WO2016082225A1 - 一种业务分布的获取方法、装置及系统 - Google Patents

一种业务分布的获取方法、装置及系统 Download PDF

Info

Publication number
WO2016082225A1
WO2016082225A1 PCT/CN2014/092589 CN2014092589W WO2016082225A1 WO 2016082225 A1 WO2016082225 A1 WO 2016082225A1 CN 2014092589 W CN2014092589 W CN 2014092589W WO 2016082225 A1 WO2016082225 A1 WO 2016082225A1
Authority
WO
WIPO (PCT)
Prior art keywords
network side
side device
measurement information
multiple terminals
measurement
Prior art date
Application number
PCT/CN2014/092589
Other languages
English (en)
French (fr)
Inventor
罗泽宙
庄宏成
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480083708.6A priority Critical patent/CN107409323B/zh
Priority to PCT/CN2014/092589 priority patent/WO2016082225A1/zh
Priority to EP14906992.4A priority patent/EP3217713B1/en
Publication of WO2016082225A1 publication Critical patent/WO2016082225A1/zh
Priority to US15/607,044 priority patent/US10547533B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0894Packet rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/02Standardisation; Integration
    • H04L41/024Standardisation; Integration using relational databases for representation of network management data, e.g. managing via structured query language [SQL]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/06Generation of reports
    • H04L43/062Generation of reports related to network traffic

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, an apparatus, and a system for acquiring a service distribution.
  • the network optimization technology refers to adjusting the transmission parameters of the network, such as the transmission power and the transmission duration, according to the service distribution in the network, so that the adjusted transmission parameters of the network can be adapted to the service distribution in the network.
  • the service distribution refers to the geographical distribution of the services in the network, that is, the correspondence between the service and the geographical location information of the terminal that carries the service.
  • the base station can obtain the service distribution in the coverage of the base station by acquiring the geographical location information of the terminal in the coverage of the base station.
  • the base station obtains the geographic location information of the terminal in two ways. One is that multiple base stations respectively measure the distance from the terminal to the multiple base stations, and the distance from the terminal to the multiple base stations is used as the geographic location information of the terminal. Therefore, the base station obtains a service distribution according to the geographical location information.
  • the terminal obtains the latitude and longitude coordinates of the terminal through its own positioning function, such as Global Positioning System (GPS), and reports the latitude and longitude coordinates to the base station, and the base station coordinates the latitude and longitude of the terminal.
  • GPS Global Positioning System
  • the base station obtains the service distribution according to the geographical location information.
  • the base station when the distance between the terminal and the plurality of base stations is measured by a plurality of base stations to obtain a traffic distribution, since a plurality of base stations are required to separately measure the distance between the terminal and the plurality of base stations, a large amount of The air interface data reduces the network efficiency.
  • the base station when the base station obtains the service distribution through the positioning function of the terminal, the base station cannot obtain the geographical location information of the terminal because the terminal has closed its positioning function or has no positioning function. Therefore, the base station cannot obtain the service distribution of all terminals in the coverage of the base station.
  • An embodiment of the present invention provides a method, an apparatus, and a system for acquiring a service distribution, which enable a base station to obtain a service distribution of all terminals in a coverage area of the base station without affecting network efficiency.
  • the present invention provides a method for obtaining a service distribution, the method comprising:
  • the network side device acquires measurement information of multiple terminals in the same serving cell, where the measurement information includes a first channel state value between the multiple terminals and the primary cell, where the primary cell refers to the serving cell And one of each neighboring cell of the serving cell;
  • the network side device acquires an average traffic volume of each of the multiple terminals
  • the network side device classifies the first channel state value
  • the network side device Determining, by the network side device, the service distribution, where the service distribution includes a first channel state typical value of each type of the first channel state value, and a terminal corresponding to each type of the first channel state value And collecting, by the first traffic between the primary cell, the first traffic volume is determined according to an average traffic volume of each terminal.
  • the measurement information further includes a second channel state value between the multiple terminals and each secondary cell, where each secondary cell is the serving cell and
  • the service distribution of the neighboring cells other than the primary cell, the service distribution further includes:
  • the second channel state typical value is the The network side device determines, according to the second channel state value, that the second traffic volume is determined by the network side device according to an average traffic volume of each terminal.
  • the network side device provides a service to the primary cell, where the network side The device obtains measurement information of multiple terminals, including:
  • the network side device receives the measurement information sent by the multiple terminals.
  • the network side device provides a service for the primary cell, and the network side device receives a location that is sent by the multiple terminal Before the measurement information, the method further includes:
  • the network side device sends a downlink reference signal to the multiple terminals
  • the network side device sends a first measurement trigger indication to the multiple terminals, where the first measurement trigger indication is used to instruct the multiple terminals to perform measurement on the downlink reference signal.
  • the network side device provides a service for the primary cell, and the network side device acquires measurement information of multiple terminals, including:
  • the network side device sends a second measurement trigger indication to the multiple terminals, where the second measurement trigger indication is used to instruct the multiple terminals to send an uplink reference signal;
  • the network side device measures the uplink reference signal to obtain the measurement information.
  • the network side device provides a service for the primary cell, and the network side device acquires measurement information of multiple terminals, including:
  • the network side device receives a third measurement triggering indication sent by the multiple terminals, where the third measurement triggering indication is used to instruct the multiple terminals to send an uplink reference signal, and instruct the network side device to The uplink reference signal sent by multiple terminals is measured;
  • the network side device measures the uplink reference signal to obtain the measurement information.
  • the network side device does not provide the service to the primary cell, and the network side device acquires measurement information of multiple terminals, including:
  • the network side device receives the measurement information sent by the network side device that provides the service to the primary cell.
  • the measurement information includes first measurement information and second measurement information, where the first measurement information includes the multiple terminals And the second measurement information includes a channel state value between the multiple terminals and the neighboring cells, where the channel state value is
  • the network side device acquires measurement information of multiple terminals, including:
  • the network side device sends a second measurement trigger indication to the multiple terminals, where the second measurement trigger indication is used to instruct the multiple terminals to send an uplink reference signal;
  • the network side device measures the uplink reference signal to obtain the first measurement information
  • the network side device receives the second measurement information sent by the network side device that provides the service to each neighboring cell.
  • the measurement information includes first measurement information and second measurement information, where the first measurement information includes the multiple terminals And the second measurement information includes a channel state value between the multiple terminals and the neighboring cells, where the channel state value is
  • the network side device acquires measurement information of multiple terminals, including:
  • the network side device receives a third measurement triggering indication sent by the multiple terminals, where the third measurement triggering indication is used to instruct the multiple terminals to send an uplink reference signal, and instruct the network side device to The uplink reference signal sent by multiple terminals is measured;
  • the network side device measures the uplink reference signal to obtain the first measurement information
  • the network The side device acquires measurement information of multiple terminals, including:
  • the network side device After the first air interface data transmission is completed, if the network side device does not detect the second air interface data transmission within a preset time, after the preset time, the network side device acquires the multiple terminal Measurement information.
  • the third measurement triggering indication is a synchronization request message, where the synchronization request message includes a request to send an uplink reference signal identifier; or
  • the third measurement triggering indication is a synchronization indication message, where the synchronization indication message includes sending an uplink reference signal indication and a sending timestamp.
  • the present invention provides a method for obtaining a service distribution, where the method includes:
  • the network side device acquires measurement information of the multiple terminals, where the measurement information includes a first channel state value between the multiple terminals and the primary cell, and a second between the multiple terminals and each secondary cell a channel state value, the serving cell of the multiple terminals is the primary cell, and each secondary cell is a neighboring cell of the primary cell;
  • the network side device acquires an average traffic volume of each of the multiple terminals
  • the network side device classifies the first channel state value
  • the network side device Determining, by the network side device, the service distribution, where the service distribution includes a terminal channel set corresponding to each type of the first channel state value and a second channel state typical value between the secondary cells, and the a second traffic volume between the terminal set and the secondary cell, the second channel state typical value is determined by the network side device according to the second channel state value, and the second traffic volume is the The network side device is determined according to the average traffic volume of each terminal.
  • the measurement information includes first measurement information and second measurement information, where the first measurement information includes the multiple terminals And the second measurement information includes a channel state value between the multiple terminals and the secondary cells,
  • the network side device acquires measurement information of multiple terminals, including:
  • the network side device receives the second measurement information sent by the network side device that provides the service for each secondary cell.
  • the method before the network side device receives the measurement information sent by the multiple terminals, the method further includes:
  • the network side device sends a downlink reference signal to the multiple terminals
  • the network side device sends a first measurement trigger indication to the multiple terminals, where the first measurement trigger indication is used to instruct the multiple terminals to perform measurement on the downlink reference signal.
  • the measurement information includes first measurement information and second measurement information, where the first measurement information includes the multiple terminals and a channel state value between the primary cells, where the second measurement information includes a channel state value between the multiple terminals and the secondary cells,
  • the network side device acquires measurement information of multiple terminals, including:
  • the network side device sends a second measurement trigger indication to the multiple terminals, where the second measurement trigger indication is used to instruct the multiple terminals to send an uplink reference signal;
  • the network side device measures the uplink reference signal to obtain the first measurement information
  • the network side device receives the second measurement information sent by the network side device that provides the service for each secondary cell.
  • the measurement information includes first measurement information and second measurement information, where the first measurement information includes the multiple terminals and a channel state value between the primary cells, where the second measurement information includes a channel state value between the multiple terminals and the secondary cells,
  • the network side device acquires measurement information of multiple terminals, including:
  • the network side device receives a third measurement triggering indication sent by the multiple terminals, where the third measurement triggering indication is used to instruct the multiple terminals to send an uplink reference signal, and instruct the network side device to The uplink reference signal sent by multiple terminals is measured;
  • the network side device measures the uplink reference signal to obtain the first measurement information
  • the network side device receives the second measurement information sent by the network side device that provides the service for each secondary cell.
  • the network side device acquires measurement information of multiple terminals, including:
  • the network side device After the first air interface data transmission is completed, if the network side device does not detect the second air interface data transmission within a preset time, after the preset time, the network side device acquires the multiple terminal Measurement information.
  • the present invention provides a method for obtaining a service distribution, where the method includes:
  • the terminal generates a terminal measurement trigger indication, where the terminal measurement trigger indication is used to instruct the terminal to perform measurement on the received downlink reference signal;
  • the terminal measures the downlink reference signal, and acquires measurement information of the terminal;
  • the terminal sends the measurement information of the terminal to the network side device, so that the network side device acquires the information according to the measurement information of the terminal and the service transmitted between the terminal and the serving cell of the terminal.
  • the service distribution of the serving cell where the network side device provides services for the terminal.
  • the present invention provides a method for obtaining a service distribution, where the method includes:
  • the terminal generates a network side measurement trigger indication, and the network side measurement trigger indication is used for Instructing the terminal to send an uplink reference signal to the multiple network side devices, and instructing the multiple network side devices to measure the uplink reference signal sent by the terminal, where the uplink reference signal is used for the multiple networks
  • the side device acquires the measurement information of the terminal, and obtains the service distribution in the serving cell according to the measurement information and the service transmitted between the terminal and the serving cell of the terminal;
  • the terminal sends the uplink reference signal to the multiple network side devices.
  • the network side measurement triggering indication is a synchronization request message, where the synchronization request message includes a request to send an uplink reference signal identifier;
  • the network side measurement triggering indication is a synchronization indication message, where the synchronization indication message includes sending an uplink reference signal indication and a sending timestamp.
  • the present invention provides a network side device, including:
  • An acquiring unit configured to acquire measurement information of multiple terminals in the same serving cell and an average traffic volume of each of the multiple terminals, where the measurement information includes the multiple terminals and the primary cell respectively a first channel state value, where the primary cell refers to one of the neighboring cells of the serving cell and the serving cell;
  • a classifying unit configured to classify the first channel state value acquired by the acquiring unit
  • a determining unit configured to determine the service distribution, where the service distribution includes a first channel state typical value of each of the first channel state values categorized by the classifying unit, and corresponding to each class a first traffic volume between the terminal set of the first channel state value and the primary cell, where the first traffic volume is determined according to an average traffic volume of each terminal acquired by the acquiring unit.
  • the measurement information acquired by the acquiring unit further includes a second channel state value between the multiple terminals and each secondary cell, where each secondary cell And the service distribution determined by the determining unit, where the serving cell and the neighboring cells are other than the primary cell, the method further includes:
  • the second channel state is typically based on The second traffic volume is determined according to the average traffic volume of each terminal acquired by the acquiring unit, determined by the second channel state value obtained by the acquiring unit.
  • the network side device provides a service for the primary cell
  • the acquiring unit is specifically configured to receive the measurement information sent by the multiple terminals.
  • the network side device provides a service to the primary cell, and the network side device further includes:
  • a sending unit configured to send, to the multiple terminals, a downlink reference signal and a first measurement trigger indication, before the acquiring unit receives the measurement information sent by the multiple terminals, where the first measurement trigger indication is used for Instructing the plurality of terminals to measure the downlink reference signal.
  • the network side device provides a service for the primary cell, where the acquiring unit specifically includes a sending module, a receiving module, and a measuring module,
  • the sending module is configured to send a second measurement triggering indication to the multiple terminals, where the second measurement triggering indication is used to instruct the multiple terminals to send an uplink reference signal;
  • the receiving module is configured to receive the uplink reference signal sent by the multiple terminals;
  • the measuring module is configured to measure the uplink reference signal received by the receiving module to obtain the measurement information.
  • the network side device provides a service for the primary cell, where the acquiring unit specifically includes a receiving module and a measuring module,
  • the receiving module is configured to receive a third measurement touch that is sent by the multiple terminals Sending an indication and an uplink reference signal, where the third measurement trigger indication is used to instruct the multiple terminals to send the uplink reference signal, and instruct the measurement module to perform measurement on the uplink reference signal;
  • the measuring module is configured to measure the uplink reference signal received by the receiving module to obtain the measurement information.
  • the network side device does not provide a service for the primary cell
  • the acquiring unit is specifically configured to receive the measurement information that is sent by the network side device that provides the service to the primary cell.
  • the measurement information acquired by the acquiring unit includes first measurement information and second measurement information, where the first measurement information And including the channel state value between the multiple terminals and the serving cell, where the second measurement information includes a channel state value between the multiple terminals and the neighboring cells, where the acquiring unit specifically includes Transmitting module, receiving module and measuring module,
  • the sending module is configured to send a second measurement triggering indication to the multiple terminals, where the second measurement triggering indication is used to instruct the multiple terminals to send an uplink reference signal;
  • the receiving module is configured to receive the uplink reference signal sent by the multiple terminals and the second measurement information sent by a network side device that provides services for each neighboring cell;
  • the measuring module is configured to measure the uplink reference signal received by the receiving module to obtain the first measurement information.
  • the measurement information acquired by the acquiring unit includes first measurement information and second measurement information, where the first measurement information And including the channel state value between the multiple terminals and the serving cell, where the second measurement information includes a channel state value between the multiple terminals and the neighboring cells, where the acquiring unit specifically includes Receiving module and measuring module,
  • the receiving module is configured to receive a third measurement touch that is sent by the multiple terminals Sending an indication, an uplink reference signal sent by the multiple terminals, and the second measurement information sent by the network side device serving the neighboring cell, where the third measurement trigger indication is used to indicate the Transmitting, by the multiple terminals, the uplink reference signal, and instructing the measurement module to perform measurement on the uplink reference signal;
  • the measuring module is configured to measure the uplink reference signal received by the receiving module to obtain the first measurement information.
  • the network side device further includes:
  • a detecting unit configured to: after the first air interface data transmission is completed, detecting whether the network side device has a second air interface data transmission within a preset time;
  • the acquiring unit is specifically configured to: after the detecting unit does not detect the second air interface data transmission within a preset time, obtain the measurement information of the multiple terminals after the preset time.
  • the third measurement triggering indication received by the receiving module is a synchronization request message, where the synchronization request message includes a request to send an uplink reference signal identifier; or
  • the third measurement triggering indication received by the receiving module is a synchronization indication message, where the synchronization indication message includes sending an uplink reference signal indication and a sending timestamp.
  • the present invention provides a network side device, including:
  • An obtaining unit configured to acquire measurement information of multiple terminals and an average traffic volume of each of the multiple terminals, where the measurement information includes a first channel state value between the multiple terminals and a primary cell, And a second channel state value between the plurality of terminals and each of the secondary cells, where the serving cells of the multiple terminals are the primary cells, and the secondary cells are neighboring cells of the primary cell;
  • a classifying unit configured to classify the first channel state value acquired by the acquiring unit
  • a determining unit configured to determine the service distribution, the service distribution including corresponding to a second channel state typical value between the terminal set of the first channel state value and the second cell state of each class of the class classified by the classifying unit, and between the terminal set and the each cell
  • the second traffic volume is determined according to the second channel state value acquired by the acquiring unit, and the second traffic volume is the each terminal acquired according to the acquiring unit.
  • the average business volume is determined.
  • the measurement information acquired by the acquiring unit includes first measurement information and second measurement information, where the first measurement information includes the multiple terminals and the a channel state value between the primary cells, where the second measurement information includes a channel state value between the multiple terminals and the secondary cells,
  • the acquiring unit is configured to receive the first measurement information sent by the multiple terminals and the second measurement information sent by a network side device that provides services for each secondary cell.
  • the network side device further includes:
  • a sending unit configured to send, to the multiple terminals, a downlink reference signal and a first measurement trigger indication, before the acquiring unit receives the first measurement information sent by the multiple terminals, where the first measurement trigger indication And configured to instruct the multiple terminals to perform measurement on the downlink reference signal.
  • the measurement information acquired by the acquiring unit includes first measurement information and second measurement information, where the first measurement information includes a channel state value between the plurality of terminals and the primary cell, where the second measurement information includes a channel state value between the multiple terminals and the secondary cells, where the acquiring unit specifically includes a sending module.
  • Receiving module and measuring module
  • the sending module is configured to send a second measurement triggering indication to the multiple terminals, where the second measurement triggering indication is used to instruct the multiple terminals to send an uplink reference signal;
  • the receiving module is configured to receive an uplink reference signal sent by the multiple terminals and the second measurement information sent by a network side device that provides services for each secondary cell;
  • the measuring module is configured to receive the uplink reference signal received by the receiving module A measurement is performed to obtain the first measurement information.
  • the measurement information acquired by the acquiring unit includes first measurement information and second measurement information, where the first measurement information includes a channel state value between the plurality of terminals and the primary cell, where the second measurement information includes a channel state value between the multiple terminals and the secondary cells, where the acquiring unit specifically includes a receiving module and Measuring module,
  • the receiving module is configured to receive a third measurement trigger indication that is sent by the multiple terminals, the uplink reference signal sent by the multiple terminals, and a network side device that provides services for each secondary cell.
  • the second measurement information is used to instruct the multiple terminals to send the uplink reference signal, and instruct the measurement module to measure the uplink reference signal;
  • the measuring module is configured to measure the uplink reference signal received by the receiving module to obtain the first measurement information.
  • the network side device also includes:
  • a detecting unit configured to: after the first air interface data transmission is completed, detecting whether the network side device has a second air interface data transmission within a preset time;
  • the acquiring unit is specifically configured to: after the detecting unit does not detect the second air interface data transmission within a preset time, obtain the measurement information of the multiple terminals after the preset time.
  • the present invention provides a terminal, including:
  • a generating unit configured to generate a terminal measurement trigger indication, where the terminal measurement trigger indication is used to instruct the measurement unit to perform measurement on the received downlink reference signal;
  • the measuring unit is configured to perform measurement on the downlink reference signal, and acquire measurement information of the terminal;
  • the sending unit is configured to send the measurement information of the terminal acquired by the measurement unit to the network side device, so that the network side device is configured according to the measurement information of the terminal, and the service of the terminal and the terminal Traffic transmitted between cells, access to The service distribution of the serving cell, where the network side device provides services for the terminal.
  • the present invention provides a terminal, including:
  • a generating unit configured to generate a network side measurement triggering indication, where the network side measurement triggering indication is used to instruct the sending unit to send an uplink reference signal to the multiple network side devices, and instruct the multiple network side devices to measure the uplink reference signal
  • the uplink reference signal is used by the multiple network side devices to acquire measurement information of the terminal, and obtain the foregoing according to the measurement information and a service transmitted between the terminal and a serving cell of the terminal. Service distribution in the serving cell;
  • the sending unit is configured to send, to the multiple network side devices, the network side measurement trigger indication and the uplink reference signal generated by the generating unit.
  • the network side measurement triggering generated by the generating unit is a synchronization request message, where the synchronization request message includes a request to send an uplink reference signal identifier; or
  • the network side measurement triggering indication generated by the generating unit is a synchronization indication message, where the synchronization indication message includes sending an uplink reference signal indication and a sending timestamp.
  • the present invention provides a network side device, including:
  • a processor configured to acquire measurement information of multiple terminals in the same serving cell and an average traffic volume of each of the multiple terminals, and respectively perform a first channel between the multiple terminals and the primary cell
  • the status value is classified, and the service distribution is determined, the measurement information includes the first channel status value, and the primary cell refers to one of each adjacent cell of the serving cell and the serving cell.
  • the service distribution includes a first channel state typical value of each type of the first channel state value, and a first service between the terminal set corresponding to each type of the first channel state value and the primary cell
  • the quantity, the first amount of traffic is determined according to an average traffic volume of each terminal.
  • the measurement information acquired by the processor further includes a second channel state value between the multiple terminals and each secondary cell, where each secondary cell And the service distribution determined by the processor, where the service cell and the neighboring cells are other than the primary cell, further include:
  • the second channel state typical value is determined according to the second channel state value
  • the second traffic volume is according to the foregoing
  • the average traffic of the terminals is determined.
  • the network side device provides a service for the primary cell
  • the processor is specifically configured to receive the measurement information sent by the multiple terminals.
  • the network side device provides a service for the primary cell, and the network side device further includes:
  • a transceiver configured to send, after the processor receives the measurement information sent by the multiple terminals, a downlink reference signal and a first measurement trigger indication to the multiple terminals, where the first measurement trigger indication is used for Instructing the plurality of terminals to measure the downlink reference signal.
  • the network side device provides a service for the primary cell
  • the processor is configured to send a second measurement trigger indication to the multiple terminals, and receive an uplink reference signal sent by the multiple terminals, and perform measurement on the uplink reference signal to obtain the measurement information.
  • the second measurement trigger indication is used to instruct the multiple terminals to send an uplink reference signal.
  • the network side device provides a service for the primary cell
  • the processor is configured to receive a third measurement trigger indication and an uplink reference signal respectively sent by the multiple terminals, and perform measurement on the uplink reference signal to obtain the measurement information, where the third measurement trigger indication And configured to instruct the multiple terminals to send the uplink reference signal, and instruct the processor to perform measurement on the uplink reference signal.
  • the network side device does not provide a service for the primary cell
  • the processor is specifically configured to receive a network side device that provides services for the primary cell The measurement information to be sent.
  • the measurement information acquired by the processor includes first measurement information and second measurement information, where the first measurement information includes a channel state value between the plurality of terminals and the serving cell, where the second measurement information includes a channel state value between the plurality of terminals and the neighboring cells,
  • the processor is configured to send a second measurement trigger indication to the multiple terminals, and receive an uplink reference signal sent by the multiple terminals and a network side device that provides services for each neighboring cell.
  • the second measurement information is measured, and the uplink reference signal is measured to obtain the first measurement information, where the second measurement trigger indication is used to instruct the multiple terminals to send the uplink reference signal.
  • the measurement information acquired by the processor includes first measurement information and second measurement information, where the first measurement information includes a channel state value between the plurality of terminals and the serving cell, where the second measurement information includes a channel state value between the plurality of terminals and the neighboring cells,
  • the processor is configured to receive a third measurement trigger indication sent by the multiple terminals, an uplink reference signal sent by the multiple terminals, and a network side device that provides services for each neighboring cell. And the second measurement information is measured, and the first measurement information is obtained, where the third measurement trigger indication is used to instruct the multiple terminals to send the uplink reference signal, and indicate The processor measures the uplink reference signal.
  • the processor is configured to: after the first air interface data transmission is completed, if the processor does not detect the second air interface data transmission within a preset time, obtain the multiple after the preset time Measurement information of the terminal.
  • the third measurement triggering indication received by the processor is a synchronization request message, where the synchronization request message includes a request to send an uplink reference signal identifier; or
  • the third measurement triggering indication received by the processor is a synchronization indication message, where the synchronization indication message includes sending an uplink reference signal indication and a sending timestamp.
  • the present invention provides a network side device, including:
  • a processor configured to acquire measurement information of multiple terminals and an average traffic volume of each of the multiple terminals, and classify the first channel state values between the multiple terminals and the primary cell, and Determining the service distribution, the measurement information includes the first channel state value, and a second channel state value between the multiple terminals and each secondary cell, where the serving cells of the multiple terminals are a primary cell, where each secondary cell is a neighboring cell of the primary cell, and the service distribution includes a terminal set corresponding to each type of the first channel state value and a second between the secondary cells a typical value of the channel state, and a second amount of traffic between the set of terminals and the secondary cells, the second channel state typical value being determined according to the second channel state value, the second traffic volume It is determined according to the average traffic volume of each terminal.
  • the measurement information acquired by the processor includes first measurement information and second measurement information, where the first measurement information includes the multiple terminals and the a channel state value between the primary cells, where the second measurement information includes a channel state value between the multiple terminals and the secondary cells,
  • the processor is configured to receive the first measurement information sent by the multiple terminals and the second measurement information sent by a network side device that provides services for each secondary cell.
  • the network side device further includes:
  • a transceiver configured to send, after the processor receives the first measurement information sent by the multiple terminals, a downlink reference signal and a first measurement trigger indication to the multiple terminals, where the first measurement trigger indication And configured to instruct the multiple terminals to perform measurement on the downlink reference signal.
  • the measurement information acquired by the processor includes first measurement information and second measurement information, where the first measurement information includes a channel state value between the plurality of terminals and the primary cell, where the second measurement information includes a channel state value between the multiple terminals and the secondary cells,
  • the processor is configured to send a second measurement trigger indication to the multiple terminals, and receive the uplink reference signal sent by the multiple terminals and the network side device that is used by the network side device that provides services for each secondary cell.
  • the second measurement information, and the measurement of the uplink reference signal to obtain the first measurement information, where the second measurement trigger indication is used to instruct the multiple terminals to send an uplink reference signal.
  • the measurement information acquired by the processor includes first measurement information and second measurement information, where the first measurement information includes a channel state value between the plurality of terminals and the primary cell, where the second measurement information includes a channel state value between the multiple terminals and the secondary cells,
  • the processor is configured to receive a third measurement trigger indication sent by the multiple terminals, an uplink reference signal sent by the multiple terminals, and a network side device that provides services for each secondary cell. Determining the second measurement information, and performing measurement on the uplink reference signal, obtaining the first measurement information, the third measurement trigger indication is used to instruct the multiple terminals to send the uplink reference signal, and indicating the processing The device measures the uplink reference signal.
  • the processor is configured to: after the first air interface data transmission is completed, if the processor does not detect the second air interface data transmission within a preset time, obtain the multiple after the preset time Measurement information of the terminal.
  • the present invention provides a terminal, including:
  • a processor configured to generate a terminal measurement trigger indication, and perform measurement on the received downlink reference signal to obtain measurement information of the terminal, where the terminal measures the trigger indication Instructing the processor to perform measurement on the downlink reference signal;
  • a transceiver configured to send the measurement information of the terminal acquired by the processor to the network side device, so that the network side device is configured according to the measurement information of the terminal, and the terminal and the serving cell of the terminal The service transmitted between the service cells is obtained, and the network side device provides services for the terminal.
  • the present invention provides a terminal, including:
  • the processor generates a network side measurement trigger indication, where the network side measurement trigger indication is used to instruct the transceiver to send an uplink reference signal to the multiple network side devices, and instructs the multiple network side devices to measure the uplink reference signal
  • the uplink reference signal is used by the multiple network side devices to acquire measurement information of the terminal, and obtain the foregoing according to the measurement information and a service transmitted between the terminal and a serving cell of the terminal. Service distribution in the serving cell;
  • the transceiver is configured to send, to the multiple network side devices, the network side measurement trigger indication and the uplink reference signal generated by the processor.
  • the network side measurement triggering indication generated by the processor is a synchronization request message, where the synchronization request message includes a request to send an uplink reference signal identifier; or
  • the network side measurement triggering indication generated by the processor is a synchronization indication message, where the synchronization indication message includes sending an uplink reference signal indication and a sending timestamp.
  • the present invention provides a communication system, including:
  • the network side device according to the above tenth aspect, and the plurality of terminals according to the eleventh aspect or the plurality of terminals according to the twelfth aspect.
  • the network side device can obtain the distribution of the services of the multiple terminals in the same serving cell in the channel state, that is, the network side device acquires the service distribution of the serving cell of the multiple terminals.
  • the service distribution provided by the embodiment of the present invention is obtained by measuring the channel and classifying the channel measurement result, and performing statistics on the service of the channel transmission, etc., so the present invention
  • the method for obtaining the service distribution provided by the embodiment enables the network side device to obtain the service distribution of all terminals in the network without affecting the network efficiency.
  • FIG. 1 is a block diagram of a communication system according to an embodiment of the present invention
  • FIG. 2 is a flowchart 1 of a method for acquiring service distribution according to an embodiment of the present invention
  • FIG. 3 is a flowchart 2 of a method for acquiring service distribution according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart 3 of a method for acquiring service distribution according to an embodiment of the present invention.
  • FIG. 5 is a flowchart 4 of a method for acquiring service distribution according to an embodiment of the present invention.
  • FIG. 6 is a flowchart 5 of a method for obtaining service distribution according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of generating a measurement trigger indication according to an embodiment of the present invention.
  • FIG. 8 is a flowchart 6 of a method for acquiring service distribution according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram 1 of a network side device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram 2 of a network side device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram 3 of a network side device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram 4 of a network side device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram 5 of a network side device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram 1 of another network side device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram 2 of another network side device according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram 3 of another network side device according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram 4 of another network side device according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram 5 of another network side device according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram of another terminal according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram 1 of a hardware structure of a network side device according to an embodiment of the present disclosure.
  • FIG. 22 is a second schematic structural diagram of a hardware of a network side device according to an embodiment of the present disclosure.
  • FIG. 23 is a first schematic structural diagram of hardware of a network side device according to an embodiment of the present disclosure.
  • FIG. 24 is a second schematic structural diagram of hardware of another network side device according to an embodiment of the present disclosure.
  • FIG. 25 is a schematic structural diagram of hardware of a terminal according to an embodiment of the present disclosure.
  • FIG. 26 is a schematic structural diagram of hardware of another terminal according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of a communication system according to an embodiment of the present invention.
  • the network side device provides services for the cell 1, the cell 2, and the cell 3.
  • the cell 1 is the serving cell of the terminal 1, the terminal 2, and the terminal 3.
  • the cell 2 is the serving cell of the terminal 4, and the cell 2 is the serving cell of the terminal 5.
  • the network side device needs to obtain the service distribution of the cell 1, that is, the network side device needs to obtain the service of the terminal 1, the service of the terminal 2, and the service of the terminal 3 in the cell 1. Distribution.
  • the network side device generally obtains the geographical location information of the terminal 1 and the service of the terminal 1, the geographical location information of the terminal 2 and the service of the terminal 2, and the geographical location information of the terminal 3 and the service of the terminal 3, thereby Obtain the service distribution of the cell 1.
  • the method for obtaining the service distribution on the one hand, the network side device generates a large amount of air interface data when acquiring the geographical location information of the terminal, thereby affecting network efficiency.
  • the network side device can only obtain the traffic of the terminal 2 and the traffic of the terminal 3 in the cell 1, so that the network side device acquires the cell 1
  • the service distribution is not accurate, and when the cell 1 is optimized using the service distribution of the cell 1, the optimization effect on the network in the cell 1 is affected.
  • the method for obtaining the service distribution provided by the embodiment of the present invention is that the network side device obtains the service distribution of the cell 1 by acquiring the service of the terminal 1, the service of the terminal 2, and the service of the terminal 3 in the channel state.
  • the network side device does not depend on the acquisition of the geographical location information of the terminal 1 - the terminal 3 when acquiring the service distribution of the cell 1. Therefore, the method for obtaining the service distribution provided by the embodiment of the present invention enables the network side device to obtain the service distribution of all the terminals in the cell 1 without affecting the network efficiency, so that the service of the cell 1 acquired by the network side device is obtained.
  • the distribution is more accurate, and the optimization effect is improved when the network side device optimizes the cell 1 using the service distribution of the cell 1.
  • An embodiment of the present invention provides a method for obtaining a service distribution. As shown in FIG. 2, the method may include:
  • the network side device acquires measurement information of multiple terminals in the same serving cell, where the measurement information includes a first channel state value between the multiple terminals and the primary cell, where the primary cell refers to the serving cell and the One of the neighboring cells of the serving cell.
  • the network side device may be a base station, and the base station may be an evolved base station (English: evolut ion node base station, abbreviation: eNB).
  • eNB evolut ion node base station
  • the network side device can directly obtain the measurement information of the multiple terminals, because the network side device provides services for the multiple terminals.
  • the network side device may send a downlink reference signal to the multiple terminals, and the terminal measures the received downlink reference signal, and sends the measurement information to the network side device. That is, the network side device receives the measurement information of the multiple terminals sent by the multiple terminals.
  • the network side device may also obtain measurement information of the multiple terminals by measuring an uplink reference signal sent by the multiple terminals.
  • the network-side device can obtain the interface between the network-side device and the other network-side device, for example, in a long term evolution (LTE) network.
  • LTE long term evolution
  • the X2 interface obtains measurement information of the other terminal from the other network side device.
  • the downlink reference signal may be a downlink reference signal in an LTE network, for example, a cell-specific reference signal (CRS), or may be the same as the downlink reference signal in other networks.
  • Functional signal may be an uplink reference signal in an LTE network, for example, a sounding reference signal (Sounding Reference Signal, SRS), or a signal in other networks that has the same function as the uplink reference signal.
  • SRS Sounding Reference Signal
  • the first channel state value between the multiple terminals and the primary cell may be any physical quantity capable of characterizing the propagation characteristics of the channel, such as channel gain, or path loss.
  • the first channel state value is exemplarily described by taking only one terminal and the primary cell as an example.
  • the first channel state value between the terminal and the primary cell is: the power of the uplink reference signal sent by the terminal, and the power of the uplink reference signal sent by the terminal by the primary cell.
  • the ratio between the power of the downlink reference signal and the power of the terminal receiving the downlink reference signal sent by the primary cell is: the power of the uplink reference signal sent by the terminal, and the power of the uplink reference signal sent by the terminal by the primary cell.
  • the network side device acquires an average traffic volume of each of the multiple terminals.
  • the network side device may count between multiple measurement moments, for example, two adjacent measurements (which may be understood as a time when the network side device continuously acquires two measurement information), and each of the multiple terminals Traffic, and according to the traffic volume of each terminal, obtain the average traffic volume of each terminal.
  • the average traffic volume can be understood as the resource information occupied by the data transmitted by the terminal in the serving cell in a unit time.
  • the network side device may acquire a first channel state value corresponding to each of the multiple terminals, and an average traffic volume of each of the multiple terminals.
  • Table 1 it is assumed that there are i of the plurality of terminals, which are terminal 1, terminal 2, ..., terminal i, and the primary cell is cell 1.
  • the first channel state value is represented by the path loss
  • the first channel state values between the i terminals and the primary cell may be represented as PL 11 to PL 1i , respectively, and the i terminals are respectively transmitted in unit time.
  • the resource information occupied by the data (the average traffic of i terminals) can be expressed as w 1 to w i .
  • the network side device classifies the first channel state value.
  • the network side device classifies the first channel state value obtained in S101, which may be one of the following:
  • the network side device Before the network side device acquires the measurement information of the multiple terminals, the network side device is based on the maximum of the channel state experience values between the multiple terminals and the primary cell.
  • the value and the minimum value determine a channel state range and divide the channel state range into a plurality of channel state intervals.
  • the network side device classifies the first channel state value by respectively determining a channel state interval to which the first channel state value between the plurality of terminals and the primary cell belongs.
  • the network side device determines a channel state range according to the obtained maximum value and minimum value of the first channel state value between the plurality of terminals and the primary cell, and divides the channel state range into several A channel state interval to classify the first channel state value.
  • the network side device determines a service distribution, where the service distribution includes a first channel state typical value in each type of first channel state value, and a terminal set corresponding to each type of first channel state value and the primary cell.
  • the first amount of traffic between the first traffic is determined according to the average traffic of each terminal.
  • Each type of first channel state value can be understood as one of the above channel state intervals.
  • the first channel state may be an average value of the plurality of first channel state values in each of the channel state intervals, or may be a median of the plurality of first channel state values in each of the channel state intervals.
  • a weighted average of the plurality of first channel state values in each of the channel state intervals, wherein the weighting coefficients for calculating the weighted average may be each of the terminal sets corresponding to each type of first channel state value The average traffic of the terminals.
  • PL 11 , PL 12 , and PL 13 in Table 1 are a type of first channel state value, and PL 12 is the median of PL 11 , PL 12 , and PL 13 , then PL 12 is selected as the first in the class.
  • the set of terminals corresponding to each type of first channel state value is a set of terminals formed by terminals corresponding to each of the first channel state values of each type of first channel state value.
  • the network side device determines, according to the average traffic volume of each terminal, a first traffic volume between the terminal set and the primary cell.
  • the first traffic is the sum of the average traffic of all terminals in the terminal set.
  • the first channel state typical value in each type of first channel state value in the cell where the plurality of terminals are located by the network side device, and each The first traffic between the terminal set corresponding to the first channel state value and the primary cell constitutes the service distribution of the cell in which the multiple terminals are located.
  • the network side device needs to obtain the service distribution of the cell a, and the cell a has i terminals, the primary cell is the cell 1, and the path loss is used to represent the first channel between the i terminal and the cell 1.
  • Status value That is, the first channel state value may be represented as a first path loss, where the primary cell may be the cell a or one of the neighboring cells of the cell a.
  • the network side device acquires the cell a according to the measurement information of the i terminals and the average traffic volume.
  • the steps of the business distribution include:
  • the network side device classifies the first channel state value.
  • the first channel state is typically a first path loss typical value, and the first path loss typical value can be expressed as PL j .
  • the set of terminals corresponding to the first channel state value of the jth class may be represented as U a,j,1 .
  • the method for classifying the first channel state value by the network side device may be one of two methods for classifying the first channel state value by the network side device, and the specific classification method is in the foregoing embodiment. A detailed description is given here, and will not be described here.
  • the network side device acquires a first traffic volume between the terminal set U a, j, 1 and the cell 1 corresponding to the first channel state value of the jth class.
  • the network-side apparatus acquires the U a, j, the first amount of traffic between the cell 1 1.
  • the average traffic volume of each terminal in the U a, j, 1 can be expressed as w i , that is, each terminal in the U a, j, 1 is occupied by the data transmitted in the cell a in the unit time.
  • the first traffic can be expressed as W a, j, 1 , which is the sum of the average traffic of all terminals in the U a, j, 1 , and the calculation formula of the W a, j, 1 is as follows:
  • the network side device can obtain PL j corresponding to each type of first channel state value in the cell a, and W a, j, 1 by performing the foregoing S1 to S2, as shown in Table 2, PL j And W a,j,1 , which constitutes the traffic distribution of the cell a.
  • the service distribution acquired by the network side device is a distribution of services in a channel state.
  • the method for obtaining a service distribution according to the embodiment of the present invention by measuring a channel between a plurality of terminals in a same serving cell and a primary cell, and the plurality of measurement information of the plurality of terminals by the network side device.
  • the first channel state value between the terminal and the primary cell is classified, and the first channel state typical value and the first traffic volume corresponding to each type of the first channel state value are respectively obtained, so that the network side device acquires the multiple
  • the distribution of the service of the terminal in the channel state that is, the network side device acquires the service distribution of the serving cell of the multiple terminals.
  • the traffic distribution provided by the embodiment of the present invention is obtained by measuring the channel and classifying the channel measurement result, and performing statistics on the service of the channel transmission, and thus, according to the prior art, according to the geographic location of the multiple terminals.
  • the method for obtaining the service distribution provided by the embodiment of the present invention enables the network side device to obtain the information, if the service transmitted by the multiple terminals acquires the service distribution of the serving cell of the multiple terminals. All in the network The business distribution of the terminal.
  • An embodiment of the present invention provides another method for obtaining a service distribution. As shown in FIG. 3, the method may include:
  • the network side device acquires measurement information of multiple terminals, where the measurement information includes a first channel state value between the multiple terminals and the primary cell, and a second channel between the multiple terminals and each secondary cell.
  • the status value is that the serving cell of the multiple terminals is the primary cell, and each secondary cell is a neighboring cell of the primary cell.
  • the network side device can directly obtain the measurement information of the multiple terminals, because the network side device provides services for the multiple terminals.
  • the network side device may send a downlink reference signal to the multiple terminals, and the terminal measures the received downlink reference information, and sends the measurement information to the network side device. That is, the network side device receives the measurement information of the multiple terminals sent by the multiple terminals.
  • the network side device may also obtain measurement information of the multiple terminals by measuring an uplink reference signal sent by the multiple terminals.
  • the network side device may obtain the other device from the other network side device through an interface between the network side device and the other network side device, for example, an X2 interface in the LTE network. Measurement information of the terminal.
  • the second channel state value between the multiple terminals and each secondary cell may be any physical quantity capable of characterizing the propagation characteristics of the channel, such as channel gain, or path loss.
  • the second channel state value is exemplarily described by taking only one terminal and one secondary cell as an example.
  • the second channel state value between the terminal and the secondary cell is: the secondary cell receives the power of the uplink reference signal sent by the terminal, and the terminal sends the uplink reference signal.
  • the ratio between the powers of the downlink reference signals sent by the secondary cell and the power of the downlink reference signal sent by the secondary cell is: the ratio between the powers of the downlink reference signals sent by the secondary cell and the power of the downlink reference signal sent by the secondary cell.
  • the network side device acquires an average traffic volume of each of the multiple terminals.
  • the method for the network side device to obtain the average traffic volume of each of the multiple terminals may be referred to the related description in the embodiment shown in FIG. 2, and details are not described herein again.
  • the network side device may acquire a first channel state value and a second channel state value corresponding to each of the multiple terminals, and each terminal of the multiple terminals Average business volume.
  • Table 3 it is assumed that there are i terminals, which are terminal 1, terminal 2, ..., terminal i, and the primary cell (that is, the serving cell of the multiple terminals) is cell 1.
  • the secondary cells ie, neighboring cells of the multiple terminals are respectively cell 2, cell 3, ..., cell N.
  • the first channel state values between the i terminals and the primary cell may be represented as PL 11 to PL 1i , respectively, and the i terminals and the respective
  • the second channel state between the secondary cells may be represented as PL 21 to PL N1 , respectively .
  • the second channel state between the terminal i and the secondary cells may be represented as PL 2i to PL Ni respectively , and the resource information occupied by the data transmitted by the i terminals in a unit time (ie, the average service of the i terminals)
  • the quantities can be expressed as w 1 to w i , respectively .
  • the network side device classifies the first channel state value.
  • the method for classifying the first channel state value obtained by the network side device in the foregoing S201 can be referred to the related description in the embodiment shown in FIG. 2, and details are not described herein again.
  • the network side device determines a service distribution, where the service distribution includes a terminal set corresponding to each type of first channel state value and a second channel state code between each secondary cell. a type value, and a second traffic volume between the terminal set and each secondary cell, where the second channel state is determined by the network side device according to the second channel state value, where the second traffic volume is the network side
  • the device is determined based on the average traffic of each terminal.
  • the terminal channel corresponding to each type of the first channel state value has the same meaning as the second channel state typical value between the secondary cells
  • the terminal corresponding to each type of the first channel state value is as follows.
  • the second channel state typical value between the set and one secondary cell illustrates the meaning of the typical value of the second channel state.
  • a typical value of the second channel state between the terminal set and the secondary cell corresponding to each type of the first channel state value may be an average value of the plurality of second channel state values between the terminal and the secondary cell; Or a median value of the plurality of second channel state values between the terminal set and the secondary cell; or a weighted average of the plurality of second channel state values between the terminal set and the secondary cell,
  • the weighting coefficient for calculating the weighted average may be an average traffic volume of each terminal in the terminal set.
  • the second channel state typical value may be a weighting of multiple second channel state values between the terminal set and the secondary cell. average value.
  • terminal 1 and terminal 2 in Table 3 are a set of terminals corresponding to a typical type of first channel state
  • the second channel state values between terminal 1 and terminal 2 and cell 2 are PL 21 and PL 22, respectively.
  • the average traffic volume of the terminal 1 and the terminal 2 is w 1 and w 2 respectively
  • the second channel state between the terminal and the cell 2 is typically:
  • PL 2 typically represents a typical value of the second channel state between the terminal set corresponding to the first channel state value of the class and the cell 2
  • the second traffic volume between the terminal set corresponding to each type of the first channel state value and each secondary cell is the sum of the average traffic volume of all the terminals in the terminal set of the terminal set relative to each secondary cell.
  • the terminal set relative to the terminal set of each secondary cell may be understood as: the second channel state value in the terminal set and each secondary cell is measurable and meaningful.
  • the second channel state value is represented by the path loss
  • the path loss when the path loss is not infinite, that is, when the power of the uplink reference signal sent by the terminal in the terminal set is not equal to 0
  • the second channel state value is a measurable meaningful value.
  • the second channel state value is represented by the channel gain, when the channel gain is not 0, that is, when the power of the uplink reference signal sent by the terminal in the terminal set is not equal to 0, the second The channel status value is a measurable meaningful value.
  • the terminal set corresponding to each type of the first channel state value and the second channel state typical value between the secondary cells, and
  • the second traffic between the set of terminals and each secondary cell constitutes a service distribution of a cell in which the multiple terminals are located.
  • the network side device needs to obtain the service distribution of the cell a, and the cell a has i terminals, the primary cell is the cell 1, and each secondary cell is the cell 2, the cell 3, ..., the cell N, and characterizing, by path loss, a first channel state value between the i terminal and the cell a, and a second channel state value between the i terminals and each secondary cell, that is, the first channel state
  • the value can be expressed as a first path loss, which can be expressed as a second path loss.
  • the cell a is the primary cell 1 and the secondary cell is the neighboring cell of the cell a.
  • the step of the network side device acquiring the service distribution of the cell a according to the measurement information of the i terminals and the average traffic volume includes:
  • the network side device classifies the first channel state value.
  • the set of terminals can represent U a,j,1 .
  • the method for classifying the first channel state value by the network side device may be one of two methods for classifying the plurality of terminals by the network side device described above, and the specific classification method is in the foregoing embodiment. Detailed description is given here, not Let me repeat.
  • the network side device acquires a second channel state typical value and a second traffic volume between the terminal set U a,j,1 corresponding to the jth type first channel state value and each secondary cell.
  • the network-side apparatus in the second channel state between each terminal and the value of each secondary cell, it is determined that the U a, j, 1 of each secondary cell for the terminal set, the terminal set may expressed as U a, j, Ci, and based on the U a, j, times the average amount of traffic for each terminal, acquires the U a, a second traffic between j, times and each time the cell.
  • the average traffic volume of each terminal in the U a, j, and the times may be represented as w i ', that is, the U a, j, and the data occupied by each terminal in the cell a, transmitted in a unit time.
  • the second traffic can be expressed as W a, j, and the sum of the average traffic of all terminals in the U a, j, and the second .
  • the network-side apparatus according to this U a, the second path loss between the j, w times in each terminal i 'and U a, j, each time each time the cell terminal, determining that the U a, j
  • the second path loss between the secondary and the secondary cells is a typical value of the second channel state between the U a, j, and the secondary cells.
  • the second path loss between the U a, j, and the secondary cells may be expressed as PL a,j, and the second path loss may be expressed as PL i , and the W a,
  • the calculation formulas for j, sub and PL a, j, and the number are as follows:
  • the network side device can obtain PL a, j, times, and W a, j times corresponding to each type of first channel state value in the cell a by performing the foregoing S21 to S22, as shown in Table 4, PL a, j, times and W a, j, times constitute the traffic distribution of the cell a.
  • the service distribution acquired by the network side device is a distribution of the service in the channel state
  • the method for obtaining the service distribution provided by the embodiment of the present invention is performed by using multiple terminals in a cell separately from the primary cell and each The channel between the secondary cells is measured, and the network side device classifies the first channel state value between the multiple terminals and the primary cell in the measurement information of the multiple terminals, and separately acquires the first channel with each type. a second channel state typical value and a second traffic volume corresponding to the state value, so that the network side device acquires the distribution of the services of the multiple terminals in the channel state, that is, the network side device acquires the service of the serving cell of the multiple terminals distributed.
  • the traffic distribution provided by the embodiment of the present invention is obtained by measuring the channel and classifying the channel measurement result, and performing statistics on the service of the channel transmission, and thus, according to the prior art, according to the geographic location of the multiple terminals.
  • the method for obtaining the service distribution provided by the embodiment of the present invention enables the network side device to obtain the information, if the service transmitted by the multiple terminals acquires the service distribution of the serving cell of the multiple terminals.
  • the internet The distribution of services in all terminals.
  • An embodiment of the present invention provides a method for obtaining a service distribution. As shown in FIG. 4, the method may include:
  • the terminal generates a terminal measurement trigger indication, where the terminal measurement trigger indication is used to instruct the terminal to perform measurement on the received downlink reference signal.
  • the terminal performs measurement on the downlink reference signal, and acquires measurement information of the terminal.
  • the terminal sends the measurement information of the terminal to the network side device, so that the network side device obtains the service distribution of the serving cell according to the measurement information of the terminal and the service transmitted between the terminal and the serving cell of the terminal.
  • the network side device provides services for the terminal.
  • the network side device obtains the specific implementation manner of the service distribution of the serving cell of the terminal according to the measurement information and the service transmitted between the terminal and the serving cell of the terminal, as shown in the embodiment shown in FIG. 2, or The related description in the embodiment shown in FIG. 3 is not described herein again.
  • the terminal sends the measurement information to the network side device, so that the network side device obtains the service of the terminal according to the measurement information of the terminal and the service transmitted between the terminal and the serving cell of the terminal.
  • the distribution on the channel state that is, the network side device acquires the service distribution of the cell where the terminal is located.
  • the service distribution provided by the embodiment of the present invention is obtained by measuring the channel and classifying the channel measurement result, and performing statistics on the service of the channel transmission, etc., so the present invention
  • the method for obtaining the service distribution provided by the embodiment enables the network side device to obtain the service distribution of all terminals in the network without affecting the network efficiency.
  • An embodiment of the present invention provides a method for obtaining a service distribution. As shown in FIG. 5, the method may include:
  • the terminal generates a network side measurement triggering indication, where the network side measurement triggering indication is used to indicate that the terminal sends an uplink reference signal to multiple network side devices, and instructs the multiple network side devices to perform the uplink reference signal sent by the terminal.
  • the test signal is used by the multiple network side devices to obtain the measurement information of the terminal, and obtain the service distribution of the serving cell according to the measurement information and the service transmitted between the terminal and the serving cell of the terminal.
  • the other network side devices except the network side devices that provide services for the terminal respectively measure the uplink reference signals sent by the terminal, and send the measurement information through the X2 interface.
  • the network side device provided for the terminal service obtains the service distribution of the serving cell of the terminal according to the measurement information and the service transmitted between the terminal and the serving cell of the terminal.
  • the network side device that provides the service for the terminal obtains the specific implementation manner of the service distribution of the serving cell of the terminal according to the measurement information and the service transmitted between the terminal and the serving cell of the terminal, as shown in FIG. 2
  • the illustrated embodiment, or the related description in the embodiment shown in FIG. 3, is not described herein again.
  • the terminal sends the network side measurement trigger indication to the multiple network side devices.
  • the terminal sends the uplink reference signal to the multiple network side devices.
  • the network side measurement triggering instruction generated by the terminal indicates that the terminal sends an uplink reference signal to the multiple network side devices, and instructs the multiple network side devices to measure the uplink reference signal sent by the terminal.
  • the network side device obtains the measurement information of the terminal, so that the network side device obtains the distribution of the service of the terminal in the channel state according to the measurement information of the terminal and the service transmitted between the terminal and the serving cell of the terminal. That is, the network side device acquires the service distribution of the cell where the terminal is located.
  • the traffic distribution provided by the embodiment of the present invention is obtained by measuring the channel and classifying the channel measurement result, and performing statistics on the service of the channel transmission, and thus, according to the prior art, according to the geographic location of the multiple terminals.
  • the method for obtaining the service distribution provided by the embodiment of the present invention enables the network side device to obtain the information, if the service transmitted by the multiple terminals acquires the service distribution of the serving cell of the multiple terminals.
  • the distribution of services for all terminals in the network is not limited to the network side device.
  • An embodiment of the present invention provides a method for obtaining a service distribution. As shown in FIG. 6, the method includes:
  • the first air interface data is transmitted between the network side device and each of the multiple terminals in the same serving cell, and after the first air interface data transmission is completed, whether the second air interface is detected within a preset time data transmission.
  • the transmission resource between the network side device and the terminal is an air interface resource
  • the data transmitted by using the air interface resource is air interface data
  • the first air interface data is data that is transmitted between the network side device and each of the multiple terminals.
  • the network side device acquires the measurement information of the multiple terminals after the preset time.
  • the measurement information includes a first channel state value between the plurality of terminals and the primary cell, and the primary cell refers to one of the serving cell and each neighboring cell of the serving cell.
  • the manner in which the network side device acquires measurement information of multiple terminals may be one of the following:
  • each of the plurality of terminals measures the downlink reference signal received by the terminal to obtain the measurement information of the terminal, when the multiple terminals are in an idle state (English: Idel), the multiple terminals are in the multiple terminals.
  • Each terminal periodically generates a terminal measurement trigger indication, measures the downlink reference signal of the primary cell received by the terminal, and reports the measurement information to the network side device.
  • the terminal can measure the reference signal receiving power of the primary cell received by the terminal (English: reference signal receiving power, abbreviated as RSRP), and the RSRP of the primary cell includes the cell identity of the primary cell (English: cell identity) ).
  • the terminal When the plurality of terminals are in a connected state (English: Active), after the first air interface data transmission between the terminal and the network side device is completed, if the terminal is at a preset time After the second air interface data transmission is not detected, the terminal generates a terminal measurement triggering indication, and the terminal is configured to measure the RSRP of the primary cell received by the terminal, and report the measurement information to the network side device.
  • a connected state English: Active
  • the preset time may be implemented by using a timer, for example, setting a countdown timer in each of the multiple terminals, and setting an initial value of the countdown timer.
  • a timer for example, setting a countdown timer in each of the multiple terminals, and setting an initial value of the countdown timer.
  • the plurality of terminals respectively deactivate the countdown timer and generate a terminal measurement trigger indication. After the countdown timer is started, when the countdown timer has not been counted back to zero, the plurality of terminals respectively detect the second air interface data transmission, and at point D as shown in FIG. 7, the plurality of terminals respectively stop timing and Reset the count length of the countdown timer to the initial value.
  • the difference from the above (1) is that when the plurality of terminals are in a connected state, the network side device generates a first measurement trigger indication, and sends the first measurement trigger indication to the multiple terminals, where the multiple The terminal measures the RSRP of the primary cell that is received by the multiple terminals according to the first measurement triggering indication, and reports the measurement information to the network side device. Specifically, after the first air interface data transmission between the multiple terminals and the network side device is completed, if the network side device does not detect the second air interface data transmission within a preset time, after a preset time The network side device generates a first measurement trigger indication, and sends the first measurement trigger indication to the multiple terminals. And the plurality of terminals, according to the first terminal measurement triggering indication, measure the RSRP of the primary cell that is received by the multiple terminals, and report the measurement information to the network side device.
  • the preset time can be implemented by using a timer.
  • a countdown timer is set in the network side device, and an initial value of the countdown timer is set.
  • the network side device detects whether the countdown timer is activated. If the countdown timer is not activated, the network side device activates the countdown timer. If the countdown timer has been activated, the countdown timer is started when the first air interface data transmission is completed, at point B as shown in FIG. When the countdown countdown returns to zero, at point C shown in FIG.
  • the network side device deactivates the countdown timer and generates a first terminal measurement trigger indication. If the countdown timer has not been counted back to zero after the countdown timer is started, the network side device detects the second air interface data transmission at point D as shown in FIG. The network side device stops timing and resets the timing length of the countdown timer to an initial value.
  • the network side device measures the uplink reference signals of the multiple terminals to obtain the measurement information of the multiple terminals, when the multiple terminals are in an idle state, each of the multiple terminals is respectively The network side device periodically sends an uplink reference information number.
  • the uplink reference signal may be an SRS of the multiple terminals, and the SRSs of the multiple terminals respectively include user equipment identifiers (English: User Equipment ID, abbreviated: UEID) of the multiple terminals.
  • the network side device When the plurality of terminals are in a connected state, the network side device (ie, the network side device that the plurality of terminals provide services) generates a second measurement trigger indication, and sends the second measurement trigger indication to the multiple terminals, where The plurality of terminals send the uplink reference signal to the multiple network side devices according to the second measurement trigger indication. If the primary cell is the serving cell of the multiple terminals, the network side device obtains the measurement information of the multiple terminals by measuring the received uplink reference signal.
  • the network side device serving the primary cell obtains the measurement information of the multiple terminals by measuring the received uplink reference signal, and The measurement information is sent to the network side device through an interface between the network side devices, so that the network side device obtains measurement information of the multiple terminals. Specifically, after the first air interface data transmission is completed, if the network side device does not detect the second air interface data transmission within a preset time, the network side device generates the second measurement trigger indication after the preset time.
  • the specific manner of implementing the preset time is similar to the specific manner of implementing the preset time in (2), except that when the countdown timer is zeroed in the mode, the C is as shown in FIG. 7. Point, the network side device deactivates the countdown timer and generates a second measurement trigger indication.
  • the network side device deactivates the countdown timer and generates a second measurement trigger indication.
  • the difference from the above (3) is that when the plurality of terminals are in a connected state, the multiple terminals respectively generate a third measurement trigger indication (ie, a network side measurement trigger indication), respectively indicating that the multiple terminals are respectively
  • the network side devices send the SRS, and instruct the multiple network side devices to measure the SRSs respectively received by the multiple network side devices.
  • the multiple terminals After the first air interface data transmission is completed, if the multiple terminals do not detect the second air interface data transmission within a preset time, after the preset time, the multiple terminals respectively generate a third volume trigger indication. Instructing the plurality of terminals to respectively send the SRSs to the plurality of network side devices, and instructing the plurality of network side devices to measure the SRSs respectively received by the plurality of network side devices.
  • the third measurement trigger indication may be a synchronization request message, where the synchronization request message includes a request to send an uplink reference signal identifier, and is used to request the network side device to receive the SRS sent by the terminal.
  • the third measurement triggering indication may also be a synchronization indication message, where the synchronization indication message includes a sending uplink reference signal indication and a sending timestamp (English: timestamp), which is used to indicate that the network side device measures when receiving the SRS sent by the terminal.
  • the SRS is a synchronization request message, where the synchronization request message includes a request to send an uplink reference signal identifier, and is used to request the network side device to receive the SRS sent by the terminal.
  • the third measurement triggering indication may also be a synchronization indication message, where the synchronization indication message includes a sending uplink reference signal indication and a sending timestamp (English: timestamp), which is used to indicate that the network side device measures when receiving the SRS sent by the terminal.
  • the third measurement triggering indication is a synchronization request message, so that the terminal needs to send the SRS to the multiple network side devices before sending the SRS.
  • the synchronization request message when waiting for a plurality of network side devices to allow receiving the SRS sent by the terminal, the terminal completes the SRS transmission under the control of the plurality of network side devices.
  • the third measurement triggering indication is a synchronization indication message, so that the terminal needs to send to the multiple network side devices before sending the SRS.
  • the synchronization indication message is sent to instruct the multiple network side devices to measure the SRS sent by the terminal. In the above two manners, synchronization between the multiple network side devices and the terminal can be implemented.
  • the third measurement triggering indication may be implemented by setting a new message; the third measurement triggering indication may be carried in an existing message and sent to the multiple network side devices, which is not limited in the present invention.
  • the third measurement trigger indication may be understood as a network side measurement trigger indication in the embodiment shown in FIG. 5.
  • the specific manner of implementing the preset time is similar to the specific manner of implementing the preset time in (1), and the difference is that when the countdown timer is zeroed in the mode, the C is as shown in FIG. 7. Point, the plurality of terminals deactivate the countdown timer and generate a third measurement trigger indication.
  • the related description in (1) above and details are not described herein again.
  • the network side device check or the terminal determines whether the countdown timer is activated, that is, the network side device or the terminal detects whether the status bit of the countdown timer is an active state, for example, the state of the countdown timer. A bit of 1 indicates that the countdown timer is active. If the state of the countdown timer is set to 1, the countdown timer is activated. If the state of the countdown timer is set to 0, the countdown timer is deactivated.
  • the network side device acquires an average traffic volume of each of the multiple terminals.
  • the network side device classifies the first channel state value.
  • the network side device determines a service distribution of a serving cell of the multiple terminals.
  • the network side device determines that the service distribution of the serving cell of the multiple terminals is specifically, the network side device determines a first channel state typical value in each type of first channel state value, and according to the The average traffic volume of each terminal determines a first traffic volume between the terminal set corresponding to each type of first channel state value and the primary cell.
  • the first channel state typical value and the first traffic volume constitute a service distribution of the serving cell of the multiple terminals. So far, the network side device acquires the service distribution of the serving cell of the multiple terminals. Specifically, the network side device obtains the specific implementation process of the service distribution of the serving cell of the multiple terminals, and the descriptions and examples of the related processes in the embodiment shown in FIG. 2 are not described herein.
  • the measurement information of the multiple terminals acquired by the network side device may further include a second channel state value between the multiple terminals and each secondary cell, where the secondary cells are the serving cell and Other cells in the neighboring cells except the primary cell.
  • the network side device determines that the service distribution of the serving cell of the multiple terminals further includes a second channel state typical value between the terminal set and each secondary cell, and the terminal set and each secondary cell The second amount of traffic between.
  • the The second channel state is determined by the network side device according to the second channel state value
  • the second traffic is determined by the network side device according to the average traffic volume of each terminal.
  • the manner in which the network side device obtains the measurement information of the multiple terminals in the embodiment of the present invention is similar to the manner in which the network side device in FIG. 6 acquires the measurement information of multiple terminals.
  • the difference from the mode (2) is that each of the plurality of terminals measures the RSRP of the serving cell of the plurality of terminals respectively received by the terminal, and the RSRP of each of the plurality of terminals, and The measurement information obtained after the measurement is reported to the network side device.
  • the manner (3) and mode (4) of acquiring the measurement information of the plurality of terminals by the network side device in the embodiment of the present invention, and the manner (3) and manner of acquiring the measurement information of the multiple terminals by the network side device as shown in FIG. (4) The difference is that the network side device obtains the first measurement information by measuring the uplink reference signal sent by the multiple terminals, and receives the network side device that provides services for each neighboring cell of the multiple terminals. The second measurement information, and acquiring measurement information of the plurality of terminals according to the first measurement information and the second measurement information.
  • the network side device determines a typical value of the second channel state between the terminal set and the secondary cells, and a specific manner of the second traffic between the terminal set and the secondary cells, as shown in FIG. 3 .
  • the detailed description in S204 in the illustrated embodiment will not be repeated here.
  • the first channel state typical value, the first traffic volume, the second channel state typical value, and the second traffic volume constitute a service distribution of the serving cell of the multiple terminals. So far, the network side device acquires the service distribution of the serving cell of the multiple terminals.
  • the network side device needs to obtain the service distribution of the cell a (the cell a is the cell a in the example in the embodiment shown in FIG. 2), and each of the secondary cells is the cell 2, the cell 3, .. ...., cell N, the second channel state value may be represented as the second path loss, after the network side device acquires the service distribution S11 of the cell a, It can also include:
  • the network side device acquires a second channel state typical value and a second traffic volume between the U a, j, 1 and the secondary cell corresponding to the jth class channel state value.
  • the network-side apparatus in the second channel state between each terminal and the value of each secondary cell, it is determined that the U a, j, 1 of each secondary cell for the terminal set, the terminal set may expressed as U a, j, Ci, and based on the U a, j, times the average amount of traffic for each terminal, acquires the U a, a second traffic between j, times and each time the cell.
  • the average traffic volume of each terminal in the U a, j, and the times may be represented as w i ', that is, the U a, j, and the data occupied by each terminal in the cell a, transmitted in a unit time.
  • the second traffic can be expressed as W a, j, and the sum of the average traffic of all terminals in the U a, j, and the second .
  • the network-side apparatus according to this U a, the second path loss between the j, w times in each terminal i 'and U a, j, each time each time the cell terminal, determining that the U a, j
  • the second path loss between the secondary and the secondary cells is a typical value of the second channel state between the U a, j, and the secondary cells.
  • the second path loss between the U a, j, and the secondary cells may be expressed as PL a,j, and the second path loss may be expressed as PL i , and the W a,
  • the calculation formulas for j, sub and PL a, j, and the number are as follows:
  • the network side device can obtain PL j , W a, j, 1 , PL a, j, times and W a, j corresponding to each type of channel state value in the cell a by performing the foregoing S1 to S3. And, as shown in Table 2, PL j , W a, j, 1 , PL a, j, and W a, j, respectively constitute the traffic distribution of the cell a.
  • the network side devices that provide services for the neighboring cells of the multiple terminals can obtain the service distribution of each neighboring cell by performing S501 to S505, respectively.
  • the service distribution acquired by the network side device is a distribution of the service in the channel state
  • the method for obtaining the service distribution provided by the embodiment of the present invention is performed by separately connecting multiple terminals in one cell to the primary cell. And measuring, by the network side device, the first channel state value between the plurality of terminals and the primary cell in the measurement information of the multiple terminals, and acquiring each type of the first channel state value and the primary cell respectively A typical value of the first channel state and the first traffic, so that the network side device obtains the distribution of the services of the multiple terminals in the channel state, that is, the network side device acquires the service distribution of the serving cell of the multiple terminals.
  • the traffic distribution provided by the embodiment of the present invention is obtained by measuring the channel and classifying the channel measurement result, and performing statistics on the service of the channel transmission, and thus, according to the prior art, according to the geographic location of the multiple terminals.
  • the method for obtaining the service distribution provided by the embodiment of the present invention enables the network side device to obtain the information, if the service transmitted by the multiple terminals acquires the service distribution of the serving cell of the multiple terminals. The distribution of services for all terminals in the network.
  • An embodiment of the present invention provides another method for obtaining a service distribution. As shown in FIG. 8, the method may include:
  • the first air interface data is transmitted between the network side device and the multiple terminals, and after the first air interface data transmission is completed, whether the second air interface data is detected within a preset time transmission.
  • the meaning of the first air interface data is the same as that of the first air interface data in the embodiment shown in FIG. 6 .
  • the meaning of the first air interface data is the same as that of the first air interface data in the embodiment shown in FIG. 6 .
  • the network side device If the network side device does not detect the second air interface data transmission within a preset time, after the preset time, the network side device acquires measurement information of the multiple terminals, where the measurement information includes the multiple a first channel state value between the terminal and the primary cell, and a second channel state value between the multiple terminals and each secondary cell, where the serving cell of the multiple terminals is the primary cell, and each secondary cell is the primary cell Each adjacent cell of the primary cell.
  • the manner in which the network side device acquires the measurement information of the multiple terminals is similar to the manner in which the network side device obtains the measurement information of the multiple terminals in the embodiment shown in FIG. 6 , and the difference is: in the embodiment of the present invention,
  • the plurality of terminals are a plurality of terminals in the primary cell, that is, the primary cell is a serving cell of the multiple terminals; and in the embodiment shown in FIG. 6, the multiple terminals may be multiple in the primary cell.
  • the terminal may also be a plurality of terminals in one of the cells in each secondary cell.
  • the network side device acquires an average traffic volume of each of the multiple terminals.
  • the network side device classifies the first channel state value.
  • the network side device determines a service distribution of the primary cell.
  • the determining, by the network side device, the service distribution of the primary cell the network side device determining, according to the second channel state value and the average traffic volume of each terminal, corresponding to each class A typical value of a second channel state between a set of terminals of a channel state value and each secondary cell, and a second amount of traffic between the set of terminals and each secondary cell.
  • the second channel state typical value and the second traffic volume constitute a service distribution of the primary cell (that is, the serving cell of the multiple terminals).
  • the network side acquires the service distribution of the primary cell.
  • the network side device determines a specific process of the second channel state typical value and the second traffic volume, as described in the related description in the embodiment shown in FIG. No longer.
  • the service distribution obtained by the network side device is a distribution of the service in the channel state
  • another method for obtaining the service distribution provided by the embodiment of the present invention is to respectively The channel between the cell and each cell is measured, and the network side device classifies the first channel state value between the plurality of terminals and the primary cell in the measurement information of the multiple terminals, and acquires each class separately a second channel state typical value and a second traffic amount corresponding to the first channel state value, so that the network side device acquires a distribution of the services of the multiple terminals in a channel state, that is, the network side device acquires services of the multiple terminals The business distribution of the community.
  • the traffic distribution provided by the embodiment of the present invention is obtained by measuring the channel and classifying the channel measurement result, and performing statistics on the service of the channel transmission, and thus, according to the prior art, according to the geographic location of the multiple terminals.
  • the method for obtaining the service distribution provided by the embodiment of the present invention enables the network side device to obtain the information, if the service transmitted by the multiple terminals acquires the service distribution of the serving cell of the multiple terminals. The distribution of services for all terminals in the network.
  • the service distribution provided by the embodiment of the present invention can be widely applied in network technologies.
  • the service distribution provided by the embodiment of the present invention can be applied to a network optimization technology.
  • the network side device that provides the service to the primary cell is optimized according to the service distribution of the primary cell and the service distribution of each secondary cell. Specifically, the network side device evaluates the impact of the adjustment of the transmission parameter of the network in the primary cell on the network performance of the primary cell according to the service distribution of the primary cell and the service distribution of each secondary cell, and evaluates the network in the primary cell. After the adjustment of the transmission parameter affects the network performance of each secondary cell, the network side device adjusts the transmission parameter of the network in the primary cell, so that the transmission parameter of the adjusted network in the primary cell can be adapted to the primary cell.
  • the service distribution of multiple terminals can improve the network performance of the primary cell and optimize the primary cell.
  • the network side device serving the primary cell may be evaluated according to the service distribution of the primary cell.
  • the impact of different transmit powers on the transmission rate of the multiple cells in the primary cell that is, the impact on the throughput rate of the primary cell, and the different transmit power pairs in the primary cell are evaluated according to the service distribution of each secondary cell.
  • the network side device determines the influence of the different transmission powers of the primary cell on the throughput rate of the primary cell, and the interference degree of different transmission powers in the primary cell to the multiple terminals in each secondary cell to determine the interference degree.
  • the transmission power of the primary cell is larger, and the transmission power with less interference to the plurality of terminals in each secondary cell is used, and the transmission power is used as the transmission power of the primary cell, thereby completing the primary cell. Optimization of the transmit power.
  • the service distribution provided by the embodiment of the present invention is obtained by measuring the channel and classifying the channel measurement result, and performing statistics on the service of the channel transmission. Therefore, in the prior art, the terminal is used.
  • the accuracy of the service distribution provided by the embodiment of the present invention is higher than that of the service information obtained by the service transmitted by the terminal. Therefore, in the network optimization technology, the service distribution provided by the embodiment of the present invention is used as the network optimization technology.
  • the reference information can make the transmission parameter of the adjusted network more suitable for the service distribution of the multiple terminals in the primary cell, that is, the optimization of the network performance of the primary cell according to the service distribution provided by the embodiment of the present invention is more effective. it is good.
  • the embodiment of the present invention provides a network side device, where the network side device may include:
  • the obtaining unit 10 is configured to acquire measurement information of multiple terminals in the same serving cell and an average traffic volume of each of the multiple terminals, where the measurement information includes the multiple terminals and the primary cell respectively
  • the first channel state value, the primary cell refers to one of the serving cell and each neighboring cell of the serving cell.
  • the classification unit 11 is configured to classify the first channel state value acquired by the acquiring unit 10.
  • a determining unit 12 configured to determine the service distribution, where the service distribution includes a first channel state typical value of each type of the first channel state value categorized by the classifying unit 11, and corresponding to each class a terminal set of the first channel state value and the The first traffic volume between the primary cells is determined according to the average traffic volume of each terminal acquired by the acquiring unit 10.
  • the measurement information acquired by the acquiring unit 10 further includes a second channel state value between the multiple terminals and each secondary cell, where each secondary cell is the serving cell and each Other cells in the neighboring cell except the primary cell.
  • the service distribution determined by the determining unit 12 further includes a second channel state typical value between the terminal set and the secondary cells, and a second service between the terminal set and the secondary cells.
  • the second channel state is determined according to the second channel state value acquired by the acquiring unit 10, and the second traffic volume is obtained by the acquiring unit 10 according to each terminal.
  • the average business volume is determined.
  • the network side device provides a service for the primary cell
  • the acquiring unit 10 is specifically configured to receive the measurement information sent by the multiple terminals.
  • the network side device provides a service for the primary cell, and the network side device further includes:
  • the sending unit 13 is configured to send, after the acquiring unit 10 receives the measurement information sent by the multiple terminals, a downlink reference signal and a first measurement trigger indication to the multiple terminals, where the first measurement trigger indication And configured to instruct the multiple terminals to perform measurement on the downlink reference signal.
  • the network side device provides a service for the primary cell
  • the acquiring unit 10 specifically includes a sending module 100, a receiving module 101, and a measuring module 102.
  • the sending module 100 is configured to send a second measurement trigger indication to the multiple terminals, where the second measurement trigger indication is used to instruct the multiple terminals to send an uplink reference signal.
  • the receiving module 101 is configured to receive the uplink reference signal sent by the multiple terminals.
  • the measurement module 102 is configured to measure the uplink reference signal received by the receiving module 101 to obtain the measurement information.
  • the network side device is the primary small device.
  • the area provides a service
  • the obtaining unit 10 specifically includes a receiving module 101 and a measuring module 102.
  • the receiving module 101 is configured to receive a third measurement trigger indication and an uplink reference signal respectively sent by the multiple terminals, where the third measurement trigger indication is used to instruct the multiple terminals to send the uplink reference signal, and The measurement module is instructed to measure the uplink reference signal.
  • the measurement module 102 is configured to measure the uplink reference signal received by the receiving module 101 to obtain the measurement information.
  • the network side device does not provide the service to the primary cell
  • the acquiring unit 10 is specifically configured to receive the measurement information that is sent by the network side device that provides the service to the primary cell.
  • the measurement information acquired by the acquiring unit 10 includes first measurement information and second measurement information, where the first measurement information includes the multiple terminals and the serving cell.
  • the channel state value, the second measurement information includes a channel state value between the multiple terminals and the neighboring cells, and the acquiring unit 10 specifically includes a sending module 100, a receiving module 101, and a measuring module 102. .
  • the sending module 100 is configured to send a second measurement trigger indication to the multiple terminals, where the second measurement trigger indication is used to instruct the multiple terminals to send an uplink reference signal.
  • the receiving module 101 is configured to receive the uplink reference signal sent by the multiple terminals and the second measurement information sent by a network side device that provides services for each neighboring cell.
  • the measurement module 102 is configured to perform measurement on the uplink reference signal received by the receiving module 101 to obtain the first measurement information.
  • the measurement information acquired by the acquiring unit 10 includes first measurement information and second measurement information, where the first measurement information includes the multiple terminals and the serving cell
  • the second measurement information includes a channel state value between the multiple terminals and the neighboring cells
  • the acquiring unit 10 specifically includes a receiving module 101 and a measurement module 102.
  • the receiving module 101 is configured to receive a third measurement trigger indication sent by the multiple terminals, an uplink reference signal sent by the multiple terminals, and a network side device that provides services for each neighboring cell.
  • the second measurement triggering instruction is used to instruct the multiple terminals to send the uplink reference signal, and instruct the measurement module to perform measurement on the uplink reference signal.
  • the measuring module 102 is configured to perform measurement on the uplink reference signal received by the receiving module to obtain the first measurement information.
  • the network side device further includes:
  • the detecting unit 14 is configured to detect, after the first air interface data transmission is completed, whether the network side device has the second air interface data transmission within a preset time.
  • the acquiring unit 10 is configured to: after the detecting unit does not detect the second air interface data transmission within a preset time, obtain the measurement information of the multiple terminals after the preset time.
  • the third measurement trigger indication received by the receiving module 101 is a synchronization request message, where the synchronization request message includes a request to send an uplink reference signal identifier; or the third received by the receiving module 102
  • the measurement trigger indication is a synchronization indication message, and the synchronization indication message includes sending an uplink reference signal indication and a sending timestamp.
  • the network side device may be a base station, and the base station may be an evolved base station (English: evolution node base station, abbreviation: eNB).
  • eNB evolution node base station
  • the network side device provided by the embodiment of the present invention can measure the channel between the multiple terminals in the same serving cell and the primary cell, and can include the multiple terminals included in the measurement information of the multiple terminals.
  • the first channel state value between the primary cells is classified, and the first channel state typical value and the first traffic amount corresponding to each type of the first channel state value are respectively obtained, so that the services of the multiple terminals are obtained in the channel state.
  • the distribution on the network side device obtains the service distribution of the serving cell of the multiple terminals.
  • the network side device provided by the embodiment of the present invention performs measurement by measuring the channel and classifying the channel measurement result, and performing statistics acquisition on the channel transmission service.
  • the service distribution of the serving cell of the multiple terminals is compared with the prior art according to the geographical location information of the multiple terminals, and the service distribution of the service cells of the multiple terminals by the services transmitted by the multiple terminals.
  • the network side device provided by the embodiment of the invention can obtain the service distribution of all terminals in the network without affecting the network efficiency.
  • the embodiment of the present invention provides another network side device, where the network side device may include:
  • the obtaining unit 20 is configured to acquire measurement information of multiple terminals and an average traffic volume of each of the multiple terminals, where the measurement information includes a first channel state value between the multiple terminals and the primary cell, and a second channel state value between the plurality of terminals and each of the secondary cells, where the serving cells of the multiple terminals are the primary cells, and the secondary cells are neighboring cells of the primary cell.
  • the classification unit 21 is configured to classify the first channel state value acquired by the acquiring unit 20.
  • a determining unit 22 configured to determine the service distribution, where the service distribution includes a terminal set corresponding to each type of the first channel state value categorized by the classifying unit 22, and a a second channel state typical value, and a second traffic volume between the terminal set and the secondary cell, the second channel state typical value is determined according to the second channel state value acquired by the acquiring unit 20
  • the second traffic volume is determined according to the average traffic volume of each terminal acquired by the acquiring unit 20.
  • the measurement information acquired by the acquiring unit 20 includes first measurement information and second measurement information, where the first measurement information includes a channel state value between the multiple terminals and the primary cell, The second measurement information includes a channel state value between the multiple terminals and the secondary cells, and the acquiring unit 20 is configured to receive the first measurement information that is sent by the multiple terminals, and The second measurement information sent by the network side device of the serving cell by the secondary cell.
  • the network side device further includes:
  • the sending unit 23 is configured to send the downlink reference signal and the first terminal to the multiple terminals before the acquiring unit 20 receives the first measurement information sent by the multiple terminals a measurement trigger indication, the first measurement trigger indication is used to instruct the multiple terminals to perform measurement on the downlink reference signal.
  • the measurement information acquired by the acquiring unit 20 includes first measurement information and second measurement information, where the first measurement information includes the multiple terminals and The channel state value between the primary cells, the second measurement information includes a channel state value between the multiple terminals and the secondary cells, and the acquiring unit 20 specifically includes a sending module 200, a receiving module 201, and Measurement module 202.
  • the sending module 200 is configured to send a second measurement trigger indication to the multiple terminals, where the second measurement trigger indication is used to instruct the multiple terminals to send an uplink reference signal.
  • the receiving module 201 is configured to receive the uplink reference signal sent by the multiple terminals and the second measurement information sent by a network side device that provides services for each secondary cell.
  • the measuring module 202 is configured to perform measurement on the uplink reference signal received by the receiving module 201 to obtain the first measurement information.
  • the measurement information acquired by the acquiring unit 20 includes first measurement information and second measurement information, where the first measurement information includes the multiple terminals and The channel state value between the primary cells, the second measurement information includes a channel state value between the multiple terminals and the secondary cells, and the acquiring unit 20 specifically includes a receiving module 201 and a measurement module 202.
  • the receiving module 201 is configured to receive a third measurement trigger indication sent by the multiple terminals, the uplink reference signal sent by the multiple terminals, and a network side device that provides services for each secondary cell.
  • the second measurement triggering instruction is used to instruct the multiple terminals to send the uplink reference signal, and instruct the measurement module 202 to perform measurement on the uplink reference signal.
  • the measuring module 202 is configured to perform measurement on the uplink reference signal received by the receiving module 201 to obtain the first measurement information.
  • the network side device further includes:
  • the detecting unit 24 is configured to detect the network after the first air interface data transmission is completed. Whether the side device has the second air interface data transmission within the preset time.
  • the acquiring unit 20 is specifically configured to: after the detecting unit 24 does not detect the second air interface data transmission within a preset time, obtain the measurement information of the multiple terminals after the preset time.
  • the network side device may be a base station, and the base station may be an evolved base station (English: evolution node base station, abbreviation: eNB).
  • eNB evolution node base station
  • the network side device provided by the embodiment of the present invention can measure the channel between the plurality of terminals in the same serving cell and the primary cell and each secondary cell, and the measurement information included in the multiple terminals is included.
  • the first channel state value between the terminal and the primary cell is classified, and the second channel state typical value and the second traffic volume corresponding to each type of the first channel state value are respectively obtained, thereby acquiring services of the multiple terminals.
  • the distribution in the channel state that is, the network side device acquires the service distribution of the serving cell of the multiple terminals.
  • the network side device provided by the embodiment of the present invention acquires the service distribution of the serving cell of the multiple terminals by performing measurement on the channel and classifying the channel measurement result, and performing statistics on the service of the channel transmission.
  • the network side device provided by the embodiment of the present invention can be used without affecting network efficiency, according to the geographic location information of the multiple terminals, and the service distribution of the service cells of the multiple terminals. In this case, the traffic distribution of all terminals in the network is obtained.
  • an embodiment of the present invention provides a terminal, where the terminal may include:
  • the generating unit 30 is configured to generate a terminal measurement trigger indication, where the terminal measurement trigger indication is used to instruct the measurement unit 31 to perform measurement on the received downlink reference signal.
  • the measuring unit 31 is configured to perform measurement on the downlink reference signal, and acquire measurement information of the terminal.
  • the sending unit 32 is configured to send the measurement information of the terminal acquired by the measuring unit 31 to the network side device, so that the network side device is based on the measurement information of the terminal, and the terminal and the terminal.
  • the service transmitted between the serving cells acquires the service distribution of the serving cell, and the network side device provides a service for the terminal.
  • the terminal may include, but is not limited to, a personal computer (English: Personal Computer), a laptop computer (English: Laptop Computer), a tablet computer (English: Tablet Computer), and a netbook (English: Netbook), Cellular Phone (English: Cellular Phone), Handheld Device (English: Handheld), Cordless Phone (English: Cordless Phone), Personal Digital Assistant (English: Personal Digital Assistant, abbreviation: PDA), Mobile WiFi Hotspot Device (English) :MiFi Devices), smart watches, smart glasses, wireless modems (English: Modem), wireless routers, wireless local loop (English: Wireless Local Loop, abbreviation: WLL).
  • the terminal provided by the embodiment of the present invention can generate a terminal measurement triggering indication, instruct the terminal to measure the downlink reference signal received by the terminal, acquire the measurement information of the terminal, and send the measurement information to the network side device, so that the network side device
  • the distribution of the service of the terminal in the channel state is obtained according to the measurement information of the terminal and the service transmitted between the terminal and the serving cell of the terminal, that is, the network side device acquires the service distribution of the cell where the terminal is located.
  • the service distribution acquired by the terminal according to the embodiment of the present invention is obtained by measuring the channel and classifying the channel measurement result, and performing statistics on the channel transmission service. Therefore, the terminal provided by the embodiment of the present invention can enable the network side device to obtain the service distribution of all terminals in the network without affecting the network efficiency.
  • an embodiment of the present invention provides another terminal, where the terminal may include:
  • the generating unit 40 is configured to generate a network side measurement triggering indication, where the network side measurement triggering indication is used to instruct the sending unit 41 to send an uplink reference signal to the multiple network side devices, and instruct the multiple network side devices to use the uplink reference signal Performing measurement, the uplink reference signal is used by the multiple network side devices to acquire measurement information of the terminal, and acquiring according to the measurement information, and a service transmitted between the terminal and a serving cell of the terminal. The distribution of services in the serving cell.
  • the sending unit 41 is configured to send, to the multiple network side devices, the network side measurement trigger indication and the uplink reference signal generated by the generating unit 40.
  • the network side measurement trigger indication generated by the generating unit 40 is the same Step request message, the synchronization request message includes a request to send an uplink reference signal identifier; or the network side measurement trigger indication generated by the generating unit 40 is a synchronization indication message, where the synchronization indication message includes sending an uplink reference signal Indicate and send a timestamp.
  • the terminal may include, but is not limited to, a personal computer, a laptop, a tablet, a netbook, a cellular phone, a handheld device, a cordless phone, a PDA, a mobile WiFi hotspot device, a smart watch, and an intelligent device. Glasses, wireless modems, wireless routers, WLL stations, etc.
  • the terminal provided by the embodiment of the present invention can generate a network side measurement triggering indication, and the terminal is configured to send an uplink reference signal to the multiple network side devices, and instruct the multiple network side devices to measure the uplink reference signal sent by the terminal.
  • the network side device obtains the measurement information of the terminal, so that the network side device obtains the service of the terminal in the channel state according to the measurement information of the terminal and the service transmitted between the terminal and the serving cell of the terminal.
  • the distribution that is, the network side device acquires the service distribution of the cell where the terminal is located.
  • the service distribution obtained by the terminal according to the embodiment of the present invention is obtained by measuring the channel and classifying the channel measurement result, and performing statistics on the service of the channel transmission, etc., and thus, according to the prior art, according to multiple terminals.
  • the location information provided by the embodiment of the present invention enables the network side device to obtain the network without affecting network efficiency, as compared with the service distribution of the service cells of the multiple terminals.
  • an embodiment of the present invention provides a network side device, where the network side device may include: a processor 50, a memory 51, and a system bus 52.
  • the processor 50 and the memory 51 are connected by the system bus 52 and complete communication with each other.
  • the processor 50 may be a central processing unit (English: central processing unit, abbreviated as CPU), or an application specific integrated circuit (ASIC), or configured to implement the implementation of the present invention.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the memory 51 can include a volatile memory (English: volatile Memory), such as random access memory (English: random-access memory, abbreviation: RAM); the memory 51 may also include non-volatile memory (English: non-volatile memory), such as read-only memory (English: read -only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state drive, abbreviation: SSD); 51 may also include a combination of the above types of memories.
  • volatile memory such as random access memory (English: random-access memory, abbreviation: RAM)
  • non-volatile memory such as read-only memory (English: read -only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state drive, abbreviation: SSD); 51 may also include a combination of the above types of memories.
  • the processor 50 and the memory 51 can perform the method and the process described in FIG. 2 or FIG.
  • the processor 50 is configured to acquire measurement information of multiple terminals in the same serving cell and an average traffic volume of each of the multiple terminals, and separately connect the multiple terminals to the primary cell.
  • the first channel state value is classified, and the service distribution is determined, the measurement information includes the first channel state value, and the primary cell refers to each of the neighboring cells of the serving cell and the serving cell.
  • the service distribution includes a first channel state typical value of each type of the first channel state value, and a terminal set corresponding to each type of the first channel state value and the primary cell
  • the first traffic volume is determined according to the average traffic volume of each terminal;
  • the memory 51 is configured to store the measurement information, an average service of each terminal of the multiple terminals A quantity, the first channel state value, the traffic distribution, a first channel state typical value of each of the first channel state values, the first traffic volume, and controlling the processor 50 to complete the foregoing Process a program, whereby the processor 50 executes the software program and invokes the measurement information, an average traffic volume of each of the plurality of terminals, the first channel state value, the traffic distribution, each A first channel state typical value of the first channel state value, and the first traffic volume, complete the process.
  • the measurement information acquired by the processor 50 further includes a second channel state value between the multiple terminals and each secondary cell, where each secondary cell is the serving cell and each The service distribution determined by the processor to determine the service distribution of the neighboring cell is further including: a typical value of the second channel state between the set of terminals and the secondary cells, and Between the set of terminals and the sub-cells The second traffic volume, the second channel state typical value is determined according to the second channel state value, and the second traffic volume is determined according to the average traffic volume of each terminal.
  • the network side device provides a service for the primary cell
  • the processor 50 is specifically configured to receive the measurement information sent by the multiple terminals.
  • the network side device provides a service for the primary cell, and the network side device further includes:
  • the transceiver 53 is configured to send, after the processor receives the measurement information sent by the multiple terminals, a downlink reference signal and a first measurement trigger indication to the multiple terminals, where the first measurement trigger indication is used And instructing the plurality of terminals to perform measurement on the downlink reference signal.
  • the transceiver 53 may be a module having an independent receiver and a separate transmitter, or may be a module integrated by the receiver and the transmitter.
  • the network side device provides a service for the primary cell, where the processor 50 is configured to send a second measurement trigger indication to the multiple terminals, and receive an uplink reference sent by the multiple terminals. And measuring the uplink reference signal to obtain the measurement information, where the second measurement trigger indication is used to instruct the multiple terminals to send an uplink reference signal.
  • the network side device provides a service for the primary cell, where the processor 50 is configured to receive a third measurement trigger indication and an uplink reference signal respectively sent by the multiple terminals, and perform the uplink The measurement signal is used to obtain the measurement information, where the third measurement trigger indication is used to instruct the multiple terminals to send the uplink reference signal, and instruct the processor to perform measurement on the uplink reference signal.
  • the network side device does not provide the service to the primary cell
  • the processor 50 is specifically configured to receive the measurement information that is sent by the network side device that provides the service to the primary cell.
  • the measurement information acquired by the processor 50 includes first measurement information and second measurement information, where the first measurement information includes a channel state value between the multiple terminals and the serving cell,
  • the second measurement information includes the multiple terminals and
  • the processor 50 is configured to send a second measurement trigger indication to the multiple terminals, and receive an uplink reference signal sent by the multiple terminals, and The second measurement information sent by the network side device of the neighboring cell, and the measurement of the uplink reference signal, to obtain the first measurement information, where the second measurement trigger indication is used to indicate the multiple The terminal transmits the uplink reference signal.
  • the measurement information acquired by the processor 50 includes first measurement information and second measurement information, where the first measurement information includes a channel state value between the multiple terminals and the serving cell, The second measurement information includes a channel state value between the multiple terminals and the neighboring cells, where the processor 50 is configured to receive a third measurement trigger indication that is sent by the multiple terminals, The uplink reference signal sent by the multiple terminals and the second measurement information sent by the network side device serving the neighboring cells, and measuring the uplink reference signal to obtain the first Measuring information, the third measurement trigger indication is used to instruct the multiple terminals to send the uplink reference signal, and instruct the processor to perform measurement on the uplink reference signal.
  • the processor 50 is configured to: after the first air interface data transmission is completed, if the processor 50 does not detect the second air interface data transmission within a preset time, after the preset time Obtaining measurement information of the plurality of terminals.
  • the third measurement trigger indication received by the processor 50 is a synchronization request message, where the synchronization request message includes a request to send an uplink reference signal identifier; or the third received by the processor 50
  • the measurement trigger indication is a synchronization indication message, and the synchronization indication message includes sending an uplink reference signal indication and a sending timestamp.
  • the network side device provided by the embodiment of the present invention can measure the channel between the multiple terminals in the same serving cell and the primary cell, and can include the multiple terminals included in the measurement information of the multiple terminals.
  • the first channel state value between the primary cells is classified, and the first channel state typical value and the first traffic amount corresponding to each type of the first channel state value are respectively obtained, so that the services of the multiple terminals are obtained in the channel state.
  • the distribution on the network side device obtains the service distribution of the serving cell of the multiple terminals.
  • the network side device provided by the embodiment of the present invention is a service distribution of the serving cell of the multiple terminals obtained by measuring the channel and classifying the channel measurement result, and performing statistics on the service of the channel transmission, and thus The network side device provided by the embodiment of the present invention can not affect the network efficiency, according to the geographic location information of the multiple terminals, and the service distribution of the service cells of the multiple terminals. In the case of the traffic distribution of all terminals in the network.
  • an embodiment of the present invention provides another network side device, where the network side device may include: a processor 60, a memory 61, and a system bus 62.
  • the processor 60 and the memory 61 are connected by the system bus 62 and complete communication with each other.
  • the processor 60 can be a CPU, or an ASIC, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the memory 61 may include a volatile memory such as a RAM; the memory 61 may also include a non-volatile memory such as a ROM, a flash memory, an HDD or an SSD; the memory 61 may also include a memory of the above kind combination.
  • the processor 60 and the memory 61 may perform the method and the process described in FIG. 3 or FIG.
  • the processor 60 is configured to acquire measurement information of multiple terminals and an average traffic volume of each of the multiple terminals, and classify the first channel state values between the multiple terminals and the primary cell, And determining the service distribution, the measurement information includes the first channel state value, and a second channel state value between the multiple terminals and each secondary cell, where the serving cells of the multiple terminals are a primary cell, where each secondary cell is a neighboring cell of the primary cell, and the service distribution includes a terminal set corresponding to each type of the first channel state value and a a second channel state typical value, and a second traffic volume between the terminal set and the secondary cell, the second channel state typical value is determined according to the second channel state value, the second service The quantity is determined according to the average traffic volume of each terminal; the memory 61 is configured to store the measurement information, an average traffic volume of each terminal of the multiple terminals, the service distribution, and the One channel state Value, the second channel state value, The second channel state typical value, the second traffic volume, and a software program that controls the processor 60 to complete the
  • the measurement information acquired by the processor 60 includes first measurement information and second measurement information, where the first measurement information includes a channel state value between the multiple terminals and the primary cell, The second measurement information includes a channel state value between the multiple terminals and the secondary cells, and the processor 60 is configured to receive the first measurement information that is sent by the multiple terminals, and The second measurement information sent by the network side device of the serving cell by the secondary cell.
  • the network side device further includes:
  • the transceiver 63 is configured to send, after the processor receives the first measurement information sent by the multiple terminals, a downlink reference signal and a first measurement trigger indication to the multiple terminals, where the first measurement trigger The indication is used to instruct the multiple terminals to perform measurement on the downlink reference signal.
  • the transceiver 63 may be a module having an independent receiver and a separate transmitter, or may be a module integrated by the receiver and the transmitter.
  • the measurement information acquired by the processor 60 includes first measurement information and second measurement information, where the first measurement information includes a channel state value between the multiple terminals and the primary cell, The second measurement information includes a channel state value between the multiple terminals and the secondary cells, and the processor 60 is specifically configured to send a second measurement trigger indication to the multiple terminals, and receive the An uplink reference signal sent by the multiple terminals and the second measurement information sent by the network side device serving the secondary cell, and measuring the uplink reference signal to obtain the first measurement information, where The second measurement trigger indication is used to instruct the multiple terminals to send an uplink reference signal.
  • the measurement information acquired by the processor 60 includes first measurement information and second measurement information, where the first measurement information includes a channel state value between the multiple terminals and the primary cell, The second measurement information includes the plurality of terminals and the a channel state value between the cells, where the processor 60 is configured to receive a third measurement trigger indication sent by the multiple terminals, an uplink reference signal sent by the multiple terminals, and Receiving, by the secondary cell, the second measurement information sent by the serving network side device, and performing measurement on the uplink reference signal, and obtaining the first measurement information, the third measurement trigger indication is used to indicate that the multiple terminals send The uplink reference signal and instructing the processor 60 to measure the uplink reference signal.
  • the processor 60 is configured to: after the first air interface data transmission is completed, if the processor does not detect the second air interface data transmission within a preset time, after the preset time, Obtaining measurement information of the plurality of terminals.
  • the network side device provided by the embodiment of the present invention can measure the channel between the plurality of terminals in the same serving cell and the primary cell and each secondary cell, and the measurement information included in the multiple terminals is included.
  • the first channel state value between the terminal and the primary cell is classified, and the second channel state typical value and the second traffic volume corresponding to each type of the first channel state value are respectively obtained, thereby acquiring services of the multiple terminals.
  • the distribution in the channel state that is, the network side device acquires the service distribution of the serving cell of the multiple terminals.
  • the network side device provided by the embodiment of the present invention acquires the service distribution of the serving cell of the multiple terminals by performing measurement on the channel and classifying the channel measurement result, and performing statistics on the service of the channel transmission.
  • the network side device provided by the embodiment of the present invention can be used without affecting network efficiency, according to the geographic location information of the multiple terminals, and the service distribution of the service cells of the multiple terminals. In this case, the traffic distribution of all terminals in the network is obtained.
  • an embodiment of the present invention provides a terminal, which may include: a processor 70, a transceiver 71, a memory 72, and a system bus 73.
  • the processor 70 and the transceiver 71 and the memory 72 are connected by the system bus 73 and complete communication with each other.
  • the processor 70 can be a CPU, or an ASIC, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the transceiver 71 can be a module with an independent receiver and a separate transmitter, or a module integrated by the receiver and the transmitter.
  • the memory 72 may include volatile memory, such as RAM; the memory 72 may also include non-volatile memory, such as ROM, flash memory, HDD or SSD; the memory 72 may also include memory of the kind described above. combination.
  • the processor 70, the transceiver 71, and the memory 72 can perform the method flow described in FIG. 4, FIG. 6, or FIG.
  • the processor 70 is configured to generate a terminal measurement trigger indication, and perform measurement on the received downlink reference signal to obtain measurement information of the terminal, where the terminal measurement trigger indication is used to instruct the processor 70 to perform the downlink
  • the measuring signal is used to transmit the measurement information of the terminal acquired by the processor 70 to the network side device, so that the network side device according to the measurement information of the terminal, and the The service transmitted between the terminal and the serving cell of the terminal acquires the service distribution of the serving cell, the network side device provides a service for the terminal
  • the memory 72 is configured to store the terminal measurement trigger indication, Measurement information of the terminal, the downlink reference signal, and a software program for controlling the processor 70 to complete the above process, so that the processor 70 detects the trigger indication by executing the software program and calling the terminal, The measurement information of the terminal, and the downlink reference signal, complete the above process.
  • the terminal provided by the embodiment of the present invention can generate a terminal measurement triggering indication, instruct the terminal to measure the downlink reference signal received by the terminal, acquire the measurement information of the terminal, and send the measurement information to the network side device, so that the network side device
  • the distribution of the service of the terminal in the channel state is obtained according to the measurement information of the terminal and the service transmitted between the terminal and the serving cell of the terminal, that is, the network side device acquires the service distribution of the cell where the terminal is located.
  • the service distribution acquired by the terminal according to the embodiment of the present invention is obtained by measuring the channel and classifying the channel measurement result, and performing statistics on the channel transmission service. Therefore, the terminal provided by the embodiment of the present invention can enable the network side device to obtain the service distribution of all terminals in the network without affecting the network efficiency.
  • an embodiment of the present invention provides another terminal, which may include a processor 80, a transceiver 81, a memory 82, and a system bus 83.
  • the processor 80 and the transceiver 81 and the memory 82 are connected by the system bus 83 and complete communication with each other.
  • the processor 80 can be a CPU, or an ASIC, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the transceiver 81 can be a module with an independent receiver and a separate transmitter, or a module integrated by the receiver and the transmitter.
  • the memory 82 can include volatile memory, such as RAM; the memory 82 can also include non-volatile memory, such as ROM, flash memory, HDD or SSD; the memory 82 can also include memory of the kind described above. combination.
  • the processor 80, the transceiver 81, and the memory 82 can perform the method flow described in FIG. 5, FIG. 6, or FIG.
  • the processor 80 generates a network side measurement trigger indication, where the network side measurement trigger indication is used to instruct the transceiver 81 to send an uplink reference signal to multiple network side devices, and instructs the multiple network side devices to perform the uplink And measuring, by the reference signal, the uplink reference signal is used by the multiple network side devices to acquire measurement information of the terminal, and according to the measurement information, and a service transmitted between the terminal and a serving cell of the terminal Obtaining a service distribution in the serving cell, the transceiver 81, configured to send, to the multiple network side devices, the network side measurement trigger indication and the uplink reference signal generated by the processor; a memory 82, configured to store the network side measurement trigger indication, the uplink reference signal, and a software program that controls the processor 80 to complete the process, so that the processor 80 executes the software program and invokes the The network side measures the trigger indication and the uplink reference signal to complete the above process.
  • the network side measurement triggering indication generated by the processor 80 is a synchronization request message, where the synchronization request message includes a request to send an uplink reference signal identifier; or the network side generated by the processor 80
  • the measurement trigger indication is a synchronization indication message, and the synchronization indication message includes sending an uplink reference signal indication and a sending timestamp.
  • the terminal provided by the embodiment of the present invention can generate a network side measurement triggering indication, and the terminal is configured to send an uplink reference signal to the multiple network side devices, and instruct the multiple network side devices to measure the uplink reference signal sent by the terminal.
  • Make the network side The device obtains the measurement information of the terminal, so that the network side device obtains the distribution of the service of the terminal in the channel state according to the measurement information of the terminal and the service transmitted between the terminal and the serving cell of the terminal, that is, the network The side device acquires the service distribution of the cell where the terminal is located.
  • the service distribution obtained by the terminal according to the embodiment of the present invention is obtained by measuring the channel and classifying the channel measurement result, and performing statistics on the service of the channel transmission, etc., and thus, according to the prior art, according to multiple terminals.
  • the location information provided by the embodiment of the present invention enables the network side device to obtain the network without affecting network efficiency, as compared with the service distribution of the service cells of the multiple terminals.
  • an embodiment of the present invention provides a communication system, which may include any network side device as shown in FIG. 9 to FIG. 13 , and multiple terminals or multiple terminals as shown in FIG. 19 .
  • a terminal as shown in FIG. 20 any one of the network side devices as shown in FIG. 14 to FIG. 18, and a plurality of terminals as shown in FIG. 19 or a plurality of terminals as shown in FIG. 20; or Any one of the network side devices shown in FIG. 21 to FIG. 22, and a plurality of terminals as shown in FIG. 25 or a plurality of terminals as shown in FIG. 26; or, as shown in any one of FIG. 23 to FIG.
  • a communication system includes any network side device as shown in FIG. 9 to FIG. 13 , and a plurality of terminals or multiple devices as shown in FIG. 19 .
  • the terminal is shown; or when the embodiment of the invention provides a communication system including any one of the network side devices as shown in FIG. 21 to FIG. 22, and a plurality of terminals as shown in FIG. 25 or as shown in FIG.
  • the embodiment of the present invention provides a network side device in a communication system, which can acquire measurement information of multiple terminals in the same serving cell and an average traffic volume of each terminal in the multiple terminals, and The plurality of terminals respectively classify the first channel state value between the primary cell and the service distribution of the serving cell.
  • the measurement information includes the first channel state value, where the primary cell refers to one of the serving cell and each neighboring cell of the serving cell, and the service distribution of the serving cell includes each type of first channel state value. a first channel state typical value, and a first service between the set of terminals corresponding to each type of first channel state value and the primary cell The amount of the first traffic is determined according to the average traffic of each terminal.
  • the service distribution obtained by the communication system provided by the embodiment of the present invention is obtained by measuring the channel and classifying the channel measurement result, and performing statistics on the service of the channel transmission.
  • the communication system provided by the embodiment of the present invention can obtain the network in the network without affecting the network efficiency, as compared with the geographical location information of the terminals and the service distribution of the service cells of the multiple terminals. Business distribution of all terminals.
  • a communication system includes any network side device as shown in FIG. 14 to FIG. 18, and a plurality of terminals or multiple devices as shown in FIG.
  • the terminal When the terminal is shown; or when the embodiment of the invention provides a communication system including any of the network side devices as shown in FIGS. 23 to 24, and a plurality of terminals as shown in FIG. 25 or a plurality of FIG. 26
  • the embodiment of the present invention provides a network side device in a communication system, which can acquire measurement information of multiple terminals and an average traffic volume of each terminal of the multiple terminals, and respectively respectively respectively The first channel state value between the cells is classified, and the service distribution of the primary cell is determined.
  • the measurement information includes the first channel state value, and a second channel state value between the multiple terminals and each secondary cell, where the serving cell of the multiple terminals is the primary cell, and each secondary cell is the primary cell.
  • Each neighboring cell, the service distribution of the primary cell includes a terminal set corresponding to each type of first channel state value and a second channel state typical value between each secondary cell, and between the terminal set and each secondary cell.
  • the second traffic volume, the second channel state typical value is determined according to the second channel state value, and the second traffic volume is determined according to an average traffic volume of each terminal.
  • the service distribution obtained by the communication system provided by the embodiment of the present invention is obtained by measuring the channel and classifying the channel measurement result, and performing statistics on the service of the channel transmission.
  • the communication system provided by the embodiment of the present invention can obtain the network in the network without affecting the network efficiency, as compared with the geographical location information of the terminals and the service distribution of the service cells of the multiple terminals. Business distribution of all terminals.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种业务分布的获取方法、装置及系统,涉及通信技术领域,能够在不影响网络效率的情况下,使得基站获得网络中所有终端的业务分布。该方法包括:网络侧设备获取同一个服务小区中的多个终端的测量信息和该多个终端中每个终端的平均业务量,并确定业务分布,该测量信息包括该多个终端分别与主小区之间的第一信道状态值,该主小区是指该服务小区和该服务小区的各相邻小区中的一个,该业务分布包括每一类第一信道状态值中的第一信道状态典型值,以及对应于每一类第一信道状态值的终端集合与该主小区之间的第一业务量,该第一业务量是根据每个终端的平均业务量确定的。该方法应用于网络技术中。

Description

一种业务分布的获取方法、装置及系统 技术领域
本发明涉及通信技术领域,尤其涉及一种业务分布的获取方法、装置及系统。
背景技术
随着网络技术的不断发展,网络中的用户业务分布(以下简称业务分布)在网络技术中的应用越来越广泛。例如,在网络优化技术中,业务分布为最基本的参考信息。网络优化技术是指根据该网络中的业务分布,对该网络的传输参数,例如发射功率、发射时长等进行调整,从而使得调整后的该网络的传输参数能够适合该网络中的业务分布。其中,业务分布是指网络中的业务在地理位置上的分布,即业务与承载该业务的终端的地理位置信息之间的对应关系。
目前,基站可以通过获取该基站覆盖范围内终端的地理位置信息,获得该基站覆盖范围内的业务分布。通常,基站获取终端的地理位置信息的方式有两种,一种是多个基站分别测量终端到该多个基站的距离,并以该终端到该多个基站的距离作为该终端的地理位置信息,从而基站根据该地理位置信息,获得业务分布。另一种是终端通过自身的定位功能,如全球定位系统(英文:Global Positioning System,缩写:GPS)获得该终端的经纬坐标,并将该经纬坐标上报给基站,该基站将该终端的经纬坐标作为该终端的地理位置信息,从而基站根据该地理位置信息,获得业务分布。
然而,一方面,当通过多个基站测量终端与该多个基站之间的距离获得业务分布时,由于需要多个基站分别测量该终端到该多个基站之间的距离,因此会产生大量的空口数据,降低了网络效率;另一方面,当基站通过终端的定位功能获得业务分布时,由于有的终端关闭了其定位功能或者没有定位功能,因此使得基站无法获取到这些终端的地理位置信息,从而基站无法获得该基站覆盖范围内所有终端的业务分布。
发明内容
本发明的实施例提供一种业务分布的获取方法、装置及系统,能够在不影响网络效率的情况下,使得基站获得该基站覆盖范围内所有终端的业务分布。
为达到上述目的,本发明采用如下技术方案:
第一方面,本发明提供一种业务分布的获取方法,所述方法包括:
网络侧设备获取同一个服务小区中的多个终端的测量信息,所述测量信息包括所述多个终端分别与主小区之间的第一信道状态值,所述主小区是指所述服务小区和所述服务小区的各相邻小区中的一个;
所述网络侧设备获取所述多个终端中每个终端的平均业务量;
所述网络侧设备对所述第一信道状态值进行分类;
所述网络侧设备确定所述业务分布,所述业务分布包括每一类所述第一信道状态值中的第一信道状态典型值,以及对应于每一类所述第一信道状态值的终端集合与所述主小区之间的第一业务量,所述第一业务量是根据所述每个终端的平均业务量确定的。
在第一方面的第一种可能的实现方式中,所述测量信息还包括所述多个终端分别与各次小区之间的第二信道状态值,所述各次小区为所述服务小区和所述各相邻小区中除所述主小区外的其他小区,所述业务分布还包括:
所述终端集合与所述各次小区之间的第二信道状态典型值,以及所述终端集合与所述各次小区之间的第二业务量,所述第二信道状态典型值是所述网络侧设备根据所述第二信道状态值确定的,所述第二业务量是所述网络侧设备根据所述每个终端的平均业务量确定的。
结合前述的第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述网络侧设备为所述主小区提供服务,所述网络侧设备获取多个终端的测量信息,包括:
所述网络侧设备接收所述多个终端发送的所述测量信息。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述网络侧设备为所述主小区提供服务,所述网络侧设备接收所述多个终端发送的所述测量信息之前,所述方法还包括:
所述网络侧设备向所述多个终端发送下行参考信号;
所述网络侧设备向所述多个终端发送第一测量触发指示,所述第一测量触发指示用于指示所述多个终端对所述下行参考信号进行测量。
结合前述的第一方面,在第一方面的第四种可能的实现方式中,所述网络侧设备为所述主小区提供服务,所述网络侧设备获取多个终端的测量信息,包括:
所述网络侧设备向所述多个终端发送第二测量触发指示,所述第二测量触发指示用于指示所述多个终端发送上行参考信号;
所述网络侧设备接收所述多个终端发送的所述上行参考信号;
所述网络侧设备对所述上行参考信号进行测量,获得所述测量信息。
结合前述的第一方面,在第一方面的第五种可能的实现方式中,所述网络侧设备为所述主小区提供服务,所述网络侧设备获取多个终端的测量信息,包括:
所述网络侧设备接收所述多个终端分别发送的第三测量触发指示,所述第三测量触发指示用于指示所述多个终端发送上行参考信号,并指示所述网络侧设备对所述多个终端发送的所述上行参考信号进行测量;
所述网络侧设备接收所述多个终端发送的所述上行参考信号;
所述网络侧设备对所述上行参考信号进行测量,获得所述测量信息。
结合前述的第一方面,在第一方面的第六种可能的实现方式中,所述网络侧设备不为所述主小区提供服务,所述网络侧设备获取多个终端的测量信息,包括:
所述网络侧设备接收为所述主小区提供服务的网络侧设备发送的所述测量信息。
结合第一方面的第一种可能的实现方式,在第七种可能的实现方式中,所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述服务小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各相邻小区之间的信道状态值,
所述网络侧设备获取多个终端的测量信息,包括:
所述网络侧设备向所述多个终端发送第二测量触发指示,所述第二测量触发指示用于指示所述多个终端发送上行参考信号;
所述网络侧设备接收所述多个终端发送的所述上行参考信号;
所述网络侧设备对所述上行参考信号进行测量,获得所述第一测量信息;
所述网络侧设备接收为所述各相邻小区提供服务的网络侧设备发送的所述第二测量信息。
结合第一方面的第一种可能的实现方式,在第八种可能的实现方式中,所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述服务小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各相邻小区之间的信道状态值,
所述网络侧设备获取多个终端的测量信息,包括:
所述网络侧设备接收所述多个终端分别发送的第三测量触发指示,所述第三测量触发指示用于指示所述多个终端发送上行参考信号,并指示所述网络侧设备对所述多个终端发送的所述上行参考信号进行测量;
所述网络侧设备接收所述多个终端发送的所述上行参考信号;
所述网络侧设备对所述上行参考信号进行测量,获得所述第一测量信息;
所述网络侧设备接收为所述各相邻小区提供服务的网络侧设备 发送的所述第二测量信息。
结合前述的第一方面或第一方面的第一种可能的实现方式至第一方面的第八种可能的实现中的任一种实现方式,在第九种可能的实现方式中,所述网络侧设备获取多个终端的测量信息,包括:
在第一空口数据传输完成后,若所述网络侧设备在预设时间内未检测到第二空口数据传输,则在所述预设时间后,所述网络侧设备获取所述多个终端的测量信息。
结合第一方面的第五种可能的实现方式或第一方面的第八种可能的实现,在第十种可能的实现方式中,
所述第三测量触发指示为同步请求消息,所述同步请求消息中包括请求发送上行参考信号标识;或者,
所述第三测量触发指示为同步指示消息,所述同步指示消息中包括发送上行参考信号指示和发送时间戳。
第二方面,本发明提供一种业务分布的获取方法,所述方法包括:
网络侧设备获取多个终端的测量信息,所述测量信息包括所述多个终端分别与主小区之间的第一信道状态值,以及所述多个终端分别与各次小区之间的第二信道状态值,所述多个终端的服务小区为所述主小区,所述各次小区为所述主小区的各相邻小区;
所述网络侧设备获取所述多个终端中每个终端的平均业务量;
所述网络侧设备对所述第一信道状态值进行分类;
所述网络侧设备确定所述业务分布,所述业务分布包括对应于每一类所述第一信道状态值的终端集合与所述各次小区之间的第二信道状态典型值,以及所述终端集合与所述各次小区之间的第二业务量,所述第二信道状态典型值是所述网络侧设备根据所述第二信道状态值确定的,所述第二业务量是所述网络侧设备根据所述每个终端的平均业务量确定的。
在第二方面的第一种可能的实现方式中,所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端 与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,
所述网络侧设备获取多个终端的测量信息,包括:
所述网络侧设备接收所述多个终端发送的所述第一测量信息;
所述网络侧设备接收为所述各次小区提供服务的网络侧设备发送的所述第二测量信息。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述网络侧设备接收所述多个终端发送的所述测量信息之前,所述方法还包括:
所述网络侧设备向所述多个终端发送下行参考信号;
所述网络侧设备向所述多个终端发送第一测量触发指示,所述第一测量触发指示用于指示所述多个终端对所述下行参考信号进行测量。
结合前述的第二方面,在第二方面的第三种可能的实现方式中,所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,
所述网络侧设备获取多个终端的测量信息,包括:
所述网络侧设备向所述多个终端发送第二测量触发指示,所述第二测量触发指示用于指示所述多个终端发送上行参考信号;
所述网络侧设备接收所述多个终端发送的所述上行参考信号;
所述网络侧设备对所述上行参考信号进行测量,获得所述第一测量信息;
所述网络侧设备接收为所述各次小区提供服务的网络侧设备发送的所述第二测量信息。
结合前述的第二方面,在第二方面的第四种可能的实现方式中,所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,
所述网络侧设备获取多个终端的测量信息,包括:
所述网络侧设备接收所述多个终端分别发送的第三测量触发指示,所述第三测量触发指示用于指示所述多个终端发送上行参考信号,并指示所述网络侧设备对所述多个终端发送的所述上行参考信号进行测量;
所述网络侧设备接收所述多个终端发送的所述上行参考信号;
所述网络侧设备对所述上行参考信号进行测量,获得所述第一测量信息;
所述网络侧设备接收为所述各次小区提供服务的网络侧设备发送的所述第二测量信息。
结合前述的第二方面或第二方面的第一种可能的实现方式至第二方面的第四种可能的实现方式中的任一种实现方式,在第五种可能的实现方式中,所述网络侧设备获取多个终端的测量信息,包括:
在第一空口数据传输完成后,若所述网络侧设备在预设时间内未检测到第二空口数据传输,则在所述预设时间后,所述网络侧设备获取所述多个终端的测量信息。
第三方面,本发明提供一种业务分布的获取方法,所述方法包括:
终端生成终端测量触发指示,所述终端测量触发指示用于指示所述终端对接收的下行参考信号进行测量;
所述终端对所述下行参考信号进行测量,获取所述终端的测量信息;
所述终端向网络侧设备发送所述终端的测量信息,以使得所述网络侧设备根据所述终端的测量信息,以及所述终端与所述终端的服务小区之间传输的业务,获取所述服务小区的业务分布,所述网络侧设备为所述终端提供服务。
第四方面,本发明提供一种业务分布的获取方法,所述方法包括:
终端生成网络侧测量触发指示,所述网络侧测量触发指示用于 指示所述终端向多个网络侧设备发送上行参考信号,并指示所述多个网络侧设备对所述终端发送的所述上行参考信号进行测量,所述上行参考信号用于所述多个网络侧设备获取所述终端的测量信息,并根据所述测量信息,以及所述终端与所述终端的服务小区之间传输的业务,获取所述服务小区中的业务分布;
所述终端向所述多个网络侧设备发送所述网络侧测量触发指示;
所述终端向所述多个网络侧设备发送所述上行参考信号。
在第四方面的第一种可能的实现方式中,
所述网络侧测量触发指示为同步请求消息,所述同步请求消息中包括请求发送上行参考信号标识;或者,
所述网络侧测量触发指示为同步指示消息,所述同步指示消息中包括发送上行参考信号指示和发送时间戳。
第五方面,本发明提供一种网络侧设备,包括:
获取单元,用于获取同一个服务小区中的多个终端的测量信息和所述多个终端中每个终端的平均业务量,所述测量信息包括所述多个终端分别与主小区之间的第一信道状态值,所述主小区是指所述服务小区和所述服务小区的各相邻小区中的一个;
分类单元,用于对所述获取单元获取的所述第一信道状态值进行分类;
确定单元,用于确定所述业务分布,所述业务分布包括所述分类单元归类的每一类所述第一信道状态值中的第一信道状态典型值,以及对应于每一类所述第一信道状态值的终端集合与所述主小区之间的第一业务量,所述第一业务量是根据所述获取单元获取的所述每个终端的平均业务量确定的。
在第五方面的第一种可能的实现方式中,所述获取单元获取的所述测量信息还包括所述多个终端分别与各次小区之间的第二信道状态值,所述各次小区为所述服务小区和所述各相邻小区中除所述主小区外的其他小区,所述确定单元确定的所述业务分布还包括:
所述终端集合与所述各次小区之间的第二信道状态典型值,以及所述终端集合与所述各次小区之间的第二业务量,所述第二信道状态典型值是根据所述获取单元获取的所述第二信道状态值确定的,所述第二业务量是根据所述获取单元获取的所述每个终端的平均业务量确定的。
结合前述的第五方面或第五方面的第一种可能的实现方式,在第二种可能的实现方式中,所述网络侧设备为所述主小区提供服务,
所述获取单元,具体用于接收所述多个终端发送的所述测量信息。
结合第五方面的第二种可能的实现方式,在第三种可能的实现方式中,所述网络侧设备为所述主小区提供服务,所述网络侧设备还包括:
发送单元,用于在所述获取单元接收所述多个终端发送的所述测量信息之前,向所述多个终端发送下行参考信号和第一测量触发指示,所述第一测量触发指示用于指示所述多个终端对所述下行参考信号进行测量。
结合前述的第五方面,在第五方面的第四种可能的实现方式中,所述网络侧设备为所述主小区提供服务,所述获取单元具体包括发送模块,接收模块和测量模块,
所述发送模块,用于向所述多个终端发送第二测量触发指示,所述第二测量触发指示用于指示所述多个终端发送上行参考信号;
所述接收模块,用于接收所述多个终端发送的所述上行参考信号;
所述测量模块,用于对所述接收模块接收的所述上行参考信号进行测量,获得所述测量信息。
结合前述的第五方面,在第五方面的第五种可能的实现方式中,所述网络侧设备为所述主小区提供服务,所述获取单元具体包括接收模块和测量模块,
所述接收模块,用于接收所述多个终端分别发送的第三测量触 发指示和上行参考信号,所述第三测量触发指示用于指示所述多个终端发送所述上行参考信号,并指示测量模块对所述上行参考信号进行测量;
所述测量模块,用于对所述接收模块接收的所述上行参考信号进行测量,获得所述测量信息。
结合前述的第五方面,在第五方面的第六种可能的实现方式中,所述网络侧设备不为所述主小区提供服务,
所述获取单元,具体用于接收为所述主小区提供服务的网络侧设备发送的所述测量信息。
结合第五方面的第一种可能的实现方式,在第七种可能的实现方式中,所述获取单元获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述服务小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各相邻小区之间的信道状态值,所述获取单元具体包括发送模块,接收模块和测量模块,
所述发送模块,用于向所述多个终端发送第二测量触发指示,所述第二测量触发指示用于指示所述多个终端发送上行参考信号;
所述接收模块,用于接收所述多个终端发送的所述上行参考信号和为所述各相邻小区提供服务的网络侧设备发送的所述第二测量信息;
所述测量模块,用于对所述接收模块接收的所述上行参考信号进行测量,获得所述第一测量信息。
结合第五方面的第一种可能的实现方式,在第八种可能的实现方式中,所述获取单元获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述服务小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各相邻小区之间的信道状态值,所述获取单元具体包括接收模块和测量模块,
所述接收模块,用于接收所述多个终端分别发送的第三测量触 发指示、所述多个终端分别发送的上行参考信号,以及为所述各相邻小区提供服务的网络侧设备发送的所述第二测量信息,所述第三测量触发指示用于指示所述多个终端发送所述上行参考信号,并指示所述测量模块对所述上行参考信号进行测量;
所述测量模块,用于对所述接收模块接收的所述上行参考信号进行测量,获得所述第一测量信息。
结合前述的第五方面或第五方面的第五种可能的实现方式至第五方面的第八种可能的实现方式中的任一种可能的实现方式,在第九种可能的实现方式中,所述网络侧设备还包括:
检测单元,用于在第一空口数据传输完成后,检测所述网络侧设备在预设时间内是否有第二空口数据传输;
所述获取单元,具体用于若所述检测单元在预设时间内未检测到第二空口数据传输,则在所述预设时间后,获取所述多个终端的测量信息。
结合第五方面的第五种可能的实现方式或第五方面的第八种可能的实现方式,在第十种可能的实现方式中,
所述接收模块接收的所述第三测量触发指示为同步请求消息,所述同步请求消息中包括请求发送上行参考信号标识;或者,
所述接收模块接收的所述第三测量触发指示为同步指示消息,所述同步指示消息中包括发送上行参考信号指示和发送时间戳。
第六方面,本发明提供一种网络侧设备,包括:
获取单元,用于获取多个终端的测量信息和所述多个终端中每个终端的平均业务量,所述测量信息包括所述多个终端分别与主小区之间的第一信道状态值,以及所述多个终端分别与各次小区之间的第二信道状态值,所述多个终端的服务小区为所述主小区,所述各次小区为所述主小区的各相邻小区;
分类单元,用于对所述获取单元获取的所述第一信道状态值进行分类;
确定单元,用于确定所述业务分布,所述业务分布包括对应于 所述分类单元归类的每一类所述第一信道状态值的终端集合与所述各次小区之间的第二信道状态典型值,以及所述终端集合与所述各次小区之间的第二业务量,所述第二信道状态典型值是根据所述获取单元获取的所述第二信道状态值确定的,所述第二业务量是根据所述获取单元获取的所述每个终端的平均业务量确定的。
在第六方面的第一种可能的实现方式中,所述获取单元获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,
所述获取单元,具体用于接收所述多个终端发送的所述第一测量信息和为所述各次小区提供服务的网络侧设备发送的所述第二测量信息。
结合第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,所述网络侧设备还包括:
发送单元,用于在所述获取单元接收所述多个终端发送的所述第一测量信息之前,向所述多个终端发送下行参考信号和第一测量触发指示,所述第一测量触发指示用于指示所述多个终端对所述下行参考信号进行测量。
结合前述的第六方面,在第六方面的第三种可能的实现方式中,所述获取单元获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,所述获取单元具体包括发送模块,接收模块和测量模块,
所述发送模块,用于向所述多个终端发送第二测量触发指示,所述第二测量触发指示用于指示所述多个终端发送上行参考信号;
所述接收模块,用于接收所述多个终端发送的上行参考信号和为所述各次小区提供服务的网络侧设备发送的所述第二测量信息;
所述测量模块,用于对所述接收模块接收的所述上行参考信号 进行测量,获得所述第一测量信息。
结合前述的第六方面,在第六方面的第四种可能的实现方式中,所述获取单元获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,所述获取单元具体包括接收模块和测量模块,
所述接收模块,用于接收所述多个终端分别发送的第三测量触发指示、所述多个终端发送的所述上行参考信号,以及为所述各次小区提供服务的网络侧设备发送的所述第二测量信息,所述第三测量触发指示用于指示所述多个终端发送所述上行参考信号,并指示所述测量模块对所述上行参考信号进行测量;
所述测量模块,用于对所述接收模块接收的所述上行参考信号进行测量,获得所述第一测量信息。
结合前述的第六方面或第六方面的第一种可能的实现方式或第六方面的第四种可能的实现方式中的任一种实现方式,在第五种可能的实现方式中,所述网络侧设备还包括:
检测单元,用于在第一空口数据传输完成后,检测所述网络侧设备在预设时间内是否有第二空口数据传输;
所述获取单元,具体用于若所述检测单元在预设时间内未检测到第二空口数据传输,则在所述预设时间后,获取所述多个终端的测量信息。
第七方面,本发明提供一种终端,包括:
生成单元,用于生成终端测量触发指示,所述终端测量触发指示用于指示测量单元对接收的下行参考信号进行测量;
所述测量单元,用于对所述下行参考信号进行测量,获取所述终端的测量信息;
所述发送单元,用于向网络侧设备发送所述测量单元获取的所述终端的测量信息,以使得所述网络侧设备根据所述终端的测量信息,以及所述终端与所述终端的服务小区之间传输的业务,获取所 述服务小区的业务分布,所述网络侧设备为所述终端提供服务。
第八方面,本发明提供一种终端,包括:
生成单元,生成网络侧测量触发指示,所述网络侧测量触发指示用于指示发送单元向多个网络侧设备发送上行参考信号,并指示所述多个网络侧设备对所述上行参考信号进行测量,所述上行参考信号用于所述多个网络侧设备获取所述终端的测量信息,并根据所述测量信息,以及所述终端与所述终端的服务小区之间传输的业务,获取所述服务小区中的业务分布;
所述发送单元,用于向所述多个网络侧设备发送所述生成单元生成的所述网络侧测量触发指示和所述上行参考信号。
在第八方面的第一种可能的实现方式中,
所述生成单元生成的所述网络侧测量触发指示为同步请求消息,所述同步请求消息中包括请求发送上行参考信号标识;或者,
所述生成单元生成的所述网络侧测量触发指示为同步指示消息,所述同步指示消息中包括发送上行参考信号指示和发送时间戳。
第九方面,本发明提供一种网络侧设备,包括:
处理器,用于获取同一个服务小区中的多个终端的测量信息和所述多个终端中每个终端的平均业务量,并对所述多个终端分别与主小区之间的第一信道状态值进行分类,以及确定所述业务分布,所述测量信息包括所述第一信道状态值,所述主小区是指所述服务小区和所述服务小区的各相邻小区中的一个,所述业务分布包括每一类所述第一信道状态值中的第一信道状态典型值,以及对应于每一类所述第一信道状态值的终端集合与所述主小区之间的第一业务量,所述第一业务量是根据所述每个终端的平均业务量确定的。
在第九方面的第一种可能的实现方式中,所述处理器获取的所述测量信息还包括所述多个终端分别与各次小区之间的第二信道状态值,所述各次小区为所述服务小区和所述各相邻小区中除所述主小区外的其他小区,所述处理器确定的所述业务分布还包括:
所述终端集合与所述各次小区之间的第二信道状态典型值,以 及所述终端集合与所述各次小区之间的第二业务量,所述第二信道状态典型值是根据所述第二信道状态值确定的,所述第二业务量是根据所述每个终端的平均业务量确定的。
结合前述的第九方面或第九方面的第一种可能的实现方式,在第二种可能的实现方式中,所述网络侧设备为所述主小区提供服务,
所述处理器,具体用于接收所述多个终端发送的所述测量信息。
结合第九方面的第二种可能的实现方式,在第三种可能的实现方式中,所述网络侧设备为所述主小区提供服务,所述网络侧设备还包括:
收发器,用于在所述处理器接收所述多个终端发送的所述测量信息之前,向所述多个终端发送下行参考信号和第一测量触发指示,所述第一测量触发指示用于指示所述多个终端对所述下行参考信号进行测量。
结合前述的第九方面,在第九方面的第四种可能的实现方式中,所述网络侧设备为所述主小区提供服务,
所述处理器,具体用于向所述多个终端发送第二测量触发指示,并接收所述多个终端发送的上行参考信号,以及对所述上行参考信号进行测量,获得所述测量信息,所述第二测量触发指示用于指示所述多个终端发送上行参考信号。
结合前述的第九方面,在第九方面的第五种可能的实现方式中,所述网络侧设备为所述主小区提供服务,
所述处理器,具体用于接收所述多个终端分别发送的第三测量触发指示和上行参考信号,并对所述上行参考信号进行测量,获得所述测量信息,所述第三测量触发指示用于指示所述多个终端发送所述上行参考信号,并指示所述处理器对所述上行参考信号进行测量。
结合前述的第九方面,在第九方面的第六种可能的实现方式中,所述网络侧设备不为所述主小区提供服务,
所述处理器,具体用于接收为所述主小区提供服务的网络侧设 备发送的所述测量信息。
结合前述的第九方面,在第九方面的第七种可能的实现方式中,所述处理器获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述服务小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各相邻小区之间的信道状态值,
所述处理器,具体用于向所述多个终端发送第二测量触发指示,并接收所述多个终端发送的上行参考信号和为所述各相邻小区提供服务的网络侧设备发送的所述第二测量信息,以及对所述上行参考信号进行测量,获得所述第一测量信息,所述第二测量触发指示用于指示所述多个终端发送所述上行参考信号。
结合第九方面第一种可能的实现方式,在第八种可能的实现方式中,所述处理器获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述服务小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各相邻小区之间的信道状态值,
所述处理器,具体用于接收所述多个终端分别发送的第三测量触发指示、所述多个终端分别发送的上行参考信号,以及为所述各相邻小区提供服务的网络侧设备发送的所述第二测量信息,并对所述上行参考信号进行测量,获得所述第一测量信息,所述第三测量触发指示用于指示所述多个终端发送所述上行参考信号,并指示所述处理器对所述上行参考信号进行测量。
结合前述的第九方面或第九方面的第一种可能的实现方式至第九方面的第八种可能的实现方式中的任一种实现方式中,在第九种可能的实现方式,
所述处理器,具体用于在第一空口数据传输完成后,若所述处理器在预设时间内未检测到第二空口数据传输,则在所述预设时间后,获取所述多个终端的测量信息。
结合第九方面的第五种可能的实现方式或第九方面的第八种可 能的实现方式,在第十种可能的实现方式中,
所述处理器接收的所述第三测量触发指示为同步请求消息,所述同步请求消息中包括请求发送上行参考信号标识;或者,
所述处理器接收的所述第三测量触发指示为同步指示消息,所述同步指示消息中包括发送上行参考信号指示和发送时间戳。
第十方面,本发明提供一种网络侧设备,包括:
处理器,用于获取多个终端的测量信息和所述多个终端中每个终端的平均业务量,并对所述多个终端分别与主小区之间的第一信道状态值进行分类,以及确定所述业务分布,所述测量信息包括所述第一信道状态值,以及所述多个终端分别与各次小区之间的第二信道状态值,所述多个终端的服务小区为所述主小区,所述各次小区为所述主小区的各相邻小区,所述业务分布包括对应于每一类所述第一信道状态值的终端集合与所述各次小区之间的第二信道状态典型值,以及所述终端集合与所述各次小区之间的第二业务量,所述第二信道状态典型值是根据所述第二信道状态值确定的,所述第二业务量是根据所述每个终端的平均业务量确定的。
在第十方面的第一种可能的实现方式中,所述处理器获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,
所述处理器,具体用于接收所述多个终端发送的所述第一测量信息和为所述各次小区提供服务的网络侧设备发送的所述第二测量信息。
结合第十方面的第一种可能的实现方式,在第二种可能的实现方式中,所述网络侧设备还包括:
收发器,用于在所述处理器接收所述多个终端发送的所述第一测量信息之前,向所述多个终端发送下行参考信号和第一测量触发指示,所述第一测量触发指示用于指示所述多个终端对所述下行参考信号进行测量。
结合前述的第十方面,在第十方面的第三种可能的实现方式中,所述处理器获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,
所述处理器,具体用于向所述多个终端发送第二测量触发指示,并接收所述多个终端发送的上行参考信号和为所述各次小区提供服务的网络侧设备发送的所述第二测量信息,以及对所述上行参考信号进行测量,获得所述第一测量信息,所述第二测量触发指示用于指示所述多个终端发送上行参考信号。
结合前述的第十方面,在第十方面的第四种可能的实现方式中,所述处理器获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,
所述处理器,具体用于接收所述多个终端分别发送的第三测量触发指示、所述多个终端发送的上行参考信号,以及为所述各次小区提供服务的网络侧设备发送的所述第二测量信息,并对所述上行参考信号进行测量,获得所述第一测量信息所述第三测量触发指示用于指示所述多个终端发送所述上行参考信号,并指示所述处理器对所述上行参考信号进行测量。
结合前述的第十方面或第十方面的第一种可能的实现方式至第十方面的第四种可能的实现方式,在第五种可能的实现方式中,
所述处理器,具体用于在第一空口数据传输完成后,若所述处理器在预设时间内未检测到第二空口数据传输,则在所述预设时间后,获取所述多个终端的测量信息。
第十一方面,本发明提供一种终端,包括:
处理器,用于生成终端测量触发指示,并对接收的下行参考信号进行测量,获取所述终端的测量信息,所述终端测量触发指示用 于指示所述处理器对所述下行参考信号进行测量;
收发器,用于向网络侧设备发送所述处理器获取的所述终端的测量信息,以使得所述网络侧设备根据所述终端的测量信息,以及所述终端与所述终端的服务小区之间传输的业务,获取所述服务小区的业务分布,所述网络侧设备为所述终端提供服务。
第十二方面,本发明提供一种终端,包括:
处理器,生成网络侧测量触发指示,所述网络侧测量触发指示用于指示收发器向多个网络侧设备发送上行参考信号,并指示所述多个网络侧设备对所述上行参考信号进行测量,所述上行参考信号用于所述多个网络侧设备获取所述终端的测量信息,并根据所述测量信息,以及所述终端与所述终端的服务小区之间传输的业务,获取所述服务小区中的业务分布;
所述收发器,用于向所述多个网络侧设备发送所述处理器生成的所述网络侧测量触发指示和所述上行参考信号。
在第十二方面的第一种可能的实现方式中,
所述处理器生成的所述网络侧测量触发指示为同步请求消息,所述同步请求消息中包括请求发送上行参考信号标识;或者,
所述处理器生成的所述网络侧测量触发指示为同步指示消息,所述同步指示消息中包括发送上行参考信号指示和发送时间戳。
第十三方面,本发明提供一种通信系统,包括:
如上述第五方面所述的网络侧设备,和多个如上述第七方面所述的终端或多个如上述第八方面所述的终端;或者,
如上述第六方面所述的网络侧设备,和多个如上述第七方面所述的终端或多个如上述第八方面所述的终端;或者,
如上述第九方面所述的网络侧设备,和多个如上述第十一方面所述的终端或多个如上述第十二方面所述的终端;或者,
如上述第十方面所述的网络侧设备,和多个如上述第十一所述的终端或多个如上述第十二方面所述的终端。
本发明的实施例提供的一种业务分布的获取方法、装置及系统, 能够使得该网络侧设备获取同一个服务小区中的多个终端的业务在信道状态上的分布,即该网络侧设备获取该多个终端的服务小区的业务分布。与现有技术的业务分布相比,由于本发明实施例提供的业务分布,是通过对信道进行测量并对信道测量结果进行分类计算,以及对信道传输的业务进行统计等获取的,因此本发明实施例提供的业务分布的获取方法能够在不影响网络效率的情况下,使得网络侧设备获得网络中所有终端的业务分布。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种通信系统框图;
图2为本发明实施例提供的一种业务分布的获取方法的流程图一;
图3为本发明实施例提供的一种业务分布的获取方法的流程图二;
图4为本发明实施例提供的一种业务分布的获取方法的流程图三;
图5为本发明实施例提供的一种业务分布的获取方法的流程图四;
图6为为本发明实施例提供的一种业务分布的获取方法的流程图五;
图7为本发明实施例提供的生成测量触发指示的示意图;
图8为本发明实施例提供的一种业务分布的获取方法的流程图六;
图9为本发明实施例提供的一种网络侧设备的结构示意图一;
图10为本发明实施例提供的一种网络侧设备的结构示意图二;
图11为本发明实施例提供的一种网络侧设备的结构示意图三;
图12为本发明实施例提供的一种网络侧设备的结构示意图四;
图13为本发明实施例提供的一种网络侧设备的结构示意图五;
图14为本发明实施例提供的另一种网络侧设备的结构示意图一;
图15为本发明实施例提供的另一种网络侧设备的结构示意图二;
图16为本发明实施例提供的另一种网络侧设备的结构示意图三;
图17为本发明实施例提供的另一种网络侧设备的结构示意图四;
图18为本发明实施例提供的另一种网络侧设备的结构示意图五;
图19为本发明实施例提供的一种终端的结构示意图;
图20为本发明实施例提供的另一种终端的结构示意图;
图21为本发明实施例提供的一种网络侧设备的硬件结构示意图一;
图22为本发明实施例提供的一种网络侧设备的硬件结构示意图二;
图23为本发明实施例提供的另一种网络侧设备的硬件结构示意图一;
图24为本发明实施例提供的另一种网络侧设备的硬件结构示意图二;
图25为本发明实施例提供的一种终端的硬件结构示意图;
图26为本发明实施例提供的另一种终端的硬件结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
为了更好的说明本发明实施例提供的业务分布的获取方法,下 面结合图1,对本发明实施例提供的业务分布的获取方法进行示例性的说明。如图1所示,为本发明实施例提供的一种通信系统框图。其中,网络侧设备为小区1、小区2和小区3提供服务,小区1为终端1、终端2和终端3的服务小区,小区2为终端4的服务小区,小区2为终端5的服务小区。假设,当网络侧设备需对小区1进行网络优化时,网络侧设备需获取小区1的业务分布,即网络侧设备需获取终端1的业务、终端2的业务和终端3的业务在小区1中的分布。
在现有技术中,网络侧设备通常通过获取终端1的地理位置信息和终端1的业务,终端2的地理位置信息和终端2的业务,以及终端3的地理位置信息和终端3的业务,从而获取小区1的业务分布。然而现有技术中的业务分布的获取方法,一方面,由于网络侧设备在获取终端的地理位置信息是会产生大量的空口数据,从而影响网络效率。另一方面,若终端1关闭了其定位功能或者没有定位功能,因此,网络侧设备只能获取终端2的业务和终端3的业务在小区1中的分布,使得网络侧设备获取的小区1的业务分布并不精确,进而在使用该小区1的业务分布对小区1进行优化时,影响对小区1中的网络的优化效果。
本发明实施例提供的业务分布的获取方法,是网络侧设备通过获取终端1的业务、终端2的业务和终端3的业务在信道状态上分布,从而获取该小区1的业务分布。网络侧设备在获取小区1的业务分布时并不依赖于对终端1-终端3的地理位置信息的获取。因此,通过本发明实施例提供的业务分布的获取方法,能够在不影响网络效率的情况下,使得网络侧设备获得小区1中所有终端的业务分布,从而使得网络侧设备获取的小区1的业务分布更加精确,进而在网络侧设备使用该小区1的业务分布对小区1进行优化时,提高优化效果。
本发明实施例提供一种业务分布的获取方法,如图2所示,该方法可以包括:
S101、网络侧设备获取同一个服务小区中的多个终端的测量信息,该测量信息包括该多个终端分别与主小区之间的第一信道状态值,该主小区是指该服务小区和该服务小区的各相邻小区中的一个。
可选的,上述网络侧设备可以为基站,该基站具体可以为演进型基站(英文:evolut ion node basestation,缩写:eNB)。
可选的,由于该网络侧设备为该多个终端提供服务,因此该网络侧设备能够直接获取到该多个终端的测量信息。例如,该网络侧设备可向该多个终端发送下行参考信号,由该终端对接收的下行参考信号进行测量,并将该测量信息发送给网络侧设备。即网络侧设备接收该多个终端发送的该多个终端的测量信息。该网络侧设备也可通过测量该多个终端发送的上行参考信号得到该多个终端的测量信息。对于其他网络侧设备提供服务的其他终端,该网络侧设备可以通过该网络侧设备与该其他网络侧设备之间的接口获取,例如长期演进(英文:long term evolution,缩写:LTE)网络中的X2接口,从该其他网络侧设备中获取该其他终端的测量信息。
需要说明的是,上述下行参考信号和上行参考信号都用于测量终端与小区之间的信道的传播特性。具体的,上述下行参考信号可以为LTE网络中的下行参考信号,例如,小区专用参考信号(英文:cell-specific reference signal,缩写:CRS),也可以为其他网络中与该下行参考信号具有相同功能的信号。上述上行参考信号可以为LTE网络中的上行参考信号,例如,探测参考信号(英文:Sounding Reference Signal,缩写:SRS),也可以为其他网络中与该上行参考信号具有相同功能的信号。
进一步的,该多个终端分别与该主小区之间的第一信道状态值,可以为能够表征信道的传播特性的任意物理量,例如信道增益,或者路径损耗等。
为了更好地说明终端与主小区之间的第一信道状态值的含义,下面仅以一个终端与主小区为例对第一信道状态值进行示例性的说明。
假设以路径损耗来表征第一信道状态值,则终端与主小区之间的第一信道状态值为:该终端发送上行参考信号的功率,与该主小区接收该终端发送的上行参考信号的功率之间的比值;也可以为该主小区发送下行参考信号的功率,与该终端接收该主小区发送的下行参考信号的功率之间的比值。
S102、该网络侧设备获取该多个终端中每个终端的平均业务量。
具体的,该网络侧设备可以统计多次测量时刻之间,例如相邻两次测量(可以理解为网络侧设备连续获取两次测量信息的时刻)之间,该多个终端中每个终端的业务量,并根据该每个终端的业务量,获取该每个终端的平均业务量。其中,该平均业务量可以理解为终端在其服务小区中,单位时间内传输的数据占用的资源信息。
示例性的,网络侧设备执行S101和S102之后,网络侧设备可获取与该多个终端中每个终端对应的第一信道状态值,以及该多个终端中每个终端的平均业务量。如表1所示,假设该多个终端有i个,分别为终端1,终端2,......,终端i,该主小区为小区1。若以路径损耗来表征第一信道状态值,则i个终端与该主小区之间的第一信道状态值分别可以表示为PL11到PL1i,且该i个终端分别在单位时间内传输的数据占用的资源信息(i个终端的平均业务量)可以表示为w1到wi
表1
  小区1 资源信息
终端1 PL11 w1
... ... ...
终端i PL1i wi
S103、该网络侧设备对该第一信道状态值进行分类。
其中,该网络侧设备对S101中获取的第一信道状态值进行分类,具体可以为下述的一种:
(1)该网络侧设备在获取该多个终端的测量信息之前,该网络侧设备根据该多个终端与该主小区之间的信道状态经验值中的最大 值和最小值,确定一个信道状态范围,并将该信道状态范围划分为若干个信道状态区间。该网络侧设备通过分别判断该多个终端与该主小区之间的第一信道状态值所属的信道状态区间,对该第一信道状态值进行分类。
(2)该网络侧设备根据获取的该多个终端与该主小区之间的第一信道状态值中的最大值和最小值,确定一个信道状态范围,并将该信道状态范围划分为若干个信道状态区间,以对该第一信道状态值进行分类。
S104、该网络侧设备确定业务分布,该业务分布包括每一类第一信道状态值中的第一信道状态典型值,以及对应于每一类第一信道状态值的终端集合与该主小区之间的第一业务量,该第一业务量是根据每个终端的平均业务量确定的。
其中,每一类第一信道状态值可以理解为上述的一个信道状态区间。具体的,第一信道状态典型值可以为上述每个信道状态区间中多个第一信道状态值的平均值;也可以为上述每个信道状态区间中多个第一信道状态值中的中值;还可以为上述每个信道状态区间中多个第一信道状态值的加权平均值,其中,计算该加权平均值的加权系数可以为与每一类第一信道状态值对应的终端集合中每个终端的平均业务量。
例如,假设,表1中PL11、PL12和PL13为一类第一信道状态值,且PL12为PL11、PL12和PL13中的中值,则选择PL12为该类第一信道状态值中的第一信道状态典型值。
进一步的,与每一类第一信道状态值对应的终端集合为,该每一类第一信道状态值中的每个第一信道状态值对应的终端所组成的终端集合。该网络侧设备根据该每个终端的平均业务量,确定该终端集合与该主小区之间的第一业务量。该第一业务量为该终端集合中所有终端的平均业务量之和。
在本发明实施例中,该网络侧设备获取的该多个终端所在的小区中,每一类第一信道状态值中的第一信道状态典型值,以及与每 一类第一信道状态值所对应的终端集合与主小区之间的第一业务量,构成了该多个终端所在的小区的业务分布。
具体的,假设网络侧设备需获取小区a的业务分布,且该小区a中有i个终端,主小区为小区1,并以路径损耗来表征该i个终端与小区1之间的第一信道状态值。即,该第一信道状态值可以表示为第一路径损耗,其中,该主小区可以为该小区a,也可以为该小区a的相邻小区中的一个。当该网络侧设备分别获取小区a中的i个终端的测量信息,以及该i个终端的平均业务量之后,该网络侧设备根据该i个终端的测量信息,以及平均业务量获取该小区a的业务分布的步骤包括:
S10、网络侧设备对该第一信道状态值进行分类。
该网络侧设备将该第一信道状态值分为k类,并确定该k类第一信道状态值中的每一类第一信道状态值的第一信道状态典型值。例如,该网络侧设备确定k类第一信道状态值中的第j(j=1,......,k)类第一信道状态值的第一信道状态典型值,可以选择第j类第一信道状态值中的多个第一信道状态值的中值,作为第j类第一信道状态值的第一信道状态典型值,即在本举例中,第j类第一信道状态值的第一信道状态典型值为第一路径损耗典型值,该第一路径损耗典型值可以表示为PLj。其中,与该第j类第一信道状态值对应的终端集合可以表示为Ua,j,1
特别的,网络侧设备对该第一信道状态值进行分类的方法可以为上述的网络侧设备对第一信道状态值进行分类的两种方法中的一种,具体的分类方法已在上述实施例中进行了详细的描述,此处不再赘述。
S11、网络侧设备获取与第j类第一信道状态值对应的终端集合Ua,j,1与小区1之间的第一业务量。
该网络侧设备根据该Ua,j,1中每个终端的平均业务量,获取该Ua,j,1与小区1之间的第一业务量。其中,该Ua,j,1中每个终端的平均业务量可以表示为wi,即为该Ua,j,1中每个终端在该小区a中,单位时间内传 输的数据占用的资源信息。该第一业务量可以表示为Wa,j,1,即为该Ua,j,1中所有终端的平均业务量之和,且该Wa,j,1的计算公式如下所示:
Figure PCTCN2014092589-appb-000001
进一步的,该网络侧设备通过执行上述S1至S2,可获取该小区a中与每一类第一信道状态值对应的PLj,以及Wa,j,1,如表2所示,PLj以及Wa,j,1,构成该小区a的业务分布。
表2
Figure PCTCN2014092589-appb-000002
在本发明实施例中,网络侧设备获取的业务分布为业务在信道状态上的分布。本发明实施例提供的业务分布的获取方法,通过对同一个服务小区中的多个终端分别与主小区之间的信道进行测量,且网络侧设备对该多个终端的测量信息中该多个终端与主小区之间的第一信道状态值进行分类,并分别获取与每一类第一信道状态值对应的第一信道状态典型值和第一业务量,从而该网络侧设备获取该多个终端的业务在信道状态上的分布,即该网络侧设备获取该多个终端的服务小区的业务分布。由于本发明实施例提供的业务分布,是通过对信道进行测量并对信道测量结果进行分类计算,以及对信道传输的业务进行统计等获取的,因此与现有技术根据该多个终端的地理位置信息,以及该多个终端传输的业务获取该多个终端的服务小区的业务分布相比,本发明实施例提供的业务分布的获取方法能够在不影响网络效率的情况下,使得网络侧设备获得网络中所有 终端的业务分布。
本发明实施例提供另一种业务分布的获取方法,如图3所示,该方法可以包括:
S201、网络侧设备获取多个终端的测量信息,该测量信息包括该多个终端分别与主小区之间的第一信道状态值,以及该多个终端分别与各次小区之间的第二信道状态值,该多个终端的服务小区为该主小区,各次小区为该主小区的各相邻小区。
可选的,由于该网络侧设备为该多个终端提供服务,因此该网络侧设备能够直接获取到该多个终端的测量信息。例如,该网络侧设备可向该多个终端发送下行参考信号,由该终端对接收的下行参考信息进行测量,并将该测量信息发送给网络侧设备。即网络侧设备接收该多个终端发送的该多个终端的测量信息。该网络侧设备也可通过测量该多个终端发送的上行参考信号得到该多个终端的测量信息。对于其他网络侧设备提供服务的其他终端,该网络侧设备可以通过该网络侧设备与该其他网络侧设备之间的接口,例如LTE网络中的X2接口,从该其他网络侧设备中获取该其他终端的测量信息。
进一步的,该多个终端分别与各次小区之间的第二信道状态值,可以为能够表征该信道的传播特性的任意物理量,例如信道增益,或者路径损耗等。
为了更好地说明终端与次小区之间的第二信道状态值的含义,下面仅以一个终端与一个次小区为例对第二信道状态值进行示例性的说明。
假设以路径损耗来表征第二信道状态值,则终端与次小区之间的第二信道状态值为:该次小区分别接收该终端发送的上行参考信号的功率,与该终端发送上行参考信号的功率之间的比值;也可以为该终端接收该次小区发送的下行参考信号的功率,与该次小区发送下行参考信号的功率之间的比值。
进一步的,该多个终端分别与主小区之间的第一信道状态值的 表征方式,可以参见如图2所示的实施例中的相关描述,此处不再赘述。
S202、该网络侧设备获取该多个终端中每个终端的平均业务量。
具体的,该网络侧设备获取该多个终端中每个终端的平均业务量的方法,可以参见如图2所示的实施例中的相关描述,此处不再赘述。
示例性的,网络侧设备执行S201和S202之后,网络侧设备可获取与该多个终端中每个终端对应的第一信道状态值和第二信道状态值,以及该多个终端中每个终端的平均业务量。如表3所示,假设该多个终端有i个,分别为终端1,终端2,......,终端i,该主小区(即该多个终端的服务小区)为小区1,该各次小区(即该多个终端的相邻小区)分别为小区2,小区3,......,小区N。若以路径损耗来表征第一信道状态值和第二信道状态值,则i个终端与该主小区之间的第一信道状态值分别可以表示为PL11到PL1i,i个终端与该各次小区之间的第二信道状态分别可以表示为PL21到PLN1。同理终端i与该各次小区之间的第二信道状态分别可以表示为PL2i到PLNi,且该i个终端在单位时间内传输的数据占用的资源信息(即i个终端的平均业务量)可以分别表示为w1到wi
表3
  小区1 小区2 ... 小区N 资源信息
终端1 PL11 PL21 ... PLN1 w1
... ... ... ... ... ...
终端i PL1i PL2i ... PLNi wi
S203、该网络侧设备对该第一信道状态值进行分类。
具体的,该网络侧设备对上述S201中获取的第一信道状态值进行分类的方法,可以参见如图2所示的实施例中的相关描述,此处不再赘述。
S204、该网络侧设备确定业务分布,该业务分布包括对应于每一类第一信道状态值的终端集合与各次小区之间的第二信道状态典 型值,以及该终端集合与各次小区之间的第二业务量,该第二信道状态典型值是该网络侧设备根据该第二信道状态值确定的,该第二业务量是该网络侧设备根据每个终端的平均业务量确定的。
需要说明的是,由于每一类第一信道状态值对应的终端集合与各次小区之间的第二信道状态典型值的含义均相同,因此下面以每一类第一信道状态值对应的终端集合与一个次小区之间的第二信道状态典型值为例对第二信道状态典型值的含义进行说明。
具体的,每一类第一信道状态值对应的终端集合与次小区之间的第二信道状态典型值,可以为该终端与该次小区之间的多个第二信道状态值的平均值;也可以为该终端集合与该次小区之间的多个第二信道状态值中的中值;还可以为该终端集合与该次小区之间的多个第二信道状态值的加权平均值,其中,计算该加权平均值的加权系数可以为该终端集合中每个终端的平均业务量。
优选的,在本发明实施例中,为了为网络技术的应用提供更好的参考信息,上述第二信道状态典型值可以为该终端集合与次小区之间的多个第二信道状态值的加权平均值。
例如,假设表3中终端1和终端2为一类第一信道状态典型值所对应的终端集合,且终端1和终端2与小区2之间的第二信道状态值分别为PL21和PL22,且该终端1和终端2的平均业务量分别为w1和w2,则该类终端与小区2之间的第二信道状态典型值为:
Figure PCTCN2014092589-appb-000003
其中,PL2,典型表示该类第一信道状态值所对应的终端集合与小区2之间的第二信道状态典型值
进一步地,每一类第一信道状态值所对应的终端集合与各次小区之间的第二业务量,为该终端集合相对于各次小区的终端集合中,所有终端的平均业务量之和。
其中,该终端集合相对于各次小区的终端集合可以理解为,该终端集合中与各次小区之间的第二信道状态值为可测量的有意义的 数值的终端的集合。
例如,若以路径损耗来表征该第二信道状态值,则当该路径损耗不为无穷大时,即当各次小区接收该终端集合中的终端发送的上行参考信号的功率不等于0时,该第二信道状态值为可测量到的有意义的数值。若以信道增益来表征该第二信道状态值,则当该信道增益不为0时,即当各次小区接收该终端集合中的终端发送的上行参考信号的功率不等于0时,该第二信道状态值为可测量到的有意义的数值。
在本发明实施例中,该网络侧设备获取的该多个终端所在的小区中,与每一类第一信道状态值对应的终端集合与各次小区之间的第二信道状态典型值,以及该终端集合与各次小区之间的第二业务量,构成了该多个终端所在的小区的业务分布。
具体的,假设网络侧设备需获取小区a的业务分布,且该小区a中有i个终端,主小区为小区1,各次小区分别为小区2,小区3,......,小区N,并以路径损耗来表征该i个终端与小区a之间的第一信道状态值,以及该i个终端分别与各次小区之间的第二信道状态值,即,该第一信道状态值可以表示为第一路径损耗,该第二信道状态值可以表示为第二路径损耗。其中,小区a为主小区1,各次小区为小区a的相邻小区,当该网络侧设备分别获取到小区a中的i个终端的测量信息,以及该i个终端的平均业务量之后,该网络侧设备根据该i个终端的测量信息,以及平均业务量获取该小区a的业务分布的步骤包括:
S20、网络侧设备对该第一信道状态值进行分类。
该网络侧设备将该第一信道状态值分为k类,其中,k类第一信道状态值中的第j(j=1,......,k)类第一信道状态值对应的终端集合可以表示Ua,j,1
特别的,网络侧设备对该第一信道状态值进行分类的方法可以为上述描述的网络侧设备对多个终端进行分类的两种方法中的一种,具体的分类方法已在上述实施例中进行了详细的描述,此处不 再赘述。
S21、网络侧设备获取与第j类第一信道状态值对应的终端集合Ua,j,1与各次小区之间的第二信道状态典型值和第二业务量。
该网络侧设备根据该Ua,j,1中每个终端与各次小区之间的第二信道状态值,确定该Ua,j,1相对于各次小区的终端集合,该终端集合可以表示为Ua,j,次,以及根据该Ua,j,次中每个终端的平均业务量,获取该Ua,j,次与各次小区之间的第二业务量。其中,该Ua,j,次中每个终端的平均业务量可以表示为wi’,即为该Ua,j,次中每个终端在该小区a中,单位时间内传输的数据占用的资源信息。该第二业务量可以表示为Wa,j,次,即为该Ua,j,次中所有终端的平均业务量之和。
需要说明的是,若Ua,j,1中每个终端与各次小区之间的第二信道状态值均为可测量的有意义的数值,则Ua,j,次与Ua,j,1相同;若Ua,j,1中有部分终端与某个次小区之间的第二信道状态不为可测量的有意义的数值,则与该某个次小区对应的Ua,j,次是Ua,j,1的子集。例如,假设Ua,j,1={终端1,终端2,终端3,终端4,终端5},若终端1,终端2,终端3,终端4,终端5与各次小区之间的第二信道状态值均为可测量的有意义的数值,则Ua,j,次={终端1,终端2,终端3,终端4,终端5};若终端1和终端2与某个次小区之间的第二信道状态值不为可测量的有意义的数值,则与该某个次小区对应的Ua,j,次={终端3,终端4,终端5}。
该网络侧设备根据该Ua,j,次中每个终端的wi’以及该Ua,j,次中每个终端与各次小区之间的第二路径损耗,确定该Ua,j,次与各次小区之间的第二路径损耗典型值,即该Ua,j,次与各次小区之间的第二信道状态典型值。其中,该Ua,j,次与各次小区之间的第二路径损耗典型值可以表示为PLa,j,次,该第二路径损耗可以表示为PLi,次,且该Wa,j,次和PLa,j,次的计算公式如下所示:
Figure PCTCN2014092589-appb-000004
Figure PCTCN2014092589-appb-000005
进一步的,该网络侧设备通过执行上述S21至S22,可获取该小区a中与每一类第一信道状态值对应PLa,j,次以及Wa,j,次,如表4所示,PLa,j,次以及Wa,j,次构成该小区a的业务分布。
表4
Figure PCTCN2014092589-appb-000006
在本发明实施例中,网络侧设备获取的业务分布为业务在信道状态上的分布,本发明实施例提供的业务分布的获取方法,通过对一个小区中的多个终端分别与主小区和各次小区之间的信道进行测量,且网络侧设备对该多个终端的测量信息中该多个终端与主小区之间的第一信道状态值进行分类,并分别获取与每一类第一信道状态值对应的第二信道状态典型值和第二业务量,从而该网络侧设备获取该多个终端的业务在信道状态上的分布,即该网络侧设备获取该多个终端的服务小区的业务分布。由于本发明实施例提供的业务分布,是通过对信道进行测量并对信道测量结果进行分类计算,以及对信道传输的业务进行统计等获取的,因此与现有技术根据该多个终端的地理位置信息,以及该多个终端传输的业务获取该多个终端的服务小区的业务分布相比,本发明实施例提供的业务分布的获取方法能够在不影响网络效率的情况下,使得网络侧设备获得网络 中所有终端的业务分布。
本发明实施例提供一种业务分布的获取方法,如图4所示,该方法可以包括:
S301、终端生成终端测量触发指示,该终端测量触发指示用于指示该终端对接收的下行参考信号进行测量。
S302、该终端对该下行参考信号进行测量,获取该终端的测量信息。
S302、该终端向网络侧设备发送该终端的测量信息,以使得该网络侧设备根据该终端的测量信息,以及该终端与该终端的服务小区之间传输的业务,获取该服务小区的业务分布,该网络侧设备为该终端提供服务。
其中,网络侧设备根据测量信息,以及该终端与该终端的服务小区之间传输的业务,获取该终端的服务小区的业务分布的具体实现方式,可参见如图2所示的实施例,或者如图3所示的实施例中的相关描述,此处不再赘述。
在本发明实施例中,终端向该网络侧设备发送测量信息,从而该网络侧设备根据该终端的测量信息,以及该终端与该终端的服务小区之间传输的业务,获取该终端的业务在信道状态上的分布,即该网络侧设备获取该终端所在小区的业务分布。与现有技术的业务分布相比,由于本发明实施例提供的业务分布,是通过对信道进行测量并对信道测量结果进行分类计算,以及对信道传输的业务进行统计等获取的,因此本发明实施例提供的业务分布的获取方法能够在不影响网络效率的情况下,使得网络侧设备获得网络中所有终端的业务分布。
本发明实施例提供一种业务分布的获取方法,如图5所示,该方法可以包括:
S401、终端生成网络侧测量触发指示,该网络侧测量触发指示用于指示该终端向多个网络侧设备发送上行参考信号,并指示该多个网络侧设备对该终端发送的该上行参考信号进行测量,该上行参 考信号用于该多个网络侧设备获取该终端的测量信息,并根据该测量信息,以及该终端与该终端的服务小区之间传输的业务,获取该服务小区的业务分布。
其中,上述多个网络侧设备中,除为该终端提供服务的网络侧设备外的其他网络侧设备,分别对其接收的该终端发送的上行参考信号进行测量,并将测量信息通过X2接口发送给为该终端服务提供的网络侧设备。进而为该终端服务提供的网络侧设备根据这些测量信息,以及该终端与该终端的服务小区之间传输的业务,获取该终端的服务小区的业务分布。
进一步的,为该终端提供服务的网络侧设备根据测量信息,以及该终端与该终端的服务小区之间传输的业务,获取该终端的服务小区的业务分布的具体实现方式,可参见如图2所示的实施例,或者如图3所示的实施例中的相关描述,在此不再赘述。
S402、该终端向该多个网络侧设备发送该网络侧测量触发指示。
S403、该终端向该多个网络侧设备发送该上行参考信号。
在本发明实施例中,终端生成的网络侧测量触发指示,指示该终端向多个网络侧设备发送上行参考信号,并指示该多个网络侧设备对该终端发送的该上行参考信号进行测量,使得该网络侧设备获取该终端的测量信息,从而该网络侧设备根据该终端的测量信息,以及该终端与该终端的服务小区之间传输的业务,获取该终端的业务在信道状态上的分布,即该网络侧设备获取该终端所在小区的业务分布。由于本发明实施例提供的业务分布,是通过对信道进行测量并对信道测量结果进行分类计算,以及对信道传输的业务进行统计等获取的,因此与现有技术根据该多个终端的地理位置信息,以及该多个终端传输的业务获取该多个终端的服务小区的业务分布相比,本发明实施例提供的业务分布的获取方法能够在不影响网络效率的情况下,使得网络侧设备获得网络中所有终端的业务分布。
本发明实施例提供一种业务分布的获取方法,如图6所示,该方法包括:
S501、网络侧设备与同一个服务小区中的多个终端中的每个终端之间传输第一空口数据,并在该第一空口数据传输完成后,在预设时间内检测是否有第二空口数据传输。
需要说明的是,网络侧设备和终端之间的传输资源为空口资源,利用该空口资源传输的数据为空口数据。本发明实施例中,第一空口数据为该网络侧设备和该多个终端中的每个终端之间相互传输的数据。
S502、若该网络侧设备在预设时间内未检测到第二空口数据传输,则在该预设时间后,该网络侧设备获取该多个终端的测量信息。该测量信息包括该多个终端分别与主小区之间的第一信道状态值,该主小区是指该服务小区和该服务小区的各相邻小区中的一个。
具体的,网络侧设备获取多个终端的测量信息的方式可以为下述的一种:
(1)若由该多个终端中的每一个终端测量该终端接收的下行参考信号获取该终端的测量信息,则当该多个终端为空闲态(英文:Idel)时,该多个终端中的每一个终端周期性的生成终端测量触发指示,测量该终端接收的该主小区下行参考信号,并将测量信息上报给该网络侧设备。其中,该终端可以测量该终端接收的该主小区的参考信号接收功率(英文:reference signal receiving power,缩写:RSRP),且该主小区的RSRP中包括该主小区的小区标识(英文:cell identity)。当该多个终端为连接态(英文:Active)时,该多个终端中的每一个终端在该终端与该网络侧设备之间的第一空口数据传输完成后,若该终端在预设时间内未检测到第二空口数据传输,则在预设时间后,该终端生成终端测量触发指示,指示该终端测量该终端接收的该主小区的RSRP,并将测量信息上报给该网络侧设备。
可选的,该预设时间可以采用定时器的方式实现,例如,在该多个终端中的每一个终端中分别设置一个倒计时器,并设置该倒计时器的初始值。如图7所示,当该多个终端分别与网络侧设备之间 开始传输第一空口数据时,在如图7所示的A点,该多个终端分别检测该倒计时器是否被激活。若该倒计时器没有被激活,则该多个终端分别激活该倒计时器,若该倒计时器已经被激活,则当该第一空口数据传输完成时启动该倒计时器,在如图7所示的B点,当该倒计时倒计时归零时,在如图7所示的C点,该多个终端分别去激活该倒计时器,并生成终端测量触发指示。若启动该倒计时器后,当该倒计时器还未倒计时归零时,该多个终端分别检测到第二空口数据传输,在如图7所示的D点,则该多个终端分别停止计时并重置该倒计时器的计时长度为初始值。
(2)与上述(1)的区别在于:当该多个终端为连接态时,该网络侧设备生成第一测量触发指示,并将该第一测量触发指示发送至该多个终端,该多个终端根据该第一测量触发指示,对该多个终端分别接收的该主小区的RSRP进行测量,并将测量信息上报给该网络侧设备。具体的,在该多个终端分别与该网络侧设备之间的第一空口数据传输完成后,若该网络侧设备在预设时间内未检测到第二空口数据传输,则在预设时间后,该网络侧设备生成第一测量触发指示,并将该第一测量触发指示发送至该多个终端。该多个终端根据该第一终端测量触发指示,测量该多个终端分别接收的该主小区的RSRP,并将测量信息上报给该网络侧设备。
可选的,该预设时间可以采用定时器的方式实现。例如,在该网络侧设备中设置一个倒计时器,并设置该倒计时器的初始值。如图7所示,当终端与网络侧设备之间开始传输第一空口数据时,如在图7所示的A点,该网络侧设备检测该倒计时器是否被激活。若该倒计时器没有被激活,则该网络侧设备激活该倒计时器,若该倒计时器已经被激活,则当该第一空口数据传输完成时启动该倒计时器,在如图7所示的B点,当该倒计时倒计时归零时,在如图7所示的C点,该网络侧设备去激活该倒计时器,并生成第一终端测量触发指示。若启动该倒计时器后,当该倒计时器还未倒计时归零时,在如图7所示的D点,该网络侧设备检测到第二空口数据传输,则 该网络侧设备停止计时并重置该倒计时器的计时长度为初始值。
(3)若由网络侧设备测量该多个终端的上行参考信号获取该多个终端的测量信息,则当该多个终端为空闲态时,该多个终端中的每一个终端分别向多个网络侧设备周期性的发送上行参考信息号。其中,该上行参考信号可以为该多个终端的SRS,且该多个终端的SRS中分别包含该多个终端的用户设备标识(英文:User Equipment ID,缩写:UEID)。当该多个终端为连接态时,该网络侧设备(即该多个终端提供服务的网络侧设备)生成第二测量触发指示,并将该第二测量触发指示发送至该多个终端,该多个终端根据该第二测量触发指示,向多个网络侧设备发送上行参考信号。若该主小区为该多个终端的服务小区,则该网络侧设备通过测量其接收到的上行参考信号,获得的该多个终端的测量信息。若该主小区为该多个终端的各相邻小区中的一个,则为该主小区提供服务的网络侧设备通过测量其接收到的上行参考信号,获得的该多个终端的测量信息,并将该测量信息通过网络侧设备间的接口发送至该网络侧设备,从而该网络侧设备获得该多个终端的测量信息。具体的,在第一空口数据传输完成后,若该网络侧设备在预设时间内未检测到第二空口数据传输,则在预设时间后,该网络侧设备生成该第二测量触发指示,并将该第二测量触发指示发送至该多个终端,指示该多个终端分别向该网络侧设备发送SRS,若该主小区为该多个终端的服务小区,则该网络侧设备测量其分别接收的SRS,获得该多个终端的测量信息。若该主小区为该多个终端的各相邻小区中的一个,则该网络侧设备接收为该主小区提供服务的网络侧设备发送的该多个终端的测量信息。
可选的,实现该预设时间的具体方式与上述(2)中实现该预设时间的具体方式类似,区别在于本方式中当该倒计时器倒计时归零时,在如图7所示的C点,该网络侧设备去激活该倒计时器,并生成第二测量触发指示。其他过程均可参见上述(2)中的相关描述,在此不再赘述。
(4)与上述(3)的区别在于:当该多个终端为连接态,该多个终端分别生成第三测量触发指示(即网络侧测量触发指示),分别指示该多个终端分别向多个网络侧设备发送SRS,并指示该多个网络侧设备测量该多个网络侧设备分别接收的SRS。具体的,在第一空口数据传输完成后,若该多个终端在预设时间内未检测到第二空口数据传输,则在预设时间后,该多个终端分别生成第三量触发指示,指示该多个终端分别向多个网络侧设备发送SRS,并指示该多个网络侧设备测量该多个网络侧设备分别接收的SRS。
可选的,该第三测量触发指示可以为同步请求消息,该同步请求消息中包括请求发送上行参考信号标识,用于请求网络侧设备接收终端发送的SRS。该第三测量触发指示还可以为同步指示消息,该同步指示消息中包括发送上行参考信号指示和发送时间戳(英文:timestamp),用于指示网络侧设备在接收到终端发送的SRS时,测量该SRS。
举例来说,当终端需要在经过网络侧设备允许的情况下向网络侧设备发送SRS,则第三测量触发指示为同步请求消息,从而终端在发送SRS之前,需向多个网络侧设备发送该同步请求消息,等待多个网络侧设备允许接收该终端发送的SRS时,该终端在该多个网络侧设备的控制下分别完成SRS的发送。或者,当终端可以在不需要经过网络侧设备允许的情况下直接向网络侧设备发送SRS,则第三测量触发指示为同步指示消息,从而该终端在发送SRS之前,需向多个网络侧设备发送该同步指示消息,以指示多个网络侧设备测量该终端发送的SRS。通过上述两种方式,可以实现该多个网络侧设备和该终端之间的同步。
进一步的,该第三测量触发指示可以通过设置一个新的消息实现;也可以将该第三测量触发指示携带在现有的消息中发送给该多个网络侧设备,本发明不作限制。
其中,第三测量触发指示可以理解为如图5所示的实施例中的网络侧测量触发指示。
可选的,实现该预设时间的具体方式与上述(1)中实现该预设时间的具体方式类似,区别在于本方式中当该倒计时器倒计时归零时,在如图7所示的C点,该多个终端去激活该倒计时器,并生成第三测量触发指示。其他过程均可参见上述(1)中的相关描述,在此不再赘述。
进一步的,在本发明实施例中,网络侧设备检或者终端测该倒计时器是否被激活是指,网络侧设备或者终端检测该倒计时器的状态位是否为激活态,例如,该倒计时器的状态位为1表示该倒计时器为激活态,则若将该倒计时器的状态位置1,表示激活该倒计时器,若将该倒计时器的状态位置0,表示去激活该倒计时器。
S503、该网络侧设备获取该多个终端中每个终端的平均业务量。
S504、该网络侧设备对该第一信道状态值进行分类。
S505、该网络侧设备确定该多个终端的服务小区的业务分布。
在本发明实施例中,该网络侧设备确定该多个终端的服务小区的业务分布具体为,该网络侧设备确定每一类第一信道状态值中的第一信道状态典型值,并根据该每个终端的平均业务量,确定对应于每一类第一信道状态值的终端集合与该主小区之间的第一业务量。其中,第一信道状态典型值和第一业务量,构成了该多个终端的服务小区的业务分布。至此,该网络侧设备获取到了该多个终端的服务小区的业务分布。具体的,该网络侧设备获取该多个终端的服务小区的业务分布的具体实现过程,可参见如图2所示实施例中相关过程的描述及举例,此处不再赘述。
可选的,上述S502中,网络侧设备获取的该多个终端的测量信息还可以包括该多个终端分别与各次小区之间的第二信道状态值,该各次小区为该服务小区和该各相邻小区中除该主小区外的其他小区。
进一步的,上述S505中,该网络侧设备确定该多个终端的服务小区的业务分布还包括该终端集合与各次小区之间的第二信道状态典型值,以及该终端集合与各次小区之间的第二业务量。其中,该 第二信道状态典型值是该网络侧设备根据该第二信道状态值确定的,该第二业务量是该网络侧设备根据每个终端的平均业务量确定的。
进一步的,本发明实施例中网络侧设备获取多个终端的测量信息的方式与如图6所示的网络侧设备获取多个终端的测量信息的方式类似。其中,本发明实施例中网络侧设备获取多个终端的测量信息的方式(1)和方式(2),与如图6所示的网络侧设备获取多个终端的测量信息的方式(1)和方式(2)的不同点在于,该多个终端中的每一个终端对其分别接收的该多个终端的服务小区的RSRP,和该多个终端的各次小区的RSRP进行测量,并将测量后所得到的测量信息上报给该网络侧设备。本发明实施例中网络侧设备获取多个终端的测量信息的方式(3)和方式(4),与如图6所示的网络侧设备获取多个终端的测量信息的方式(3)和方式(4)的不同点在于,该网络侧设备通过测量该多个终端发送的上行参考信号,获取第一测量信息,并接收为该多个终端的各相邻小区提供服务的网络侧设备发送的第二测量信息,以及根据该第一测量信息和该第二测量信息获取该多个终端的测量信息。
其中,该网络侧设备确定该终端集合与该各次小区之间的第二信道状态典型值,以及该终端集合与该各次小区之间的第二业务量的具体方式,可以参见如图3所示实施例中的S204中的具体描述,此处不再赘述。
上述该第一信道状态典型值,该第一业务量,该第二信道状态典型值以及该第二业务量,构成了该多个终端的服务小区的业务分布。至此,该网络侧设备获取到了该多个终端的服务小区的业务分布。
具体的,假设该网络侧设备需要获取小区a(该小区a为如图2所示实施例中的举例中的小区a)的业务分布,且各次小区分别为小区2,小区3,......,小区N,该第二信道状态值可以表示为第二路径损耗,则在该网络侧设备获取小区a的业务分布的S11之后, 还可以包括:
S12、网络侧设备获取与第j类信道状态值对应的Ua,j,1与各次小区之间的第二信道状态典型值和第二业务量。
该网络侧设备根据该Ua,j,1中每个终端与各次小区之间的第二信道状态值,确定该Ua,j,1相对于各次小区的终端集合,该终端集合可以表示为Ua,j,次,以及根据该Ua,j,次中每个终端的平均业务量,获取该Ua,j,次与各次小区之间的第二业务量。其中,该Ua,j,次中每个终端的平均业务量可以表示为wi’,即为该Ua,j,次中每个终端在该小区a中,单位时间内传输的数据占用的资源信息。该第二业务量可以表示为Wa,j,次,即为该Ua,j,次中所有终端的平均业务量之和。
该网络侧设备根据该Ua,j,次中每个终端的wi’以及该Ua,j,次中每个终端与各次小区之间的第二路径损耗,确定该Ua,j,次与各次小区之间的第二路径损耗典型值,即该Ua,j,次与各次小区之间的第二信道状态典型值。其中,该Ua,j,次与各次小区之间的第二路径损耗典型值可以表示为PLa,j,次,该第二路径损耗可以表示为PLi,次,且该Wa,j,次和PLa,j,次的计算公式如下所示:
Figure PCTCN2014092589-appb-000007
Figure PCTCN2014092589-appb-000008
进一步的,该网络侧设备通过执行上述S1至S3,可获取该小区a中与每一类信道状态值对应的PLj,Wa,j,1,PLa,j,次以及Wa,j,次,如表2所示,PLj,Wa,j,1,PLa,j,次以及Wa,j,次构成该小区a的业务分布。
表2
Figure PCTCN2014092589-appb-000009
同理,为该多个终端的各相邻小区提供服务的网络侧设备,分别通过执行S501至S505,可以获取各相邻小区的业务分布。
在本发明实施例中,网络侧设备获取的业务分布为业务在信道状态上的分布,本发明实施例提供的业务分布的获取方法,通过对一个小区中的多个终端分别与主小区之间的信道进行测量,且网络侧设备对该多个终端的测量信息中该多个终端与主小区之间的第一信道状态值进行分类,并分别获取每一类第一信道状态值与主小区之间的第一信道状态典型值和第一业务量,从而该网络侧设备获取该多个终端的业务在信道状态上的分布,即该网络侧设备获取该多个终端的服务小区的业务分布。由于本发明实施例提供的业务分布,是通过对信道进行测量并对信道测量结果进行分类计算,以及对信道传输的业务进行统计等获取的,因此与现有技术根据该多个终端的地理位置信息,以及该多个终端传输的业务获取该多个终端的服务小区的业务分布相比,本发明实施例提供的业务分布的获取方法能够在不影响网络效率的情况下,使得网络侧设备获得网络中所有终端的业务分布。
本发明实施例提供另一种业务分布的获取方法,如图8所示,该方法可以包括:
S601、网络侧设备与多个终端之间传输第一空口数据,并在该第一空口数据传输完成后,在预设时间内检测是否有第二空口数据 传输。
其中,第一空口数据的含义与如图6所示的实施例中第一空口数据的含义相同,具体可参见如图6所示的实施例中的相关描述,此处不再赘述。
S602、若该网络侧设备在预设时间内未检测到该第二空口数据传输,则在该预设时间后,该网络侧设备获取该多个终端的测量信息,该测量信息包括该多个终端分别与主小区之间的第一信道状态值,以及该多个终端分别与各次小区之间的第二信道状态值,该多个终端的服务小区为该主小区,各次小区为该主小区的各相邻小区。
具体的,网络侧设备获取多个终端的测量信息的方式,与如图6所示的实施例中网络侧设备获取多个终端的测量信息的方式类似,区别在于:在本发明实施例中该多个终端为该主小区中的多个终端,即该主小区为该多个终端的服务小区;而在如图6所示的实施例中该多个终端可以为该主小区中的多个终端,也可以为各次小区中的一个小区中的多个终端。
S603、该网络侧设备获取该多个终端中每个终端的平均业务量。
S604、该网络侧设备对该第一信道状态值进行分类。
具体的,该网络侧设备对该第一信道状态值进行分类的方式,可以参见如图2所示的实施例中的相关描述,此处不再赘述。
S605、该网络侧设备确定该主小区的业务分布。
在本发明实施例中,该网络侧设备确定该主小区的业务分布具体可以为,该网络侧设备根据该第二信道状态值和该每个终端的平均业务量,确定对应于每一类第一信道状态值的终端集合与各次小区之间的第二信道状态典型值,以及该终端集合与各次小区之间的第二业务量。其中,第二信道状态典型值以及第二业务量,构成了该主小区(即该多个终端的服务小区)的业务分布,至此,该网络侧获取了该主小区的业务分布。
具体的,该网络侧设备确定该第二信道状态典型值和该第二业务量的具体过程,可参见如图3所示的实施例中的相关描述,此处 不再赘述。
在本发明实施例中,网络侧设备获取的业务分布为业务在信道状态上的分布,本发明实施例提供的另一种业务分布的获取方法,通过对一个小区中的多个终端分别与主小区和各次小区之间的信道进行测量,且网络侧设备对该多个终端的测量信息中该多个终端与主小区之间的第一信道状态值进行分类,并分别获取与每一类第一信道状态值对应的第二信道状态典型值和第二业务量,从而该网络侧设备获取该多个终端的业务在信道状态上的分布,即该网络侧设备获取该多个终端的服务小区的业务分布。由于本发明实施例提供的业务分布,是通过对信道进行测量并对信道测量结果进行分类计算,以及对信道传输的业务进行统计等获取的,因此与现有技术根据该多个终端的地理位置信息,以及该多个终端传输的业务获取该多个终端的服务小区的业务分布相比,本发明实施例提供的业务分布的获取方法能够在不影响网络效率的情况下,使得网络侧设备获得网络中所有终端的业务分布。
进一步的,本发明实施例提供的业务分布,可以在网络技术中广泛应用。例如,本发明实施例提供的业务分布可以应用于网络优化技术中。
示例性的,假设为上述主小区提供服务的网络侧设备,根据该主小区的业务分布和各次小区的业务分布,对该主小区的网络性能进行优化。具体的,该网络侧设备根据该主小区的业务分布和各次小区的业务分布,评估该主小区中网络的传输参数的调整对该主小区的网络性能的影响,以及评估该主小区中网络的传输参数的调整对各次小区的网络性能的影响之后,该网络侧设备再调整该主小区中网络的传输参数,以使得该主小区中调整后的网络的传输参数能够适合该主小区中多个终端的业务分布,从而能够提升该主小区的网络性能,达到优化该主小区的目的。
具体的,例如,需要优化主小区的发射功率,则为该主小区提供服务的网络侧设备可以根据该主小区的业务分布,评估在该主小 区中不同的发射功率对该主小区中多个终端的传输速率的影响,即对该主小区的吞吐率的影响,并根据各次小区的业务分布,评估该主小区中不同的发射功率对各次小区中多个终端传输业务时的干扰程度。该网络侧设备通过评估的该主小区中不同发射功率对该主小区的吞吐率的影响,及该主小区中不同发射功率对各次小区中多个终端传输业务时的干扰程度,确定一个能够使得该主小区的吞吐率较大,且对各次小区中多个终端传输业务时的干扰程度较小的发射功率,并将该发射功率作为该主小区的发射功率,从而完成对该主小区的发射功率的优化。
进一步的,由于本发明实施例提供的业务分布,是通过对信道进行测量并对信道测量结果进行分类计算,以及对信道传输的业务进行统计等获取的,因此与现有技术中,通过终端的地理位置信息和终端传输的业务获取的业务分布相比,本发明实施例提供的业务分布的精确度更高,从而在网络优化技术中,以本发明实施例提供的型业务分布作为网络优化技术的参考信息,能够使得调整后的网络的传输参数更适合该主小区中多个终端的业务分布,即根据本发明实施例提供的业务分布对该主小区的网络性能的进行优化的优化效果更好。
如图9所示,本发明实施例提供一种网络侧设备,该网络侧设备可以包括:
获取单元10,用于获取同一个服务小区中的多个终端的测量信息和所述多个终端中每个终端的平均业务量,所述测量信息包括所述多个终端分别与主小区之间的第一信道状态值,所述主小区是指所述服务小区和所述服务小区的各相邻小区中的一个。
分类单元11,用于对所述获取单元10获取的所述第一信道状态值进行分类。
确定单元12,用于确定所述业务分布,所述业务分布包括所述分类单元11归类的每一类所述第一信道状态值中的第一信道状态典型值,以及对应于每一类所述第一信道状态值的终端集合与所述 主小区之间的第一业务量,所述第一业务量是根据所述获取单元10获取的所述每个终端的平均业务量确定的。
可选的,所述获取单元10获取的所述测量信息还包括所述多个终端分别与各次小区之间的第二信道状态值,所述各次小区为所述服务小区和所述各相邻小区中除所述主小区外的其他小区。
所述确定单元12确定的所述业务分布还包括所述终端集合与所述各次小区之间的第二信道状态典型值,以及所述终端集合与所述各次小区之间的第二业务量,所述第二信道状态典型值是根据所述获取单元10获取的所述第二信道状态值确定的,所述第二业务量是根据所述获取单元10获取的所述每个终端的平均业务量确定的。
可选的,所述网络侧设备为所述主小区提供服务,所述获取单元10,具体用于接收所述多个终端发送的所述测量信息。
可选的,结合图9,如图10所示,所述网络侧设备为所述主小区提供服务,所述网络侧设备还包括:
发送单元13,用于在所述获取单元10接收所述多个终端发送的所述测量信息之前,向所述多个终端发送下行参考信号和第一测量触发指示,所述第一测量触发指示用于指示所述多个终端对所述下行参考信号进行测量。
可选的,结合图9,如图11所示,所述网络侧设备为所述主小区提供服务,所述获取单元10具体包括发送模块100,接收模块101和测量模块102。
所述发送模块100,用于向所述多个终端发送第二测量触发指示,所述第二测量触发指示用于指示所述多个终端发送上行参考信号。
所述接收模块101,用于接收所述多个终端发送的所述上行参考信号。
所述测量模块102,用于对所述接收模块101接收的所述上行参考信号进行测量,获得所述测量信息。
可选的,结合图9,如图12所示,所述网络侧设备为所述主小 区提供服务,所述获取单元10具体包括接收模块101和测量模块102。
所述接收模块101,用于接收所述多个终端分别发送的第三测量触发指示和上行参考信号,所述第三测量触发指示用于指示所述多个终端发送所述上行参考信号,并指示测量模块对所述上行参考信号进行测量。
所述测量模块102,用于对所述接收模块101接收的所述上行参考信号进行测量,获得所述测量信息。
可选的,所述网络侧设备不为所述主小区提供服务,所述获取单元10,具体用于接收为所述主小区提供服务的网络侧设备发送的所述测量信息。
可选的,如图11所示,所述获取单元10获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述服务小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各相邻小区之间的信道状态值,所述获取单元10具体包括发送模块100,接收模块101和测量模块102。
所述发送模块100,用于向所述多个终端发送第二测量触发指示,所述第二测量触发指示用于指示所述多个终端发送上行参考信号。
所述接收模块101,用于接收所述多个终端发送的所述上行参考信号和为所述各相邻小区提供服务的网络侧设备发送的所述第二测量信息。
所述测量模块102,用于对所述接收模块101接收的所述上行参考信号进行测量,获得所述第一测量信息。
可选的,如图12所示,所述获取单元10获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述服务小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各相邻小区之间的信道状态值,所述获取单元10具体包括接收模块101和测量模块102。
所述接收模块101,用于接收所述多个终端分别发送的第三测量触发指示、所述多个终端分别发送的上行参考信号,以及为所述各相邻小区提供服务的网络侧设备发送的所述第二测量信息,所述第三测量触发指示用于指示所述多个终端发送所述上行参考信号,并指示所述测量模块对所述上行参考信号进行测量。
所述测量模块102,用于对所述接收模块接收的所述上行参考信号进行测量,获得所述第一测量信息。
可选的,如图13所示,所述网络侧设备还包括:
检测单元14,用于在第一空口数据传输完成后,检测所述网络侧设备在预设时间内是否有第二空口数据传输。
所述获取单元10,具体用于若所述检测单元在预设时间内未检测到第二空口数据传输,则在所述预设时间后,获取所述多个终端的测量信息。
可选的,所述接收模块101接收的所述第三测量触发指示为同步请求消息,所述同步请求消息中包括请求发送上行参考信号标识;或者,所述接收模块102接收的所述第三测量触发指示为同步指示消息,所述同步指示消息中包括发送上行参考信号指示和发送时间戳。
需要说明的是,本发明实施例提供的网络侧设备可以为基站,该基站具体可以为演进型基站(英文:evolution node basestation,缩写:eNB)。
本发明实施例提供的网络侧设备,能够对同一个服务小区中的多个终端分别与主小区之间的信道进行测量,且能够对该多个终端的测量信息中包含的该多个终端与主小区之间的第一信道状态值进行分类,并分别获取对应于每一类第一信道状态值的第一信道状态典型值和第一业务量,从而获取该多个终端的业务在信道状态上的分布,即该网络侧设备获取该多个终端的服务小区的业务分布。由于本发明实施例提供的网络侧设备,是通过对信道进行测量并对信道测量结果进行分类计算,以及对信道传输的业务进行统计等获取 的该多个终端的服务小区的业务分布,因此与现有技术根据该多个终端的地理位置信息,以及该多个终端传输的业务获取该多个终端的服务小区的业务分布相比,本发明实施例提供的网络侧设备能够在不影响网络效率的情况下,获得网络中所有终端的业务分布。
如图14所示,本发明实施例提供另一种网络侧设备,该网络侧设备可以包括:
获取单元20,用于获取多个终端的测量信息和多个终端中每个终端的平均业务量,所述测量信息包括所述多个终端分别与主小区之间的第一信道状态值,以及所述多个终端分别与各次小区之间的第二信道状态值,所述多个终端的服务小区为所述主小区,所述各次小区为所述主小区的各相邻小区。
分类单元21,用于对所述获取单元20获取的所述第一信道状态值进行分类。
确定单元22,用于确定所述业务分布,所述业务分布包括对应于所述分类单元22归类的每一类所述第一信道状态值的终端集合与所述各次小区之间的第二信道状态典型值,以及所述终端集合与所述各次小区之间的第二业务量,所述第二信道状态典型值是根据所述获取单元20获取的所述第二信道状态值确定的,所述第二业务量是根据所述获取单元20获取的所述每个终端的平均业务量确定的。
可选的,所述获取单元20获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,所述获取单元20,具体用于接收所述多个终端发送的所述第一测量信息和为所述各次小区提供服务的网络侧设备发送的所述第二测量信息。
可选的,结合图14,如图15所示,所述网络侧设备还包括:
发送单元23,用于在所述获取单元20接收所述多个终端发送的所述第一测量信息之前,向所述多个终端发送下行参考信号和第 一测量触发指示,所述第一测量触发指示用于指示所述多个终端对所述下行参考信号进行测量。
可选的,结合图14,如图16所示,所述获取单元20获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,所述获取单元20具体包括发送模块200,接收模块201和测量模块202。
所述发送模块200,用于向所述多个终端发送第二测量触发指示,所述第二测量触发指示用于指示所述多个终端发送上行参考信号。
所述接收模块201,用于接收所述多个终端发送的所述上行参考信号和为所述各次小区提供服务的网络侧设备发送的所述第二测量信息。
所述测量模块202,用于对所述接收模块201接收的所述上行参考信号进行测量,获得所述第一测量信息。
可选的,结合图14,如图17所示,所述获取单元20获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,所述获取单元20具体包括接收模块201和测量模块202。
所述接收模块201,用于接收所述多个终端分别发送的第三测量触发指示、所述多个终端发送的所述上行参考信号,以及为所述各次小区提供服务的网络侧设备发送的所述第二测量信息,所述第三测量触发指示用于指示所述多个终端发送所述上行参考信号,并指示所述测量模块202对所述上行参考信号进行测量。
所述测量模块202,用于对所述接收模块201接收的所述上行参考信号进行测量,获得所述第一测量信息。
可选的,结合图14,如图18所示,所述网络侧设备还包括:
检测单元24,用于在第一空口数据传输完成后,检测所述网络 侧设备在预设时间内是否有第二空口数据传输。
所述获取单元20,具体用于若所述检测单元24在预设时间内未检测到第二空口数据传输,则在所述预设时间后,获取所述多个终端的测量信息。
需要说明的是,本发明实施例提供的网络侧设备可以为基站,该基站具体可以为演进型基站(英文:evolution node basestation,缩写:eNB)。
本发明实施例提供的网络侧设备,能够对同一个服务小区中的多个终端分别与主小区和各次小区之间的信道进行测量,且对该多个终端的测量信息中包含的该多个终端与主小区之间的第一信道状态值进行分类,并分别获取对应于每一类第一信道状态值的第二信道状态典型值和第二业务量,从而获取该多个终端的业务在信道状态上的分布,即该网络侧设备获取该多个终端的服务小区的业务分布。由于本发明实施例提供的网络侧设备,是通过对信道进行测量并对信道测量结果进行分类计算,以及对信道传输的业务进行统计等获取该多个终端的服务小区的业务分布,因此与现有技术根据该多个终端的地理位置信息,以及该多个终端传输的业务获取该多个终端的服务小区的业务分布相比,本发明实施例提供的网络侧设备能够在不影响网络效率的情况下,获得网络中所有终端的业务分布。
如图19所示,本发明实施例提供一种终端,该终端可以包括:
生成单元30,用于生成终端测量触发指示,所述终端测量触发指示用于指示测量单元31对接收的下行参考信号进行测量。
所述测量单元31,用于对所述下行参考信号进行测量,获取所述终端的测量信息。
所述发送单元32,用于向网络侧设备发送所述测量单元31获取的所述终端的测量信息,以使得所述网络侧设备根据所述终端的测量信息,以及所述终端与所述终端的服务小区之间传输的业务,获取所述服务小区的业务分布,所述网络侧设备为所述终端提供服务。
需要说明的是,本发明实施例提供的终端可以包括但不限于个人电脑(英文:Personal Computer)、膝上型电脑(英文:Laptop Computer)、平板电脑(英文:Tablet Computer)、上网本(英文:Netbook)、蜂窝电话(英文:Cellular Phone)、手持设备(英文:Handheld)、无绳电话(英文:Cordless Phone)、个人数字助理(英文:Personal Digital Assistant,缩写:PDA)、移动WiFi热点设备(英文:MiFi Devices)、智能手表、智能眼镜、无线调制解调器(英文:Modem)、无线路由器、无线本地环路(英文:Wireless Local Loop,缩写:WLL)台等。
本发明实施例提供的终端,能够生成终端测量触发指示,指示该终端测量该终端接收的下行参考信号,获取该终端的测量信息,并向网络侧设备发送该测量信息,从而使得该网络侧设备根据该终端的测量信息,以及该终端与该终端的服务小区之间传输的业务,获取该终端的业务在信道状态上的分布,即该网络侧设备获取该终端所在小区的业务分布。与现有技术的业务分布相比,由于根据本发明实施例提供的终端获取的业务分布,是通过对信道进行测量并对信道测量结果进行分类计算,以及对信道传输的业务进行统计等获取的,因此根据本发明实施例提供的终端能够在不影响网络效率的情况下,使得网络侧设备获得网络中所有终端的业务分布。
如图20所示,本发明实施例提供另一种终端,该终端可以包括:
生成单元40,生成网络侧测量触发指示,所述网络侧测量触发指示用于指示发送单元41向多个网络侧设备发送上行参考信号,并指示所述多个网络侧设备对所述上行参考信号进行测量,所述上行参考信号用于所述多个网络侧设备获取所述终端的测量信息,并根据所述测量信息,以及所述终端与所述终端的服务小区之间传输的业务,获取所述服务小区中的业务分布。
所述发送单元41,用于向所述多个网络侧设备发送所述生成单元40生成的所述网络侧测量触发指示和所述上行参考信号。
可选的,所述生成单元40生成的所述网络侧测量触发指示为同 步请求消息,所述同步请求消息中包括请求发送上行参考信号标识;或者,所述生成单元40生成的所述网络侧测量触发指示为同步指示消息,所述同步指示消息中包括发送上行参考信号指示和发送时间戳。
需要说明的是,本发明实施例提供的终端可以包括但不限于个人电脑、膝上型电脑、平板电脑、上网本、蜂窝电话、手持设备、无绳电话、PDA、移动WiFi热点设备、智能手表、智能眼镜、无线调制解调器、无线路由器、WLL台等。
本发明实施例提供的终端,能够生成的网络侧测量触发指示,指示该终端向多个网络侧设备发送上行参考信号,并指示该多个网络侧设备对该终端发送的该上行参考信号进行测量,使得该网络侧设备获取该终端的测量信息,从而该网络侧设备根据该终端的测量信息,以及该终端与该终端的服务小区之间传输的业务,获取该终端的业务在信道状态上的分布,即该网络侧设备获取该终端所在小区的业务分布。由于根据本发明实施例提供的终端获取的业务分布,是通过对信道进行测量并对信道测量结果进行分类计算,以及对信道传输的业务进行统计等获取的,因此与现有技术根据多个终端的地理位置信息,以及该多个终端传输的业务获取该多个终端的服务小区的业务分布相比,本发明实施例提供的终端能够在不影响网络效率的情况下,使得网络侧设备获得网络中所有终端的业务分布。
如图21所示,本发明实施例提供一种网络侧设备,该网络侧设备可以包括:处理器50、存储器51,以及系统总线52。所述处理器50和所述存储器51之间通过所述系统总线52连接并完成相互间的通信。
所述处理器50可以是一个中央处理器(英文:central processing unit,缩写:CPU),或者是特定集成电路(英文:application specific integrated circuit,缩写:ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。
所述存储器51可以包括易失性存储器(英文:volatile  memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);所述存储器51也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);所述存储器51还可以包括上述种类的存储器的组合。
当所述网络侧设备运行时,处理器50和存储器51可以执行图2或图6所述的方法流程,具体包括:
所述处理器50,用于获取同一个服务小区中的多个终端的测量信息和所述多个终端中每个终端的平均业务量,并对所述多个终端分别与主小区之间的第一信道状态值进行分类,以及确定所述业务分布,所述测量信息包括所述第一信道状态值,所述主小区是指所述服务小区和所述服务小区的各相邻小区中的一个,所述业务分布包括每一类所述第一信道状态值中的第一信道状态典型值,以及对应于每一类所述第一信道状态值的终端集合与所述主小区之间的第一业务量,所述第一业务量是根据所述每个终端的平均业务量确定的;所述存储器51,用于存储所述测量信息、所述多个终端中每个终端的平均业务量、所述第一信道状态值、所述业务分布、每一类所述第一信道状态值中的第一信道状态典型值、所述第一业务量,以及控制所述处理器50完成上述过程的软件程序,从而所述处理器50通过执行所述软件程序并调用所述测量信息、所述多个终端中每个终端的平均业务量、所述第一信道状态值、所述业务分布、每一类所述第一信道状态值中的第一信道状态典型值,以及所述第一业务量,完成上述过程。
可选的,所述处理器50获取的所述测量信息还包括所述多个终端分别与各次小区之间的第二信道状态值,所述各次小区为所述服务小区和所述各相邻小区中除所述主小区外的其他小区,所述处理器确定50的所述业务分布还包括:所述终端集合与所述各次小区之间的第二信道状态典型值,以及所述终端集合与所述各次小区之间 的第二业务量,所述第二信道状态典型值是根据所述第二信道状态值确定的,所述第二业务量是根据所述每个终端的平均业务量确定的。
可选的,所述网络侧设备为所述主小区提供服务,所述处理器50,具体用于接收所述多个终端发送的所述测量信息。
可选的,结合图21,如图22所示,所述网络侧设备为所述主小区提供服务,所述网络侧设备还包括:
收发器53,用于在所述处理器接收所述多个终端发送的所述测量信息之前,向所述多个终端发送下行参考信号和第一测量触发指示,所述第一测量触发指示用于指示所述多个终端对所述下行参考信号进行测量。
其中,所述收发器53,可以为具有独立的接收器和独立的发送器的模块,也可以为由接收器和发送器集成的模块。
可选的,所述网络侧设备为所述主小区提供服务,所述处理器50,具体用于向所述多个终端发送第二测量触发指示,并接收所述多个终端发送的上行参考信号,以及对所述上行参考信号进行测量,获得所述测量信息,所述第二测量触发指示用于指示所述多个终端发送上行参考信号。
可选的,所述网络侧设备为所述主小区提供服务,所述处理器50,具体用于接收所述多个终端分别发送的第三测量触发指示和上行参考信号,并对所述上行参考信号进行测量,获得所述测量信息,所述第三测量触发指示用于指示所述多个终端发送所述上行参考信号,并指示所述处理器对所述上行参考信号进行测量。
可选的,所述网络侧设备不为所述主小区提供服务,所述处理器50,具体用于接收为所述主小区提供服务的网络侧设备发送的所述测量信息。
可选的,所述处理器50获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述服务小区之间的信道状态值,所述第二测量信息包括所述多个终端与所 述各相邻小区之间的信道状态值,所述处理器50,具体用于向所述多个终端发送第二测量触发指示,并接收所述多个终端发送的上行参考信号和为所述各相邻小区提供服务的网络侧设备发送的所述第二测量信息,以及对所述上行参考信号进行测量,获得所述第一测量信息,所述第二测量触发指示用于指示所述多个终端发送所述上行参考信号。
可选的,所述处理器50获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述服务小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各相邻小区之间的信道状态值,所述处理器50,具体用于接收所述多个终端分别发送的第三测量触发指示、所述多个终端分别发送的上行参考信号,以及为所述各相邻小区提供服务的网络侧设备发送的所述第二测量信息,并对所述上行参考信号进行测量,获得所述第一测量信息,所述第三测量触发指示用于指示所述多个终端发送所述上行参考信号,并指示所述处理器对所述上行参考信号进行测量。
可选的,所述处理器50,具体用于在第一空口数据传输完成后,若所述处理器50在预设时间内未检测到第二空口数据传输,则在所述预设时间后,获取所述多个终端的测量信息。
可选的,所述处理器50接收的所述第三测量触发指示为同步请求消息,所述同步请求消息中包括请求发送上行参考信号标识;或者,所述处理器50接收的所述第三测量触发指示为同步指示消息,所述同步指示消息中包括发送上行参考信号指示和发送时间戳。
本发明实施例提供的网络侧设备,能够对同一个服务小区中的多个终端分别与主小区之间的信道进行测量,且能够对该多个终端的测量信息中包含的该多个终端与主小区之间的第一信道状态值进行分类,并分别获取对应于每一类第一信道状态值的第一信道状态典型值和第一业务量,从而获取该多个终端的业务在信道状态上的分布,即该网络侧设备获取该多个终端的服务小区的业务分布。由 于本发明实施例提供的网络侧设备,是通过对信道进行测量并对信道测量结果进行分类计算,以及对信道传输的业务进行统计等获取的该多个终端的服务小区的业务分布,因此与现有技术根据该多个终端的地理位置信息,以及该多个终端传输的业务获取该多个终端的服务小区的业务分布相比,本发明实施例提供的网络侧设备能够在不影响网络效率的情况下,获得网络中所有终端的业务分布。
如图23所示,本发明实施例提供另一种网络侧设备,该网络侧设备可以包括:处理器60、存储器61,以及系统总线62。所述处理器60和所述存储器61之间通过所述系统总线62连接并完成相互间的通信。
所述处理器60可以是一个CPU,或者是ASIC,或者是被配置成实施本发明实施例的一个或多个集成电路。
所述存储器61可以包括易失性存储器,例如RAM;所述存储器61也可以包括非易失性存储器,例如ROM,快闪存储器,HDD或SSD;所述存储器61还可以包括上述种类的存储器的组合。
当所述网络侧设备运行时,处理器60和存储器61可以执行图3或图8所述的方法流程,具体包括:
处理器60,用于获取多个终端的测量信息和所述多个终端中每个终端的平均业务量,并对所述多个终端分别与主小区之间的第一信道状态值进行分类,以及确定所述业务分布,所述测量信息包括所述第一信道状态值,以及所述多个终端分别与各次小区之间的第二信道状态值,所述多个终端的服务小区为所述主小区,所述各次小区为所述主小区的各相邻小区,所述业务分布包括对应于每一类所述第一信道状态值的终端集合与所述各次小区之间的第二信道状态典型值,以及所述终端集合与所述各次小区之间的第二业务量,所述第二信道状态典型值是根据所述第二信道状态值确定的,所述第二业务量是根据所述每个终端的平均业务量确定的;所述存储器61,用于存储所述测量信息、所述多个终端中每个终端的平均业务量、所述业务分布、所述第一信道状态值、所述第二信道状态值、 所述第二信道状态典型值、所述第二业务量,以及控制所述处理器60完成上述过程的软件程序,从而所述处理器60通过执行所述软件程序并调用所述测量信息、所述多个终端中每个终端的平均业务量、所述业务分布、所述第一信道状态值、所述第二信道状态值、所述第二信道状态典型值,以及所述第二业务量,完成上述过程。
可选的,所述处理器60获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,所述处理器60,具体用于接收所述多个终端发送的所述第一测量信息和为所述各次小区提供服务的网络侧设备发送的所述第二测量信息。
可选的,结合图23,如图24所示,所述网络侧设备还包括:
收发器63,用于在所述处理器接收所述多个终端发送的所述第一测量信息之前,向所述多个终端发送下行参考信号和第一测量触发指示,所述第一测量触发指示用于指示所述多个终端对所述下行参考信号进行测量。
其中,所述收发器63,可以为具有独立的接收器和独立的发送器的模块,也可以为由接收器和发送器集成的模块。
可选的,所述处理器60获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,所述处理器60,具体用于向所述多个终端发送第二测量触发指示,并接收所述多个终端发送的上行参考信号和为所述各次小区提供服务的网络侧设备发送的所述第二测量信息,以及对所述上行参考信号进行测量,获得所述第一测量信息,所述第二测量触发指示用于指示所述多个终端发送上行参考信号。
可选的,所述处理器60获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述 各次小区之间的信道状态值,所述处理器60,具体用于接收所述多个终端分别发送的第三测量触发指示、所述多个终端发送的上行参考信号,以及为所述各次小区提供服务的网络侧设备发送的所述第二测量信息,并对所述上行参考信号进行测量,获得所述第一测量信息所述第三测量触发指示用于指示所述多个终端发送所述上行参考信号,并指示所述处理器60对所述上行参考信号进行测量。
可选的,所述处理器60,具体用于在第一空口数据传输完成后,若所述处理器在预设时间内未检测到第二空口数据传输,则在所述预设时间后,获取所述多个终端的测量信息。
本发明实施例提供的网络侧设备,能够对同一个服务小区中的多个终端分别与主小区和各次小区之间的信道进行测量,且对该多个终端的测量信息中包含的该多个终端与主小区之间的第一信道状态值进行分类,并分别获取对应于每一类第一信道状态值的第二信道状态典型值和第二业务量,从而获取该多个终端的业务在信道状态上的分布,即该网络侧设备获取该多个终端的服务小区的业务分布。由于本发明实施例提供的网络侧设备,是通过对信道进行测量并对信道测量结果进行分类计算,以及对信道传输的业务进行统计等获取该多个终端的服务小区的业务分布,因此与现有技术根据该多个终端的地理位置信息,以及该多个终端传输的业务获取该多个终端的服务小区的业务分布相比,本发明实施例提供的网络侧设备能够在不影响网络效率的情况下,获得网络中所有终端的业务分布。
如图25所示,本发明实施例提供一种终端,该终端可以包括:处理器70、收发器71、存储器72,以及系统总线73。所述处理器70和收发器71以及所述存储器72之间通过所述系统总线73连接并完成相互间的通信。
所述处理器70可以是一个CPU,或者是ASIC,或者是被配置成实施本发明实施例的一个或多个集成电路。
所述收发器71,可以为具有独立的接收器和独立的发送器的模块,也可以为由接收器和发送器集成的模块。
所述存储器72可以包括易失性存储器,例如RAM;所述存储器72也可以包括非易失性存储器,例如ROM,快闪存储器,HDD或SSD;所述存储器72还可以包括上述种类的存储器的组合。
当所述终端运行时,处理器70,收发器71和存储器72可以执行图4、图6或图8所述的方法流程,具体包括:
所述处理器70,用于生成终端测量触发指示,并对接收的下行参考信号进行测量,获取所述终端的测量信息,所述终端测量触发指示用于指示所述处理器70对所述下行参考信号进行测量;所述收发器71,用于向网络侧设备发送所述处理器70获取的所述终端的测量信息,以使得所述网络侧设备根据所述终端的测量信息,以及所述终端与所述终端的服务小区之间传输的业务,获取所述服务小区的业务分布,所述网络侧设备为所述终端提供服务;所述存储器72,用于存储所述终端测量触发指示、所述终端的测量信息、所述下行参考信号,以及控制所述处理器70完成上述过程的软件程序,从而所述处理器70通过执行所述软件程序并调用所述终端测量触发指示、所述终端的测量信息,以及所述下行参考信号,完成上述过程。
本发明实施例提供的终端,能够生成终端测量触发指示,指示该终端测量该终端接收的下行参考信号,获取该终端的测量信息,并向网络侧设备发送该测量信息,从而使得该网络侧设备根据该终端的测量信息,以及该终端与该终端的服务小区之间传输的业务,获取该终端的业务在信道状态上的分布,即该网络侧设备获取该终端所在小区的业务分布。与现有技术的业务分布相比,由于根据本发明实施例提供的终端获取的业务分布,是通过对信道进行测量并对信道测量结果进行分类计算,以及对信道传输的业务进行统计等获取的,因此根据本发明实施例提供的终端能够在不影响网络效率的情况下,使得网络侧设备获得网络中所有终端的业务分布。
如图26所示,本发明实施例提供另一种终端,该终端可以包括:处理器80、收发器81、存储器82,以及系统总线83。所述处理器 80和收发器81以及所述存储器82之间通过所述系统总线83连接并完成相互间的通信。
所述处理器80可以是一个CPU,或者是ASIC,或者是被配置成实施本发明实施例的一个或多个集成电路。
所述收发器81,可以为具有独立的接收器和独立的发送器的模块,也可以为由接收器和发送器集成的模块。
所述存储器82可以包括易失性存储器,例如RAM;所述存储器82也可以包括非易失性存储器,例如ROM,快闪存储器,HDD或SSD;所述存储器82还可以包括上述种类的存储器的组合。
当所述终端运行时,处理器80,收发器81和存储器82可以执行图5、图6或图8所述的方法流程,具体包括:
所述处理器80,生成网络侧测量触发指示,所述网络侧测量触发指示用于指示收发器81向多个网络侧设备发送上行参考信号,并指示所述多个网络侧设备对所述上行参考信号进行测量,所述上行参考信号用于所述多个网络侧设备获取所述终端的测量信息,并根据所述测量信息,以及所述终端与所述终端的服务小区之间传输的业务,获取所述服务小区中的业务分布;所述收发器81,用于向所述多个网络侧设备发送所述处理器生成的所述网络侧测量触发指示和所述上行参考信号;所述存储器82,用于存储所述网络侧测量触发指示、所述上行参考信号,以及控制所述处理器80完成上述过程的软件程序,从而所述处理器80通过执行所述软件程序并调用所述网络侧测量触发指示和所述上行参考信号,完成上述过程。
可选的,所述处理器80生成的所述网络侧测量触发指示为同步请求消息,所述同步请求消息中包括请求发送上行参考信号标识;或者,所述处理器80生成的所述网络侧测量触发指示为同步指示消息,所述同步指示消息中包括发送上行参考信号指示和发送时间戳。
本发明实施例提供的终端,能够生成的网络侧测量触发指示,指示该终端向多个网络侧设备发送上行参考信号,并指示该多个网络侧设备对该终端发送的该上行参考信号进行测量,使得该网络侧 设备获取该终端的测量信息,从而该网络侧设备根据该终端的测量信息,以及该终端与该终端的服务小区之间传输的业务,获取该终端的业务在信道状态上的分布,即该网络侧设备获取该终端所在小区的业务分布。由于根据本发明实施例提供的终端获取的业务分布,是通过对信道进行测量并对信道测量结果进行分类计算,以及对信道传输的业务进行统计等获取的,因此与现有技术根据多个终端的地理位置信息,以及该多个终端传输的业务获取该多个终端的服务小区的业务分布相比,本发明实施例提供的终端能够在不影响网络效率的情况下,使得网络侧设备获得网络中所有终端的业务分布。
如图1所示,本发明实施例提供一种通信系统,该通信系统可以包括:如图9至图13所示的任一种网络侧设备,和多个如图19所示的终端或多个如图20所示的终端;或者,如图14至图18所示的任一种网络侧设备,和多个如图19所示的终端或多个如图20所示的终端;或者,如图21至图22所示的任一种网络侧设备,和多个如图25所示的终端或多个如图26所示的终端;或者,如图23至图24所示的任一种网络侧设备,和多个如图25所示的终端或多个如图26所示的终端。
在本发明实施例中,当本发明实施例提供一种通信系统包括如图9至图13所示的任一种网络侧设备,和多个如图19所示的终端或多个如图20所示的终端时;或者,当发明实施例提供一种通信系统包括如图21至图22所示的任一种网络侧设备,和多个如图25所示的终端或多个如图26所示的终端时,本发明实施例提供通信系统中的网络侧设备,能够获取同一个服务小区中的多个终端的测量信息和该多个终端中每个终端的平均业务量,并对该多个终端分别与主小区之间的第一信道状态值进行分类,以及确定该服务小区的业务分布。其中该测量信息包括该第一信道状态值,该主小区是指该服务小区和该服务小区的各相邻小区中的一个,该服务小区的业务分布包括每一类第一信道状态值中的第一信道状态典型值,以及对应于每一类第一信道状态值的终端集合与该主小区之间的第一业务 量,该第一业务量是根据所述每个终端的平均业务量确定的。
由于通过本发明实施例提供的通信系统获取的业务分布,是通过对信道进行测量并对信道测量结果进行分类计算,以及对信道传输的业务进行统计等获取的,因此与现有技术根据该多个终端的地理位置信息,以及该多个终端传输的业务获取该多个终端的服务小区的业务分布相比,本发明实施例提供的通信系统能够在不影响网络效率的情况下,获得网络中所有终端的业务分布。
在本发明实施例中,当本发明实施例提供一种通信系统包括如图14至图18所示的任一种网络侧设备,和多个如图19所示的终端或多个如图20所示的终端时;或者,当发明实施例提供一种通信系统包括如图23至图24所示的任一种网络侧设备,和多个如图25所示的终端或多个如图26所示的终端时,本发明实施例提供通信系统中的网络侧设备,能够获取多个终端的测量信息和该多个终端中每个终端的平均业务量,并对该多个终端分别与主小区之间的第一信道状态值进行分类,以及确定该主小区的业务分布。其中测量信息包括该第一信道状态值,以及该多个终端分别与各次小区之间的第二信道状态值,该多个终端的服务小区为该主小区,各次小区为该主小区的各相邻小区,该主小区的业务分布包括对应于每一类第一信道状态值的终端集合与各次小区之间的第二信道状态典型值,以及该终端集合与各次小区之间的第二业务量,该第二信道状态典型值是根据该第二信道状态值确定的,该第二业务量是根据每个终端的平均业务量确定的。
由于通过本发明实施例提供的通信系统获取的业务分布,是通过对信道进行测量并对信道测量结果进行分类计算,以及对信道传输的业务进行统计等获取的,因此与现有技术根据该多个终端的地理位置信息,以及该多个终端传输的业务获取该多个终端的服务小区的业务分布相比,本发明实施例提供的通信系统能够在不影响网络效率的情况下,获得网络中所有终端的业务分布。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁, 仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本发明各个实施例所述方法的全部或部分步骤。 而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (61)

  1. 一种业务分布的获取方法,其特征在于,所述方法包括:
    网络侧设备获取同一个服务小区中的多个终端的测量信息,所述测量信息包括所述多个终端分别与主小区之间的第一信道状态值,所述主小区是指所述服务小区和所述服务小区的各相邻小区中的一个;
    所述网络侧设备获取所述多个终端中每个终端的平均业务量;
    所述网络侧设备对所述第一信道状态值进行分类;
    所述网络侧设备确定所述业务分布,所述业务分布包括每一类所述第一信道状态值中的第一信道状态典型值,以及对应于每一类所述第一信道状态值的终端集合与所述主小区之间的第一业务量,所述第一业务量是根据所述每个终端的平均业务量确定的。
  2. 根据权利要求1所述的方法,其特征在于,所述测量信息还包括所述多个终端分别与各次小区之间的第二信道状态值,所述各次小区为所述服务小区和所述各相邻小区中除所述主小区外的其他小区,所述业务分布还包括:
    所述终端集合与所述各次小区之间的第二信道状态典型值,以及所述终端集合与所述各次小区之间的第二业务量,所述第二信道状态典型值是所述网络侧设备根据所述第二信道状态值确定的,所述第二业务量是所述网络侧设备根据所述每个终端的平均业务量确定的。
  3. 根据权利要求1或2所述的方法,其特征在于,所述网络侧设备为所述主小区提供服务,所述网络侧设备获取多个终端的测量信息,包括:
    所述网络侧设备接收所述多个终端发送的所述测量信息。
  4. 根据权利要求3所述的方法,其特征在于,所述网络侧设备为所述主小区提供服务,所述网络侧设备接收所述多个终端发送的所述测量信息之前,所述方法还包括:
    所述网络侧设备向所述多个终端发送下行参考信号;
    所述网络侧设备向所述多个终端发送第一测量触发指示,所述第一测量触发指示用于指示所述多个终端对所述下行参考信号进行测 量。
  5. 根据权利要求1所述的方法,其特征在于,所述网络侧设备为所述主小区提供服务,所述网络侧设备获取多个终端的测量信息,包括:
    所述网络侧设备向所述多个终端发送第二测量触发指示,所述第二测量触发指示用于指示所述多个终端发送上行参考信号;
    所述网络侧设备接收所述多个终端发送的所述上行参考信号;
    所述网络侧设备对所述上行参考信号进行测量,获得所述测量信息。
  6. 根据权利要求1所述的方法,其特征在于,所述网络侧设备为所述主小区提供服务,所述网络侧设备获取多个终端的测量信息,包括:
    所述网络侧设备接收所述多个终端分别发送的第三测量触发指示,所述第三测量触发指示用于指示所述多个终端发送上行参考信号,并指示所述网络侧设备对所述多个终端发送的所述上行参考信号进行测量;
    所述网络侧设备接收所述多个终端发送的所述上行参考信号;
    所述网络侧设备对所述上行参考信号进行测量,获得所述测量信息。
  7. 根据权利要求1所述的方法,其特征在于,所述网络侧设备不为所述主小区提供服务,所述网络侧设备获取多个终端的测量信息,包括:
    所述网络侧设备接收为所述主小区提供服务的网络侧设备发送的所述测量信息。
  8. 根据权利要求2所述的方法,其特征在于,所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述服务小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各相邻小区之间的信道状态值,
    所述网络侧设备获取多个终端的测量信息,包括:
    所述网络侧设备向所述多个终端发送第二测量触发指示,所述第二测量触发指示用于指示所述多个终端发送上行参考信号;
    所述网络侧设备接收所述多个终端发送的所述上行参考信号;
    所述网络侧设备对所述上行参考信号进行测量,获得所述第一测量信息;
    所述网络侧设备接收为所述各相邻小区提供服务的网络侧设备发送的所述第二测量信息。
  9. 根据权利要求2所述的方法,其特征在于,所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述服务小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各相邻小区之间的信道状态值,
    所述网络侧设备获取多个终端的测量信息,包括:
    所述网络侧设备接收所述多个终端分别发送的第三测量触发指示,所述第三测量触发指示用于指示所述多个终端发送上行参考信号,并指示所述网络侧设备对所述多个终端发送的所述上行参考信号进行测量;
    所述网络侧设备接收所述多个终端发送的所述上行参考信号;
    所述网络侧设备对所述上行参考信号进行测量,获得所述第一测量信息;
    所述网络侧设备接收为所述各相邻小区提供服务的网络侧设备发送的所述第二测量信息。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述网络侧设备获取多个终端的测量信息,包括:
    在第一空口数据传输完成后,若所述网络侧设备在预设时间内未检测到第二空口数据传输,则在所述预设时间后,所述网络侧设备获取所述多个终端的测量信息。
  11. 根据权利要求6或9所述的方法,其特征在于,
    所述第三测量触发指示为同步请求消息,所述同步请求消息中包括请求发送上行参考信号标识;或者,
    所述第三测量触发指示为同步指示消息,所述同步指示消息中包括发送上行参考信号指示和发送时间戳。
  12. 一种业务分布的获取方法,其特征在于,所述方法包括:
    网络侧设备获取多个终端的测量信息,所述测量信息包括所述多个终端分别与主小区之间的第一信道状态值,以及所述多个终端分别与各次小区之间的第二信道状态值,所述多个终端的服务小区为所述主小区,所述各次小区为所述主小区的各相邻小区;
    所述网络侧设备获取所述多个终端中每个终端的平均业务量;
    所述网络侧设备对所述第一信道状态值进行分类;
    所述网络侧设备确定所述业务分布,所述业务分布包括对应于每一类所述第一信道状态值的终端集合与所述各次小区之间的第二信道状态典型值,以及所述终端集合与所述各次小区之间的第二业务量,所述第二信道状态典型值是所述网络侧设备根据所述第二信道状态值确定的,所述第二业务量是所述网络侧设备根据所述每个终端的平均业务量确定的。
  13. 根据权利要求12所述的方法,其特征在于,所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,
    所述网络侧设备获取多个终端的测量信息,包括:
    所述网络侧设备接收所述多个终端发送的所述第一测量信息;
    所述网络侧设备接收为所述各次小区提供服务的网络侧设备发送的所述第二测量信息。
  14. 根据权利要求13所述的方法,其特征在于,所述网络侧设备接收所述多个终端发送的所述测量信息之前,所述方法还包括:
    所述网络侧设备向所述多个终端发送下行参考信号;
    所述网络侧设备向所述多个终端发送第一测量触发指示,所述第一测量触发指示用于指示所述多个终端对所述下行参考信号进行测量。
  15. 根据权利要求12所述的方法,其特征在于,所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,
    所述网络侧设备获取多个终端的测量信息,包括:
    所述网络侧设备向所述多个终端发送第二测量触发指示,所述第二测量触发指示用于指示所述多个终端发送上行参考信号;
    所述网络侧设备接收所述多个终端发送的所述上行参考信号;
    所述网络侧设备对所述上行参考信号进行测量,获得所述第一测量信息;
    所述网络侧设备接收为所述各次小区提供服务的网络侧设备发送的所述第二测量信息。
  16. 根据权利要求12所述的方法,其特征在于,所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,
    所述网络侧设备获取多个终端的测量信息,包括:
    所述网络侧设备接收所述多个终端分别发送的第三测量触发指示,所述第三测量触发指示用于指示所述多个终端发送上行参考信号,并指示所述网络侧设备对所述多个终端发送的所述上行参考信号进行测量;
    所述网络侧设备接收所述多个终端发送的所述上行参考信号;
    所述网络侧设备对所述上行参考信号进行测量,获得所述第一测量信息;
    所述网络侧设备接收为所述各次小区提供服务的网络侧设备发送的所述第二测量信息。
  17. 根据权利要求12-16任一项所述的方法,其特征在于,所述网络侧设备获取多个终端的测量信息,包括:
    在第一空口数据传输完成后,若所述网络侧设备在预设时间内未 检测到第二空口数据传输,则在所述预设时间后,所述网络侧设备获取所述多个终端的测量信息。
  18. 一种业务分布的获取方法,其特征在于,所述方法包括:
    终端生成终端测量触发指示,所述终端测量触发指示用于指示所述终端对接收的下行参考信号进行测量;
    所述终端对所述下行参考信号进行测量,获取所述终端的测量信息;
    所述终端向网络侧设备发送所述终端的测量信息,以使得所述网络侧设备根据所述终端的测量信息,以及所述终端与所述终端的服务小区之间传输的业务,获取所述服务小区的业务分布,所述网络侧设备为所述终端提供服务。
  19. 一种业务分布的获取方法,其特征在于,所述方法包括:
    终端生成网络侧测量触发指示,所述网络侧测量触发指示用于指示所述终端向多个网络侧设备发送上行参考信号,并指示所述多个网络侧设备对所述终端发送的所述上行参考信号进行测量,所述上行参考信号用于所述多个网络侧设备获取所述终端的测量信息,并根据所述测量信息,以及所述终端与所述终端的服务小区之间传输的业务,获取所述服务小区中的业务分布;
    所述终端向所述多个网络侧设备发送所述网络侧测量触发指示;
    所述终端向所述多个网络侧设备发送所述上行参考信号。
  20. 根据权利要求19所述的方法,其特征在于,
    所述网络侧测量触发指示为同步请求消息,所述同步请求消息中包括请求发送上行参考信号标识;或者,
    所述网络侧测量触发指示为同步指示消息,所述同步指示消息中包括发送上行参考信号指示和发送时间戳。
  21. 一种网络侧设备,其特征在于,包括:
    获取单元,用于获取同一个服务小区中的多个终端的测量信息和所述多个终端中每个终端的平均业务量,所述测量信息包括所述多个终端分别与主小区之间的第一信道状态值,所述主小区是指所述服务 小区和所述服务小区的各相邻小区中的一个;
    分类单元,用于对所述获取单元获取的所述第一信道状态值进行分类;
    确定单元,用于确定所述业务分布,所述业务分布包括所述分类单元归类的每一类所述第一信道状态值中的第一信道状态典型值,以及对应于每一类所述第一信道状态值的终端集合与所述主小区之间的第一业务量,所述第一业务量是根据所述获取单元获取的所述每个终端的平均业务量确定的。
  22. 根据权利要求21所述的网络侧设备,其特征在于,所述获取单元获取的所述测量信息还包括所述多个终端分别与各次小区之间的第二信道状态值,所述各次小区为所述服务小区和所述各相邻小区中除所述主小区外的其他小区,所述确定单元确定的所述业务分布还包括:
    所述终端集合与所述各次小区之间的第二信道状态典型值,以及所述终端集合与所述各次小区之间的第二业务量,所述第二信道状态典型值是根据所述获取单元获取的所述第二信道状态值确定的,所述第二业务量是根据所述获取单元获取的所述每个终端的平均业务量确定的。
  23. 根据权利要求21或22所述的网络侧设备,其特征在于,所述网络侧设备为所述主小区提供服务,
    所述获取单元,具体用于接收所述多个终端发送的所述测量信息。
  24. 根据权利要求23所述的网络侧设备,其特征在于,所述网络侧设备为所述主小区提供服务,所述网络侧设备还包括:
    发送单元,用于在所述获取单元接收所述多个终端发送的所述测量信息之前,向所述多个终端发送下行参考信号和第一测量触发指示,所述第一测量触发指示用于指示所述多个终端对所述下行参考信号进行测量。
  25. 根据权利要求21所述的网络侧设备,其特征在于,所述网 络侧设备为所述主小区提供服务,所述获取单元具体包括发送模块,接收模块和测量模块,
    所述发送模块,用于向所述多个终端发送第二测量触发指示,所述第二测量触发指示用于指示所述多个终端发送上行参考信号;
    所述接收模块,用于接收所述多个终端发送的所述上行参考信号;
    所述测量模块,用于对所述接收模块接收的所述上行参考信号进行测量,获得所述测量信息。
  26. 根据权利要求21所述的网络侧设备,其特征在于,所述网络侧设备为所述主小区提供服务,所述获取单元具体包括接收模块和测量模块,
    所述接收模块,用于接收所述多个终端分别发送的第三测量触发指示和上行参考信号,所述第三测量触发指示用于指示所述多个终端发送所述上行参考信号,并指示测量模块对所述上行参考信号进行测量;
    所述测量模块,用于对所述接收模块接收的所述上行参考信号进行测量,获得所述测量信息。
  27. 根据权利要求21所述的网络侧设备,其特征在于,所述网络侧设备不为所述主小区提供服务,
    所述获取单元,具体用于接收为所述主小区提供服务的网络侧设备发送的所述测量信息。
  28. 根据权利要求22所述的网络侧设备,其特征在于,所述获取单元获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述服务小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各相邻小区之间的信道状态值,所述获取单元具体包括发送模块,接收模块和测量模块,
    所述发送模块,用于向所述多个终端发送第二测量触发指示,所述第二测量触发指示用于指示所述多个终端发送上行参考信号;
    所述接收模块,用于接收所述多个终端发送的所述上行参考信号 和为所述各相邻小区提供服务的网络侧设备发送的所述第二测量信息;
    所述测量模块,用于对所述接收模块接收的所述上行参考信号进行测量,获得所述第一测量信息。
  29. 根据权利要求22所述的网络侧设备,其特征在于,所述获取单元获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述服务小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各相邻小区之间的信道状态值,所述获取单元具体包括接收模块和测量模块,
    所述接收模块,用于接收所述多个终端分别发送的第三测量触发指示、所述多个终端分别发送的上行参考信号,以及为所述各相邻小区提供服务的网络侧设备发送的所述第二测量信息,所述第三测量触发指示用于指示所述多个终端发送所述上行参考信号,并指示所述测量模块对所述上行参考信号进行测量;
    所述测量模块,用于对所述接收模块接收的所述上行参考信号进行测量,获得所述第一测量信息。
  30. 根据权利要求21-29任一项所述的网络侧设备,其特征在于,所述网络侧设备还包括:
    检测单元,用于在第一空口数据传输完成后,检测所述网络侧设备在预设时间内是否有第二空口数据传输;
    所述获取单元,具体用于若所述检测单元在预设时间内未检测到第二空口数据传输,则在所述预设时间后,获取所述多个终端的测量信息。
  31. 根据权利要求26或29所述的网络侧设备,其特征在于,
    所述接收模块接收的所述第三测量触发指示为同步请求消息,所述同步请求消息中包括请求发送上行参考信号标识;或者,
    所述接收模块接收的所述第三测量触发指示为同步指示消息,所述同步指示消息中包括发送上行参考信号指示和发送时间戳。
  32. 一种网络侧设备,其特征在于,包括:
    获取单元,用于获取多个终端的测量信息和所述多个终端中每个终端的平均业务量,所述测量信息包括所述多个终端分别与主小区之间的第一信道状态值,以及所述多个终端分别与各次小区之间的第二信道状态值,所述多个终端的服务小区为所述主小区,所述各次小区为所述主小区的各相邻小区;
    分类单元,用于对所述获取单元获取的所述第一信道状态值进行分类;
    确定单元,用于确定所述业务分布,所述业务分布包括对应于所述分类单元归类的每一类所述第一信道状态值的终端集合与所述各次小区之间的第二信道状态典型值,以及所述终端集合与所述各次小区之间的第二业务量,所述第二信道状态典型值是根据所述获取单元获取的所述第二信道状态值确定的,所述第二业务量是根据所述获取单元获取的所述每个终端的平均业务量确定的。
  33. 根据权利要求32所述的网络侧设备,其特征在于,所述获取单元获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,
    所述获取单元,具体用于接收所述多个终端发送的所述第一测量信息和为所述各次小区提供服务的网络侧设备发送的所述第二测量信息。
  34. 根据权利要求33所述的网络侧设备,其特征在于,所述网络侧设备还包括:
    发送单元,用于在所述获取单元接收所述多个终端发送的所述第一测量信息之前,向所述多个终端发送下行参考信号和第一测量触发指示,所述第一测量触发指示用于指示所述多个终端对所述下行参考信号进行测量。
  35. 根据权利要求32所述的网络侧设备,其特征在于,所述获取单元获取的所述测量信息包括第一测量信息和第二测量信息,所述 第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,所述获取单元具体包括发送模块,接收模块和测量模块,
    所述发送模块,用于向所述多个终端发送第二测量触发指示,所述第二测量触发指示用于指示所述多个终端发送上行参考信号;
    所述接收模块,用于接收所述多个终端发送的上行参考信号和为所述各次小区提供服务的网络侧设备发送的所述第二测量信息;
    所述测量模块,用于对所述接收模块接收的所述上行参考信号进行测量,获得所述第一测量信息。
  36. 根据权利要求32所述的网络测设备,其特征在于,所述获取单元获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,所述获取单元具体包括接收模块和测量模块,
    所述接收模块,用于接收所述多个终端分别发送的第三测量触发指示、所述多个终端发送的所述上行参考信号,以及为所述各次小区提供服务的网络侧设备发送的所述第二测量信息,所述第三测量触发指示用于指示所述多个终端发送所述上行参考信号,并指示所述测量模块对所述上行参考信号进行测量;
    所述测量模块,用于对所述接收模块接收的所述上行参考信号进行测量,获得所述第一测量信息。
  37. 根据权利要求32-36任一项所述的网络侧设备,其特征在于,所述网络侧设备还包括:
    检测单元,用于在第一空口数据传输完成后,检测所述网络侧设备在预设时间内是否有第二空口数据传输;
    所述获取单元,具体用于若所述检测单元在预设时间内未检测到第二空口数据传输,则在所述预设时间后,获取所述多个终端的测量信息。
  38. 一种终端,其特征在于,包括:
    生成单元,用于生成终端测量触发指示,所述终端测量触发指示用于指示测量单元对接收的下行参考信号进行测量;
    所述测量单元,用于对所述下行参考信号进行测量,获取所述终端的测量信息;
    所述发送单元,用于向网络侧设备发送所述测量单元获取的所述终端的测量信息,以使得所述网络侧设备根据所述终端的测量信息,以及所述终端与所述终端的服务小区之间传输的业务,获取所述服务小区的业务分布,所述网络侧设备为所述终端提供服务。
  39. 一种终端,其特征在于,包括:
    生成单元,生成网络侧测量触发指示,所述网络侧测量触发指示用于指示发送单元向多个网络侧设备发送上行参考信号,并指示所述多个网络侧设备对所述上行参考信号进行测量,所述上行参考信号用于所述多个网络侧设备获取所述终端的测量信息,并根据所述测量信息,以及所述终端与所述终端的服务小区之间传输的业务,获取所述服务小区中的业务分布;
    所述发送单元,用于向所述多个网络侧设备发送所述生成单元生成的所述网络侧测量触发指示和所述上行参考信号。
  40. 根据权利要求39所述的终端,其特征在于,
    所述生成单元生成的所述网络侧测量触发指示为同步请求消息,所述同步请求消息中包括请求发送上行参考信号标识;或者,
    所述生成单元生成的所述网络侧测量触发指示为同步指示消息,所述同步指示消息中包括发送上行参考信号指示和发送时间戳。
  41. 一种网络侧设备,其特征在于,包括:
    处理器,用于获取同一个服务小区中的多个终端的测量信息和所述多个终端中每个终端的平均业务量,并对所述多个终端分别与主小区之间的第一信道状态值进行分类,以及确定所述业务分布,所述测量信息包括所述第一信道状态值,所述主小区是指所述服务小区和所述服务小区的各相邻小区中的一个,所述业务分布包括每一类所述第一信道状态值中的第一信道状态典型值,以及对应于每一类所述第一 信道状态值的终端集合与所述主小区之间的第一业务量,所述第一业务量是根据所述每个终端的平均业务量确定的。
  42. 根据权利要求41所述的网络侧设备,其特征在于,所述处理器获取的所述测量信息还包括所述多个终端分别与各次小区之间的第二信道状态值,所述各次小区为所述服务小区和所述各相邻小区中除所述主小区外的其他小区,所述处理器确定的所述业务分布还包括:
    所述终端集合与所述各次小区之间的第二信道状态典型值,以及所述终端集合与所述各次小区之间的第二业务量,所述第二信道状态典型值是根据所述第二信道状态值确定的,所述第二业务量是根据所述每个终端的平均业务量确定的。
  43. 根据权利要求41或42所述的网络侧设备,其特征在于,所述网络侧设备为所述主小区提供服务,
    所述处理器,具体用于接收所述多个终端发送的所述测量信息。
  44. 根据权利要求43所述的网络侧设备,其特征在于,所述网络侧设备为所述主小区提供服务,所述网络侧设备还包括:
    收发器,用于在所述处理器接收所述多个终端发送的所述测量信息之前,向所述多个终端发送下行参考信号和第一测量触发指示,所述第一测量触发指示用于指示所述多个终端对所述下行参考信号进行测量。
  45. 根据权利要求41所述的网络侧设备,其特征在于,所述网络侧设备为所述主小区提供服务,
    所述处理器,具体用于向所述多个终端发送第二测量触发指示,并接收所述多个终端发送的上行参考信号,以及对所述上行参考信号进行测量,获得所述测量信息,所述第二测量触发指示用于指示所述多个终端发送上行参考信号。
  46. 根据权利要求41所述的网络侧设备,其特征在于,所述网络侧设备为所述主小区提供服务,
    所述处理器,具体用于接收所述多个终端分别发送的第三测量触 发指示和上行参考信号,并对所述上行参考信号进行测量,获得所述测量信息,所述第三测量触发指示用于指示所述多个终端发送所述上行参考信号,并指示所述处理器对所述上行参考信号进行测量。
  47. 根据权利要求41所述的网络侧设备,其特征在于,所述网络侧设备不为所述主小区提供服务,
    所述处理器,具体用于接收为所述主小区提供服务的网络侧设备发送的所述测量信息。
  48. 根据权利要求42所述的网络侧设备,其特征在于,所述处理器获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述服务小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各相邻小区之间的信道状态值,
    所述处理器,具体用于向所述多个终端发送第二测量触发指示,并接收所述多个终端发送的上行参考信号和为所述各相邻小区提供服务的网络侧设备发送的所述第二测量信息,以及对所述上行参考信号进行测量,获得所述第一测量信息,所述第二测量触发指示用于指示所述多个终端发送所述上行参考信号。
  49. 根据权利要求42所述的网络侧设备,其特征在于,所述处理器获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述服务小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各相邻小区之间的信道状态值,
    所述处理器,具体用于接收所述多个终端分别发送的第三测量触发指示、所述多个终端分别发送的上行参考信号,以及为所述各相邻小区提供服务的网络侧设备发送的所述第二测量信息,并对所述上行参考信号进行测量,获得所述第一测量信息,所述第三测量触发指示用于指示所述多个终端发送所述上行参考信号,并指示所述处理器对所述上行参考信号进行测量。
  50. 根据权利要求41-49任一项所述的网络侧设备,其特征在于,
    所述处理器,具体用于在第一空口数据传输完成后,若所述处理器在预设时间内未检测到第二空口数据传输,则在所述预设时间后,获取所述多个终端的测量信息。
  51. 根据权利要求46或49所述的网络侧设备,其特征在于,
    所述处理器接收的所述第三测量触发指示为同步请求消息,所述同步请求消息中包括请求发送上行参考信号标识;或者,
    所述处理器接收的所述第三测量触发指示为同步指示消息,所述同步指示消息中包括发送上行参考信号指示和发送时间戳。
  52. 一种网络侧设备,其特征在于,包括:
    处理器,用于获取多个终端的测量信息和所述多个终端中每个终端的平均业务量,并对所述多个终端分别与主小区之间的第一信道状态值进行分类,以及确定所述业务分布,所述测量信息包括所述第一信道状态值,以及所述多个终端分别与各次小区之间的第二信道状态值,所述多个终端的服务小区为所述主小区,所述各次小区为所述主小区的各相邻小区,所述业务分布包括对应于每一类所述第一信道状态值的终端集合与所述各次小区之间的第二信道状态典型值,以及所述终端集合与所述各次小区之间的第二业务量,所述第二信道状态典型值是根据所述第二信道状态值确定的,所述第二业务量是根据所述每个终端的平均业务量确定的。
  53. 根据权利要求52所述的网络侧设备,其特征在于,所述处理器获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,
    所述处理器,具体用于接收所述多个终端发送的所述第一测量信息和为所述各次小区提供服务的网络侧设备发送的所述第二测量信息。
  54. 根据权利要求53所述的网络侧设备,其特征在于,所述网络侧设备还包括:
    收发器,用于在所述处理器接收所述多个终端发送的所述第一测 量信息之前,向所述多个终端发送下行参考信号和第一测量触发指示,所述第一测量触发指示用于指示所述多个终端对所述下行参考信号进行测量。
  55. 根据权利要求52所述的网络侧设备,其特征在于,所述处理器获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,
    所述处理器,具体用于向所述多个终端发送第二测量触发指示,并接收所述多个终端发送的上行参考信号和为所述各次小区提供服务的网络侧设备发送的所述第二测量信息,以及对所述上行参考信号进行测量,获得所述第一测量信息,所述第二测量触发指示用于指示所述多个终端发送上行参考信号。
  56. 根据权利要求52所述的网络测设备,其特征在于,所述处理器获取的所述测量信息包括第一测量信息和第二测量信息,所述第一测量信息包括所述多个终端与所述主小区之间的信道状态值,所述第二测量信息包括所述多个终端与所述各次小区之间的信道状态值,
    所述处理器,具体用于接收所述多个终端分别发送的第三测量触发指示、所述多个终端发送的上行参考信号,以及为所述各次小区提供服务的网络侧设备发送的所述第二测量信息,并对所述上行参考信号进行测量,获得所述第一测量信息所述第三测量触发指示用于指示所述多个终端发送所述上行参考信号,并指示所述处理器对所述上行参考信号进行测量。
  57. 根据权利要求52-56任一项所述的网络侧设备,其特征在于,
    所述处理器,具体用于在第一空口数据传输完成后,若所述处理器在预设时间内未检测到第二空口数据传输,则在所述预设时间后,获取所述多个终端的测量信息。
  58. 一种终端,其特征在于,包括:
    处理器,用于生成终端测量触发指示,并对接收的下行参考信号进行测量,获取所述终端的测量信息,所述终端测量触发指示用于指 示所述处理器对所述下行参考信号进行测量;
    收发器,用于向网络侧设备发送所述处理器获取的所述终端的测量信息,以使得所述网络侧设备根据所述终端的测量信息,以及所述终端与所述终端的服务小区之间传输的业务,获取所述服务小区的业务分布,所述网络侧设备为所述终端提供服务。
  59. 一种终端,其特征在于,包括:
    处理器,生成网络侧测量触发指示,所述网络侧测量触发指示用于指示收发器向多个网络侧设备发送上行参考信号,并指示所述多个网络侧设备对所述上行参考信号进行测量,所述上行参考信号用于所述多个网络侧设备获取所述终端的测量信息,并根据所述测量信息,以及所述终端与所述终端的服务小区之间传输的业务,获取所述服务小区中的业务分布;
    所述收发器,用于向所述多个网络侧设备发送所述处理器生成的所述网络侧测量触发指示和所述上行参考信号。
  60. 根据权利要求59所述的终端,其特征在于,
    所述处理器生成的所述网络侧测量触发指示为同步请求消息,所述同步请求消息中包括请求发送上行参考信号标识;或者,
    所述处理器生成的所述网络侧测量触发指示为同步指示消息,所述同步指示消息中包括发送上行参考信号指示和发送时间戳。
  61. 一种通信系统,其特征在于,包括:
    如权利要求21-31所述的网络侧设备,和多个如权利要求38所述的终端或多个如权利要求39-40所述的终端;或者,
    如权利要求32-37所述的网络侧设备,和多个如权利要求38所述的终端或多个如权利要求39-40所述的终端;或者,
    如权利要求41-51所述的网络侧设备,和多个如权利要求58所述的终端或多个如权利要求59-60所述的终端;或者,
    如权利要求52-57所述的网络侧设备,和多个如权利要求58所述的终端或多个如权利要求59-60所述的终端。
PCT/CN2014/092589 2014-11-28 2014-11-28 一种业务分布的获取方法、装置及系统 WO2016082225A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480083708.6A CN107409323B (zh) 2014-11-28 2014-11-28 一种业务分布的获取方法、装置及系统
PCT/CN2014/092589 WO2016082225A1 (zh) 2014-11-28 2014-11-28 一种业务分布的获取方法、装置及系统
EP14906992.4A EP3217713B1 (en) 2014-11-28 2014-11-28 Method and apparatus for acquiring service distribution
US15/607,044 US10547533B2 (en) 2014-11-28 2017-05-26 Service distribution obtaining method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/092589 WO2016082225A1 (zh) 2014-11-28 2014-11-28 一种业务分布的获取方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/607,044 Continuation US10547533B2 (en) 2014-11-28 2017-05-26 Service distribution obtaining method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2016082225A1 true WO2016082225A1 (zh) 2016-06-02

Family

ID=56073415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092589 WO2016082225A1 (zh) 2014-11-28 2014-11-28 一种业务分布的获取方法、装置及系统

Country Status (4)

Country Link
US (1) US10547533B2 (zh)
EP (1) EP3217713B1 (zh)
CN (1) CN107409323B (zh)
WO (1) WO2016082225A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113891293B (zh) * 2021-10-20 2024-05-03 深圳信息职业技术学院 一种鲁棒的物联网数据处理方法
CN113891294B (zh) * 2021-10-20 2024-05-03 深圳超特科技股份有限公司 一种高效的物联网信息发送方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120129566A1 (en) * 2010-11-18 2012-05-24 Samsung Electronics Co., Ltd. Uplink transmission power control method and apparatus for a distributed antenna mobile communication system
CN102612046A (zh) * 2012-04-13 2012-07-25 北京邮电大学 毫微微蜂窝网络中节能的动态频谱规划方法
CN103716799A (zh) * 2012-09-29 2014-04-09 华为技术有限公司 频谱划分的方法、设备及系统
WO2014176769A1 (zh) * 2013-05-02 2014-11-06 华为技术有限公司 网络优化的方法、网络优化的装置和网络优化的设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19811097A1 (de) * 1998-03-16 1999-09-23 Deutsche Telekom Ag Simulator zur Simulation eines intelliegenten Netzwerks
US7899463B2 (en) * 2005-02-16 2011-03-01 Nokia Corporation Communication resource control enhancing time-based frequency reuse
JP4606972B2 (ja) * 2005-08-19 2011-01-05 株式会社エヌ・ティ・ティ・ドコモ トラヒック量予測システムおよびトラヒック量予測方法
ITMI20060596A1 (it) * 2006-03-29 2007-09-30 Vodafone Omnitel Nv Metodo per il controllo del funzionamento delle celle di un sistema di comunicazione cellulare
WO2008066467A1 (en) * 2006-12-01 2008-06-05 Telefonaktiebolaget Lm Ericsson (Publ) Uplink access management
KR20090023050A (ko) * 2007-08-29 2009-03-04 삼성전자주식회사 광대역 통신시스템에서 부하균등을 위한 방법 및 장치
FI20075756A0 (fi) * 2007-10-26 2007-10-26 Nokia Siemens Networks Oy TDD-viestintä matkaviestintäjärjestelmässä
US8351898B2 (en) * 2009-01-28 2013-01-08 Headwater Partners I Llc Verifiable device assisted service usage billing with integrated accounting, mediation accounting, and multi-account
US9270559B2 (en) * 2009-01-28 2016-02-23 Headwater Partners I Llc Service policy implementation for an end-user device having a control application or a proxy agent for routing an application traffic flow
KR101751741B1 (ko) * 2011-03-08 2017-06-28 삼성전자주식회사 이종 망을 포함하는 무선통신 시스템에서 초기 레인징을 위한 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120129566A1 (en) * 2010-11-18 2012-05-24 Samsung Electronics Co., Ltd. Uplink transmission power control method and apparatus for a distributed antenna mobile communication system
CN102612046A (zh) * 2012-04-13 2012-07-25 北京邮电大学 毫微微蜂窝网络中节能的动态频谱规划方法
CN103716799A (zh) * 2012-09-29 2014-04-09 华为技术有限公司 频谱划分的方法、设备及系统
WO2014176769A1 (zh) * 2013-05-02 2014-11-06 华为技术有限公司 网络优化的方法、网络优化的装置和网络优化的设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3217713A4 *

Also Published As

Publication number Publication date
EP3217713A1 (en) 2017-09-13
US10547533B2 (en) 2020-01-28
US20170264517A1 (en) 2017-09-14
EP3217713A4 (en) 2018-03-14
EP3217713B1 (en) 2020-09-30
CN107409323B (zh) 2019-12-24
CN107409323A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
US12004105B2 (en) Time synchronization method and apparatus
US11240779B2 (en) Methods of identifying aerial user equipment in cellular networks
JP6949943B2 (ja) ビーム測定方法、端末及びネットワーク装置
WO2018098790A1 (zh) 测量方法、终端设备和网络设备
WO2017190274A1 (zh) 一种资源分配方法、网络侧设备和终端设备
CN113169836A (zh) 用于多发射/接收点(trp)操作的方法和装置
US20210022106A1 (en) Conditional Termination of RSTD Measurements
WO2018202157A1 (zh) 测量方法、终端设备和接入网设备
US20130310019A1 (en) Cell range extension for cooperative multipoint
WO2010051768A1 (zh) 确定影响邻小区的用户的方法、相关设备及系统
EP3607668B1 (en) Cell quality derivation based on filtered beam measurements
WO2018059293A1 (zh) 参数确定方法、基站及用户设备
WO2019100396A1 (zh) 异频小区测量方法、设备、芯片及存储介质
EP4008122A1 (en) Positioning-specific beam refinement for neighbor cell positioning reference signal (prs) transmission
WO2018053766A1 (zh) 通信方法、终端设备和网络设备
CN115066923A (zh) 基于测量限制的l1-sinr测量过程
US10993242B1 (en) Dynamic antenna calibration scheduling
WO2016082225A1 (zh) 一种业务分布的获取方法、装置及系统
US20180132203A1 (en) Location detection using radio signal capabilities
WO2021102707A1 (zh) 一种终端设备接入网络的方法、通信装置
WO2022222772A1 (zh) 一种定位信息上报方法、设备及通信系统
US10171222B2 (en) Method for configuring CQI measurement subframe, base station, and user equipment
WO2019028704A1 (zh) 下行信号传输的方法、终端设备和网络设备
WO2017070956A1 (zh) 一种数据传输方法及装置
JP2020530216A (ja) 無線通信方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014906992

Country of ref document: EP