WO2016082557A1 - 基于用户公平性的异构网络时域干扰协调方法及系统 - Google Patents

基于用户公平性的异构网络时域干扰协调方法及系统 Download PDF

Info

Publication number
WO2016082557A1
WO2016082557A1 PCT/CN2015/083790 CN2015083790W WO2016082557A1 WO 2016082557 A1 WO2016082557 A1 WO 2016082557A1 CN 2015083790 W CN2015083790 W CN 2015083790W WO 2016082557 A1 WO2016082557 A1 WO 2016082557A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
heterogeneous network
base station
layer
model
Prior art date
Application number
PCT/CN2015/083790
Other languages
English (en)
French (fr)
Inventor
张奇勋
冯志勇
杨拓
张月
Original Assignee
北京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京邮电大学 filed Critical 北京邮电大学
Publication of WO2016082557A1 publication Critical patent/WO2016082557A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/22Traffic simulation tools or models
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a heterogeneous network time domain interference coordination method and system based on user fairness.
  • Heterogeneous Network Heterogeneous Network
  • MeNB macro base station
  • PeNB dense pico base station
  • the prior art jointly introduces a Cell Range Expansion (CRE) and an Enhanced Inter-Cell Interference Coordination (eICIC) technology.
  • CRE Cell Range Expansion
  • eICIC Enhanced Inter-Cell Interference Coordination
  • a part of the original macro base station user can be offloaded to the pico base station by adding an offset value when measuring the received reference signal, thereby achieving load balancing and making full use of the base station resources.
  • the user who is shunted to the pico base station is at the edge of the pico base station, and the received signal power is low.
  • the distance from the macro base station is relatively close, and the macro base station will suffer severe downlink interference, and the time domain interference coordination mechanism must be adopted to ensure The communication quality of this part of the user.
  • the time domain interference coordination technology allows the macro base station to configure almost blank subframes, and stops transmission in some time slots, and the pico base station can use the time slot of the Almost Blank Subframe (ABS) of the macro base station to extend into the extended area.
  • ABS Almost Blank Subframe
  • the pico base station user transmits signals to prevent these users from receiving strong interference signals from the macro base station.
  • Such ABS subframes require only the Common Reference Signal (CRS) and some necessary signals such as the Broadcast Channel (PBCH), the Primary Synchronization Channel (PSS), and the Secondary Synchronization Channel (SSS), and do not transmit the physical downlink shared channel. (PDSCH).
  • CRS Common Reference Signal
  • PBCH Broadcast Channel
  • PSS Primary Synchronization Channel
  • SSS Secondary Synchronization Channel
  • the aggression layer refers to a base station that generates a large interference
  • the victim layer refers to a base station that is greatly interfered.
  • the measurement reference signal measurement offset of the cell area extension and the ratio of the blank subframe in the time domain interference coordination are not given a specific measurement and measurement method, but the corresponding parameter setting range is given, and different network deployments are not considered.
  • Different technical parameter settings under conditions make it difficult to take into account the impact of network deployment parameters such as base station deployment density, user density, and base station transmit power.
  • the prior art ignores the impact on the user's own communication quality. When the two technologies are used in combination, the impact on the communication quality of each individual user is not considered, and the effect on the overall network capacity is considered.
  • the present invention proposes a heterogeneous network time domain interference coordination method and system based on user fairness, and improves heterogeneous network through reasonable interference coordination mechanism parameter setting on the basis of ensuring user fairness. Total system capacity.
  • the present invention provides a heterogeneous network time domain interference coordination method based on user fairness, and the heterogeneous network includes a macro base station and at least one pico base station within the coverage of the macro base station.
  • the method comprises: modeling a network deployment of the heterogeneous network by using a Poisson point distribution model to obtain a heterogeneous network model; and calculating a network fairness index and a unit of the heterogeneous network by using the heterogeneous network model respectively System capacity in a geographical area; establishing a received reference signal measurement offset and a time domain almost blank subframe density in the heterogeneous network model as variables, the network fairness index and system capacity in a unit geographic area are A multi-objective programming model of the objective function; calculating an optimal solution of the multi-objective programming model, and performing setting of the received reference signal measurement offset and the time-domain almost blank sub-frame density according to the optimal solution.
  • the computing the network fairness index of the heterogeneous network and the system capacity in the unit geographic area by using the heterogeneous network model respectively, specifically: calculating, by using the heterogeneous network model, each of the heterogeneous networks An average traversal rate of a layer of network cells; a network fairness index of the heterogeneous network and a system capacity within a unit geographic area are calculated according to an average traversal rate of the layer of network cells.
  • the heterogeneous network model is used to separately calculate an average traversal of each layer of the network cell in the heterogeneous network.
  • the rate includes: according to the access criterion of the cell area extension technology, the user terminal in the heterogeneous network model is divided into a macro base station user terminal, a pico base station internal area user terminal, and a pico base station extended area user terminal;
  • the heterogeneous network model separately calculates the probability density function of the above three user terminals in the proportion of all user terminals in the heterogeneous network, the number of users in each layer of the network cell, and the statistical distances of the three user terminals to the serving base station; Calculating the probability density function of the three user terminals in the proportion of all user terminals in the heterogeneous network, the number of users in each layer of the network cell, and the statistical distances of the three user terminals to the serving base station, calculating each layer of the network cell of the heterogeneous network Average traversal rate.
  • calculating a network fairness index of the heterogeneous network and a system capacity in a unit geographical area according to an average traversal rate of each layer of the network cell specifically: acquiring a total available to users in each layer of the network cell a time slice resource; calculating an average rate of unit users in each layer of the network cell according to the average traversal rate calculation of each layer of the network cell and the total time slice resource that the user can utilize, and the specific expression is as follows:
  • K represents the number of layers of the network cell in the heterogeneous network
  • R k represents the average traversal rate of the kth layer network cell
  • N k represents the kth layer network cell
  • ⁇ k represents the total time slice resource available to the user of the kth layer network cell
  • a k represents the proportion of user terminals occupying all user terminals in the heterogeneous network in the kth layer network cell in the heterogeneous network
  • ⁇ k denotes the Poisson point distribution density of the kth layer network cell base station in the network
  • Wk denotes the system bandwidth of the kth layer network.
  • the multi-objective planning model is as follows:
  • B denotes the received reference signal measurement offset and ⁇ denotes the time domain almost blank subframe density.
  • the pico base station adopts an open access mode.
  • the macro base station, the pico base station, and the mobile user terminal in the heterogeneous network mathematical model respectively obey an independent Poisson point distribution.
  • the present invention also proposes a heterogeneous network time domain interference coordination system based on user fairness, the heterogeneous network comprising a macro base station and at least one pico base station within the coverage of the macro base station.
  • the system comprises: a heterogeneous network model building module, configured to model a network deployment of the heterogeneous network by using a Poisson point distribution model to obtain a heterogeneous network model; and a computing module for utilizing the heterogeneous network model Calculating a network fairness index of the heterogeneous network and a system capacity in a unit geographical area respectively; a multi-objective planning model establishing module, configured to establish a receiving reference signal with the heterogeneous network model to measure an offset and a time domain
  • the blank subframe density is a variable, and the multi-objective programming model with the network fairness index and the system capacity in a unit geographic region as an objective function; an optimization parameter setting module, configured to calculate an optimal solution of the multi-objective programming model, A setting of the received reference
  • the calculating module specifically includes: a first calculating unit, configured to separately calculate an average traversal rate of each layer of the network cell in the heterogeneous network by using the heterogeneous network model; and a second calculating unit, configured to The average traversal rate of the each layer of the network cell calculates a network fairness index of the heterogeneous network and a system capacity within a unit geographic area.
  • the present invention provides a heterogeneous network time domain interference coordination method and system based on user fairness, and a time domain interference coordination technology for layered heterogeneous networks, and a time domain interference parameter based on ensuring user fairness.
  • the optimal setting makes it possible to ensure user fairness and network capacity when applying interference coordination technology.
  • FIG. 1 is a schematic flowchart of a heterogeneous network time domain interference coordination method based on user fairness according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a macro base station configuring an almost blank subframe according to a certain ratio in a time domain interference coordination mechanism according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a module for heterogeneous network time domain interference coordination system based on user fairness according to an embodiment of the present invention.
  • the invention relates to a heterogeneous network interference coordination technology in the field of wireless communication, and the main purpose is to improve the system capacity of a layered heterogeneous network on the basis of ensuring the fairness of users.
  • the cell area extension technology is introduced, and some macro base station users are offloaded to the pico base station to achieve load balancing. Effect.
  • the power of the receiving signal from the macro base station to the pico base station is weak, it will be strongly interfered by the downlink signal of the macro base station, and the time domain interference coordination mechanism needs to be adopted, so that the macro base station stops transmitting in some time slots. Signal, at this time, the pico base station user will not be interfered by the macro base station.
  • Cell area extension and time domain interference coordination will have different effects on the capacity of macro base station users and pico base station users, and will increase the total system capacity of the heterogeneous network.
  • the present invention proposes a heterogeneous network time domain interference coordination method and system based on user fairness, which can guarantee all the parameters based on ensuring the fairness of different users.
  • the fairness of the user's wireless network resources can also increase the total system capacity of the tiered heterogeneous network.
  • a heterogeneous network time domain interference coordination method based on user fairness provided by an embodiment of the present invention is described in detail.
  • FIG. 1 a flow chart of a heterogeneous network time domain interference coordination method based on user fairness according to an embodiment of the present invention is shown.
  • the heterogeneous network time domain interference coordination method based on user fairness in this embodiment where the heterogeneous network includes a macro base station and at least one pico base station within the coverage of the macro base station.
  • the method specifically includes the following steps.
  • Step S101 Model a network deployment of the heterogeneous network by using a Poisson point distribution model to obtain a heterogeneous network model.
  • the pico base station adopts an open access mode.
  • Macro base station, micro in the mathematical model of heterogeneous network The micro base station and the mobile user terminal respectively obey an independent Poisson point distribution.
  • Step S102 using the heterogeneous network model, respectively calculating a network fairness index of the heterogeneous network and a system capacity in a unit geographic area.
  • Step S103 establishing a measurement reference signal measurement offset and a time domain almost blank subframe density of the heterogeneous network model as variables, and using the network fairness index and the system capacity in a unit geographic area as an objective function Target planning model.
  • Step S104 Calculate an optimal solution of the multi-objective programming model, and perform setting of a received reference signal measurement offset and a time domain almost blank subframe density according to the optimal solution.
  • the received reference signal measurement offset is also the cell area extension value, and the time domain almost blank subframe density, that is, the almost blank subframe ratio.
  • the application scenario is a two-layer heterogeneous network including a macro base station and a pico base station, and all the pico base stations adopt an open access mode.
  • the distribution of the macro base station, the pico base station and the mobile user terminal respectively obey an independent Poisson point distribution, the distribution density is ⁇ 1 , ⁇ 2 , ⁇ u , the macro base station transmission power is P 1 , and the transmission power P 2 of the pico base station .
  • a positive offset is added when measuring the reference signal power of the pico base station, that is, the measured reference signal received power is maximized to determine the serving cell identifier CellID serving (j) of the user j, wherein RSRP ij is the real reference signal received power (RSRP) transmitted by the base station i to the user j, and Bk is the received reference signal measurement offset of the cell area of the kth layer network:
  • h is the channel gain, satisfying the Rayleigh distribution h ⁇ exp(1) with a mean of 1;
  • P k represents the base station transmit power of the k-th layer network,
  • ⁇ k represents the path loss parameter of the k-th layer network, and
  • Z k represents a specific The distance between the user and the nearest neighbor base station in the k-th layer network, and K represents the number of layers of the network cell in the heterogeneous network.
  • the heterogeneous network model is used to separately calculate the network of the heterogeneous network.
  • the fairness index and system capacity within a geographic area including:
  • Step S201 Calculate an average traversal rate of each layer of the network cell in the heterogeneous network by using the heterogeneous network model.
  • Step S202 Calculate a network fairness index of the heterogeneous network and a system capacity in a unit geographical area according to an average traversal rate of each layer of the network cell.
  • the step S201 specifically includes: dividing the user terminal in the heterogeneous network model into a macro base station user terminal, a pico base station internal area user terminal, and a pico base station extension according to an access criterion of the cell area extension technology.
  • Regional user terminal Calculating, according to the heterogeneous network model, a probability density function of the proportion of all the user terminals in the heterogeneous network, the number of users in each layer of the network cell, and the statistical distances of the three user terminals to the serving base station.
  • FIG. 2 a schematic diagram of a macro base station configuring a blank subframe according to a certain ratio in a time domain interference coordination mechanism is shown.
  • the macro base station and the pico base station adopt a time domain interference coordination mechanism, wherein the macro base station configures an almost blank subframe ABS (Almost Blank Subframe) according to a certain ratio ⁇ .
  • the k-th layer network cell user terminal accounts for the proportion of all user terminals in the heterogeneous network.
  • the probability density function of the statistical distance from each layer of network cell user terminal to the serving base station is as follows:
  • the average traversal rate of the cell is calculated.
  • the traversal rate is defined as: for a given user and the serving base station is dynamic, the average rate that the user can obtain is a statistically significant average of the user's SINR random distribution.
  • the average traversal rate is the statistical average of the traversal rate over the distance, namely:
  • indicates the proportion of ABS subframes set by the macro base station, and the average traversal rate of different layer cells is:
  • the interference environment of the macro base station user is unchanged, and the average traversal rate is unchanged. Since the macro base station configures the ABS blank subframe, the communication time of the macro base station user is compressed, resulting in a decrease in the average rate of the macro base station user. .
  • the interference environment of the user of the pico base station is improved, and the internal users of the pico base station are scheduled in all time slots.
  • the ratio of the blank subframe of the ABS increases, the average traversal rate of the internal users of the pico base station increases, and the communication performance improves.
  • the user of the pico base station extension area is only scheduled on the ABS blank subframe, and the average traversal rate will increase greatly as the ABS blank subframe ratio ⁇ increases.
  • the cell area extension strategy improves the network load, enabling more users to access the pico base station and achieving uniformization of the base station resources.
  • users in the extended area of the cell area are strongly interfered by the macro base station. Therefore, a time domain interference coordination mechanism must be introduced to improve the communication quality of users in the extended area.
  • the cell area extension value B and the ABS blank subframe ratio ⁇ jointly affect the average traversal rate of different types of users.
  • step S202 specifically includes: acquiring a total time slice resource that can be utilized by users in each layer of the network cell; calculating, according to an average traversal rate of the network layer of each layer, and a total time that the user can utilize
  • the slice resource calculates the average rate of unit users in each layer of the network cell, and the specific expression is as follows:
  • K represents the number of layers of the network cell in the heterogeneous network
  • R k represents the average traversal rate of the kth layer network cell
  • N k represents the kth layer network cell
  • ⁇ k represents the total time slice resource available to the user of the kth layer network cell
  • a k represents the proportion of user terminals occupying all user terminals in the heterogeneous network in the kth layer network cell in the heterogeneous network
  • ⁇ k denotes the Poisson point distribution density of the kth layer network cell base station in the network
  • Wk denotes the system bandwidth of the kth layer network.
  • the network fairness index and the system capacity in the unit geographic area are objective functions, and the cell area extension value B and the ABS blank subframe ratio ⁇ are variables.
  • the multi-objective planning model described in the embodiment of the present invention is specifically as follows:
  • B represents the received reference signal measurement offset and ⁇ represents the time domain blank subframe density.
  • Embodiments of the present invention propose a hierarchical sequence method to solve the above multi-objective programming model. Reorder by importance and rank important targets first, for example: f1(x), f2(x),...,fm(x). Then the first target is optimized, all the optimal solution sets are found, represented by R1, and then the optimal solution of the second target is obtained within the range of the set R1, and the optimal solution set at this time is represented by R2. , and so on, until the optimal solution for the mth target is obtained. Therefore, the multi-objective optimization problem can be simplified as follows:
  • R 1 ⁇ B, ⁇
  • the macro base station transmit power P 1 46dBm
  • the pico base station transmit power P 2 30dBm
  • the solution is used to obtain the optimization result.
  • the density of the pico base station is 6 times the density of the macro base station
  • the optimal cell area extension value is 12 dB
  • the ABS blank subframe ratio is 6/8.
  • the density of the pico base station is 12 times the density of the macro base station
  • the optimal cell area extension value is 10 dB
  • the ABS blank subframe ratio is 5/8.
  • the density of the pico base station has little effect on the optimal cell area extension value B and the ABS blank subframe ratio ⁇ , and the reasonable setting interval is 8 dB to 12 dB, 4/8 to 6/8.
  • the embodiment of the heterogeneous network time domain interference coordination method based on ensuring user fairness is characterized by applying a Poisson point distribution process to mathematically model a heterogeneous network, analyzing network capacity, and introducing a received reference signal to measure offset.
  • the quantity B and the ABS blank subframe ratio ⁇ are two variable parameter setting schemes, which not only ensure the fairness of the user but also improve the network capacity.
  • a heterogeneous network time domain interference coordination system based on user fairness provided by an embodiment of the present invention is described in detail.
  • FIG. 3 a schematic diagram of a heterogeneous network time domain interference coordination system module based on user fairness according to an embodiment of the present invention is shown.
  • the heterogeneous network time domain interference coordination system based on user fairness in this embodiment, where the heterogeneous network includes a macro base station and at least one pico base station within the coverage of the macro base station.
  • the system includes a heterogeneous network model building module 201, a computing module 202, a multi-objective planning model building module 203, and an optimization parameter setting module 204.
  • the heterogeneous network model establishing module 201 is configured to model the network deployment of the heterogeneous network by using a Poisson point distribution model to obtain a heterogeneous network model.
  • the calculating module 202 is configured to separately calculate a network fairness index of the heterogeneous network by using the heterogeneous network model And system capacity within the geographic area of the unit.
  • the multi-objective planning model establishing module 203 is configured to establish, by using the received reference signal measurement offset and the time domain almost blank subframe density of the heterogeneous network model, the network fairness index and the unit geographic area.
  • the multi-objective programming model with system capacity as the objective function.
  • the optimization parameter setting module 204 is configured to calculate an optimal solution of the multi-objective programming model, and perform setting of the received reference signal measurement offset and the time domain almost blank subframe density according to the optimal solution.
  • the calculation module 202 specifically includes a first calculation unit and a second calculation unit.
  • a first calculating unit configured to separately calculate an average traversal rate of each layer of the network cells in the heterogeneous network by using the heterogeneous network model.
  • a second calculating unit configured to calculate a network fairness index of the heterogeneous network and a system capacity in a unit geographic area according to an average traversal rate of each layer of the network cell.
  • the embodiment of the heterogeneous network time domain interference coordination method and system based on user fairness proposed by the present invention comprehensively considers the influence of the time domain interference coordination scheme on the communication performance of different types of users, and proposes a heterogeneous network based on ensuring user fairness.
  • the time domain interference coordination parameter setting scheme not only ensures the fairness of the user but also improves the network capacity.
  • the present invention can be implemented by hardware or by means of software plus a necessary general hardware platform.
  • the technical solution of the present invention may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.), including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention.
  • the components of the system provided by the embodiments of the present application and the steps in the method may be concentrated on a single computing device or distributed in multiple computing devices. Online. Alternatively, they may be implemented in program code executable by a computing device. Thus, they may be stored in a storage device by a computing device, or they may be fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof may be implemented as a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种基于用户公平性的异构网络时域干扰协调方法及系统,所述异构网络包括宏基站以及宏基站覆盖范围内的至少一个微微基站,包括:利用泊松点分布模型对异构网络的网络部署进行建模,得到异构网络模型;利用异构网络模型分别计算异构网络的网络公平性指数和单位地理区域内的系统容量;建立以异构网络模型的接收参考信号测量偏移量和时域几乎空白子帧密度为变量,以网络公平性指数和单位地理区域内的系统容量为目标函数的多目标规划模型;计算多目标规划模型的最优解,根据最优解进行接收参考信号测量偏移量和时域几乎空白子帧密度的设置,本发明既可以保证所有用户的无线网络资源的公平性,同时也可以提升层叠异构网络的系统总容量。

Description

基于用户公平性的异构网络时域干扰协调方法及系统
相关申请的交叉引用
本申请要求享有于2014年11月26日提交的名称为“基于用户公平性的异构网络时域干扰协调方法及系统”的中国专利申请CN201410692230.9的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及无线通信技术领域,尤其涉及一种基于用户公平性的异构网络时域干扰协调方法及系统。
背景技术
移动通信的快速发展,带动了移动互联网和高带宽数据业务的爆炸式增长,这使得传统的网络建设方案将无法满足后续数据业务的发展需求。为了满足网络容量增长的需要,通过小区分裂,采用异构网络(Heterogeneous Network,HetNet)框架进行深度覆盖成为移动网络建设的必然趋势。然而由宏基站(Macro eNodeB,MeNB)和密集的微微基站(Pico eNodeB,PeNB)组成的多层次、多小区、多载波的异构网络,也将面临一系列问题,最突出的是异构网络中的层间干扰将导致网络的容量和速率的下降。
在宏基站与微微基站共存的两层异构网络中,现有技术是共同引入小区区域扩展策略(Cell Range Expansion,CRE)以及时域干扰协调(enhanced Inter-cell Interference Coordination,eICIC)技术。通过小区区域扩展,可以通过在测量接收参考信号时增加一个偏移量值,将部分原有宏基站用户分流至微微基站,实现负载均衡,充分利用基站资源。而这部分被分流至微微基站的用户,处于微微基站边缘,接收信号功率较低,同时距离宏基站的距离较近,将会受到宏基站严重的下行干扰,必须采取时域干扰协调机制来保证这部分用户的通信质量。
时域干扰协调技术让宏基站配置几乎空白子帧,在部分时隙内停止传输,而微微基站可以利用宏基站的几乎空白子帧(Almost Blank Subframe,ABS)的时隙向其扩展区域内 的微微基站用户传输信号,避免这些用户收到宏基站的强干扰信号。这类ABS子帧要求只发送公共参考信号(Common Reference Signal,CRS)和一些必要的信号如广播信道(PBCH)、主同步信道(PSS)、副同步信道(SSS),不传输物理下行共享信道(PDSCH)。当受害层将其受干扰用户在ABS子帧进行调度时,这些用户在ABS子帧传输的数据业务将会被保护,免受侵略层的强列小区间干扰。所述侵略层指的是产生干扰较大的基站,受害层指的是受干扰较大的基站。
在实现本发明过程中,发明人发现现有技术中至少存在如下问题:
现有技术中对小区区域扩展的接收参考信号测量偏移量以及时域干扰协调中空白子帧的比例没有给出具体的测算计量方法,只是给出相应的参数设置范围,没有考虑不同网络部署条件下不同的技术参数设置,很难将诸如基站部署密度、用户密度、基站发射功率等网络部署参数的影响考虑在内。同时,现有技术忽略了对用户自身通信质量的影响,在联合使用这两种技术时,没有考虑针对每个用户个体的通信质量影响,更多是考虑对整个网络容量的影响效果。
发明内容
为解决上述技术问题,本发明提出了一种基于用户公平性的异构网络时域干扰协调方法及系统,在保证用户公平性的基础上,通过合理的干扰协调机制参数设置,提升异构网络的系统总容量。
本发明提出的一种基于用户公平性的异构网络时域干扰协调方法,所述异构网络包括宏基站以及宏基站覆盖范围内的至少一个微微基站。该方法包括:利用泊松点分布模型对所述异构网络的网络部署进行建模,得到异构网络模型;利用所述异构网络模型分别计算所述异构网络的网络公平性指数和单位地理区域内的系统容量;建立以所述异构网络模型的接收参考信号测量偏移量和时域几乎空白子帧密度为变量,以所述网络公平性指数和单位地理区域内的系统容量为目标函数的多目标规划模型;计算所述多目标规划模型的最优解,根据所述最优解进行接收参考信号测量偏移量和时域几乎空白子帧密度的设置。
优选地,所述利用异构网络模型分别计算所述异构网络的网络公平性指数和单位地理区域内的系统容量,具体包括:利用所述异构网络模型分别计算所述异构网络中每一层网络小区的平均遍历速率;根据所述每一层网络小区的平均遍历速率计算所述异构网络的网络公平性指数和单位地理区域内的系统容量。
优选地,利用所述异构网络模型分别计算所述异构网络中每一层网络小区的平均遍历 速率,具体包括:根据小区区域扩展技术的接入准则,将所述异构网络模型中的用户终端划分为宏基站用户终端、微微基站内部区域用户终端和微微基站扩展区域用户终端;根据所述异构网络模型分别计算上述三种用户终端占异构网络内全部用户终端的比例、每一层网络小区单位用户个数以及三种用户终端到服务基站的统计距离的概率密度函数;根据所述三种用户终端占异构网络内全部用户终端的比例、每一层网络小区单位用户个数以及三种用户终端到服务基站的统计距离的概率密度函数计算所述异构网络每一层网络小区的平均遍历速率。
优选地,根据所述每一层网络小区的平均遍历速率计算所述异构网络的网络公平性指数和单位地理区域内的系统容量,具体包括:获取每一层网络小区内用户可以利用的总时间片资源;根据所述每一层网络小区的平均遍历速率计算以及所述用户可以利用的总时间片资源计算每一层网络小区内单位用户平均速率,具体表达式如下:
Figure PCTCN2015083790-appb-000001
根据所述每一层网络小区内单位用户平均速率计算所述异构网络的网络公平性指数PF,具体表达式如下:
Figure PCTCN2015083790-appb-000002
根据所述每一层网络小区的平均遍历速率计算单位地理区域内的系统容量:
Figure PCTCN2015083790-appb-000003
其中,
Figure PCTCN2015083790-appb-000004
表示异构网络中第k层网络小区的单位用户平均速率,K表示异构网络中的网络小区的层数,Rk表示第k层网络小区的平均遍历速率,Nk表示第k层网络小区单位用户个数,ρk表示第k层网络小区的用户可以利用的总时间片资源;Ak表示异构网络中第k层网络小区内用户终端占异构网络内全部用户终端的比例,λk表示构网络中第k层网络小区基站的泊松点分布密度,Wk表示第k层网络的系统带宽。
优选地,所述多目标规划模型,具体如下:
Figure PCTCN2015083790-appb-000005
其中,B表示接收参考信号测量偏移量,β表示时域几乎空白子帧密度。
优选地,所述微微基站采用开放式接入方式。
优选地,所述异构网络数学模型中宏基站、微微基站、移动用户终端分别服从独立的泊松点分布。
相应的,本发明还提出了一种基于用户公平性的异构网络时域干扰协调系统,所述异构网络包括宏基站以及宏基站覆盖范围内的至少一个微微基站。该系统包括:异构网络模型建立模块,用于利用泊松点分布模型对所述异构网络的网络部署进行建模,得到异构网络模型;计算模块,用于利用所述异构网络模型分别计算所述异构网络的网络公平性指数和单位地理区域内的系统容量;多目标规划模型建立模块,用于建立以所述异构网络模型的接收参考信号测量偏移量和时域几乎空白子帧密度为变量,以所述网络公平性指数和单位地理区域内的系统容量为目标函数的多目标规划模型;优化参数设置模块,用于计算所述多目标规划模型的最优解,根据所述最优解进行接收参考信号测量偏移量和时域几乎空白子帧密度的设置。
优选地,所述计算模块具体包括:第一计算单元,用于利用所述异构网络模型分别计算所述异构网络中每一层网络小区的平均遍历速率;第二计算单元,用于根据所述每一层网络小区的平均遍历速率计算所述异构网络的网络公平性指数和单位地理区域内的系统容量。
与背景技术相比,本发明提供的一种基于用户公平性的异构网络时域干扰协调方法及系统,针对层叠异构网络时域干扰协调技术,通过基于保证用户公平性的时域干扰参数最优设置,使得在应用干扰协调技术时既可以保证用户公平性又可以提升网络容量。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明的技术方案而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构和/或流程来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明。通过参考附图会更加清楚的理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制。
图1为本发明的实施例中提出的一种基于用户公平性的异构网络时域干扰协调方法流程示意图。
图2为本发明的实施例中提出的时域干扰协调机制中宏基站按照一定比例配置几乎空白子帧的示意图。
图3为本发明的实施例中提出的一种基于用户公平性的异构网络时域干扰协调系统模块示意图。
具体实施方式
为使本发明的实施例的目的、技术方案和优点更加清楚,下面将结合本发明的实施例中的附图,对本发明的实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明涉及无线通信领域中异构网络干扰协调技术,主要目的是在保证用户公平性的基础上,提升层叠异构网络的系统容量。
在层叠异构网络(宏基站与微微基站)共存场景下,为了充分利用基站的无线网络时域和频域资源,引入小区区域扩展技术,将部分宏基站用户分流至微微基站,以达到负载均衡的效果。
同时,考虑到由宏基站分流到微微基站这部分用户的接收信号功率较弱,会受到宏基站下行信号的较强干扰,需要采取时域干扰协调机制,让宏基站在部分时隙内停止传输信号,此时微微基站用户将不会受到宏基站的干扰。小区区域扩展与时域干扰协调对宏基站用户和微微基站用户的容量将产生不同的效果,同时会提升异构网络的系统总容量。
在联合使用小区区域扩展与时域干扰协调技术时,本发明提出了一种基于用户公平性的异构网络时域干扰协调方法及系统,基于保证不同用户公平性的参数设置,既可以保证所有用户的无线网络资源的公平性,同时也可以提升层叠异构网络的系统总容量。
下面通过列举几个具体的实施例详细介绍本发明提供的一种基于用户公平性的异构网络时域干扰协调方法及系统。
实施例一
详细介绍本发明的实施例提供的一种基于用户公平性的异构网络时域干扰协调方法。
参照图1,示出了本发明的实施例提出的一种基于用户公平性的异构网络时域干扰协调方法流程示意图。
本实施例中的基于用户公平性的异构网络时域干扰协调方法,该方法中所述的异构网络包括宏基站以及宏基站覆盖范围内的至少一个微微基站。如图1所示,该方法具体包括以下步骤。
步骤S101,利用泊松点分布模型对所述异构网络的网络部署进行建模,得到异构网络模型。其中,所述微微基站采用开放式接入方式。所述异构网络数学模型中宏基站、微 微基站以及移动用户终端分别服从独立的泊松点分布。
步骤S102,利用所述异构网络模型,分别计算所述异构网络的网络公平性指数和单位地理区域内的系统容量。
步骤S103,建立以所述异构网络模型的接收参考信号测量偏移量和时域几乎空白子帧密度为变量,以所述网络公平性指数和单位地理区域内的系统容量为目标函数的多目标规划模型。
步骤S104,计算所述多目标规划模型的最优解,根据所述最优解进行接收参考信号测量偏移量和时域几乎空白子帧密度的设置。其中,接收参考信号测量偏移量也即小区区域扩展值,时域几乎空白子帧密度也即几乎空白子帧比例。
在本发明的实施例中,应用场景为包括宏基站和微微基站的两层异构网络,所有微微基站采用开放式接入方式。其中:宏基站、微微基站以及移动用户终端的分布分别服从独立的泊松点分布,分布密度分别为λ12u,宏基站发射功率为P1,微微基站的发射功率P2
根据小区区域扩展方法,在测量微微基站的参考信号功率时增加一个正的偏移量,即:最大化测量到的参考信号接收功率以确定用户j的服务小区标示符CellIDserving(j),其中RSRPij是基站i发送到用户j的真实的参考信号接收功率RSRP(Reference Signal Receiving Power),Bk为第k层网络的小区区域的接收参考信号测量偏移量:
Figure PCTCN2015083790-appb-000006
    式(1)
Figure PCTCN2015083790-appb-000007
    式(2)
用户连接到第k层基站的接收功率为Pr,k=PkhZk -αkBk
其中h是信道增益,满足均值为1的瑞利分布h~exp(1);Pk表示第k层网络的基站发射功率,αk表示第k层网络的路径损耗参数,Zk代表一个特定用户与第k层网络中最邻近基站的距离,K表示异构网络中的网络小区的层数。在本实施例中,我们假设K层网络的路径损耗参数相同,即αk=4k=1,2。提出根据小区区域扩展技术的接入准则,将异构网络中的网络小区用户划分为3层:宏基站用户(Macro User)(Pr,1>BPr,2),微微基站内部区域用户(Pico User)(Pr,1<Pr,2),微微基站扩展区域用户(Pico CRE User)(Pr,2<Pr,1<BPr,2),用下标k=1、2、cre分别表示。
计算归一化发射功率、测量偏移量值,
Figure PCTCN2015083790-appb-000008
分别表示了干扰基站对当前用户的发射功率、测量偏移量值得的比例。
在本发明的实施例中,步骤S102,利用异构网络模型分别计算所述异构网络的网络 公平性指数和单位地理区域内的系统容量,具体包括:
步骤S201,利用所述异构网络模型分别计算所述异构网络中每一层网络小区的平均遍历速率。
步骤S202,根据所述每一层网络小区的平均遍历速率计算所述异构网络的网络公平性指数和单位地理区域内的系统容量。
本发明的实施例中,步骤S201具体包括:根据小区区域扩展技术的接入准则,将所述异构网络模型中的用户终端划分为宏基站用户终端、微微基站内部区域用户终端和微微基站扩展区域用户终端。根据所述异构网络模型分别计算上述三种用户终端占异构网络内全部用户终端的比例、每一层网络小区单位用户个数以及三种用户终端到服务基站的统计距离的概率密度函数。根据所述三种用户终端占异构网络内全部用户终端的比例、每一层网络小区单位用户个数以及三种用户终端到服务基站的统计距离的概率密度函数计算所述异构网络不同层的网络小区的平均遍历速率。
参照图2,示出了时域干扰协调机制中宏基站按照一定比例配置空白子帧的示意图。
在本发明的实施例中,如图2所示,宏基站和微微基站采用时域干扰协调机制,其中宏基站按照一定比例β配置几乎空白子帧ABS(Almost Blank Subframe)。
第k层网络小区用户终端占异构网络内全部用户终端的比例计算表达式如下:
Figure PCTCN2015083790-appb-000009
Figure PCTCN2015083790-appb-000010
    式(3)
每一层网络小区单位用户个数计算表达式如下:
    式(4)
每一层网络小区用户终端到服务基站的统计距离的概率密度函数如下所示:
Figure PCTCN2015083790-appb-000012
    式(5)
在此基础上计算小区的平均遍历速率。遍历速率定义为:对于给定用户与服务基站距离是动态的,用户可以获得的平均速率,是对用户的SINR随机分布进行的统计意义平均。而平均遍历速率,是遍历速率在距离上的统计平均值,即:
Figure PCTCN2015083790-appb-000013
Figure PCTCN2015083790-appb-000014
    式(6)
不采用时域干扰协调下,不同层次小区平均遍历速率为:
Figure PCTCN2015083790-appb-000015
    式(7)
Figure PCTCN2015083790-appb-000016
    式(8)
采用时域干扰协调下,β表示宏基站设置ABS子帧的比例,不同层次小区平均遍历速率为:
Figure PCTCN2015083790-appb-000017
    式(9)
Figure PCTCN2015083790-appb-000018
    式(10)
由于时域干扰协调的引入,宏基站用户的干扰环境不变,平均遍历速率不变,而由于宏基站配置ABS空白子帧,宏基站用户的通信时间被压缩,导致宏基站用户的平均速率降低。
微微基站用户的干扰环境有所改善,微微基站内部用户是被调度在所有时隙上,随着ABS空白子帧比例β的增加,微微基站内部用户的平均遍历速率增加,通信性能改善。而微微基站扩展区域用户只被调度在ABS空白子帧上,随着ABS空白子帧比例β的增加,平均遍历速率将大幅度增加。
因此,小区区域扩展策略改善了网络负载,使得更多的用户接入微微基站,实现基站资源均匀化。但是,小区区域扩展范围内的用户受到宏基站的较强干扰,所以,必须引入时域干扰协调机制,改善扩展区域用户的通信质量。小区区域扩展值B和ABS空白子帧比例β共同影响着不同类型用户的平均遍历速率。
本发明的实施例中,步骤S202具体包括:获取每一层网络小区内用户可以利用的总时间片资源;根据所述每一层网络小区的平均遍历速率计算以及所述用户可以利用的总时间片资源计算每一层网络小区内单位用户平均速率,具体表达式如下:
Figure PCTCN2015083790-appb-000019
    式(11)
根据所述每一层网络小区内单位用户平均速率计算所述异构网络的网络公平性指数PF,具体表达式如下:
Figure PCTCN2015083790-appb-000020
    式(12)
根据所述每一层网络小区的平均遍历速率计算单位地理区域内的系统容量的表达式如下:
Figure PCTCN2015083790-appb-000021
    式(13)
其中,
Figure PCTCN2015083790-appb-000022
表示异构网络中第k层网络小区的单位用户平均速率,K表示异构网络中的网络小区的层数,Rk表示第k层网络小区的平均遍历速率,Nk表示第k层网络小区单位用户个数,ρk表示第k层网络小区的用户可以利用的总时间片资源;Ak表示异构网络中第k层网络小区内用户终端占异构网络内全部用户终端的比例,λk表示构网络中第k层网络小区基站的泊松点分布密度,Wk表示第k层网络的系统带宽。
为了保证用户公平性,以及提升异构网络的总容量,本发明提出了多目标规划问题和解决方案。其中网络公平性指数和单位地理区域内的系统容量为目标函数,小区区域扩展值B和ABS空白子帧比例β为变量,本发明的实施例中所述的多目标规划模型,具体如下:
Figure PCTCN2015083790-appb-000023
    式(14)
其中,B表示接收参考信号测量偏移量,β表示时域空白子帧密度。
本发明的实施例提出了分层序列方法来求解上述多目标规划模型。按照重要程度重新排序,将重要的目标排在前面,例如:f1(x),f2(x),…,fm(x)。然后对第1个目标求最优,找出所有最优解集合,用R1表示,接着在集合R1范围内求第2个目标的最优解,并将这时的最优解集合用R2表示,依此类推,直到求出第m个目标的最优解为止。因此,多目标优化问题可以简化,如下所示:
Figure PCTCN2015083790-appb-000024
Figure PCTCN2015083790-appb-000025
    式(15)
R1={{B,β}|{B,β}∈R0}
R0={{B,β}={[0dB,20dB],[1/8,7/8]}}
根据本发明的实施例,可知在宏基站密度为λ1=4.62BS/km2,宏基站发射功率P1=46dBm,微微基站发射功率P2=30dBm场景下,应用此方案求得最优化结果。当微微基站密度是宏基站密度6倍时,最优小区区域扩展值为12dB,ABS空白子帧比例为6/8。当微微基站密度是宏基站密度12倍时,最优小区区域扩展值为10dB,ABS空白子帧比例为5/8。并且微微基站密度对最优小区区域扩展值B和ABS空白子帧比例β影响不大,比较合理的设置区间为8dB~12dB,4/8~6/8。
本发明提出的基于保证用户公平性的异构网络时域干扰协调方法的实施例,通过应用泊松点分布过程对异构网络进行数学建模,分析网络容量,并引入接收参考信号测量偏移量B和ABS空白子帧比例β两个变量参数设置方案,既保证了用户公平性又使得网络容量得到提升。
实施例二
详细介绍本发明的实施例提供的一种基于用户公平性的异构网络时域干扰协调系统。
参照图3,示出了本发明的实施例提出的一种基于用户公平性的异构网络时域干扰协调系统模块示意图。
本实施例中的基于用户公平性的异构网络时域干扰协调系统,该系统中所述异构网络包括宏基站以及宏基站覆盖范围内的至少一个微微基站。所述系统包括异构网络模型建立模块201、计算模块202、多目标规划模型建立模块203以及优化参数设置模块204。
异构网络模型建立模块201,用于利用泊松点分布模型对所述异构网络的网络部署进行建模,得到异构网络模型。
计算模块202,用于利用所述异构网络模型分别计算所述异构网络的网络公平性指数 和单位地理区域内的系统容量。
多目标规划模型建立模块203,用于建立以所述异构网络模型的接收参考信号测量偏移量和时域几乎空白子帧密度为变量,以所述网络公平性指数和单位地理区域内的系统容量为目标函数的多目标规划模型。
优化参数设置模块204,用于计算所述多目标规划模型的最优解,根据所述最优解进行接收参考信号测量偏移量和时域几乎空白子帧密度的设置。
优选地,所述计算模块202具体包括第一计算单元和第二计算单元。
第一计算单元,用于利用所述异构网络模型分别计算所述异构网络中每一层网络小区的平均遍历速率。
第二计算单元,用于根据所述每一层网络小区的平均遍历速率计算所述异构网络的网络公平性指数和单位地理区域内的系统容量。
本发明提出的基于用户公平性的异构网络时域干扰协调方法及系统的实施例,综合考虑了时域干扰协调方案对不同类型用户通信性能的影响,提出基于保证用户公平性的异构网络时域干扰协调参数设置方案,既保证了用户公平性又使得网络容量得到提升。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明可以通过硬件实现,也可以借助软件加必要的通用硬件平台的方式来实现。基于这样的理解,本发明的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
本领域技术人员可以理解附图只是一个优选实施例的示意图,附图中的模块或流程并不一定是实施本发明所必须的。
本领域的技术人员应该明白,上述的本申请实施例所提供的系统的各组成部分,以及方法中的各步骤,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上。可选地,它们可以用计算装置可执行的程序代码来实现。从而,可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
虽然本发明所揭露的实施方式如上,但所述的内容仅为便于理解本发明技术方案而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (9)

  1. 一种基于用户公平性的异构网络时域干扰协调方法,所述异构网络包括宏基站以及宏基站覆盖范围内的至少一个微微基站,其特征在于,所述方法包括:
    利用泊松点分布模型对所述异构网络的网络部署进行建模,得到异构网络模型;
    利用所述异构网络模型分别计算所述异构网络的网络公平性指数和单位地理区域内的系统容量;
    建立以所述异构网络模型的接收参考信号测量偏移量和时域几乎空白子帧密度为变量,以所述网络公平性指数和单位地理区域内的系统容量为目标函数的多目标规划模型;
    计算所述多目标规划模型的最优解,根据所述最优解进行接收参考信号测量偏移量和时域几乎空白子帧密度的设置。
  2. 根据权利要求1所述的方法,其特征在于,所述利用异构网络模型分别计算所述异构网络的网络公平性指数和单位地理区域内的系统容量,具体包括:
    利用所述异构网络模型分别计算所述异构网络中每一层网络小区的平均遍历速率;
    根据所述每一层网络小区的平均遍历速率计算所述异构网络的网络公平性指数和单位地理区域内的系统容量。
  3. 根据权利要求2所述的方法,其特征在于,利用所述异构网络模型分别计算所述异构网络中每一层网络小区的平均遍历速率,具体包括:
    根据小区区域扩展技术的接入准则,将所述异构网络模型中的用户终端划分为宏基站用户终端、微微基站内部区域用户终端和微微基站扩展区域用户终端;
    根据所述异构网络模型分别计算上述三种用户终端占异构网络内全部用户终端的比例、每一层网络小区单位用户个数以及三种用户终端到服务基站的统计距离的概率密度函数;
    根据所述三种用户终端占异构网络内全部用户终端的比例、每一层网络小区单位用户个数以及三种用户终端到服务基站的统计距离的概率密度函数,计算所述异构网络每一层网络小区的平均遍历速率。
  4. 根据权利要求3所述的方法,其特征在于,根据所述每一层网络小区的平均遍历速率计算所述异构网络的网络公平性指数和单位地理区域内的系统容量,具体包括:
    获取每一层网络小区内用户可以利用的总时间片资源;
    根据所述每一层网络小区的平均遍历速率以及所述用户可以利用的总时间片资源,计算每一层网络小区内单位用户平均速率,具体表达式如下:
    Figure PCTCN2015083790-appb-100001
    根据所述每一层网络小区内单位用户平均速率,计算所述异构网络的网络公平性指数PF,具体表达式如下:
    Figure PCTCN2015083790-appb-100002
    根据所述每一层网络小区的平均遍历速率,计算所述单位地理区域内的系统容量:
    Figure PCTCN2015083790-appb-100003
    其中,
    Figure PCTCN2015083790-appb-100004
    表示异构网络中第k层网络小区的单位用户平均速率,K表示异构网络中的网络小区的层数,Rk表示第k层网络小区的平均遍历速率,Nk表示第k层网络小区单位用户个数,ρk表示第k层网络小区的用户可以利用的总时间片资源;Ak表示异构网络中第k层网络小区内用户终端占异构网络内全部用户终端的比例,λk表示构网络中第k层网络小区基站的泊松点分布密度,Wk表示第k层网络的系统带宽。
  5. 根据权利要求1或2所述的方法,其特征在于,所述多目标规划模型,具体如下:
    Figure PCTCN2015083790-appb-100005
    其中,B表示接收参考信号测量偏移量,β表示时域几乎空白子帧密度。
  6. 根据权利要求1所述的方法,其特征在于,所述微微基站采用开放式接入方式。
  7. 根据权利要求1所述的方法,其特征在于,所述异构网络数学模型中宏基站、微微基站、移动用户终端分别服从独立的泊松点分布。
  8. 一种基于用户公平性的异构网络时域干扰协调系统,所述异构网络包括宏基站以及宏基站覆盖范围内的至少一个微微基站,其特征在于,所述系统包括:
    异构网络模型建立模块,用于利用泊松点分布模型对所述异构网络的网络部署进行建模,得到异构网络模型;
    计算模块,用于利用所述异构网络模型分别计算所述异构网络的网络公平性指数和单位地理区域内的系统容量;
    多目标规划模型建立模块,用于建立以所述异构网络模型的接收参考信号测量偏移量和时域几乎空白子帧密度为变量,以所述网络公平性指数和单位地理区域内的系统容量为目标函数的多目标规划模型;
    优化参数设置模块,用于计算所述多目标规划模型的最优解,根据所述最优解进行接收参考信号测量偏移量和时域几乎空白子帧密度的设置。
  9. 根据权利要求8所述的系统,其特征在于,所述计算模块具体包括:
    第一计算单元,用于利用所述异构网络模型分别计算所述异构网络中每一层网络小区的平均遍历速率;
    第二计算单元,用于根据所述每一层网络小区的平均遍历速率计算所述异构网络的网络公平性指数和单位地理区域内的系统容量。
PCT/CN2015/083790 2014-11-26 2015-07-10 基于用户公平性的异构网络时域干扰协调方法及系统 WO2016082557A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410692230.9 2014-11-26
CN201410692230.9A CN104469796A (zh) 2014-11-26 2014-11-26 基于用户公平性的异构网络时域干扰协调方法及系统

Publications (1)

Publication Number Publication Date
WO2016082557A1 true WO2016082557A1 (zh) 2016-06-02

Family

ID=52915004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083790 WO2016082557A1 (zh) 2014-11-26 2015-07-10 基于用户公平性的异构网络时域干扰协调方法及系统

Country Status (2)

Country Link
CN (1) CN104469796A (zh)
WO (1) WO2016082557A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108718463A (zh) * 2018-05-09 2018-10-30 南京邮电大学 一种h-cran下基于多时间尺度协同优化的资源分配方法
CN109041234A (zh) * 2018-08-13 2018-12-18 无锡北邮感知技术产业研究院有限公司 自回传异构网络中的联合时隙与子信道调度方法及装置
CN113015204A (zh) * 2019-12-20 2021-06-22 中国移动通信集团陕西有限公司 网络小区负载均衡方法及装置
CN113993067A (zh) * 2021-09-15 2022-01-28 北京邮电大学 一种空间约束下无人机辅助网络的干扰协调方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104469796A (zh) * 2014-11-26 2015-03-25 北京邮电大学 基于用户公平性的异构网络时域干扰协调方法及系统
CN105873127B (zh) * 2016-04-27 2019-08-20 东南大学 基于随机决定的启发式用户连接的负载均衡方法
CN108540253B (zh) * 2017-03-06 2020-02-18 中国移动通信集团广东有限公司 一种降低异构网小区间干扰的方法及装置
CN112839337B (zh) * 2021-01-07 2023-03-31 东南大学 一种基于分治递归策略的超密微基站间干扰协调方法
CN115941509A (zh) * 2022-12-26 2023-04-07 中国联合网络通信集团有限公司 一种政企专网架构规划方法、装置及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103001688A (zh) * 2011-09-09 2013-03-27 上海贝尔股份有限公司 异构网络中确定时域空白子帧密度的方法及装置
WO2013181818A1 (en) * 2012-06-07 2013-12-12 Nec(China) Co., Ltd. Method and apparatus for interference control in a wireless communication system
CN103648102A (zh) * 2013-12-12 2014-03-19 东北大学 基于动态区域扩展和功率控制的异构网络干扰协调方法
US20140133419A1 (en) * 2011-05-17 2014-05-15 Ntt Docomo, Inc. Method for coordinating inter-cell interference in radio network, base station and radio network
CN104469796A (zh) * 2014-11-26 2015-03-25 北京邮电大学 基于用户公平性的异构网络时域干扰协调方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140133419A1 (en) * 2011-05-17 2014-05-15 Ntt Docomo, Inc. Method for coordinating inter-cell interference in radio network, base station and radio network
CN103001688A (zh) * 2011-09-09 2013-03-27 上海贝尔股份有限公司 异构网络中确定时域空白子帧密度的方法及装置
WO2013181818A1 (en) * 2012-06-07 2013-12-12 Nec(China) Co., Ltd. Method and apparatus for interference control in a wireless communication system
CN103648102A (zh) * 2013-12-12 2014-03-19 东北大学 基于动态区域扩展和功率控制的异构网络干扰协调方法
CN104469796A (zh) * 2014-11-26 2015-03-25 北京邮电大学 基于用户公平性的异构网络时域干扰协调方法及系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108718463A (zh) * 2018-05-09 2018-10-30 南京邮电大学 一种h-cran下基于多时间尺度协同优化的资源分配方法
CN108718463B (zh) * 2018-05-09 2022-07-05 南京邮电大学 一种h-cran下基于多时间尺度协同优化的资源分配方法
CN109041234A (zh) * 2018-08-13 2018-12-18 无锡北邮感知技术产业研究院有限公司 自回传异构网络中的联合时隙与子信道调度方法及装置
CN109041234B (zh) * 2018-08-13 2022-06-21 无锡北邮感知技术产业研究院有限公司 自回传异构网络中的联合时隙与子信道调度方法及装置
CN113015204A (zh) * 2019-12-20 2021-06-22 中国移动通信集团陕西有限公司 网络小区负载均衡方法及装置
CN113015204B (zh) * 2019-12-20 2024-03-22 中国移动通信集团陕西有限公司 网络小区负载均衡方法及装置
CN113993067A (zh) * 2021-09-15 2022-01-28 北京邮电大学 一种空间约束下无人机辅助网络的干扰协调方法
CN113993067B (zh) * 2021-09-15 2023-06-30 北京邮电大学 一种空间约束下无人机辅助网络的干扰协调方法

Also Published As

Publication number Publication date
CN104469796A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2016082557A1 (zh) 基于用户公平性的异构网络时域干扰协调方法及系统
Zhou et al. A dynamic graph-based scheduling and interference coordination approach in heterogeneous cellular networks
Tsiropoulou et al. Combined power and rate allocation in self-optimized multi-service two-tier femtocell networks
Wu et al. QoE and energy aware resource allocation in small cell networks with power selection, load management, and channel allocation
CN103856947B (zh) 一种联合信道选择和功率控制的干扰协调方法
CN103929781A (zh) 超密集异构网络下跨层干扰协调优化方法
CN105451241B (zh) 异构网中基于干扰协调的最大最小公平性资源分配方法
Fan et al. Cooperative resource allocation for self-healing in small cell networks
CN104010315B (zh) 一种基于用户体验质量的小区选择方法
Xu et al. A Stackelberg game-based spectrum allocation scheme in macro/femtocell hierarchical networks
Kurda et al. Femtocell power control methods based on users’ context information in two-tier heterogeneous networks
Tang et al. Joint resource allocation for eICIC in heterogeneous networks
Niu et al. Femtocell‐enhanced multi‐target spectrum allocation strategy in LTE‐A HetNets
CN103338453B (zh) 一种用于分层无线网络的动态频谱接入方法及系统
US8666424B2 (en) Systems, methods, and media for reducing femtocell interference
Ye et al. Hybrid-clustering game Algorithm for resource allocation in macro-femto hetnet
Niu et al. The design of resource management mechanism with hybrid access in a macro-femto system
RU2651577C1 (ru) Устройство беспроводной связи, способ беспроводной связи и система беспроводной связи
Zhou et al. Pricing game for time mute in femto–macro coexistent networks
CN104038969A (zh) 一种用于异构网络的cre偏移值和abs联合配置方法
Chen et al. Clustering-based co-tier interference coordination in dense small cell networks
Zhou et al. Joint spectrum sharing and ABS adaptation for network virtualization in heterogeneous cellular networks
WO2019062822A1 (zh) 资源分配方法及服务器
CN106102151A (zh) 家庭基站系统中基于信道分配及功率控制的干扰管理方法
Malini et al. Soft frequency reuse based interference minimization technique for long term evolution-advanced heterogeneous networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/10/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15862318

Country of ref document: EP

Kind code of ref document: A1