WO2016084406A1 - Clutch mechanism - Google Patents

Clutch mechanism Download PDF

Info

Publication number
WO2016084406A1
WO2016084406A1 PCT/JP2015/063494 JP2015063494W WO2016084406A1 WO 2016084406 A1 WO2016084406 A1 WO 2016084406A1 JP 2015063494 W JP2015063494 W JP 2015063494W WO 2016084406 A1 WO2016084406 A1 WO 2016084406A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage chamber
peripheral surface
engagement element
output
rotating body
Prior art date
Application number
PCT/JP2015/063494
Other languages
French (fr)
Japanese (ja)
Inventor
保幸 小林
歩 須藤
Original Assignee
並木精密宝石株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 並木精密宝石株式会社 filed Critical 並木精密宝石株式会社
Priority to JP2016561416A priority Critical patent/JP6582215B2/en
Publication of WO2016084406A1 publication Critical patent/WO2016084406A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/08Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface with provision for altering the freewheeling action

Definitions

  • the present invention relates to a clutch mechanism that transmits and shuts off rotational force between an input rotator and an output rotator.
  • the motor rotates by generating a predetermined torque on the rotating shaft when energized, and the rotational position can be controlled.
  • the rotation of the rotating shaft cannot be controlled when power is not supplied.
  • the rotating shaft easily rotates. Therefore, for example, a device that wants to fix the stop position accurately even when power is not supplied, such as a tape feeder unit, needs to have a rotational position holding device such as a reverse input clutch.
  • a rotational position holding device such as a reverse input clutch.
  • an input rotator (30) provided coaxially with respect to the output rotator (20), and an inner peripheral surface of the storage chamber (11) and an outer peripheral surface of the output rotator (20).
  • An engagement element (41, 42) and an urging member (50) for urging the engagement element (41, 42) toward one side in the circumferential direction are provided.
  • cam surface (21, 23) which gradually narrows between the outer peripheral surface of the output rotating body (20) and the inner peripheral surface of the storage chamber (11) toward the one side, and the cam surfaces (21, 23) ) And a recess (22) adjacent to the one side, and fitted to the input rotating body (30) in a state having a play in the circumferential direction with respect to the recess (22) and from the inside of the recess (22) in the centrifugal direction.
  • a pressure transmission part (31) protruding to the side is formed. And there exists what has arrange
  • the present invention has been made in view of the above-described conventional circumstances, and a problem to be solved by the present invention is to provide a clutch mechanism that can reduce malfunction caused by wear or deformation.
  • One means for solving the above problems is a storage chamber having a cylindrical space, an output rotator stored coaxially in the storage chamber, and an input rotator provided coaxially with respect to the output rotator.
  • a cylindrical or spherical engaging element provided between the inner peripheral surface of the storage chamber and the outer peripheral surface of the output rotating body, and a biasing member that biases the engaging element toward one side in the circumferential direction.
  • a cam surface that gradually narrows the space between the outer peripheral surface of the output rotating body and the inner peripheral surface of the storage chamber toward the one side, and a concave portion adjacent to the one side of the cam surface are formed.
  • the input rotator is fitted with a recess in the circumferential direction with a play in the circumferential direction, and a pressure transmission portion protruding in the centrifugal direction from the recess is formed.
  • the engaging element is disposed so as to contact the cam surface and the inner peripheral surface of the storage chamber, and when the input rotating body rotates to the other side with respect to the one side, the press transmission portion is moved to the engaging surface.
  • the clutch mechanism is configured to push the output rotating body by abutting the pressing transmission portion on a circumferential end surface in the concave portion after abutting on the joint.
  • the ratio of the outer diameter of the engagement element to the inner diameter of the storage chamber is in the range of 0.20 or more and 0.27 or less.
  • the present invention is configured as described above, it is possible to reduce malfunctions caused by wear or deformation.
  • FIG. 3 is a structural diagram showing a main part of an example of a clutch mechanism according to the present invention. It is a longitudinal cross-sectional view of the clutch mechanism. It is a graph which shows the relationship between a diameter ratio and overcoming torque conventional ratio. It is a graph which shows the relationship between a wedge angle and climbing torque conventional ratio.
  • the first feature of the present embodiment is that a storage chamber having a columnar space, an output rotator stored coaxially in the storage chamber, and an input rotator provided coaxially with respect to the output rotator
  • a cylindrical or spherical engaging element provided between the inner peripheral surface of the storage chamber and the outer peripheral surface of the output rotating body, and a biasing member that biases the engaging element toward one side in the circumferential direction.
  • a cam surface that gradually narrows the space between the outer peripheral surface of the output rotating body and the inner peripheral surface of the storage chamber toward the one side, and a concave portion adjacent to the one side of the cam surface are formed.
  • the input rotator is fitted with a recess in the circumferential direction with a play in the circumferential direction, and a pressure transmission portion protruding in the centrifugal direction from the recess is formed.
  • the engaging element is disposed so as to contact the cam surface and the inner peripheral surface of the storage chamber, and when the input rotating body rotates to the other side with respect to the one side, the press transmission portion is moved to the engaging surface.
  • the clutch mechanism is configured to push the output rotating body by abutting the pressing transmission portion on a circumferential end surface in the concave portion after abutting on the joint.
  • the ratio of the outer diameter of the engagement element to the inner diameter of the storage chamber was set to a range of 0.20 or more and 0.27 or less.
  • the contact surface pressure between the inner peripheral surface of the storage chamber and the outer peripheral surface of the engagement element can be made relatively small, thereby reducing wear and deformation on the contact surface between the storage chamber and the engagement element. Can be reduced. Therefore, it is possible to alleviate malfunctions such as slipping of the engaging element to cause a locking failure, or engaging the engaging element closer to the concave portion between the inner circumferential surface of the storage chamber and the cam surface and making the releasing impossible.
  • the ratio of the outer diameter of the engagement element to the inner diameter of the storage chamber is set to 0.25 or less in order to more effectively reduce malfunctions and the like.
  • an angle formed by a tangent line between the inner peripheral surface of the storage chamber and the engagement element and a tangent line between the engagement element and the cam surface in order to more effectively reduce malfunctions and the like.
  • the upper limit value of the angle ⁇ was set so that the relationship of sin ⁇ / (cos ⁇ + 1) ⁇ ⁇ was established, and the lower limit value of the angle ⁇ was set to 11 °.
  • FIG. 1 is a cross section taken along line (A)-(A) in FIG. 2 and in FIG. 2 which is a side sectional view of the clutch mechanism 1 as viewed from the direction of lines (B)-(B) in FIG.
  • the fixing member 10 having the storage chamber 11, the output rotary body 20 coaxially stored in the storage chamber 11, and the input rotary body 30 provided coaxially with respect to the output rotary body 20 (see FIG. 2).
  • a pair of engagement elements 41, 42 provided between the storage chamber inner peripheral surface 11a and the outer peripheral surface of the output rotator 20, and one engagement element 41 on one side in the circumferential direction (clockwise according to FIG. 1).
  • a biasing member 50 that biases the other engagement element 42 toward the other circumferential side (counterclockwise according to FIG. 1).
  • the clutch mechanism 1 transmits the rotational force to the output rotator 20 to rotate the output rotator 20.
  • the output rotator 20 is locked so as not to rotate.
  • the storage chamber 11 inside the fixing member 10 is a substantially columnar space surrounded by the inner peripheral surface 11a.
  • the inner peripheral surface 11a is a cylindrical inner peripheral surface-like curved surface without unevenness.
  • the fixing member 10 is fixed to a non-moving portion (not shown) (for example, a support substrate of a tape feeder) in a non-rotatable manner.
  • the output rotator 20 is a substantially disk-shaped member arranged concentrically in the storage chamber 11, and the center side thereof is supported rotatably with respect to the fixed member 10.
  • the output rotator 20 is rotatably fitted to the fixed member 10 and has an output shaft 24 exposed to the outside at the center thereof.
  • the other cam surface 23 that gradually narrows the space between the inner peripheral surface 11a of the storage chamber 11 toward the other side (counterclockwise side according to FIG. 1) so as to be opposite to the one cam surface 21. Is formed.
  • biasing member 50 are made into a plurality of sets (three sets according to the example of illustration) every predetermined angle (equal intervals). It is provided side by side.
  • the cam surface 21 and the cam surface 23 are provided symmetrically.
  • Each of the cam surfaces 21 and 23 is formed in a convex curved shape that curves in the circumferential direction. More specifically, the cam surfaces 21 and 23 are less than the value obtained by subtracting the diameters of the engagement elements 41 and 42 from the radius of the storage chamber circumferential surface 11a. It is formed in an arc shape with a large radius, and the center position of the arc is shifted from the center position of the output rotating body 20.
  • the recess 22 is recessed in the centripetal direction from the outer peripheral surface of the output rotator 20 and penetrates the output rotator 20 in the axial direction.
  • the pressed surfaces 22a and 22b are formed in a flat shape extending in the radial direction, one pressed surface 22a intersects with one cam surface 21, and the other pressed surface 22b is the other cam surface 23. Intersects.
  • the locking portion 25 is formed in a concave shape between one cam surface 21 and the other cam surface 23 which are opposite to each other on the outer peripheral portion of the output rotating body 20.
  • the input rotator 30 is a substantially disk-shaped member provided so as to be aligned in the axial direction with respect to the output rotator 20 (see FIG. 2).
  • the input rotator 30 is fitted on the center side so that one end side in the axial direction (left end side according to FIG. 2) rotates in both directions with respect to the output rotator 20, and the other end in the axial direction.
  • a shaft portion 33 protrudes on the side.
  • the shaft portion 33 may be used as an input shaft for inputting rotational force, or may be used as a support shaft for stably rotating and supporting the input rotating body 30.
  • a plurality of (three in the illustrated example) press transmission portions 31 are provided on the side surface of the input rotator 30 on the output rotator 20 side at predetermined intervals in the circumferential direction so as to correspond to the respective recesses 22. Projected.
  • the press transmission portion 31 is fitted in a state having play in the circumferential direction with respect to the concave portion 22 of the output rotating body 20 and is formed in a substantially fan shape protruding in the centrifugal direction from the inside of the concave portion 22.
  • Contact surfaces 31a and 31b that can contact the pressed surfaces 22a and 22b of the output rotating body 20 and can also contact the engaging elements 41 and 42 are provided.
  • the engagement elements 41 and 42 are formed in a columnar shape or a spherical shape (in the illustrated example, a columnar shape), and are provided as a pair corresponding to one and the other cam surfaces 21 and 23.
  • one engagement element 41 is arranged so as to contact one cam surface 21 and the inner circumferential surface 11 a of the storage chamber, and the other engagement element 42 includes the other cam surface 23 and the storage area. It arrange
  • Each engagement element 41 and 42 is stationary at a position slightly protruding to the inside of the recess 22 from the pressed surfaces 22a and 22b of the recess 22 while being pressed by an urging member 50 described later.
  • the biasing member 50 is formed by bending a long flat spring material into a Y-shaped bifurcated shape, and the bent portion is fitted and fixed to the locking portion 25 of the output rotating body 20. In this urging member 50, each of the bifurcated pieces abuts against the outer peripheral surface of the corresponding engagement element 41 or 42, and the engagement element 41 or 42 is connected to the cam surface 21 or 23 and the storage chamber inner peripheral surface 11a. Pressed between.
  • the present inventors limit the ratio of the outer diameter d of the engaging elements 41 and 42 to the inner diameter D of the storage chamber 11 to a value within a specific range after trial and error experiments. It was found that malfunctions can be significantly reduced. This will be described in detail below.
  • FIG. 3 is a graph in which the relationship between the ratio of the outer diameter d of the engaging elements 41 and 42 to the inner diameter D of the storage chamber 11 (hereinafter referred to as the diameter ratio) and the conventional ratio of the overcoming torque is obtained experimentally.
  • the overcoming torque means that the engagement element 41 or 42 passes between the corresponding cam surface 21 or 23 and the storage chamber inner peripheral surface 11a, and the corner portion x where the cam surface 21 and the pressed surface 22a intersect. Is the torque that gets over the recess 22 side. In the case of the overcoming, a malfunction occurs.
  • the conventional over-going torque ratio indicates the ratio of the over-going torque of this embodiment to the over-going torque of the clutch mechanism before the present embodiment is applied. In the graph of FIG.
  • the wedge angle ⁇ means an angle (see FIG. 1) formed by the engaging element 41 or 42 and the corresponding cam surface 21 or 23.
  • the clutch mechanism before application of the present embodiment has the structure of the embodiment of Patent Document 1, the diameter ratio is about 0.17, the wedge angle is about 10 °, and the overcoming torque is about 53 mNm. .
  • the ratio of the outer diameter d of the engaging elements 41 and 42 to the inner diameter D of the storage chamber 11 is in the range of 0.20 or more and 0.27 or less so that the overcoming torque conventional ratio is larger than 1. It is preferable to set, and further, it can be said that it is preferable to set to 0.25 or less in the above range. In addition, when the upper limit value and the lower limit value of the ratio are set in the range, it is preferable that the overcoming torque is about 1 ⁇ 2 of the maximum value, and the diameter ratio and the wedge angle ⁇ suitable for the range are set. Is desirable.
  • the wedge angle ⁇ will be further described.
  • the upper limit value of the wedge angle ⁇ is set so that the relationship of the conditional expression sin ⁇ / (cos ⁇ + 1) ⁇ ⁇ shown in Patent Document 1 is satisfied. It is preferable to set the lower limit of the angle ⁇ to 11 °.
  • the wedge angle ⁇ exceeds the upper limit value, the possibility that the engaging element 41 or 42 slips without being locked is significantly increased. Further, when the wedge angle ⁇ is less than the lower limit value, the contact surface pressure becomes too high, and damage to each contact surface may proceed at an early stage.
  • FIG. 4 is a graph obtained by experimentally investigating the relationship between the wedge angle ⁇ and the overcoming torque conventional ratio. From this graph, it can be said that when the diameter ratio is 0.24, it is possible to secure one or more overcoming torque conventional ratios at least in the range where the wedge angle ⁇ is 10 ° or more and 18 ° or less. A more preferable range of the wedge angle ⁇ is 12 ° or more and 18 ° or less, and a more preferable range is 14 ° or more and 16 ° or less.
  • the ratio of the outer diameter d of the engaging elements 41 and 42 to the inner diameter D of the storage chamber 11 and the wedge angle ⁇ are appropriately set as described above.
  • the damage of each contact surface can be prevented, and as a result, the malfunction can be remarkably reduced.
  • the engagement elements 41, 42, etc. even when a rotational force in one direction or the other direction (clockwise or counterclockwise) is applied to the output rotating body 20 from the outside.
  • the output rotator 20 is restrained by the above action, as another example, the output rotator 20 can be restrained only when a rotational force in any one direction is applied. In this aspect, for example, all the one engaging element 41 may be omitted from the clutch mechanism 1.
  • this support structure only needs to be a support structure in which the output rotator 20 and the input rotator 30 rotate in both directions, and as another example, the output rotator 20 and the input rotator 30 by a single shaft member. It is possible to have a structure that supports each of them rotatably.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)
  • Braking Arrangements (AREA)

Abstract

[Problem] To reduce malfunctions caused by wear, deformation, or the like. [Solution] A clutch mechanism comprises an accommodating chamber 11 having a cylindrical space, an output rotating body 20 coaxially accommodated in the accommodating chamber 11, an input rotating body 30 provided coaxial to the output rotating body 20, cylindrical or spherical engaging elements 41, 42 provided between the inner circumferential face of the accommodating chamber 11 and the outer circumferential face of the output rotating body 20, and a biasing member 50 to bias the engaging elements 41, 42 to one side in the circumferential direction. The ratio of the outer diameters of the engaging elements 41, 42 to the inner diameter of the accommodating chamber 11 is in a range of 0.20 to 0.27 inclusive.

Description

クラッチ機構Clutch mechanism
 本発明は、入力回転体と出力回転体との間で回転力の伝達、遮断を行うクラッチ機構に関するものである。 The present invention relates to a clutch mechanism that transmits and shuts off rotational force between an input rotator and an output rotator.
 モータは通電時には回転軸に所定のトルクを発生して回転し、回転位置を制御することも可能であるが、電源が供給されない状態では回転軸の回転を制御できず、回転軸に出力側からトルクを受けると、該回転軸が簡単に回転してしまう。そのため、例えば、テープフィーダユニット等、電源を供給しないときでも、停止位置を精度よく固定させておきたい機器では、逆入力クラッチ等の回転位置保持装置を具備する必要が生じる。
 このような装置には、例えば特許文献1に記載される発明のように、円柱状空間を有する収納室(11)と、収納室(11)に同軸状に収納された出力回転体(20)と、出力回転体(20)に対し同軸状に設けられた入力回転体(30)と、収納室(11)の内周面と出力回転体(20)の外周面との間に設けられた係合子(41,42)と、係合子(41,42)を周方向の一方側へ付勢する付勢部材(50)とを備える。そして、出力回転体(20)の外周面に、前記一方側へ向かって収納室(11)の内周面との間を徐々に狭めるカム面(21,23)と、カム面(21,23)の前記一方側に隣接する凹部(22)とを形成し、入力回転体(30)に、凹部(22)に対し周方向の遊びを有する状態で嵌り合うとともに凹部(22)内から遠心方向へ突出する押圧伝達部(31)を形成している。そして、係合子(41,42)を、カム面(21,23)および収納室(11)の内周面に接触するように配置したものがある。
The motor rotates by generating a predetermined torque on the rotating shaft when energized, and the rotational position can be controlled. However, the rotation of the rotating shaft cannot be controlled when power is not supplied. When the torque is received, the rotating shaft easily rotates. Therefore, for example, a device that wants to fix the stop position accurately even when power is not supplied, such as a tape feeder unit, needs to have a rotational position holding device such as a reverse input clutch.
In such a device, for example, as in the invention described in Patent Document 1, a storage chamber (11) having a columnar space, and an output rotating body (20) coaxially stored in the storage chamber (11). And an input rotator (30) provided coaxially with respect to the output rotator (20), and an inner peripheral surface of the storage chamber (11) and an outer peripheral surface of the output rotator (20). An engagement element (41, 42) and an urging member (50) for urging the engagement element (41, 42) toward one side in the circumferential direction are provided. And the cam surface (21, 23) which gradually narrows between the outer peripheral surface of the output rotating body (20) and the inner peripheral surface of the storage chamber (11) toward the one side, and the cam surfaces (21, 23) ) And a recess (22) adjacent to the one side, and fitted to the input rotating body (30) in a state having a play in the circumferential direction with respect to the recess (22) and from the inside of the recess (22) in the centrifugal direction. A pressure transmission part (31) protruding to the side is formed. And there exists what has arrange | positioned an engaging element (41, 42) so that a cam surface (21,23) and the internal peripheral surface of a storage chamber (11) may be contacted.
 この従来技術によれば、入力回転体(30)に回転力が加わった場合には、入力回転体(30)の押圧伝達部(31)が係合子(41又は42)に当接し、係合子(41又は42)とカム面(21又は23)との摩擦、および係合子(41又は42)と収納室(11)の内周面との摩擦が小さくなり、その後で、押圧伝達部(31)が凹部(22)内の周方向端面に当接して出力回転体(20)を押動するため、出力回転体(20)がスムーズに回転する。また、出力回転体(20)に外部から回転力が加わった場合には、回転しようとする出力回転体(20)のカム面(21又は23)と収納室(11)の内周面との間に係合子(41又は42)が強く押し付けられので、入力回転体(30)及び出力回転体(20)の回転を阻むことができる。 According to this prior art, when a rotational force is applied to the input rotator (30), the pressure transmission part (31) of the input rotator (30) comes into contact with the engagement element (41 or 42), and the engagement element (41 or 42) and the cam surface (21 or 23), and the friction between the engagement element (41 or 42) and the inner peripheral surface of the storage chamber (11) is reduced. ) Abuts on the circumferential end face in the recess (22) and pushes the output rotating body (20), so that the output rotating body (20) rotates smoothly. When a rotational force is applied to the output rotator (20) from the outside, the cam surface (21 or 23) of the output rotator (20) to be rotated and the inner peripheral surface of the storage chamber (11). Since the engaging element (41 or 42) is strongly pressed between them, the rotation of the input rotating body (30) and the output rotating body (20) can be prevented.
 しかしながら、前記従来技術では、使用条件等により、収納室(11)の内周面と係合子(41又は42)との接触面圧が大きくなりすぎると、接触面に摩耗や変形を生じ、係合子(41又は42)が滑ってロック不良を生じたり、係合子(41又は42)が、カム面(21又は23)と収納室(11)内周面との間の凹部(22)寄りに噛み込んで解除不能になったりするおそれがある。 However, in the prior art, if the contact surface pressure between the inner peripheral surface of the storage chamber (11) and the engagement element (41 or 42) becomes too large due to use conditions or the like, the contact surface is worn or deformed, The coupling (41 or 42) slips to cause a lock failure, or the engagement element (41 or 42) is closer to the recess (22) between the cam surface (21 or 23) and the inner peripheral surface of the storage chamber (11). There is a risk that it may become bite and cannot be released.
国際公開WO2013/133162A1公報International Publication WO2013 / 133162A1
 本発明は上記従来事情に鑑みてなされたものであり、その課題とする処は、摩耗や変形等に起因する作動不良を軽減することができるクラッチ機構を提供することにある。 The present invention has been made in view of the above-described conventional circumstances, and a problem to be solved by the present invention is to provide a clutch mechanism that can reduce malfunction caused by wear or deformation.
 上記課題を解決するための一手段は、円柱状空間を有する収納室と、前記収納室に同軸状に収納された出力回転体と、前記出力回転体に対し同軸状に設けられた入力回転体と、前記収納室の内周面と出力回転体の外周面との間に設けられた円柱状又は球状の係合子と、前記係合子を周方向の一方側へ付勢する付勢部材とを備える。そして、前記出力回転体の外周面に、前記一方側へ向かって前記収納室の内周面との間を徐々に狭めるカム面と、前記カム面の前記一方側に隣接する凹部とを形成し、前記入力回転体に、前記凹部に対し周方向の遊びを有する状態で嵌り合うとともに、前記凹部内から遠心方向へ突出する押圧伝達部を形成している。そして、前記係合子を、前記カム面および前記収納室の内周面に接触するように配置し、前記入力回転体が前記一方側に対する他方側に回転した際に、前記押圧伝達部を前記係合子に当接した後に、同押圧伝達部を前記凹部内の周方向端面に当接して前記出力回転体を押動するようにしたクラッチ機構である。更に、前記収納室の内径に対する前記係合子の外径の比率を、0.20以上0.27以下の範囲としたことを特徴とする。 One means for solving the above problems is a storage chamber having a cylindrical space, an output rotator stored coaxially in the storage chamber, and an input rotator provided coaxially with respect to the output rotator. A cylindrical or spherical engaging element provided between the inner peripheral surface of the storage chamber and the outer peripheral surface of the output rotating body, and a biasing member that biases the engaging element toward one side in the circumferential direction. Prepare. Then, a cam surface that gradually narrows the space between the outer peripheral surface of the output rotating body and the inner peripheral surface of the storage chamber toward the one side, and a concave portion adjacent to the one side of the cam surface are formed. The input rotator is fitted with a recess in the circumferential direction with a play in the circumferential direction, and a pressure transmission portion protruding in the centrifugal direction from the recess is formed. Then, the engaging element is disposed so as to contact the cam surface and the inner peripheral surface of the storage chamber, and when the input rotating body rotates to the other side with respect to the one side, the press transmission portion is moved to the engaging surface. The clutch mechanism is configured to push the output rotating body by abutting the pressing transmission portion on a circumferential end surface in the concave portion after abutting on the joint. Furthermore, the ratio of the outer diameter of the engagement element to the inner diameter of the storage chamber is in the range of 0.20 or more and 0.27 or less.
 本発明は、以上説明したように構成されているので、摩耗や変形等に起因する作動不良を軽減することができる。 Since the present invention is configured as described above, it is possible to reduce malfunctions caused by wear or deformation.
本発明に係るクラッチ機構の一例について要部を示す構造図である。FIG. 3 is a structural diagram showing a main part of an example of a clutch mechanism according to the present invention. 同クラッチ機構の縦断面図である。It is a longitudinal cross-sectional view of the clutch mechanism. 径比率と乗り越えトルク従来比との関係を示すグラフである。It is a graph which shows the relationship between a diameter ratio and overcoming torque conventional ratio. 楔角と乗り越えトルク従来比との関係を示すグラフである。It is a graph which shows the relationship between a wedge angle and climbing torque conventional ratio.
 本実施の形態の第一の特徴は、円柱状空間を有する収納室と、前記収納室に同軸状に収納された出力回転体と、前記出力回転体に対し同軸状に設けられた入力回転体と、前記収納室の内周面と出力回転体の外周面との間に設けられた円柱状又は球状の係合子と、前記係合子を周方向の一方側へ付勢する付勢部材とを備える。そして、前記出力回転体の外周面に、前記一方側へ向かって前記収納室の内周面との間を徐々に狭めるカム面と、前記カム面の前記一方側に隣接する凹部とを形成し、前記入力回転体に、前記凹部に対し周方向の遊びを有する状態で嵌り合うとともに、前記凹部内から遠心方向へ突出する押圧伝達部を形成している。そして、前記係合子を、前記カム面および前記収納室の内周面に接触するように配置し、前記入力回転体が前記一方側に対する他方側に回転した際に、前記押圧伝達部を前記係合子に当接した後に、同押圧伝達部を前記凹部内の周方向端面に当接して前記出力回転体を押動するようにしたクラッチ機構である。更に、前記収納室の内径に対する前記係合子の外径の比率を、0.20以上0.27以下の範囲とした。
 この構成によれば、収納室の内周面と係合子の外周面との接触面圧を比較的小さくすることができ、このことによって、収納室と係合子との接触面における摩耗及び変形を低減することができる。したがって、係合子が滑ってロック不良を生じたり、係合子が収納室内周面とカム面との間で前記凹部寄りに噛み込んで解除不能になったり等の作動不良を軽減することができる。
The first feature of the present embodiment is that a storage chamber having a columnar space, an output rotator stored coaxially in the storage chamber, and an input rotator provided coaxially with respect to the output rotator A cylindrical or spherical engaging element provided between the inner peripheral surface of the storage chamber and the outer peripheral surface of the output rotating body, and a biasing member that biases the engaging element toward one side in the circumferential direction. Prepare. Then, a cam surface that gradually narrows the space between the outer peripheral surface of the output rotating body and the inner peripheral surface of the storage chamber toward the one side, and a concave portion adjacent to the one side of the cam surface are formed. The input rotator is fitted with a recess in the circumferential direction with a play in the circumferential direction, and a pressure transmission portion protruding in the centrifugal direction from the recess is formed. Then, the engaging element is disposed so as to contact the cam surface and the inner peripheral surface of the storage chamber, and when the input rotating body rotates to the other side with respect to the one side, the press transmission portion is moved to the engaging surface. The clutch mechanism is configured to push the output rotating body by abutting the pressing transmission portion on a circumferential end surface in the concave portion after abutting on the joint. Furthermore, the ratio of the outer diameter of the engagement element to the inner diameter of the storage chamber was set to a range of 0.20 or more and 0.27 or less.
According to this configuration, the contact surface pressure between the inner peripheral surface of the storage chamber and the outer peripheral surface of the engagement element can be made relatively small, thereby reducing wear and deformation on the contact surface between the storage chamber and the engagement element. Can be reduced. Therefore, it is possible to alleviate malfunctions such as slipping of the engaging element to cause a locking failure, or engaging the engaging element closer to the concave portion between the inner circumferential surface of the storage chamber and the cam surface and making the releasing impossible.
 第二の特徴としては、作動不良等をより効果的に軽減するために、前記収納室の内径に対する前記係合子の外径の比率を、0.25以下とした。 As a second feature, the ratio of the outer diameter of the engagement element to the inner diameter of the storage chamber is set to 0.25 or less in order to more effectively reduce malfunctions and the like.
 第三の特徴としては、作動不良等をより効果的に軽減するために、前記収納室の内周面と前記係合子との接線と、前記係合子と前記カム面との接線とがなす角度をθとし、前記収納室の内周面と前記係合子との静摩擦係数と、前記係合子と前記カム面との静摩擦係数とのうち、何れか小さい方の静摩擦係数をμとした場合に、sinθ/(cosθ+1)≦μの関係が成り立つように前記角度θの上限値を設定するとともに、前記角度θの下限値を11°に設定した。 As a third feature, an angle formed by a tangent line between the inner peripheral surface of the storage chamber and the engagement element and a tangent line between the engagement element and the cam surface in order to more effectively reduce malfunctions and the like. Is the static friction coefficient between the inner peripheral surface of the storage chamber and the engagement element, and the static friction coefficient between the engagement element and the cam surface, whichever is smaller, The upper limit value of the angle θ was set so that the relationship of sin θ / (cos θ + 1) ≦ μ was established, and the lower limit value of the angle θ was set to 11 °.
 次に、上記特徴を有する好ましい実施例を、図面に基づいて詳細に説明する。 Next, a preferred embodiment having the above features will be described in detail with reference to the drawings.
 このクラッチ機構1は、図2の(A)-(A)線断面である図1および図1の(B)-(B)線方向から見たクラッチ機構1の側断面図である図2に示すように、収納室11を有する固定部材10と、収納室11に同軸状に収納された出力回転体20と、出力回転体20に対し同軸状に設けられた入力回転体30(図2参照)を有する。そして、収納室内周面11aと出力回転体20の外周面との間に設けられた一対の係合子41,42と、一方の係合子41を周方向の一方側(図1によれば時計方向側)へ付勢するとともに他方の係合子42を周方向の他方側(図1によれば反時計方向側)へ付勢する付勢部材50とを備える。 This clutch mechanism 1 is shown in FIG. 1 which is a cross section taken along line (A)-(A) in FIG. 2 and in FIG. 2 which is a side sectional view of the clutch mechanism 1 as viewed from the direction of lines (B)-(B) in FIG. As shown, the fixing member 10 having the storage chamber 11, the output rotary body 20 coaxially stored in the storage chamber 11, and the input rotary body 30 provided coaxially with respect to the output rotary body 20 (see FIG. 2). ). Then, a pair of engagement elements 41, 42 provided between the storage chamber inner peripheral surface 11a and the outer peripheral surface of the output rotator 20, and one engagement element 41 on one side in the circumferential direction (clockwise according to FIG. 1). And a biasing member 50 that biases the other engagement element 42 toward the other circumferential side (counterclockwise according to FIG. 1).
 このクラッチ機構1は、入力回転体30に回転力を発生させた際に、この回転力を出力回転体20に伝達して該出力回転体20を回転させ、また、出力回転体20に対し外部から回転力が加わった際には、該出力回転体20を回転不能にロックする。 When the rotational force is generated in the input rotator 30, the clutch mechanism 1 transmits the rotational force to the output rotator 20 to rotate the output rotator 20. When a rotational force is applied, the output rotator 20 is locked so as not to rotate.
 固定部材10内部の収納室11は、内周面11aにより囲まれた略円柱状の空間である。内周面11aは、凹凸のない円筒内周面状の曲面である。
 固定部材10は、図示しない不動部位(例えば、テープフィーダの支持基板等)に、回転不能に固定される。
The storage chamber 11 inside the fixing member 10 is a substantially columnar space surrounded by the inner peripheral surface 11a. The inner peripheral surface 11a is a cylindrical inner peripheral surface-like curved surface without unevenness.
The fixing member 10 is fixed to a non-moving portion (not shown) (for example, a support substrate of a tape feeder) in a non-rotatable manner.
 出力回転体20は、収納室11に同芯状に配置された略円板状の部材であり、その中心側が固定部材10に対し回転自在に支持されている。この出力回転体20は、固定部材10に対し回転自在に嵌め合せられるとともに、その中心部に、外部へ露出した出力軸24を一体に有する。
 この出力回転体20の外周部には、周方向の一方側(図1によれば時計方向側)へ向かって収納室11の内周面11aとの間を徐々に狭める一方のカム面21と、前記一方のカム面21に背反するように他方側(図1によれば反時計方向側)へ向かって収納室11の内周面11aとの間を徐々に狭める他方のカム面23とが形成されている。そして、カム面21又は23に隣接する凹部22と、付勢部材50を係止するための係止部25とが、所定角度(等間隔)置きに複数組(図示例によれば3組)並べ設けられる。
The output rotator 20 is a substantially disk-shaped member arranged concentrically in the storage chamber 11, and the center side thereof is supported rotatably with respect to the fixed member 10. The output rotator 20 is rotatably fitted to the fixed member 10 and has an output shaft 24 exposed to the outside at the center thereof.
On the outer peripheral portion of the output rotating body 20, one cam surface 21 that gradually narrows the space between the inner peripheral surface 11a of the storage chamber 11 toward one side in the circumferential direction (clockwise side according to FIG. 1), The other cam surface 23 that gradually narrows the space between the inner peripheral surface 11a of the storage chamber 11 toward the other side (counterclockwise side according to FIG. 1) so as to be opposite to the one cam surface 21. Is formed. And the recessed part 22 adjacent to the cam surface 21 or 23 and the latching | locking part 25 for latching the urging | biasing member 50 are made into a plurality of sets (three sets according to the example of illustration) every predetermined angle (equal intervals). It is provided side by side.
 カム面21とカム面23は、左右対称に設けられる。各カム面21,23は、周方向に湾曲する凸曲面状に形成され、より詳細に説明すれば、収納室内周面11aの半径から、各係合子41,42の直径を減じた値よりも大きな半径の円弧状に形成されるとともに、該円弧の中心位置を出力回転体20の中心位置からずらすようにしている。 The cam surface 21 and the cam surface 23 are provided symmetrically. Each of the cam surfaces 21 and 23 is formed in a convex curved shape that curves in the circumferential direction. More specifically, the cam surfaces 21 and 23 are less than the value obtained by subtracting the diameters of the engagement elements 41 and 42 from the radius of the storage chamber circumferential surface 11a. It is formed in an arc shape with a large radius, and the center position of the arc is shifted from the center position of the output rotating body 20.
 凹部22は、出力回転体20の外周面から求心方向へ凹むとともに、出力回転体20を軸方向へ貫通している。この凹部22内の周方向の両端には、後述する入力回転体30の押圧伝達部31によって押圧される被押圧面22a,22bを有する。これら被押圧面22a,22bは、径方向へわたる平坦面状に形成され、一方の被押圧面22aは、一方のカム面21と交差し、他方の被押圧面22bは、他方のカム面23と交差している。 The recess 22 is recessed in the centripetal direction from the outer peripheral surface of the output rotator 20 and penetrates the output rotator 20 in the axial direction. At both ends in the circumferential direction in the recess 22, there are pressed surfaces 22 a and 22 b that are pressed by a press transmission portion 31 of the input rotator 30 described later. The pressed surfaces 22a and 22b are formed in a flat shape extending in the radial direction, one pressed surface 22a intersects with one cam surface 21, and the other pressed surface 22b is the other cam surface 23. Intersects.
 係止部25は、出力回転体20の外周部において、背反する一方のカム面21と他方のカム面23との間に凹状に形成される。 The locking portion 25 is formed in a concave shape between one cam surface 21 and the other cam surface 23 which are opposite to each other on the outer peripheral portion of the output rotating body 20.
 入力回転体30は、出力回転体20に対し軸方向へ並ぶように設けられた略円盤状の部材である(図2参照)。
 この入力回転体30は、中心側において、軸方向の一端側(図2によれば左端側)を出力回転体20に対し双方向へ回動するように嵌め合せ、また、軸方向の他端側に、軸部33を突設している。軸部33は、回転力を入力するための入力軸として用いてもよいし、該入力回転体30を安定的に回転支持するための支持軸として用いてもよい。
 また、入力回転体30における出力回転体20側の側面には、凹部22毎に対応するように、周方向に所定間隔を置いて複数(図示例によれば3つ)の押圧伝達部31が突設されている。
The input rotator 30 is a substantially disk-shaped member provided so as to be aligned in the axial direction with respect to the output rotator 20 (see FIG. 2).
The input rotator 30 is fitted on the center side so that one end side in the axial direction (left end side according to FIG. 2) rotates in both directions with respect to the output rotator 20, and the other end in the axial direction. On the side, a shaft portion 33 protrudes. The shaft portion 33 may be used as an input shaft for inputting rotational force, or may be used as a support shaft for stably rotating and supporting the input rotating body 30.
In addition, a plurality of (three in the illustrated example) press transmission portions 31 are provided on the side surface of the input rotator 30 on the output rotator 20 side at predetermined intervals in the circumferential direction so as to correspond to the respective recesses 22. Projected.
 押圧伝達部31は、出力回転体20の凹部22に対し周方向の遊びを有する状態で嵌り合うとともに、凹部22内から遠心方向へ突出する略扇形状に形成され、周方向の両端部に、出力回転体20の被押圧面22a,22bに当接可能であって、且つ係合子41,42にも当接可能な当接面31a,31bを有する。 The press transmission portion 31 is fitted in a state having play in the circumferential direction with respect to the concave portion 22 of the output rotating body 20 and is formed in a substantially fan shape protruding in the centrifugal direction from the inside of the concave portion 22. Contact surfaces 31a and 31b that can contact the pressed surfaces 22a and 22b of the output rotating body 20 and can also contact the engaging elements 41 and 42 are provided.
 また、係合子41,42は、円柱状又は球状(図示例によれば円柱状)に形成され、一方及び他方のカム面21,23に対応して一対に設けられている。
 一対の係合子41,42のうち、一方の係合子41は、一方のカム面21および収納室内周面11aに接触するように配置され、他方の係合子42は、他方のカム面23および収納室内周面11aに接触するように配置される。
 そして、各係合子41,42は、後述する付勢部材50に押圧された状態で、凹部22の各被押圧面22a,22bよりも凹部22内側へ若干突出した位置に静止している。
The engagement elements 41 and 42 are formed in a columnar shape or a spherical shape (in the illustrated example, a columnar shape), and are provided as a pair corresponding to one and the other cam surfaces 21 and 23.
Of the pair of engagement elements 41, 42, one engagement element 41 is arranged so as to contact one cam surface 21 and the inner circumferential surface 11 a of the storage chamber, and the other engagement element 42 includes the other cam surface 23 and the storage area. It arrange | positions so that the indoor peripheral surface 11a may be contacted.
Each engagement element 41 and 42 is stationary at a position slightly protruding to the inside of the recess 22 from the pressed surfaces 22a and 22b of the recess 22 while being pressed by an urging member 50 described later.
 付勢部材50は、長尺平板状のばね材をY字二股状に曲げ成形したものであり、その曲げ部分が出力回転体20の係止部25に嵌合固定される。
 この付勢部材50において、二股状に分かれた各片部は、対応する係合子41又は42の外周面に当接して、係合子41又は42を、カム面21又は23と収納室内周面11aとの間に押し付けている。
The biasing member 50 is formed by bending a long flat spring material into a Y-shaped bifurcated shape, and the bent portion is fitted and fixed to the locking portion 25 of the output rotating body 20.
In this urging member 50, each of the bifurcated pieces abuts against the outer peripheral surface of the corresponding engagement element 41 or 42, and the engagement element 41 or 42 is connected to the cam surface 21 or 23 and the storage chamber inner peripheral surface 11a. Pressed between.
 次に、上記構成のクラッチ機構1の動作について詳細に説明する。
 先ず、出力回転体20及び入力回転体30の何れにも回転力が加わっていない状態(図1参照)では、係合子41,42が、それぞれ、付勢部材50に押圧されて、カム面21又は23と収納室11の内周面11aとの間の楔状部分に押し付けられ、出力回転体20が静止状態に維持される。
Next, the operation of the clutch mechanism 1 configured as described above will be described in detail.
First, in a state where no rotational force is applied to any of the output rotator 20 and the input rotator 30 (see FIG. 1), the engaging elements 41 and 42 are respectively pressed by the urging member 50 and the cam surface 21. Or it presses against the wedge-shaped part between 23 and the internal peripheral surface 11a of the storage chamber 11, and the output rotary body 20 is maintained by a stationary state.
 前記状態において、入力回転体30に、一方向への回転力が加わった場合には、入力回転体30の押圧伝達部31が、先ず一方の係合子41に当接することで、該係合子41とカム面21との摩擦、および該係合子41と収納室内周面11aとの摩擦が小さくなり、その後で、押圧伝達部31が凹部22内の被押圧面22aに当接して出力回転体20を押動する。このため、出力回転体20が前記一方向へスムーズに回転する。
 また、入力回転体30に前記一方向に対する逆方向の回転力が加わった場合も、前記と略同様にして、出力回転体20が前記逆方向へスムーズに回転する。
In this state, when a rotational force in one direction is applied to the input rotator 30, the press transmission portion 31 of the input rotator 30 first comes into contact with one of the engagement elements 41, thereby the engagement element 41. And the cam surface 21 and the friction between the engagement element 41 and the inner circumferential surface 11a of the storage chamber are reduced, and thereafter, the pressure transmitting portion 31 comes into contact with the pressed surface 22a in the recess 22 to output the rotating body 20. Press. For this reason, the output rotating body 20 rotates smoothly in the one direction.
Further, when a rotational force in the reverse direction to the one direction is applied to the input rotator 30, the output rotator 20 rotates smoothly in the reverse direction in substantially the same manner as described above.
 また、前記静止状態において、出力回転体20に外部から一方向又は他方向への回転力が加わった場合には、回転しようとする出力回転体20のカム面21又は23と収納室内周面11aとの間に、係合子41又は42が食い込むようにして強く押し付けられるため、出力回転体20の回転が阻まれる。 Further, in the stationary state, when a rotational force in one direction or the other direction is applied to the output rotator 20 from the outside, the cam surface 21 or 23 of the output rotator 20 to be rotated and the inner circumferential surface 11a of the storage chamber. Since the engaging element 41 or 42 is strongly pressed between them, the rotation of the output rotating body 20 is prevented.
 上記構成のクラッチ機構1において、本願発明者らは、試行錯誤の実験の末、収納室11の内径Dに対する係合子41,42の外径dの比率を特定の範囲の値に限定することで、作動不良を著しく軽減できることを見出した。以下、これについて詳細に説明する。 In the clutch mechanism 1 configured as described above, the present inventors limit the ratio of the outer diameter d of the engaging elements 41 and 42 to the inner diameter D of the storage chamber 11 to a value within a specific range after trial and error experiments. It was found that malfunctions can be significantly reduced. This will be described in detail below.
 図3は、収納室11の内径Dに対する係合子41,42の外径dの比率(以降、径比率と称する。)と、乗り越えトルク従来比との関係を実験的に求めたグラフである。
 ここで、乗り越えトルクとは、係合子41又は42が、対応するカム面21又は23と収納室内周面11aとの間を通って、カム面21と被押圧面22aとが交差する角部xを凹部22側へ乗り越えてしまうトルクを意味する。前記乗り越えを生じた場合には、作動不良を生じることになる。
 そして、前記乗越えトルク従来比とは、本実施例を適用する前のクラッチ機構の乗り越えトルクに対する本実施例の乗り越えトルクの比率を示している。
 また、図3のグラフ中、楔角θとは、係合子41又は42と、対応するカム面21又は23とがなす角度(図1参照)を意味する。
 なお、本実施例を適用する前のクラッチ機構は、特許文献1の実施例の構造を具備し、径比率が約0.17、楔角が約10°であり、乗り越えトルクが約53mNmである。
FIG. 3 is a graph in which the relationship between the ratio of the outer diameter d of the engaging elements 41 and 42 to the inner diameter D of the storage chamber 11 (hereinafter referred to as the diameter ratio) and the conventional ratio of the overcoming torque is obtained experimentally.
Here, the overcoming torque means that the engagement element 41 or 42 passes between the corresponding cam surface 21 or 23 and the storage chamber inner peripheral surface 11a, and the corner portion x where the cam surface 21 and the pressed surface 22a intersect. Is the torque that gets over the recess 22 side. In the case of the overcoming, a malfunction occurs.
The conventional over-going torque ratio indicates the ratio of the over-going torque of this embodiment to the over-going torque of the clutch mechanism before the present embodiment is applied.
In the graph of FIG. 3, the wedge angle θ means an angle (see FIG. 1) formed by the engaging element 41 or 42 and the corresponding cam surface 21 or 23.
The clutch mechanism before application of the present embodiment has the structure of the embodiment of Patent Document 1, the diameter ratio is about 0.17, the wedge angle is about 10 °, and the overcoming torque is about 53 mNm. .
 図3のグラフより、収納室11の内径Dに対する係合子41,42の外径dの比率は、乗り越えトルク従来比が1よりも大きくなるように、0.20以上0.27以下の範囲に設定するのが好ましく、さらには、前記範囲にて0.25以下に設定するのが好ましいといえる。
 また、前記範囲にて前記比率の上限値と下限値を設定した場合、乗り越えトルクが極大値の約1/2とするのが好ましく、その範囲に適合する径比率と楔角θを設定することが望ましい。
From the graph of FIG. 3, the ratio of the outer diameter d of the engaging elements 41 and 42 to the inner diameter D of the storage chamber 11 is in the range of 0.20 or more and 0.27 or less so that the overcoming torque conventional ratio is larger than 1. It is preferable to set, and further, it can be said that it is preferable to set to 0.25 or less in the above range.
In addition, when the upper limit value and the lower limit value of the ratio are set in the range, it is preferable that the overcoming torque is about ½ of the maximum value, and the diameter ratio and the wedge angle θ suitable for the range are set. Is desirable.
 また、楔角θについて更に述べれば、収納室11の内周面と係合子41又は42との静摩擦係数と、係合子41又は42と対応するカム面21又は23との静摩擦係数とのうち、何れか小さい方の静摩擦係数をμとした場合に、上記特許文献1にて示した条件式sinθ/(cosθ+1)≦μの関係が成り立つように楔角θの上限値を設定するとともに、該楔角θの下限値を11°に設定するのが好ましい。
 楔角θが前記上限値を超える場合には、係合子41又は42がロックされずに滑ってしまう可能性が顕著に高くなる。また、楔角θが上記下限値を下回る場合には、接触面圧が高くなりすぎて各接触面の損傷が早期に進行してしまうおそれがある。
Further, the wedge angle θ will be further described. Of the static friction coefficient between the inner peripheral surface of the storage chamber 11 and the engagement element 41 or 42 and the static friction coefficient between the engagement element 41 or 42 and the corresponding cam surface 21 or 23, When the smaller static friction coefficient is μ, the upper limit value of the wedge angle θ is set so that the relationship of the conditional expression sin θ / (cos θ + 1) ≦ μ shown in Patent Document 1 is satisfied. It is preferable to set the lower limit of the angle θ to 11 °.
When the wedge angle θ exceeds the upper limit value, the possibility that the engaging element 41 or 42 slips without being locked is significantly increased. Further, when the wedge angle θ is less than the lower limit value, the contact surface pressure becomes too high, and damage to each contact surface may proceed at an early stage.
 また、図4は、楔角θと乗り越えトルク従来比との関係を実験的に調査してグラフ化したものである。
 このグラフより、径比率を0.24とした場合には、少なくとも楔角θが10°以上18°以下の範囲で、乗り越えトルク従来比を1以上確保することができるといえる。また、楔角θのより好ましい範囲は、12°以上18°以下であり、さらに好ましい範囲は、14°以上16°以下である。
FIG. 4 is a graph obtained by experimentally investigating the relationship between the wedge angle θ and the overcoming torque conventional ratio.
From this graph, it can be said that when the diameter ratio is 0.24, it is possible to secure one or more overcoming torque conventional ratios at least in the range where the wedge angle θ is 10 ° or more and 18 ° or less. A more preferable range of the wedge angle θ is 12 ° or more and 18 ° or less, and a more preferable range is 14 ° or more and 16 ° or less.
 よって、本実施例のクラッチ機構1によれば、収納室11の内径Dに対する係合子41,42の外径dの比率、及び楔角θを上述したとおり適宜に設定したため、角部xの摩耗や変形を抑制するとともに、前記乗り越えトルクを比較的大きく確保して、係合子41又は42が角部xを乗り越えて噛み込むのを防ぐことができ、さらには、係合子41又は42の滑りや、各接触面の損傷等を防ぐことができ、これらの結果、作動不良を著しく軽減することができる。 Therefore, according to the clutch mechanism 1 of the present embodiment, the ratio of the outer diameter d of the engaging elements 41 and 42 to the inner diameter D of the storage chamber 11 and the wedge angle θ are appropriately set as described above. In addition, it is possible to prevent the engagement element 41 or 42 from getting over the corner portion x, and to prevent the engagement element 41 or 42 from slipping. The damage of each contact surface can be prevented, and as a result, the malfunction can be remarkably reduced.
 なお、上記実施例によれば、外部から、出力回転体20に対し一方向と他方向(時計方向と反時計方向)の何れの方向の回転力を加えた場合でも、係合子41,42等の作用によって出力回転体20が拘束されるようにしたが、他例としては、何れか一方向の回転力を加えた場合のみ出力回転体20を拘束する態様とすることが可能である。この態様は、例えば、上記クラッチ機構1から一方の係合子41を全て省いた構成とすればよい。 According to the above-described embodiment, the engagement elements 41, 42, etc., even when a rotational force in one direction or the other direction (clockwise or counterclockwise) is applied to the output rotating body 20 from the outside. Although the output rotator 20 is restrained by the above action, as another example, the output rotator 20 can be restrained only when a rotational force in any one direction is applied. In this aspect, for example, all the one engaging element 41 may be omitted from the clutch mechanism 1.
 また、上記実施例によれば、固定部材10に対し出力回転体20を回転自在に支持し、さらに出力回転体20に対し入力回転体30を回転自在に支持する構成(図2参照)としたが、この支持構造は、出力回転体20と入力回転体30がそれぞれ双方向へ回転する支持構造であればよく、他例としては、単一の軸部材によって出力回転体20と入力回転体30をそれぞれ回転自在に支持する構造等とすることが可能である。 Moreover, according to the said Example, it was set as the structure (refer FIG. 2) which supports the output rotary body 20 rotatably with respect to the fixing member 10, and also supports the input rotary body 30 rotatably with respect to the output rotary body 20. However, this support structure only needs to be a support structure in which the output rotator 20 and the input rotator 30 rotate in both directions, and as another example, the output rotator 20 and the input rotator 30 by a single shaft member. It is possible to have a structure that supports each of them rotatably.
 また、上記実施例によれば、出力回転体20の外周部に、カム面21,23、凹部22、係合子41,42及び付勢部材50等を3組並べ設けたが、他例としては、これらを2組又は4組以上設けることも可能である。 Moreover, according to the said Example, 3 sets of cam surfaces 21 and 23, the recessed part 22, the engaging elements 41 and 42, the urging | biasing member 50, etc. were arranged in the outer peripheral part of the output rotary body 20, but as another example, It is also possible to provide two or four or more of these.
 1:クラッチ機構
 10:固定部材
 11:収納室
 11a:収納室内周面
 20:出力回転体
 21,23:カム面
 22:凹部
 22a,22b:被押圧面
 30:入力回転体
 31:押圧伝達部
 31a,31b:当接面
 41,42:係合子
 50:付勢部材
DESCRIPTION OF SYMBOLS 1: Clutch mechanism 10: Fixing member 11: Storage chamber 11a: Perimeter surface of storage chamber 20: Output rotating body 21, 23: Cam surface 22: Recess 22a, 22b: Pressed surface 30: Input rotating body 31: Press transmission part 31a , 31b: contact surface 41, 42: engagement element 50: biasing member

Claims (3)

  1.  円柱状空間を有する収納室と、前記収納室に同軸状に収納された出力回転体と、前記出力回転体に対し同軸状に設けられた入力回転体と、前記収納室の内周面と出力回転体の外周面との間に設けられた円柱状又は球状の係合子と、前記係合子を周方向の一方側へ付勢する付勢部材とを備え、
     前記出力回転体の外周面に、前記一方側へ向かって前記収納室の内周面との間を徐々に狭めるカム面と、前記カム面の前記一方側に隣接する凹部とを形成し、
     前記入力回転体に、前記凹部に対し周方向の遊びを有する状態で嵌り合うとともに前記凹部内から遠心方向へ突出する押圧伝達部を形成し、
     前記係合子を、前記カム面および前記収納室の内周面に接触するように配置し、
     前記入力回転体が前記一方側に対する他方側に回転した際に、前記押圧伝達部を前記係合子に当接した後に、同押圧伝達部を前記凹部内の周方向端面に当接して前記出力回転体を押動するようにしたクラッチ機構であって、
     前記収納室の内径に対する前記係合子の外径の比率を、0.20以上0.27以下の範囲としたことを特徴とするクラッチ機構。
    A storage chamber having a cylindrical space, an output rotator stored coaxially in the storage chamber, an input rotator provided coaxially with respect to the output rotator, an inner peripheral surface of the storage chamber, and an output A cylindrical or spherical engagement element provided between the outer peripheral surface of the rotating body, and a biasing member that biases the engagement element to one side in the circumferential direction,
    On the outer peripheral surface of the output rotating body, a cam surface that gradually narrows the space between the inner peripheral surface of the storage chamber toward the one side and a concave portion adjacent to the one side of the cam surface is formed.
    A press transmission portion that fits in a state having play in the circumferential direction with respect to the concave portion and protrudes in the centrifugal direction from the concave portion to the input rotating body,
    The engaging element is disposed so as to contact the cam surface and the inner peripheral surface of the storage chamber,
    When the input rotator rotates to the other side with respect to the one side, the pressure transmission part abuts on the engagement element, and then the pressure transmission part abuts on a circumferential end surface in the recess to perform the output rotation. A clutch mechanism that pushes the body,
    A clutch mechanism characterized in that a ratio of an outer diameter of the engagement element to an inner diameter of the storage chamber is in a range of 0.20 or more and 0.27 or less.
  2.  前記収納室の内径に対する前記係合子の外径の比率を、0.25以下としたことを特徴とする請求項1記載のクラッチ機構。 The clutch mechanism according to claim 1, wherein a ratio of an outer diameter of the engaging element to an inner diameter of the storage chamber is set to 0.25 or less.
  3.  前記収納室の内周面と前記係合子との接線と、前記係合子と前記カム面との接線とがなす角度をθとし、前記収納室の内周面と前記係合子との静摩擦係数と、前記係合子と前記カム面との静摩擦係数とのうち、何れか小さい方の静摩擦係数をμとした場合に、sinθ/(cosθ+1)≦μの関係が成り立つように前記角度θの上限値を設定するとともに、
     前記角度θの下限値を11°に設定したことを特徴とする請求項1又は2記載のクラッチ機構。
    The angle formed by the tangent line between the inner peripheral surface of the storage chamber and the engagement element and the tangent line between the engagement element and the cam surface is θ, and the coefficient of static friction between the inner peripheral surface of the storage chamber and the engagement element is The upper limit of the angle θ is set so that sinθ / (cosθ + 1) ≦ μ holds when the smaller one of the static friction coefficients between the engaging element and the cam surface is μ. As well as setting
    The clutch mechanism according to claim 1 or 2, wherein a lower limit value of the angle θ is set to 11 °.
PCT/JP2015/063494 2014-11-27 2015-05-11 Clutch mechanism WO2016084406A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016561416A JP6582215B2 (en) 2014-11-27 2015-05-11 Clutch mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-240541 2014-11-27
JP2014240541 2014-11-27

Publications (1)

Publication Number Publication Date
WO2016084406A1 true WO2016084406A1 (en) 2016-06-02

Family

ID=56073991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063494 WO2016084406A1 (en) 2014-11-27 2015-05-11 Clutch mechanism

Country Status (2)

Country Link
JP (1) JP6582215B2 (en)
WO (1) WO2016084406A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021355A1 (en) * 2016-07-26 2018-02-01 並木精密宝石株式会社 Rotation position holding mechanism

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000504396A (en) * 1996-01-26 2000-04-11 ディーダブリュービーエイチ ヴェンチャーズ リミテッド Reversible stepless variable wedge element type force transmission device
JP2008025792A (en) * 2006-07-25 2008-02-07 Ntn Corp One direction intermittent feeding unit
WO2013133162A1 (en) * 2012-03-05 2013-09-12 並木精密宝石株式会社 Clutch mechanism

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325908A (en) * 2004-05-13 2005-11-24 Ntn Corp Rotation transmitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000504396A (en) * 1996-01-26 2000-04-11 ディーダブリュービーエイチ ヴェンチャーズ リミテッド Reversible stepless variable wedge element type force transmission device
JP2008025792A (en) * 2006-07-25 2008-02-07 Ntn Corp One direction intermittent feeding unit
WO2013133162A1 (en) * 2012-03-05 2013-09-12 並木精密宝石株式会社 Clutch mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021355A1 (en) * 2016-07-26 2018-02-01 並木精密宝石株式会社 Rotation position holding mechanism

Also Published As

Publication number Publication date
JP6582215B2 (en) 2019-10-02
JPWO2016084406A1 (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP4806264B2 (en) Reverse input prevention clutch
JP6142204B2 (en) Clutch mechanism
JP6232551B2 (en) Rotational force transmission device
WO2017051817A1 (en) Reverse input prevention clutch
JP4965871B2 (en) Reverse input prevention clutch
US20180079055A1 (en) Wrench
US20180134185A1 (en) Reclining device
US20180195560A1 (en) Clutch, drive transmission device and image forming apparatus
JP5905363B2 (en) Brake device
JP6582215B2 (en) Clutch mechanism
WO2016084404A1 (en) Clutch mechanism
JP5289885B2 (en) Conveying roller and substrate conveying member provided with the same
WO2016084405A1 (en) Clutch mechanism
JP2008121848A (en) Reverse input prevention clutch
JP2007211797A (en) Reverse input preventing clutch
JP2006112524A (en) Reverse input intercepting clutch
WO2021152980A1 (en) Reverse-input-blocking clutch
JP6633277B2 (en) One-way clutch and reverse input prevention clutch
JP2010071328A (en) Intermittent rotation transmission device
JP6356892B1 (en) Small structure reverse input cutoff clutch
WO2018052109A1 (en) One-way power transmission mechanism
WO2016199750A1 (en) Reverse input blocking clutch
JP2006057804A (en) Reverse input shut-off device
JP2006057802A (en) Reverse input cut-off device
JP5005623B2 (en) Reverse input cutoff clutch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863637

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561416

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863637

Country of ref document: EP

Kind code of ref document: A1