、環状凸部群が形成され難くなることがあり、Tiの含有率は約0.5質量%が最も好ましい。 The aluminum alloy layer 18 contains aluminum (Al) and titanium (Ti). Hereinafter, an alloy containing aluminum and titanium may be referred to as “Al—Ti”. The Ti content in the aluminum alloy layer 18 is preferably more than 0% by mass and less than 2.0% by mass, and more preferably more than 0% by mass and less than 1.0% by mass. When the Ti content is 1.0% by mass or more, it may be difficult to form the annular convex group, and the Ti content is most preferably about 0.5% by mass.
 チタンに代えてNd(ネオジウム)を用いることもできる。アルミニウム合金層18の厚さは2μm以上である。このように厚いアルミニウム合金層18は、図2(a)に模式的に示す様に、結晶粒の間にV字状の窪みが形成される。結晶粒の大きさは、概ね300nm超となる。アルミニウム合金層18は、特許文献7に記載されているように、さらにN(窒素)を含んでもよい。Nは、例えば、アルミニウム合金層をスパッタリングによって堆積する際に雰囲気ガスに混入させることによって、アルミニウム合金層に導入することができる。アルミニウム合金層が窒素を含む場合(実施例1~3)、窒素の含有率は5.7質量%を超えないことが好ましく、1.2質量%以上2.0質量%以下であることがさらに好ましい。 Nd (neodymium) can be used instead of titanium. The thickness of the aluminum alloy layer 18 is 2 μm or more. In such a thick aluminum alloy layer 18, V-shaped depressions are formed between crystal grains as schematically shown in FIG. The size of the crystal grains is approximately over 300 nm. As described in Patent Document 7, the aluminum alloy layer 18 may further contain N (nitrogen). N can be introduced into the aluminum alloy layer, for example, by mixing it in an atmospheric gas when depositing the aluminum alloy layer by sputtering. When the aluminum alloy layer contains nitrogen (Examples 1 to 3), the nitrogen content preferably does not exceed 5.7% by mass, and is further 1.2% by mass to 2.0% by mass. preferable.
 このようなアルミニウム合金層18の表面に対して、陽極酸化とエッチングとを交互に繰り返すことによって得られるポーラスアルミナ層22は、結晶粒間のV字状の窪みを形成する表面に形成された比較的大きな(深い)第1凹部22aと、結晶粒の平坦な表面に形成された比較的小さな(浅い)第2凹部22bとを有する。複数の第1凹部22aの表面の法線方向から見たときの2次元的な大きさは50nm以上300nm未満で、深さは50nm以上300nm以下である。複数の第1凹部22aは、それぞれが、50nm以上300nm未満の隣接間距離で複数の第1凹部22aが環状に配列された、複数の環状凹部群を含んでいる。 A porous alumina layer 22 obtained by alternately repeating anodic oxidation and etching on the surface of such an aluminum alloy layer 18 is a comparison formed on the surface forming V-shaped depressions between crystal grains. The first recess 22a is large (deep) and the second recess 22b is relatively small (shallow) formed on the flat surface of the crystal grains. When viewed from the normal direction of the surface of the plurality of first recesses 22a, the two-dimensional size is 50 nm or more and less than 300 nm, and the depth is 50 nm or more and 300 nm or less. Each of the plurality of first recesses 22a includes a plurality of annular recess groups in which the plurality of first recesses 22a are annularly arranged at a distance between adjacent portions of 50 nm or more and less than 300 nm.
 第1凹部22aは、V字状の窪みを形成する表面に形成されるので、1つの結晶粒界に互いに反対方向に延びる2種類の第1凹部22aが形成される。反射防止膜32Aの第1凸部32aは、この第1凹部22aが転写された構造に対応する。図1(a)および(b)において、第1凸部32aが、2重に環状に配列されていることがわかる。また、反射防止膜32Aにおける第1領域R1は、アルミニウム合金層18の結晶粒に対応して形成されていることがわかる。したがって、アルミニウム合金層18における結晶粒の大きさを制御することによって、反射防止膜32Aにおける第1領域R1の大きさを制御できる。 Since the first recess 22a is formed on the surface forming the V-shaped depression, two types of first recesses 22a extending in opposite directions are formed at one crystal grain boundary. The first convex portion 32a of the antireflection film 32A corresponds to the structure in which the first concave portion 22a is transferred. 1 (a) and 1 (b), it can be seen that the first protrusions 32a are arranged in a double ring shape. It can also be seen that the first region R1 in the antireflection film 32A is formed corresponding to the crystal grains of the aluminum alloy layer 18. Therefore, the size of the first region R1 in the antireflection film 32A can be controlled by controlling the size of the crystal grains in the aluminum alloy layer 18.
 以下に説明する実施例および比較例からあきらかになるように、アルミニウム合金層の厚さを制御することによって、結晶粒の大きさを制御することができる。もちろん、アルミニウム合金層の組成(Ti含有率)や成膜条件にも依存するが、本発明者の検討によると、アルミニウム合金層の厚さを制御することによって、結晶粒の大きさを制御することが最も量産に適していると考えられる。 As will become clear from the examples and comparative examples described below, the size of the crystal grains can be controlled by controlling the thickness of the aluminum alloy layer. Of course, depending on the composition of the aluminum alloy layer (Ti content) and film formation conditions, according to the study of the present inventors, the size of the crystal grains is controlled by controlling the thickness of the aluminum alloy layer. Is considered the most suitable for mass production.
 以下の実施例1~4および比較例では、Tiを0.5質量%含むアルミニウム合金層(実施例1~3は1.2質量%以上2.0質量%以下のNをさらに含む。)を用い、厚さが異なるアルミニウム合金層を有する型基材を作製し、これに対して、陽極酸化(0.3質量%の蓚酸水溶液、10℃、80V)とエッチング(10質量%のリン酸水溶液、30℃)とを交互に、陽極酸化5回、エッチング4回行うことによって、モスアイ用型100A(図2(b)参照)を作製した。基材12としては、ガラス基板またはアルミニウムパイプ(ロール状のアルミニウム基材)を用いた。無機下地層14としては、厚さが200nmの酸化タンタル(Ta25)層を形成した。アルミニウム合金層18の成膜は、DCマグネトロンスパッタリング装置を用いて、必要に応じて、スパッタガスとしてアルゴン(Ar)ガスに加えて窒素ガス(N2)を導入した。スパッタ中、無機下地層14の表面温度を80℃に制御した。典型的な条件は、スパッタガス(Arガス)の流量が440sccmであり、スパッタ時の真空度が0.4Paで、窒素ガスを導入した際の窒素ガスの流量は10sccmである(詳細は、特許文献7を参照)。陽極酸化時間、エッチング時間等の個々の条件は下記の表1に併せて示す。なお、比較例の試料の形態は実施例1~4と異なるので、陽極酸化時間、エッチング時間等の条件を、直接的な比較はできないが、陽極酸化時間は約33秒、エッチング時間は約25分であった。 In the following Examples 1 to 4 and Comparative Examples, an aluminum alloy layer containing 0.5% by mass of Ti (Examples 1 to 3 further includes N of 1.2% by mass to 2.0% by mass). A mold substrate having aluminum alloy layers having different thicknesses was used, and anodization (0.3 mass% oxalic acid aqueous solution, 10 ° C., 80 V) and etching (10 mass% phosphoric acid aqueous solution) were used. , 30 [deg.] C.) alternately, and anodizing 5 times and etching 4 times, a moth-eye mold 100A (see FIG. 2B) was produced. As the substrate 12, a glass substrate or an aluminum pipe (rolled aluminum substrate) was used. As the inorganic underlayer 14, a tantalum oxide (Ta 2 O 5 ) layer having a thickness of 200 nm was formed. The aluminum alloy layer 18 was formed by using a DC magnetron sputtering apparatus and introducing nitrogen gas (N 2 ) in addition to argon (Ar) gas as a sputtering gas as necessary. During sputtering, the surface temperature of the inorganic underlayer 14 was controlled at 80 ° C. Typical conditions are a sputtering gas (Ar gas) flow rate of 440 sccm, a vacuum degree during sputtering of 0.4 Pa, and a nitrogen gas flow rate when nitrogen gas is introduced is 10 sccm (for details, see Patent Reference 7). Individual conditions such as anodizing time and etching time are also shown in Table 1 below. Since the sample form of the comparative example is different from those of Examples 1 to 4, conditions such as anodizing time and etching time cannot be directly compared, but the anodizing time is about 33 seconds and the etching time is about 25. Minutes.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 各反射防止膜は、図12を参照して説明した方法で作製した。被加工物42としては、TAC(トリアセチルセルロース)フィルムを用いた。表1は、各反射防止膜のヘイズ値を示す。ヘイズ値は、日本電色工業株式会社製の積分球式濁度計NDH-2000を用いて測定した。投光は平行光とした。直進透過光と拡散透過光との和を全光線透過光とし、全光線透過光に対する拡散透過光の比をヘイズ値とした。 Each antireflection film was produced by the method described with reference to FIG. As the workpiece 42, a TAC (triacetyl cellulose) film was used. Table 1 shows the haze value of each antireflection film. The haze value was measured using an integrating sphere turbidimeter NDH-2000 manufactured by Nippon Denshoku Industries Co., Ltd. The projection was parallel light. The sum of the straight transmitted light and the diffuse transmitted light was defined as the total light transmitted light, and the ratio of the diffuse transmitted light to the total light transmitted light was defined as the haze value.
 図3(a)に、実施例1に用いた型基材の表面のSEM像を示し、図3(b)に実施例1のモスアイ用型の表面のSEM像を示し、図3(c)に、反射防止膜の表面のSEM像を示す。 3A shows an SEM image of the surface of the mold substrate used in Example 1, FIG. 3B shows an SEM image of the surface of the moth-eye mold of Example 1, and FIG. Shows an SEM image of the surface of the antireflection film.
 図3(a)に示す実施例1の型基材は、厚さが6μmのアルミニウム合金層を有している。図3(a)のSEM像の中央および右下に見える粒径が特に大きい粒子は異常粒子である。全体に対して、0.5質量%のTiおよび1.2質量%以上2.0質量%以下のNを含み、残りがAlであるアルミニウム合金の組成では、異常粒子の発生を完全に抑制することはできなかったが、高純度アルミニウム層に比べて異常粒子の発生は少なく、また、高純度アルミニウム層に見られた異常粒子の周辺の隙間(図13(a)および(b)参照)は見られなかった。 The mold base material of Example 1 shown in FIG. 3A has an aluminum alloy layer with a thickness of 6 μm. Particles having a particularly large particle size that are visible in the center and lower right of the SEM image in FIG. 3A are abnormal particles. The composition of an aluminum alloy containing 0.5% by mass of Ti and 1.2% by mass or more and 2.0% by mass or less of N with the remainder being Al, completely suppresses the generation of abnormal particles. However, the generation of abnormal particles is less than that of the high-purity aluminum layer, and the gap around the abnormal particles observed in the high-purity aluminum layer (see FIGS. 13A and 13B) is I couldn't see it.
 図3(b)に示す実施例1のモスアイ用型の表面のポーラスアルミナ層は、表面の法線方向から見たときの2次元的な大きさが50nm以上300nm未満で、深さが50nm以上300nm以下の複数の第1凹部を有している。複数の第1凹部は、それぞれが、50nm以上300nm未満の隣接間距離で複数の第1凹部が環状に配列された複数の環状凹部群を含んでいる。異常粒子の表面には、第1凹部がランダムにかつ均一に形成されている。 The porous alumina layer on the surface of the moth-eye mold of Example 1 shown in FIG. 3B has a two-dimensional size of 50 nm or more and less than 300 nm and a depth of 50 nm or more when viewed from the normal direction of the surface. It has a plurality of first recesses of 300 nm or less. Each of the plurality of first recesses includes a plurality of annular recess groups in which the plurality of first recesses are annularly arranged at a distance between adjacent portions of 50 nm or more and less than 300 nm. The first recesses are randomly and uniformly formed on the surface of the abnormal particles.
 図3(c)に示す実施例1の反射防止膜は、図1(a)を参照して説明した様に、表面の法線方向から見たときの2次元的な大きさが50nm以上300nm未満で、高さが50nm以上300nm以下の複数の第1凸部32aを有している。複数の第1凸部32aは、それぞれが、50nm以上300nm未満の隣接間距離で複数の第1凸部32aが環状に配列された、複数の環状凸部群を含み、複数の環状凸部群のそれぞれによって包囲された複数の領域は、長径と短径との平均値が300nm超800nm以下の複数の第1領域R1を含んでいる。図1(a)に示したSEM像において、破線が概ね頂点を通る第1凸部32aで構成された環状凸部群は、平均的な大きさを有するもので、この環状凸部群によって包囲された第1領域(破線内の領域)の長径は850nm、短径は650nmであり、長径と短径との平均値は750nmであった。すなわち、実施例1の反射防止膜における複数の第1領域は、長径と短径との平均値が750nmの第1領域を多く含んでいると言える。なお、表1に示した環状領域の平均径も、第1領域の長径と短径との平均値であるが、求め方が違う。表1中の環状領域の平均径の値については、後に詳述する。実施例1の表1中の環状領域の平均径は723.8nmであり、反射防止膜のヘイズ値は11.48%であった。 As described with reference to FIG. 1A, the antireflection film of Example 1 shown in FIG. 3C has a two-dimensional size of 50 nm or more and 300 nm when viewed from the normal direction of the surface. And a plurality of first convex portions 32a having a height of 50 nm or more and 300 nm or less. Each of the plurality of first convex portions 32a includes a plurality of annular convex portion groups in which the plurality of first convex portions 32a are annularly arranged at an adjacent distance of 50 nm or more and less than 300 nm. The plurality of regions surrounded by each include a plurality of first regions R1 having an average value of a major axis and a minor axis of more than 300 nm and 800 nm or less. In the SEM image shown in FIG. 1 (a), the annular convex group composed of the first convex part 32a whose broken line passes substantially through the apex has an average size, and is surrounded by this annular convex group. The major axis of the first region (the region within the broken line) was 850 nm, the minor axis was 650 nm, and the average value of the major axis and the minor axis was 750 nm. That is, it can be said that the plurality of first regions in the antireflection film of Example 1 includes many first regions having an average value of the major axis and the minor axis of 750 nm. In addition, although the average diameter of the cyclic | annular area | region shown in Table 1 is also an average value of the major axis and minor axis of a 1st area | region, how to obtain | require is different. The value of the average diameter of the annular region in Table 1 will be described in detail later. The average diameter of the annular region in Table 1 of Example 1 was 723.8 nm, and the haze value of the antireflection film was 11.48%.
 図4(a)~(c)に、実施例2~4による反射防止膜の表面のSEM像を示す。実施例2~4のモスアイ用型の作製に用いた型基材が有するアルミニウム合金層の厚さは、それぞれ、4μm、4μm、3μmである。なお、実施例2と3では、同じ厚さのアルミニウム合金層を用いたが、成膜条件が異なる。 FIGS. 4 (a) to 4 (c) show SEM images of the surfaces of the antireflection films according to Examples 2 to 4. FIG. The thicknesses of the aluminum alloy layers of the mold base materials used for producing the moth-eye molds of Examples 2 to 4 are 4 μm, 4 μm, and 3 μm, respectively. In Examples 2 and 3, aluminum alloy layers having the same thickness were used, but the film forming conditions were different.
 図4(a)に示す実施例2の反射防止膜において、概ね頂点を通る破線で示した環状凸部群で包囲された第1領域(破線内の領域)の長径は800nm、短径は500nmであり、長径と短径との平均値は650nmであった。実施例2の表1中の環状領域の平均径は572nmであり、反射防止膜のヘイズ値は4.38%であった。 In the antireflection film of Example 2 shown in FIG. 4A, the major axis of the first region (the region within the dashed line) surrounded by the annular convex portion group indicated by the broken line passing through the apex is 800 nm, and the minor axis is 500 nm. The average value of the major axis and the minor axis was 650 nm. The average diameter of the annular region in Table 1 of Example 2 was 572 nm, and the haze value of the antireflection film was 4.38%.
 一方、図4(b)に示す実施例3の反射防止膜において、概ね頂点を通る破線で示した環状凸部群で包囲された第1領域(破線内の領域)の長径は600nm、短径は450nmであり、長径と短径との平均値は525nmであった。実施例3の表1中の環状領域の平均径は514.8nmであり、実施例3の反射防止膜のヘイズ値は5.63%であった。 On the other hand, in the antireflection film of Example 3 shown in FIG. 4B, the major axis of the first region (the region within the broken line) surrounded by the annular convex group indicated by the broken line passing through the apex is 600 nm and the minor diameter. Was 450 nm, and the average value of the major axis and the minor axis was 525 nm. The average diameter of the annular region in Table 1 of Example 3 was 514.8 nm, and the haze value of the antireflection film of Example 3 was 5.63%.
 実施例2と実施例3とは、アルミニウム合金層の成膜条件が異なる。実施例2では、スパッタにおいて2つのターゲット(2源)を用いて、厚さ200nm成膜するたびに一定時間放置し、スパッタ中の型基材の表面の温度の上昇を抑制した。実施例3では、スパッタにおいて1つのターゲット(1源)を用いて、厚さ1000nm成膜するたびに一定時間放置し、スパッタ中の型基材の表面の温度の上昇を抑制した。この成膜条件の違いが、アルミニウム合金層の結晶粒の大きさの違いとなったと考えられる。 Example 2 and Example 3 differ in the film forming conditions of the aluminum alloy layer. In Example 2, two targets (two sources) were used in sputtering and left for a fixed time each time a film having a thickness of 200 nm was formed, thereby suppressing an increase in the temperature of the surface of the mold substrate during sputtering. In Example 3, using one target (one source) in sputtering, the film was allowed to stand for a certain time each time a film having a thickness of 1000 nm was formed, thereby suppressing an increase in the temperature of the surface of the mold substrate during sputtering. This difference in the film forming conditions is considered to be the difference in the size of the crystal grains of the aluminum alloy layer.
 図4(c)に示す実施例4の反射防止膜において、概ね頂点を通る破線で示した環状凸部群で包囲された第1領域(破線内の領域)の長径は350nm、短径は250nmであり、長径と短径との平均値は300nmであった。実施例4の表1中の環状領域の平均径は543.4nmであり、実施例4の反射防止膜のヘイズ値は2.29%であった。 In the antireflection film of Example 4 shown in FIG. 4C, the major axis of the first region (the region within the dashed line) surrounded by the annular convex portion group indicated by the broken line passing through the apex is 350 nm, and the minor axis is 250 nm. The average value of the major axis and the minor axis was 300 nm. The average diameter of the annular region in Table 1 of Example 4 was 543.4 nm, and the haze value of the antireflection film of Example 4 was 2.29%.
 図5は、比較例の反射防止膜の表面SEM像である。比較例の反射防止膜は、現在市販している、アンチグレア機能を有しない、クリアタイプの反射防止膜であり、第1凸部が不規則に配列されており、第1領域を形成していない。比較のために、図5中に破線で示した領域の大きさを求めると、約200nmであり、隣接する第1凸部間の距離とほぼ等しい。比較例の反射防止膜のヘイズ値は0.52%と非常に小さい。 FIG. 5 is a surface SEM image of the antireflection film of the comparative example. The anti-reflection film of the comparative example is a clear-type anti-reflection film that is currently on the market and does not have an anti-glare function, and the first protrusions are irregularly arranged and the first region is not formed. . For comparison, the size of the area indicated by the broken line in FIG. 5 is about 200 nm, which is substantially equal to the distance between the adjacent first convex portions. The haze value of the antireflection film of the comparative example is as very small as 0.52%.
 次に、図6および図7を参照して、アルミニウム合金層の厚さと異常粒子との関係を説明する。図6は、アルミニウム合金層の厚さが異なる型基材のSEM像であり、図6(a)および(b)は厚さが6μm(実施例1)、図6(c)および(d)は厚さが4μm(実施例2)、図6(e)および(f)は厚さが3μm(実施例4)のアルミニウム合金層を有する型基材のSEM像であり、それぞれ、表面のSEM像と断面のSEM像である。図7は、アルミニウム合金層の厚さが異なる型基材を用いて作製されたモスアイ用型を用いて形成した反射防止膜の表面SEM像であり、図7(a)および(b)は厚さが6μm(実施例1)、図7(c)および(d)は厚さが4μm(実施例2)、図7(e)および(f)は厚さが3μm(実施例4)のアルミニウム合金層を有する型基材を用いて作製されたモスアイ用型を用いて形成した反射防止膜の表面SEM像である。 Next, with reference to FIGS. 6 and 7, the relationship between the thickness of the aluminum alloy layer and abnormal particles will be described. FIG. 6 shows SEM images of mold bases having different thicknesses of aluminum alloy layers. FIGS. 6 (a) and 6 (b) show a thickness of 6 μm (Example 1), and FIGS. 6 (c) and 6 (d). Is a SEM image of a mold substrate having an aluminum alloy layer having a thickness of 4 μm (Example 2) and FIGS. 6E and 6F having a thickness of 3 μm (Example 4). It is a SEM image of an image and a section. FIG. 7 is a surface SEM image of an antireflection film formed using a moth-eye mold produced using mold bases having different thicknesses of aluminum alloy layers. FIGS. 7 (a) and 7 (b) are thicknesses. 7 μm (Example 1), FIGS. 7 (c) and (d) are aluminum with a thickness of 4 μm (Example 2), and FIGS. 7 (e) and (f) are aluminum with a thickness of 3 μm (Example 4). It is the surface SEM image of the anti-reflective film formed using the type | mold for moth eyes produced using the type | mold base material which has an alloy layer.
 図6(a)および(b)のSEM像からわかるように、厚さが6μmのアルミニウム合金層は大きな異常粒子を有している。これに対し、厚さが4μmのアルミニウム合金層は、図6(c)および(d)のSEM像からわかるように、異常粒子を有しているものの、その大きさは、厚さが6μmのアルミニウム合金層の異常粒子の大きさに比べてずっと小さい。図6(e)および(f)のSEM像からわかるように、厚さが3μmのアルミニウム合金層は異常粒子を有しない。このように、アルミニウム合金層の厚さが3μmを超えて大きくなると、異常粒子が含まれるようになり、アルミニウム合金層の厚さが大きいほど、異常粒子も大きくなる。 As can be seen from the SEM images of FIGS. 6A and 6B, the aluminum alloy layer having a thickness of 6 μm has large abnormal particles. In contrast, the aluminum alloy layer having a thickness of 4 μm has abnormal particles as can be seen from the SEM images of FIGS. 6C and 6D, but the size is 6 μm. Much smaller than the size of abnormal particles in the aluminum alloy layer. As can be seen from the SEM images in FIGS. 6E and 6F, the aluminum alloy layer having a thickness of 3 μm does not have abnormal particles. Thus, when the thickness of the aluminum alloy layer exceeds 3 μm, abnormal particles are included, and as the thickness of the aluminum alloy layer increases, the abnormal particles also increase.
 図7(a)、(b)、(c)および(d)に示す反射防止膜の表面SEM像を見ると、異常粒子を含むアルミニウム合金層を有する型基材を用いて作製されたモスアイ用型を用いて形成された反射防止膜には、異常粒子に対応する大きさの凹部が形成されている。特に、図7(a)および(b)に示す様に、厚さが6μmのアルミニウム合金層に含まれる異常粒子が非常に大きい(面積円相当径が3μm以上)ので、異常粒子の斜面に沿って環状の隆起が形成されている。図7(c)および(d)を見ると、異常粒子に対応する大きさの凹部は形成されているが、環状の隆起は見られない。これは、厚さが4μmのアルミニウム合金層に含まれる異常粒子の面積円相当径が2μm未満で比較的小さいためと考えられる。また、図7(e)および(f)からわかるように、異常粒子を含まないアルミニウム合金層を用いて作製されたモスアイ用型を用いると、当然に、異常粒子に対応する大きさの凹部も環状の隆起も形成されない。 When the surface SEM images of the antireflection film shown in FIGS. 7A, 7B, 7C, and 7D are viewed, the moth-eye for the moth eye manufactured using the mold base material having the aluminum alloy layer containing abnormal particles is shown. In the antireflection film formed using the mold, a recess having a size corresponding to abnormal particles is formed. In particular, as shown in FIGS. 7A and 7B, abnormal particles contained in an aluminum alloy layer having a thickness of 6 μm are very large (area circle equivalent diameter is 3 μm or more). An annular ridge is formed. 7C and 7D, a recess having a size corresponding to the abnormal particle is formed, but an annular ridge is not seen. This is presumably because the area equivalent circle diameter of the abnormal particles contained in the aluminum alloy layer having a thickness of 4 μm is relatively small, less than 2 μm. Further, as can be seen from FIGS. 7 (e) and (f), when a moth-eye mold produced using an aluminum alloy layer that does not contain abnormal particles is used, naturally, a recess having a size corresponding to the abnormal particles is also present. An annular ridge is not formed.
 図7(a)および(b)に示すような環状の隆起を有する反射防止膜は、耐擦傷性が低いという欠点を有している。すなわち、反射防止膜の表面を例えば布(例えば、KBセーレン株式会社製のザヴィーナMX、savinaは登録商標)でこすると、環状の隆起が破壊されて、表面が白濁して見えるようになることがある。したがって、このような反射防止膜は、耐擦傷性が要求される用途(例えば、スマートフォンなどの携帯端末)には好ましくない。 7A and 7B have a drawback that the antireflection film having an annular ridge has low scratch resistance. That is, if the surface of the antireflection film is rubbed with, for example, a cloth (for example, Savina MX manufactured by KB Seiren Co., Ltd., savina is a registered trademark), the annular ridge is destroyed, and the surface may appear cloudy. is there. Therefore, such an antireflection film is not preferable for applications requiring scratch resistance (for example, portable terminals such as smartphones).
 また、図7(a)~(d)に示すような、異常粒子に対応する大きさの凹部を有すると、反射防止膜を形成する際の転写工程において、光硬化性樹脂がモスアイ用型の上記の凹部内に残存しやすく、その結果、モスアイ用型を連続的に使用することが困難になることがある。例えば、ロール・ツー・ロール法で、反射防止膜を形成する場合、連続的に反射防止膜を形成できる長さが短くなり、製造効率が低下するという問題がある。 7A to 7D, when the concave portion has a size corresponding to abnormal particles, the photocurable resin is used for the moth-eye mold in the transfer process when forming the antireflection film. It tends to remain in the recess, and as a result, it may be difficult to use the moth-eye mold continuously. For example, when the antireflection film is formed by the roll-to-roll method, there is a problem that the length of the continuous formation of the antireflection film is shortened and the production efficiency is lowered.
 上記のことから、環状隆起の発生を抑制するためには、型基材が有するアルミニウム合金層の厚さは6μm未満であることが好ましく、4μm以下であることがさらに好ましい。また、異常粒子に対応する大きさの凹部が形成されることを抑制するためには、アルミニウム合金層の厚さは3μm以下であることが好ましい。 From the above, in order to suppress the occurrence of the annular bulge, the thickness of the aluminum alloy layer of the mold base is preferably less than 6 μm, and more preferably 4 μm or less. Moreover, in order to suppress the formation of a recess having a size corresponding to abnormal particles, the thickness of the aluminum alloy layer is preferably 3 μm or less.
 次に、図8、図9および図10を参照して、実施例1~4および比較例の反射防止膜の環状凸部群によって包囲された領域(実施例1~4における第1領域)の平均径とヘイズ値との関係を説明する。図8は、アルミニウム合金層の厚さが異なる型基材を用いて作製されたモスアイ用型を用いて形成した反射防止膜の表面SEM像であり、図8(a)は厚さが6μm(実施例1)、図8(b)は厚さが4μm(実施例2)のアルミニウム合金層を有する型基材を用いて作製されたモスアイ用型を用いて形成した反射防止膜の表面SEM像である。図9は、アルミニウム合金層の厚さが異なる型基材を用いて作製されたモスアイ用型を用いて形成した反射防止膜の表面SEM像であり、図9(a)は厚さが4μm(実施例3)、図9(b)は厚さが3μm(実施例4)のアルミニウム合金層を有する型基材を用いて作製されたモスアイ用型を用いて形成した反射防止膜の表面SEM像である。図10は、実施例1~4および比較例の反射防止膜の環状凸部群によって包囲された領域の平均径とヘイズ値との関係を示すグラフである。 Next, referring to FIG. 8, FIG. 9, and FIG. 10, the region (first region in Examples 1 to 4) surrounded by the annular convex group of the antireflection films of Examples 1 to 4 and the comparative example is described. The relationship between the average diameter and the haze value will be described. FIG. 8 is a surface SEM image of the antireflection film formed using a moth-eye mold produced using mold bases having different thicknesses of the aluminum alloy layer, and FIG. 8A shows a thickness of 6 μm ( Example 1), FIG. 8B is a surface SEM image of an antireflection film formed using a moth-eye mold produced using a mold substrate having an aluminum alloy layer having a thickness of 4 μm (Example 2). It is. FIG. 9 is a surface SEM image of an antireflection film formed by using a moth-eye mold produced using mold bases having different thicknesses of aluminum alloy layers, and FIG. 9A shows a thickness of 4 μm ( Example 3), FIG. 9B is a surface SEM image of an antireflection film formed using a moth-eye mold produced using a mold substrate having an aluminum alloy layer having a thickness of 3 μm (Example 4). It is. FIG. 10 is a graph showing the relationship between the average diameter and the haze value of the region surrounded by the annular convex portions of the antireflection films of Examples 1 to 4 and Comparative Example.
 図4および図5を参照して、実施例1~4および比較例の反射防止膜の構造(代表的な第1領域の大きさ)とヘイズ値との関係を説明したが、ここでは、第1領域の大きさを以下の様にして求めることによって、第1領域の大きさの精度を高めることを試みた。 With reference to FIGS. 4 and 5, the relationship between the antireflection coating structures of Examples 1 to 4 and the comparative example (representative first region size) and the haze value has been described. An attempt was made to increase the accuracy of the size of the first region by obtaining the size of the one region as follows.
 反射防止膜の表面のSEM像の中から、5μm×5μmの正方形の領域を選択する。このとき、異常粒子に対応する構造が形成されている領域を含まないように、対象とする領域を選択する。選択した領域の中で、第1領域の大きい方から10個を選択し、長径と短径との長さを測る。10個の第1領域について、長径と短径との平均値を求めた。得られた結果を表1(環状領域の平均値)に示す。また、第1領域の長径と短径との平均値(=環状凸部群によって包囲された領域の平均径)とヘイズ値との関係を図10のグラフに示す。 Select a 5 μm × 5 μm square area from the SEM image of the surface of the antireflection film. At this time, a target region is selected so as not to include a region where a structure corresponding to abnormal particles is formed. Among the selected areas, 10 are selected from the larger ones of the first areas, and the lengths of the major axis and the minor axis are measured. For the ten first regions, the average value of the major axis and the minor axis was determined. The obtained results are shown in Table 1 (average value of the annular region). Further, the relationship between the average value of the major axis and minor axis of the first region (= the average diameter of the region surrounded by the annular convex portion group) and the haze value is shown in the graph of FIG.
 図10のグラフからわかるように、第1領域の長径と短径との平均値が大きくなるほど、ヘイズ値が大きくなるという傾向が認められる。なお、実施例2および3の反射防止膜のヘイズ値が実施例4の反射防止膜のヘイズ値よりも大きくなっているのは、実施例2および3の反射防止膜には、異常粒子による比較的大きな構造(面積円相当径が1μm超)が存在し、それによるヘイズ値の増大があるためと考えられる。 As can be seen from the graph of FIG. 10, it is recognized that the haze value tends to increase as the average value of the major axis and minor axis of the first region increases. In addition, the haze value of the antireflection film of Examples 2 and 3 is larger than the haze value of the antireflection film of Example 4. The antireflection films of Examples 2 and 3 are compared with abnormal particles. This is presumably because there is a large structure (area circle equivalent diameter exceeds 1 μm), and the haze value increases accordingly.
 実施例2~4の反射防止膜における第1領域の長径と短径との平均値は、500nm以上600nm以下の範囲に入っており、ヘイズ値は2%以上6%以下の範囲に入っている。実施例2~4の反射防止膜は、クリア性を有しつつ、防眩性を発現しており、高精細な表示パネルに好適に用いられる。 In the antireflection films of Examples 2 to 4, the average value of the major axis and the minor axis of the first region is in the range of 500 nm to 600 nm, and the haze value is in the range of 2% to 6%. . The antireflection films of Examples 2 to 4 have clearness and exhibit antiglare properties, and are preferably used for high-definition display panels.
 もちろん、実施例1の反射防止膜も比較的高い防眩性が求められる用途またはユーザに対しては好適に用いられ得る。図11(a)に実施例1の反射防止膜の表面SEM像を示し、図11(b)に実施例5の反射防止膜の表面SEM像を示す。実施例5は、モスアイ用型の製造プロセスにおける陽極酸化の時間を45秒にした以外は、実施例1(陽極酸化時間33秒)と同様にして作製したモスアイ用型を用いて反射防止膜を作製した。 Of course, the antireflection film of Example 1 can also be suitably used for applications or users that require relatively high antiglare properties. FIG. 11A shows a surface SEM image of the antireflection film of Example 1, and FIG. 11B shows a surface SEM image of the antireflection film of Example 5. In Example 5, an antireflection film was formed using a moth-eye mold produced in the same manner as in Example 1 (anodization time 33 seconds) except that the anodic oxidation time in the moth-eye mold manufacturing process was 45 seconds. Produced.
 図11(a)からわかるように、実施例1の反射防止膜における第1凸部の高さは100nm~150nmであり、第1凸部によって包囲された領域内の第2凸部の高さは10nm程度である。また、図11(b)からわかるように、実施例5の反射防止膜における第1凸部の高さは200nm~250nmであり、第1凸部によって包囲された領域内の第2凸部の高さは50nm程度である。 As can be seen from FIG. 11A, the height of the first protrusions in the antireflection film of Example 1 is 100 nm to 150 nm, and the height of the second protrusions in the region surrounded by the first protrusions. Is about 10 nm. Further, as can be seen from FIG. 11B, the height of the first convex portion in the antireflection film of Example 5 is 200 nm to 250 nm, and the second convex portion in the region surrounded by the first convex portion. The height is about 50 nm.
 このように、本発明の実施形態による反射防止膜は、第1凸部によって包囲された第1領域が、長径と短径との平均値が300nm超800nm以下という大きさを有しているので、クリア性を有しつつ、防眩性を発現することができる。第1凸部および第2凸部は、従来のモスアイ構造を有する反射防止膜と同様に反射防止機能を発現する。 As described above, in the antireflection film according to the embodiment of the present invention, the first region surrounded by the first protrusions has an average value of the major axis and the minor axis of more than 300 nm and not more than 800 nm. In addition, the antiglare property can be exhibited while having clearness. The first convex portion and the second convex portion exhibit an antireflection function similarly to the conventional antireflection film having a moth-eye structure.
 本発明は、反射防止膜および、そのような反射防止膜の作製に好適に用いられる型、ならびに型の製造方法に用いられる。本発明によると反射防止膜は、高精細な表示パネルに好適に用いられる。 The present invention is used for an antireflection film, a mold suitably used for the production of such an antireflection film, and a method for manufacturing the mold. According to the present invention, the antireflection film is suitably used for a high-definition display panel.
 32A  反射防止膜
 32s  支持部分
 32a  第1凸部
 32b  第2凸部
 R1  第1領域(環状領域)
32A Anti-reflective film 32s Support part 32a 1st convex part 32b 2nd convex part R1 1st area | region (annular area | region)

Claims (8)

  1.  表面の法線方向から見たときの2次元的な大きさが50nm以上300nm未満で、高さが50nm以上300nm以下の複数の第1凸部を有し、
     前記複数の第1凸部は、それぞれが、50nm以上300nm未満の隣接間距離で前記複数の第1凸部が環状に配列された、複数の環状凸部群を含み、
     前記複数の環状凸部群のそれぞれによって包囲された複数の領域は、長径と短径との平均値が300nm超800nm以下の複数の第1領域を含む、反射防止膜。
    A plurality of first protrusions having a two-dimensional size of 50 nm or more and less than 300 nm and a height of 50 nm or more and 300 nm or less when viewed from the normal direction of the surface;
    Each of the plurality of first protrusions includes a plurality of annular protrusion groups in which each of the plurality of first protrusions is arranged in an annular shape with an adjacent distance of 50 nm or more and less than 300 nm,
    The plurality of regions surrounded by each of the plurality of annular convex groups includes an antireflection film including a plurality of first regions having an average value of a major axis and a minor axis of more than 300 nm and not more than 800 nm.
  2.  前記複数の第1領域は、前記複数の第1凸部を有しない、請求項1に記載の反射防止膜。 The antireflection film according to claim 1, wherein the plurality of first regions do not have the plurality of first protrusions.
  3.  前記複数の第1領域は、前記複数の第1凸部よりも高さの小さい、2個以上の第2凸部を有する第1領域を含む、請求項1または2に記載の反射防止膜。 3. The antireflection film according to claim 1, wherein the plurality of first regions include a first region having two or more second protrusions that are smaller in height than the plurality of first protrusions.
  4.  表面にポーラスアルミナ層を有し、
     前記ポーラスアルミナ層は、表面の法線方向から見たときの2次元的な大きさが50nm以上300nm未満で、深さが50nm以上300nm以下の複数の第1凹部を有し、
     前記複数の第1凹部は、それぞれが、50nm以上300nm未満の隣接間距離で前記複数の第1凹部が環状に配列された、複数の環状凹部群を含み、
     前記複数の環状凹部群のそれぞれによって包囲された複数の領域は、長径と短径との平均値が300nm超800nm以下の複数の第1領域を含む、型。
    Having a porous alumina layer on the surface;
    The porous alumina layer has a plurality of first recesses having a two-dimensional size of 50 nm or more and less than 300 nm and a depth of 50 nm or more and 300 nm or less when viewed from the normal direction of the surface,
    Each of the plurality of first recesses includes a plurality of annular recess groups in which the plurality of first recesses are annularly arranged at an adjacent distance of 50 nm or more and less than 300 nm,
    The plurality of regions surrounded by each of the plurality of annular recess groups includes a plurality of first regions having an average value of a major axis and a minor axis of more than 300 nm and not more than 800 nm.
  5.  前記ポーラスアルミナ層の下にアルミニウム合金層をさらに有し、
     前記アルミニウム合金層は、アルミニウムとチタンとを含む、請求項4に記載の型。
    Further comprising an aluminum alloy layer under the porous alumina layer;
    The mold according to claim 4, wherein the aluminum alloy layer includes aluminum and titanium.
  6.  前記アルミニウム合金層および前記ポーラスアルミナ層の合計の厚さは2μm以上である、請求項5に記載の型。 The mold according to claim 5, wherein the total thickness of the aluminum alloy layer and the porous alumina layer is 2 µm or more.
  7.  前記アルミニウム合金層の下に無機下地層をさらに有する、請求項5または6に記載の型。 The mold according to claim 5 or 6, further comprising an inorganic underlayer under the aluminum alloy layer.
  8.  請求項5から7のいずれかに記載の型を製造する方法であって、
     (a)基材上に厚さが2μm以上のアルミニウム合金層を形成する工程と、
     (b)前記アルミニウム合金層を部分的に陽極酸化することによって、複数の微細な凹部を有するポーラスアルミナ層を形成する工程と、
     (c)前記工程(b)の後に、前記ポーラスアルミナ層を、エッチング液に接触させることによって、前記ポーラスアルミナ層の前記複数の微細な凹部を拡大させる工程と、
     (d)前記工程(c)の後に、さらに陽極酸化することによって、前記複数の微細な凹部を成長させる工程とを包含する、型の製造方法。
    A method for producing a mold according to any one of claims 5 to 7,
    (A) forming an aluminum alloy layer having a thickness of 2 μm or more on the substrate;
    (B) forming a porous alumina layer having a plurality of fine recesses by partially anodizing the aluminum alloy layer;
    (C) After the step (b), the porous alumina layer is brought into contact with an etching solution to enlarge the plurality of fine recesses of the porous alumina layer;
    (D) After the said process (c), the process of growing the said several fine recessed part by further anodizing, The manufacturing method of a type | mold.
PCT/JP2015/082735 2014-11-25 2015-11-20 Mold, method for manufacturing mold, and antireflective film WO2016084745A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016561562A JP6458051B2 (en) 2014-11-25 2015-11-20 Mold, mold manufacturing method and antireflection film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-238174 2014-11-25
JP2014238174 2014-11-25

Publications (1)

Publication Number Publication Date
WO2016084745A1 true WO2016084745A1 (en) 2016-06-02

Family

ID=56074307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082735 WO2016084745A1 (en) 2014-11-25 2015-11-20 Mold, method for manufacturing mold, and antireflective film

Country Status (2)

Country Link
JP (1) JP6458051B2 (en)
WO (1) WO2016084745A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143370A1 (en) * 2017-02-03 2018-08-09 シャープ株式会社 Antireflective film, method for manufacturing antireflective film, mold, and method for manufacturing mold
WO2019044598A1 (en) * 2017-09-01 2019-03-07 王子ホールディングス株式会社 Anti-reflection structure
EP3459353A1 (en) 2017-09-26 2019-03-27 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, photocurable resin composition, manufacturing method of synthetic polymer film, and sterilization method with use of surface of synthetic polymer film
US10934405B2 (en) 2018-03-15 2021-03-02 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, plastic product which includes synthetic polymer film, sterilization method with use of surface of synthetic polymer film, photocurable resin composition, and manufacturing method of synthetic polymer film
US11364673B2 (en) 2018-02-21 2022-06-21 Sharp Kabushiki Kaisha Synthetic polymer film and production method of synthetic polymer film

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138059A (en) * 2009-12-28 2011-07-14 Sony Corp Conductive optical element, touch panel, and liquid crystal display device
JP2011227387A (en) * 2010-04-22 2011-11-10 Olympus Corp Optical device
WO2012137664A1 (en) * 2011-04-01 2012-10-11 シャープ株式会社 Mold production method
WO2013146771A1 (en) * 2012-03-30 2013-10-03 三菱レイヨン株式会社 Aluminum base die for stampers and method for manufacturing same, stamper and method for manufacturing same, method for manufacturing article, and antireflection article
WO2013183576A1 (en) * 2012-06-06 2013-12-12 シャープ株式会社 Mold base material, production method for mold base material, mold production method, and mold
JP2014002322A (en) * 2012-06-20 2014-01-09 Asahi Kasei E-Materials Corp Optical element and conductive optical element
WO2014021039A1 (en) * 2012-07-31 2014-02-06 シャープ株式会社 Method for producing mold
WO2014021377A1 (en) * 2012-07-31 2014-02-06 大日本印刷株式会社 Antireflective article, image display device, and production mold for antireflective article
JP2014209235A (en) * 2013-03-28 2014-11-06 大日本印刷株式会社 Antireflection article and image display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103581933B (en) * 2012-08-08 2018-04-17 电信科学技术研究院 A kind of method of cell management, system and equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138059A (en) * 2009-12-28 2011-07-14 Sony Corp Conductive optical element, touch panel, and liquid crystal display device
JP2011227387A (en) * 2010-04-22 2011-11-10 Olympus Corp Optical device
WO2012137664A1 (en) * 2011-04-01 2012-10-11 シャープ株式会社 Mold production method
WO2013146771A1 (en) * 2012-03-30 2013-10-03 三菱レイヨン株式会社 Aluminum base die for stampers and method for manufacturing same, stamper and method for manufacturing same, method for manufacturing article, and antireflection article
WO2013183576A1 (en) * 2012-06-06 2013-12-12 シャープ株式会社 Mold base material, production method for mold base material, mold production method, and mold
JP2014002322A (en) * 2012-06-20 2014-01-09 Asahi Kasei E-Materials Corp Optical element and conductive optical element
WO2014021039A1 (en) * 2012-07-31 2014-02-06 シャープ株式会社 Method for producing mold
WO2014021377A1 (en) * 2012-07-31 2014-02-06 大日本印刷株式会社 Antireflective article, image display device, and production mold for antireflective article
JP2014209235A (en) * 2013-03-28 2014-11-06 大日本印刷株式会社 Antireflection article and image display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143370A1 (en) * 2017-02-03 2018-08-09 シャープ株式会社 Antireflective film, method for manufacturing antireflective film, mold, and method for manufacturing mold
WO2019044598A1 (en) * 2017-09-01 2019-03-07 王子ホールディングス株式会社 Anti-reflection structure
US11243334B2 (en) 2017-09-01 2022-02-08 Oji Holdings Corporation Antireflective structure
EP3459353A1 (en) 2017-09-26 2019-03-27 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, photocurable resin composition, manufacturing method of synthetic polymer film, and sterilization method with use of surface of synthetic polymer film
US10968292B2 (en) 2017-09-26 2021-04-06 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, photocurable resin composition, manufacturing method of synthetic polymer film, and sterilization method with use of surface of synthetic polymer film
US11364673B2 (en) 2018-02-21 2022-06-21 Sharp Kabushiki Kaisha Synthetic polymer film and production method of synthetic polymer film
US10934405B2 (en) 2018-03-15 2021-03-02 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, plastic product which includes synthetic polymer film, sterilization method with use of surface of synthetic polymer film, photocurable resin composition, and manufacturing method of synthetic polymer film

Also Published As

Publication number Publication date
JPWO2016084745A1 (en) 2017-09-07
JP6458051B2 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
JP4583506B2 (en) Antireflection film, optical element including antireflection film, stamper, stamper manufacturing method, and antireflection film manufacturing method
JP4677515B2 (en) Mold and manufacturing method thereof
JP6458051B2 (en) Mold, mold manufacturing method and antireflection film
JP4916597B2 (en) Mold, mold manufacturing method and antireflection film
JP5615971B2 (en) Mold manufacturing method
JP4648995B2 (en) Mold and manufacturing method thereof
JP5027346B2 (en) Mold, mold manufacturing method, and antireflection film manufacturing method
JP4959841B2 (en) Antireflection film and display device
WO2011043464A1 (en) Mold and production method for same, and anti-reflection film
JP5797334B2 (en) Mold substrate, mold substrate manufacturing method, mold manufacturing method and mold
WO2011046114A1 (en) Die and method for manufacturing die, and anti-reflection coating
JPWO2010073636A1 (en) Method for manufacturing mold and method for manufacturing antireflection film using mold
WO2012029570A1 (en) Method for forming anodized layer and mold production method
JP5027347B2 (en) Mold and mold manufacturing method
WO2015159797A1 (en) Mold, method for producing mold, anti-reflection film and method for producing anti-reflection film
JP6089402B2 (en) Master plate for antireflection film production
JP5833763B2 (en) Mold manufacturing method
Uozu Moth Eye–Type Antireflection Films
JP2015045738A (en) Anisotropic transmittance member, manufacturing method therefor, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561562

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863296

Country of ref document: EP

Kind code of ref document: A1