WO2016084048A1 - Composición pesticida de microorganismos entomopatógenos - Google Patents

Composición pesticida de microorganismos entomopatógenos Download PDF

Info

Publication number
WO2016084048A1
WO2016084048A1 PCT/IB2015/059185 IB2015059185W WO2016084048A1 WO 2016084048 A1 WO2016084048 A1 WO 2016084048A1 IB 2015059185 W IB2015059185 W IB 2015059185W WO 2016084048 A1 WO2016084048 A1 WO 2016084048A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition according
spp
pesticidal composition
conidia
entomopathogenic
Prior art date
Application number
PCT/IB2015/059185
Other languages
English (en)
French (fr)
Inventor
Laura Fernanda VILLAMIZAR RIVERO
Martha Isabel GÓMEZ ÁLVAREZ
Alba Marina COTES PRADO
Original Assignee
Corporación Colombiana De Investigación Agropecuaria-Corpoica
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corporación Colombiana De Investigación Agropecuaria-Corpoica filed Critical Corporación Colombiana De Investigación Agropecuaria-Corpoica
Priority to BR112017008990-4A priority Critical patent/BR112017008990B1/pt
Publication of WO2016084048A1 publication Critical patent/WO2016084048A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/30Microbial fungi; Substances produced thereby or obtained therefrom

Definitions

  • the present invention relates to compositions for the biological control of pests comprising an effective amount of an entomopathogenic microorganism, adjuvants and an acceptable vehicle.
  • the pesticidal compositions of the invention have high stability and efficacy against pests and insects in various crops.
  • the whitefly Bemisia tabaci (Gennadius, 1889) (Hemiptera: Aleyrodidae) is an important pest insect in different crops around the world, especially in the tropics and subtropics (1). Its ability to adapt and ability to colonize new hosts has facilitated its establishment and its permanent survival (2).
  • the most relevant damage caused by the whitefly is the transmission of diseases caused by viruses, especially by geminiviruses or begomoviruses (Geminiviridae) (2,3).
  • the economic losses caused by this insect as a direct pest or as a vector reach the millions of dollars every year (2,4). Crops such as tomatoes, cotton, eggplant and beans are very affected by this pest.
  • Entomopathogenic fungi have very special characteristics that allow them to survive parasitically on insects and saprophytic on decomposing plant material. Saprophyte growth can result in the production of conidiophores, conidia and mycelial development, which allows the fungus to be produced in the laboratory using appropriate techniques.
  • bioinsecticides can be produced from different genera and species of entomopathogenic fungi whose active ingredient is the fungus itself. Examples of these products of proven effectiveness are the NoFly® bioinsecticides based on Paecilomyces fumosoroseus and Mycotal® based on Lecanicillium lecanii for whitefly control. Other commercial products such as Mycotrol ES®, Naturalis L®, BotaniGard®, Conidia® and Tracer® are also widely known.
  • the present invention relates to pesticidal compositions comprising an effective amount of an entomopathogenic microorganism, adjuvants and an acceptable vehicle, which has high stability and exhibits adequate efficacy against pests and insects, including whitefly.
  • the invention also contemplates the use of said compositions for the phytosanitary control of pests and disease vectors in various crops. Unexpectedly, the compositions of the invention exhibited good stability associated with a broad insecticidal spectrum.
  • FIG. 1 Germination of L. lecanii conidia formulated VIO 26 as a dispersible granulate (WG) and stored for six months at 8 ° C, 18 ° C and 28 ° C. Treatments with the same letter do not show significant differences according to Tukey's test (95%).
  • FIG 2. Efficacy of the conidia of L. lecanii V1026 formulated as a dispersible granulate (WG) and stored for six months at 8 ° C, 18 ° C and 28 ° C. Treatments with the same letter do not show significant differences according to Tukey's test (95%).
  • FIG 3. Effect of simulated solar radiation on the germination of formulated and unformed Lecanicillium lecanii V1026 conidia. Treatments with the same letter do not show significant differences according to Tukey's test (95%).
  • compositions of the present invention comprise, as active ingredient, at least one entomopathogenic microorganism. Additionally, the compositions of the invention include formulation aids or auxiliaries and an acceptable vehicle that allows them to be stable in the long term and applied to various crops.
  • insects and insects includes insects recognized by those skilled in the art such as whiteflies, aphids, thrips, mites, mealybugs, psnids, weevils, plant bugs, borers, foliage-eating insects, foliage-eating beetles on all types of plants, ticks and mosquito vectors and / or disease transmitters.
  • effective amount means an amount and / or concentration of an entomopathogenic microorganism and / or combinations thereof, sufficient to exhibit appropriate effectiveness and efficacy on the target pest (s).
  • Entomopathogenic microorganisms present in the compositions of the invention include, but are not limited to Lecanicillium spp, Beauveria spp, Metarhizium spp, Paecilomyces spp, Nomouraea spp. and Entomophthora spp.
  • the entomopathogenic microorganism is in the form of conidia.
  • Conidia are asexual spores characteristic of many fungi that are relatively temperature tolerant, stable in different environmental conditions and that can be quantified and serve as units of measurement of the fungus to evaluate parameters such as concentration and viability.
  • the entomopathogenic microorganism is a fungus of the genus Lecanicillium spp, more preferably a strain of Lecanicillium lecanii and even more preferably Lecanicillium lecanü V1026, either alone or in combination with other entomopathogenic microorganisms.
  • the pesticidal compositions of the invention comprise between 1x105 and 1x1012 conidia / g of entomopathogenic microorganism (s) as active ingredient, adjuvants and an acceptable vehicle.
  • concentration of active ingredient in the pesticidal compositions of the invention is between 7 and lxlO lxlO 10 conidia / g, preferably 5 x10 9 conidia / g.
  • the compositions of the invention include different adjuvants with specific functions to shape, improve stability and increase shelf life.
  • the "acceptable vehicle" for purposes of the present invention can be defined as a substance or mixture of substances (eg solutions, emulsions and suspensions) capable of dissolving or dispersing the active ingredient, without affecting its ability to perform the desired function.
  • adjuvants there may be mentioned, for example, water, organic solvents, oils, alcohols, polyols, support substances (eg kaolins, talcum), diluents, drying protectors, physical screen, sunscreens, emulsifying agents, viscous agents, surfactants, stabilizers and dyes.
  • support substances eg kaolins, talcum
  • sunscreens emulsifying agents, viscous agents, surfactants, stabilizers and dyes.
  • the drying protector and the diluent are harmless substances for the microorganism that protect the cells during the dehydration process, improving their tolerance to abiotic stress conditions that are generated during storage.
  • Sunscreens work by means of blocking and filtration mechanisms of ultraviolet radiation, increasing the photostability of the active ingredient against solar radiation.
  • the disintegrating and viscous agents allow to guarantee a homogeneous concentration of the active agent in the volume of reconstitution.
  • the compositions of the invention may be in the form of powders, soluble granules, dispersible granules, dispersible tablets, emulsion or suspension.
  • soluble granulate is intended to include granules for application after dissolution of the active ingredient in water as a solution, however, may contain insoluble formulation auxiliaries.
  • the term “dispersible granulate” refers to granules for application in suspension form, after disintegration and dispersion in water or other aqueous solvent.
  • the term "dispersible tablet” refers to a formulation in the form of tablets to be used individually to form a suspension of the active ingredient after its disintegration in water.
  • emulsion is intended to include a liquid that contains water and oil, either in OAV or W / O form, to be applied directly or diluted, being able to form a microemulsion or a conventional emulsion.
  • suspension refers to liquids containing the active agent and / or adjuvant (s) stably suspended, to be applied directly or diluted in water.
  • compositions of the invention are in the form of dispersible granules, have as active ingredient conidia of the entomopathogenic microorganism and the adjuvants include sunscreens that improve the persistence of the product. Additionally the compositions include a drying protector and stabilizing substances that improve the stability of the active ingredient during the storage process.
  • Entomopathogenic microorganisms of the compositions of the invention can be obtained by culturing an inoculum thereof in a suitable culture medium and incubating it in suitable environmental conditions until obtaining the desired amount of biomass.
  • the adjuvants and the vehicle can be mixed in a container under aseptic conditions and then added to the suspended conidia while maintaining constant agitation until a homogeneous mixture is obtained.
  • the obtained mixture can be granulated and dried to obtain granules, or it can be adapted to a suspension or emulsion.
  • the compositions are in the form of dispersible granules.
  • the biomass is mixed with a diluent, a viscosifying agent, a disintegrant, sunscreens and a protein solution used as a drying protective agent and a dye.
  • concentration ranges are shown in Table 1.
  • the pesticidal compositions of the invention have insecticidal action, are effective against pests and insects and can be stored and transported through commercial distribution channels without the need for special handling. Additionally, the compositions of the invention have no notable adverse effects on the environment and non-target species, including humans.
  • a further embodiment of the present invention relates to the use of the compositions of the invention for the control of pests and insects in various crops.
  • the compositions can be applied in the target areas in any way known to those skilled in the art.
  • the present invention will be presented in detail through the following examples, which are provided for illustrative purposes only and not for the purpose of limiting the scope of the present invention.
  • Example 1 Obtaining the strain and conidia of Lecanicillium lecanii V1026.
  • Lecanicillium lecanii V1026 isolated in 1996 from adults of Trialeurodes vaporariorum collected in the Sumapaz region, department of Cundinamarca, Colombia e was supplied by the Germplasm Bank of Microorganisms with Interest in Biological Control of CORPOICA.
  • the Lecanicillium lecanii V1026 strain was reactivated in Malt Extract Agar medium (EM Agar) and incubated 25 ° C for 8 days. The mass production of the microorganism was carried out using a previously standardized cereal-based substrate (8).
  • Example 2 Preparation of pesticidal compositions in the form of dispersible granules
  • An insecticidal composition in the form of dispersible granules was prepared with Lecanicillium lecanii V1026 as active ingredient.
  • the microorganism was obtained according to Exemplol. Kaolin, bentonite, skim milk powder and explocel® were incorporated into a planetary mixer, and mixed for approximately 5 minutes on the first level of the intensifier. The previous mixture was mixed with the moist conidia of Lecanicillium lecanii V1026 for approximately 15 minutes using the mixer on the second level of the intensifier, during this time the sunscreens were added. Table 2 shows the concentrations of each component.
  • the wet mixture was fed slowly to a functioning oscillating granulator with an 8mm perforated mesh.
  • the wet granulate was recovered in trays and subjected to drying at a temperature of 24 ° C for approximately 24 hours until the granulate was obtained with a final humidity between 4% and 7%.
  • Table 2
  • the concentration, germination percentage and humidity were determined to verify its quality.
  • 1 gram of the product was added to 9 mL of 0.1% Tween 80® and decimal dilutions were made up to 10-. From this dilution the count of conidia was carried out using a Neubauer chamber. With the count obtained and the dilution used, the concentration of the product expressed as conidia per gram of product (conidia / g) was calculated.
  • Example 2 1.0 gram samples of a dispersible granulate obtained according to Example 2, were packed in vacuum sealed metallic bags (4cm x 6cm), which were stored for six months in digital incubators set at 8 ⁇ 2 ° C, 18 ⁇ 2 ° C and 28 ⁇ 2 ° C. Before starting storage and every two months for six months the germination capacity of the conidia was determined. Additionally, biocontroller activity was evaluated under laboratory conditions before storage and every three months during the six months of the study.
  • the stability study had a completely randomized experimental design, with repeated measurements over time and all measurements were performed in triplicate. The results of the stability study were subjected to an analysis of variance and then to comparisons of means using the Tukey test (95%).
  • the design of the experiment was completely randomized with three repetitions and there was an absolute witness.
  • the experimental unit corresponded to a bean plant with a trifolium formed and the sampling unit corresponded to a leaflet previously infested with the whitefly and applied with the treatment.
  • the product did not show a significant decrease in germination when it was stored at 8 ° C for six months.
  • the initial germination percentage was 98.8%, which decreased to 93.3% after six months of storage at that temperature (FIG 1).
  • the product remained stable during the first four months of storage with germination higher than 83.5%, while at the sixth month, the germination capacity of the conidia was 71.8%.
  • the germination percentage increased to values greater than 80%, suggesting that storage may not cause conidial death but rather induce a state latency, which delayed its metabolic activation and therefore the germination of conidia.
  • the product initially showed an efficiency of 89.6%, which decreased after six months of storage at 8 ° C to 80.1% (FIG 2).
  • the effectiveness of the product showed a progressive decrease over time when stored at 18 ° C.
  • composition A the dried conidia of Lecanicülium lecanii V1026 without adjuvants
  • composition B a WG composition obtained according to Example 2 reconstituted in water
  • composition C the same composition WG, but suspended in an oily base and reconstituted in water
  • All suspensions were adjusted to a concentration of lxlO 6 conidia / mL.
  • 0.1 mL samples of each treatment were seeded in agar-EM-benlate medium (0.003%).
  • Three boxes were inoculated per exposure time (0, 30, 60 and 90 min) for a total of 12 boxes for each treatment.
  • the experimental design was completely randomized with repeated measurements over time and three repetitions for each treatment and exposure time.
  • the inoculated boxes were exposed to the radiation emitted by a 16S 150 solar simulator Solar Light brand adjusting the power of UV-B radiation to 12 ⁇ / cm .nm, with a radiometer.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Biotechnology (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Mycology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

La presente invención se refiere a composiciones pesticidas para el control biológico de plagas que comprenden una cantidad efectiva de un microorganismo entomopatógeno, coadyuvantes y un vehículo aceptable. Las composiciones de la invención exhiben un amplio espectro de acción, son muy eficaces contra las plagas e insectos y pueden ser almacenadas durante largos periodos de tiempo debido a su alta estabilidad.

Description

COMPOSICIÓN PESTICIDA DE MICROORGANISMOS ENTOMOPATÓGENOS
CAMPO TECNICO
La presente invención se refiere a composiciones para el control biológico de plagas que comprenden una cantidad efectiva de un microorganismo entomopatógeno, coadyuvantes y un vehículo aceptable. Las composiciones pesticidas de la invención tienen una alta estabilidad y eficacia contra plagas e insectos en diversos cultivos.
DESCRIPCIÓN DEL ESTADO DEL ARTE
El uso de plaguicidas químicos para la protección de cultivos genera un aumento significativo de los costos de producción y un deterioro importante del medio ambiente, el cual se ve reflejado en la disminución de la biodiversidad, afectación de la microflora y microfauna del suelo, plagas resistentes y contaminación de aguas superficiales y subterráneas.
Los impactos negativos del uso intensivo de plaguicidas químicos se pueden reducir empleando técnicas como el control biológico (mediante el uso de agentes biológicos, incluyendo insectos predadores y parasitoides, hongos y bacterias). El control biológico es posiblemente la herramienta de más perspectiva dentro del manejo integrado de plagas, dadas las ventajas comparativas que ofrece sobre otros métodos como el control químico al minimizar los riesgos ambientales asociados a los plaguicidas.
La mosca blanca Bemisia tabaci (Gennadius, 1889) (Hemiptera: Aleyrodidae) es un insecto plaga de importancia en diferentes cultivos del mundo, en especial en el trópico y subtrópico (1). Su capacidad de adaptación y habilidad para colonizar nuevos hospederos ha facilitado su establecimiento y su sobrevivencia permanente (2). El daño más relevante causado por la mosca blanca es la transmisión de enfermedades causadas por virus, especialmente por los geminivirus o begomovirus (Geminiviridae) (2,3). Las pérdidas económicas que causa este insecto como plaga directa o como vector alcanzan los millones de dólares cada año (2,4). Cultivos como tomate, algodón, berenjena y frijol resultan muy afectados por esta plaga.
Para el control de la mosca blanca se han desarrollado alternativas biológicas mediante el uso de hongos entomopatogenos, los cuales tienen un potencial interesante para ser incluidos en programas de manejo integrado de plagas. Los hongos entomopatogenos poseen características muy especiales que les permiten sobrevivir en forma parasítica sobre los insectos y en forma saprofita sobre material vegetal en descomposición. El crecimiento saprofito puede dar como resultado la producción de conidióforos, conidios y desarrollo miceliar, lo cual permite que el hongo pueda ser producido en el laboratorio utilizando técnicas adecuadas.
Por su eficacia en el control de plagas y vectores, pueden producirse bioinsecticidas a partir de diferentes géneros y especies de hongos entomopatogenos cuyo ingrediente activo es el propio hongo. Ejemplos de estos productos de probada efectividad lo constituyen los bioinsecticidas NoFly® a base de Paecilomyces fumosoroseus y Mycotal® a base de Lecanicillium lecanii para control de la mosca blanca. Otros productos comerciales como Mycotrol ES®, Naturalis L®, BotaniGard®, Conidia® y Tracer® también son ampliamente conocidos.
Se ha demostrado que productos químicos compatibles con hongos entomopatogenos pueden incrementar la eficiencia de los mismos, permitiendo disminuir las dosis de partículas de síntesis química favoreciendo la preservación de los enemigos naturales de la plaga y minimizando el impacto en el medio ambiente (5). Una de las especies promisorias para implementar en el control biológico de B. tabaci es el hongo entomopatógeno Lecanicillium lecanii. Este microorganismo está distribuido en amplios agroecosistemas y frecuentemente genera epizootias naturales sobre este insecto y otras plagas de interés como Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) y Aedes triseriatus (Díptera: Culicidae) (6,7).
Aunque los agentes de control biológico se están desarrollando activamente, en la actualidad son muy pocos los biopesticidas de amplio espectro de estabilidad elevada que sean capaces de controlar de manera efectiva una amplia gama de insectos que atacan cultivos. Mediante la utilización de composiciones estables que comprenden cantidades efectivas de microorganismos entomopatógenos, se puede reducir notablemente el potencial para el desarrollo de la resistencia y se podrían optimizar los programas de control de plagas, reduciendo la cantidad de ingrediente activo necesario para lograr el objetivo.
BREVE DESCRIPCION DEL INVENTO La presente invención se refiere a composiciones pesticidas que comprenden una cantidad efectiva de un microorganismo entomopatógeno, coadyuvantes y un vehículo aceptable, que tiene una alta estabilidad y exhibe una eficacia adecuada contra plagas e insectos, entre ellos, la mosca blanca. La invención también contempla el uso de dichas composiciones para el control fitosanitario de plagas y vectores de enfermedades en diversos cultivos. De manera inesperada, las composiciones de la invención presentaron una buena estabilidad asociada a un amplio espectro insecticida. BREVE DESCRIPCION DE LAS FIGURAS
FIG 1. Germinación de los conidios de L. lecanii formulados VIO 26 como un granulado dispersable (WG) y almacenados durante seis meses a 8°C, 18°C y 28°C. Tratamientos con la misma letra no presentan diferencias significativas según prueba de Tukey (95%).
FIG 2. Eficacia de los conidios de L. lecanii V1026 formulados como un granulado dispersable (WG) y almacenados durante seis meses a 8°C, 18°C y 28°C. Tratamientos con la misma letra no presentan diferencias significativas según prueba de Tukey (95%). FIG 3. Efecto de la radiación solar simulada sobre la germinación de los conidios de Lecanicillium lecanii V1026 formulados y sin formular. Tratamientos con la misma letra no presentan diferencias significativas según prueba de Tukey (95%). DESCRIPCION DETALLADA DE LA INVENCION
Las composiciones pesticidas de la presente invención comprenden, como ingrediente activo, al menos un microorganismo entomopatogeno. Adicionalmente las composiciones de la invención incluyen coadyuvantes o auxiliares de formulación y un vehículo aceptable que les permite ser estables a largo plazo y aplicarse en diversos cultivos.
Para efectos de la presente invención la expresión "plagas e insectos" incluye insectos reconocidos por los expertos en la técnica como moscas blancas, pulgones, trips, ácaros, cochinillas, psñidos, gorgojos, chinches de las plantas, perforadores, insectos comedores de follaje, escarabajos comedores de follaje en todo tipo de plantas, garrapatas y mosquitos vectores y/o trasmisores de enfermedades. La expresión "cantidad efectiva" quiere decir una cantidad y/o concentración de un microorganismo entomopatogeno y/o combinaciones de los mismos, suficientes para exhibir una efectividad y eficacia apropiada sobre la(s) plaga(s) objetivo.
Los microorganismos entomopatógenos presentes en las composiciones de la invención incluyen, pero no se limitan a Lecanicillium spp, Beauveria spp, Metarhizium spp, Paecilomyces spp, Nomouraea spp. y Entomophthora spp. En una modalidad preferida de la invención, el microorganismo entomopatogeno se encuentra en forma de conidios. Los conidios son esporas asexulaes características de muchos hongos que son relativamente tolerantes a la temperatura, estables en diferentes condiciones ambientales y que pueden ser cuantificadas y servir como unidades de medida del hongo para evaluar parámetros como concentración y viabilidad.
En una modalidad preferida de la invención, el microorganismo entomopatogeno es un hongo del género Lecanicillium spp, más preferiblemente una cepa de Lecanicillium lecanii y aún más preferiblemente Lecanicillium lecanü V1026, bien sea sólo o en combinación con otros microorganismos entomopatógenos.
Las composiciones pesticidas de la invención comprenden entre 1x10 5 y 1x1012 conidios/g de microrganismo(s) entomopatógeno(s) como ingrediente activo, coadyuvantes y un vehículo aceptable. En una modalidad preferida, la concentración de ingrediente activo en las composiciones pesticidas de la invención está entre lxlO7 y lxlO10 conidios/g, preferiblemente 5 X 109 conidios/g. Las composiciones de la invención incluyen diferentes coadyuvantes con funciones específicas para dar forma, mejorar la estabilidad y aumentar la vida útil durante el almacenamiento. El "vehículo aceptable" para efectos de la presente invención, se puede definir como una sustancia o mezcla de sustancias (v.g. soluciones, emulsiones y suspensiones) capaces de disolver o dispersar el ingrediente activo, sin que afecte su capacidad para realizar la función deseada.
Como coadyuvantes se pueden mencionar, por ejemplo, agua, solventes orgánicos, aceites, alcoholes, polioles, sustancias de soporte (v.g. caolines, talco), diluyentes, protectores de secado, pantalla física, protectores solares, agentes emulsionantes, agentes viscosantes, surfactantes, estabilizantes y colorantes.
El protector de secado y el diluente son sustancias inocuas para el microorganismo que protegen las células durante el proceso de deshidratación, mejorando su tolerancia a condiciones abióticas de estrés que se generan durante el almacenamiento. Los protectores solares funcionan mediante mecanismos de bloqueo y filtración de la radiación ultravioleta, aumentando la fotoestabilidad del ingrediente activo frente a la radiación solar. Los agentes desintegrantes y viscosantes permiten garantizar una concentración homogénea del agente activo en el volumen de reconstitución. Las composiciones de la invención pueden ser en forma de polvos, granulado soluble, granulado dispersable, tabletas dispersables, emulsión o suspensión. El término "granulado soluble" se pretende que incluya granulos para aplicación luego de la disolución del ingrediente activo en agua en forma de solución, pudiendo, sin embargo, contener auxiliares de formulación insolubles. El término "granulado dispersable" se refiere a granulos para aplicación en forma de suspensión, luego de su desintegración y dispersión en agua u otro solvente acuoso.
Para efectos de la presente invención, el término "tableta dispersable" se refiere a una formulación en forma de tabletas para ser usadas individualmente para formar una suspensión del ingrediente activo después de su desintegración en agua. El término "emulsión" se pretende que incluya a un líquido que contiene agua y aceite, bien sea en forma OAV o W/O, para ser aplicado directamente o diluido, pudiendo formar una microemulsión o una emulsión convencional. El término "suspensión" se refiere a líquidos que contienen el agente activo y/o coadyuvante(s) suspendidos de manera estable, para ser aplicado directamente o diluido en agua. En una modalidad preferida, las composiciones de la invención están en forma de granulado dispersable, tienen como ingrediente activo conidios del microorganismo entomopatógeno y los coadyuvantes incluyen protectores solares que mejoran la persistencia del producto. Adicionalmente las composiciones incluyen un protector de secado y sustancias estabilizantes que mejoran la estabilidad del ingrediente activo durante el proceso de almacenamiento.
Los microorganismos entomopatógenos de las composiciones de la invención se pueden obtener cultivando un inoculo de éste en un medio de cultivo propicio e incubándolo en condiciones ambientales adecuadas hasta obtener la cantidad de biomasa deseada. Para la preparación de las composiciones, se pueden mezclar en un recipiente en condiciones de asepsia, los coadyuvantes y el vehículo y luego añadir a los conidios suspendidos manteniendo agitación constante hasta obtener una mezcla homogénea. La mezcla obtenida puede ser granulada y secada para obtener granulos, o puede ser adaptada a una suspensión o emulsión.
En una modalidad preferida de la invención, las composiciones son en forma de granulado dispersable. Para su preparación, la biomasa se mezcla con un diluente, un agente viscosante, un desintegrante, protectores solares y una solución proteica utilizada como agente protector de secado y un colorante. Los rangos de concentración se muestran en la Tabla 1. Una vez mezclada la biomasa con los coadyuvantes mencionados, se realiza una granulación vía húmeda según los procedimientos convencionales de granulación y el producto obtenido se seca a 25 °C durante 24 horas para obtener así el granulado. En la Tabla 1 se muestran los diferentes componentes y su rango de concentración.
Figure imgf000009_0001
Las composiciones pesticidas de la invención presentan acción insecticida, son eficaces contra las plagas e insectos y pueden ser almacenadas y transportadas a través de canales de distribución comerciales sin necesidad de un manejo especial. Adicionalmente, las composiciones de la invención no presentan efectos adversos notables sobre el medio ambiente y las especies no objetivo, incluidos los seres humanos.
Una modalidad adicional de la presente invención, se refiere al uso de las composiciones de la invención para el control de plagas e insectos en diversos cultivos. Las composiciones pueden ser aplicadas en las áreas objetivo de cualquier forma conocida por los expertos en la materia. La presente invención será presentada en detalle a través de los siguientes ejemplos, los cuales son suministrados solamente con propósitos ilustrativos y no con el objetivo de limitar los alcances de la presente invención.
EJEMPLOS
E jemplo 1: Obtención de la cepa y conidios de Lecanicillium lecanii V1026.
Lecanicillium lecanii V1026 (aislado en 1996 a partir de adultos de Trialeurodes vaporariorum recolectados en la región del Sumapaz, departamento de Cundinamarca, Colombia e) fue suministrado por el Banco de Germoplasma de Microorganismos con Interés en Control Biológico de CORPOICA. La cepa de Lecanicillium lecanii V1026 se reactivó en medio Agar Extracto de Malta (Agar EM) y se incubó 25°C durante 8 días. La producción masiva del microorganismo se realizó empleando un sustrato previamente estandarizado a base de cereales (8).
Ejemplo 2: Preparación de composiciones pesticidas en forma de granulado dispersable
Se preparó una composición insecticida en forma de granulado dispersable con Lecanicillium lecanii V1026 como ingrediente activo. El microorganismo se obtuvo de acuerdo al Ejemplol. Se incorporaron a un mezclador planetario caolín, bentonita, leche descremada en polvo y explocel®, y se mezclaron durante aproximadamente 5 minutos en el primer nivel del intensificador. La mezcla anterior fue mezclada con los conidios húmedos de Lecanicillium lecanii V1026 durante aproximadamente 15 minutos utilizando la mezcladora en el segundo nivel del intensificador, durante este tiempo se agregaron los protectores solares. La Tabla 2 muestra las concentraciones de cada componente.
La mezcla húmeda fue alimentada lentamente a un granulador oscilante en funcionamiento con una malla perforada de 8mm. El granulado húmedo se recuperó en bandejas y se sometió a secado a una temperatura de 24°C durante aproximadamente 24 horas hasta obtener el granulado con una humedad final entre 4% y 7%. Tabla 2
Figure imgf000011_0001
Una vez obtenido el granulado, se determinó la concentración, el porcentaje de germinación y la humedad para verificar su calidad. Para determinar la concentración se adicionó 1 gramo del producto a 9 mL de Tween 80® al 0,1% y se realizaron diluciones decimales hasta 10- . A partir de esta dilución se realizó el recuento de conidios empleando una cámara de Neubauer. Con el recuento obtenido y la dilución empleada se calculó la concentración del producto expresada como conidios por gramo de producto (conidios/g).
Para determinar la germinación se adicionó 1 g del producto a un tubo de ensayo con 9 mL de Tween 80® al 0,1% y se realizaron diluciones seriadas hasta 10-2, de la última dilución se sembraron ΙΟΟμί en cajas de Petri con medio Agar Sabouraud. Las cajas se incubaron a 25±2°C durante 24 horas, tiempo después del cual se cuantificó el número de conidios germinados y no germinados mediante observación al microscopio de 10 campos ópticos, por unidad experimental. El porcentaje de humedad se determinó por medio de la técnica de pérdida de peso por secado en una balanza de humedad OHAUS MB®. Ejemplo 3. Ensayo de Estabilidad bajo condiciones de almacenamiento
Muestras de 1,0 gramo de un granulado dispersable obtenido de acuerdo al Ejemplo 2, se empacaron en bolsas metalizadas selladas al vacío (4cm x 6cm), las cuales fueron almacenadas durante seis meses en incubadoras digitales ajustadas a 8±2°C, 18±2°C y 28±2°C. Antes de iniciar el almacenamiento y cada dos meses durante seis meses se determinó la capacidad de germinación de los conidios. Adicionalmente, se evaluó la actividad biocontroladora en condiciones de laboratorio antes del almacenamiento y cada tres meses durante los seis meses del estudio.
El estudio de estabilidad contó con un diseño experimental completamente al azar, con medidas repetidas en el tiempo y todas las mediciones se realizaron por triplicado. Los resultados del estudio de estabilidad fueron sometidos a un análisis de varianza y posteriormente a comparaciones de medias mediante la prueba de Tukey (95%).
Para la evaluación de la germinación se adicionó 1 ,0 gramo del producto a un tubo de ensayo con 9 mL de Tween 80 al 0,1% y se realizaron diluciones seriadas hasta la dilución 10- . A partir de la última dilución se sembraron 100 μΐ en tres cajas de Petri con Agar suplementado con Benomil al 0,0003% y Extracto de Malta al 0,1% y se llevaron a incubación a 25±2°C durante 24 horas, tiempo después del cual se cuantificó el número de conidios germinados y no germinados mediante observación al microscopio de 10 campos ópticos, por unidad experimental. La cuantificación de conidios se realizó mediante recuento en cámara de Neubauer (9). Para evaluar la actividad biocontroladora se sembraron semillas de fríjol de la variedad ICA-Calima en materas plásticas de 10 cm de diámetro. Una vez las plantas presentaron un trifolio, se infestaron con 30 adultos de B. tabaci confinados en jaulas pinza durante aproximadamente 30 horas, para asegurar una oviposición suficiente. Después de este tiempo, los adultos se retiraron y se esperó hasta obtener ninfas de segundo instar y se realizó el conteo de las ninfas presentes por cada foliólo (ninfas iniciales). Posteriormente, se aplicaron 2 mL de una suspensión del bioplaguicida a base de L. lecanii reconstituido en agua y ajustado a una concentración de lxlO7 conidios/mL, mediante el uso de un microaspersor con una presión de 40 psi.
El día 14 después de la aplicación se contaron los adultos emergidos, evidenciados por las exuvias presentes en cada foliólo y por sustracción entre las ninfas iniciales y los adultos finales se obtuvo el porcentaje de mortalidad. El diseño del experimento fue completamente al azar con tres repeticiones y se contó con un testigo absoluto. La unidad experimental correspondió a una planta de fríjol con un trifolio formado y la unidad de muestreo correspondió a un foliólo previamente infestado con la mosca blanca y aplicado con el tratamiento.
El producto no presentó una disminución significativa de la germinación cuando fue almacenado a 8°C durante seis meses. El porcentaje de germinación inicial fue del 98,8%, el cual disminuyó al 93,3% luego de seis meses de almacenamiento a dicha temperatura (FIG 1). A una temperatura de 18°C, el producto permaneció estable durante los cuatro primeros meses de almacenamiento con germinaciones superiores al 83,5%, en tanto que al sexto mes, la capacidad de germinación de los conidios fue del 71,8%. Sin embargo, después de incubar las muestras por un período superior a 48 horas, se observó que el porcentaje de germinación incrementó a valores superiores al 80%, lo que sugiere que posiblemente el almacenamiento no causó la muerte de los conidios sino indujo a un estado de latencia, que retardó su activación metabólica y por lo tanto la germinación de los conidios.
El producto inicialmente presentó una eficacia del 89,6%, la cual disminuyó después de seis meses de almacenamiento a 8°C a 80,1% (FIG 2). La eficacia del producto presentó una disminución progresiva a través del tiempo cuando se almacenó a 18°C.
Al tercer mes la eficacia fue del 80,8%, valor que no fue significativamente diferente (P
> 0,01) de la eficacia del producto recién manufacturado. Sin embargo, la eficacia del producto a los seis meses de almacenamiento fue significativamente inferior a la presentada inicialmente, con un valor del 41,41% (FIG 2). El producto almacenado a
28°C, evidenció una disminución drástica en la eficacia a partir del tercer mes de almacenamiento.
Ejemplo 5. Ensayo de Fotoestabilidad
Se evaluó la fotoestabilidad de tres composiciones, los conidios secos de Lecanicülium lecanii V1026 sin coadyuvantes (composición A), una composición WG obtenida según el Ejemplo 2 reconstituida en agua (composición B) y la misma composición WG, pero suspendida en una base oleosa y reconstituida en agua (composición C). Todas las suspensiones se ajustaron a una concentración de lxlO6 conidios/mL. Muestras de 0,1 mL de cada tratamiento se sembraron en medio agar-EM-benlate (0,003%). Se inocularon tres cajas por tiempo de exposición (0, 30, 60 y 90 min) para un total de 12 cajas por cada tratamiento. El diseño experimental fue completamente al azar con medidas repetidas en el tiempo y tres repeticiones para cada tratamiento y tiempo de exposición. Las cajas inoculadas fueron expuestas a la radiación emitida por un simulador solar 16S 150 marca Solar Light ajusfando la potencia de la radiación UV-B a 12 μλν/cm .nm, con un radiómetro.
Las unidades experimentales inoculadas e irradiadas fueron incubadas a 25±2°C por 24 horas, tiempo después del cual se determinó la germinación siguiendo la metodología previamente descrita. Las cajas se incubaron nuevamente por 48 horas para evaluar cualitativamente la presencia de micelio y durante 8 días más para verificar la conidiación del hongo. Los resultados se ilustran en la Tabla 3.
Tabla 3
Figure imgf000014_0001
En la FIG 3. se muestra la germinación de los conidios formulados y sin formular de L. lecanii V1026 después de exponerse a radiación solar simulada por 90 minutos, donde se evidencia la mayor germinación en el producto en comparación con los conidios sin formular, sugiriendo un efecto protector de la formulación frente a la radiación.
Pasados 90 minutos de exposición, se observó una germinación significativamente menor en los conidios no formulados en comparación con la obtenida en los conidios formulados (WG) tanto reconstituido en agua como cuando se utilizó base oleosa y agua. Este resultado indica que la formulación (WG) redujo eficientemente el efecto negativo de la radiación solar simulada sobre los conidios de Lecanicillium lecanii.
REFERENCIAS
1. López-Ávila A., García J. 2000. Manejo integrado sostenible de Mosteas Blancas como plagas y vectores de virus en los trópicos. En: Reconocimiento, diagnóstico y caracterización de moscas blancas como plagas en el trópico alto de América Latina. Con-ivenio Danida-Corpoica CIAT, p. 43.
2. De Barro PJ., Liu SS., Boylin LM., Dinsdale AB. 2011. Bemisia tabaco. A statement of species status. Annu Rev. Entomol. 56: 1-9.
3. Oliverira M.R.V., TJ Hennberry., Anderson P. 2001. History, current status and collaborative research projects for B. tabaci. Crop protection. 20: 709-723.
4. Yuan L., Wang S., Zhou J., Du Y., Zhang Y., Wang J. 2012. Status of insecticide resistance and associated mutations in Q-biotype of whitefly, Bemisia tabaci, from eastern China. Crop Protection. 31 : 67-71.
5. Amberthgar V. 2009. Potencial of entomopathogenic fungí in insecticide resistance management (IRM): A review. Journal of Biopesticides. 2: 177-193
6. Yuan L., Wang S., Zhou J., Du Y., Zhang Y., Wang J. 2012. Status of insecticide resistance and associated mutations in Q-biotype of whitefly, Bemisia tabaci, from eastern China. Crop Protection. 31 : 67-71.
7. Goettel M.S., Koike M., Kim J.J., Aiuchi D., Shinya R., Brodeur J. 2008. Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. Journal Of Invertebrate Pathology. 98: 256-261
8. Villamizar L., Grijalba E., Zuluaga M., Gómez M., Cotes A.M. 2009. Evaluation of some parameters influencing the activity of a fungal biocontrol agent used for Bemisia tabaci control. Insect Pathogens and Insect Parasitic Nematodes. IOBC/wprs Bulletin. 43: 327-330.
Ekesi, S., Maniania, N.K., Ampong-Nyarko, K. 1999. Effect of temperature on germination, radial growth and virulence of Metarhizium anisopliae and Beauveria bassiana on Megalurothrips sjostedti. Biocontrol Science and Technology. 9: 177- 185.

Claims

REIVINDICACIONES
1) Una composición pesticida que comprende una cantidad efectiva de un microorganismo entomopatógeno, coadyuvantes y un vehículo aceptable.
2) Una composición pesticida según la Reivindicación 1 , donde la cantidad efectiva del microorganismo entomopatógeno está entre 1x10 5 y 1x1012 conidios/g.
3) Una composición pesticida según la Reivindicación 1 , donde la cantidad efectiva del microorganismo entomopatógeno es de 5x109 conidios/g.
4) Una composición pesticida según la Reivindicación 1, donde el microorganismo entomopatógeno se selecciona del grupo que consiste de Lecanicillium spp, Beauveria spp, Metarhizium spp, Paecilomyces spp, Nomouraea spp, Entomophthora spp y combinaciones de los mismos.
5) Una composición pesticida según la Reivindicación 1, donde el microorganismo entomopatógeno es del género Lecanicillium spp.
6) Una composición pesticida según la Reivindicación 5, donde el microorganismo entomopatógeno es Lecanicillium lecanii V1026.
7) Una composición pesticida según la Reivindicación 1, donde los coadyuvantes comprenden solventes, desintegrantes, protectores de secado, diluentes, agentes emulsionantes, protectores solares, viscosantes, surfactantes, estabilizantes y colorantes.
8) Una composición pesticida según la Reivindicación 1 , en forma de polvo, granulado soluble, granulado dispersable, tabletas dispersables, emulsión o suspensión.
9) Una composición pesticida según la Reivindicación 1, en forma de granulado dispersable que comprende los siguientes componentes:
Figure imgf000018_0001
10) Uso de una composición según cualquiera de las Reivindicaciones 1 a 8 para el control de insectos plaga en cultivos.
PCT/IB2015/059185 2014-11-28 2015-11-27 Composición pesticida de microorganismos entomopatógenos WO2016084048A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112017008990-4A BR112017008990B1 (pt) 2014-11-28 2015-11-27 Composição pesticida de microrganismos entomopatogênicos

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CO14-262576 2014-11-28
CO14262576A CO7290160A1 (es) 2014-11-28 2014-11-28 Composiciones plaguicidas

Publications (1)

Publication Number Publication Date
WO2016084048A1 true WO2016084048A1 (es) 2016-06-02

Family

ID=55167986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2015/059185 WO2016084048A1 (es) 2014-11-28 2015-11-27 Composición pesticida de microorganismos entomopatógenos

Country Status (3)

Country Link
BR (1) BR112017008990B1 (es)
CO (1) CO7290160A1 (es)
WO (1) WO2016084048A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116232A1 (es) * 2017-12-11 2019-06-20 Corporación Colombiana De Investigación Agropecuaria-Agrosavia Composiciones sólidas que comprenden microorganismos con actividad biocida.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5730973A (en) * 1994-02-15 1998-03-24 Hoechst Schering Agrevo Gmbh Water-dispersible granules of spores or live Beauveria bassiana
WO2009093257A2 (en) * 2008-01-24 2009-07-30 Satyasayee Divi Formulation of entomopathogenic fungus for use as a biopesticide
CN101658186A (zh) * 2009-09-16 2010-03-03 甘肃省科学院生物研究所 蜡蚧轮枝菌速释分散片及其制备方法
WO2010044680A1 (en) * 2008-10-14 2010-04-22 Millennium Microbes Limited Entomopathogenic fungi and uses thereof
CN102687731B (zh) * 2012-06-20 2013-11-13 东北林业大学 苏云金杆菌和白僵菌可湿性粉剂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5730973A (en) * 1994-02-15 1998-03-24 Hoechst Schering Agrevo Gmbh Water-dispersible granules of spores or live Beauveria bassiana
WO2009093257A2 (en) * 2008-01-24 2009-07-30 Satyasayee Divi Formulation of entomopathogenic fungus for use as a biopesticide
WO2010044680A1 (en) * 2008-10-14 2010-04-22 Millennium Microbes Limited Entomopathogenic fungi and uses thereof
CN101658186A (zh) * 2009-09-16 2010-03-03 甘肃省科学院生物研究所 蜡蚧轮枝菌速释分散片及其制备方法
CN102687731B (zh) * 2012-06-20 2013-11-13 东北林业大学 苏云金杆菌和白僵菌可湿性粉剂

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ASANO, S.: "Ultraviolet protection of a granulovirus product using iron oxide.", APPL. ENTOMOL. ZOOL., vol. 40, no. 2, 2005, pages 359 - 364 *
COHEN, E. ET AL.: "Photostabilization of Beauveria bassiana conidia using anionic dyes", APPLIED CLAY SCIENCE ., vol. 42, no. 3 -4, January 2009 (2009-01-01), pages 569 - 574, ISSN: 0169-1317 *
COTES, A. M. ET AL.: "Biocontrol of whiteflies based on Lecanicillium lecanii.", IOBC/WPRS BULLETIN, vol. 45, June 2009 (2009-06-01), pages 263 - 266, Retrieved from the Internet <URL:http://www.iobc-wprs.org/pub/bulletins/bulletin2009-45-table-of-contents_abstracts.pdf> [retrieved on 20160315] *
LOONG, C. Y. ET AL.: "Effects of UV-B and Solar Radiation on the Efficacy of Isaria fumosorosea and Metarhizum anisoplae (Deuteromycetes: Hyphomycetes) for Controlling Bagworm, Pteroma pendula (Lepideoptera: Psychidae).", JOURNAL OF ENTOMOLOGY, vol. 10, no. 2, 2013, pages 53 - 65 *
SANTOS, A. M. ET AL.: "Compatibilidad in vitro de un bioplaguicida a base de Lecanicillium lecanii (Hypocreales: Clavicipitaceae) con agroquímicos empleados en los cultivos de algodón y berenjena.", REVISTA COLOMBIANA DE BIOTECNOLOGIA, [S.I., vol. 15, no. 2, December 2013 (2013-12-01), pages 132 - 142, ISSN: 1909-8758 *
SHINDE, S. V.: "Lecanicillium lecanii (Zimm.) Zare and Games'' an important Biocontrol agent for the management of Insect pests - a review.", AGRI. REVIEW, vol. 31, no. 4, 2010, pages 235 - 252, ISSN: 0976-0741 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116232A1 (es) * 2017-12-11 2019-06-20 Corporación Colombiana De Investigación Agropecuaria-Agrosavia Composiciones sólidas que comprenden microorganismos con actividad biocida.

Also Published As

Publication number Publication date
CO7290160A1 (es) 2015-06-10
BR112017008990A2 (pt) 2018-04-10
BR112017008990B1 (pt) 2022-08-16

Similar Documents

Publication Publication Date Title
Tkaczuk et al. The occurrence of entomopathogenic fungi in soils from fields cultivated in a conventional and organic system
Molina-Ochoa et al. Pathogens and parasitic nematodes associated with populations of fall armyworm (Lepidoptera: Noctuidae) larvae in Mexico
Conceschi et al. Transmission potential of the entomopathogenic fungi Isaria fumosorosea and Beauveria bassiana from sporulated cadavers of Diaphorina citri and Toxoptera citricida to uninfected D. citri adults
Gandarilla-Pacheco et al. Optimization of pathogenicity tests for selection of native isolates of entomopathogenic fungi isolated from citrusgrowing areas of México on adults of Diaphorina citri Kuwayama (Hemiptera: Liviidae)
Mochi et al. Pathogenicity of Metarhizium anisopliae for Ceratitis capitata (Wied.)(Diptera: Tephritidae) in soil with different pesticides
Cossentine et al. Impact of acquired entomopathogenic fungi on adult Drosophila suzukii survival and fecundity
SRIVASTAVA et al. Prospective role of insecticides of fungal origin
Bedini et al. Pathogenic potential of Beauveria pseudobassiana as bioinsecticide in protein baits for the control of the medfly Ceratitis capitata
Kuchár et al. Virulence of the plant-associated endophytic fungus Lecanicillium muscarium to diamondback moth larvae
Sabbour et al. Evaluations of Isaria fumosorosea isolates against the Red Palm Weevil Rhynchophorus ferrugineus under laboratory and field conditions
Sankar et al. Pathogenicity and field efficacy of the entomopathogenic fungus, Lecanicillium saksenae Kushwaha, Kurihara and Sukarno in the management of rice bug, Leptocorisa acuta Thunberg.
Pérez-González et al. Effect of Mexican Hirsutella citriformis (Hypocreales: Ophiocordycipitaceae) strains on Diaphorina citri (Hemiptera: Liviidae) and the predators Chrysoperla rufilabris (Neuroptera: Chrysopidae) and Hippodamia convergens (Coleoptera: Coccinellidae)
Anitha et al. Bio-effienc of Entomopathogenic fungus Metarhizium anisopliae (METSCH) against the tea mosquito bug, Helopeltis theivora (water house) and the red spider mite, Oligonychus coffeae (NIETNER) infecting tea in south India
WO2016084048A1 (es) Composición pesticida de microorganismos entomopatógenos
Francardi et al. Metarhizium anisopliae biopesticides and fungus isolates: control efficacy against Rhynchophorus ferrugineus (Olivier)(Coleoptera Dryophthoridae) on different contamination substrata.
Battu et al. Prospects of baculoviruses in integrated pest management
Negash et al. Efficacy of Ethiopian Beauveria bassiana and Metarhiziumanisopliae isolates on spotted spider mites, Tetranychusurticae (Acari: tetranychidae) under laboratory conditions
Aker et al. Pathogenicity of Beauveria bassiana on larvae of fall webworm, Hyphantria cunea (Drury)(Lepidoptera: Arctiidae) at different temperatures
Taheri Sarhozaki et al. Effects of ZnO nanoparticles and Kaolin in combination with NeemAzal-T/S against Bemisia tabaci and its parasitoid Eretmocerus mundus on cotton
WO2016042520A1 (es) Composicion pesticida
Dutta et al. Current status and future prospects of entomopathogenic fungi in North East India
Singh Role of biopesticides to manage insect pests in sustainable agriculture: A review
Priwiratama et al. Biological control of oil palm insect pests in Indonesia
Sabbour et al. Preliminary Investigations into the Biological Control of Red Palm Weevil Rhynchophorus ferrugineus by using three isolates of the fungus Lecanicillium (Verticillium) lecanii in Egypt
Tan et al. Evaluations Of Entomopathogenic Fungi, Metarhizium Anisopliae Inoculate On The Treated Soils Towards Paederus fuscipes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017008990

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 15863114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112017008990

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170428