WO2016080789A1 - Organic nanoclay-polymer composite and method for preparing same - Google Patents

Organic nanoclay-polymer composite and method for preparing same Download PDF

Info

Publication number
WO2016080789A1
WO2016080789A1 PCT/KR2015/012489 KR2015012489W WO2016080789A1 WO 2016080789 A1 WO2016080789 A1 WO 2016080789A1 KR 2015012489 W KR2015012489 W KR 2015012489W WO 2016080789 A1 WO2016080789 A1 WO 2016080789A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoclay
organic
salt
polymer
polymer composite
Prior art date
Application number
PCT/KR2015/012489
Other languages
French (fr)
Korean (ko)
Inventor
최진호
양재훈
박대환
이지희
류현주
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Publication of WO2016080789A1 publication Critical patent/WO2016080789A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/05Forming flame retardant coatings or fire resistant coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the present application relates to an organic nanoclay-polymer composite and a method for preparing the organic nanoclay-polymer composite.
  • Polymer materials are widely used in various fields in modern society because of their high strength and light weight. However, polymer materials have a problem inherent in fire hazard because they are easily burned by fire. In order to solve this problem, many efforts have been made to flame retardant polymers.
  • a method for improving the flame retardancy of the polymer a method of dispersing the oligomer of the phosphorus flame retardant with the polymer (Korean Patent No. 1998-0002056), or encapsulating the flame retardant with a thermoplastic resin first, and then organophosphorus flame retardant in the polymer
  • a method of dispersing (Korean Patent Publication No. 2002-0027783) and the like have been proposed, but flame retardant properties are imparted only when the flame retardant is contained in an amount of 15 wt% or more, but it is difficult to prevent a decrease in mechanical properties due to an increase in the content of the flame retardant.
  • the present application is to provide an organic nanoclay-polymer composite and a method for preparing the organic nanoclay-polymer composite.
  • a first aspect of the present disclosure provides an organic nanoclay-polymer composite comprising an organic cationic nanoclay, an organic anionic nanoclay, and a polymer.
  • a second aspect of the present disclosure is directed to preparing a cationic surfactant-containing solution and an anionic surfactant-containing solution, respectively;
  • the cationic surfactant-containing solution was stirred with a cationic nanoclay-dispersed solution and the anionic surfactant-containing solution was stirred with anionic nanoclay-dispersed solution to form an organic cationic nanoclay and an organic anionic nanoclay.
  • a cationic surfactant is inserted between the layers of cationic nanoclays, and an anionic surfactant is inserted between the layers of anionic nanoclays to organicize two different nanoclays, and
  • the space of the cationic nanoclay dispersed during the combustion of the organic nanoclay-polymer composite is a small size of layered material anionic nanoclay It can effectively block the contact with air by filling it, making it easier to form char, thereby increasing thermal stability and mechanical properties simultaneously, and minimizing the use of foaming compounds for reducing flame retardant and calorific value. From this, the thermal stability and mechanical properties of the polymer can be maintained. .
  • 1 is a comparative schematic diagram of the flame retardant mechanism of the organic nanoclay-polymer composite and the polymer according to an embodiment of the present application.
  • 3A and 3B are results of measuring elastic modulus and tensile strength of an organic nanoclay-polymer composite and a polymer (EVA) according to an embodiment of the present application.
  • 5A and 5B are results of measuring elastic modulus and tensile strength of an organic nanoclay-polymer composite and a polymer (PP) according to an embodiment of the present application.
  • FIG. 6 is a heat release rate measurement result by the cone calorimeter test method of the organic nanoclay-polymer composite and the polymer (EVA) according to an embodiment of the present application.
  • step to or “step of” does not mean “step for.”
  • the term "combination (s) thereof" included in the representation of a makushi form refers to one or more mixtures or combinations selected from the group consisting of the components described in the representation of makushi form, It means to include one or more selected from the group consisting of the above components.
  • alkyl may be one containing a linear or branched, saturated or unsaturated C 1-10 alkyl group, for example, methyl, ethyl, propyl, butyl, pentyl, hexyl, It may be, but is not limited to, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, or all possible isomers thereof.
  • a first aspect of the present disclosure provides an organic nanoclay-polymer composite comprising an organic cationic nanoclay, an organic anionic nanoclay, and a polymer.
  • the nanoclay or clay (cationic clay or anionic clay) is hydrophilic, and is a polymer (PP), poly (propylene), EVA (ethylene) which is widely used in exterior materials of construction, automobiles and home appliances
  • Polymers such as vinyl acetae copolymer (ABS) and acrylonitrile butadiene styrene copolymer (ABS) are hydrophobic, and in order to form the complex in which the nanoclay is dispersed in the polymer, that is, in the exfoliated state, the surface of the nanoclay is hydrophobic. It is necessary to modify, and accordingly, the nanoclay may be organicized using an organic agent, but may not be limited thereto.
  • the organic nanoclay-polymer composite may be one having a flame retardant or calorific value reducing effect, but may not be limited thereto.
  • the organic nanoclay-polymer complex may be to further include a foaming compound, but may not be limited thereto.
  • FIG. 1 shows a schematic diagram of (a) a polymer, (b) an organic cationic nanoclay-foaming compound-polymer complex, and (c) an organic nanoclay-foaming compound-polymer complex according to the present invention and a flame retardant mechanism accordingly.
  • the anionic nanoclay which is a small layered material, fills the space between the dispersed cationic nanoclays during combustion of the organic nanoclay-foaming compound-polymer composite according to the present invention, thereby effectively contacting with air. It is possible to make the formation of char more easily by blocking, thereby increasing thermal stability and mechanical properties at the same time, minimizing the use of foaming compound for reducing flame retardancy and calorific value, thereby improving thermal stability and It is effective to maintain mechanical properties.
  • the organic nanoclay-polymer composite based on 100 parts by weight of the polymer, about 0.1 to about 50 parts by weight of the organic cationic nanoclay, and about 0.1 to about 50 to the organic anionic nanoclay It may include 50 parts by weight, but may not be limited thereto.
  • the content of the organicated cationic nanoclay is about 0.1 to about 50 parts by weight, about 0.1 to about 40 parts by weight, about 0.1 to about 30 parts by weight, and about 0.1 to about 100 parts by weight of the polymer.
  • the content of the organic anionic nanoclay is about 0.1 to about 50 parts by weight, about 0.1 to about 40 parts by weight, about 0.1 to about 30 parts by weight, about 0.1 to about 20 parts by weight, based on 100 parts by weight of the polymer, About 0.1 to about 10 parts by weight, or about 0.1 to about 5 parts by weight, but may not be limited thereto.
  • the content of the foam compound is about 0.1 to about 50 parts by weight, about 0.1 to about 20 parts by weight, about 0.1 to 100 parts by weight of the polymer. To about 15 parts by weight, preferably about 0.1 to about 10 parts by weight, or about 0.1 to about 5 parts by weight, but may not be limited thereto.
  • the cationic nanoclay is montmorillonite, bentonite, hectorite, saponite, beidelite, nontronite ( nontronite, swellable mica, vermicullite, synthetic mica, kanemite, magadite, kenyaite, kaolinite, smectite , Illite, chlorite, muscovite, pyrophyllite, antigorite, glauconite, vermiculite, sepiolite , Imogolite, sockockite, nacrite, anoxite, sericite, ledikite, chrysotile, antigorite, and these Stratified from the group consisting of It may include silicate, but may not be limited thereto.
  • the cationic nanoclay uses swellable clays such as smectite-based clays, and montmorillonite-based clays have many applications.
  • the oxygen forms a tetrahedron around the silicon, the tetrahedron are layered while sharing the vertices, this silicate tetrahedral layer is mainly aluminum ions and oxygen hydroxyl group (-OH -) octahedron made of the octahedron with the It forms an aluminosilicate layer that is enclosed above and below the layer.
  • the montmorillonite structure is called a dioctahedral structure because two of the three aluminum sites of the octahedral layer contain aluminum ions and one is empty. Further, a part of the trivalent aluminum ion octahedron layer Fe 2 +, Ca 2 + of the divalent substituted with ions such structure, that is dissimilar statue substituted (isomorphous substitution), and in the aluminosilicate layer takes on a negative charge. In order to neutralize this negative charge, it has a layered structure containing a cation, that is, Na + , between the aluminosilicate layers.
  • the Na + ions between the aluminosilicate layer and the layers are very hydrophilic, so they swell very well in water, and may be caused by ion exchange or ion-dipole action with other cations or polar ions or molecules, clusters, etc.
  • the intercalation reaction occurs well.
  • the nanocomposites dispersed in the polymer matrix may be synthesized by treating the surface with an organic material having lipophilic properties.
  • the organic agent of the cationic nanoclay is cetyltrimethylammonium salt, tetradecylamine, hexadecylamine, octadecylamine, dimethyl distearyl ammonium salt, trimethyl tetradecyl ammonium salt, trimethylhexadecyl ammonium salt, trimethyl Octadecyl ammonium salt, benzyl trimethyl ammonium salt, benzyl triethyl ammonium salt, phenyl trimethyl ammonium salt, dimethyl dioctadecyl ammonium salt, benzalkonium salt, steralconium salt, denatonium salt, cetylpyridinium salt, tetra-n-butylammonium salt, polyquater Nium salt, hexyl ammonium salt, octyl ammonium salt, octadecyl ammonium salt, dioctyl
  • the organic cationic nanoclay, the cationic surfactant is a form inserted between the layers of the cationic nanoclay, they may be bound by the electrostatic attraction, but is not limited thereto It may not be.
  • the organic cationic nanoclay may be to include the following formula (1):
  • Na 0 . 7 (Mg 2.65 Si 4 ) O 10 F 2 is a kind of synthetic nanoclay, and can be replaced with synthetic or natural layered aluminosilicates such as montmorillonite, hectorite, saponite, and the like (C 16 H 33 ) N (CH 3 ) 3 is the cation form of cetyltrimethylammonium and is replaceable with other cationic surfactants, and X is a positive number greater than zero.
  • the organic anionic nanoclay may be to include a layered metal bilayer hydroxide represented by the following formula (2), but may not be limited thereto:
  • M 2+ is a divalent metal cation
  • M 3+ is a trivalent metal cation
  • A is an anion of a negatively charged anionic surfactant of n
  • x is a number from 0 to 1
  • y is a number from 0 to 1
  • n Each represents a positive number.
  • LDH layered double hydroxide used as the anionic nanoclay has a structure containing anions between layers, and representative minerals found in nature are hydrotalcite, Mg 6 Al 2 (OH) 16 CO 3 ⁇ H 2 O], and the LDH may be referred to as a hydrotalcite-like compound.
  • the structure is based on a brucite (Mg (OH) 2 ) layer.
  • LDH layer is a divalent metal cation such as Mg + 2 to the center octa head LAL site, six hydroxyl groups (-OH -) may have a structure in which the unit for a six-fold connection in a two-dimensional manner.
  • LDH in the hydrotalcite structure is slightly different Kalou boehmite some cases having a (Ca 4 Al 2 (OH) 12 CO 3 ⁇ 5H 2 O), LDH and composition is similar to one divalent cation is Ca 2 + has 6 a hydroxyl group (-OH -) and one of water (H 2 O) and has been a structure in which 7 configuration and the other structure is the same.
  • This LDH has the advantage that the composition of the metal ions can be adjusted when a divalent metal cation and a trivalent metal cation are co-precipitated at an appropriate pH.
  • anion exchange ability anionic organic materials, inorganic materials or anionic biomaterials such as DNA, etc. having a specific function are intercalated instead of interlayer anions such as Cl ⁇ and NO 3 ⁇ and applied to various fields.
  • LDH including Mg and Al has no human toxicity, and thus, research on the application as a drug delivery carrier in the pharmaceutical field has been actively reported.
  • LDH may be used as an additive and used as a Cl - ion scavenger in PVC.
  • LDH is effective in reducing calorific value as well as flame retardant because endothermic reaction by dehydration reaction occurs as the temperature rises.
  • LDH has a hydrophilic property because there is a hydroxyl group on the surface of the layer, it is necessary to modify the surface with a hydrophobic organic material to be applied as a flame retardant additive in hydrophobic polymers.
  • the organic agent of the anionic nanoclay alkyl carboxylates such as stearate, palmityate or lauryl acid salts, alkyl sulfate salts such as dodecyl sulfate salt, dodecylbenzenesulfonate
  • alkyl sulfate salts such as dodecyl sulfate salt
  • dodecylbenzenesulfonate It may be, but is not limited to, an anionic surfactant selected from the group consisting of alkylbenzenesulfonate salts such as salts, alkylphosphate salts such as laurylphosphate salts, alkylpolyoxyethylenesulfate salts, and combinations thereof. have.
  • the organic anionic nanoclay, the anionic surfactant is a form inserted between the layers of the layered metal bilayer hydroxide, they may be bound by the electrostatic attraction, but is not limited thereto It may not be.
  • the foaming compound ammonium polyphosphate, primary ammonium phosphate (primary ammonium phosphate), secondary ammonium phosphate (secondary ammonium phosphate), ammonium phosphite, melamine phosphate, dimelamine phosphate, melamine fatigue
  • a carbonizing agent selected from the group consisting of pentaerythritol, dipentaerythritol, tripentaerythritol, sorbitol, trimethylolpropane, trimethylolethane, ditrimethylolpropane, and combinations thereof, This may not be limited.
  • the polymer is polyethylene vinyl acetate (EVA), polypropylene (PP), poly acrylonitrile butadiene styrene (ABS), polyethylene (PE), polyacetylene, polystyrene (PS), poly Urethane (PU), polyamide (PA), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and combinations thereof may be included, but is not limited thereto. have.
  • EVA polyethylene vinyl acetate
  • PP polypropylene
  • ABS poly acrylonitrile butadiene styrene
  • PE polyethylene
  • PS polyacetylene
  • PS poly Urethane
  • PA polyamide
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • a second aspect of the present disclosure is directed to preparing a cationic surfactant-containing solution and an anionic surfactant-containing solution, respectively;
  • the cationic surfactant-containing solution was stirred with a cationic nanoclay-dispersed solution and the anionic surfactant-containing solution was stirred with anionic nanoclay-dispersed solution to form an organic cationic nanoclay and an organic anionic nanoclay.
  • the organic nanoclay-polymer composite according to this aspect, all of the contents described for the first aspect of the present application can be applied.
  • it may further include adding a foaming compound to the organic nanoclay-polymer composite, but may not be limited thereto.
  • the organic nanoclay-polymer composite based on 100 parts by weight of the polymer, about 0.1 to about 50 parts by weight of the organic cationic nanoclay, and about 0.1 to about 50 to the organic anionic nanoclay It may include 50 parts by weight, but may not be limited thereto.
  • the content of the organicated cationic nanoclay is about 0.1 to about 50 parts by weight, about 0.1 to about 40 parts by weight, about 0.1 to about 30 parts by weight, and about 0.1 to about 100 parts by weight of the polymer.
  • the content of the organic anionic nanoclay is about 0.1 to about 50 parts by weight, about 0.1 to about 40 parts by weight, about 0.1 to about 30 parts by weight, about 0.1 to about 20 parts by weight, based on 100 parts by weight of the polymer, About 0.1 to about 10 parts by weight, or about 0.1 to about 5 parts by weight, but may not be limited thereto.
  • the content of the foam compound is about 0.1 to about 50 parts by weight, about 0.1 to about 20 parts by weight, about 0.1 to 100 parts by weight of the polymer. To about 15 parts by weight, preferably about 0.1 to about 10 parts by weight, or about 0.1 to about 5 parts by weight, but may not be limited thereto.
  • Nanoclays substituted with organic agents were synthesized using an ion exchange reaction.
  • 16 g of distilled water was added to a 20 L reactor, and while stirring, 320 g of synthetic mica (ME-100, COOP Chemicals) was slowly added and dispersed at 60 ° C. for 6 hours.
  • 320 mmol of cetyltrimethyl ammonium bromide 116.6 g, corresponding to 1 times the cation substitution capacity (CEC) of ME-100
  • CEC cation substitution capacity
  • Sodium stearate (SA, Daejung Chemicals) 0.945 mol (289.6 g) was added to a 20 L reactor containing a mixed solution of 3 L ethanol and 3 L distilled water and heated to 65 °C to make a SA solution.
  • the complex in which the organic cationic clay (CTA-ME) and the organic anionic clay (SA-LDH) were dispersed in a polymer was synthesized in various ways using a solution-blending method.
  • Synthesis was carried out in the same manner as in the method for preparing PP-LDH1ME2 complex of 1), except that 0.0 g of SA-LDH and 1.0 g of CTA-ME were used.
  • the polymer solution in which the organic nanoclay-polymer composite was dispersed was precipitated in 400 mL ethanol solution.
  • the precipitate was separated using a filter and vacuum dried at 80 ° C. to synthesize a SA-LDH 1% / CTA-ME 2% / EVA composite.
  • Synthesis was carried out in the same manner as in the method for preparing EVA-LDH1ME2 complex of 13), except that 0.0 g of SA-LDH and 0.8 g of CTA-ME were used.
  • Synthesis was performed in the same manner as in the method for preparing EVA-LDH1ME2 complex of 13), except that 0.0 g of SA-LDH and 1.0 g of CTA-ME were used.
  • the thermal stability test was carried out using the organic nanoclay-polymer composite prepared in Example 1 and a polymer as a control thereof. Thermal analysis tests were performed using a thermal gravimetric (TG) analyzer (TA Instruments SDT-Q600) at a temperature range of 30 ° C. to 800 ° C. with air flowing at a rate of 200 mL / min.
  • TG thermal gravimetric
  • the thermal stability was observed to improve thermal stability by 25 ° C when 4 wt% of CTA-ME was added in EVA composite containing 1 wt% and 2 wt% of SA-LDH. can do. From this, it can be seen that the thermal stability is greatly improved by synergistic effect when using SA-LDH and CTA-ME simultaneously than when using each layered material in the case of thermal stability.
  • PP itself shows a sharp weight loss due to the combustion reaction between 270 °C to 370 °C
  • the thermal stability of the composite according to the present application is significantly improved TG curve toward the overall high temperature You can see it moved.
  • the weight loss 50% temperature when the SA-LDH 1%, 2% was found to improve the thermal stability about 40 °C.
  • the pyrolysis temperature of the composite having 4 wt% and 5 wt% of only CTA-ME dispersed without SA-LDH is increased by about 23 ° C. It can be seen that the SA-LDH has a significant effect on the thermal stability in the PP nanocomposite.
  • the elastic modulus and tensile strength which are mechanical properties of SA-LDH / CTA-ME / EVA nanocomposites of various compositions, are increased as the amount of CTA-ME increases when SA-LDH is 1 wt%.
  • SA-LDH when the content of CTA-ME reaches 3 wt%, it tends to converge.
  • SA-LDH is 2 wt%, both values slightly increase as the amount of CTA-ME increases, but it does not show a big change. From these results, it can be seen that the thermal stability and mechanical properties are the highest in the nanocomposite synthesized by adding 1 wt% of SA-LDH and 4 wt% of CTA-ME to EVA.
  • the CTA-ME content is similar to that of the EVA nanocomposite.
  • the modulus of elasticity increases with the increase, but it tends to converge when the content of CTA-ME reaches 3 wt%.
  • the modulus of elasticity is lower than that of the PP nanocomposite having a composition of 1 wt% of SA-LDH, but increases slightly as the amount of CTA-ME increases.
  • the organic nanoclays CTA-ME and SA-LDH do not affect the elastic modulus of PP when forming the PP nanocomposite. From these results, it can be seen that the thermal stability and the mechanical properties are the highest in the PP nanocomposite synthesized by adding 1 wt% of SA-LDH and 4 wt% of CTA-ME.
  • a cone calorimeter (concalimeter) test was performed using the organic nanoclay-polymer nanocomposite prepared in Example 1 and a polymer as a control thereof.
  • the cone calorimeter test uses a cone calorimeter to measure square shaped specimens ejected to a size of 10 ⁇ 10 cm 2 .
  • the cone calorimeter test method can measure the flame retardant properties of a material such as the heat release rate, the maximum heat release rate, the total heat release rate over a certain period of time, and the ignition time when the material is placed under constant radiant heat conditions. Test method.
  • the maximum heat release rate is the most important item in evaluating fire safety for a given material.
  • EVA has a maximum heat release peak of 1,863.1 kW / m 2
  • EVA nanocomposite containing 1 wt% SA-LDH EVA nanocomposite containing 4 wt% CTA-ME, and 1 wt% SA-LDH and CTA- EVA nanocomposites containing 4 wt% ME showed 1,855.6 kW / m 2 , 892.8 kW / m 2 , and 658.7 kW / m 2 , respectively.
  • the maximum heat release rate is significantly reduced in EVA nanocomposites containing CTA-ME, which is a cationic nanoclay compared to pure EVA.
  • the EVA nanocomposite containing 1 wt% of SA-LDH and 4 wt% of CTA-ME was found to significantly reduce the maximum heat release rate compared to the EVA nanocomposite containing only 4 wt% of CTA-ME. It can be seen that the flame retardant performance can be improved.
  • Example 2 intumescent-containing organic Nanoclay -Polymer Composite
  • SA-LDH / CTA-ME / EVA nanocomposites were synthesized by adding 1 wt% SA-LDH and 4 wt% CTA-ME. Specifically, 0.8 g of CTA-ME and 0.2 g of SA-LDH were added to 80 mL of toluene, and dispersed at 100 ° C. for 12 hours. 20 g of EVA polymer was added to a 120 mL organic solvent and dissolved at 100 ° C., and the mixture was added to the organic solvent in which SA-LDH and CTA-ME were dispersed and stirred at 100 ° C. for 10 hours.
  • Exolit-AP-422 (ammonium polyphosphate), which are foaming compounds, were added thereto, followed by further stirring at 100 ° C. for 2 hours. It was.
  • the polymer solution thus synthesized was precipitated in 400 mL ethanol solution. The precipitate was separated using a filter and vacuum dried at 80 ° C. to synthesize a foamed compound / SA-LDH / CTA-ME / EVA nanocomposite.
  • SA-LDH / CTA-ME / PP nanocomposites were synthesized by adding 1 wt% of SA-LDH and 3 wt% of CTA-ME. Specifically, 0.6 g of CTA-ME and 0.2 g of SA-LDH were added to 80 mL of xylene, and dispersed at 120 ° C. for 12 hours. 20 g of PP was added to 120 mL xylene and dissolved at 120 ° C., and the mixture was added to an organic solvent in which SA-LDH and CTA-ME were dispersed and stirred at 120 ° C. for 10 hours.
  • the thermal stability test was performed using an organic nanoclay-polymer composite containing the foaming compound (intumescent) prepared in Example 2 and a polymer as a control thereof.
  • the thermostability test was carried out using a thermogravimetric analyzer (TA Instruments SDT-Q600) at a temperature range of 30 ° C. to 800 ° C. while flowing air at a rate of 200 mL / min.
  • TA Instruments SDT-Q600 thermogravimetric analyzer
  • the thermal stability is 1 wt% SA-LDH or 4 wt% CTA-ME based on a temperature of 50% weight loss. When included only tends to be lower than that.
  • the thermal stability is about 42 ° C. compared to the PP in the PP-LDH1ME3 composite based on a temperature of 50% by weight.
  • the thermal stability was improved, and when the 5 wt% foaming compound was added, the thermal stability was improved at about 54 ° C and about 70 ° C when the 10% foaming compound was added.
  • the thermal stability showed a tendency of slightly lowering to about 54 ° C. From this, it can be seen that the thermal stability is maximized when the 10 wt% foaming compound is added.
  • the mechanical properties test for the polymer itself was carried out using the organic nanoclay-polymer composite containing the foaming compound prepared in Example 2 and the control [Universal Testing Machine (UTM; Zwick)], and the results are shown in FIG. 8. .
  • E-modulus and tensile strength of the specimens (PP-I5, PP-I10, PP-I20) in which the foaming compound was added to the PP itself were found to be almost unchanged when compared to the PP itself. It could be seen that there was no change even if the addition amount of the foaming compound changed.
  • PP-LDH1ME3 composites have improved modulus of elasticity compared to PP itself, especially when 5% to 20% of foamed compound (I) is added to PP-LDH1ME3 nanocomposites. You can see the improvement. In particular, similar values of elastic modulus were obtained when 5 wt% of the foaming compound was added and 10 wt% of the foaming compound. The elastic modulus value was larger than that of 20 wt% of the foaming compound. . These results confirm that the organic nanoclay / composite can sufficiently improve the modulus of elasticity compared to the polymer itself despite adding the foaming compound (I) within 20%.
  • the tensile strength is maintained within the experimental error range in the nanocomposite containing the nanocomposite and the foamed compound. Therefore, it can be seen that the mechanical properties are maintained or improved by complexing a polymer such as PP with the nanoclay and the foaming compound.

Abstract

The present invention relates to an organic nanoclay-polymer composite and a method for preparing the organic nanoclay-polymer composite, wherein the organic nanoclay-polymer composite includes an organomodified cationic nanoclay, an organomodified anionic nanoclay, and a polymer.

Description

유기 나노클레이-고분자 복합체 및 이의 제조 방법Organic Nanoclay-Polymer Complexes and Methods for Making the Same
본원은, 유기 나노클레이-고분자 복합체 및 상기 유기 나노클레이-고분자 복합체의 제조 방법에 관한 것이다.The present application relates to an organic nanoclay-polymer composite and a method for preparing the organic nanoclay-polymer composite.
고분자 소재는 고강도 경량화 소재라는 특징 때문에 현대사회에서 다양한 분야에서 많이 사용되고 있다. 그러나 고분자 소재는 불에 쉽게 연소되기 때문에 본질적인 화재 위험성에 대한 문제점을 지니고 있다. 이러한 문제를 해결하기 위해 고분자의 난연화에 대한 노력들이 많이 이루어지고 있다. Polymer materials are widely used in various fields in modern society because of their high strength and light weight. However, polymer materials have a problem inherent in fire hazard because they are easily burned by fire. In order to solve this problem, many efforts have been made to flame retardant polymers.
고분자를 난연화시키는 방법은 다양한데, 분자 구조 변경을 통해 내열성 고분자를 제조하거나, 고분자에 난연 성분을 가진 물질을 첨가하는 방법 등이 있다. 무기계 난연제가 가장 많이 사용되며, 그 예로서 할로겐계 화합물과 인계 난연제가 있다. 할로겐계 화합물은 우수한 난연성을 부여할 수 있는 장점을 가지고 있으나 연소시 할로겐화 수소와 함께 인체에 유해한 기체가 발생되는 단점이 있다. 이와 같은 문제점으로 비할로겐계 물질들이 최근에 많이 개발되고 있다. There are a variety of methods for flame retarding the polymer, there is a method for producing a heat-resistant polymer by changing the molecular structure, or adding a material having a flame retardant component to the polymer. Inorganic flame retardants are most commonly used, and examples thereof include halogen compounds and phosphorus flame retardants. Halogen-based compounds have the advantage of imparting excellent flame retardancy, but has the disadvantage of generating harmful gases to the human body with hydrogen halide upon combustion. Due to this problem, many non-halogen-based materials have been recently developed.
한편, 부가되는 난연제에 의해 열적 안정성, 물리적 특성의 저하를 최소화 하는 것이 중요하다. 이와 같은 이유로 다양한 무기물들이 첨가된 고분자 복합체가 개발되고 있고, 고분자 소재 내에 나노클레이의 적절한 분산은 일정 수준 이상의 난연성능을 향상시킨다는 연구 결과들이 많이 보고되고 있다 (대한민국 공개특허 제10-2005-0112144호 등). 나노클레이의 난연 특성 기작은 효과적인 나노클레이의 박리화를 통하여 만들어진 큰 종횡비를 가진 나노클레이 입자가 고분자와의 접촉면적을 증가시켜줌으로써, 고분자 소재가 화재 상황에서 열 산화 반응으로 발생하는 휘발성 유기 저분자 물질의 표면으로의 확산을 효과적으로 지연시키는 작용을 통하여 발휘되게 된다. 그러나, 나노클레이의 경우 친수성이기 때문에 물에서의 분산은 우수하나 고분자와 같은 물질에서의 분산성은 좋지 않다. On the other hand, it is important to minimize the degradation of the thermal stability, physical properties by the added flame retardant. For this reason, polymer composites with various inorganic substances have been developed, and many studies have reported that proper dispersion of nanoclays in polymer materials improves flame retardant performance by a certain level or more (Korea Patent Publication No. 10-2005-0112144). Etc). The mechanism of flame retardant properties of nanoclays is that volatile organic low-molecular substances produced by thermal oxidation reaction in the event of fire due to the high aspect ratio of nanoclay particles made by effective nanoclay exfoliation increase the contact area with the polymer. It is exerted through the effect of effectively delaying the diffusion to the surface. However, since nanoclay is hydrophilic, dispersion in water is excellent but dispersibility in materials such as polymers is poor.
또한, 고분자의 난연성을 향상시키기 위한 방법으로 인계 난연제의 올리고머를 고분자와 함께 분산 가공하는 방법 (대한민국 공개특허 제1998-0002056호)이나, 열가소성수지로 난연제를 먼저 캡슐화한 후 유기인계 난연제를 고분자 내에 분산시키는 방법 (대한민국 공개특허 제2002-0027783호) 등이 제안되고 있으나 난연제가 15 중량% 이상 들어가야 난연 특성이 부여되나, 난연제의 함량의 증가에 따른 기계적 물성의 저하를 방지하기는 힘들다.In addition, as a method for improving the flame retardancy of the polymer, a method of dispersing the oligomer of the phosphorus flame retardant with the polymer (Korean Patent No. 1998-0002056), or encapsulating the flame retardant with a thermoplastic resin first, and then organophosphorus flame retardant in the polymer A method of dispersing (Korean Patent Publication No. 2002-0027783) and the like have been proposed, but flame retardant properties are imparted only when the flame retardant is contained in an amount of 15 wt% or more, but it is difficult to prevent a decrease in mechanical properties due to an increase in the content of the flame retardant.
본원은, 유기 나노클레이-고분자 복합체 및 상기 유기 나노클레이-고분자 복합체의 제조방법을 제공하고자 한다.The present application is to provide an organic nanoclay-polymer composite and a method for preparing the organic nanoclay-polymer composite.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the above-mentioned problem, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
본원의 제 1 측면은, 유기화 양이온성 나노클레이, 유기화 음이온성 나노클레이, 및 고분자를 포함하는, 유기 나노클레이-고분자 복합체를 제공한다.A first aspect of the present disclosure provides an organic nanoclay-polymer composite comprising an organic cationic nanoclay, an organic anionic nanoclay, and a polymer.
본원의 제 2 측면은, 양이온성 계면활성제-함유 용액 및 음이온성 계면활성제-함유 용액을 각각 제조하고; 상기 양이온성 계면활성제-함유 용액을 양이온성 나노클레이-분산 용액과 교반 및 상기 음이온성 계면활성제-함유 용액을 음이온성 나노클레이-분산 용액과 교반하여, 유기화 양이온성 나노클레이 및 유기화 음이온성 나노클레이를 각각 제조하고; 및 상기 유기화 양이온성 나노클레이 및 유기화 음이온성 나노클레이를 고분자에 분산시켜 상기 제 1 측면에 따른 유기 나노클레이-고분자 복합체를 제조하는 것을 포함하는, 유기 나노클레이-고분자 복합체의 제조방법을 제공한다.A second aspect of the present disclosure is directed to preparing a cationic surfactant-containing solution and an anionic surfactant-containing solution, respectively; The cationic surfactant-containing solution was stirred with a cationic nanoclay-dispersed solution and the anionic surfactant-containing solution was stirred with anionic nanoclay-dispersed solution to form an organic cationic nanoclay and an organic anionic nanoclay. Preparing each; And dispersing the organic cationic nanoclay and organic anionic nanoclay in a polymer to prepare an organic nanoclay-polymer composite according to the first aspect.
본원의 일 구현예에 있어서, 양이온성 계면활성제를 양이온성 나노클레이의 층간에 삽입하고, 음이온성 계면활성제를 음이온성 나노클레이의 층간에 삽입하여 두 종류의 상이한 나노클레이를 유기화하고, 고분자에 두 종류의 유기화된 나노클레이를 분산시켜 유기 나노클레이-고분자 복합체를 제조함으로써, 상기 유기 나노클레이-고분자 복합체의 연소시 분산된 양이온성 나노클레이 사의의 공간을 작은 크기의 층상 소재인 음이온성 나노클레이가 채워줌으로써 공기와의 접촉을 효과적으로 차단하여 차르(char)의 형성을 더 용이하게 할 수 있어 열적 안정성과 기계적 물성을 동시에 증대시킬 수 있고, 난연 및 발열량 저감을 위한 발포화합물의 사용을 최소화 할 수 있고, 이로부터 고분자의 열적 안정성과 기계적 물성을 유지 할 수 있는 효과가 있다.In one embodiment of the invention, a cationic surfactant is inserted between the layers of cationic nanoclays, and an anionic surfactant is inserted between the layers of anionic nanoclays to organicize two different nanoclays, and By dispersing a kind of organic nanoclay to prepare an organic nanoclay-polymer composite, the space of the cationic nanoclay dispersed during the combustion of the organic nanoclay-polymer composite is a small size of layered material anionic nanoclay It can effectively block the contact with air by filling it, making it easier to form char, thereby increasing thermal stability and mechanical properties simultaneously, and minimizing the use of foaming compounds for reducing flame retardant and calorific value. From this, the thermal stability and mechanical properties of the polymer can be maintained. .
도 1은, 본원의 일 구현예에 따른 유기 나노클레이-고분자 복합체와 고분자의 난연 기작에 대한 비교 모식도이다.1 is a comparative schematic diagram of the flame retardant mechanism of the organic nanoclay-polymer composite and the polymer according to an embodiment of the present application.
도 2a 및 도 2b는, 본원의 일 실시예에 따른 유기 나노클레이-고분자 복합체와 고분자(EVA)의 열 중량 분석 결과이다.2A and 2B are thermogravimetric analysis results of an organic nanoclay-polymer composite and a polymer (EVA) according to an embodiment of the present application.
도 3a 및 도 3b는, 본원의 일 실시예에 따른 유기 나노클레이-고분자 복합체와 고분자(EVA)의 탄성 계수 및 인장 강도 측정 결과이다.3A and 3B are results of measuring elastic modulus and tensile strength of an organic nanoclay-polymer composite and a polymer (EVA) according to an embodiment of the present application.
도 4a 및 도 4b는, 본원의 일 실시예에 따른 유기 나노클레이-고분자 복합체와 고분자(PP)의 열 중량 분석 결과이다.4A and 4B are thermogravimetric analysis results of an organic nanoclay-polymer composite and a polymer (PP) according to one embodiment of the present application.
도 5a 및 도 5b는, 본원의 일 실시예에 따른 유기 나노클레이-고분자 복합체와 고분자(PP)의 탄성 계수 및 인장 강도 측정 결과이다.5A and 5B are results of measuring elastic modulus and tensile strength of an organic nanoclay-polymer composite and a polymer (PP) according to an embodiment of the present application.
도 6은, 본원의 일 실시예에 따른 유기 나노클레이-고분자 복합체와 고분자(EVA)의 콘칼로리미터 시험 방법에 의한 열 방출율 측정 결과이다.6 is a heat release rate measurement result by the cone calorimeter test method of the organic nanoclay-polymer composite and the polymer (EVA) according to an embodiment of the present application.
도 7a 및 도 7b는, 본원의 일 실시예에 따른 발포 화합물 유무에 따른 고분자 및 유기 나노클레이-고분자 복합체의 열 중량 분석 결과이다.7A and 7B are thermogravimetric analysis results of a polymer and an organic nanoclay-polymer composite according to the presence or absence of a foaming compound according to one embodiment of the present application.
도 8는, 본원의 일 실시예에 따른 발포 화합물 유무에 따른 고분자 및 다양한 유기 나노클레이-고분자 복합체의 탄성 계수 및 인장 강도 측정 결과이다.8 is a result of measuring the elastic modulus and tensile strength of the polymer and the various organic nanoclay-polymer composite according to the foam compound according to an embodiment of the present application.
이하, 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present disclosure. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted for simplicity of explanation, and like reference numerals designate like parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. Throughout this specification, when a portion is "connected" to another portion, this includes not only "directly connected" but also "electrically connected" with another element in between. do.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout this specification, when a member is located "on" another member, this includes not only when one member is in contact with another member but also when another member exists between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless specifically stated otherwise.
본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. As used throughout this specification, the terms "about", "substantially" and the like are used at, or in the sense of, numerical values when a manufacturing and material tolerance inherent in the stated meanings is indicated, Accurate or absolute figures are used to assist in the prevention of unfair use by unscrupulous infringers.
본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.As used throughout this specification, the term "step to" or "step of" does not mean "step for."
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합(들)"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term "combination (s) thereof" included in the representation of a makushi form refers to one or more mixtures or combinations selected from the group consisting of the components described in the representation of makushi form, It means to include one or more selected from the group consisting of the above components.
본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다. Throughout this specification, the description of "A and / or B" means "A or B, or A and B."
본원 명세서 전체에서, "알킬"은, 각각, 선형 또는 분지형의, 포화 또는 불포화의 C1-10 알킬기를 포함하는 것일 수 있으며, 예를 들어, 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 헵실, 옥틸, 노닐, 데실, 운데실, 도데실, 또는 이들의 가능한 모든 이성질체를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.Throughout this specification, "alkyl" may be one containing a linear or branched, saturated or unsaturated C 1-10 alkyl group, for example, methyl, ethyl, propyl, butyl, pentyl, hexyl, It may be, but is not limited to, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, or all possible isomers thereof.
이하, 본원의 구현예를 설명하였으나, 본원이 이에 제한되지 않을 수 있다.Hereinafter, embodiments of the present disclosure have been described, but the present disclosure may not be limited thereto.
본원의 제 1 측면은, 유기화 양이온성 나노클레이, 유기화 음이온성 나노클레이, 및 고분자를 포함하는, 유기 나노클레이-고분자 복합체를 제공한다.A first aspect of the present disclosure provides an organic nanoclay-polymer composite comprising an organic cationic nanoclay, an organic anionic nanoclay, and a polymer.
본원의 일 구현예에 있어서, 상기 나노클레이 또는 점토(양이온성 점토 또는 음이온성 점토)는 친수성을 지니며, 건축, 자동차 및 가전제품의 외장재에 많이 사용되는 고분자인 PP (polypropylene), EVA (ethylene vinyl acetae copolymer), ABS (acrylonitrile butadiene styrene copolymer) 등의 고분자는 소수성을 지니고 있어서, 고분자에 나노클레이가 분산된 상태, 즉 박리화 상태로 있는 상기 복합체를 형성하기 위해서는 나노클레이의 표면을 소수성으로 표면을 개질하는 것이 필요하며, 이에 따라, 상기 나노클레이를 유기화제를 이용하여 유기화시키는 것일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, the nanoclay or clay (cationic clay or anionic clay) is hydrophilic, and is a polymer (PP), poly (propylene), EVA (ethylene) which is widely used in exterior materials of construction, automobiles and home appliances Polymers such as vinyl acetae copolymer (ABS) and acrylonitrile butadiene styrene copolymer (ABS) are hydrophobic, and in order to form the complex in which the nanoclay is dispersed in the polymer, that is, in the exfoliated state, the surface of the nanoclay is hydrophobic. It is necessary to modify, and accordingly, the nanoclay may be organicized using an organic agent, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 유기 나노클레이-고분자 복합체는 난연성 또는 발열량 저감 효과를 가지는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the organic nanoclay-polymer composite may be one having a flame retardant or calorific value reducing effect, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 유기 나노클레이-고분자 복합체는 발포 화합물을 추가 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the organic nanoclay-polymer complex may be to further include a foaming compound, but may not be limited thereto.
도 1은, (a) 고분자, (b) 유기화 양이온성 나노클레이-발포 화합물-고분자 복합체, 및 (c) 본원에 따른 유기 나노클레이-발포 화합물-고분자 복합체에 대한 모식도 및 그에 따른 난연 기작을 나타낸다. 특히, 상기 (c) 본원에 따른 유기 나노클레이-발포 화합물-고분자 복합체의 연소시 분산된 양이온성 나노클레이 사이의 공간을 작은 크기의 층상 소재인 음이온성 나노클레이가 채워줌으로써 공기와의 접촉을 효과적으로 차단하여 차르(char)의 형성을 더 용이하게 할 수 있어 열적 안정성과 기계적 물성을 동시에 증대시킬 수 있고, 난연 및 발열량 저감을 위한 발포화합물의 사용을 최소화할 수 있고, 이로부터 고분자의 열적 안정성과 기계적 물성을 유지할 수 있는 효과가 있다.FIG. 1 shows a schematic diagram of (a) a polymer, (b) an organic cationic nanoclay-foaming compound-polymer complex, and (c) an organic nanoclay-foaming compound-polymer complex according to the present invention and a flame retardant mechanism accordingly. . In particular, (c) the anionic nanoclay, which is a small layered material, fills the space between the dispersed cationic nanoclays during combustion of the organic nanoclay-foaming compound-polymer composite according to the present invention, thereby effectively contacting with air. It is possible to make the formation of char more easily by blocking, thereby increasing thermal stability and mechanical properties at the same time, minimizing the use of foaming compound for reducing flame retardancy and calorific value, thereby improving thermal stability and It is effective to maintain mechanical properties.
본원의 일 구현예에 있어서, 상기 유기 나노클레이-고분자 복합체는, 상기 고분자 100 중량부에 대하여, 상기 유기화 양이온성 나노클레이 약 0.1 내지 약 50 중량부, 및 상기 유기화 음이온성 나노클레이 약 0.1 내지 약 50 중량부를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 유기화 양이온성 나노클레이의 함량은, 상기 고분자 100 중량부에 대하여, 약 0.1 내지 약 50 중량부, 약 0.1 내지 약 40 중량부, 약 0.1 내지 약 30 중량부, 약 0.1 내지 약 20 중량부, 약 0.1 내지 약 10 중량부, 또는 약 0.1 내지 약 5 중량부일 수 있으며; 상기 유기화 음이온성 나노클레이의 함량은, 상기 고분자 100 중량부에 대하여, 약 0.1 내지 약 50 중량부, 약 0.1 내지 약 40 중량부, 약 0.1 내지 약 30 중량부, 약 0.1 내지 약 20 중량부, 약 0.1 내지 약 10 중량부, 또는 약 0.1 내지 약 5 중량부일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, the organic nanoclay-polymer composite, based on 100 parts by weight of the polymer, about 0.1 to about 50 parts by weight of the organic cationic nanoclay, and about 0.1 to about 50 to the organic anionic nanoclay It may include 50 parts by weight, but may not be limited thereto. For example, the content of the organicated cationic nanoclay is about 0.1 to about 50 parts by weight, about 0.1 to about 40 parts by weight, about 0.1 to about 30 parts by weight, and about 0.1 to about 100 parts by weight of the polymer. 20 parts by weight, about 0.1 to about 10 parts by weight, or about 0.1 to about 5 parts by weight; The content of the organic anionic nanoclay is about 0.1 to about 50 parts by weight, about 0.1 to about 40 parts by weight, about 0.1 to about 30 parts by weight, about 0.1 to about 20 parts by weight, based on 100 parts by weight of the polymer, About 0.1 to about 10 parts by weight, or about 0.1 to about 5 parts by weight, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 발포 화합물을 추가 포함하는 경우, 상기 발포 화합물의 함량은, 상기 고분자 100 중량부에 대하여, 약 0.1 내지 약 50 중량부, 약 0.1 내지 약 20 중량부, 약 0.1 내지 약 15 중량부, 바람직하게 약 0.1 내지 약 10 중량부, 또는 약 0.1 내지 약 5 중량부일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, when the foam compound is further included, the content of the foam compound is about 0.1 to about 50 parts by weight, about 0.1 to about 20 parts by weight, about 0.1 to 100 parts by weight of the polymer. To about 15 parts by weight, preferably about 0.1 to about 10 parts by weight, or about 0.1 to about 5 parts by weight, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 양이온성 나노클레이는 몬트모릴로나이트(montmorillonite), 벤토나이트(bentonite), 헥토라이트(hectorite), 사포나이트(saponite), 바이델라이트(beidelite), 논트로나이트(nontronite), 팽윤성 운모(mica), 버미큘라이트(vermicullite), 합성 운모(synthetic mica), 카네마이트(kanemite), 마가다이트(magadite), 케냐이트(kenyaite), 카올린나이트(kaolinite), 스멕타이트(smectite), 일라이트(illite), 클로라이트(chlorite), 무스코바이트(muscovite), 파이로필라이트(pyrophyllite), 안티고라이트(antigorite), 해록석(glauconite), 질석(vermiculite), 세피올라이트(sepiolite), 이모골라이트(imogolite), 소복카이트(sobockite), 나크라이트(nacrite), 아녹사이트(anauxite), 견운모(sericite), 레디카이트(ledikite), 온석면(chrysotile), 안티고라이트(antigorite), 및 이들의 조합들로 이루어진 군에서 선택되는 층상 규산염을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the cationic nanoclay is montmorillonite, bentonite, hectorite, saponite, beidelite, nontronite ( nontronite, swellable mica, vermicullite, synthetic mica, kanemite, magadite, kenyaite, kaolinite, smectite , Illite, chlorite, muscovite, pyrophyllite, antigorite, glauconite, vermiculite, sepiolite , Imogolite, sockockite, nacrite, anoxite, sericite, ledikite, chrysotile, antigorite, and these Stratified from the group consisting of It may include silicate, but may not be limited thereto.
상기 양이온성 나노클레이는, 일반적으로, 스멕타이트계 점토와 같은 팽윤성을 잘 띠는 점토를 사용하고, 그 중에서도 몬트모릴로나이트 계열의 점토가 주로 응용이 많이 된다. 그 구조를 보면, 실리콘을 중심으로 산소가 사면체를 이루고, 이 사면체가 꼭지점을 공유하면서 층을 이루고, 이러한 실리케이트 사면체층이 알루미늄 이온을 중심으로 산소와 수산화기(-OH-)와 함께 팔면체를 이루어 팔면체층의 위아래로 둘러쌓여 있는 구조의 알루미노실리케이트 층을 이루고 있다. 일반적으로, 몬트모릴로나이트 구조는 팔면체 층의 알루미늄 사이트 3개 중 2개에는 알루미늄 이온이 들어있고, 한 곳에는 비어 있는 구조를 이루고 있어서 다이옥타헤드랄(dioctahedral) 구조라고 말한다. 또한, 팔면체층의 3가의 알루미늄이온의 일부가 Fe2 +, Ca2 +와 같은 2가 이온으로 치환된 구조, 즉 이질동상치환(isomorphous substitution)을 하고 있어서 알루미노실리케이트 층이 음전하를 띠게 된다. 이 음전하를 중화시키기 위해 알루미노실리케이트 층 사이에 양이온, 즉 Na+이 들어가 있는 층상구조를 가지고 있다. 알루미노실리케이트 층과 층간의 Na+ 이온은 친수성이 매우 뛰어나서, 물에서 팽윤이 매우 잘 일어나고, 다른 양이온, 또는 극성이 있는 이온 또는 분자, 클러스터 등과 이온 교환 반응이나 이온-다이폴(dipole) 작용에 의해 층간 삽입 반응이 잘 일어나는 특성을 지니고 있다. 그러나, 소수성(hydrophobic)이 큰 고분자와의 복합체를 합성하기 위해서는 표면을 친유특성을 지닌 유기물로 표면처리함으로써 고분자 매트릭스 내 분산된 나노 복합체를 합성할 수 있다.Generally, the cationic nanoclay uses swellable clays such as smectite-based clays, and montmorillonite-based clays have many applications. In the structure, the oxygen forms a tetrahedron around the silicon, the tetrahedron are layered while sharing the vertices, this silicate tetrahedral layer is mainly aluminum ions and oxygen hydroxyl group (-OH -) octahedron made of the octahedron with the It forms an aluminosilicate layer that is enclosed above and below the layer. In general, the montmorillonite structure is called a dioctahedral structure because two of the three aluminum sites of the octahedral layer contain aluminum ions and one is empty. Further, a part of the trivalent aluminum ion octahedron layer Fe 2 +, Ca 2 + of the divalent substituted with ions such structure, that is dissimilar statue substituted (isomorphous substitution), and in the aluminosilicate layer takes on a negative charge. In order to neutralize this negative charge, it has a layered structure containing a cation, that is, Na + , between the aluminosilicate layers. The Na + ions between the aluminosilicate layer and the layers are very hydrophilic, so they swell very well in water, and may be caused by ion exchange or ion-dipole action with other cations or polar ions or molecules, clusters, etc. The intercalation reaction occurs well. However, in order to synthesize a complex with a high hydrophobic polymer, the nanocomposites dispersed in the polymer matrix may be synthesized by treating the surface with an organic material having lipophilic properties.
본원의 일 구현예에 있어서, 상기 양이온성 나노클레이의 유기화제는 세틸트리메틸암모늄염, 테트라데실아민, 헥사데실아민, 옥타데실아민, 디메틸디스테아릴암모늄염, 트리메틸테트라데실암모늄염, 트리메틸헥사데실암모늄염, 트리메틸옥타데실암모늄염, 벤질트리메틸암모늄염, 벤질트리에틸암모늄염, 페닐트리메틸암모늄염, 디메틸디옥타데실암모늄염, 벤잘코니움염, 스테랄코늄염, 데나토니움염, 세틸피리디늄염, 테트라-n-부틸암모늄염, 폴리쿼터늄염, 헥실암모늄염, 옥틸암모늄염, 옥타데실암모늄염, 디옥틸디에틸암모늄염, 디옥타데실디메틸암모늄염, 헥실하이드록시에틸암모늄염, 도데실하이드록시에틸디메틸암모늄염, 옥타데실하이드록시에틸디메틸암모늄염, 옥틸카르복시에틸암모늄염, 도데실카르복시에틸디메틸암모늄염, 헥사데실카르복시에틸 디메틸암모늄염, 옥타데실카르복시에틸디메틸암모늄염, 도데실메르캅토에틸메틸암모늄염, 헥사데실메르캅토에틸디메틸암모늄염, 테트라에틸포스포늄염, 트리에틸벤질포스포늄염, 트리-n-부틸벤질포스포늄염, 및 이들의 조합들로 이루어진 군에서 선택되는 양이온성 계면활성제를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the organic agent of the cationic nanoclay is cetyltrimethylammonium salt, tetradecylamine, hexadecylamine, octadecylamine, dimethyl distearyl ammonium salt, trimethyl tetradecyl ammonium salt, trimethylhexadecyl ammonium salt, trimethyl Octadecyl ammonium salt, benzyl trimethyl ammonium salt, benzyl triethyl ammonium salt, phenyl trimethyl ammonium salt, dimethyl dioctadecyl ammonium salt, benzalkonium salt, steralconium salt, denatonium salt, cetylpyridinium salt, tetra-n-butylammonium salt, polyquater Nium salt, hexyl ammonium salt, octyl ammonium salt, octadecyl ammonium salt, dioctyl diethyl ammonium salt, dioctadecyl dimethyl ammonium salt, hexyl hydroxyethyl ammonium salt, dodecyl hydroxyethyl dimethyl ammonium salt, octadecyl hydroxyethyl dimethyl ammonium salt, octyl carboxyethyl ammonium salt, Dodecylcarboxyethyldimethylammonium salt, hexadecyl Carboxyl dimethylammonium salt, octadecylcarboxyethyldimethylammonium salt, dodecyl mercaptoethylmethylammonium salt, hexadecyl mercaptoethyldimethylammonium salt, tetraethylphosphonium salt, triethylbenzylphosphonium salt, tri-n-butylbenzylphosphophosphate It may include, but is not limited to, cationic surfactants selected from the group consisting of nium salts, and combinations thereof.
본원의 일 구현예에 있어서, 상기 유기화 양이온성 나노클레이는, 상기 양이온성 계면활성제가 상기 양이온성 나노클레이의 층간에 삽입된 형태인 것으로서, 이들은 정전기적 인력에 의해 결합된 것일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, the organic cationic nanoclay, the cationic surfactant is a form inserted between the layers of the cationic nanoclay, they may be bound by the electrostatic attraction, but is not limited thereto It may not be.
본원의 일 구현예에 있어서, 상기 유기화 양이온성 나노클레이는, 구체적으로, 하기 화학식 1을 포함하는 것일 수 있다:In one embodiment of the present application, the organic cationic nanoclay, specifically, may be to include the following formula (1):
[화학식 1][Formula 1]
Na0.7(Mg2.65Si4)O10F2[(C16H33)N(CH3)3]x;Na 0.7 (Mg 2.65 Si 4 ) O 10 F 2 [(C 16 H 33 ) N (CH 3 ) 3 ] x ;
상기 화학식 1에서, 상기 Na0 . 7(Mg2.65Si4)O10F2는 합성 나노클레이의 한 종류이며, 몬트모릴로나이트, 헥토라이트, 사포나이트 등의 합성 또는 천연 층상형 알루미노실리케이트로 대체가 가능하고, 상기 (C16H33)N(CH3)3는 세틸트리메틸암모늄의 양이온 형태이며 다른 양이온계 계면활성제로 대체 가능하고, X는 0을 초과하는 양수이다.In Formula 1, Na 0 . 7 (Mg 2.65 Si 4 ) O 10 F 2 is a kind of synthetic nanoclay, and can be replaced with synthetic or natural layered aluminosilicates such as montmorillonite, hectorite, saponite, and the like (C 16 H 33 ) N (CH 3 ) 3 is the cation form of cetyltrimethylammonium and is replaceable with other cationic surfactants, and X is a positive number greater than zero.
본원의 일 구현예에 있어서, 상기 유기화 음이온성 나노클레이는, 하기 화학식 2로서 표시되는 층상 금속 이중층 수산화물을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다:In one embodiment of the present application, the organic anionic nanoclay may be to include a layered metal bilayer hydroxide represented by the following formula (2), but may not be limited thereto:
[화학식 2][Formula 2]
[M2+ 1-xM3+ x(OH)2][An-]x/nㆍy(H2O);[M 2+ 1-x M 3+ x (OH) 2 ] [A n- ] x / n y (H 2 O);
여기서, M2+는 2가 금속 양이온이며, M3+는 3가 금속 양이온이며, A는 n의 음전하를 띠는 음이온성 계면활성제의 음이온이며, x는 0 내지 1의 수이고, y 및 n은 각각 양수를 의미한다.Wherein M 2+ is a divalent metal cation, M 3+ is a trivalent metal cation, A is an anion of a negatively charged anionic surfactant of n, x is a number from 0 to 1, y and n Each represents a positive number.
상기 음이온성 나노클레이로서 사용되는 LDH(layered double hydroxide)는 층간에 음이온이 들어있는 구조를 가지며, 자연계에서 발견되는 대표적인 광물로는 하이드로탈사이트[hydrotalcite, Mg6Al2(OH)16CO3·H2O]가 있고, 상기 LDH는 유사 하이드로탈사이트 화합물(hydrotalcite-like compound)로 명명하기도 한다. 그 구조는 브루사이트(brucite) (Mg(OH)2) 층을 기본 골격으로 하고 있다. LDH 층은 옥타헤드랄 사이트 중심에 Mg2 +와 같은 2가 금속 양이온이 있고, 6 개의 수산화기(-OH-)가 6 배위한 유닛이 2 차원적으로 연결되어 있는 구조를 지니고 있다. 상기 Mg2 + 와 같은 2가 양이온의 일부가 Al3 +과 같은 3가 양이온으로 치환됨으로써 LDH 층이 양전하를 띄게 되며, 이렇게 발생한 층전하를 중성화시키기 위해 층간에 탄산이온(CO3 2-)과 같은 음이온이 들어가 있는 층상구조를 하고 있다. LDH 중에는 하이드로탈사이트 구조와는 약간 상이한 칼루마이트 (Ca4Al2(OH)12CO3·5H2O)를 지닌 경우도 있는데, LDH와 조성은 비슷하나 2가 양이온인 Ca2 +가 6개의 수산화기(-OH-)와 1 개의 물(H2O)과 7 배위하는 구조를 하고 있으며, 다른 구조는 동일하다. 이러한 LDH는 적절한 pH에서 공침이 되는 2가 금속 양이온과 3가 금속 양이온이 선택이 되면 그 금속 이온의 조성을 조절할 수 있다는 장점을 갖고 있다. 또한, 음이온 교환능을 갖고 있기 때문에 Cl-, NO3 - 와 같은 층간 음이온 대신 특정한 기능을 지닌 음이온성 유기물, 무기물 또는 DNA와 같은 음이온성 바이오물질 등을 층간 삽입시켜 다양한 분야에 응용을 하고 있다. 특히 최근에는 Mg와 Al을 포함한 LDH는 인체 독성이 없어서 의약 분야의 약물 전달 캐리어로 응용에 대한 연구도 활발히 보고되고 있다. 고분자 응용에 있어서는 LDH를 첨가제로 사용하여 PVC 등에 들어있는 Cl- 이온 스캐빈저(scavenger)로서 응용이 되기도 한다. 특히 LDH는 온도가 올라감에 따라 탈수산화반응에 의한 흡열반응이 일어나기 때문에 난연과 동시에 발열량 저감에도 효과적이다. 한편, 양이온 나노클레이와 마찬가지로, LDH는 층의 표면에 수산화기가 있기 때문에 친수성 특성을 지니고 있어서, 소수성 고분자에 난연 첨가제로 응용하기 위해서는 표면을 소수성 유기물로 개질해야 할 필요가 있다.LDH (layered double hydroxide) used as the anionic nanoclay has a structure containing anions between layers, and representative minerals found in nature are hydrotalcite, Mg 6 Al 2 (OH) 16 CO 3 · H 2 O], and the LDH may be referred to as a hydrotalcite-like compound. The structure is based on a brucite (Mg (OH) 2 ) layer. LDH layer is a divalent metal cation such as Mg + 2 to the center octa head LAL site, six hydroxyl groups (-OH -) may have a structure in which the unit for a six-fold connection in a two-dimensional manner. Part of the divalent cation such as Mg 2 + is substituted with a trivalent cation such as Al 3 + and the LDH layer has a positive charge, carbonate (CO 3 2- ) and between the layers to neutralize the layer charges generated It has a layered structure containing the same anion. LDH during the hydrotalcite structure is slightly different Kalou boehmite some cases having a (Ca 4 Al 2 (OH) 12 CO 3 · 5H 2 O), LDH and composition is similar to one divalent cation is Ca 2 + has 6 a hydroxyl group (-OH -) and one of water (H 2 O) and has been a structure in which 7 configuration and the other structure is the same. This LDH has the advantage that the composition of the metal ions can be adjusted when a divalent metal cation and a trivalent metal cation are co-precipitated at an appropriate pH. In addition, since it has an anion exchange ability, anionic organic materials, inorganic materials or anionic biomaterials such as DNA, etc. having a specific function are intercalated instead of interlayer anions such as Cl and NO 3 and applied to various fields. In particular, LDH including Mg and Al has no human toxicity, and thus, research on the application as a drug delivery carrier in the pharmaceutical field has been actively reported. In polymer applications, LDH may be used as an additive and used as a Cl - ion scavenger in PVC. In particular, LDH is effective in reducing calorific value as well as flame retardant because endothermic reaction by dehydration reaction occurs as the temperature rises. On the other hand, like cationic nanoclays, LDH has a hydrophilic property because there is a hydroxyl group on the surface of the layer, it is necessary to modify the surface with a hydrophobic organic material to be applied as a flame retardant additive in hydrophobic polymers.
본원의 일 구현예에 있어서, 상기 음이온성 나노클레이의 유기화제는, 스테아르산염, 팔미틸산염 또는 라우릴산염과 같은 알킬카르복실산염, 도데실설페이트염과 같은 알킬설페이트염, 도데실벤젠설포네이트염과 같은 알킬벤젠설포네이트염, 라우릴포스페이트염 같은 알킬포스페이트염, 알킬폴리옥시에틸렌설페이트염, 및 이들의 조합들로 이루어진 군으로부터 선택되는 음이온성 계면활성제인 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the organic agent of the anionic nanoclay, alkyl carboxylates such as stearate, palmityate or lauryl acid salts, alkyl sulfate salts such as dodecyl sulfate salt, dodecylbenzenesulfonate It may be, but is not limited to, an anionic surfactant selected from the group consisting of alkylbenzenesulfonate salts such as salts, alkylphosphate salts such as laurylphosphate salts, alkylpolyoxyethylenesulfate salts, and combinations thereof. have.
본원의 일 구현예에 있어서, 상기 유기화 음이온성 나노클레이는, 상기 음이온성 계면활성제가 상기 층상 금속 이중층 수산화물의 층간에 삽입된 형태인 것으로서, 이들은 정전기적 인력에 의해 결합된 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the organic anionic nanoclay, the anionic surfactant is a form inserted between the layers of the layered metal bilayer hydroxide, they may be bound by the electrostatic attraction, but is not limited thereto It may not be.
본원의 일 구현예에 있어서, 상기 발포 화합물은, 암모늄 폴리포스페이트, 1급 암모늄 포스페이트(primary ammonium phosphate), 2급 암모늄 포스페이트(secondary ammonium phosphate), 암모늄 포스파이트, 멜라민 포스페이트, 디멜라민포스페이트, 멜라민 피로포스페이트, 트리크레실 포스페이트, 및 이들의 조합들로 이루어진 군에서 선택되는 것; 또는 펜타에리트리톨, 디펜타에리트리톨, 트리펜타에리트리톨, 솔비톨, 트리메틸올프로판, 트리메틸올에탄, 디트리메틸올프로판, 및 이들의 조합들로 이루어진 군에서 선택되는 탄화제를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present invention, the foaming compound, ammonium polyphosphate, primary ammonium phosphate (primary ammonium phosphate), secondary ammonium phosphate (secondary ammonium phosphate), ammonium phosphite, melamine phosphate, dimelamine phosphate, melamine fatigue One selected from the group consisting of phosphate, tricresyl phosphate, and combinations thereof; Or a carbonizing agent selected from the group consisting of pentaerythritol, dipentaerythritol, tripentaerythritol, sorbitol, trimethylolpropane, trimethylolethane, ditrimethylolpropane, and combinations thereof, This may not be limited.
본원의 일 구현예에 있어서, 상기 고분자는 폴리에틸렌비닐아세테이트(EVA), 폴리프로필렌(PP), 폴리 아크릴로나이트릴 부타디엔 스타이렌(ABS), 폴리에틸렌(PE), 폴리아세틸렌, 폴리스티렌(PS), 폴리우레탄(PU), 폴리아마이드(PA), 폴리에틸렌 테레프탈레이트(PET), 폴리부틸렌 테레프탈레이트(PBT), 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the polymer is polyethylene vinyl acetate (EVA), polypropylene (PP), poly acrylonitrile butadiene styrene (ABS), polyethylene (PE), polyacetylene, polystyrene (PS), poly Urethane (PU), polyamide (PA), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and combinations thereof may be included, but is not limited thereto. have.
본원의 제 2 측면은, 양이온성 계면활성제-함유 용액 및 음이온성 계면활성제-함유 용액을 각각 제조하고; 상기 양이온성 계면활성제-함유 용액을 양이온성 나노클레이-분산 용액과 교반 및 상기 음이온성 계면활성제-함유 용액을 음이온성 나노클레이-분산 용액과 교반하여, 유기화 양이온성 나노클레이 및 유기화 음이온성 나노클레이를 각각 제조하고; 및 상기 유기화 양이온성 나노클레이 및 유기화 음이온성 나노클레이를 고분자에 분산시켜 상기 제 1 측면에 따른 유기 나노클레이-고분자 복합체를 제조하는 것을 포함하는, 유기 나노클레이-고분자 복합체의 제조방법을 제공한다. 본 측면에 따른 상기 유기 나노클레이-고분자 복합체에 대하여 본원의 제 1 측면에 대하여 기재된 내용이 모두 적용될 수 있다.A second aspect of the present disclosure is directed to preparing a cationic surfactant-containing solution and an anionic surfactant-containing solution, respectively; The cationic surfactant-containing solution was stirred with a cationic nanoclay-dispersed solution and the anionic surfactant-containing solution was stirred with anionic nanoclay-dispersed solution to form an organic cationic nanoclay and an organic anionic nanoclay. Preparing each; And dispersing the organic cationic nanoclay and organic anionic nanoclay in a polymer to prepare an organic nanoclay-polymer composite according to the first aspect. With respect to the organic nanoclay-polymer composite according to this aspect, all of the contents described for the first aspect of the present application can be applied.
본원의 일 구현예에 있어서, 상기 유기 나노클레이-고분자 복합체에 발포 화합물을 첨가하는 것을 추가 포함할 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, it may further include adding a foaming compound to the organic nanoclay-polymer composite, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 유기 나노클레이-고분자 복합체는, 상기 고분자 100 중량부에 대하여, 상기 유기화 양이온성 나노클레이 약 0.1 내지 약 50 중량부, 및 상기 유기화 음이온성 나노클레이 약 0.1 내지 약 50 중량부를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 유기화 양이온성 나노클레이의 함량은, 상기 고분자 100 중량부에 대하여, 약 0.1 내지 약 50 중량부, 약 0.1 내지 약 40 중량부, 약 0.1 내지 약 30 중량부, 약 0.1 내지 약 20 중량부, 약 0.1 내지 약 10 중량부, 또는 약 0.1 내지 약 5 중량부일 수 있으며; 상기 유기화 음이온성 나노클레이의 함량은, 상기 고분자 100 중량부에 대하여, 약 0.1 내지 약 50 중량부, 약 0.1 내지 약 40 중량부, 약 0.1 내지 약 30 중량부, 약 0.1 내지 약 20 중량부, 약 0.1 내지 약 10 중량부, 또는 약 0.1 내지 약 5 중량부일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the organic nanoclay-polymer composite, based on 100 parts by weight of the polymer, about 0.1 to about 50 parts by weight of the organic cationic nanoclay, and about 0.1 to about 50 to the organic anionic nanoclay It may include 50 parts by weight, but may not be limited thereto. For example, the content of the organicated cationic nanoclay is about 0.1 to about 50 parts by weight, about 0.1 to about 40 parts by weight, about 0.1 to about 30 parts by weight, and about 0.1 to about 100 parts by weight of the polymer. 20 parts by weight, about 0.1 to about 10 parts by weight, or about 0.1 to about 5 parts by weight; The content of the organic anionic nanoclay is about 0.1 to about 50 parts by weight, about 0.1 to about 40 parts by weight, about 0.1 to about 30 parts by weight, about 0.1 to about 20 parts by weight, based on 100 parts by weight of the polymer, About 0.1 to about 10 parts by weight, or about 0.1 to about 5 parts by weight, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 발포 화합물을 추가 포함하는 경우, 상기 발포 화합물의 함량은, 상기 고분자 100 중량부에 대하여, 약 0.1 내지 약 50 중량부, 약 0.1 내지 약 20 중량부, 약 0.1 내지 약 15 중량부, 바람직하게 약 0.1 내지 약 10 중량부, 또는 약 0.1 내지 약 5 중량부일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, when the foam compound is further included, the content of the foam compound is about 0.1 to about 50 parts by weight, about 0.1 to about 20 parts by weight, about 0.1 to 100 parts by weight of the polymer. To about 15 parts by weight, preferably about 0.1 to about 10 parts by weight, or about 0.1 to about 5 parts by weight, but may not be limited thereto.
이하, 본원에 대하여 실시예를 이용하여 좀더 구체적으로 설명하지만, 하기 실시예는 본원의 이해를 돕기 위하여 예시하는 것일 뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are only provided to help understanding of the present application, and the contents of the present application are not limited to the following Examples.
[실시예] EXAMPLE
실시예 1: 유기 나노클레이-고분자 복합체 제조Example 1 Preparation of Organic Nanoclay-Polymer Composites
1-1. 유기화 양이온성 나노클레이의 제조1-1. Preparation of Organicized Cationic Nanoclays
유기화제가 치환된 나노클레이를 이온 교환 반응을 이용하여 합성하였다. 20 L 반응기에 증류수 16 L를 넣고 교반하면서, 320 g의 합성 운모(ME-100, COOP Chemicals)를 천천히 첨가하고, 60℃에서 6 시간 동안 분산시켰다. 여기에 세틸트리메틸 암모늄 브로마이드(cetyltrimethyl ammonium bromide) 320 mmol (116.6 g, ME-100의 양이온 치환능(CEC)의 1배에 해당함)과 에탄올 3 L를 첨가하여 60℃에서 이온 교환 반응을 10시간 동안 진행시켰다. 반응 후 교반을 멈추고 10분간 대기 후, 세틸트리메틸 암모늄으로 표면이 개질된 ME-100(CTA-ME 하이브리드)가 물 위로 떠올라서 물과 층이 분리되었다. 아래에 있는 투명한 용액을 이송 펌프와 유리관을 이용하여 제거하였다. 이후 상기 CTA-ME 하이브리드는 필터링하여, 60℃ 증류수 10 L에서 교반시켜 재분산시킨 후 층 분리를 유도하여 아래에 있는 NaBr 염을 포함하는 투명한 용액을 한번 더 제거하고, 동결건조하여 유기화 양이온성 나노클레이인 상기 CTA-ME 하이브리드를 제조하였다. Nanoclays substituted with organic agents were synthesized using an ion exchange reaction. 16 g of distilled water was added to a 20 L reactor, and while stirring, 320 g of synthetic mica (ME-100, COOP Chemicals) was slowly added and dispersed at 60 ° C. for 6 hours. To this, 320 mmol of cetyltrimethyl ammonium bromide (116.6 g, corresponding to 1 times the cation substitution capacity (CEC) of ME-100) and 3 L of ethanol were added to perform an ion exchange reaction at 60 ° C. for 10 hours. Proceeded. After the reaction, the stirring was stopped and after waiting for 10 minutes, ME-100 (CTA-ME hybrid) surface-modified with cetyltrimethyl ammonium floated on the water to separate the water and the layer. The clear solution below was removed using a transfer pump and a glass tube. Thereafter, the CTA-ME hybrid was filtered, stirred in 10 L of distilled water at 60 ° C., redispersed, and then separated from each other to remove the transparent solution including the NaBr salt below, and lyophilized to form an organic cationic nanoparticle. Clay the CTA-ME hybrid was prepared.
1-2. 유기화 음이온성 나노클레이의 제조1-2. Preparation of Organicized Anionic Nanoclays
스테아르산나트륨(sodium stearate; SA, Daejung Chemicals) 0.945 mol (289.6 g)을 3 L 에탄올과 3 L 증류수의 혼합용액이 들어있는 20 L 반응기에 넣고 65℃로 가열하여 SA 용액을 만들었다. 상기 SA 용액에 0.3 M 염화마그네슘(magnesium chloride, 365.9 g)과 0.15 M 염화알루미늄(aluminium chloride, 217.3 g)의 혼합 수용액 ([Mg2 +]/[Al3 +]=2, 총 금속 농도 = 0.3 M) 6 L와 1.5 M NaOH 용액을 동시에 천천히 적가하여 pH를 10으로 유지시키면서 공침시키고, 적정 완료 후 65℃에서 20 시간 동안 반응시켰다. 반응이 완료된 후 침전물을 상분리하여 아래에 있는 용액을 분리하고 필터한 후, 다시 65℃의 증류수에 분산시킨 후 분리하는 방법으로 수세하였다. 최종으로는 필터한 흰색 침전물을 동결건조하여 SA-LDH를 합성하였다.Sodium stearate (SA, Daejung Chemicals) 0.945 mol (289.6 g) was added to a 20 L reactor containing a mixed solution of 3 L ethanol and 3 L distilled water and heated to 65 ℃ to make a SA solution. The aqueous solution of 0.3 M magnesium chloride (365.9 g) and 0.15 M aluminum chloride (217.3 g) in the SA solution ([Mg 2 + ] / [Al 3 + ] = 2, total metal concentration = 0.3 M) 6 L and 1.5 M NaOH solution were slowly added dropwise at the same time to coprecipitation while maintaining the pH at 10, and after completion of the titration, the reaction was carried out at 65 ° C. for 20 hours. After the reaction was completed, the precipitate was separated by phase separation, the solution below was filtered, filtered, and then dispersed in distilled water at 65 ° C., followed by washing with water. Finally, the filtered white precipitate was lyophilized to synthesize SA-LDH.
1-3. 유기 나노클레이-고분자 복합체의 제조1-3. Preparation of Organic Nanoclay-Polymer Composites
상기 유기화 양이온성 점토(CTA-ME)와 유기화 음이온성 점토(SA-LDH)가 고분자에 분산된 복합체를 용액-블렌딩(Solution-Blending) 방법을 이용하여 다양하게 합성하였다.The complex in which the organic cationic clay (CTA-ME) and the organic anionic clay (SA-LDH) were dispersed in a polymer was synthesized in various ways using a solution-blending method.
1) SA-1) SA- LDHLDH 1% /  One% / CTACTA -ME 2% / 폴리프로필렌(PP) 복합체 [PP--ME 2% / Polypropylene (PP) Composite [PP- LDH1ME2LDH1ME2 ]]
SA-LDH 0.2 g을 자일렌 40 mL에 넣고 120℃에서 분산시키고, CTA-ME 0.4 g을 자일렌 40 mL에 넣고 120℃에서 24시간 분산시켰다. 이 후, 20 g 폴리프로필렌 고분자를 120 mL 자일렌에 넣고 120℃에서 용해시키고, 이를 교반하면서 여기에 상기 SA-LDH와 CTA-ME가 각각 분산된 상기 용액을 넣고 120℃에서 24 시간 동안 교반시켜 유기 나노클레이-고분자 복합체를 형성시켰다. 상기 유기 나노클레이-고분자 복합체가 분산된 고분자 용액을 400 mL 에탄올 용액에 넣어 침전시켰다. 침전물을 필터를 이용하여 분리하고, 80℃에서 진공 건조하여 SA-LDH 1% / CTA-ME 2% / PP 복합체를 합성하였다. 0.2 g of SA-LDH was added to 40 mL of xylene, and dispersed at 120 ° C., 0.4 g of CTA-ME was added to 40 mL of xylene, and dispersed at 120 ° C. for 24 hours. Thereafter, 20 g polypropylene polymer was added to 120 mL xylene and dissolved at 120 ° C., and the solution containing the SA-LDH and CTA-ME dispersed therein was added thereto and stirred at 120 ° C. for 24 hours. Organic nanoclay-polymer complexes were formed. The polymer solution in which the organic nanoclay-polymer complex was dispersed was precipitated in 400 mL ethanol solution. The precipitate was separated using a filter and vacuum dried at 80 ° C. to synthesize a SA-LDH 1% / CTA-ME 2% / PP composite.
2) SA-2) SA- LDHLDH 1% /  One% / CTACTA -ME 3% / PP 복합체 제조-ME 3% / PP Composite
CTA-ME 0.6 g을 사용한 것을 제외하고는 상기 1)의 PP-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.Except for using 0.6 g of CTA-ME was synthesized in the same manner as the PP-LDH1ME2 composite method of 1).
3) SA-3) SA- LDHLDH 1% /  One% / CTACTA -ME 4% / PP 복합체 제조-ME 4% / PP Composite
CTA-ME 0.8 g을 사용한 것을 제외하고는 상기 1)의 PP-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.Except for using 0.8 g of CTA-ME was synthesized in the same manner as the PP-LDH1ME2 complex method of 1).
4) SA-4) SA- LDHLDH 1% /  One% / CTACTA -ME 5% / PP 복합체 제조-ME 5% / PP Composite
CTA-ME 1.0 g을 사용한 것을 제외하고는 상기 1)의 PP-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.Except for using 1.0 g of CTA-ME was synthesized in the same manner as the PP-LDH1ME2 composite method of 1).
5) SA-5) SA- LDH LDH 2% /  2% / CTACTA -ME 1% / PP 복합체 제조-ME 1% / PP Composite
SA-LDH 0.4 g을 사용하고, CTA-ME 0.2 g을 사용한 것을 제외하고는 상기 1)의 PP-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.0.4 g of SA-LDH was used, and 0.2 g of CTA-ME was used to synthesize the same method as for preparing the PP-LDH1ME2 complex of 1).
6) SA-6) SA- LDH LDH 2% /  2% / CTACTA -ME 2% / PP 복합체 제조-ME 2% / PP Composite
SA-LDH을 0.4 g 사용한 것을 제외하고는 상기 1)의 PP-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.Except for using 0.4 g of SA-LDH was synthesized in the same manner as in the PP-LDH1ME2 composite method of 1).
7) SA-7) SA- LDH LDH 2% /  2% / CTACTA -ME 3% / PP 복합체 제조-ME 3% / PP Composite
SA-LDH를 0.4 g 사용하고, CTA-ME를 0.6 g 사용한 것을 제외하고는 상기 1)의 PP-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.Except that 0.4 g of SA-LDH and 0.6 g of CTA-ME were used, the synthesis was carried out in the same manner as in the preparation method of PP-LDH1ME2 complex of 1).
8) SA-8) SA- LDH LDH 2% /  2% / CTACTA -ME 4% / PP 복합체 제조-ME 4% / PP Composite
SA-LDH를 0.4 g 사용하고, CTA-ME를 0.8 g 사용한 것을 제외하고는 상기 1)의 PP-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.Except that 0.4 g of SA-LDH and 0.8 g of CTA-ME were used, the synthesis was carried out in the same manner as in the preparation method of PP-LDH1ME2 complex of 1).
9) SA-9) SA- LDHLDH 1% /  One% / CTACTA -ME 0% / PP 나노복합체 제조-ME 0% / PP Nanocomposite
CTA-ME를 0.0 g 사용한 것을 제외하고는 상기 1)의 PP-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.Except for using 0.0g of CTA-ME was synthesized in the same manner as the PP-LDH1ME2 composite method of 1).
10) SA-10) SA- LDH LDH 2% /  2% / CTACTA -ME 0% / PP 복합체 제조-ME 0% / PP Composite
SA-LDH를 0.4 g 사용하고, CTA-ME를 0.0 g 사용한 것을 제외하고는 상기 1)의 PP-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.Except that 0.4 g of SA-LDH and 0.0 g of CTA-ME were used, the synthesis was carried out in the same manner as in the preparation of the PP-LDH1ME2 complex of 1).
11) SA-11) SA- LDH LDH 0% /  0% / CTACTA -ME 4% / PP 복합체 제조-ME 4% / PP Composite
SA-LDH를 0.0 g 사용하고, CTA-ME를 0.8 g 사용한 것을 제외하고는 상기 1)의 PP-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.Except that 0.0 g of SA-LDH and 0.8 g of CTA-ME were used, the synthesis was carried out in the same manner as in the preparation method of PP-LDH1ME2 complex of 1).
12) SA-12) SA- LDH LDH 0% /  0% / CTACTA -ME 5% / PP 복합체 제조-ME 5% / PP Composite
SA-LDH를 0.0 g 사용하고, CTA-ME를 1.0 g 사용한 것을 제외하고는 상기 1)의 PP-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.Synthesis was carried out in the same manner as in the method for preparing PP-LDH1ME2 complex of 1), except that 0.0 g of SA-LDH and 1.0 g of CTA-ME were used.
13) SA-13) SA- LDHLDH 1% /  One% / CTACTA -ME 2% / -ME 2% / EVAEVA 복합체 제조 [ Composite Preparation EVAEVA -- LDH1ME2LDH1ME2 ]]
SA-LDH 0.2 g을 톨루엔 40 mL에 넣고 100℃에서 분산시키고, CTA-ME 0.4 g을 톨루엔 40 mL에 넣고 100℃에서 24시간 동안 분산시켰다. 이 후, 20 g 에틸렌비닐아세테이트(EVA) 고분자를 120 mL 톨루엔에 넣고 100℃에서 용해시키고, 교반하면서 여기에 상기 SA-LDH 분산 용액과 상기 CTA-ME 분산 용액을 넣고 100℃에서 24 시간 동안 교반하여 유기 나노클레이-고분자 복합체를 형성시켰다. 이 후, 상기 유기 나노클레이-고분자 복합체가 분산된 고분자 용액을 400 mL 에탄올 용액에 넣어 침전시켰다. 침전물을 필터를 이용하여 분리하고, 80℃에서 진공 건조하여 SA-LDH 1% / CTA-ME 2% / EVA 복합체를 합성하였다. 0.2 g of SA-LDH was added to 40 mL of toluene and dispersed at 100 ° C., 0.4 g of CTA-ME was added to 40 mL of toluene and dispersed at 100 ° C. for 24 hours. Thereafter, 20 g of ethylene vinyl acetate (EVA) polymer was added to 120 mL toluene and dissolved at 100 ° C, and the SA-LDH dispersion solution and the CTA-ME dispersion solution were added thereto while stirring, followed by stirring at 100 ° C for 24 hours. Thereby forming an organic nanoclay-polymer complex. Thereafter, the polymer solution in which the organic nanoclay-polymer composite was dispersed was precipitated in 400 mL ethanol solution. The precipitate was separated using a filter and vacuum dried at 80 ° C. to synthesize a SA-LDH 1% / CTA-ME 2% / EVA composite.
14) SA-14) SA- LDHLDH 1% /  One% / CTACTA -ME 3% / -ME 3% / EVAEVA 복합체 제조 Composite manufacturing
CTA-ME 0.6 g을 사용한 것을 제외하고는 상기 13)의 EVA-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.Except for using 0.6 g of CTA-ME was synthesized in the same manner as in the EVA-LDH1ME2 production method of 13).
15) SA-15) SA- LDHLDH 1% /  One% / CTACTA -ME 4% / -ME 4% / EVAEVA 복합체 제조 Composite manufacturing
CTA-ME 0.8 g을 사용한 것을 제외하고는 상기 13)의 EVA-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.Except for using 0.8 g of CTA-ME was synthesized in the same manner as in the EVA-LDH1ME2 production method of 13).
16) SA-16) SA- LDHLDH 1% /  One% / CTACTA -ME 5% / -ME 5% / EVAEVA 복합체 제조 Composite manufacturing
CTA-ME 1.0 g을 사용한 것을 제외하고는 상기 13)의 EVA-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.Except for using 1.0 g of CTA-ME was synthesized in the same manner as in the EVA-LDH1ME2 composite method of 13).
17) SA-17) SA- LDH LDH 2% /  2% / CTACTA -ME 1% / -ME 1% / EVAEVA 복합체 제조 Composite manufacturing
SA-LDH를 0.4 g 사용하고, CTA-ME를 0.2 g 사용한 것을 제외하고는 상기 13)의 EVA-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.Except that 0.4 g of SA-LDH and 0.2 g of CTA-ME were used, the synthesis was carried out in the same manner as in the preparation of the EVA-LDH1ME2 complex of 13).
18) SA-18) SA- LDH LDH 2% /  2% / CTACTA -ME 2% / -ME 2% / EVAEVA 복합체 제조 Composite manufacturing
SA-LDH를 0.4 g 사용한 것을 제외하고는 상기 13)의 EVA-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.Except for using 0.4 g of SA-LDH was synthesized in the same manner as in the EVA-LDH1ME2 composite method of 13).
19) SA-19) SA- LDH LDH 2% /  2% / CTACTA -ME 3% / -ME 3% / EVAEVA 복합체 제조 Composite manufacturing
SA-LDH를 0.4 g 사용하고, CTA-ME를 0.6 g 사용한 것을 제외하고는 상기 13)의 EVA-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.Except that 0.4 g of SA-LDH and 0.6 g of CTA-ME were used, the synthesis was carried out in the same manner as in the preparation of the EVA-LDH1ME2 complex of 13).
20) SA-20) SA- LDH LDH 2% /  2% / CTACTA -ME 4% / -ME 4% / EVAEVA 복합체 제조 Composite manufacturing
SA-LDH를 0.4 g 사용하고, CTA-ME를 0.8 g 사용한 것을 제외하고는 상기 13)의 EVA-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.Except that 0.4 g of SA-LDH and 0.8 g of CTA-ME were synthesized in the same manner as in the method for preparing EVA-LDH1ME2 complex of 13).
21) SA-21) SA- LDHLDH 1% /  One% / CTACTA -ME 0% / -ME 0% / EVAEVA 복합체 제조 Composite manufacturing
CTA-ME를 0.0 g을 사용한 것을 제외하고는 상기 13)의 EVA-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.Except for using 0.0 g of CTA-ME was synthesized in the same manner as in the EVA-LDH1ME2 composite method of 13).
22) SA-22) SA- LDH LDH 2% /  2% / CTACTA -ME 0% / -ME 0% / EVAEVA 복합체 제조 Composite manufacturing
SA-LDH를 0.4 g 사용하고, CTA-ME를 0.0g 사용한 것을 제외하고는 상기 13)의 EVA-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.Except that 0.4g of SA-LDH and 0.0g of CTA-ME were used, the synthesis was carried out in the same manner as in the EVA-LDH1ME2 preparation method of 13).
23) SA-23) SA- LDH LDH 0% /  0% / CTACTA -ME 4% / -ME 4% / EVAEVA 복합체 제조 Composite manufacturing
SA-LDH를 0.0 g 사용하고, CTA-ME를 0.8 g 사용한 것을 제외하고는 상기 13)의 EVA-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.Synthesis was carried out in the same manner as in the method for preparing EVA-LDH1ME2 complex of 13), except that 0.0 g of SA-LDH and 0.8 g of CTA-ME were used.
24) SA-24) SA- LDH LDH 0% /  0% / CTACTA -ME 5% / -ME 5% / EVAEVA 복합체 제조 Composite manufacturing
SA-LDH를 0.0 g 사용하고, CTA-ME를 1.0 g 사용한 것을 제외하고는 상기 13)의 EVA-LDH1ME2 복합체 제조방법과 동일한 방법으로 합성하였다.Synthesis was performed in the same manner as in the method for preparing EVA-LDH1ME2 complex of 13), except that 0.0 g of SA-LDH and 1.0 g of CTA-ME were used.
실험예 1: 열적 안정성시험 Experimental Example 1: Thermal Stability Test
상기 실시예 1에서 제조한 유기 나노클레이-고분자 복합체 및 이의 대조군으로서 고분자를 이용하여 열적 안정성 시험을 실시하였다. 열 중량(TG) 분석기(TA Instruments SDT-Q600)를 사용하여 200 mL/분의 속도로 공기를 흘려주면서 30℃ 내지 800℃의 온도 범위에서 열분석 시험을 실시하였다.The thermal stability test was carried out using the organic nanoclay-polymer composite prepared in Example 1 and a polymer as a control thereof. Thermal analysis tests were performed using a thermal gravimetric (TG) analyzer (TA Instruments SDT-Q600) at a temperature range of 30 ° C. to 800 ° C. with air flowing at a rate of 200 mL / min.
도 2a 및 도 2b를 참조하여 보면, 상기 SA-LDH/CTA-ME/EVA 복합체의 경우, EVA 자체는 450℃ 정도에서 급격히 발열반응이 일어나면서 연소하는데 비해 상기 복합체의 경우 열안정성이 향상되어 TG곡선이 전체적으로 높은 온도 쪽으로 이동한 것을 볼 수 있다. 무게 감량 50%의 온도를 기준으로 봤을 때, SA-LDH가 들어 간 EVA 복합체의 경우 8℃ 이상의 열안정성이 향상되나 SA-LDH가 들어가지 않고 CTA-ME만 분산된 EVA 복합체는 4℃ 정도 열분해 온도가 올라간 것을 확인할 수 있다. 무게 감량 50%의 온도를 기준으로 봤을 때, 열안정성은 SA-LDH가 1 wt%, 2 wt% 들어간 EVA 복합체에서 CTA-ME가 4 wt% 들어갔을 경우 열안정성이 25℃ 정도 향상되는 것을 관찰할 수 있다. 이로부터 열안정성의 경우 각각의 층상 물질만을 사용했을 때보다 SA-LDH와 CTA-ME를 동시에 사용했을 때 시너지효과에 의해 열안정성이 크게 향상되는 것을 확인할 수 있다.2A and 2B, in the case of the SA-LDH / CTA-ME / EVA composite, the EVA itself burns while undergoing an exothermic reaction at about 450 ° C., while the thermal stability of the composite is improved, thereby increasing TG. It can be seen that the curve has moved towards higher temperatures as a whole. Based on 50% of the weight loss, the EVA composite containing SA-LDH has improved thermal stability of 8 ℃ or higher, but the EVA composite containing only CTA-ME without SA-LDH is pyrolyzed about 4 ℃. You can see that the temperature has risen. Based on the 50% weight loss, the thermal stability was observed to improve thermal stability by 25 ° C when 4 wt% of CTA-ME was added in EVA composite containing 1 wt% and 2 wt% of SA-LDH. can do. From this, it can be seen that the thermal stability is greatly improved by synergistic effect when using SA-LDH and CTA-ME simultaneously than when using each layered material in the case of thermal stability.
또한, 도 4a 및 도 4b를 참조하여 보면, PP 자체는 270℃ 내지 370℃ 사이에서 연소반응으로 급격한 무게 감소를 보이는데 비해 본원에 따른 복합체의 경우 열안정성이 크게 향상되어 TG곡선이 전체적으로 높은 온도쪽으로 이동한 것을 볼 수 있다. 무게 감량 50%의 온도를 기준으로 봤을 때, SA-LDH가 1%, 2% 들어간 경우 40℃ 정도 열안정성이 향상되는 것을 관찰할 수 있었다. 그러나 SA-LDH가 들어가지 않고 CTA-ME만 4 wt%, 5 wt% 분산된 복합체는 23℃ 정도 열분해 온도가 올라가는 것을 확인할 수 있다. 이로부터 SA-LDH가 PP 나노복합체에서 열적안정성에 큰 영향을 주는 것을 볼 수 있다.In addition, referring to Figures 4a and 4b, PP itself shows a sharp weight loss due to the combustion reaction between 270 ℃ to 370 ℃, the thermal stability of the composite according to the present application is significantly improved TG curve toward the overall high temperature You can see it moved. On the basis of the weight loss 50% temperature, when the SA-LDH 1%, 2% was found to improve the thermal stability about 40 ℃. However, it can be seen that the pyrolysis temperature of the composite having 4 wt% and 5 wt% of only CTA-ME dispersed without SA-LDH is increased by about 23 ° C. It can be seen that the SA-LDH has a significant effect on the thermal stability in the PP nanocomposite.
실험예 2: 기계적 물성 시험 Experimental Example 2: Mechanical Property Test
상기 실시예 1에서 제조한 유기 나노클레이-고분자 나노복합체 및 이의 대조군으로서 고분자를 이용하여 기계적 물성 시험을 실시하였다 [Universal Testing Machine (UTM; Zwick)]. 도 3a 및 도 3b를 참조하여 보면, 탄성 계수(E-modulus)는 EVA 복합체에서 CTA-ME의 함량이 증가할수록 약간 증가하는 경향을 보이고 있고 SA-LDH의 함량에는 크게 영향을 받지 않는 것을 확인할 수 있다. 인장 강도(tensile strength)는 나노클레이(CTA-ME와 SA-LDH)를 첨가함으로써 약간 증가하는 경향을 보이나 그 조성의 변화에 따른 결과에 대해서는 크게 차이가 없음을 볼 수 있다. Mechanical properties were tested using a polymer as an organic nanoclay-polymer nanocomposite prepared in Example 1 and a control thereof [Universal Testing Machine (UTM; Zwick)]. Referring to FIGS. 3A and 3B, the modulus of elasticity (E-modulus) tends to increase slightly as the content of CTA-ME in the EVA composite increases and is not significantly affected by the content of SA-LDH. have. Tensile strength tends to increase slightly by the addition of nanoclays (CTA-ME and SA-LDH), but it can be seen that there is no significant difference in the result of the change of the composition.
구체적으로, 다양한 조성의 SA-LDH/CTA-ME/EVA 나노복합체의 기계적 물성인 탄성 계수와 인장 강도는, SA-LDH가 1 wt%일 때 CTA-ME 양이 증가함에 따라 두 값이 모두 증가하다가 CTA-ME의 함량이 3 wt%가 되면 수렴하는 경향을 보여주고 있다. 그러나 SA-LDH가 2 wt%일 때는 CTA-ME 양이 증가함에 따라 두 값이 약간 증가하지만 큰 변화를 보여주지 못하는 것을 볼 수 있다. 이 결과로부터 EVA에 SA-LDH 1 wt%와 CTA-ME 4 wt%를 첨가하여 합성한 나노복합체에서 열안정성과 기계적 물성이 가장 높게 나타난다는 것을 확인할 수 있다. Specifically, the elastic modulus and tensile strength, which are mechanical properties of SA-LDH / CTA-ME / EVA nanocomposites of various compositions, are increased as the amount of CTA-ME increases when SA-LDH is 1 wt%. However, when the content of CTA-ME reaches 3 wt%, it tends to converge. However, when SA-LDH is 2 wt%, both values slightly increase as the amount of CTA-ME increases, but it does not show a big change. From these results, it can be seen that the thermal stability and mechanical properties are the highest in the nanocomposite synthesized by adding 1 wt% of SA-LDH and 4 wt% of CTA-ME to EVA.
한편, 도 5a 및 도 5b를 참조하여 보면, 조성의 SA-LDH/CTA-ME/PP 나노복합체의 기계적 물성이, SA-LDH가 1 wt% 일때는 EVA나노복합체와 유사하게 CTA-ME 함량이 증가함에 따라 탄성 계수가 증가하다가 CTA-ME의 함량이 3 wt%가 되면 수렴하는 경향을 보여주고 있다. 그러나 SA-LDH 가 2 wt%인 조성의 PP 나노복합체에서는 SA-LDH가 1 wt%인 조성의 PP 나노복합체일 때보다 탄성 계수가 낮으나 CTA-ME 양이 증가함에 따라 조금씩 증가하는 경향을 보인다. 그러나, 유기화된 나노클레이인 CTA-ME와 SA-LDH가 PP 나노복합체를 이룰 때 PP의 탄성 계수에는 영향을 주지 않는다는 것을 확인할 수 있다. 이 결과로부터, SA-LDH 1 wt%와 CTA-ME 4 wt%를 첨가하여 합성한 PP 나노복합체에서 열안정성과 기계적 물성이 가장 높게 나타난다는 것을 알 수 있다.Meanwhile, referring to FIGS. 5A and 5B, when the SA-LDH / CTA-ME / PP nanocomposite has a mechanical property of 1 wt% SA-LDH, the CTA-ME content is similar to that of the EVA nanocomposite. The modulus of elasticity increases with the increase, but it tends to converge when the content of CTA-ME reaches 3 wt%. However, in the PP nanocomposite having a composition of SA-LDH of 2 wt%, the modulus of elasticity is lower than that of the PP nanocomposite having a composition of 1 wt% of SA-LDH, but increases slightly as the amount of CTA-ME increases. However, it can be seen that the organic nanoclays CTA-ME and SA-LDH do not affect the elastic modulus of PP when forming the PP nanocomposite. From these results, it can be seen that the thermal stability and the mechanical properties are the highest in the PP nanocomposite synthesized by adding 1 wt% of SA-LDH and 4 wt% of CTA-ME.
실험예 3: 난연성 평가 (콘칼로리미터 시험) Experimental Example 3: Flame retardancy evaluation (cone calorimeter test)
상기 실시예 1에서 제조한 유기 나노클레이-고분자 나노복합체와 이의 대조군으로서 고분자를 이용하여 원추 열량계 (콘칼로리미터) 시험을 수행시하였다. 콘칼로리미터 시험은 10 X 10 cm2의 크기로 사출된 정사각형 모양의 시편을 콘칼로리미터를 이용하여 관찰하는 것이다. 콘칼로리미터 시험 방법은 재료가 일정한 크기의 복사 열량 조건에 놓여 있을 때 연소가 진행되면서 방출시키는 열 방출율, 최대 열 방출율, 일정 시간 동안의 총 방출열량, 점화시간 등 물질의 난연 특성을 측정할 수 있는 시험방법이다. 특히, 최대 열 방출율은 주어진 소재에 대하여 화재 안전성을 평가하는데 가장 중요한 항목이다. A cone calorimeter (concalimeter) test was performed using the organic nanoclay-polymer nanocomposite prepared in Example 1 and a polymer as a control thereof. The cone calorimeter test uses a cone calorimeter to measure square shaped specimens ejected to a size of 10 × 10 cm 2 . The cone calorimeter test method can measure the flame retardant properties of a material such as the heat release rate, the maximum heat release rate, the total heat release rate over a certain period of time, and the ignition time when the material is placed under constant radiant heat conditions. Test method. In particular, the maximum heat release rate is the most important item in evaluating fire safety for a given material.
본 실험예에서는 EVA 고분자 자체와 SA-LDH 1 wt% 함유하는 EVA 나노복합체, CTA-ME 4 wt% 함유하는 EVA 나노복합체, 그리고 SA-LDH 1 wt%와 CTA-ME 4 wt%를 함유하는 EVA 나노복합체의 난연 특성을 콘칼로리미터 시헙법을 통하여 평가 및 그 결과를 도 6에 나타내었다. 순수 EVA는 최대 열 방출 피크가 1,863.1 kW/m2인데 반해, SA-LDH 1 wt% 함유하는 EVA 나노복합체, CTA-ME 4 wt% 함유하는 EVA 나노복합체, 및 SA-LDH 1 wt%와 CTA-ME 4 wt%를 함유하는 EVA 나노복합체는 각각 1,855.6 kW/m2, 892.8 kW/m2, 658.7 kW/m2을 나타내었다. 이는, 순수 EVA에 비해 양이온성 나노클레이인 CTA-ME를 함유하는 EVA 나노복합체에서 최대 열 방출율이 현저히 감소함을 알 수 있다. 특히, SA-LDH 1wt%와 CTA-ME 4 wt%를 동시에 함유한 EVA 나노복합체는 CTA-ME 4 wt%만 들어있는 EVA 나노복합체에 비해 최대 열방출율이 유의미하게 감소함을 확인할 수 있으며, 이로부터 난연 성능이 개선될 수 있음을 알 수 있다. In this experimental example, the EVA polymer itself and the EVA nanocomposite containing 1 wt% SA-LDH, the EVA nanocomposite containing 4 wt% CTA-ME, and the EVA containing 1 wt% SA-LDH and 4 wt% CTA-ME The flame retardant properties of the nanocomposite were evaluated by cone calorimeter spectroscopy and the results are shown in FIG. 6. Pure EVA has a maximum heat release peak of 1,863.1 kW / m 2 , whereas EVA nanocomposite containing 1 wt% SA-LDH, EVA nanocomposite containing 4 wt% CTA-ME, and 1 wt% SA-LDH and CTA- EVA nanocomposites containing 4 wt% ME showed 1,855.6 kW / m 2 , 892.8 kW / m 2 , and 658.7 kW / m 2 , respectively. It can be seen that the maximum heat release rate is significantly reduced in EVA nanocomposites containing CTA-ME, which is a cationic nanoclay compared to pure EVA. In particular, the EVA nanocomposite containing 1 wt% of SA-LDH and 4 wt% of CTA-ME was found to significantly reduce the maximum heat release rate compared to the EVA nanocomposite containing only 4 wt% of CTA-ME. It can be seen that the flame retardant performance can be improved.
실시예Example 2: 발포 화합물(intumescent)-함유 유기  2: intumescent-containing organic 나노클레이Nanoclay -고분자 복합체 제조-Polymer Composite
2-1. 발포 화합물-유기 2-1. Foaming Compound-Organic 나노클레이Nanoclay -- EVAEVA 복합체 제조 Composite manufacturing
SA-LDH 1 wt%, CTA-ME 4 wt%를 첨가하여 SA-LDH/CTA-ME/EVA 나노복합체를 합성하였다. 구체적으로, CTA-ME 0.8 g과 SA-LDH 0.2 g을 톨루엔 80 mL에 넣고 100℃에서 12시간 분산시켰다. 그리고, 20 g의 EVA 고분자를 120 mL 유기용매에 넣고 100℃에서 용해시키고, 상기 SA-LDH와 CTA-ME 가 분산된 유기용매에 넣어서 100℃에서 10 시간 교반하였다. 여기에 발포 화합물인 Exolit-AP-422(암모늄폴리포스페이트)를 1 g(5 wt%), 2 g(10 wt%), 4 g(20 wt%)를 각각 넣어서 100℃에서 2시간 추가로 교반하였다. 이렇게 합성한 고분자 용액을 400 mL 에탄올 용액에 넣어 침전시켰다. 침전물을 필터를 이용하여 분리하고, 80℃에서 진공 건조하여 발포 화합물/SA-LDH/CTA-ME/EVA 나노복합체를 합성하였다.SA-LDH / CTA-ME / EVA nanocomposites were synthesized by adding 1 wt% SA-LDH and 4 wt% CTA-ME. Specifically, 0.8 g of CTA-ME and 0.2 g of SA-LDH were added to 80 mL of toluene, and dispersed at 100 ° C. for 12 hours. 20 g of EVA polymer was added to a 120 mL organic solvent and dissolved at 100 ° C., and the mixture was added to the organic solvent in which SA-LDH and CTA-ME were dispersed and stirred at 100 ° C. for 10 hours. 1 g (5 wt%), 2 g (10 wt%), and 4 g (20 wt%) of Exolit-AP-422 (ammonium polyphosphate), which are foaming compounds, were added thereto, followed by further stirring at 100 ° C. for 2 hours. It was. The polymer solution thus synthesized was precipitated in 400 mL ethanol solution. The precipitate was separated using a filter and vacuum dried at 80 ° C. to synthesize a foamed compound / SA-LDH / CTA-ME / EVA nanocomposite.
2-2. 발포 화합물 함유-유기 나노클레이-PP 복합체 제조2-2. Preparation of Foamed Compound-Containing Organic Nanoclay-PP Composites
SA-LDH를 1 wt%, CTA-ME를 3 wt% 함유한 첨가하여 SA-LDH/CTA-ME/PP 나노복합체를 합성하였다. 구체적으로, CTA-ME 0.6 g과 SA-LDH 0.2 g을 자일렌 80 mL에 넣고 120℃에서 12 시간 분산시켰다. 그리고, 20 g의 PP를 120 mL 자일렌에 넣고 120℃에서 용해시키고, 상기 SA-LDH와 CTA-ME 가 분산된 유기용매에 넣어서 120℃에서 10 시간 교반하였다. 여기에 발포화합물인 Exolit-AP-422(암모늄폴리포스페이트)를 1 g(5 wt%), 2 g(10 wt%), 및 4 g(20 wt%)을 각각 넣어서 120℃에서 2시간 추가로 교반하였다. 이렇게 합성한 고분자 용액을 400 mL 에탄올 용액에 넣어 침전시켰다. 침전물을 필터를 이용하여 분리하고, 80℃에서 진공 건조하여 발포 화합물(I)/SA-LDH/CTA-ME/PP 나노복합체를 합성하였다.SA-LDH / CTA-ME / PP nanocomposites were synthesized by adding 1 wt% of SA-LDH and 3 wt% of CTA-ME. Specifically, 0.6 g of CTA-ME and 0.2 g of SA-LDH were added to 80 mL of xylene, and dispersed at 120 ° C. for 12 hours. 20 g of PP was added to 120 mL xylene and dissolved at 120 ° C., and the mixture was added to an organic solvent in which SA-LDH and CTA-ME were dispersed and stirred at 120 ° C. for 10 hours. 1 g (5 wt%), 2 g (10 wt%), and 4 g (20 wt%), respectively, of the foaming compound Exolit-AP-422 (ammonium polyphosphate) were added thereto for an additional 2 hours at 120 ° C. Stirred. The polymer solution thus synthesized was precipitated in 400 mL ethanol solution. The precipitate was separated using a filter and dried in vacuo at 80 ° C. to synthesize foamed compound (I) / SA-LDH / CTA-ME / PP nanocomposites.
실험예 3: 열적 안정성시험Experimental Example 3: Thermal Stability Test
상기 실시예 2에서 제조한 발포 화합물(intumescent)을 함유한 유기 나노클레이-고분자 복합체 및 이의 대조군으로서 고분자를 이용하여 열적 안정성 시험을 실시하였다. 열 중량분석기(TA Instruments SDT-Q600)를 사용하여 200 mL/분의 속도로 공기를 흘려주면서 30℃ 내지 800℃의 온도 범위에서 열안정성 시험을 실시하였다. 도 7a를 참조하여 보면, 발포 화합물/SA-LDH/CTA-ME/EVA 복합체의 경우, 무게 감량 50%의 온도를 기준으로 봤을 때 열안정성은 1 wt% SA-LDH 또는 4 wt% CTA-ME만 포함할 때에 비하여 낮아지는 경향을 보인다. 이것은 발포 화합물 재료가 EVA가 분해하는 온도보다 낮은 온도에서 분해되면서 열안정성이 떨어지는 것으로 해석된다. 한편, 5 wt% 내지 20 wt% 발포 화합물(I)이 첨가되었을 때 열안정성에 대한 효과는 거의 나타나지 않았다.The thermal stability test was performed using an organic nanoclay-polymer composite containing the foaming compound (intumescent) prepared in Example 2 and a polymer as a control thereof. The thermostability test was carried out using a thermogravimetric analyzer (TA Instruments SDT-Q600) at a temperature range of 30 ° C. to 800 ° C. while flowing air at a rate of 200 mL / min. Referring to FIG. 7A, in the case of the foamed compound / SA-LDH / CTA-ME / EVA composite, the thermal stability is 1 wt% SA-LDH or 4 wt% CTA-ME based on a temperature of 50% weight loss. When included only tends to be lower than that. This translates to poor thermal stability as the foam compound material decomposes at a temperature lower than the temperature at which EVA decomposes. On the other hand, when the 5 wt% to 20 wt% foaming compound (I) was added, the effect on thermal stability was hardly seen.
도 7b를 참조하여 보면, 발포 화합물/SA-LDH/CTA-ME/PP 복합체의 경우, 무게 감량 50%의 온도를 기준으로 봤을 때, 열안정성은 PP-LDH1ME3 복합체의 경우 PP에 비해 42℃정도 열안정성이 향상되었고, 5 wt% 발포 화합물을 첨가하였을 때는 54℃ 정도, 10% 발포 화합물을 첨가하였을 대는 70℃ 정도 열안정성이 향상되었다. 그러나 발포 화합물을 20 wt% 첨가하였을 때는 열안정성이 향상이 54℃ 정도로 약간 낮아지는 경향을 보였다. 이로부터 10 wt% 발포 화합물을 첨가했을 때 열안정성이 극대화 된다는 것을 확인할 수 있다.Referring to FIG. 7B, in the case of the foamed compound / SA-LDH / CTA-ME / PP composite, the thermal stability is about 42 ° C. compared to the PP in the PP-LDH1ME3 composite based on a temperature of 50% by weight. The thermal stability was improved, and when the 5 wt% foaming compound was added, the thermal stability was improved at about 54 ° C and about 70 ° C when the 10% foaming compound was added. However, when 20 wt% of the foaming compound was added, the thermal stability showed a tendency of slightly lowering to about 54 ° C. From this, it can be seen that the thermal stability is maximized when the 10 wt% foaming compound is added.
실험예 4: 기계적 물성 시험Experimental Example 4: Mechanical Property Test
상기 실시예 2에서 제조한 발포 화합물을 함유한 유기 나노클레이-고분자 복합체와 대조군으로 고분자 자체에 대한 기계적 물성 시험을 실시하였으며[Universal Testing Machine (UTM; Zwick)], 그 결과를 도 8에 나타내었다. PP 자체에 발포 화합물가 첨가된 시편들(PP-I5, PP-I10, PP-I20)의 탄성 계수(E-modulus)와 인장 강도(tensile strength)는 PP 자체와 비교하였을 때 거의 변화가 없는 것을 확인할 수 있었고, 발포 화합물의 첨가량이 변화하여도, 변화가 없음을 볼 수 있다. 그러나, PP-LDH1ME3 복합체의 경우 PP 자체에 비해 탄성 계수 값이 향상되었고, 특히 5% 내지 20%의 발포 화합물(I)을 PP-LDH1ME3 나노복합체에 첨가하였을 때 탄성 계수 값이 최고 15% 가량 더 향상되었음을 확인할 수 있다. 특히, 발포 화합물을 5 wt% 첨가한 경우와 10 wt% 첨가한 경우 유사한 탄성 계수 값이 수득되었으며, 이러한 탄성 계수 값은 발포 화합물을 20 wt% 첨가한 경우의 탄성 계수보다 더 큰 값을 나타내었다. 이러한 결과는 유기 나노클레이/복합체는 20% 이내의 발포 화합물(I)을 첨가함에도 불구하고, 탄성계수를 고분자 자체에 비해서 충분히 향상시킬 수 있음을 확인할 수 있다. The mechanical properties test for the polymer itself was carried out using the organic nanoclay-polymer composite containing the foaming compound prepared in Example 2 and the control [Universal Testing Machine (UTM; Zwick)], and the results are shown in FIG. 8. . E-modulus and tensile strength of the specimens (PP-I5, PP-I10, PP-I20) in which the foaming compound was added to the PP itself were found to be almost unchanged when compared to the PP itself. It could be seen that there was no change even if the addition amount of the foaming compound changed. However, PP-LDH1ME3 composites have improved modulus of elasticity compared to PP itself, especially when 5% to 20% of foamed compound (I) is added to PP-LDH1ME3 nanocomposites. You can see the improvement. In particular, similar values of elastic modulus were obtained when 5 wt% of the foaming compound was added and 10 wt% of the foaming compound. The elastic modulus value was larger than that of 20 wt% of the foaming compound. . These results confirm that the organic nanoclay / composite can sufficiently improve the modulus of elasticity compared to the polymer itself despite adding the foaming compound (I) within 20%.
그러나, 인장 강도는 나노복합체 및 발포 화합물이 들어간 나노복합체에서 실험 에러 범위 안에서 유지가 되는 것을 볼 수 있다. 따라서, PP와 같은 고분자를 나노클레이 및 발포 화합물과 복합화함으로써 기계적 물성은 유지 또는 향상됨을 확인할 수 있다.However, it can be seen that the tensile strength is maintained within the experimental error range in the nanocomposite containing the nanocomposite and the foamed compound. Therefore, it can be seen that the mechanical properties are maintained or improved by complexing a polymer such as PP with the nanoclay and the foaming compound.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수도 있다.The above description of the present application is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present application. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the following claims rather than the above description, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present application. .

Claims (15)

  1. 유기화 양이온성 나노클레이, 유기화 음이온성 나노클레이, 및 고분자Organized Cationic Nanoclays, Organized Anionic Nanoclays, and Polymers
    를 포함하는, 유기 나노클레이-고분자 복합체.Comprising, organic nanoclay-polymer composite.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 유기 나노클레이-고분자 복합체는 난연성 또는 발열량 저감 효과를 가지는 것인, 유기 나노클레이-고분자 복합체.The organic nanoclay-polymer composite will have a flame retardant or calorific value reducing effect, organic nanoclay-polymer composite.
  3. 제 1 항에 있어서, The method of claim 1,
    발포 화합물을 추가 포함하는 것인, 유기 나노클레이-고분자 복합체.The organic nanoclay-polymer composite further comprising a foaming compound.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 고분자 100 중량부에 대하여, 상기 유기화 양이온성 나노클레이 0.1 내지 50 중량부 및 상기 유기화 음이온성 나노클레이 0.1 내지 50 중량부를 포함하는 것인, 유기 나노클레이-고분자 복합체.To about 100 parts by weight of the polymer, the organic nanoclay-polymer composite comprising 0.1 to 50 parts by weight of the organic cationic nanoclay and 0.1 to 50 parts by weight of the organic anionic nanoclay.
  5. 제 3 항에 있어서, The method of claim 3, wherein
    상기 발포 화합물의 함량은, 상기 고분자 100 중량부에 대하여, 0.1 내지 50 중량부인 것인, 유기 나노클레이-고분자 복합체.The content of the foaming compound is 0.1 to 50 parts by weight, based on 100 parts by weight of the polymer, organic nanoclay-polymer composite.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 양이온성 나노클레이는, 몬트모릴로나이트, 벤토나이트, 헥토라이트, 사포나이트, 바이델라이트, 논트로나이트, 팽윤성 운모, 버미큘라이트, 합성 운모, 카네마이트, 마가다이트, 케냐이트, 카올린나이트, 스멕타이트, 일라이트, 클로라이트, 무스코바이트, 파이로필라이트, 안티고라이트, 해록석, 질석, 세피올라이트, 이모골라이트, 소복카이트, 나크라이트, 아녹사이트, 견운모, 레디카이트, 온석면, 안티고라이트, 및 이들의 조합들로 이루어진 군에서 선택되는 층상 규산염을 포함하는 것인, 유기 나노클레이-고분자 복합체.The cationic nanoclay may be montmorillonite, bentonite, hectorite, saponite, bidelite, nontronite, swellable mica, vermiculite, synthetic mica, cannemite, margotite, kenyatite, kaolinite, smectite , Illite, chlorite, muscobite, pyrophyllite, antigorite, halostone, vermiculite, sepiolite, imogolite, sobokite, nacrite, anoxite, biotite, readykite, hot stone, antigorite, And a layered silicate selected from the group consisting of, organic nanoclay-polymer composite.
  7. 제 1 항에 있어서, The method of claim 1,
    상기 양이온성 나노클레이의 유기화제는 세틸트리메틸암모늄염, 테트라데실아민, 헥사데실아민, 옥타데실아민, 디메틸디스테아릴암모늄염, 트리메틸테트라데실암모늄염, 트리메틸헥사데실암모늄염, 트리메틸옥타데실암모늄염, 벤질트리메틸암모늄염, 벤질트리에틸암모늄염, 페닐트리메틸암모늄염, 디메틸디옥타데실암모늄염, 벤잘코니움염, 스테랄코늄염, 데나토니움염, 세틸피리디늄염, 테트라-n-부틸암모늄염, 폴리쿼터늄염, 헥실암모늄염, 옥틸암모늄염, 옥타데실암모늄염, 디옥틸디에틸암모늄염, 디옥타데실디메틸암모늄염, 헥실하이드록시에틸암모늄염, 도데실하이드록시에틸디메틸암모늄염, 옥타데실하이드록시에틸디메틸암모늄염, 옥틸카르복시에틸암모늄염, 도데실카르복시에틸디메틸암모늄염, 헥사데실카르복시에틸 디메틸암모늄염, 옥타데실카르복시에틸디메틸암모늄염, 도데실메르캅토에틸메틸암모늄염, 헥사데실메르캅토에틸디메틸암모늄염, 테트라에틸포스포늄염, 트리에틸벤질포스포늄염, 트리-n-부틸벤질포스포늄염, 및 이들의 조합들로 이루어진 군에서 선택되는 양이온성 계면활성제를 포함하는 것인, 유기 나노클레이-고분자 복합체.The organic agent of the cationic nanoclay is cetyltrimethylammonium salt, tetradecylamine, hexadecylamine, octadecylamine, dimethyl distearyl ammonium salt, trimethyl tetradecyl ammonium salt, trimethyl hexadecyl ammonium salt, trimethyl octadecyl ammonium salt, benzyl trimethyl ammonium salt, Benzyltriethylammonium salt, phenyltrimethylammonium salt, dimethyldioctadecylammonium salt, benzalkonium salt, steralconium salt, denatonium salt, cetylpyridinium salt, tetra-n-butylammonium salt, polyquaternium salt, hexyl ammonium salt, octyl ammonium salt, Octadecyl ammonium salt, dioctyl diethyl ammonium salt, dioctadecyl dimethyl ammonium salt, hexyl hydroxyethyl ammonium salt, dodecyl hydroxyethyl dimethyl ammonium salt, octadecyl hydroxyethyl dimethyl ammonium salt, octyl carboxyethyl ammonium salt, dodecyl carboxyethyl dimethyl ammonium salt, hexa Decylcarboxyethyl dimethylammonium salt Octadecylcarboxyethyldimethylammonium salt, dodecyl mercaptoethylmethylammonium salt, hexadecyl mercaptoethyldimethylammonium salt, tetraethylphosphonium salt, triethylbenzylphosphonium salt, tri-n-butylbenzylphosphonium salt, and these An organic nanoclay-polymer composite, comprising a cationic surfactant selected from the group consisting of combinations.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 유기화 양이온성 나노클레이는, 상기 양이온성 계면활성제가 상기 양이온성 나노클레이의 층간에 삽입된 형태인 것인, 유기 나노클레이-고분자 복합체.The organic cationic nanoclay is an organic nanoclay-polymer composite, wherein the cationic surfactant is a form inserted between the layers of the cationic nanoclay.
  9. 제 1 항에 있어서, The method of claim 1,
    상기 유기화 음이온성 나노클레이는, 하기 화학식 2로서 표시되는 층상 금속 이중층 수산화물을 포함하는 것인, 유기 나노클레이-고분자 복합체:The organic anionic nanoclay is an organic nanoclay-polymer composite, comprising a layered metal bilayer hydroxide represented by the following formula (2):
    [화학식 2][Formula 2]
    [M2+ 1-xM3+ x(OH)2][An-]x/nㆍy(H2O);[M 2+ 1-x M 3+ x (OH) 2 ] [A n- ] x / n y (H 2 O);
    여기서, M2+는 2가 금속 양이온이며, M3+는 3가 금속 양이온이며, A는 n의 음전하를 띠는 음이온성 계면활성제의 음이온이며, x는 0 내지 1의 수이고, y 및 n은 각각 양수를 의미함.Wherein M 2+ is a divalent metal cation, M 3+ is a trivalent metal cation, A is an anion of a negatively charged anionic surfactant of n, x is a number from 0 to 1, y and n Each represents a positive number.
  10. 제 1 항에 있어서, The method of claim 1,
    상기 음이온성 나노클레이의 유기화제는, 스테아르산염, 알킬카르복실산염, 알킬설페이트염, 알킬벤젠설포네이트염, 알킬포스페이트염, 알킬폴리옥시에틸렌설페이트염, 및 이들의 조합들로 이루어진 군으로부터 선택되는 음이온성 계면활성제인 것인, 유기 나노클레이-고분자 복합체.The organicizing agent of the anionic nanoclay is selected from the group consisting of stearates, alkylcarboxylates, alkylsulfate salts, alkylbenzenesulfonate salts, alkylphosphate salts, alkylpolyoxyethylenesulfate salts, and combinations thereof. It is an anionic surfactant, organic nanoclay-polymer composite.
  11. 제 9 항에 있어서, The method of claim 9,
    상기 유기화 음이온성 나노클레이는, 상기 음이온성 계면활성제가 상기 층상 금속 이중층 수산화물의 층간에 삽입된 형태인 것인, 유기 나노클레이-고분자 복합체.The organic anionic nanoclay is an organic nanoclay-polymer composite, wherein the anionic surfactant is inserted in the interlayer of the layered metal bilayer hydroxide.
  12. 제 3 항에 있어서, The method of claim 3, wherein
    상기 발포 화합물은, 암모늄 폴리포스페이트, 1급 암모늄 포스페이트, 2급 암모늄 포스페이트, 암모늄 포스파이트, 멜라민 포스페이트, 디멜라민포스페이트, 멜라민 피로포스페이트, 트리크레실 포스페이트, 및 이들의 조합들로 이루어진 군에서 선택되는 것; 또는 The blowing compound is selected from the group consisting of ammonium polyphosphate, primary ammonium phosphate, secondary ammonium phosphate, ammonium phosphite, melamine phosphate, dimelamine phosphate, melamine pyrophosphate, tricresyl phosphate, and combinations thereof. that; or
    펜타에리트리톨, 디펜타에리트리톨, 트리펜타에리트리톨, 솔비톨, 트리메틸올프로판, 트리메틸올에탄, 디트리메틸올프로판, 및 이들의 조합들로 이루어진 군에서 선택되는 탄화제를 포함하는 것인, 유기 나노클레이-고분자 복합체.Organic nano, comprising a carbonizing agent selected from the group consisting of pentaerythritol, dipentaerythritol, tripentaerythritol, sorbitol, trimethylolpropane, trimethylolethane, ditrimethylolpropane, and combinations thereof Clay-polymer complex.
  13. 제 1 항에 있어서, The method of claim 1,
    상기 고분자는 폴리에틸렌비닐아세테이트, 폴리프로필렌, 폴리 아크릴로나이트릴 부타디엔 스타이렌, 폴리에틸렌, 폴리아세틸렌, 폴리스티렌, 폴리우레탄, 폴리아마이드, 폴리에틸렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 유기 나노클레이-고분자 복합체.The polymer is a group consisting of polyethylene vinyl acetate, polypropylene, poly acrylonitrile butadiene styrene, polyethylene, polyacetylene, polystyrene, polyurethane, polyamide, polyethylene terephthalate, polybutylene terephthalate, and combinations thereof An organic nanoclay-polymer composite, comprising one selected from.
  14. 양이온성 계면활성제-함유 용액 및 음이온성 계면활성제-함유 용액을 각각 제조하고;Cationic surfactant-containing solutions and anionic surfactant-containing solutions are prepared, respectively;
    상기 양이온성 계면활성제-함유 용액을 양이온성 나노클레이-분산 용액과 교반 및 상기 음이온성 계면활성제-함유 용액을 음이온성 나노클레이-분산 용액과 교반하여, 유기화 양이온성 나노클레이 및 유기화 음이온성 나노클레이를 각각 제조하고; 및The cationic surfactant-containing solution was stirred with a cationic nanoclay-dispersed solution and the anionic surfactant-containing solution was stirred with anionic nanoclay-dispersed solution to form an organic cationic nanoclay and an organic anionic nanoclay. Preparing each; And
    상기 유기화 양이온성 나노클레이 및 유기화 음이온성 나노클레이를 고분자에 분산시켜 제 1 항 내지 제 13 항 중 어느 한 항에 따른 유기 나노클레이-고분자 복합체를 제조하는 것14. Dispersing the organic cationic nanoclay and organic anionic nanoclay in a polymer to prepare an organic nanoclay-polymer composite according to any one of claims 1 to 13.
    을 포함하는, Including,
    유기 나노클레이-고분자 복합체의 제조방법.Method for preparing organic nanoclay-polymer composite.
  15. 제 14 항에 있어서,The method of claim 14,
    상기 유기 나노클레이-고분자 복합체에 발포 화합물을 첨가하는 것을 추가 포함하는, 상기 유기 나노클레이-고분자 복합체의 제조방법.The method of manufacturing the organic nanoclay-polymer composite further comprising adding a foaming compound to the organic nanoclay-polymer composite.
PCT/KR2015/012489 2014-11-19 2015-11-19 Organic nanoclay-polymer composite and method for preparing same WO2016080789A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0161413 2014-11-19
KR20140161413 2014-11-19

Publications (1)

Publication Number Publication Date
WO2016080789A1 true WO2016080789A1 (en) 2016-05-26

Family

ID=56014236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012489 WO2016080789A1 (en) 2014-11-19 2015-11-19 Organic nanoclay-polymer composite and method for preparing same

Country Status (2)

Country Link
KR (2) KR20160059990A (en)
WO (1) WO2016080789A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110627470A (en) * 2019-11-01 2019-12-31 新化县天马建筑新材料科技有限公司 Double-network reinforced composite quick-drying gel cement material and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101867938B1 (en) 2016-12-30 2018-07-17 주식회사 효성 Polyketone and nano clay composition having improved long-term heat resistance
KR101993718B1 (en) * 2017-07-20 2019-06-27 서울대학교산학협력단 A flame retardant sheet and a method for manufacturing the same, and a clt in which the flame retardant sheet is applied
WO2019164311A1 (en) * 2018-02-21 2019-08-29 서울대학교산학협력단 Biodegradable polymer composite
KR102046264B1 (en) * 2018-11-27 2019-11-19 노우준 A composition of recycle polyvinyl chloride compound and manufacturing method thereof
KR102146320B1 (en) * 2019-12-10 2020-08-21 ㈜웰사이언픽랩 Water and Oil Repellent Nano-coating Composition Based on Organo-nanoclays
KR102361664B1 (en) * 2020-05-25 2022-02-10 전남대학교산학협력단 Method for producing alkyl tetravalent ammonium, method for producing organic nano-clay, and method for producing gas-barrier polymer-clay hybrid nanocomposite

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815489B1 (en) * 1999-07-13 2004-11-09 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Nanocomposite coatings
KR20080110591A (en) * 2006-02-24 2008-12-18 아크조 노벨 엔.브이. Flameproof composite material
US20090317627A1 (en) * 2008-06-24 2009-12-24 Chung Yuan Christan University Modified clay and clay-polymer composite
KR101036220B1 (en) * 2002-10-31 2011-05-20 더 보잉 컴파니 Fire resistant material
KR20130142214A (en) * 2012-06-14 2013-12-30 주식회사 베스텍 Polyolefin resin composition and preparation method of the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101090844B1 (en) * 2009-05-13 2011-12-08 자동차부품연구원 Method for preparing a polymer-clay nanocomposite having an improved mechanical property

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815489B1 (en) * 1999-07-13 2004-11-09 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Nanocomposite coatings
KR101036220B1 (en) * 2002-10-31 2011-05-20 더 보잉 컴파니 Fire resistant material
KR20080110591A (en) * 2006-02-24 2008-12-18 아크조 노벨 엔.브이. Flameproof composite material
US20090317627A1 (en) * 2008-06-24 2009-12-24 Chung Yuan Christan University Modified clay and clay-polymer composite
KR20130142214A (en) * 2012-06-14 2013-12-30 주식회사 베스텍 Polyolefin resin composition and preparation method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110627470A (en) * 2019-11-01 2019-12-31 新化县天马建筑新材料科技有限公司 Double-network reinforced composite quick-drying gel cement material and preparation method thereof
CN110627470B (en) * 2019-11-01 2020-05-05 新化县天马建筑新材料科技有限公司 Double-network reinforced composite quick-drying gel cement material and preparation method thereof

Also Published As

Publication number Publication date
KR20170083009A (en) 2017-07-17
KR20160059990A (en) 2016-05-27
KR101840206B1 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
WO2016080789A1 (en) Organic nanoclay-polymer composite and method for preparing same
He et al. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants
US6610770B1 (en) Organoclay/polymer compositions with flame retardant properties
Wang et al. A comparison of the fire retardancy of poly (methyl methacrylate) using montmorillonite, layered double hydroxide and kaolinite
CA2504414C (en) Fire resistant material
Utracki et al. Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs)
Zammarano et al. Preparation and flame resistance properties of revolutionary self-extinguishing epoxy nanocomposites based on layered double hydroxides
Zhang et al. Controlled silylation of montmorillonite and its polyethylene nanocomposites
Xiao et al. Effects of α-ZrP on crystallinity and flame-retardant behaviors of PA6/MCA composites
CN114085421A (en) Additive composition, preparation method and application thereof
US20160075862A1 (en) Nanoclays containing flame retardant chemicals for fire retardant applications
WO2015142613A1 (en) Phosphate ester-modified clay composition, method of producing the same and flame-retarded pvc nanocomposite, containing the same
Prahsarn et al. Influence of molecular structure of quaternary phosphonium salts on Thai bentonite intercalation
Jiang 11 Polymer Nanocomposites
JP2004256354A (en) Organic modified layered silicate and its manufacturing method, and composition and substrate containing this silicate
Bateman et al. Fire Resistant Material
Horrocks et al. Potential applications of nanocomposites for flame retardancy
Zheng Applications of polymer-layered clay nanocomposites
AU2003277964B2 (en) Fire resistant material
Song et al. Assessment on the Flame Retardancy for Polyethylene/Montmorillonite Nanocomposite
Zhang Flame retardancy of polyolefin-clay nanocomposites
Zhu Cross-linking of polystyrene by Friedel-Crafts chemistry and the flame retardancy of polymer-clay nanocomposites
Rusli et al. Effect of triisobutyl (methyl) phosphonium ion modified montmorillonite to the tensile properties of poly (methyl methacrylate) composites
Comes-Franchini et al. Flame retardant SBS–clay nanocomposites
HORROCKS et al. POTENTIAL OF FLAME NANOCOMPOSITES RETARDANCY APPLICATIONS FOR

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860979

Country of ref document: EP

Kind code of ref document: A1