WO2016083590A1 - Dispositif de balisage à installer sur un mât et procédé d'installation associé - Google Patents

Dispositif de balisage à installer sur un mât et procédé d'installation associé Download PDF

Info

Publication number
WO2016083590A1
WO2016083590A1 PCT/EP2015/077949 EP2015077949W WO2016083590A1 WO 2016083590 A1 WO2016083590 A1 WO 2016083590A1 EP 2015077949 W EP2015077949 W EP 2015077949W WO 2016083590 A1 WO2016083590 A1 WO 2016083590A1
Authority
WO
WIPO (PCT)
Prior art keywords
mast
light
photovoltaic module
housing
track
Prior art date
Application number
PCT/EP2015/077949
Other languages
English (en)
Inventor
Nicolas VANNIEUWENHUYSE
David LOUREIRO
Amaury MARTIN
Christophe Derennes
Original Assignee
Armor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Armor filed Critical Armor
Priority to BR112017011195-0A priority Critical patent/BR112017011195A2/pt
Priority to US15/529,596 priority patent/US10408400B2/en
Priority to ES15801821T priority patent/ES2808913T3/es
Priority to KR1020177013520A priority patent/KR20170088846A/ko
Priority to DK15801821.8T priority patent/DK3224534T3/da
Priority to EP15801821.8A priority patent/EP3224534B1/fr
Priority to JP2017528818A priority patent/JP6647304B2/ja
Priority to CN201580063562.3A priority patent/CN107002972B/zh
Publication of WO2016083590A1 publication Critical patent/WO2016083590A1/fr
Priority to HRP20201036TT priority patent/HRP20201036T1/hr
Priority to CY20201100676T priority patent/CY1123294T1/el

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S9/00Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply
    • F21S9/02Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator
    • F21S9/03Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator rechargeable by exposure to light
    • F21S9/035Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator rechargeable by exposure to light the solar unit being integrated within the support for the lighting unit, e.g. within or on a pole
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S9/00Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply
    • F21S9/02Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator
    • F21S9/03Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator rechargeable by exposure to light
    • F21S9/037Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator rechargeable by exposure to light the solar unit and the lighting unit being located within or on the same housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V15/00Protecting lighting devices from damage
    • F21V15/01Housings, e.g. material or assembling of housing parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V21/00Supporting, suspending, or attaching arrangements for lighting devices; Hand grips
    • F21V21/10Pendants, arms, or standards; Fixing lighting devices to pendants, arms, or standards
    • F21V21/116Fixing lighting devices to arms or standards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2111/00Use or application of lighting devices or systems for signalling, marking or indicating, not provided for in codes F21W2102/00 – F21W2107/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a marking device to be installed on a mast.
  • the invention also relates to a marking system comprising such a marking device and a method of installing the marking device.
  • a mast is cylindrical
  • the base surface can be any.
  • the base surface is a circle, a square, an oval shape or any other.
  • a lighting device including markup device, to install on a mast.
  • the device comprises an electric power generation unit comprising at least one photovoltaic module capable of being wound on at least a part of the circumference of the mast, preferably over the entire circumference of the mast.
  • the device also comprises a light energy production unit configured to be fixed on the mast, the light energy production unit comprising a housing having a periphery, a device for storing the electrical energy produced by the unit. for generating electrical power, a charge regulating member of the storage member, and a light-emitting member powered by the storage member, the light-emitting member extending over the periphery of the case.
  • the lighting device comprises one or more of the following characteristics, taken in isolation or in any technically possible combination:
  • the housing comprises the storage member and the regulating member.
  • the housing has a recess of complementary shape to the mast.
  • the housing has two parts, the second part being connected to the first part.
  • the housing has two parts, each part comprising an electric track portion, the two track portions forming a continuous track when the second part is connected to the first part.
  • the electric power production unit comprises a support holding the photovoltaic module wound on at least a part of the circumference of the mast, preferably all around the circumference of the mast.
  • the support comprises a ring and two holding elements connecting the ring to the light energy production unit, the two holding elements being diametrically opposed.
  • the invention also relates to a marking system comprising a mast, and a device as described previously installed on the mast.
  • the invention also relates to a marking system comprising a mast, at least one electrical energy production unit comprising at least one photovoltaic module capable of being wound on at least a part of the circumference of the mast, preferably on any the circumference of the mast.
  • the marking system comprises at least one light energy production unit fixed on the mast, each light energy production unit comprising a housing having a periphery, a member for storing the electrical energy produced by at least one unit for generating electrical power, a charge regulating member of the storage member, and a light-emitting member powered by the storage member, the light-emitting member extending over the periphery of the case.
  • the invention also relates to a method for installing a device as previously described on a mast comprising the steps of winding the photovoltaic module on the mast, and assembling the housing on the photovoltaic module.
  • FIG. 1 a view of a marking system comprising a portion of the mast and a marking device according to a first embodiment installed on the mast,
  • FIG. 2 an enlarged view of part of FIG.
  • FIG. 3 a view of the housing visible in FIG. 2 without the elements placed on it
  • FIG. 4 a sectional view of the system according to FIG. 1,
  • FIG. 5 a sectional view of another example of a marking system
  • FIG. 7 is a sectional view of an example of a sectional view of another marking system
  • FIG. 8 a sectional view of another example of a marking system
  • FIG. 9 a sectional view of another example of a marking system.
  • a marking system 10 is shown in FIG.
  • beaconing In the area of air, rail, naval, road or pedestrian traffic, beaconing refers to all the fixed or floating markings or markers put in place to indicate a danger or to indicate the route to be followed by any means, in particular bright means.
  • markup thus designates a means of signaling the presence of information by means of an integrated diffuse light source, making it possible to improve the contrast of the display of information and thus to ensure good readability even in a place dark or poorly lit.
  • the marking system 10 is therefore able to indicate a particular location, the location corresponding to a hazard, access or particular information.
  • the marking system 10 comprises a mast 12 and a marking device 14 installed on the mast 12.
  • the mast 12 is a cylinder.
  • a cylinder is a solid delimited by a cylindrical surface and by two strictly parallel planes.
  • the cylindrical surface is a surface in the space defined by a line, called a generator, passing through a variable point describing a closed plane curve, called the directing curve and keeping a fixed direction.
  • the surface delimited by the guide curve is called the base of the cylinder in the following.
  • the generator extends along a direction said axial direction.
  • the axial direction is symbolized by a Z axis.
  • the shape of the base of the mast 12 is arbitrary.
  • the shape of the base of the mast 12 is a disk.
  • the diameter of the base of the mast 12 is, for example, between 70 mm (millimeters) and 300 mm.
  • the shape of the base of the mast 12 is oval.
  • the shape of the base of the mast 12 is a rectangle, a square, a triangle or a polygon having more than four sides.
  • a pentagon or a hexagon are examples of polygons with more than four sides.
  • the mast 12 is conical.
  • a cone is a solid delimited by a plane and by a line, called generator, passing through a fixed point called vertex and a variable point describing a curve called guide curve, the plane does not contain the top and secant to all generators.
  • the mast 12 is hollow, that is to say that the mast 12 has the shape of a tube defining an empty interior space.
  • the marking device 14 is suitable for illuminating the environment, the mast 12 serving as a support for the marking device 14.
  • the beaconing device 14 is able to emit light information.
  • the marking device 14 is intended to highlight visual information, for example to indicate a route.
  • the marking device 14 is intended to highlight a particular piece of information.
  • the marking device 14 is intended to warn of the presence of a hazard.
  • the marking device 14 comprises a unit for producing electrical energy
  • the power generation unit is simply denoted electrical unit 16 while the light energy production unit 18 is denoted luminous unit 18.
  • the electrical unit 16 is able to generate electrical energy to power the light unit 18.
  • the electrical unit 16 comprises a photovoltaic module 20 and a support 22 holding the photovoltaic module 20 on the mast 12.
  • a photovoltaic module is a photovoltaic solar collector or photovoltaic solar panel.
  • a photovoltaic module is a direct current electric generator comprising a set of electrically connected photovoltaic cells, the module serving to supply electrical energy from solar energy.
  • the photovoltaic module 20 is an organic photovoltaic module.
  • the photovoltaic module comprises particular photovoltaic cells, at least the active layer of which consists of organic molecules. Therefore, the photovoltaic effect is, for a photovoltaic cell, obtained using the properties of semiconductor materials.
  • a semiconductor is considered organic if the semiconductor comprises at least one bond forming part of the group consisting of the covalent bonds between a carbon atom and a hydrogen atom, the bonds covalent between a carbon atom and a nitrogen atom, or bonds between a carbon atom and an oxygen atom.
  • An organic photovoltaic module is an assembly comprising at least two individual photovoltaic cells adjacent to each other and connected in series or in parallel.
  • the formation of an organic photovoltaic module involves the deposition of superposed film strip patterns on a support.
  • a film is a layer, homogeneous and continuous, made of a material or mixture of materials having a relatively small thickness. It is understood by a relatively small thickness, a thickness less than or equal to 500 microns.
  • a photovoltaic module involves strips with a width of between 9.5 mm and 13.5 mm separated from an interband area with a width of between 0.5 mm and 4.5 mm, the total width of the band and the interband area being 14 mm.
  • a module consists of the deposition of several layers by different coating or printing methods.
  • an organic photovoltaic module makes it possible to have an energy generator of relatively small thickness, it is understood by a relatively small thickness, a thickness less than or equal to 500 microns, or even less than or equal to 300 microns , generating, a low weight, a possibility of customization of its size by cutting and a mechanical flexibility allowing adaptation of the instantaneous module to the integration context.
  • the photovoltaic module 20 is a flexible amorphous silicon module.
  • the photovoltaic module 20 is further adapted to be wound around at least a part of the circumference of the mast 12.
  • the circumference of the mast 12 corresponds to the cylindrical surface of the mast 12.
  • the photovoltaic module 20 is wound around the entire circumference of the mast 12.
  • the cells of the photovoltaic module 20 are arranged perpendicularly to the vertical axis Z, that is to say horizontally, so that no cell is fully shaded during the displacement of the light source (usually the sun) at during the day thus allowing a continuous supply of the device 14.
  • the dimensions of the photovoltaic module 20 determine the electrical performance of the photovoltaic module 20. As a result, the dimensions of the photovoltaic module 20 are determined according to the energy requirements of the light unit 18, and the average irradiance at the geographical site in which the device 14 is installed.
  • the average energy production of the photovoltaic module 20 is at least twice the energy requirement of the light unit 18 to ensure the need even on days of lower irradiance, 10 watts per hour.
  • the photovoltaic module 20 for electrical performance of the photovoltaic module 20 of 60 Watts-peak / m 2 , it can be determined that a dimension of 600 mm along the axial direction Z meets the desired energy requirement.
  • the photovoltaic module 20 When the photovoltaic module 20 is wound around the mast 12, the photovoltaic module 20 delimits on the mast 12 an area having a dimension of between 10 mm and 1 meter along the axial direction Z.
  • the area delimited by the photovoltaic module 20 on the mast 12 has a dimension of 600 mm along the axial direction Z.
  • a photovoltaic module whose dimensions are 600 mm by 450 mm.
  • the photovoltaic module 20 a distal end
  • the distal end 24 being the furthest end of the light unit 18.
  • each of the ends 24 and 26 corresponds to a curve (in this case a circle) on the mast 12.
  • the support 22 is able to keep the photovoltaic module 20 wound on at least a part of the circumference of the mast 12 and preferably over the entire circumference of the mast 12 as can be seen in FIG.
  • the support 22 comprises a protective wall 28 able to protect the photovoltaic module 20, a ring 30 and two holding elements 32, 34.
  • the protective wall 28 is able to isolate the photovoltaic module 20 from the outside.
  • the protective wall 28 is able to protect the photovoltaic module 20 from bad weather which could damage the photovoltaic module 20.
  • the protective wall 28 covers the entire photovoltaic module 20 so as to form a coating layer positioned on the photovoltaic module 20.
  • the protective wall 28 is in the form of a film.
  • the protective wall 28 is made of a material chosen from poly (methyl methacrylate) (often abbreviated as PMMA) (poly (methylmetacrylate)), glass or transparent resin. .
  • the ring 30 is able to act as a clamping or finishing ring.
  • the ring 30 is located at the distal end 26 of the photovoltaic module 20.
  • the ring 30 extends in a plane perpendicular to the axial direction Z. Such a plane is called a radial plane in the following description.
  • the ring 30 has the shape of a circle.
  • the ring 30 is made of a plastic material.
  • the ring 30 is made of metal, in particular steel or aluminum.
  • the ring 30 is made of a flexible material such as rubber or a resin.
  • the two holding elements 32, 34 are suitable for connecting the ring 30 to the light unit 18.
  • the two holding elements 32, 34 are adapted to provide a sealing function of the protective wall 28.
  • the two holding elements 32, 34 extend between the distal end 26 of the photovoltaic module 20 and the proximal end of the photovoltaic module 20.
  • the two holding elements 32, 34 are rectilinear. In addition, the two holding elements 32, 34 are diametrically opposed with respect to the mast 12.
  • each of the two holding members 32, 34 is made of a flexible material.
  • a rubber or a silicone seal is possible.
  • the light unit 18 is configured to be attached to the mast 12.
  • the light unit 18 is adapted to provide a lighting function of the environment of the mast 12.
  • the light unit 18 is also suitable for providing a function for managing electrical energy and storing electrical energy.
  • the light unit 18 comprises a housing 36, a storage member 38, a regulation member 40 and a light emitting member 42.
  • FIG. 2 the storage member 38 and the regulation member 40 are shown in dotted lines and, for the sake of readability, positioned in the middle of the case 36. Those skilled in the art will understand that the position illustrated in FIG. 2 is purely schematic, the storage member 38 and the regulation member 40 being around the mast 12.
  • the housing 36 comprises a body 44, a protective wall 46, the storage member 38 and the regulation member 40.
  • the body 44 has an upper portion 48, a lower portion 50 and a median portion 52 delimited by the upper portion 48 and the lower portion 50.
  • the middle part 52 has the shape of a cylinder with a circular base.
  • the generatrix of the cylinder extends over a height of at least 150 mm, preferably between 150 mm and 250 mm.
  • the height of the generatrix of the cylinder is equal to 200 mm.
  • the body 44 has two parts, a first part 54 and a second part 56.
  • the first portion 54 and the second portion 56 are substantially identical, so that each of the portions 54, 56 has a half-cylinder shape.
  • the first part 54 is connected to the second part 56.
  • the first portion 54 is connected to the second portion 56 by a screw / nut system.
  • the first portion 54 is configured to be connected to the second portion 56 by a "male” - “female” fitting in a direction perpendicular to the axial direction Z.
  • the system providing the mechanical connection between the first portion 54 and the second portion 56 also makes it possible to establish an electrical connection between the regulating member 40 and the storage member 38.
  • each of the portions 54 and 56 comprises a conductive track portion, the two conductive track portions forming a conductive track by establishing the mechanical connection.
  • the body 44 defines a central recess 58 of complementary shape to the mast 12.
  • the recess 58 is delimited by only one of the two parts 54, 56, for example the second part 56.
  • the body 44 is made of a plastic material.
  • the body 44 is made of metal, for example steel or aluminum. In another example, the body 44 is made of a flexible material such as rubber or resin.
  • the upper portion 48 has a seal.
  • the seal is made of a material such as a flexible rubber sheet, a rubber profile or a silicone seal.
  • the medial portion 52 includes the light emitting member 42, a first shielding wall 62, the light emitting member 42, the seals of the shielding wall 64, and a shielding wall 66 of the shielding member 42. management.
  • the middle part 52 has at least two light-emitting members 42 and at least one protective wall of the light-emitting members 42.
  • the medial portion 52 may be resized to protect the light-transmitting members 42. set of light protection members 42.
  • the protective wall 62 comprises images or inscriptions, said images or inscriptions corresponding to information to be brought to the attention of users.
  • the first protective wall 62 is made of a polycarbonate material.
  • the first protective wall 62 is alternatively made of glass.
  • the first protective wall 62 is made of a transparent resin.
  • the second protective wall 66 is made of plastic, the plastic may be opaque or not.
  • the second protective wall 66 is made of polycarbonate.
  • the second protective wall 66 is made of glass.
  • the second protective wall 66 is made of metal such as steel or aluminum.
  • the storage member 38 is able to store the electrical energy produced by the electrical unit 16.
  • the storage member 38 is a lithium-ion battery.
  • the capacity of the storage member 38 is determined according to the energy requirements of the light unit 18.
  • the capacity of the storage member 38 is, for example, 2000 mAh (milliAmpere hours)
  • the regulator 40 is able to regulate the charge of the storage member 38.
  • the regulator 40 is able to measure the state of charge
  • the light emitting member 42 is powered by the storage member 38.
  • the light emitting member 42 extends on the periphery of the housing 36.
  • the light emitting member 42 is a light strip extending over substantially the entire periphery of the housing 36, except where a seal is located ensuring a seal.
  • the light emitting member 42 is a set of light-emitting diodes (also referred to as LEDs for electroluminescent diodes).
  • the light-emitting diodes are distributed along a line surrounding the mast 12 around the axial direction Z.
  • the line delimits a flat disk perpendicular to the axial direction Z.
  • the light-emitting diodes are equiangularly distributed along the line, that is to say that each light-emitting diode is equidistant from the two closest light-emitting diodes.
  • each angle formed by two consecutive light emitting diodes and the axis of the mast 12 is equal to each other angle thus formed.
  • the light-emitting diodes are, for example, distributed along the periphery of the housing 36 so as to surround the mast 12 by 360 degrees. Thus, irrespective of the orientation, around the axial direction Z, of the housing 36 with respect to an observer, at least one light-emitting diode is at all times visible to the observer.
  • the light-emitting diodes are distributed along at least two lines surrounding the mast 12 around the axial direction Z.
  • the light-emitting diodes are equidistributed angularly along each line.
  • the angle formed by two consecutive light emitting diodes of the same line and the axis of the mast 12 has an angle value.
  • the angle value is, for example, identical for each line considered.
  • the angle value associated with at least one line is different from the angle value associated with at least one other line.
  • the light-emitting diodes of each line are distributed along a portion of the periphery of the housing 36.
  • the light-emitting diodes of each line are distributed at an angle of between 60 degrees and 180 degrees.
  • the device 14 is then adapted to a directional signaling. This means that the light-emitting diodes are visible only for certain orientations of the housing 36 relative to the observer.
  • the device 14 is completely autonomous since during the day, the sun comes to illuminate the photovoltaic module 20.
  • the photovoltaic module 20 converts the light energy from the sun into electrical energy.
  • the electrical energy produced by the photovoltaic module 20 is then stored in the storage member 38.
  • the storage member 38 supplies the light emitting member 42.
  • the light emitting member 42 then emits light.
  • the device 14 has the advantage of having a relatively low mass.
  • the total mass of the device 14 is less than 5 kilograms, typically of the order of four kilograms.
  • the power supply of the light emitting member 42 is also autonomous and renewable since it is solar energy.
  • the device 14 fits, in addition, on any type of mast 12 with any shape (cylinder circular base, oval base or polygonal base).
  • the device 14 can be mounted at any height.
  • the light is picked up by the photovoltaic module 20 irrespective of the orientation of the photovoltaic module 20 on the mast 12.
  • the markup and the luminous contrast is visible for any position of the person looking at the system 10.
  • the device 14 is protected vis-à-vis external aggression, including the different walls.
  • this ease of installation and / or uninstallation can be illustrated with a method of installing the device on the mast 12.
  • a method of installing the device on the mast 12 comprises the following steps: winding the photovoltaic module 20 on the mast 12, assemble the two parts 54 and 56 of the housing 36 and tighten the housing 36 on the mast 12, electrically connect the storage member 38 contained in one of the two parts 54 and 56 of the housing 36 with the regulation member 40 contained in the other part 54 and 56 of the housing 36.
  • the method also comprises a step of making an electrical connection between the photovoltaic module 20 and the regulator member 40, for producing an electrical connection between the light emitting member 42 and the regulating member 40. , assembling the support 22 for holding, fixing the support 22 in the housing 36 and clamping the ring (s) 30 forming part of the support 22.
  • the device 14 has the advantage of being easily adjustable.
  • Such modularity allows in particular a change in the device 14. Depending on the case, such an evolution takes different forms. In particular, a change in the number of light unit 18 is possible, each light unit being capable of performing different functions. Typically, a light unit 18 provides a markup function while another light unit 18 provides a lighting function information.
  • a modification of the number of electrical unit 16 allows adaptation to the energy requirements of the light unit or units 18. Such an adaptation is useful in particular in case of addition of a light unit 18 or sub initial sizing of the energy requirements of the light unit (s) 18 of the device 14.
  • the modularity of the device 14 is illustrated for example by means of FIGS. 5 to 7.
  • the device 14 comprises two electrical units 16 instead of a single electrical unit 16 as for the example of FIG.
  • the light unit 18 is arranged between the two electrical units 16.
  • the device 14 also comprises two electrical units 16 instead of a single electrical unit 16 as for the example of FIG. 6
  • the two electrical units 16 are arranged on the same side with respect to the light unit 18.
  • the device 14 comprises two light units 18 instead of a single light unit 18 as for the example of FIG.
  • the electrical unit 16 is arranged between the two light units 18.
  • Such modularity of the device 14 is enabled by the fact that the different units 14 and 16 are combinable by a recess of a projecting portion of a unit 14, 16 in a corresponding groove of another unit 14, 16.
  • the modularity of the device 14 makes it easy to adapt to changes in requirements by using the device 14 already in place on the mast 12.
  • the changes in requirements correspond to a change of function of the mast 12 and / or a change in energy requirement.
  • the adaptation to a new need can be done by a simple evolution of the device 14. For example, it is added an additional light unit 18 to increase the amount of lighting generated.
  • the device 14 comprises a plurality of light-emitting members, one of these light-emitting members being the light-emitting member 42 extending on the periphery of the housing 36 .
  • FIG. 8 illustrates another embodiment of a device 14 according to the invention.
  • the elements identical to the first embodiment of FIG. 1 are not described again. Only the differences are highlighted.
  • the upper portion 48 has an outer face 68 and an inner face 70.
  • the upper part 48 is delimited, in a plane perpendicular to the axial direction Z, by the outer face 68 and by the internal face 70.
  • the upper portion 48 includes a first track 72, a second track 74, a first connector 76, a second connector 78 and a gasket 79.
  • the inner face 70 is the face closest to the mast 12 when the marking device 14 is installed on the mast 12.
  • the inner face 70 is in contact with the mast 12.
  • the internal face 70 has a first portion 80, a shoulder 82 and a second portion 84.
  • the first portion 80 is closest to the middle portion 52 in the axial direction Z.
  • the first portion 80 is provided to bear against the mast 12 when the device 14 is installed on the mast 12.
  • the first portion 80 is cylindrical with a circular base, and the generatrix of the first portion 80 is parallel to the axial direction Z. It is defined a first diameter D1 for the first portion 80.
  • the first diameter D1 is, for example, between 70 mm and 300 mm.
  • the shoulder 82 is delimited, in a plane perpendicular to the axial direction Z, by the first portion 80 and by the second portion 84.
  • shoulder a change of section of the part showing a surface perpendicular to the generatrix of the part.
  • the shoulder 82 is annular with a cylindrical base, that is to say that the shoulder 82 is a plane surface delimited by two coplanar and concentric circles of different diameters.
  • the shoulder 82 is perpendicular to the axial direction Z.
  • the shoulder 82 is provided so that, when the photovoltaic module 20 and the light unit 18 are installed on the mast 12, the proximal end 26 of the photovoltaic module 20 bears against the shoulder 82 in the axial direction Z.
  • the second portion 84 is farthest from the middle portion 52 in the axial direction Z.
  • the second portion 84 is cylindrical with a circular base, and the generatrix of the second portion 84 is parallel to the axial direction Z.
  • a second diameter D2 is defined for the second portion 84.
  • the second diameter D2 is strictly greater than the first diameter D1.
  • the second diameter D2 is, for example, between 75 mm and 310 mm.
  • the second portion 84 is delimited, in the axial direction Z, by the shoulder 82 and the seal 79.
  • the second portion 84 is configured so that, when the photovoltaic module 20 and the light unit 18 are installed on the mast 12, the proximal end 26 of the photovoltaic module 20 is surrounded by the second portion 84 in a plane perpendicular to the direction axial Z.
  • the first track 72 is an electrically conductive strip.
  • the first track 72 is made of a metallic material such as copper.
  • the first track 72 is made of another conductive material such as, for example, aluminum or silver.
  • the first track 72 is carried by the second portion 84.
  • the first track 72 has a first length L1, a first width 11 and a first thickness e1.
  • the first length L1 is measured along a perimeter of the second portion 84.
  • the first length L1 is the length, measured by a curvilinear integral of the orthogonal projection of the first track 72 on a plane perpendicular to the axial direction Z.
  • the first length L1 is greater than or equal to half the product of the second diameter D2 and the number ⁇ .
  • the first width 11 is measured in the axial direction Z.
  • the first width 11 is uniform, that is to say that the first width 11 is identical at every point of the first track 72.
  • the first width 11 is between 2 mm and 10 mm.
  • the first thickness e1 is measured in a radial direction. It is understood by “radial direction” a direction perpendicular to the axis of the second portion 84 and parallel to a segment traversing the axis of the second portion 84 and the point in which the thickness is measured.
  • the first thickness e1 is uniform.
  • the first thickness e1 is between 0.5 mm and 2 mm.
  • the first track 72 is in accordance with the second portion 84, that is to say that the first track 72 is in contact with the second portion 84 and matches the shape of the second portion 84.
  • the first track 72 is in the form of a cylinder with an annular base, the axis of the first track 72 being parallel to the axial direction Z.
  • the axis of an annular or circular base cylinder is defined as being a straight line parallel to the generatrix of the cylinder and passing through the center of the circle or ring which forms the director of the cylinder.
  • the first track 72 is, for example, formed by the meeting of two track portions each carried by one of the first portion 54 and the second portion 56.
  • the second track 74 is an electrically conductive strip.
  • the second track 74 is made of a metallic material such as copper.
  • the first track 72 is made of another conductive material such as, for example, aluminum or silver.
  • the second track 74 is carried by the second portion 84.
  • the second track 74 has a second length L2, a second width 12 and a second thickness e2.
  • the second length L2 is measured along a perimeter of the second portion 84.
  • the second length L2 is the length, measured by a curvilinear integral, of the orthogonal projection of the second track 74 on a plane perpendicular to the axial direction Z.
  • the second length L2 is greater than or equal to half the product of the second diameter D2 and the number ⁇ , approximately equal to 3.14.
  • the second width 12 is measured along the axial direction Z.
  • the second width 12 is uniform, that is to say that the second width 12 is identical at any point of the second track 74.
  • the first second 12 is between 2 mm and 10 mm.
  • the second thickness e2 is measured in a direction perpendicular to the axial direction Z.
  • the second thickness e2 is uniform.
  • the second thickness e2 is between 0.5 mm and 2 mm.
  • the second track 74 is in accordance with the second portion 84.
  • the second track 74 is in the form of an annular-based cylinder, the axis of the second track 74 being parallel to the axial direction Z.
  • the second track 74 is, for example, formed by the meeting of two track portions each carried by one of the first portion 54 and the second portion 56.
  • the second track 74 is interposed between the first track 72 and the shoulder 82.
  • the second track 74 is not electrically connected to the first track 72.
  • first track 72 and the second track 74 are parallel to each other, and the distance between the first track 72 and the second track 74, measured in the axial direction Z, is greater than or equal to 1 mm .
  • the first connector 76 is configured to electrically connect the first track 72 to the storage member 38 or to the regulating member 40.
  • the second connector 78 is configured to electrically connect the second track 74 to the storage member 38 or to the regulating member 40.
  • the seal 79 is configured to isolate the first track 72 and the second track 74 from the outside of the upper portion 48.
  • the seal 79 is configured to provide a seal between the upper portion 48 and the photovoltaic module 20.
  • the seal 79 is configured to prevent water flowing downwardly along the outside of the photovoltaic module 20. reach the first runway 72 or the second runway 74.
  • the photovoltaic module 20 comprises a positive electrode and a negative electrode.
  • the photovoltaic module 20 is configured to impose an electrical potential difference, when the photovoltaic module 20 is illuminated by the sun, between the positive electrode and the negative electrode.
  • the proximal end 26 has been shown in transparency in FIG.
  • the support 22 comprises a third connector 86 and a fourth connector 88.
  • Each of the third connector 86 and the fourth connector 88 is attached to the support 22.
  • each of the third connector 86 and the fourth connector 88 is bonded to the support 22.
  • each of the third connector 86 and the fourth connector 88 is embedded in a rigid portion of the support 22.
  • the third connector 86 is configured to electrically connect the first track 72 to one of the positive electrode and the negative electrode.
  • the fourth connector 88 is configured to electrically connect the second track 74 to the other one of the positive electrode and the negative electrode.
  • each of the third connector 86 and the fourth connector 88 is connected to the corresponding electrode by a cable.
  • the connection cable is, for example, soldered to the connector 86, 88 and the corresponding electrode.
  • each of the third connector 86 and the fourth connector 88 is connected to the corresponding electrode by a flexible printed circuit
  • the third connector 86 and the fourth connector 88 are each configured to allow relative rotation of the photovoltaic module 20 and its support (22) relative to the upper portion 48 about the axial direction Z.
  • each of the third connector 86 and the fourth connector 88 is provided to be elastically deformable during a relative rotation of the photovoltaic module 20 and the upper portion 48 around the axial direction Z.
  • each of the third connector 86 and the fourth connector 88 is made from a rectangular metal tongue folded to form a hook.
  • Each of the third connector 86 and the fourth connector 88 is made of a metallic material.
  • each of the third connector 86 and the fourth connector 88 is made of a conductive material.
  • the conductive material is, for example, selected from the group consisting of copper, silver and aluminum
  • Each of the third connector 86 and the fourth connector 88 has a third portion 90, a fourth portion 92, a fifth portion 94 and a sixth portion 96.
  • Each of the third connector 86 and the fourth connector 88 has a width, measured along a perimeter of the second portion 84, of between 2 mm and 10 mm.
  • Each third portion 90 is parallelepipedic.
  • the third portion has a length, measured in the axial direction Z, of between 20 mm and 50 mm.
  • each third portion 90 is interposed between the proximal end 26 and the mast 12.
  • Each fourth portion 92 is parallelepipedic. Each fourth portion 92 is delimited by the third portion 90 and by the fifth portion 94.
  • Each fourth portion 92 is perpendicular to the corresponding third portion 90.
  • Each fourth portion 92 is perpendicular to the axial direction Z.
  • Each fourth portion 92 has a length, measured in a radial direction, of between 2 mm and 10 mm.
  • each fourth portion 92 is interposed between the proximal end 26 and the shoulder 82.
  • each fifth portion 94 is interposed between the proximal end 26 and the second portion 84.
  • Each fifth portion 94 is delimited by a first edge 98 and a second edge 100.
  • Each first edge 98 belongs to both the corresponding fourth portion 92 and fifth portion 94.
  • Each second edge 100 belongs to both the corresponding fifth portion 94 and sixth portion 96.
  • the furthest point from the axis of the second portion 84 in the radial direction belongs to the corresponding second edge 100.
  • a segment contained in a plane containing the axis of the second portion 84 and connecting the first edge 98 to the second edge 100 forms with a segment of the fourth portion 92 contained in the same plane a strictly greater angle. at 90 degrees. The angle considered is then the smaller of the two angles delimited by the two segments considered.
  • Each second edge 100 bears against one of the first track 72 and the second track 74.
  • the fifth portion 94 delimits, with the third portion 90, fourth portion 92 and sixth portion 96 respectively, a convex volume at least partially surrounding the proximal end 26.
  • the sixth portion 96 has an end. The end of the sixth portion 96 is opposed to the second edge 100.
  • the sixth portion 96 is delimited by the second edge 100 and the end of the sixth portion 96.
  • each sixth portion 96 is therefore configured to electrically connect the corresponding electrode and the corresponding track 72, 74.
  • the sixth portion 96 and the fifth portion 94 are configured so that, when the photovoltaic module 20 and the light unit 18 are installed on the mast 12, the sixth portion 96 and the fifth portion 94 exert an elastic force tending to press the second edge 100 against the corresponding track 72, 74.
  • each of the first track 72 and the second track 74 exerts on the second corresponding edge 100 a force causing an elastic deformation of the sixth portion 96 and fifth portion 94 corresponding.
  • the device 14 then allows a relative rotation between the light unit 18 and the photovoltaic module 20, while maintaining an electrical connection between it and it.
  • the device 14 thus makes it possible to modify the orientation of the photovoltaic module 20, in particular to orient it favorably with respect to the sun, without modifying the orientation of the light unit 18.
  • the electrical connection between the photovoltaic module 20 has a small footprint and is easy to achieve, since it does not suppose to connect power supply cables: the only positioning of the proximal end 26 against the shoulder 82 makes it possible to drive the electrical connection between the photovoltaic module 20 and the light unit 18.
  • FIG. 9 A third embodiment of a device 14 according to the invention is shown in FIG. 9. The elements identical to the second embodiment of FIG. 8 are not described again. Only the differences are highlighted.
  • the second portion 84 includes a first rod 102 and a second rod 104.
  • Each rod 102, 104 is a continuous strip of material extending from the second portion 84 towards the mast 12 when the light unit 18 is installed on the mast 12.
  • each rod 102, 104 surrounds the mast 12 over at least 180 degrees.
  • Each rod 102, 104 has, for example, a parallelepipedal section.
  • the first rod 102 is interposed between the first track 72 and the second track 74.
  • the rods 102, 104 are configured to cooperate with each other to guide the third connector 86 during a relative rotation between the light unit 18 and the module photovoltaic 20, such that the third connector 86 remains in electrical contact with the first track 72 during the rotation.
  • the first rod 102 is furthermore configured to cooperate with the shoulder 82 to guide the fourth connector 88 during a relative rotation between the light unit 18 and the photovoltaic module 20, so that the fourth connector 88 remains in electrical contact with the second track 74 during the rotation.
  • Each of the third connector 86 and fourth connector 88 is cylindrical with a circular base, and the generator of each of the third connector 86 and fourth connector 88 is parallel to a radial direction of the second portion 84.
  • Each of the third connector 86 and fourth connector 88 has a diameter of between 2 mm and 10 mm.
  • Each of the third connector 86 and fourth connector 88 has a base 106 and a contact end 108. Each of the third connector 86 and fourth connector 88 is delimited in a radial direction of the second portion 84 by the base 106 and the contact end. 108.
  • Each base 106 is configured to secure the connector 86, 88 corresponding to the proximal end 26.
  • Each contact end 108 is hemispherical. Each contact end 108 is designed to bear against the corresponding track 72, 74 when the photovoltaic module 20 and the light unit 18 are installed on the mast 12.
  • the rods 102 and 104 then make it possible to more strongly secure the electrical unit 16 to the light unit 18.
  • the rods 102 and 104 participate in keeping the module 20 and its support 22 in position relative to the housing 36.
  • rods 102 and 104 also allow better retention in position of the third and fourth connectors 86 and 88 and thus a more reliable electrical connection between the third and fourth connectors 86 and 88 and tracks 72 and 74.
  • connection surface between the third and fourth connectors 86 and 88 and the tracks 72 and 74 is also increased.
  • the device comprises a clamping collar provided for gripping the mast 12.
  • the clamping collar forms, for example, when the clamping collar is clamped on the mast 12, a support for the housing 36.
  • the device 14 is then particularly adapted to be fixed to a non-cylindrical mast, in particular a conical mast.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Road Signs Or Road Markings (AREA)
  • Photovoltaic Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Traffic Control Systems (AREA)
  • Circuits Of Receivers In General (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Dispositif de balisage (14), à installer sur un mât (12), le dispositif comportant : une unité de production d'énergie électrique (16) comprenant : au moins un module photovoltaïque (20) propre à être enroulé sur au moins une partie de la circonférence du mât, et une unité de production d'énergie lumineuse (18) configurée pour être fixée sur le mât, l'unité de production d'énergie lumineuse comprenant : un boîtier (36) présentant une périphérie, un organe de stockage de l'énergie électrique produite par l'unité de production d'énergie électrique, un organe de régulation de la charge de l'organe de stockage, et un organe d'émission de lumière alimenté par l'organe de stockage, l'organe d'émission de lumière s'étendant sur la périphérie du boîtier.

Description

Dispositif de balisage à installer sur un mât et procédé d'installation associé
La présente invention concerne un dispositif de balisage à installer sur un mât. L'invention se rapporte également à un système de balisage comprenant un tel dispositif de balisage et un procédé d'installation du dispositif de balisage.
De multiples formes existent pour les mâts. De façon générale, un mât est cylindrique, la surface de base pouvant être quelconque. A titre d'exemple, la surface de base est un cercle, un carré, une forme ovale ou toute autre.
Il est donc souhaitable de proposer un système de balisage pouvant s'accrocher sur le mât quelle que soit la forme du mât.
Pour cela, il est connu du document US 6 682 204 un mécanisme de montage d'une unité lumineuse pouvant s'adapter sur tout type de mât.
Toutefois, un tel dispositif présente l'inconvénient d'être difficile à mettre en œuvre du fait qu'il convient de prévoir le passage des câbles d'alimentation avant l'insertion de l'unité lumineuse.
Il existe donc un besoin pour un dispositif de balisage à installer sur un mât qui soit de mise en œuvre plus simple.
Pour cela, il est proposé un dispositif d'éclairage, notamment dispositif de balisage, à installer sur un mât. Le dispositif comporte une unité de production d'énergie électrique comprenant au moins un module photovoltaïque propre à être enroulé sur au moins une partie de la circonférence du mât, de préférence sur toute la circonférence du mât. Le dispositif comporte aussi une unité de production d'énergie lumineuse configurée pour être fixée sur le mât, l'unité de production d'énergie lumineuse comprenant un boîtier présentant une périphérie, un organe de stockage de l'énergie électrique produite par l'unité de production d'énergie électrique, un organe de régulation de la charge de l'organe de stockage, et un organe d'émission de lumière alimenté par l'organe de stockage, l'organe d'émission de lumière s'étendant sur la périphérie du boîtier.
Suivant des modes de réalisation particuliers, le dispositif d'éclairage comprend une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toutes les combinaisons techniquement possibles :
- le boîtier comprend l'organe de stockage et l'organe de régulation.
- le boîtier présente un évidement de forme complémentaire au mât.
- le boîtier présente deux parties, la deuxième partie étant reliée à la première partie. - le boîtier présente deux parties, chaque partie comprenant une portion de piste électrique, les deux portions de piste formant une piste continue lorsque la deuxième partie étant reliée à la première partie.
- l'unité de production d'énergie électrique comporte un support maintenant le module photovoltaïque enroulé sur au moins une partie de la circonférence du mât, de préférence sur toute la circonférence du mât.
- le support comprend un anneau et deux éléments de maintien reliant l'anneau à l'unité de production d'énergie lumineuse, les deux éléments de maintien étant diamétralement opposés.
L'invention concerne aussi un système de balisage comprenant un mât, et un dispositif tel que décrit précédemment installé sur le mât.
L'invention a également pour objet un système de balisage comprenant un mât, au moins une unité de production d'énergie électrique comprenant au moins un module photovoltaïque propre à être enroulé sur au moins une partie de la circonférence du mât, de préférence sur toute la circonférence du mât. Le système de balisage comporte au moins une unité de production d'énergie lumineuse fixée sur le mât, chaque unité de production d'énergie lumineuse comprenant un boîtier présentant une périphérie, un organe de stockage de l'énergie électrique produite par au moins une unité de production d'énergie électrique, un organe de régulation de la charge de l'organe de stockage, et un organe d'émission de lumière alimenté par l'organe de stockage, l'organe d'émission de lumière s'étendant sur la périphérie du boîtier.
En outre, l'invention se rapporte aussi à un procédé d'installation d'un dispositif tel que précédemment décrit sur un mât comprenant les étapes d'enroulement du module photovoltaïque sur le mât, et d'assemblage du boîtier sur le module photovoltaïque.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit d'un mode de réalisation de l'invention, donnée à titre d'exemple uniquement et en référence aux dessins qui sont :
- figure 1 , une vue d'un système de balisage comportant une partie du mât et un dispositif de balisage selon un premier mode de réalisation installé sur le mât,
- figure 2, une vue agrandie d'une partie de la figure 1 ,
- figure 3, une vue du boîtier visible sur la figure 2 sans les éléments posés dessus,
- figure 4, une vue en coupe du système selon la figure 1 ,
- figure 5, une vue en coupe d'un autre exemple de système de balisage,
- figure 6, une vue en coupe selon encore un autre exemple de système de balisage, - figure 7, une vue en coupe d'un exemple d'une vue en coupe d'un autre système de balisage,
- figure 8, une vue en coupe d'un autre exemple de système de balisage, et
- figure 9, une vue en coupe d'un autre exemple de système de balisage.
Un système de balisage 10 est représenté sur la figure 1 .
En matière de circulation aérienne, ferroviaire, navale, routière ou pédestre, le balisage désigne l'ensemble des marques ou balises fixes ou flottantes mises en place pour signaler un danger ou indiquer la route à suivre à l'aide de tous moyens, en particulier de moyens lumineux.
Le terme balisage désigne ainsi un moyen de signaler la présence d'une information grâce à une source de lumière diffuse intégrée, permettant d'améliorer le contraste de l'affichage d'une information et d'assurer ainsi une bonne lisibilité même dans un lieu obscur ou mal éclairé.
Le système de balisage 10 est donc propre à indiquer un endroit particulier, l'endroit correspondant à un danger, un accès ou une information particulière.
Le système de balisage 10 comporte un mât 12 et un dispositif de balisage 14 installé sur le mât 12.
Le mât 12 est un cylindre.
Par définition, un cylindre est un solide délimité par une surface cylindrique et par deux plans strictement parallèles. La surface cylindrique est une surface dans l'espace définie par une droite, appelée génératrice, passant par un point variable décrivant une courbe plane fermée, appelée courbe directrice et gardant une direction fixe. La surface délimitée par la courbe directrice est appelée base du cylindre dans la suite.
Selon l'exemple de la figure 1 , la génératrice s'étend le long d'une direction dite direction axiale. Sur la figure 1 , la direction axiale est symbolisée par un axe Z.
En outre, la forme de la base du mât 12 est quelconque.
Dans le cas de la figure 1 , la forme de la base du mât 12 est un disque.
Le diamètre de la base du mât 12 est, par exemple, compris entre 70 mm (millimètres) et 300 mm.
En variante, la forme de la base du mât 12 est ovale.
Selon encore une autre variante, la forme de la base du mât 12 est un rectangle, un carré, un triangle ou un polygone ayant plus de quatre côtés. Un pentagone ou un hexagone sont des exemples de polygones ayant plus de quatre côtés.
En variante, le mât 12 est conique.
Par définition, un cône est un solide délimité par un plan et par une droite, appelée génératrice, passant par un point fixe appelé sommet et un point variable décrivant une courbe appelée courbe directrice, le plan ne contenant pas le sommet et étant sécant à toutes les génératrices.
Selon l'exemple de la figure 1 , le mât 12 est creux, c'est-à-dire que le mât 12 a la forme d'un tube délimitant un espace intérieur vide.
Le dispositif de balisage 14 est propre à éclairer l'environnement, le mât 12 servant de support au dispositif de balisage 14.
Selon un exemple particulier, le dispositif de balisage 14 est propre à émettre une information lumineuse.
En variante, le dispositif de balisage 14 est destiné à mettre en évidence une information visuelle, par exemple pour indiquer une route.
Selon un mode de réalisation, le dispositif de balisage 14 est destiné à faire ressortir une information particulière.
En variante, le dispositif de balisage 14 est destiné à avertir de la présence d'un danger.
Le dispositif de balisage 14 comporte une unité de production d'énergie électrique
16 et une unité de production d'énergie lumineuse 18. Pour simplifier, dans la suite, l'unité de production d'énergie électrique est simplement notée unité électrique 16 tandis que l'unité de production d'énergie lumineuse 18 est notée unité lumineuse 18.
L'unité électrique 16 est propre à générer de l'énergie électrique pour alimenter l'unité lumineuse 18.
L'unité électrique 16 comporte un module photovoltaïque 20 et un support 22 maintenant le module photovoltaïque 20 sur le mât 12.
Par définition, un module photovoltaïque est un capteur solaire photovoltaïque ou panneau solaire photovoltaïque. De plus, un module photovoltaïque est un générateur électrique de courant continu comportant un ensemble de cellules photovoltaïques reliées électriquement, le module servant à fournir de l'énergie électrique à partir de l'énergie solaire.
Selon l'exemple de la figure 1 , le module photovoltaïque 20 est un module photovoltaïque de type organique. Cela signifie que le module photovoltaïque comporte des cellules photovoltaïques particulières, dont au moins la couche active est constituée de molécules organiques. De ce fait, l'effet photovoltaïque est, pour une cellule photovoltaïque, obtenu à l'aide des propriétés de matériaux semi-conducteurs.
Un semi-conducteur est considéré comme organique dès lors que le semiconducteur comprend au moins une liaison faisant partie du groupe constitué par les liaisons covalentes entre un atome de carbone et un atome d'hydrogène, les liaisons covalentes entre un atome de carbone et un atome d'azote, ou encore des liaisons entre un atome de carbone et un atome d'oxygène.
Un module photovoltaïque organique est un ensemble comprenant au moins deux cellules photovoltaïque individualisées voisines les unes des autres et connectées en série ou en parallèle. La formation d'un module photovoltaïque organique implique le dépôt de motifs de bandes de film superposées sur un support.
Un film est une couche, homogène et continue, faite en un matériau ou mélange de matériaux présentant une épaisseur relativement faible. Il est entendu par une épaisseur relativement faible, une épaisseur inférieure ou égale à 500 microns.
Par exemple, la formation d'un module photovoltaïque implique des bandes d'une largeur comprise entre 9,5 mm et 13,5 mm séparées d'une zone interbandes d'une largeur comprise entre 0,5 mm et 4,5 mm, la largeur totale de la bande et de la zone interbandes étant de 14 mm. Un module est constitué du dépôt de plusieurs couches par différentes méthodes d'enduction ou d'impression.
L'utilisation d'un module photovoltaïque organique permet de disposer d'un générateur d'énergie d'épaisseur relativement faible, il est entendu par une épaisseur relativement faible, une épaisseur inférieure ou égale à 500 microns, voire inférieure ou égale à 300 microns, engendrant, un faible poids, une possibilité de personnalisation de sa taille par découpage et une flexibilité mécanique permettant une adaptation du module instantané au contexte d'intégration.
En variante, le module photovoltaïque 20 est un module flexible en silicium amorphe.
Selon l'exemple de la figure 1 , le module photovoltaïque 20 est, en outre, propre à être enroulé autour sur au moins une partie de la circonférence du mât 12. La circonférence du mât 12 correspond à la surface cylindrique du mât 12.
De préférence, comme dans le cas particulier de la figure 1 , le module photovoltaïque 20 est enroulé sur toute la circonférence du mât 12.
Les cellules du module photovoltaïque 20 sont disposées perpendiculairement à l'axe vertical Z, c'est-à-dire à l'horizontal, afin qu'aucune cellule ne soit intégralement ombragée lors du déplacement de la source lumineuse (usuellement le soleil) au cours de la journée permettant ainsi une alimentation continue du dispositif 14.
Cela permet de collecter la lumière dans toutes les directions. Ainsi, contrairement aux technologies non flexibles, il n'y a pas de nécessité d'utiliser un suiveur (aussi appelé sous la dénomination anglaise de « sun tracker ») pour que le module photovoltaïque 20 reçoive de la lumière tout au long de la journée. Les dimensions du module photovoltaïque 20 déterminent les performances électriques du module photovoltaïque 20. De ce fait, les dimensions du module photovoltaïque 20 sont déterminées en fonction des besoins énergétiques de l'unité lumineuse 18, et de l'irradiance moyenne au site géographique dans lequel le dispositif 14 est installé.
Par exemple, pour une unité lumineuse 18 ayant une consommation journalière de 5 Watts par heure, il est considéré que la production énergétique moyenne du module photovoltaïque 20 est au moins le double du besoin énergétique de l'unité lumineuse 18 afin d'assurer le besoin même lors des jours de plus faibles irradiances, soit 10 Watts par heure. Par exemple, pour des performances électriques du module photovoltaïque 20 de 60 Watts-crête/m2, il peut être déterminé qu'une dimension de 600 mm le long de la direction axiale Z répond au besoin énergétique souhaité.
Lorsque le module photovoltaïque 20 est enroulé autour du mât 12, le module photovoltaïque 20 délimite sur le mât 12 une zone présentant une dimension comprise entre 10 mm et 1 mètre le long de la direction axiale Z.
Selon l'exemple de la figure 1 , la zone délimitée par le module photovoltaïque 20 sur le mât 12 présente une dimension de 600 mm le long de la direction axiale Z.
Par exemple, il peut être envisagé d'utiliser un module photovoltaïque dont les dimensions sont de 600 mm par 450 mm environ.
Pour la suite, il est défini pour le module photovoltaïque 20 une extrémité distale
24 et une extrémité proximale 26, l'extrémité distale 24 étant l'extrémité la plus loin de l'unité lumineuse 18.
Dans le cas particulier de la figure 1 , chacune des extrémités 24 et 26 correspond à une courbe (en l'occurrence un cercle) sur le mât 12.
Le support 22 est propre à maintenir le module photovoltaïque 20 enroulé sur au moins une partie de la circonférence du mât 12 et de préférence sur toute la circonférence du mât 12 comme visible sur la figure 1 .
Le support 22 comporte une paroi de protection 28 propre à protéger le module photovoltaïque 20, un anneau 30 et deux éléments de maintien 32, 34.
La paroi de protection 28 est propre à isoler le module photovoltaïque 20 de l'extérieur. En particulier, la paroi de protection 28 est propre à protéger le module photovoltaïque 20 des intempéries qui pourraient endommager le module photovoltaïque 20.
Selon l'exemple de la figure 1 , la paroi de protection 28 recouvre l'intégralité du module photovoltaïque 20 de manière à former une couche de revêtement positionnée sur le module photovoltaïque 20. En outre, selon le cas particulier illustré, la paroi de protection 28 se présente sous la forme d'un film.
A titre d'exemple et de manière non exhaustive, la paroi de protection 28 est réalisée en un matériau choisi parmi le poly(méthacrylate de méthyl) (souvent abrégé en PMMA acronyme anglais de poly(methylmetacrylate)), en verre ou en résine transparente.
L'anneau 30 est propre à jouer le rôle d'une bague de serrage ou de finition.
L'anneau 30 se situe à l'extrémité distale 26 du module photovoltaïque 20.
L'anneau 30 s'étend dans un plan perpendiculaire à la direction axiale Z. Un tel plan est qualifié de plan radial dans la suite de la description.
L'anneau 30 a la forme d'un cercle.
Selon l'exemple de la figure 1 , l'anneau 30 est réalisé dans un matériau plastique.
Selon un autre mode de réalisation, l'anneau 30 est réalisé en métal, notamment en acier ou en aluminium.
En variante, l'anneau 30 est réalisé en un matériau flexible comme du caoutchouc ou une résine.
Les deux éléments de maintien 32, 34 sont propres à relier l'anneau 30 à l'unité lumineuse 18.
De plus, les deux éléments de maintien 32, 34 sont propres à assurer une fonction d'étanchéité de la paroi de protection 28.
Selon l'exemple de la figure 1 , les deux éléments de maintien 32, 34 s'étendent entre l'extrémité distale 26 du module photovoltaïque 20 et l'extrémité proximale du module photovoltaïque 20.
Comme visible à la figure 1 , les deux éléments de maintien 32, 34 sont rectilignes. De plus, les deux éléments de maintien 32, 34 sont diamétralement opposés par rapport au mât 12.
Par exemple, chacun des deux éléments de maintien 32, 34 est réalisé en un matériau flexible. Typiquement, un caoutchouc ou un joint en silicone est envisageable.
L'unité lumineuse 18 est configurée pour être fixée sur le mât 12.
L'unité lumineuse 18 est propre à assurer une fonction d'éclairage de l'environnement du mât 12.
L'unité lumineuse 18 est également propre à assurer une fonction de gestion de l'énergie électrique et de stockage d'énergie électrique.
L'unité lumineuse 18 comporte un boîtier 36, un organe de stockage 38, un organe de régulation 40 et un organe d'émission de lumière 42.
Dans la figure 2, l'organe de stockage 38 et l'organe de régulation 40 sont représentés en pointillés et, dans un souci de lisibilité, positionné au milieu du boîtier 36. L'homme du métier comprendra que la position illustrée sur la figure 2 est purement schématique, l'organe de stockage 38 et l'organe de régulation 40 étant autour du mât 12.
Le boîtier 36 comporte un corps 44, une paroi de protection 46, l'organe de stockage 38 et l'organe de régulation 40.
Le corps 44 présente une partie supérieure 48, une partie inférieure 50 et une partie médiane 52 délimitée par la partie supérieure 48 et la partie inférieure 50.
La partie médiane 52 a la forme d'un cylindre à base circulaire. La génératrice du cylindre s'étend sur une hauteur d'au moins 150 mm, de préférence comprise entre 150 mm et 250 mm. De préférence, la hauteur de la génératrice du cylindre est égale à 200 mm.
Le corps 44 présente deux parties, une première partie 54 et une deuxième partie 56.
De préférence, la première partie 54 et la deuxième partie 56 sont sensiblement identiques, de sorte que chacune des parties 54, 56 présente une forme de demi-cylindre.
La première partie 54 est reliée à la deuxième partie 56.
Par exemple, comme visible à la figure 3, la première partie 54 est reliée à la deuxième partie 56 par un système de vis/écrou.
En variante, un système de clipsage, d'encastrement « mâle »-« femelle » sont également envisageables.
Selon un mode de réalisation, la première partie 54 est configurée pour être reliée à la deuxième partie 56 par un encastrement « mâle »-« femelle » selon une direction perpendiculaire à la direction axiale Z.
En variante, le système assurant la liaison mécanique entre la première partie 54 et la deuxième partie 56 permet également d'établir une connexion électrique entre l'organe de régulation 40 et l'organe de stockage 38. Pour cela, à titre d'exemple, chacune des parties 54 et 56 comporte une portion de piste conductrice, les deux portions de piste conductrice formant une piste conductrice par établissement de la liaison mécanique.
Lorsque la première partie 54 et la deuxième partie 56 sont reliées, le corps 44 délimite un évidement 58 central de forme complémentaire au mât 12.
En variante, l'évidement 58 est délimité par une seule des deux parties 54, 56, par exemple la deuxième partie 56.
Le corps 44 est réalisé dans un matériau plastique.
Selon un autre exemple, le corps 44 est réalisé en métal, par exemple de l'acier ou de l'aluminium. Selon un autre exemple, le corps 44 est réalisé en un matériau flexible comme du caoutchouc ou de la résine.
La partie supérieure 48 comporte un joint.
Le joint est réalisé en un matériau comme une feuille de caoutchouc flexible, un profilé caoutchouc ou un joint silicone.
La partie médiane 52 comporte l'organe d'émission de lumière 42, une première paroi de protection 62 l'organe d'émission de lumière 42, des joints de la paroi de protection 64 et une paroi de protection 66 de l'organe de gestion.
En variante, la partie médiane 52 comporte au moins deux organes d'émission de lumière 42 et au moins une paroi de protection des organes d'émission de lumière 42. Dans certains cas, la partie médiane 52 peut être redimensionnée de manière à protéger l'ensemble des organes de protection de lumière 42.
Selon une autre variante, la paroi de protection 62 comporte des images ou inscriptions, lesdites images ou inscriptions correspondant à une information à porter à l'attention des usagers.
La première paroi de protection 62 est réalisée en un matériau polycarbonate.
La première paroi de protection 62 est en variante réalisée en verre.
Selon un autre exemple, la première paroi de protection 62 est réalisée avec une résine transparente.
La deuxième paroi de protection 66 est réalisée en plastique, le plastique pouvant être opaque ou non.
En variante, la deuxième paroi de protection 66 est réalisée en polycarbonate.
Selon un autre exemple, la deuxième paroi de protection 66 est réalisée en verre.
Selon encore un autre exemple, la deuxième paroi de protection 66 est réalisée en métal comme de l'acier ou de l'aluminium.
L'organe de stockage 38 est propre à stocker l'énergie électrique produite par l'unité électrique 16.
Par exemple, l'organe de stockage 38 est une batterie lithium/ion.
La capacité de l'organe de stockage 38 est déterminée en fonction des besoins énergétiques de l'unité lumineuse 18.
La capacité de l'organe de stockage 38 est, par exemple, de 2000 mAh (milliAmpères heures)
L'organe de régulation 40 est propre à réguler la charge de l'organe de stockage 38.
A titre d'exemple, l'organe de régulation 40 est propre à mesurer l'état de charge
(aussi désigné par l'acronyme anglais SOC pour state of charge) d'une batterie. L'organe d'émission de lumière 42 est alimenté par l'organe de stockage 38.
Selon l'exemple de la figure 1 , l'organe d'émission de lumière 42 s'étend sur la périphérie du boîtier 36.
Selon l'exemple de la figure 1 , l'organe d'émission de lumière 42 est une bande lumineuse s'étendant sur la quasi-totalité de la périphérie du boîtier 36, à l'exception de l'endroit où se trouve un joint assurant une étanchéité.
Par exemple et de manière non exhaustive, l'organe d'émission de lumière 42 est un ensemble de diodes électroluminescentes (aussi désignées par l'acronyme anglais LED pour électroluminescent diodes).
Par exemple, les diodes électroluminescentes sont réparties le long d'une ligne entourant le mât 12 autour de la direction axiale Z. Selon un mode de réalisation, la ligne délimite un disque plan perpendiculaire à la direction axiale Z.
Selon un mode de réalisation, les diodes électroluminescentes sont équiréparties angulairement le long de la ligne, c'est-à-dire que chaque diode électroluminescente est équidistante des deux diodes électroluminescentes les plus proches. En d'autres termes, chaque angle formé par deux diodes électroluminescentes consécutives et l'axe du mât 12 est égal à chaque autre angle ainsi formé.
Les diodes électroluminescentes sont, par exemple, réparties le long de la périphérie du boîtier 36 de manière à entourer le mât 12 sur 360 degrés. Ainsi, quelle que soit l'orientation, autour de la direction axiale Z, du boîtier 36 par rapport à un observateur, au moins une diode électroluminescente est à chaque instant visible de l'observateur.
En variante, les diodes électroluminescentes sont réparties le long d'au moins deux lignes entourant le mât 12 autour de la direction axiale Z.
Par exemple, les diodes électroluminescentes sont équiréparties angulairement le long de chaque ligne. L'angle formé par deux diodes électroluminescentes consécutives d'une même ligne et l'axe du mât 12 présente une valeur d'angle. La valeur d'angle est, par exemple, identique pour chaque ligne considérée. En variante, la valeur d'angle associée à au moins une ligne est différente de la valeur d'angle associée à au moins une autre ligne.
Selon un mode de réalisation, les diodes électroluminescentes de chaque ligne sont réparties le long d'une partie de la périphérie du boîtier 36.
Par exemple, les diodes électroluminescentes de chaque ligne sont réparties sur un angle compris entre 60 degrés et 180 degrés. Cela signifie que l'angle formé par un premier segment traversant une première diode électroluminescente appartenant à une ligne et l'axe du mât 12 et un deuxième segment traversant une deuxième diode électroluminescente appartenant à la même ligne et l'axe du mât 12, les deux diodes électroluminescentes considérées étant les diodes électroluminescentes formant entre elles le plus grand angle, est compris entre 60 degrés et 180 degrés.
Le dispositif 14 est alors adapté à une signalisation directionnelle. Cela signifie que les diodes électroluminescentes ne sont visibles que pour certaines orientations du boîtier 36 par rapport à l'observateur.
Le fonctionnement du dispositif 14 est maintenant décrit.
En fonctionnement, le dispositif 14 est totalement autonome puisqu'en journée, le soleil vient éclairer le module photovoltaïque 20. Le module photovoltaïque 20 convertit l'énergie lumineuse provenant du soleil en énergie électrique.
L'énergie électrique produite par le module photovoltaïque 20 est ensuite stockée dans l'organe de stockage 38.
Lorsque l'éclairage est souhaité (par exemple, durant la nuit), l'organe de stockage 38 alimente l'organe d'émission de lumière 42. L'organe d'émission de lumière 42 émet alors de la lumière.
Le dispositif 14 présente l'avantage de présenter une masse relativement faible. La masse totale du dispositif 14 est inférieure à 5 kilogrammes, typiquement de l'ordre de quatre kilogrammes.
L'alimentation en énergie de l'organe d'émission de lumière 42 est, en outre, autonome et renouvelable puisqu'il s'agit d'énergie solaire.
Le dispositif 14 s'adapte, en outre, sur tout type de mât 12 avec n'importe quelle forme (cylindre à base circulaire, à base ovale ou à base polygonale).
De plus, le dispositif 14 peut être monté à n'importe quelle hauteur.
La mise en place d'un tel dispositif 14 n'engendre aucun impact et/ou aucune dégradation pour le mât 12 sur lequel le dispositif 14 est installé.
La lumière est captée par le module photovoltaïque 20 quelle que soit l'orientation du module photovoltaïque 20 sur le mât 12.
En outre, le balisage et le contraste lumineux est visible pour toute position de la personne regardant le système 10.
En outre, le dispositif 14 est protégé vis-à-vis des agressions extérieures, notamment grâce aux différentes parois.
En outre, l'installation et la désinstallation sur le mât 12 sont aisées ce qui facilite la maintenance du dispositif 14.
A titre d'exemple, cette facilité d'installation et/ou de désinstallation peut s'illustrer avec un procédé d'installation du dispositif sur le mât 12. Par exemple, un tel procédé comprend les étapes suivantes : enrouler le module photovoltaïque 20 sur le mât 12, assembler les deux parties 54 et 56 du boîtier 36 et serrer le boîtier 36 sur le mât 12, connecter électriquement l'organe de stockage 38 contenue dans une des deux parties 54 et 56 du boîtier 36 avec l'organe de régulation 40 contenue dans l'autre partie 54 et 56 du boîtier 36.
Le procédé comporte également une étape de réalisation d'une connexion électrique entre le module photovoltaïque 20 et l'organe de régulation 40, de réalisation d'une connexion électrique entre l'organe d'émission de lumière 42 et l'organe de régulation 40, d'assemblage du support 22 de maintien, de fixation du support 22 dans le boîtier 36 et de serrage du ou des anneaux 30 faisant partie du support 22.
Il apparaît alors clairement qu'un tel procédé est de mise en œuvre beaucoup plus aisée que les procédés de l'état de la technique dans la mesure où seuls des éléments propres au dispositif 14 sont impliqués dans l'installation du dispositif 14 sur le mât 12.
En outre, le dispositif 14 présente l'avantage d'être facilement modulable.
Une telle modularité permet notamment une évolution du dispositif 14. Selon les cas, une telle évolution prend différentes formes. En particulier, une modification du nombre d'unité lumineuse 18 est envisageable, chaque unité lumineuse étant susceptible de remplir des fonctions différentes. Typiquement, une unité lumineuse 18 assure une fonction de balisage alors qu'une autre unité lumineuse 18 assure une fonction d'éclairage d'une information.
Selon un autre exemple, une modification du nombre d'unité électrique 16 permet une adaptation aux besoins énergétiques de la ou des unités lumineuses 18. Une telle adaptation s'avère utile notamment en cas d'addition d'une unité lumineuse 18 ou de sous-dimensionnement initial des besoins énergétiques de la ou des unités lumineuses 18 du dispositif 14.
La modularité du dispositif 14 est illustrée par exemple à l'aide des figures 5 à 7.
Dans l'exemple de la figure 5, le dispositif 14 comporte deux unités électrique 16 au lieu d'une seule unité électrique 16 comme pour l'exemple de la figure 1 .
Dans la configuration représentée, l'unité lumineuse 18 est agencée entre les deux unités électriques 16.
Dans l'exemple de la figure 6, le dispositif 14 comporte également deux unités électrique 16 au lieu d'une seule unité électrique 16 comme pour l'exemple de la figure 1 .
Dans la configuration représentée, les deux unités électriques 16 sont agencées du même côté par rapport à l'unité lumineuse 18.
Dans l'exemple de la figure 7, le dispositif 14 comporte deux unités lumineuse 18 au lieu d'une seule unité lumineuse 18 comme pour l'exemple de la figure 1 . Dans la configuration représentée, l'unité électrique 16 est agencée entre les deux unités lumineuses 18.
Une telle modularité du dispositif 14 est permise par le fait que les différentes unités 14 et 16 sont combinables par un encastrement d'une partie en saillie d'une unité 14, 16 dans une gorge correspondante d'une autre unité 14, 16.
Comme expliqué précédemment, la modularité du dispositif 14 permet de s'adapter facilement à des changements de besoins en utilisant le dispositif 14 déjà en place sur le mât 12. Par exemple, les changements de besoins correspondent à un changement de fonction du mât 12 et/ou à un changement de besoin en énergie. L'adaptation à un nouveau besoin peut se faire par une simple évolution du dispositif 14. Par exemple, il est ajouté une unité lumineuse 18 supplémentaire pour augmenter la quantité d'éclairage généré.
De plus, selon une variante, le dispositif 14 comporte une pluralité d'organes d'émission de lumière, un de ces organes d'émission de lumière étant l'organe d'émission de lumière 42 s'étendant sur la périphérie du boîtier 36.
La figure 8 illustre un autre exemple de réalisation d'un dispositif 14 selon l'invention. Les éléments identiques au premier mode de réalisation de la figure 1 ne sont pas décrits à nouveau. Seules les différences sont mises en évidence.
La partie supérieure 48 présente une face externe 68 et une face interne 70.
La partie supérieure 48 est délimitée, dans un plan perpendiculaire à la direction axiale Z, par la face externe 68 et par la face interne 70.
La partie supérieure 48 comporte une première piste 72, une deuxième piste 74, un premier connecteur 76, un deuxième connecteur 78 et un joint 79.
Parmi la face externe 68 et la face interne 70, la face interne 70 est la face la plus proche du mât 12 lorsque le dispositif de balisage 14 est installé sur le mât 12.
Dans le cas où le mât 12 est cylindrique, lorsque le dispositif de balisage 14 est installé sur le mât 12, la face interne 70 est en contact avec le mât 12.
La face interne 70 présente une première portion 80, un épaulement 82 et une deuxième portion 84.
Parmi la première portion 80 et la deuxième portion 84, la première portion 80 est la plus proche de la partie médiane 52 selon la direction axiale Z.
Dans le cas où le mât 12 est cylindrique, la première portion 80 est prévue pour être en appui contre le mât 12 lorsque le dispositif 14 est installé sur le mât 12.
Par exemple, la première portion 80 est cylindrique à base circulaire, et la génératrice de la première portion 80 est parallèle à la direction axiale Z. Il est défini un premier diamètre D1 pour la première portion 80. Le premier diamètre D1 est, par exemple, compris entre 70 mm et 300 mm.
L'épaulement 82 est délimité, dans un plan perpendiculaire à la direction axiale Z, par la première portion 80 et par la deuxième portion 84.
Dans le cas d'une pièce cylindrique, il est entendu par « épaulement » un changement de section de la pièce faisant apparaître une surface perpendiculaire à la génératrice de la pièce.
L'épaulement 82 est annulaire à base cylindrique, c'est-à-dire que l'épaulement 82 est une surface plane délimitée par deux cercles coplanaires et concentriques de diamètres différents. L'épaulement 82 est perpendiculaire à la direction axiale Z.
L'épaulement 82 est prévu pour que, lorsque le module photovoltaïque 20 et l'unité lumineuse 18 sont installés sur le mât 12, l'extrémité proximale 26 du module photovoltaïque 20 est en appui contre l'épaulement 82 selon la direction axiale Z.
Parmi la première portion 80 et la deuxième portion 84, la deuxième portion 84 est la plus éloignée de la partie médiane 52 selon la direction axiale Z.
La deuxième portion 84 est cylindrique à base circulaire, et la génératrice de la deuxième portion 84 est parallèle à la direction axiale Z.
Il est défini un deuxième diamètre D2 pour la deuxième portion 84.
Le deuxième diamètre D2 est strictement supérieur au premier diamètre D1 . Le deuxième diamètre D2 est, par exemple, compris entre 75 mm et 310 mm.
La deuxième portion 84 est délimitée, selon la direction axiale Z, par l'épaulement 82 et par le joint 79.
La deuxième portion 84 est configurée pour que, lorsque le module photovoltaïque 20 et l'unité lumineuse 18 sont installés sur le mât 12, l'extrémité proximale 26 du module photovoltaïque 20 est entourée par la deuxième portion 84 dans un plan perpendiculaire à la direction axiale Z.
La première piste 72 est une bande électriquement conductrice. Par exemple, la première piste 72 est réalisée en un matériau métallique tel que le cuivre. En variante, la première piste 72 est réalisée en un autre matériau conducteur tel que, par exemple, l'aluminium ou l'argent.
La première piste 72 est portée par la deuxième portion 84.
La première piste 72 présente une première longueur L1 , une première largeur 11 et une première épaisseur e1 .
La première longueur L1 est mesurée selon un périmètre de la deuxième portion 84. En d'autres termes, la première longueur L1 est la longueur, mesurée par une intégrale curviligne, de la projection orthogonale de la première piste 72 sur un plan perpendiculaire à la direction axiale Z.
La première longueur L1 est supérieure ou égale à la moitié du produit du deuxième diamètre D2 et du nombre ττ.
La première largeur 11 est mesurée selon la direction axiale Z. La première largeur 11 est uniforme, c'est-à-dire que la première largeur 11 est identique en tout point de la première piste 72. La première largeur 11 est comprise entre 2 mm et 10 mm.
La première épaisseur e1 est mesurée selon une direction radiale. Il est entendu par « direction radiale » une direction perpendiculaire à l'axe de la deuxième portion 84 et parallèle à un segment traversant l'axe de la deuxième portion 84 et le point en lequel l'épaisseur est mesurée. La première épaisseur e1 est uniforme. La première épaisseur e1 est comprise entre 0,5 mm et 2 mm.
Selon un mode de réalisation, la première piste 72 est conforme avec la deuxième portion 84, c'est-à-dire que la première piste 72 est en contact avec la deuxième portion 84 et épouse la forme de la deuxième portion 84.
Par exemple, la première piste 72 est en forme de cylindre à base annulaire, l'axe de la première piste 72 étant parallèle à la direction axiale Z.
L'axe d'un cylindre à base annulaire ou circulaire est défini comme étant une droite parallèle à la génératrice du cylindre et traversant le centre du cercle ou de l'anneau qui forme la directrice du cylindre.
La première piste 72 est, par exemple, formée par la réunion de deux portions de piste portées chacune par l'une de la première partie 54 et la deuxième partie 56.
La deuxième piste 74 est une bande électriquement conductrice. Par exemple, la deuxième piste 74 est réalisée en un matériau métallique tel que le cuivre. En variante, la première piste 72 est réalisée en un autre matériau conducteur tel que, par exemple, l'aluminium ou l'argent.
La deuxième piste 74 est portée par la deuxième portion 84.
La deuxième piste 74 présente une deuxième longueur L2, une deuxième largeur 12 et une deuxième épaisseur e2.
La deuxième longueur L2 est mesurée selon un périmètre de la deuxième portion 84. En d'autres termes, la deuxième longueur L2 est la longueur, mesurée par une intégrale curviligne, de la projection orthogonale de la deuxième piste 74 sur un plan perpendiculaire à la direction axiale Z.
La deuxième longueur L2 est supérieure ou égale à la moitié du produit du deuxième diamètre D2 et du nombre ττ, approximativement égal à 3,14.
La deuxième largeur 12 est mesurée selon la direction axiale Z. La deuxième largeur 12 est uniforme, c'est-à-dire que la deuxième largeur 12 est identique en tout point de la deuxième piste 74. La première deuxième 12 est comprise entre 2 mm et 10 mm.
La deuxième épaisseur e2 est mesurée selon une direction perpendiculaire à la direction axiale Z. La deuxième épaisseur e2 est uniforme. La deuxième épaisseur e2 est comprise entre 0,5 mm et 2 mm.
La deuxième piste 74 est conforme avec la deuxième portion 84. Par exemple, la deuxième piste 74 est en forme de cylindre à base annulaire, l'axe de la deuxième piste 74 étant parallèle à la direction axiale Z.
La deuxième piste 74 est, par exemple, formée par la réunion de deux portions de piste portées chacune par l'une de la première partie 54 et la deuxième partie 56.
La deuxième piste 74 est interposée entre la première piste 72 et l'épaulement 82.
La deuxième piste 74 n'est pas connectée électriquement à la première piste 72.
Par exemple, la première piste 72 et la deuxième piste 74 sont parallèles l'une à l'autre, et la distance entre la première piste 72 et la deuxième piste 74, mesurée selon la direction axiale Z, est supérieure ou égale à 1 mm.
Le premier connecteur 76 est configuré pour connecter électriquement la première piste 72 à l'organe de stockage 38 ou à l'organe de régulation 40.
Le deuxième connecteur 78 est configuré pour connecter électriquement la deuxième piste 74 à l'organe de stockage 38 ou à l'organe de régulation 40.
Le joint 79 est configuré pour isoler la première piste 72 et la deuxième piste 74 de l'extérieur de la partie supérieure 48.
Le joint 79 est configuré pour assurer une étanchéité entre la partie supérieure 48 et le module photovoltaïque 20. En particulier, le joint 79 est configuré pour empêcher de l'eau coulant vers le bas le long de l'extérieur du module photovoltaïque 20 d'atteindre la première piste 72 ou la deuxième piste 74.
Le module photovoltaïque 20 comporte une électrode positive et une électrode négative.
Le module photovoltaïque 20 est configuré pour imposer une différence de potentiel électrique, lorsque le module photovoltaïque 20 est éclairé par le soleil, entre l'électrode positive et l'électrode négative.
L'extrémité proximale 26 a été représentée en transparence sur la figure 8.
Le support 22 comporte un troisième connecteur 86 et un quatrième connecteur 88.
Chacun du troisième connecteur 86 et du quatrième connecteur 88 est fixé au support 22. Par exemple, chacun du troisième connecteur 86 et du quatrième connecteur 88 est collé au support 22. En variante, chacun du troisième connecteur 86 et du quatrième connecteur 88 est encastré dans une partie rigide du support 22.
Le troisième connecteur 86 est configuré pour connecter électriquement la première piste 72 à l'une parmi l'électrode positive et l'électrode négative.
Le quatrième connecteur 88 est configuré pour connecter électriquement la deuxième piste 74 à l'autre parmi l'électrode positive et l'électrode négative.
Par exemple, chacun du troisième connecteur 86 et du quatrième connecteur 88 est connecté à l'électrode correspondante par un câble. Le câble de connexion est, par exemple, soudé au connecteur 86, 88 et à l'électrode correspondante.
En variante, chacun du troisième connecteur 86 et du quatrième connecteur 88 est connecté à l'électrode correspondante par un circuit imprimé flexible
Le troisième connecteur 86 et le quatrième connecteur 88 sont, chacun, configurés pour permettre une rotation relative du module photovoltaïque 20 et de son support (22) par rapport à la partie supérieure 48 autour de la direction axiale Z.
Par exemple, chacun du troisième connecteur 86 et du quatrième connecteur 88 est prévu pour être déformable élastiquement au cours d'une rotation relative du module photovoltaïque 20 et de la partie supérieure 48 autour de la direction axiale Z.
Selon l'exemple de la figure 8, chacun du troisième connecteur 86 et du quatrième connecteur 88 est réalisé à partir d'une languette métallique rectangulaire repliée pour former un crochet.
Chacun du troisième connecteur 86 et du quatrième connecteur 88 est réalisé en un matériau métallique. Par exemple, chacun du troisième connecteur 86 et du quatrième connecteur 88 est réalisé en un matériau conducteur. Le matériau conducteur est, par exemple, choisi parmi l'ensemble composé du cuivre, de l'argent et de l'aluminium
Chacun du troisième connecteur 86 et du quatrième connecteur 88 comporte une troisième portion 90, une quatrième portion 92, une cinquième portion 94 et une sixième portion 96.
Chacun du troisième connecteur 86 et du quatrième connecteur 88 présente une largeur, mesurée selon un périmètre de la deuxième portion 84, comprise entre 2 mm et 10 mm.
Chaque troisième portion 90 est parallélépipédique. La troisième portion présente une longueur, mesurée selon la direction axiale Z, comprise entre 20 mm et 50 mm.
Lorsque le module photovoltaïque 20 et l'unité lumineuse 18 sont installés sur le mât 12, chaque troisième portion 90 est interposée entre l'extrémité proximale 26 et le mât 12.
Chaque quatrième portion 92 est parallélépipédique. Chaque quatrième portion 92 est délimitée par la troisième portion 90 et par la cinquième portion 94.
Chaque quatrième portion 92 est perpendiculaire à la troisième portion 90 correspondante. Chaque quatrième portion 92 est perpendiculaire à la direction axiale Z.
Chaque quatrième portion 92 présente une longueur, mesurée selon une direction radiale, comprise entre 2 mm et 10 mm.
Lorsque le module photovoltaïque 20 et l'unité lumineuse 18 sont installés sur le mât 12, chaque quatrième portion 92 est interposée entre l'extrémité proximale 26 et l'épaulement 82.
Lorsque le module photovoltaïque 20 et l'unité lumineuse 18 sont installés sur le mât 12, chaque cinquième portion 94 est interposée entre l'extrémité proximale 26 et la deuxième portion 84.
Chaque cinquième portion 94 est délimitée par une première arête 98 et par une deuxième arête 100.
Chaque première arête 98 appartient à la fois à la quatrième portion 92 et à la cinquième portion 94 correspondantes.
Chaque deuxième arête 100 appartient à la fois à la cinquième portion 94 et à la sixième portion 96 correspondantes.
Pour chaque troisième connecteur 86 et de chaque quatrième connecteur 88, le point le plus éloigné de l'axe de la deuxième portion 84 selon la direction radiale appartient à la deuxième arête 100 correspondante. En d'autres termes, un segment contenu dans un plan contenant l'axe de la deuxième portion 84 et reliant la première arête 98 à la deuxième arête 100 forme avec un segment de la quatrième portion 92 contenu dans le même plan un angle strictement supérieur à 90 degrés. L'angle considéré est alors le plus petit des deux angles délimités par les deux segments considérés.
Chaque deuxième arête 100 est en appui contre l'une de la première piste 72 et de la deuxième piste 74.
La cinquième portion 94 délimite, avec les troisième portion 90, quatrième portion 92 et sixième portion 96 respectives, un volume convexe entourant au moins partiellement l'extrémité proximale 26.
La sixième portion 96 présente une extrémité. L'extrémité de la sixième portion 96 est opposée à la deuxième arête 100.
La sixième portion 96 est délimitée par la deuxième arête 100 et par l'extrémité de la sixième portion 96.
L'extrémité de la sixième portion 96 est en appui contre l'extrémité proximale 26. Chaque sixième portion 96 est donc configurée pour connecter électriquement l'électrode correspondante et la piste 72, 74 correspondante.
La sixième portion 96 et la cinquième portion 94 sont configurées pour que, lorsque le module photovoltaïque 20 et l'unité lumineuse 18 sont installés sur le mât 12, la sixième portion 96 et la cinquième portion 94 exercent une force élastique tendant à plaquer la deuxième arête 100 contre la piste 72, 74 correspondante.
Par exemple, lorsque le module photovoltaïque 20 et l'unité lumineuse 18 sont installés sur le mât 12, chacune de la première piste 72 et la deuxième piste 74 exerce sur la deuxième arête 100 correspondante une force entraînant une déformation élastique des sixième portion 96 et cinquième portion 94 correspondantes.
Le dispositif 14 permet alors une rotation relative entre l'unité lumineuse 18 et le module photovoltaïque 20, tout en conservant une connexion électrique entre elle et celui- ci.
Le dispositif 14 permet donc de modifier l'orientation du module photovoltaïque 20, en particulier pour orienter celui-ci de manière favorable par rapport au soleil, sans modifier l'orientation de l'unité lumineuse 18.
De plus, la connexion électrique entre le module photovoltaïque 20 présente un encombrement réduit et est aisée à réaliser, puisqu'elle ne suppose pas de raccorder des câbles d'alimentation électrique : le seul positionnement de l'extrémité proximale 26 contre l'épaulement 82 permet d'entraîner la connexion électrique entre le module photovoltaïque 20 et l'unité lumineuse 18.
Un troisième exemple de réalisation d'un dispositif 14 selon l'invention est représenté sur la figure 9. Les éléments identiques au deuxième mode de réalisation de la figure 8 ne sont pas décrits à nouveau. Seules les différences sont mises en évidence.
La deuxième portion 84 comporte une première baguette 102 et une deuxième baguette 104.
Chaque baguette 102, 104 est une bande continue de matériau s'étendant à partir de la deuxième portion 84 vers le mât 12 lorsque l'unité lumineuse 18 est installée sur le mât 12.
Selon un mode de réalisation, chaque baguette 102, 104 entoure le mât 12 sur au moins 180 degrés.
Chaque baguette 102, 104 présente, par exemple, une section parallélépipédique. La première baguette 102 est interposée entre la première piste 72 et la deuxième piste 74.
Les baguettes 102, 104 sont configurées pour coopérer entre elles pour guider le troisième connecteur 86 lors d'une rotation relative entre l'unité lumineuse 18 et le module photovoltaïque 20, de telle sorte que le troisième connecteur 86 reste en contact électrique avec la première piste 72 au cours de la rotation.
La première baguette 102 est, en outre, configurée pour coopérer avec l'épaulement 82 pour guider le quatrième connecteur 88 lors d'une rotation relative entre l'unité lumineuse 18 et le module photovoltaïque 20, de telle sorte que le quatrième connecteur 88 reste en contact électrique avec la deuxième piste 74 au cours de la rotation.
Chacun des troisième connecteur 86 et quatrième connecteur 88 est cylindrique à base circulaire, et la génératrice de chacun des troisième connecteur 86 et quatrième connecteur 88 est parallèle à une direction radiale de la deuxième portion 84.
Chacun des troisième connecteur 86 et quatrième connecteur 88 présente un diamètre compris entre 2 mm et 10 mm.
Chacun des troisième connecteur 86 et quatrième connecteur 88 présente une base 106 et une extrémité de contact 108. Chacun des troisième connecteur 86 et quatrième connecteur 88 est délimité selon une direction radiale de la deuxième portion 84 par la base 106 et l'extrémité de contact 108.
Chaque base 106 est configurée pour fixer le connecteur 86, 88 correspondant à l'extrémité proximale 26.
Chaque extrémité de contact 108 est hémisphérique. Chaque extrémité de contact 108 est prévue pour être en appui contre la piste 72, 74 correspondante lorsque le module photovoltaïque 20 et l'unité lumineuse 18 sont installés sur le mât 12.
Les baguettes 102 et 104 permettent alors de solidariser plus fortement l'unité électrique 16 à l'unité lumineuse 18. Les baguettes 102 et 104 participent à maintenir le module 20 et son support 22 en position par rapport au boîtier 36.
En outre, les baguettes 102 et 104 permettent également un meilleur maintien en position des troisième et quatrième connecteurs 86 et 88 et donc une connexion électrique plus fiable entre les troisième et quatrième connecteurs 86 et 88 et les pistes 72 et 74.
La surface de connexion entre les troisième et quatrième connecteurs 86 et 88 et les pistes 72 et 74 est également augmentée.
Selon un autre exemple de dispositif 14, le dispositif comporte un collier de serrage prévu pour enserrer le mât 12. Le collier de serrage forme par exemple, lorsque le collier de serrage est serré sur le mât 12, un support pour le boîtier 36.
Le dispositif 14 est alors particulièrement adapté à être fixé à un mât non- cylindrique, en particulier un mât conique.

Claims

REVENDICATIONS
1 . - Dispositif d'éclairage (14), notamment dispositif de balisage (14), à installer sur un mât (12), le dispositif (14) comportant :
- une unité de production d'énergie électrique (16) comprenant :
- au moins un module photovoltaïque (20) propre à être enroulé sur au moins une partie de la circonférence du mât (12), de préférence sur toute la circonférence du mât (12), et
- une unité de production d'énergie lumineuse (18) configurée pour être fixée sur le mât (12), l'unité de production d'énergie lumineuse (18) comprenant :
- un boîtier (36) présentant une périphérie,
- un organe de stockage (38) de l'énergie électrique produite par l'unité de production d'énergie électrique (16),
- un organe de régulation (40) de la charge de l'organe de stockage (38), et - un organe d'émission de lumière (42) alimenté par l'organe de stockage
(38), l'organe d'émission de lumière (42) s'étendant sur la périphérie du boîtier (36).
2. - Dispositif selon la revendication 1 , dans lequel le boîtier (36) comprend l'organe de stockage (38) et l'organe de régulation (40).
3. - Dispositif selon la revendication 1 ou 2, dans lequel le boîtier (36) présente un évidement (56) de forme complémentaire au mât (12).
4.- Dispositif selon l'une quelconque des revendications 1 à 3, dans lequel le boîtier (36) présente deux parties (54, 56), la deuxième partie (56) étant reliée à la première partie (54).
5. - Dispositif selon l'une quelconque des revendications 1 à 4, dans lequel le boîtier (36) présente deux parties (54, 56), chaque partie (54, 56) comprenant une portion de piste électrique, les deux portions de piste formant une piste continue lorsque la deuxième partie (56) étant reliée à la première partie (54). .
6. - Dispositif selon l'une quelconque des revendications 1 à 5, dans lequel l'unité de production d'énergie électrique (16) comporte un support (22) maintenant le module photovoltaïque (20) enroulé sur au moins une partie de la circonférence du mât (12), de préférence sur toute la circonférence du mât (12).
7. - Dispositif selon l'une quelconque des revendications 1 à 6, dans lequel le support comprend un anneau (30) et deux éléments de maintien (32, 34) reliant l'anneau (30) à l'unité de production d'énergie lumineuse (18), les deux éléments de maintien (32, 34) étant diamétralement opposés.
8. - Système de balisage (10) comprenant :
- un mât (12), et
- un dispositif (14) selon l'une quelconque des revendications 1 à 8 installé sur le mât (12).
9. - Système de balisage (10) comprenant :
- un mât (12),
- au moins une unité de production d'énergie électrique comprenant :
- au moins un module photovoltaïque (20) propre à être enroulé sur au moins une partie de la circonférence du mât (12), de préférence sur toute la circonférence du mât (12), et
- au moins une unité de production d'énergie lumineuse (18) fixée sur le mât (12), chaque unité de production d'énergie lumineuse (18) comprenant :
- un boîtier (36) présentant une périphérie,
- un organe de stockage (38) de l'énergie électrique produite par au moins une unité de production d'énergie électrique (16),
- un organe de régulation (40) de la charge de l'organe de stockage (38), et
- un organe d'émission de lumière (42) alimenté par l'organe de stockage (38), l'organe d'émission de lumière (42) s'étendant sur la périphérie du boîtier (36).
10. - Procédé d'installation d'un dispositif (14) selon l'une quelconque des revendications 1 à 8 sur un mât (12) comprenant les étapes de :
- enroulement du module photovoltaïque (20) sur le mât (12), et
- assemblage du boîtier (36) sur le module photovoltaïque (20).
PCT/EP2015/077949 2014-11-28 2015-11-27 Dispositif de balisage à installer sur un mât et procédé d'installation associé WO2016083590A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BR112017011195-0A BR112017011195A2 (pt) 2014-11-28 2015-11-27 dispositivo de balizamento para instalar sobre um mastro e processo de instalação associado
US15/529,596 US10408400B2 (en) 2014-11-28 2015-11-27 Beacon device for installation on a tower and associated installation method
ES15801821T ES2808913T3 (es) 2014-11-28 2015-11-27 Dispositivo de balizamiento para ser instalado en un mástil y procedimiento para su instalación
KR1020177013520A KR20170088846A (ko) 2014-11-28 2015-11-27 타워 상에 설치하기 위한 비콘 디바이스 및 관련 설치 방법
DK15801821.8T DK3224534T3 (da) 2014-11-28 2015-11-27 Lysafmærkningsindretning til installation på et tårn og tilhørende fremgangsmåde til installation
EP15801821.8A EP3224534B1 (fr) 2014-11-28 2015-11-27 Dispositif de balisage à installer sur un mât et procédé d'installation associé
JP2017528818A JP6647304B2 (ja) 2014-11-28 2015-11-27 タワーに搭載するための無線標識装置および関連した搭載方法
CN201580063562.3A CN107002972B (zh) 2014-11-28 2015-11-27 安装在塔上的信标装置及相关安装方法
HRP20201036TT HRP20201036T1 (hr) 2014-11-28 2020-07-01 Signalizacijski uređaj za postavljanje na toranj i povezani postupak za postavljanje
CY20201100676T CY1123294T1 (el) 2014-11-28 2020-07-23 Συσκευη σημανσης για εγκατασταση πανω σε εναν πυργο και σχετικη διαδικασια εγκαταστασης

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1461683A FR3029168B1 (fr) 2014-11-28 2014-11-28 Dispositif de balisage a installer sur un mat et procede d'installation associe
FR1461683 2014-11-28

Publications (1)

Publication Number Publication Date
WO2016083590A1 true WO2016083590A1 (fr) 2016-06-02

Family

ID=52423948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/077949 WO2016083590A1 (fr) 2014-11-28 2015-11-27 Dispositif de balisage à installer sur un mât et procédé d'installation associé

Country Status (13)

Country Link
US (1) US10408400B2 (fr)
EP (1) EP3224534B1 (fr)
JP (1) JP6647304B2 (fr)
KR (1) KR20170088846A (fr)
CN (1) CN107002972B (fr)
BR (1) BR112017011195A2 (fr)
CY (1) CY1123294T1 (fr)
DK (1) DK3224534T3 (fr)
ES (1) ES2808913T3 (fr)
FR (1) FR3029168B1 (fr)
HR (1) HRP20201036T1 (fr)
PT (1) PT3224534T (fr)
WO (1) WO2016083590A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10794551B2 (en) 2017-07-31 2020-10-06 Clark Equipment Company Light system and method of powering the same
US11195390B2 (en) * 2019-07-12 2021-12-07 Federico Crivellaro Light-signaling device for navigation and a system comprising multiple light-signaling devices for navigation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682204B2 (en) 2002-05-06 2004-01-27 Hubbell Incorporated Lighting unit with mounting mechanism
EP1884711A1 (fr) * 2006-08-02 2008-02-06 Friedemann Hoffmann Appareil lumineux
US20090244881A1 (en) * 2008-03-27 2009-10-01 Doyle Scott Butler Back-Up Lighting System
US20100029268A1 (en) * 2007-02-02 2010-02-04 Ming Solar, Inc., Dba Inovus Solar, Inc. Wireless autonomous solar-powered outdoor lighting and energy and information management network
WO2013093402A2 (fr) * 2011-12-23 2013-06-27 Braghiroli Marco Manchon photovoltaïque pour lampadaires et analogues

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062371A (en) * 1976-05-19 1977-12-13 Bolen Lawrence A Walking cane
CA2225159C (fr) * 1996-12-19 2006-10-17 Showa Pole Co., Ltd. Poteau muni de piles solaires
US20090211621A1 (en) * 2008-02-21 2009-08-27 Leblanc Kenneth Flexible Magnetically Attached Solar Electric Collector
ES2484540T3 (es) * 2010-10-08 2014-08-11 Quinzi, Gianni Luz de calle con poste hueco
BR112013020531A2 (pt) * 2011-02-11 2017-02-14 Fruhm Hermann aparelho e sistema para um aparelho de montagem rotativa
US8714768B2 (en) * 2012-05-31 2014-05-06 Larry Tittle Solar retrofit lighting system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682204B2 (en) 2002-05-06 2004-01-27 Hubbell Incorporated Lighting unit with mounting mechanism
EP1884711A1 (fr) * 2006-08-02 2008-02-06 Friedemann Hoffmann Appareil lumineux
US20100029268A1 (en) * 2007-02-02 2010-02-04 Ming Solar, Inc., Dba Inovus Solar, Inc. Wireless autonomous solar-powered outdoor lighting and energy and information management network
US20090244881A1 (en) * 2008-03-27 2009-10-01 Doyle Scott Butler Back-Up Lighting System
WO2013093402A2 (fr) * 2011-12-23 2013-06-27 Braghiroli Marco Manchon photovoltaïque pour lampadaires et analogues

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10794551B2 (en) 2017-07-31 2020-10-06 Clark Equipment Company Light system and method of powering the same
US11195390B2 (en) * 2019-07-12 2021-12-07 Federico Crivellaro Light-signaling device for navigation and a system comprising multiple light-signaling devices for navigation

Also Published As

Publication number Publication date
FR3029168B1 (fr) 2017-01-06
DK3224534T3 (da) 2020-08-03
FR3029168A1 (fr) 2016-06-03
BR112017011195A2 (pt) 2018-02-27
HRP20201036T1 (hr) 2020-10-16
JP6647304B2 (ja) 2020-02-14
EP3224534A1 (fr) 2017-10-04
JP2017537440A (ja) 2017-12-14
US20170261165A1 (en) 2017-09-14
ES2808913T3 (es) 2021-03-02
CN107002972B (zh) 2020-09-15
PT3224534T (pt) 2020-08-17
CN107002972A (zh) 2017-08-01
CY1123294T1 (el) 2021-12-31
US10408400B2 (en) 2019-09-10
KR20170088846A (ko) 2017-08-02
EP3224534B1 (fr) 2020-05-06

Similar Documents

Publication Publication Date Title
EP2671115B1 (fr) Dispositif d'affichage avec cellules photovoltaïques intégrées, à luminosité améliorée
FR2971879A1 (fr) Dispositif d'affichage avec cellules photovoltaiques integrees, a luminosite amelioree
EP2271957B1 (fr) Procédé de fabrication d'un module d'eclairage, en particulier de retro-eclairage
FR3064531A1 (fr) Vitrage eclairant.
EP2950166B1 (fr) Jeu d'aiguilles d'affichage lumineuses pour objet portable tel qu'une montre ou un instrument de mesure
EP3224534B1 (fr) Dispositif de balisage à installer sur un mât et procédé d'installation associé
EP2279373A2 (fr) Dispositif solaire photovoltaïque autonome portable
FR3056705A1 (fr) Module d'emission lumineuse a commande amelioree notamment pour vehicule automobile
FR3025860A1 (fr) Support de diode oled avec lamelles elastiques de connexion
EP2995850A1 (fr) Module lumineux multifonction avec diode oled segmentee
WO2012104502A1 (fr) Ecran d'affichage 3d stéréoscopique avec cellules photovoltaïques intégrées, et procédé pour sa fabrication
EP2951510A1 (fr) Panneau imprime retro-eclaire
EP3608896B1 (fr) Drapeau a dispositif intégré
OA18291A (fr) Dispositif de balisage à installer sur un mât et procédé d'installation associé
WO2001018776A2 (fr) Dispositif d'affichage lumineux electronique econome et autonome en energie
EP3230651B1 (fr) Système de signalisation lumineuse
EP3165677B1 (fr) Dispositif de signalisation lumineux
FR2966475A1 (fr) Module d'eclairage de cone de chantier.
EP3918640B1 (fr) Appareil équipé de cellules photovoltaïques de type silicium cristallin présentant des surfaces de géométries variées
EP2763234B1 (fr) Système d'antenne
BE1024209A1 (fr) Améliorations de ou relatives à des luminaires
FR3001357A1 (fr) Support de fixation mecanique et de raccordement electrique de diodes electroluminescentes
FR2583575A1 (fr) Capteur photovoltaique notamment pour balises maritimes et terrestres.
FR2934666A1 (fr) Dispositif d'eclairage a energie solaire.
FR2970544A1 (fr) Dispositif d'eclairage public utilisant un concentrateur solaire alimentant un capteur photovoltaique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15801821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177013520

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015801821

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15529596

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017528818

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017011195

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017011195

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170526