WO2016080560A1 - 간섭 랜덤화를 지원하기 위한 피드백 방법 및 이를 위한 장치 - Google Patents

간섭 랜덤화를 지원하기 위한 피드백 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2016080560A1
WO2016080560A1 PCT/KR2014/011012 KR2014011012W WO2016080560A1 WO 2016080560 A1 WO2016080560 A1 WO 2016080560A1 KR 2014011012 W KR2014011012 W KR 2014011012W WO 2016080560 A1 WO2016080560 A1 WO 2016080560A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
pattern
cell
symbol
base station
Prior art date
Application number
PCT/KR2014/011012
Other languages
English (en)
French (fr)
Inventor
박경민
조희정
고현수
최혜영
변일무
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/526,050 priority Critical patent/US20170317800A1/en
Priority to PCT/KR2014/011012 priority patent/WO2016080560A1/ko
Publication of WO2016080560A1 publication Critical patent/WO2016080560A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/001Orthogonal indexing scheme relating to orthogonal multiplex systems using small cells within macro cells, e.g. femto, pico or microcells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals

Definitions

  • the present invention relates to mobile communication, and more particularly, to a feedback method for supporting interference randomization and an apparatus therefor.
  • a transmission scheme based on orthogonal frequency division multiplexing access may allocate one or more subcarriers independently to each terminal. Therefore, according to the request of the terminal, frequency resources can be efficiently allocated without intra-cell frequency interference.
  • OFDMA orthogonal frequency division multiplexing access
  • the performance of the system may vary greatly depending on the position of the terminal in the cell.
  • inter-cell interference can greatly degrade the performance of the UE located at the cell boundary.
  • the higher the frequency reuse efficiency the higher the data rate can be obtained in the cell center, but the inter-cell interference is more severe. Therefore, at the cell boundary, the signal-to-interference plus noise ratio (SINR) of the terminal may be more severely received due to the large interference from the adjacent cells.
  • SINR signal-to-interference plus noise ratio
  • Inter-cell interference may occur between the moving cell and the fixed cell.
  • the present invention provides a method and apparatus for adjusting the interference pattern and performing the rank adjustment according to the channel condition of the transmitting end performing the interference randomization.
  • another embodiment of the present invention provides a method and apparatus for measuring channel information and feeding it back to support interference randomization.
  • the present invention provides intercell interference mitigation through intercell interference randomization.
  • a method for transmitting feedback information includes receiving information about an interference pattern including an inter-cell interference measurement reference signal and a trigger condition for changing the interference pattern from a base station; Measuring an interference randomization gain based on the intercell interference measurement reference signal; Determining whether to request a change in the interference pattern based on the interference randomization gain; If it is determined that the change of the interference pattern is requested, requesting the base station to change the interference pattern; And receiving a changed interference pattern and a changed trigger condition from the base station.
  • a method and apparatus for adjusting an interference pattern and performing a rank adjustment according to channel conditions of a transmitting end performing interference randomization are provided.
  • This provides intercell interference mitigation through intercell interference randomization.
  • FIG. 1 is a conceptual diagram illustrating a movement of a moving cell.
  • FIG. 2 is a conceptual diagram illustrating a problem that occurs when interference between a moving cell and a fixed cell is controlled by a conventional inter-cell interference control scheme.
  • 3 is a diagram illustrating repeatedly transmitting a signal through another channel.
  • FIG. 4 is a diagram illustrating a symbol and an interference signal received through a quasi-static channel.
  • FIG. 5 is a diagram illustrating a received symbol and an interference signal according to an embodiment of the present invention.
  • FIG. 6 illustrates a symbol pattern according to an embodiment of the present invention.
  • FIG. 7A illustrates an IR pattern according to an embodiment of the present invention.
  • FIG. 7B is a view showing an IR pattern according to another embodiment of the present invention.
  • FIG. 8 is a control flowchart illustrating a feedback signal transmission method for interference randomization according to an embodiment of the present invention.
  • 9A is a diagram illustrating an IR pattern to which an inter-cell interference measurement reference signal is allocated according to an embodiment of the present invention.
  • FIG 9B illustrates an IR pattern to which an inter-cell interference measurement reference signal is allocated according to another embodiment of the present invention.
  • FIG. 10A illustrates an IR pattern to which an inter-cell interference measurement reference signal is allocated according to another embodiment of the present invention.
  • 10B is a diagram illustrating an IR pattern to which an inter-cell interference measurement reference signal is allocated according to another embodiment of the present invention.
  • 11A is a diagram illustrating an IR pattern to which an inter-cell interference measurement reference signal is allocated according to another embodiment of the present invention.
  • 11B illustrates an IR pattern to which an inter-cell interference measurement reference signal is allocated according to another embodiment of the present invention.
  • FIG. 12 is a block diagram of a wireless communication system according to an embodiment of the present invention.
  • the wireless device may be fixed or mobile and may be called other terms such as a user equipment (UE), a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), and the like.
  • the terminal may be a portable device having a communication function such as a mobile phone, a PDA, a smart phone, a wireless modem, a laptop, or the like, or a non-portable device such as a PC or a vehicle-mounted device.
  • a base station generally refers to a fixed station for communicating with a wireless device, and may be referred to in other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • LTE includes LTE and / or LTE-A.
  • the present specification describes a communication network, and the work performed in the communication network is performed in the process of controlling the network and transmitting data in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to
  • the LTE system is spreading more quickly after the need to support high-quality services for high-quality services as well as voice services while ensuring the activity of terminal users.
  • the LTE system provides low transmission delay, high data rate, system capacity and coverage improvement.
  • the transceiver is equipped with a plurality of antennas to obtain additional spatial area for resource utilization to obtain diversity gain or transmit data in parallel through each antenna.
  • the so-called multi-antenna transmission and reception technology for increasing the capacity has been actively developed recently with great attention.
  • beamforming and precoding may be used as a method for increasing signal to noise ratio (SNR), and beamforming and precoding may use feedback information at a transmitter.
  • SNR signal to noise ratio
  • the feedback information is used to maximize the signal-to-noise ratio.
  • channel information sharing between adjacent cells is not smooth, such as a moving cell, which is unable to establish an interface with a neighboring cell in a timely manner because of moving at a high speed, or a femto cell in which information sharing with other cells is restricted.
  • inter-cell interference avoidance techniques using coordinated multipoint (CoMP) technology between closed loop base stations may be difficult to apply.
  • FIG. 1 is a conceptual diagram illustrating a movement of a moving cell.
  • the moving cell may indicate a base station moving
  • a fixed cell may indicate a base station not moving at a fixed position.
  • the moving cell may be expressed in other terms as the moving base station, and the fixed cell in other terms as the fixed base station.
  • the moving cell 100 may be a base station installed in a moving object such as a bus. There may be about 2000 moving cells 100 based on the buses in Seoul. Therefore, there is a high possibility of interference between the moving cell 100 and the fixed cell 150 in the current cellular network system.
  • resource division may be performed in consideration of the distance between the base station and the terminal to mitigate inter-cell interference.
  • interference may be mitigated by dynamic resource division or cooperative communication by sharing channel information between cells.
  • FIG. 2 is a conceptual diagram illustrating a problem that occurs when interference between a moving cell and a fixed cell is controlled by a conventional inter-cell interference control scheme.
  • the moving cell may be connected to another cell based on a wireless backhaul. Therefore, it may be difficult to perform dynamic resource partitioning by sharing channel information or use an inter-cell interference mitigation method based on cooperative communication.
  • JT joint transmission
  • DPS dynamic point selection
  • data to be transmitted to a terminal through a wired backhaul between base stations should be shared.
  • data sharing between the moving cell and the fixed cell through the wireless backhaul not only requires additional use of radio resources, but also stable sharing of data may be difficult depending on radio channel conditions. Therefore, interference mitigation between the fixed cell and the moving cell based on cooperative communication may be difficult.
  • the channel between the moving cell and the fixed cell may change rapidly due to the movement of the moving cell. Therefore, there is a need to develop a technique for interference control and reduction in a situation in which signal and interference channel information sharing between cells is not smooth.
  • a technique of whitening may be used instead of interference avoidance through interference randomization or inter-cell interference averaging.
  • Inter-cell interference randomization is a method of randomizing interference from adjacent cells to approximate inter-cell interference to additive white Gaussian noise (AWGN).
  • AWGN additive white Gaussian noise
  • Inter-cell interference randomization may reduce the influence of the channel decoding process by another user's signal, for example, based on cell-specific scrambling, cell-specific interleaving, and the like.
  • Inter-cell interference averaging is a method of averaging all interferences by adjacent cells or averaging inter-cell interference at the channel coding block level through symbol hopping.
  • the interference randomization scheme when a desired signal is transmitted through a time / frequency / spatial resource, some resources may simultaneously receive a desired signal and an interference signal, and some resources may receive only a desired signal.
  • the ratio between the desired signal and the interference signal for each resource is adjusted differently.
  • the channel coding gain may be obtained by changing the signal-to-interference / noise ratio (SINR) for each resource.
  • SINR signal-to-interference / noise ratio
  • Such an interference randomization technique is applicable to the transmitters performing spatial diversity transmission.
  • the interference randomization is performed by differently setting a repetitive transmission pattern of repeated symbols for each base station in order to obtain spatial diversity gain. This is how it is done.
  • the improved interference randomization technique of the present invention diversifies the interference signals affecting the de-precoding of each symbol, and the signal to interference rate of the signal in quasi-static channel intervals. ) And to obtain interference diversity in the quasi-static channel interval in order to obtain diversity gain.
  • signal diversity means equalization of reception power of a signal by repeatedly transmitting and receiving the same information through various channels.
  • SINR signal to interference plus noise rate
  • the interference diversity according to the present invention is similar in concept to signal diversity, and by receiving a plurality of interferences simultaneously through various channels, the reception power of the interference is leveled and the SINR variation due to the interference is reduced. As a result, the diversity gain of the signal is increased when the reception power of the interference signal is large.
  • 3 is a diagram illustrating repeatedly transmitting a signal through another channel.
  • the transmitting end receives one transmission symbol (S, first symbol) and the modified symbol (S *, second symbol) through different channels, for example, through a different antenna, such as a receiving end.
  • S transmission symbol
  • S * modified symbol
  • the second symbol indicates that a complex conjugate operation is performed on the first symbol.
  • h 0 represents a channel for a symbol between an antenna transmitting a first symbol and a receiving end
  • h 1 represents a channel for a symbol between an antenna transmitting a second symbol and a receiving end.
  • I represents an interference signal
  • I * represents an interference signal calculated by complex conjugate.
  • q 0 represents a channel for the interference signal between the antenna and the receiving end transmitting the first symbol
  • q 1 represents a channel for the interference signal between the antenna and the receiving end transmitting the second symbol.
  • the first symbol and the second symbol may be allocated to a time, space or frequency resource and repeatedly transmitted, and the transmitting end may receive interference with a signal.
  • the receiving end together with the interference signal Receives the second symbol for the second symbol. Can be received.
  • Equation 1 the symbol received by the receiver and the interference signal may be represented by Equation 1.
  • the channel state is a quasi-static state in which the channel hardly fluctuates, the interference diversity effect is reduced.
  • FIG. 4 is a diagram illustrating a symbol and an interference signal received through a quasi-static channel.
  • the terminal Rx which is a receiving end, may receive a symbol S transmitted through two antennas, and may receive a signal transmitted through two antennas as an interference signal Z.
  • the first antenna 10 and the second antenna 20 may be antennas of a cell (hereinafter, referred to as a first cell) that provides a service to the terminal Rx, and the third antenna 30 and the fourth antenna 40. May be an antenna of a cell (hereinafter, referred to as a second cell) that transmits a symbol Z that may act as an interference signal to the terminal Rx.
  • the first cell when a fixed cell serves as an interference source for a terminal serviced by a moving cell, the first cell may be a moving cell and the second cell may be a fixed cell. In contrast, the moving cell is served by the fixed cell. In the case of an interference source for the terminal, the first cell may be fixed and the second cell may be a cell moving cell.
  • a row for a symbol may mean a resource for transmitting a symbol such as time, space, or frequency.
  • the symbols S0 and S1... are transmitted through the first antenna 10, and the modified symbols of the symbols transmitted through the first antenna 10 through the second antenna 20.
  • the symbols S 0 *, S 1 * .. are transmitted.
  • the symbol Z 0 , Z 1 .. is transmitted through the third antenna 30, and the modified symbols Z 0 *, Z 1 * of the symbol transmitted through the third antenna 30 through the fourth antenna 40. .. is sent.
  • the transmission symbol S transmitted in the first cell may be a received signal
  • the transmission symbol Z transmitted in the second cell may be an interference signal
  • h 0 is a channel between the first antenna 10 of the first cell and the terminal Rx serviced by the first cell
  • h 1 is the second antenna 20 and the first antenna of the first cell.
  • q 0 is the channel between the third antenna 30 and the terminal Rx of the second cell
  • q 1 is the fourth antenna 40 of the second cell and Represents a channel between the terminals (Rx).
  • Equation 2 the reception symbol received by the terminal ( ) May be represented by Equation 2.
  • Equation 2 the coefficient of the interference signal acting as interference to the received symbol ( ) Are two symbols ( ), The SIR is the same for each symbol.
  • the UE may continue to receive strong interference.
  • FIG. 5 is a diagram illustrating a received symbol and an interference signal according to an embodiment of the present invention.
  • the modified symbols S 0 *, S 1 *, S 2 *, and S 3 * .. of the symbol transmitted through one antenna are transmitted.
  • the symbol Z 0 , Z 1 , Z 2 , Z 3 .. is transmitted through the third antenna 30, and the modified symbol Z 1 *, of the symbol transmitted through the third antenna through the fourth antenna 40.
  • Z 2 *, Z 3 *, Z 0 * .. are transmitted.
  • the symbol transmitted through the fourth antenna is a cyclic shift (Cyclic shift) of the pattern in the existing Z 0 *, Z 1 *, Z 2 *, Z 3 *, Z 1 *, Z 2 *, Z 3 *, Z 0 * .. That is, the repetition pattern of symbols that may be interference signals to the terminal may be changed in a certain order.
  • the change of the repetition pattern may be implemented by using different precoders between the first cell and the second cell, which are transmission terminals.
  • the received symbol (received by the terminal) ) May be represented by Equation 3.
  • the received symbol In the equation that acts as interference in), different interference symbols are included, which indicates that the interference changes for each symbol in the quasi-static period. Through this, it is possible to secure interference diversity for packets and to improve diversity performance.
  • FIG. 6 is a view showing another symbol pattern in another embodiment of the present invention.
  • FIG. 6 illustrates precoding using different repetition patterns when symbols are repeated in each base station, ie, a cell.
  • the first cell sequentially transmits a symbol S and a transform symbol S * thereof for the same signal through different antennas. That is, if symbol S0 is transmitted through antenna 1 (A0), symbol S 0 * is transmitted through antenna 2 (A1). Further, when the symbol S 1 is sequentially transmitted through the antenna 1 (A0), the symbol S 1 * is transmitted through the antenna 2 (A1).
  • Equation 4 If the pattern of the symbol repeated by the first cell is represented by a precoding matrix, it can be expressed as Equation 4 or Equation 5.
  • Equation 4 and Equation 5 when symbol S 0 is transmitted through one antenna, symbol S 0 * is transmitted through another antenna. In addition, when the symbol S 1 is transmitted through the antenna that transmits the symbol S 0 sequentially, the symbol S 1 * is transmitted through another antenna.
  • the symbol pattern may be changed as shown in the middle or the bottom of FIG. 6.
  • the second cell has a period of 3 through two antennas, and may repeatedly transmit a symbol pattern by setting an offset in the order of transmitted symbols.
  • the number of symbols for which the pattern is repeated is 3, that is, the period is 3, and the offset of the transmission symbol sequence is set to 1.
  • FIG. That is, the symbols Z 0 , Z 1 , Z 2 , Z 3 .. are sequentially transmitted through the antenna 1 (A0), and the converted symbols for the symbols are Z 0 , Z 1 , Z 2 , Z 3 . Z 1 *, Z 2 *, Z 0 *, Z 4 *... It may be transmitted through the antenna 2 (A1) in the same sequence as.
  • Equation 6 If this is expressed as a precoding matrix, it can be expressed as in Equation 6.
  • the number of symbols in which the pattern is repeated is 3, that is, the period is 3, and the offset is set to 2 in the transmission symbol order. That is, the symbols Y 0 , Y 1 , Y 2 , Y 3 .. are sequentially transmitted through the antenna 1 (A0), and the converted symbols for the same are conventional Y 0 , Y 1 , Y 2 , Y 3 . Y 2 *, Y 0 *, Y 1 *, Y 5 *... It may be transmitted through the antenna 2 (A1) in the same sequence as.
  • Equation (7) If this is expressed as a precoding matrix, it can be expressed as Equation (7).
  • the same or different offset may be applied for each cell, and the same or different period may be applied for each cell.
  • cells using the same transmit antenna port may use different sizes of precoder.
  • the period of the cyclic shift in which the symbol is repeated is 3, but this may be 4 or more, and if the period is set, the offset value may be set to a maximum “period-1” value. have.
  • a precoder such as Equations 4 to 7 may be set in advance to change various patterns of repeated symbols. Through this, interference diversity can be secured, thereby improving signal reception capability and preventing a situation in which performance of a received signal is degraded due to strong interference.
  • a symbol pattern as shown in FIG. 6 to which Equations 4 to 7 may be applied may be referred to as a repetitive transmission pattern or an inter-cell interference randomization pattern (IRI pattern).
  • IRI pattern inter-cell interference randomization pattern
  • adjacent cells when inter-cell interference is randomized by adjusting a pattern of repeatedly transmitting the same symbol, adjacent cells should use different repetitive transmission patterns in order to obtain inter-cell interference randomization gain.
  • repetitive transmission patterns are assigned to adjacent fixed cells, and repetitive transmission patterns that can be dedicated to moving cells are assigned to moving cells, and repetitive transmission patterns in which adjacent mode cells are always different through network configuration are provided.
  • a method of controlling to have a scheme or designing a very large number of repetitive transmission patterns and then using each cell selectively may use the method of lowering the probability that adjacent cells use the same repetitive transmission pattern.
  • the number of repetitive transmission patterns, i.e., IR patterns, for inter-cell interference randomization may be determined by the size of the IR pattern. To make a large number of IR patterns, the length of the IR pattern must be long. If the length of the IR pattern is longer, the separation distance of the repeated transmission pattern increases.
  • resources are arranged such that adjacent cells use different IR patterns, but finitely limit the IR pattern capacity, that is, the number of IR patterns, and between the adjacent cells through IR pattern randomization.
  • the present invention proposes a method for overcoming gain reduction that may occur when an IR pattern collision is caused by a hidden cell such as an IR pattern collision and a fast moving cell.
  • the base station may define an IR pattern applicable to each time / frequency resource block, and may use two or more IR patterns for each packet transmission.
  • the IR pattern applied to each time / frequency resource block may be determined by a unique value of each cell, such as a cell global ID, or may be determined through communication with neighboring cells.
  • Each IR pattern may be based on being mapped to a frequency domain, and different IR patterns may be assigned to different time resources in each resource block.
  • Neighbor cells may use the same IR patterns within the same resource block. In this case, however, a gain for interference randomization may be obtained by changing an application order of IR patterns allocated to time resources in the same resource block.
  • FIG. 7A and 7B illustrate an IR pattern according to an embodiment of the present invention.
  • FIGS. 7A and 7B illustrate IR patterns allocated to the same radio resources of cells adjacent to each other.
  • an IR pattern is assigned to the frequency domain, and 16 different IR patterns are assigned to different time domains.
  • IR pattern 1 is allocated to the first time resource in the resource block of FIG. 7A, and IR pattern 2, IR pattern 3, and IR pattern 16 are sequentially assigned. Meanwhile, the first time resource of the resource block of FIG. 7B is sequentially assigned an IR pattern 3 to an IR pattern 16 rather than an IR pattern 1, and then an IR pattern 1 and an IR pattern 2 are allocated. That is, different IR patterns are allocated to the same time resources in the resource blocks given to the adjacent cells, and inter-cell interference randomization between neighboring cells can be implemented.
  • the IR pattern is not randomly set in the entire time domain, but is repeated at a predetermined cycle from a randomly selected IR pattern set, that is, IR pattern 1 to IR pattern 16. This is to limit the complexity when the terminal recognizes the IR pattern.
  • the IR pattern may be determined by two parameters, an IR pattern size, that is, a length of the IR pattern and a cyclic shift offset.
  • the IR pattern size may mean the number of frequency resource elements of the resource block, and the cyclic shift offset may mean an offset used for repetitive transmission of the symbol described with reference to FIG. 6.
  • the cyclic shift offset may be used as an index for identifying a corresponding IR pattern in the IR pattern set.
  • the cyclic shift offset may be expressed as Mod (GCID + N + Nf + Nt, P-1), GCID (global cell ID) is an identifier for identifying a cell, N is an arbitrary constant defined by each cell, Nf may represent a resource block frequency index in a resource block, Nt may represent a resource block time index in a resource block, and P may represent a length of an IR pattern.
  • Each adjacent cell may have the same IR pattern length, or the IR pattern length of each cell may be set to be an integer multiple of the IR pattern length of neighboring adjacent cells. This prevents the same repeated transmission pattern from being applied to some symbols even though the IR patterns are different during the IR pattern randomization.
  • the IR pattern randomization may be performed by differently assigning two parameter values for the IR pattern size and the cyclic shift offset for each resource block corresponding to each cell.
  • an IR pattern parameter value to be used for a resource group or a resource block that is a reference point of each cell is differently assigned for each adjacent cell, and is assigned to another resource group or resource block by a pre-defined rule between the base station and the terminal. Determine the IR pattern to be used. In this manner, the complexity of the IR pattern blind detection of the UE due to the randomization of the IR pattern may be reduced.
  • a parameter value of an IR pattern applied to a reference point for example, the first time resource of a reference resource block, may be selected.
  • the parameter value may be determined as a unique value of the cell or may be determined by consultation with neighboring cells.
  • an IR pattern applied to another resource block or resource group may be derived.
  • the IR pattern selection method to be used for another resource block or resource group may be set through a preliminary protocol as in the standard, or may be transmitted to the terminal in advance through system information or the like.
  • an IR pattern can be derived that is defined by a standard or to be used for a predetermined IR pattern period.
  • the same IR pattern may be repeated according to the IR pattern period.
  • the IR pattern allocated to subsequent time resources may be determined according to the IR pattern assigned to the first time resource of the resource block or resource group.
  • the present invention proposes an IR pattern indication operating based on blind detection. do.
  • the IR pattern recognition of the UE should be able to be performed before PDCCH detection, and for this purpose, a signaling method for adding IR pattern indication information to an existing demodulation pilot signal is provided.
  • the demodulation reference signal transmitted by each cell is transmitted to be UE specific, but in order to ensure the performance of detecting the reference signal of the UE, the demodulation reference signals used by each cell are orthogonal or semi-orthogonal to each other, and the UE is physically Knowing the ID (physical ID) or receiving the system information, it should be able to receive a demodulation reference signal based on this.
  • an existing demodulation pilot cell specific sequence may be used as a signaling means for indicating an IR pattern.
  • a demodulation pilot sequence is generated through a cell specific parameter, for example, a PCI (physical cell id), and then an IR pattern is applied to each sequence to the cell and the resource.
  • a cell specific parameter for example, a PCI (physical cell id)
  • an IR pattern is applied to each sequence to the cell and the resource.
  • the base station corresponds to the reference signal.
  • a cyclic shift of period 4 and offset 1 can be applied to a cell-specific sequence. That is, the period may be repeated at 4 while applying offset 1 to repeated symbols constituting the sequence.
  • the demodulation reference signal pattern allocated to the resource block may vary according to the frequency of changing the IR pattern and the frequency of transmitting the demodulation reference signal. Also, the demodulation reference signal pattern allocated to the resource block may vary depending on the maximum length of the IR pattern and the number of frequency domain resources used for the demodulation reference signal.
  • resource selection gain that is, scheduling gain
  • the IR randomization processing gain may be appropriate according to the situation. It is necessary to change the gain.
  • FIG. 8 is a control flowchart illustrating a feedback signal transmission method for interference randomization according to an embodiment of the present invention.
  • the base station may allocate an IR pattern including a reference signal for generating feedback information, that is, a resource element capable of measuring a state or interference of a channel (S810).
  • a rule in which a modulated symbol is mapped to each resource element is determined by the IR pattern as shown in FIG. 6.
  • Some of these resource elements may be used for information transmission, that is, for transmission of an inter-cell interference measurement reference signal (ICI measurement pilot).
  • ICI measurement pilot inter-cell interference measurement reference signal
  • 9A and 9B illustrate an IR pattern to which an inter-cell interference measurement reference signal is allocated, according to an embodiment of the present invention.
  • FIG. 9A illustrates an IR pattern generated at base station A
  • FIG. 9B illustrates an IR pattern generated at base station B adjacent to base station A.
  • the signal generated at base station A may act as an interference signal to base station B
  • the signal generated at base station B may act as an interference signal to base station A.
  • base station A and base station B are transmitting signals through two antenna ports.
  • 9A and 9B exemplarily show that a symbol is transmitted through 16 resource elements included in a resource block formed on a time axis and a frequency axis.
  • the numbers described in the sixteen resource elements exemplarily indicate arbitrary symbols and are used to identify the symbols in the IR pattern.
  • a reference signal for inter-cell interference measurement may be allocated to a resource element to which symbol 1, symbol 2, symbol 15, and symbol 16 are allocated through base station A.
  • base station B is symbol 3, symbol.
  • a reference signal for inter-cell interference measurement may be allocated to a resource element to which 4, symbol 11 and symbol 12 are allocated.
  • the resource element may be assigned a reference signal having no transmission power (zero power pilot) or a transmission power much smaller than the power used for data transmission.
  • the base station transmits information on the reference signal for measuring the IR gain to the terminal (S820).
  • the base station measures the first gain of the pilot set information for the reference signal for measuring its channel state, such as channel gain or frequency selectivity, and the IR gain indicating the inter-cell interference strength when applying the IR pattern or inter-cell interference.
  • the second resource information for the reference signal may be transmitted to the terminal.
  • a table for all cases in which a reference signal is mapped to a resource element may be set, and an index thereof may be provided from the base station to the terminal through a process of being transmitted to the terminal through control information or system information.
  • the base station may generate the second resource information in consideration of mapping the reference signal using the position of the symbol repeatedly transmitted according to the IR pattern.
  • the reference signal for the IR gain may be mapped in a predetermined pattern using the position of the symbol repeatedly transmitted, and the reference signal may be identified using the IR pattern.
  • the second resource information may be expressed in a bitmap format indicating whether a reference signal is transmitted to a location where a specific symbol according to the IR pattern is to be transmitted.
  • a reference signal may be mapped to positions of symbol 1, symbol 2, symbol 15, and symbol 16.
  • the resource element included in the resource block A large number may result in signaling overhead in which the bitmap becomes large.
  • a simpler bitmap may be used to reduce such signaling overhead.
  • FIG. 10A and 10B illustrate an IR pattern to which an inter-cell interference measurement reference signal is allocated according to another embodiment of the present invention.
  • FIG. 10A illustrates an IR pattern generated at base station A
  • FIG. 10B illustrates an IR pattern generated at base station B adjacent to base station A.
  • FIG. 10A illustrates an IR pattern generated at base station A
  • FIG. 10B illustrates an IR pattern generated at base station B adjacent to base station A.
  • the base station A allocates symbols 1 to 16 on the frequency axis for a specific time to resources of the first antenna port and the second antenna port as shown in FIG. 10A, and allocates symbols 17 to 32 after the specific time.
  • the first antenna port and the second antenna port are repeatedly allocated an IR pattern in which eight symbols constitute one set.
  • the symbols allocated to the first antenna port are sequentially allocated from the first symbol to the eighth symbol without changing the order.
  • the symbols allocated to the second antenna port are interchanged with the positions of the first and second symbols.
  • the symbols 1 to 32 are also assigned to the second antenna port, the positions of resource elements to which symbols 1 and 2, symbol 7 and symbol 8 are allocated are different, and symbol 15 and symbol 16, symbol 31 and symbol 32 are allocated. Resource element locations are different.
  • an inter-cell interference reference signal may be mapped to a location to which symbol 1 and symbol 2 are allocated, and this may be represented by 8-bit information such as “11000000” when represented as a bitmap.
  • the base station B allocates symbols 1 to 16 on the frequency axis for a specific time to resources of the first antenna port and the second antenna port as shown in FIG. 10B, and allocates symbols 17 to 32 after the specific time.
  • IR patterns in which eight symbols constitute one set, are repeatedly allocated to FIG. 10B.
  • the order of symbols assigned to the first antenna port is "Symbol 1, Symbol 8, Symbol 3, Symbol 2, Symbol 5, Symbol 4, Symbol 7 and Symbol 6", and the order is the remaining symbols (symbols 9 to 16, symbols). 16 to 24, symbols 25 to 32 are applied repeatedly.
  • the order of symbols assigned to the second antenna port is "Symbol 2, Symbol 7, Symbol 4, Symbol 1, Symbol 6, Symbol 3, Symbol 8 and Symbol 5", and the order is the remaining symbols (symbols 9 to 16, symbols). 16 to 24, symbols 25 to 32 are applied repeatedly.
  • an inter-cell interference reference signal may be mapped to a location to which symbols 3 and 4 are allocated, and this may be represented by 8-bit information such as "00110000" when expressed as a bitmap.
  • the base station A may transmit "11000000” to the terminal as the second resource information, and the base station B may transmit "00110000" to the terminal as the second resource information.
  • FIG. 11A and 11B illustrate an IR pattern to which an inter-cell interference measurement reference signal is allocated according to another embodiment of the present invention.
  • FIG. 11A illustrates an IR pattern generated at base station A
  • FIG. 11B illustrates an IR pattern generated at base station B adjacent to base station A.
  • FIG. 11A illustrates an IR pattern generated at base station A
  • FIG. 11B illustrates an IR pattern generated at base station B adjacent to base station A.
  • the IR pattern to which the inter-cell interference reference signal is allocated can be identified using the N-bit bitmap.
  • information about the inter-cell interference reference signal may be generated through another bitmap indicating that the inter-cell interference reference signal is allocated to which symbol in each IR pattern.
  • 11A and 11B have the same resource allocation structure as in FIGS. 10A and 10B. That is, the same symbol is allocated to a specific time and frequency domain.
  • the inter-cell interference reference signal may be transmitted through a resource element to which symbol 1, symbol 2, symbol 9, and symbol 10 are allocated. That is, inter-cell interference reference signals are transmitted in the first and second patterns of repeated IR patterns, but inter-cell interference reference signals are not transmitted in the third and fourth patterns.
  • the second resource information according to the present embodiment may be generated as a first bitmap identifying a repeated pattern and a second bitmap identifying an inter-cell interference reference signal in the IR pattern.
  • the first bitmap since the inter-cell interference reference signal is included in the first and second patterns among the four repeated patterns, the first bitmap has a form of “1100” of four bits.
  • the second bitmap since a reference signal may be allocated to a resource element in which symbol 1 and symbol 2 are located among repeated IR patterns, the second bitmap may be expressed as “11000000”.
  • Base station B also transmits the inter-cell interference reference signal in the first and second patterns of repeated IR patterns as shown in FIG. 11B, but does not include the inter-cell interference reference signal in the third and fourth patterns.
  • Inter-cell interference reference signals transmitted through the first antenna port and the second antenna port may be mapped to resource elements to which symbol 3, symbol 4, symbol 11, and symbol 12 are to be mapped.
  • the resource allocation structure of FIG. 11B is expressed as a first bitmap and a second bitmap
  • the first and second patterns of four repeated patterns include inter-cell interference reference signals, and thus the first bitmap is divided into four bits.
  • the second bitmap may be “00110000” since the reference signal may be allocated to a resource element in which the symbol 3 and the symbol 4 are located among the repeated IR patterns.
  • the base station may transmit the information on the condition that the terminal can request a change of the pattern, that is, the reporting event trigger condition, based on the measured parameter to the terminal (S830).
  • the base station may transmit information on a condition for requesting a change to the IR pattern when the IR gain is not large enough or when the IR pattern is large compared to the frequency selectivity, that is, the coherent bandwidth is large.
  • the IR gain is not large. For example, the ratio of inter-cell interference power after Rx combining to inter-cell interference reception power is lower than a specific threshold Th_IR_gain, and the channel gain measured as a reference signal for estimating channel gain is a preset threshold. If lower than the value, it may be determined that the IR gain is not large enough.
  • the inter-cell interference power ratio after receiving power combination is lower than a specific threshold Th_IR_SIR, the inter-cell interference receiving power ratio is lower than a certain threshold Th_ICI_SIR, or the inter-cell interference receiving power is high.
  • Th_ICI_peak is large or the inter-cell interference power after the reception power combination is larger than the specific threshold value Th_IR_peak, the IR gain may not be sufficiently large.
  • the base station may transmit information on such a condition and information about a threshold value Th_IR_gain and a specific threshold value Th_IR_SIR, Th_ICI_SIR, Th_ICI_peak, and Th_IR_peak to the terminal.
  • One or more specific thresholds may be sent.
  • the base station may transmit information about the threshold Th_IR to the terminal so that the terminal may request to change the IR pattern when the inter-cell interference power is greater than a specific threshold Th_IR after IR combining.
  • the reference set information or the reporting event trigger condition transferred from the base station to the terminal may be newly set or changed whenever the IR pattern is changed. Or, it may be changed or set through a predetermined lookup table.
  • steps S810 to S830 are illustrated as being sequentially performed, but they may be performed simultaneously or in parallel, and their order may also be changed.
  • the terminal again, if the base station transmits IR pattern information, reference signal set information for measuring IR gain and reporting event trigger condition to the terminal, the terminal generates parameters for generating feedback information based on the information transmitted by the base station. It is measured (S840).
  • the terminal may measure the gain and channel frequency selectivity of the channel or virtual channel. These two parameters can be measured through a reference signal for reporting channel state information (CSI).
  • CSI channel state information
  • the terminal may measure the inter-cell interference strength, that is, the inter-cell interference reception power and the IR gain, which is the inter-cell interference strength when the IR pattern is applied. These two parameters may be measured through a new reference signal generated for interference measurement, for example, a reference signal transmitted through an IR pattern as shown in FIGS. 9A to 10B.
  • the UE may estimate inter-cell interference reception power by measuring energy of a reference signal transmitted through an IR pattern as shown in FIGS. 9A to 10B. For example, if the base station A does not transmit any signal to the resource to which the inter-cell interference reference signal is allocated, the signal measured through the resource serves as an interference signal.
  • the UE may perform reception power combining according to an IR pattern to a signal received through the inter-cell interference resource, and estimate the inter-cell interference power by measuring the energy of the signal after the power combining. That is, the terminal may estimate the IR gain based on the difference between the reception power according to the IR pattern and the interference reception power between cells.
  • the terminal may determine whether a channel state and an interference state based on the measured parameter satisfy a report event trigger condition transmitted from the base station (S850).
  • the terminal receives the data signal and the reference signal transmitted from the base station and measures a parameter for generating feedback information.
  • the terminal reports this to the base station (S860).
  • the terminal may transmit information on a condition for requesting a change to the IR pattern to the terminal.
  • the terminal may determine the case where the IR gain is not large based on the threshold value received through step S830, in which case the terminal may request an increase of the IR gain.
  • the terminal may request the base station to reduce the IR gain.
  • the base station When receiving a report on the event trigger from the terminal, the base station changes the IR processing gain, based on this to change the IR pattern (S870).
  • the base station may increase the number of repetitions of the symbol or increase the length of the IR pattern to randomize the interference by more cells.
  • the base station may reduce the number of repetitions of the symbol or reduce the maximum number of repeated intervals between the repeated symbols (referring to the reference signal for inter-cell interference) to reduce the IR pattern length. Intervals) can be reduced. Through short IR pattern lengths, the IR gain can be reduced.
  • the changed IR pattern is newly allocated and transmitted to the terminal (S880), and the reporting event trigger condition may be reset in response to the changed IR pattern (S890).
  • signaling for adjusting an interference pattern according to a channel condition of a transmitter a method for measuring channel information based on the feedback, and an apparatus therefor are provided.
  • FIG. 12 is a block diagram of a wireless communication system according to an embodiment of the invention.
  • the base station 800 includes a processor 810, a memory 820, and an RF unit 830.
  • Processor 810 implements the proposed functions, processes, and / or methods. Layers of the air interface protocol may be implemented by the processor 810.
  • the memory 820 is connected to the processor 810 and stores various information for driving the processor 810.
  • the RF unit 830 is connected to the processor 810 to transmit and / or receive a radio signal.
  • the terminal 900 includes a processor 910, a memory 920, and an RF unit 930.
  • Processor 910 implements the proposed functions, processes, and / or methods. Layers of the air interface protocol may be implemented by the processor 910.
  • the memory 920 is connected to the processor 910 and stores various information for driving the processor 910.
  • the RF unit 930 is connected to the processor 910 to transmit and / or receive a radio signal.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.
  • the present invention provides a method and apparatus for allowing a terminal to select a wireless node for uplink according to a predetermined condition when wireless connection is possible through different wireless networks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 시스템에서 간섭 랜덤화를 지원하기 위한 피드백 정보 전송 방법 및 이를 이용하는 장치에 관한 것이다. 피드백 정보 전송 방법은 기지국으로부터 셀 간 간섭 측정 참조 신호를 포함하는 간섭 패턴에 대한 정보 및 상기 간섭 패턴 변경에 대한 트리거 조건을 수신하는 단계와; 상기 셀 간 간섭 측정 참조 신호에 기초하여 간섭 랜덤화 게인을 측정하는 단계와; 상기 간섭 랜덤화 게인에 기초하여 상기 간섭 패턴의 변경을 요청할지 여부를 판단하는 단계와; 상기 간섭 패턴의 변경을 요청하는 것으로 판단되면, 상기 기지국으로 상기 간섭 패턴의 변경을 요청하는 단계와; 상기 기지국으로부터 변경된 간섭 패턴 및 변경된 트리거 조건을 수신하는 단계를 포함할 수 있다.

Description

간섭 랜덤화를 지원하기 위한 피드백 방법 및 이를 위한 장치
본 발명은 이동 통신에 관한 것으로서, 보다 상세하게는 간섭 랜덤화를 지원하기 위한 피드백 방법 및 이를 위한 장치에 관한 것에 관한 것이다.
OFDMA(orthogonal frequency division multiplexing access)를 기반으로 한 전송 방식은 하나 이상의 부반송파를 독립적으로 각 단말에 할당할 수 있다. 따라서, 단말의 요구에 따라 셀 내 주파수 간섭이 없이 주파수 자원이 효율적으로 할당될 수 있다.
셀룰러 네트워크 시스템에서 셀 내의 단말의 위치에 따라 시스템의 성능이 크게 변할 수 있다. 특히, 셀 간 간섭은 셀 경계에 위치하는 단말의 성능을 크게 열화시킬 수 있다. 또한, 주파수 재사용 효율이 높아질수록 셀 중앙에서는 높은 데이터 전송률을 얻을 수 있지만, 셀 간 간섭은 더 심해진다. 따라서 셀 경계에서는 인접 셀로부터 큰 간섭을 받아 단말의 신호 대 간섭 및 잡음비(signal to interference plus noise ratio, SINR)의 저하가 더 심하게 나타날 수 있다.
OFDMA 기반의 셀룰러 네트워크 시스템에서 셀 간 간섭을 완화하기 위해 셀 간 간섭을 회피하는 기법, 셀 간 간섭의 영향을 평균하는 기법, 셀 간 간섭을 제거하는 기법 등에 대한 연구가 수행되고 있다.
현재 셀룰러 네트워크 시스템에서는 많은 무빙 셀들이 존재하고 있다. 무빙 셀과 고정 셀 사이에서 셀 간 간섭이 발생할 수 있다. 이러한 무빙 셀들과 고정 셀 간의 간섭을 완화하기 위한 방법이 필요하다.
본 발명은 간섭 랜덤화를 수행하는 전송단의 채널 상황에 따라 간섭 패턴을 조정하고, 랭크 조정을 수행하는 방법 및 이를 위한 장치를 제공한다.
또한, 본 발명의 다른 실시예는 간섭 랜덤화를 지원할 수 있도록 채널 정보를 측정하고 이를 피드백하는 방법 및 이를 위한 장치를 제공한다.
이에 의하여, 본 발명은 셀 간 간섭 랜덤화를 통한 셀 간 간섭 완화를 제공한다.
본 발명의 일 실시예에 따른 피드백 정보 전송 방법은 기지국으로부터 셀 간 간섭 측정 참조 신호를 포함하는 간섭 패턴에 대한 정보 및 상기 간섭 패턴 변경에 대한 트리거 조건을 수신하는 단계와; 상기 셀 간 간섭 측정 참조 신호에 기초하여 간섭 랜덤화 게인을 측정하는 단계와; 상기 간섭 랜덤화 게인에 기초하여 상기 간섭 패턴의 변경을 요청할지 여부를 판단하는 단계와; 상기 간섭 패턴의 변경을 요청하는 것으로 판단되면, 상기 기지국으로 상기 간섭 패턴의 변경을 요청하는 단계와; 상기 기지국으로부터 변경된 간섭 패턴 및 변경된 트리거 조건을 수신하는 단계를 포함할 수 있다.
본 발명에 따르면 간섭 랜덤화를 수행하는 전송단의 채널 상황에 따라 간섭 패턴을 조정하고, 랭크 조정을 수행하는 방법 및 이를 위한 장치가 제공된다.
또한, 본 발명의 다른 실시예에 따르면, 간섭 랜덤화를 지원할 수 있도록 채널 정보를 측정하고 이를 피드백하는 방법 및 이를 위한 장치를 제공한다.
이에 의하여, 셀 간 간섭 랜덤화를 통한 셀 간 간섭 완화를 제공한다.
도 1는 무빙 셀(moving cell)의 이동을 나타낸 개념도이다.
도 2는 기존의 셀 간 간섭 제어 방식에 의해 무빙 셀과 고정 셀 간의 간섭이 제어될 경우, 발생하는 문제점을 나타낸 개념도이다.
도 3은 다른 채널을 통해 신호를 반복적으로 전송하는 것을 도시한 도면이다.
도 4는 준정적 채널을 통하여 수신되는 심볼 및 간섭 신호를 도시한 도면이다.
도 5는 본 발명의 일 실시예에 따른 수신 심볼 및 간섭 신호를 도시한 도면이다.
도 6은 본 발명의 일 실시예에 따른 심볼 패턴을 도시한 도면이다.
도 7a는 본 발명의 일 실시예에 따른 IR 패턴을 도시한 도면이다.
도 7b는 본 발명의 다른 실시예에 따른 IR 패턴을 도시한 도면이다.
도 8은 본 발명의 일 실시예에 따른 간섭 랜덤화를 위한 피드백 신호 전송 방법을 설명하기 위한 제어 흐름도이다.
도 9a는 본 발명의 일 실시예에 따른 셀 간 간섭 측정 참조 신호가 할당된 IR 패턴을 도시한 도면이다.
도 9b는 본 발명의 다른 실시예에 따른 셀 간 간섭 측정 참조 신호가 할당된 IR 패턴을 도시한 도면이다.
도 10a는 본 발명의 또 다른 실시예에 따른 셀 간 간섭 측정 참조 신호가 할당된 IR 패턴을 도시한 도면이다.
도 10b는 본 발명의 또 다른 실시예에 따른 셀 간 간섭 측정 참조 신호가 할당된 IR 패턴을 도시한 도면이다.
도 11a는 본 발명의 또 다른 실시예에 따른 셀 간 간섭 측정 참조 신호가 할당된 IR 패턴을 도시한 도면이다.
도 11b는 본 발명의 또 다른 실시예에 따른 셀 간 간섭 측정 참조 신호가 할당된 IR 패턴을 도시한 도면이다.
도 12은 본 발명의 일 실시예에 따른 무선 통신 시스템의 블록도이다.
무선기기는 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(mobile station), UT(user terminal), SS(subscriber station), MT(mobile terminal) 등 다른 용어로 불릴 수 있다. 또한, 상기 단말은 휴대폰, PDA, 스마트 폰(Smart Phone), 무선 모뎀(Wireless Modem), 노트북 등과 같이 통신 기능을 갖춘 휴대 가능한 기기일 수 있거나, PC, 차량 탑재 장치와 같이 휴대 불가능한 기기일 수 있다. 기지국은 일반적으로 무선기기와 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
이하에서는 3GPP(3rd Generation Partnership Project) 3GPP LTE(long term evolution) 또는 3GPP LTE-A(LTE-Advanced)를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고, 본 발명은 다양한 무선 통신 시스템에 적용될 수 있다. 이하에서, LTE라 함은 LTE 및/또는 LTE-A를 포함한다.
본 명세서는 통신 네트워크를 대상으로 설명하며, 통신 네트워크에서 이루어지는 작업은 해당 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 네트워크에 링크된 단말에서 작업이 이루어질 수 있다.
최근 차세대 무선 통신 시스템인 LTE(Long Term Evolution) 시스템의 상용화가 본격적으로 지원되고 있는 상황이다. 이러한 LTE 시스템은 단말 사용자의 활동성을 보장하면서 음성 서비스뿐만 아니라 사용자의 요구에 대한 대용량 서비스를 고품질로 지원하고자 하는 필요성이 인식된 후, 보다 빨리 확산되고 있는 추세이다. 상기 LTE 시스템은 낮은 전송 지연, 높은 전송율, 시스템 용량과 커버리지 개선을 제공한다.
이러한 고품질 서비스의 출현등으로 인해 무선통신 서비스에 대한 요구가 급속히 증대되고 있다. 이에 능동적으로 대처하기 위해서는 무엇보다도 통신 시스템의 용량이 증대되어야 하는데, 무선통신 환경에서 통신 용량을 늘리기 위한 방안으로는 가용 주파수 대역을 새롭게 찾아내는 방법과, 한정된 자원에 대한 효율성을 높이는 방법을 생각해 볼 수 있다.
이 중 한정된 자원에 대한 효율성을 높이는 방법으로 송수신기에 다수의 안테나를 장착하여 자원 활용을 위한 공간적인 영역을 추가로 확보함으로써 다이버시티 이득을 취하거나, 각각의 안테나를 통해 데이터를 병렬로 전송함으로써 전송 용량을 높이는 이른바 다중 안테나 송수신 기술이 최근 큰 주목을 받으며 활발하게 개발되고 있다.
다중 안테나 시스템(multiple-input multiple-output system)에서는 신호대 잡음비(Signal to Noise Ratio; SNR)를 높이기 위한 방법으로 빔 포밍 및 프리코딩이 사용될 수 있고, 빔 포밍 및 프리코딩은 송신단에서 피드백 정보를 이용할 수 있는 폐-루프 시스템에서 해당 피드백 정보를 통해 신호대 잡음비를 최대화하기 위해 사용된다.
한편, 고속으로 이동하기 때문에 주변 셀과 빠르게 인터페이스를 적시에 수립할 수 없는 무빙 셀, 또는 다른 셀과의 정보 공유가 제한되는 펨토셀(femto cell) 등과 같이 인접 셀 간 채널 정보 공유가 원활하지 않는 경우, 폐루프 기지국간 협력 통신(Coordinated Multipoint, CoMP) 기술을 통한 셀 간 간섭 회피 기술은 적용되기 어려울 수 있다.
도 1은 무빙 셀(moving cell)의 이동을 나타낸 개념도이다.
이하, 본 발명의 실시예에서 무빙 셀은 이동하는 기지국, 고정 셀(fixed cell)은 고정된 위치에서 이동하지 않는 기지국을 지시할 수 있다. 무빙 셀은 다른 용어로 무빙 기지국, 고정 셀은 다른 용어로 고정 기지국이라는 용어로 표현될 수 있다.
예를 들어, 무빙 셀(100)은 버스와 같은 이동하는 객체에 설치된 기지국일 수 있다. 서울시 버스를 기준으로 약 2000개의 무빙 셀(100)이 존재할 수 있다. 따라서, 현재 셀룰러 네트워크 시스템에서 무빙 셀(100)과 고정 셀(150) 간의 간섭의 발생 가능성이 높다.
고정 셀(150) 간의 셀 간 간섭의 경우, 셀 간 간섭을 완화하기 위해 기지국과 단말의 거리를 고려하여 자원 분할이 수행될 수 있다. 또는 셀 간의 채널 정보의 공유로 동적인 자원 분할을 수행하거나 협력 통신을 수행하여 간섭을 완화할 수 있다.
하지만, 무빙 셀(100)의 경우 고정 셀(150) 간의 간섭 제어 방법을 그대로 사용하기에는 어려운 점이 존재한다.
도 2는 기존의 셀 간 간섭 제어 방식에 의해 무빙 셀과 고정 셀 간의 간섭이 제어될 경우, 발생하는 문제점을 나타낸 개념도이다.
무빙 셀에서는 실시간 트래픽(real-time traffic)을 통한 서비스가 제공되는 경우가 많다. 따라서, 반정적인(semi-static) 자원 분할을 기반으로 하는 간섭 제어는 무빙 셀에서 부적절할 수 있다.
도 2의 상단을 참조하면, 무빙 셀은 무선 백 홀(wireless backhaul)을 기반으로 다른 셀과 연결될 수 있다. 따라서, 채널 정보의 공유로 동적인 자원 분할을 수행하거나 협력 통신을 기반으로 한 셀 간 간섭 완화 방법의 사용이 어려울 수 있다. 구체적으로 JT(joint transmission)/DPS(dynamic point selection)의 경우, 기지국 간의 유선 백 홀을 통해 단말로 전송할 데이터가 공유되어야 한다. 하지만, 무선 백 홀을 통한 무빙 셀과 고정 셀 간의 데이터 공유는 무선 자원의 추가적인 사용을 필요로 할 뿐만 아니라, 무선 채널 상황에 따라 데이터의 안정적인 공유가 어려울 수 있다. 따라서, 협력 통신을 기반으로 한 고정 셀과 무빙 셀 간의 간섭 완화는 어려울 수 있다.
도 2의 하단을 참조하면, 무빙 셀의 이동으로 인해 무빙 셀과 고정 셀 간의 채널이 빠르게 변화할 수 있다. 따라서, 셀 간 신호 및 간섭 채널 정보 공유가 원활하지 않은 상황에서 간섭 제어 및 감소를 위한 기법 개발이 필요하다.
이러한 환경에서, 간섭 회피 대신 간섭 랜덤화(randomization) 또는 셀 간 간섭 평균화(interference averaging)를 통해 간섭을 희석시키는 기법(whitening)의 사용될 수 있다.
셀 간 간섭 랜덤화는 인접 셀로부터의 간섭을 랜덤화하여 셀 간 간섭을 AWGN(additive white Gaussian noise)으로 근사화하는 방법이다. 셀 간 간섭 랜덤화는 예를 들어, 셀 고유 스크램블링, 셀 고유 인터리빙 등을 기반으로 다른 사용자의 신호에 의한 채널 복호화 과정의 영향을 감소시킬 수 있다.
셀 간 간섭 평균화는 인접 셀에 의한 간섭들을 모두 평균화되도록 하거나 심볼 호핑을 통해 채널 코딩 블록 수준에서 셀 간 간섭을 평균화하는 방법이다.
본 발명의 일 실시예예 따른 간섭 랜덤화 기법은 시간/주파수/공간 자원을 통해 원하는(desired) 신호를 전송할 때, 일부 자원에서는 원하는 신호와 간섭 신호를 동시에 수신되도록하고, 일부 자원에서는 원하는 신호만 수신되도록 하여 자원 별 원하는 신호와 간섭 신호의 비율을 다르게 조정하는 것이다. 이처럼, 신호 대 간섭/잡음 비(SINR)가 자원 별로 달라짐으로써 채널 코딩 이득(channel coding gain)을 얻을 수 있다.
또한, 본 발명에 따른 간섭 랜덤화 기법은 자원 사용에는 변화를 주지 않고 원하는 신호와 함께 수신되는 간섭 신호의 변화(variation)가 커지도록 하는 방법이 제안될 수 있다.
이러한 간섭 랜덤화 기법은 공간적 다이버시티(spatial diversity) 전송을 수행하는 전송단 간에 적용 가능한 기법으로, 공간적 다이버시티 이득을 얻기 위해 반복 전송되는 심볼의 반복 전송 패턴을 기지국 별로 다르게 설정하여 간섭 랜덤화를 수행하는 방식이다.
본 발명의 개선된 간섭 랜덤화 기법은 각 심볼의 디 프리코딩(de-precoding)에 영향을 주는 간섭 신호를 다양화하고, 준정적(Quasi-static) 채널 구간에서 신호의 SIR(signal to interference rate)을 변화시키고, 다이버시티 이득을 얻기 위하여 준정적 채널 구간에서 간섭 다이버시티(interference diversity)를 확보하는 방법에 해당한다.
통상적으로 시그널 다이버시티(Signal diversity)는 다양한 채널을 통하여 동일한 정보를 반복적으로 송수신함으로써 신호의 수신 전력을 평준화하는 것을 의미한다. 이러한 시그널 다이버시티의 경우, 패딩 채널(Fading channel)에서 SINR(signal to interference plus noise rate) 변동 감소하고, 이로 인하여 패딩 채널에서 정보를 복원할 가능성이 증가한다.
본 발명에 따른 간섭 다이버시티는 시그널 다이버시티와 유사한 개념으로, 다양한 채널 통하여 다수의 간섭을 동시에 수신함으로써 간섭의 수신 전력이 평준화되고, 간섭에 의한 SINR 변동이 감소된다. 이를 통해 간섭 신호의 수신 전력이 큰 상황에서 신호의 다이버시티 게인이 높아지는 효과가 발생한다.
도 3은 다른 채널을 통해 신호를 반복적으로 전송하는 것을 도시한 도면이다.
도시된 바와 같이, 송신단은 하나의 전송 심볼(S, 이하 제1 심볼) 및 변형된 심볼(S*, 이하 제2 심볼)을 서로 다른 채널을 통해, 예를 들어 다른 안테나를 통해 단말과 같은 수신단으로 전송할 수 있다. 이때 제2 심볼은 제1 심볼에 대하여 복소 켤레(complex conjugate) 연산이 수행된 것을 나타낸다.
h0는 제1 심볼을 전송하는 안테나와 수신단 사이의 심볼에 대한 채널을 나타내고, h1 제2 심볼을 전송하는 안테나와 수신단 사이의 심볼에 대한 채널을 나타낸다.
이 때, I는 간섭 신호를 나타내고, I*는 복소 켤레 연산된 간섭 신호를 나타낸다. q0는 제1 심볼을 전송하는 안테나와 수신단 사이의 간섭 신호에 대한 채널을 나타내고, q1 제2 심볼을 전송하는 안테나와 수신단 사이의 간섭 신호에 대한 채널을 나타낸다.
제1 심볼 및 제2 심볼은 시간, 공간 또는 주파수 자원에 할당되어 반복적으로 전송될 수 있고, 송신단은 신호와 간섭을 수신할 수 있다.
도시된 바와 같이, 제1 심볼이 전송되면 간섭 신호와 함께 수신단은
Figure PCTKR2014011012-appb-I000001
를 수신하고, 제2 심볼에 대하여 수신단은
Figure PCTKR2014011012-appb-I000002
를 수신할 수 있다.
최종적으로 수신단이 수신하는 심볼 및 간섭 신호는 수학식 1로 나타낼 수 있다.
수학식 1
Figure PCTKR2014011012-appb-M000001
만약, 채널 상태가 채널이 거의 변동되지 않는 준정적 상태라면, 간섭 다이버시티 효과는 감소하게 된다.
도 4는 준정적 채널을 통하여 수신되는 심볼 및 간섭 신호를 도시한 도면이다.
도시된 바와 같이, 수신단인 단말(Rx)은 두 개의 안테나를 통하여 전송되는 심볼(S)을 수신할 수 있고, 두 개의 안테나를 통하여 전송되는 신호를 간섭 신호(Z)로 수신할 수 있다.
제1 안테나(10)와 제2 안테나(20)는 단말(Rx)에 서비스를 제공하는 셀(이하, 제1 셀)의 안테나 일 수 있고, 제3 안테나(30)와 제4 안테나(40)는 단말(Rx)에 간섭 신호로 작용할 수 있는 심볼(Z)을 전송하는 셀(이하, 제2 셀)의 안테나 일 수 있다.
예를 들어, 고정 셀이 무빙 셀에 의해 서비스되는 단말에 대한 간섭원으로 작용하는 경우 제1 셀은 무빙 셀, 제2 셀은 고정 셀이 될 수 있고, 반대로 무빙 셀이 고정 셀에 의해 서비스되는 단말에 대한 간섭원인 경우 제1 셀은 고정, 제2 셀은 셀무빙 셀이 될 수 있다.
도 4에서 심볼에 대한 행은 시간, 공간 또는 주파수와 같은 심볼이 전송되는 자원을 의미할 수 있다.
일정 구간 채널이 동일한 준정적 상태에서, 제1 안테나(10)를 통하여 심볼 S0, S1..이 전송되고, 제2 안테나(20)를 통하여 제1 안테나(10)를 통하여 전송되는 심볼의 변형된 심볼 S0*, S1*..이 전송된다.
제3 안테나(30)를 통하여 심볼 Z0, Z1..이 전송되고, 제4 안테나(40)를 통하여 제3 안테나(30)를 통하여 전송되는 심볼의 변형된 심볼 Z0*, Z1*..이 전송된다.
단말의 입장에서 제1 셀에서 전송되는 전송 심볼(S)은 수신 신호가 되고, 제2 셀에서 전송되는 전송 심볼(Z)은 간섭 신호가 될 수 있다.
따라서, 도 4에서, h0는 제1 셀의 제1 안테나(10)와 제1 셀에 의해 서비스되는 단말(Rx) 사이의 채널, h1는 제1 셀의 제2 안테나(20)와 제1 셀에 의해 서비스되는 단말(Rx) 사이의 채널, q0는 제2 셀의 제3 안테나(30)와 단말(Rx) 사이의 채널, q1은 제2 셀의 제4 안테나(40)와 단말(Rx) 사이의 채널을 나타낸다.
최종적으로 단말이 수신하는 수신 심볼(
Figure PCTKR2014011012-appb-I000003
)은 수학식 2로 표현될 수 있다.
수학식 2
Figure PCTKR2014011012-appb-M000002
수학식 2와 같이, 수신 심볼에 간섭으로 작용하는 간섭 신호의 계수(
Figure PCTKR2014011012-appb-I000004
)가 두 개의 심볼(
Figure PCTKR2014011012-appb-I000005
)에서 동일하므로, 각 심볼에 대한 SIR이 동일하다고 볼 수 있다.
이는 전체 패킷의 다이버시티에 대한 이득이 제한되거나 감소하는 것을 나타낼 수 있다. 만약, 준정적 채널 상태에서 간섭이 크다면 단말이 계속해서 강한 간섭을 받는 상황이 지속될 수 있다.
이하에서는, 동일한 크기의 간섭이 아닌 간섭 심볼의 반복 패턴을 변화시킴으로써 간섭 다이버시티를 확보하는 방법에 대하여 설명한다.
도 5는 본 발명의 일 실시예에 따른 수신 심볼 및 간섭 신호를 도시한 도면이다.
도시된 바와 같이, 일정 구간 채널이 동일한 준정적 상태에서, 제1 안테나(10)를 통하여 심볼 S0, S1, S2, S3..이 전송되고, 제2 안테나(20)를 통하여 제1 안테나를 통하여 전송되는 심볼의 변형된 심볼 S0*, S1*, S2*, S3*..이 전송된다.
제3 안테나(30)를 통하여 심볼 Z0, Z1, Z2, Z3..이 전송되고, 제4 안테나(40)를 통하여 제3 안테나를 통하여 전송되는 심볼의 변형된 심볼 Z1*, Z2*, Z3*, Z0*..이 전송된다.
본 발명의 일 실시예에 따를 경우, 제4 안테나를 통하여 전송되는 심볼은 기존의 Z0*, Z1*, Z2*, Z3*에서 그 패턴이 순환 시프트(Cyclic shift)되어, Z1*, Z2*, Z3*, Z0*..순으로 전송된다. 즉, 단말에 간섭 신호가 될 수 있는 심볼의 반복 패턴이 일정 순서에 따라 변경될 수 있다.
이러한 반복 패턴의 변경은 전송단인 제1 셀과 제2 셀이 서로 다른 프리코더를 사용함으로써 구현될 수 있다.
이렇게 심볼이 반복되는 패턴이 변경되는 경우, 단말이 수신하는 수신 심볼(
Figure PCTKR2014011012-appb-I000006
)은 수학식 3으로 표현될 수 있다.
수학식 3
Figure PCTKR2014011012-appb-M000003
수학식 3과 같이, 수신 심볼(
Figure PCTKR2014011012-appb-I000007
)에서 간섭으로 작용하는 수식에는 서로 다른 간섭 심볼이 포함되어 있으며, 이는 준정적 구간 내 심볼 별로 간섭이 변하는 것을 나타낸다. 이를 통하여 패킷에 대한 간섭 다이버시티 확보가 가능하고 다이버시티 성능이 개선되는 효과가 발생한다.
이하, 셀 간의 간섭을 완화하기 위한 구체적인 프리 코딩 설계 방법에 대하여 설명한다.
도 6 본 발명의 또 다른 실시예에 다른 심볼 패턴을 도시한 도면이다. 구체적으로 도 6은 각 기지국, 즉 셀에서 심볼 반복 시 서로 상이한 반복 패턴을 이용하여 프리코딩 하는 것을 나타내고 있다.
도시된 바와 같이, 제1 셀에서는 동일한 신호에 대하여 심볼 S 및 이에 대한 변환 심볼 S*을 상이한 안테나를 통하여 순차적으로 전송하고 있다. 즉, 안테나 1(A0)을 통하여 심볼 S0가 전송되면, 안테나 2(A1)를 통하여 심볼 S0*이 전송된다. 또한, 순차적으로 안테나 1(A0)을 통하여 심볼 S1이 전송되면, 안테나 2(A1)를 통하여 심볼 S1*이 전송된다.
제1 셀에 의하여 반복되는 심볼의 패턴을 프리코딩 매트릭스로 나타내면, 수학식 4 또는 수학식 5와 같이 표현할 수 있다.
수학식 4
Figure PCTKR2014011012-appb-M000004
수학식 5
Figure PCTKR2014011012-appb-M000005
수학식 4 및 수학식 5와 같이, 하나의 안테나를 통하여 심볼 S0가 전송되면, 다른 안테나를 통하여 심볼 S0*이 전송된다. 또한, 순차적으로 심볼 S0를 전송한 안테나는 통하여 심볼 S1이 전송되면, 다른 안테나를 통하여 심볼 S1*이 전송된다.
이에 반하여 제2 셀에서는 심볼 패턴을 도 6의 가운데 또는 하단과 같이 변경시킬 수 있다. 제2 셀은 두 개의 안테나를 통하여 주기가 3이고, 전송되는 심볼의 순서에 오프셋을 설정하여 심볼 패턴을 반복 전송할 수 있다.
도 6의 가운데 심볼 패턴의 경우, 패턴이 반복되는 심볼의 개수가 3, 즉 주기가 3이고, 전송 심볼 순서의 오프셋을 1로 설정한 것을 나타내고 있다. 즉, 안테나 1(A0)을 통해 심볼 Z0, Z1, Z2, Z3..이 순차적으로 전송되고, 이에 대한 변환 심볼은 기존의 Z0, Z1, Z2, Z3… 순이 아닌 Z1*, Z2*, Z0*, Z4*…과 같은 시퀀스로 안테나 2(A1)를 통해 전송될 수 있다.
이를 프리코딩 매트릭스로 나타내면, 수학식 6과 같이 표현할 수 있다.
수학식 6
Figure PCTKR2014011012-appb-M000006
또한, 도 6의 하단 심볼 패턴의 경우, 패턴이 반복되는 심볼의 개수가 3, 즉 주기가 3이고, 전송 심볼 순서에 오프셋을 2로 설정한 것을 나타내고 있다. 즉, 안테나 1(A0)을 통해 심볼 Y0, Y1, Y2, Y3..이 순차적으로 전송되고, 이에 대한 변환 심볼은 기존의 Y0, Y1, Y2, Y3… 순이 아닌 Y2*, Y0*, Y1*, Y5*…과 같은 시퀀스로 안테나 2(A1)를 통해 전송될 수 있다.
이를 프리코딩 매트릭스로 나타내면, 수학식 7과 같이 표현할 수 있다.
수학식 7
Figure PCTKR2014011012-appb-M000007
셀 별로 동일하거나 또는 서로 다른 오프셋이 적용될 수 있고, 셀 별로 동일하거나 다른 주기가 적용될 수 있다.
또한, 순환 시프트의 주기에 따라 동일한 전송 안테나 포트를 사용하는 셀이 다른 크기의 프리코더를 사용할 수 있다.
예를 들어, 수학식 6 또는 수학식 7에서는 심볼이 반복되는 순환 시프트의 주기가 3이지만, 이는 4이상이 될 수도 있고, 주기가 설정되면 오프셋 값은 최대 “주기-1”값으로 설정될 수 있다.
서로 간섭원이 될 수 있는 셀 간에는 신호에 대한 프리 코딩을 수행할 때, 수학식 4 내지 7과 같은 프리코더를 미리 설정하여 반복되는 심볼의 패턴을 다양하게 변경할 수 있다. 이를 통하여 간섭 다이버시티가 확보될 수 있어 신호의 수신 능력이 향상되고, 강한 간섭에 의하여 수신 신호의 성능이 저하되는 상황을 방지할 수 있다.
수학식 4 내지 수학식 7이 적용되는 도 6과 같은 심볼 패턴은 이하에서, 반복 전송 패턴 또는 셀 간 간섭 랜덤화 패턴(ICI Randomization pattern, IR 패턴)으로 명명될 수 있다.
한편, 상기 실시예와 같이, 동일한 심볼을 반복하여 전송하는 패턴을 조정하여 셀 간 간섭을 랜덤화 하는 경우, 셀 간 간섭 랜덤화 게인을 얻기 위해서는 인접한 셀들이 각각 다른 반복 전송 패턴을 사용해야 한다.
이를 위하여 인접한 고정 셀에 각각 다른 반복 전송 패턴을 부여하고, 무빙 셀에는 무빙 셀에 전용할 수 있는 반복 전송 패턴을 부여하는 방법, 네트워크 구성(Network configuration)을 통하여 인접한 모드 셀이 항상 다른 반복 전송 패턴을 가질 수 있도록 제어하는 방법 또는 대단히 많은 수의 반복 전송 패턴을 설계한 후, 각 셀이 이를 선택적으로 사용하도록 함으로써 인접한 셀들이 동일한 반복 전송 패턴을 사용할 확률를 낮추는 방법 등이 적용될 수 있다.
상기와 같은 방법이 적용되어 간섭 랜덤화를 구현하는 경우, 셀 밀도가 높더거나 또는 다수의 무빙 셀이 존재하는 네트워크의 경우, 셀 간 간섭 랜덤화를 수행하기 위해서는 다양한 반복 전송 패턴의 설계 후 이를 각 셀에 할당하여야 한다.
특히, 버스 정류장 등 순간적으로 대단히 많은 수의 셀이 집중 분포할 수 있는 지역의 경우, 고정 셀이 받는 셀 간 간섭뿐 아니라 무빙 셀이 받는 셀 간 간섭 또한 랜덤화 할 필요가 있기 때문에 더욱 많은 수의 반복 전송 패턴이 생성되어야 한다.
셀 간 간섭 랜덤화를 위한 반복 전송 패턴 즉, IR 패턴의 개수는 IR 패턴의 크기에 의해 결정될 수 있다. 많은 개수의 IR 패턴을 만들기 위해서는 IR 패턴의 길이는 길어져야 한다. IR 패턴의 길이가 길어지면 반복 전송되는 패턴의 이격 거리가 증가하게 된다.
즉, 대단히 많은 셀 간 간섭 랜덤화를 수행하고자 할 경우, 대단히 큰 IR 패턴을 설계하여야 한다. 이 경우, 동일 심볼이 반복 전송되는 자원 요소(resource element) 간 이격이 커져 주파수 선택 채널(frequency selective channel)에서 신호 수신 성능이 감소하는 문제가 발생하며, 또한 IR 패턴이 지나치게 커질 경우 짧은 패킷(short packet) 전송 시에는 셀 간 간섭 랜덤화를 적용하지 못하는 문제가 발생할 수 있다.
본 발명의 일 실시예는 인접한 셀이 각기 다른 IR 패턴을 사용하도록 자원을 배치하되, IR 패턴 용량(capacity), 즉, IR 패턴의 개수를 유한하게 제한하고, IR 패턴 랜덤화를 통해 인접 셀 간 IR 패턴 충돌 및 고속 무빙 셀과 같은 히든 셀(hidden cell)에 의한 IR 패턴 충돌 시 발생할 수 있는 게인 감소를 극복하는 방법을 제안한다.
이하에서는 IR 패턴 랜덤화 방법 및 이를 시그널링 하기 위하여 복조 참조 신호(Demodulation pilot signal)를 활용하는 방법에 대하여 살펴본다.
기지국은 시간/주파수 자원 블록 별로 적용될 수 있는 IR 패턴을 정의할 수 있으며, 각 패킷 전송 시 둘 이상의 IR 패턴을 사용할 수 있다.
이 경우, 각 시간/주파수 자원 블록에 적용되는 IR 패턴은 셀 글로벌 ID(cell global ID) 등과 같이 각 셀의 고유한 값에 의하여 결정될 수 있고, 또는 주변 셀들과의 통신을 통하여 결정될 수 있다.
각 IR 패턴은 주파수 도메인에 매핑되는 것을 기본으로 할 수 있으며, 각 자원 블록 내 다른 시간 자원에는 다른 IR 패턴이 할당될 수 있다.
인접 셀들은 동일한 자원 블록 내 동일한 IR 패턴들을 사용할 수 있다. 다만, 이 경우 동일한 자원 블록 내 시간 자원에 할당되는 IR 패턴의 적용 순서를 달리하여 간섭 랜덤화에 대한 이득을 얻을 수 있다.
도 7a와 도 7b는 본 발명의 일 실시예에 따른 IR 패턴을 도시한 도면이다.
구체적으로 도 7a와 도 7b는 서로 인접한 셀의 동일한 무선 자원에 할당된 IR 패턴을 도시하고 있다.
도 7a와 도 7b에 도시되어 있는 자원 블록에는 주파수 도메인으로 IR 패턴이 할당되어 있고, 16개의 서로 다른 IR 패턴은 서로 다른 시간 도메인에 할당되어 있다.
도 7a의 자원 블록 내 첫 번째 시간 자원에는 IR 패턴 1이 할당되어 있고, 순차적으로 IR 패턴 2, IR 패턴 3 ... IR 패턴 16이 할당되어 있다. 한편, 도 7b의 자원 블록의 첫 번째 시간 자원에는 IR 패턴 1이 아닌 IR 패턴 3부터 IR 패턴 16이 순차적으로 할당된 후, IR 패턴 1과 IR 패턴 2가 할당되어 있다. 즉, 인접한 셀에 주어진 자원 블록에서 동일한 시간 자원 마다 서로 다른 IR 패턴이 할당되고, 이를 통해 인접 셀 간의 셀 간 간섭 랜덤화가 구현될 수 있다.
각 자원 블록 별로 IR 패턴은 전체 시간 도메인에서 랜덤하게 설정되지 않고, 랜덤하게 선택된 IR 패턴 세트, 즉 IR 패턴 1부터 IR 패턴 16까지 일정한 주기로 반복된다. 이는 단말이 IR 패턴을 인지할 때의 복잡도를 제한하기 위함이다.
IR 패턴은 IR 패턴 크기, 즉 IR 패턴의 길이(length)와 순환 시프트 오프셋(Cyclic shift offset)의 두 개의 파라미터로 결정될 수 있다.
IR 패턴 크기는 자원 블록의 주파수 자원 요소(frequency resource element)의 개수를 의미할 수 있고, 순환 시프트 오프셋은 도 6을 참조하여 설명된 심볼의 반복 전송에 사용되는 오프셋을 의미한다.
순환 시프트 오프셋은 IR 패턴 세트 중 해당 IR 패턴을 식별할 수 있는 인덱스로 사용될 수 있다. 순환 시프트 오프셋는 Mod(GCID + N + Nf + Nt, P-1)로 표현될 수 있으며, GCID(global cell ID)는 셀을 식별하는 식별자이고, N은 각 셀에 의하여 정의되는 임의 상수를 나타내며, Nf는 자원 블록 내 주파수 인덱스(resource block frequency index), Nt는 자원 블록 내 시간 인덱스(resource block time index), P는 IR 패턴의 길이를 나타낼 수 있다.
인접한 각 셀은 동일한 IR 패턴 길이를 가지거나, 각 셀의 IR 패턴 길이는 주변의 인접 셀의 IR 패턴 길이의 정수 배가 되도록 설정될 수 있다. 이를 통해 IR 패턴 랜덤화 과정에서 IR 패턴이 다름에도 불구하고 일부 심볼에 동일한 반복 전송 패턴이 적용되는 것을 방지할 수 있다.
이와 같이, IR 패턴 랜덤화는 IR 패턴 크기와 순환 시프트 오프셋에 대한 두파라미터 값을 각 셀에 대응하는 자원 블록 별로 다르게 할당하는 것으로 수행될 수 있다.
보다 구체적으로, 각 셀의 기준점이 되는 자원 그룹(resource group) 또는 자원 블록에 사용될 IR 패턴 파라미터 값을 인접 셀 별로 다르게 할당하고, 기지국과 단말 간 미리 약속된 규칙에 의해 다른 자원 그룹 또는 자원 블록에 사용될 IR 패턴을 결정한다. 이러한 방식에 의하여 IR 패턴의 랜덤화로 인하여 발생하는 단말의 IR 패턴 블라인드 검출(blind detection)에 대한 복잡도가 감소될 수 있다.
우선, 기준점, 예를 들어 기준이 되는 자원 블록의 첫 번째 시간 자원,에 적용되는 IR 패턴의 파라미터 값이 선정될 수 있다.
파라미터 값은 셀의 고유한 값으로 결정되거나 주변 셀과의 협의에 의하여 결정될 수 있다.
이러한 기준점에 적용된 IR 패턴으로부터 다른 자원 블록 또는 자원 그룹에 적용되는 IR 패턴이 유도될 수 있다.
다른 자원 블록 또는 자원 그룹에 사용될 IR 패턴 선정 방법은 표준과 같이 사전 규약을 통하여 설정될 수도 있고 시스템 정보(system information) 등을 통하여 단말에 미리 전달될 수도 있다.
그런 후, 표준에 의해 정의되거나 기 설정된 IR 패턴 주기 동안 사용될 IR 패턴이 유도될 수 있다. IR 패턴 주기에 따라 동일한 IR 패턴이 반복될 수 있다.
자원 블록 또는 자원 그룹의 첫 번째 시간 자원에 할당된 IR 패턴에 따라 그 이후의 시간 자원에 할당되는 IR 패턴이 결정될 수 있다.
한편, PDCCH(Physical downlink control channel) 등 사전 제어 정보 없이 전달되는 채널 또는 정보의 전송에 셀 간 간섭 랜덤화를 적용하기 위하여, 본 발명은 블라인드 감지를 기반으로 동작하는 IR 패턴 지시(indication)을 제안한다. 이 경우, 단말의 IR 패턴 인지가 PDCCH 감지 전에 수행 될 수 있어야 하며, 이를 위해 기존의 복조 참조 신호(demodulation pilot signal)에 IR 패턴 지시 정보를 추가하는 시그널링 방법을 제시한다.
각 셀이 전송하는 복조 참조 신호는 단말 특정하도록(UE specific) 전송되지만, 단말의 참조 신호 감지 성능을 보장하기 위해서는 각 셀에서 사용하는 복조 참조 신호가 서로 직교하거나 준 직교하며, 단말이 셀의 물리적 ID(physical ID)를 알거나 또는 시스템 정보를 수신하면, 이를 근거로 복조 참조 신호를 수신할 수 있어야 한다.
이러한 두 가지 조건이 충족되는 경우, 기존의 복조 참조 셀 특정 시퀀스(demodulation pilot cell specific sequence)를 IR 패턴의 지시하는 시그널링 수단으로 사용할 수 있다.
본 발명은 기존과 마찬가지로 셀 특정 파라미터(cell specific parameter), 예컨대 PCI(physical cell id)를 통하여 복조 참조 시퀀스(demodulation pilot sequence)을 생성한 후 상기 시퀀스에 각 자원 별로 IR 패턴을 적용하여 셀과 자원에 특정적인 시퀀스(cell & resource specific pilot sequence)를 생성한다.
예를 들어, IR 패턴의 길이가 4이고, 순환 시프트 오프셋이 1인 순환 시프트 형태의 IR 패턴이 사용된 자원 그룹 또는 자원 블록에 대응하는 복조 참조 신호를 생성하기 위하여, 기지국은 참조 신호에 대응하는 셀-특정 시퀀스에 주기가 4이고 오프셋이 1인 순환 시프트를 적용할 수 있다. 즉 시퀀스를 구성하는 반복되는 심볼에 오프셋 1을 적용하면서, 주기를 4로 반복할 수 있다.
복조 참조 셀-특정 시퀀스에 IR 패턴을 적용할 때, IR 패턴 변경 빈도와 복조 참조 신호 전송 빈도에 따라 자원 블록에 할당되는 복조 참조 신호 패턴이 달라질 수 있다. 또한, IR 패턴의 최대 길이와 복조 참조 신호에 사용된 주파수 도메인 자원(frequency domain resource)의 수에 따라서도 자원 블록에 할당되는 복조 참조 신호 패턴이 달라질 수 있다.
한편, 간섭 랜덤화의 게인을 증가시키기 위해서는 심볼의 반복 전송이 늘어나야 되고, 이는 IR 패턴의 증가를 의미한다.
전송 다이버시티의 경우 IR 패턴의 증가는 주파수 선택성(frequency selectivity)이 민감해지는 결과를 초래하고, 이는 성능 저하 또는 주파수 사용이 제한되는 것을 의미한다.
또한, 폐루프 MIMO의 경우, IR 패턴이 커지면 자원 선택 게인(resource selection gain), 즉 스케줄링 게인(scheduling gain)의 감소를 가져올 수 있다.
채널 상황에 따라 큰 간섭 랜덤화 처리 게인(IR processing gain)이 필요 없는 경우도 존재하고, 주파수 선택성에 강건한 IR 패턴의 필요한 경우도 존재할 수 있으므로, 상황에 따라 적절하게 간섭 랜덤화 처리 게인(IR processing gain)을 변경하는 것이 필요하다.
이하에서는 전송단인 기지국이 간섭 랜덤화 처리 게인을 조정할 수 있도록 단말이 채널 주파수 선택성, 셀 간 간섭 크기, IR 패턴에 따른 IR 게인을 측정하여 기지국에 보고하는 방법 및 이러한 측정이 가능하도록 참조 신호(pilot signal)를 설계하는 방법에 대하여 살펴 본다.
도 8은 본 발명의 일 실시예에 따른 간섭 랜덤화를 위한 피드백 신호 전송 방법을 설명하기 위한 제어 흐름도이다.
우선, 기지국은 피드백 정보 생성을 위한 참조 신호, 즉 채널의 상태 또는 간섭을 측정할 수 있는 자원 요소(resource element)를 포함하는 IR 패턴을 주어진 자원에 할당할 수 있다(S810).
도 6과 같은 IR 패턴에 의하여 각 자원 요소에 변조된 심볼(modulated symbol)이 매핑되는 규칙이 결정된다. 이러한 자원 요소 중 일부가 정보 전송, 즉 데이터 전송이 아닌 셀 간 간섭 측정 참조 신호(ICI measurement pilot)의 전송을 위하여 사용될 수 있다.
도 9a 및 도 9b는 본 발명의 일 실시예에 따른 셀 간 간섭 측정 참조 신호가 할당된 IR 패턴을 도시한 도면이다.
도 9a는 기지국 A에서 생성된 IR 패턴을 도시한 것이고, 도 9b는 기지국 A와 인접한 기지국 B에서 생성된 IR 패턴을 도시한 도면이다. 기지국 A에서 생성되는 신호는 기지국 B에 간섭 신호로 작용할 수 있고, 기지국 B에서 생성된 신호는 기지국 A에 간섭 신호로 작용할 수 있다.
도시된 바와 같이, 기지국 A와 기지국 B는 두 개의 안테나 포트를 통하여 신호를 전송하고 있다. 도 9a 및 도 9b는 시간축 및 주파수 축으로 형성된 자원 블록에 포함되어 있는 16개의 자원 요소를 통하여 심볼이 전송되는 것을 예시적으로 나타내고 있다.
16개의 자원 요소에 기재되어 있는 숫자는 임의의 심볼을 예시적으로 나타낸 것으로, IR 패턴에서 심볼을 식별하기 위하여 사용되었다.
도 9a와 같이 기지국 A를 통하여 심볼 1, 심볼 2, 심볼 15 및 심볼 16이 할당될 자원 요소에 셀 간 간섭 측정을 위한 참조 신호가 할당될 수 있고, 도 9b와 같이 기지국 B는 심볼 3, 심볼 4, 심볼 11 및 심볼 12가 할당될 자원 요소에 셀 간 간섭 측정을 위한 참조 신호를 할당할 수 있다.
본 발명의 일 실시예예 따르면 셀 간 간섭 측정을 위하여 자원 요소에는 어떠한 신호도 전송되지 않거나(zero power pilot), 데이터 전송에 사용되는 전력보다 매우 작은 전송 전력을 갖는 참조 신호가 할당될 수 있다.
또한, 기지국은 IR 게인의 측정을 위한 참조 신호에 대한 정보를 단말로 전송한다(S820).
기지국은 자신의 채널 상태, 예컨대 채널 이득 또는 주파수 선택성의 측정을 위한 참조 신호에 대한 제1 자원 정보(pilot set information)와 셀 간 간섭 전력 또는 IR 패턴 적용 시 셀 간 간섭 강도 나타내는 IR 게인의 측정을 위한 참조 신호에 대한 제2 자원 정보를 단말로 전송할 수 있다.
제1 자원 정보의 경우, 참조 신호가 자원 요소에 매핑되는 모든 경우에 대한 테이블이 설정되고, 이에 대한 인덱스가 제어 정보 또는 시스템 정보를 통하여 단말로 전송되는 과정을 통하여 기지국으로부터 단말로 제공될 수 있다.
한편, 기지국은 IR 패턴에 따라 반복 전송되는 심볼의 위치를 이용하여 참조 신호를 매핑시키는 것을 고려하여 제2 자원 정보를 생성할 수 있다.
본 발명의 일 실시예에 따르면, IR 게인을 위한 참조 신호는 반복 전송되는 심볼의 위치를 이용하여 일정한 패턴으로 매핑될 수 있고, 이러한 IR 패턴을 이용하여 참조 신호를 식별할 수 있다.
즉, 제2 자원 정보는 IR 패턴에 따른 특정 심볼이 전송될 위치에 참조 신호가 전송되는지를 나타내는 비트맵 형식으로 표현될 수 있다. 예를 들어, 도 9a의 경우, 심볼 1, 심볼 2, 심볼 15 및 심볼 16의 위치에 참조 신호가 매핑된다고 표현될 수 있다.
한편, 이와 같이 IR 패턴 반복 시 각 IR 패턴의 "몇 번째" 심볼이 매핑될 자원 요소의 위치에 셀 간 간섭 참조 신호가 매핑되는지 표현하는 비트맵을 사용하는 경우, 자원 블록에 포함되는 자원 요소의 수가 많으면 비트맵이 커지는 시그널링 오버헤드(signaling overhead)가 발생할 수 있다.
본 발명의 다른 실시예에 따르면, 상기와 같은 시그널링 오버헤드를 감소시키기 위하여 보다 간단한 비트맵을 이용할 수도 있다.
도 10a와 도 10b는 본 발명의 다른 실시예에 따른 셀 간 간섭 측정 참조 신호가 할당된 IR 패턴을 도시한 도면이다. 도 10a는 기지국 A에서 생성된 IR 패턴을 도시한 것이고, 도 10b는 기지국 A와 인접한 기지국 B에서 생성된 IR 패턴을 도시한 도면이다.
기지국 A는 도 10a와 같이 제1 안테나 포트와 제2 안테나 포트의 자원에 특정 시간 동안 주파수 축으로 심볼 1 내지 16을 할당하고, 특정 시간 이후에 심볼 17 내지 32를 할당한다.
제1 안테나 포트 및 제2 안테나 포트에는 8개의 심볼이 하나의 세트를 구성하는 IR 패턴이 반복적으로 할당된다.
제1 안테나 포트에 할당되는 심볼은 첫 번째 심볼부터 여덟 번째 심볼까지 순서의 변경 없이 순차적으로 할당되지만, 제2 안테나 포트에 할당되는 심볼은 첫 번째와 두 번째 심볼의 위치가 서로 바뀐다.
즉, 제2 안테나 포트에도 심볼 1 내지 32가 할당되지만, 심볼 1 및 심볼 2, 심볼 7 및 심볼 8이 할당되는 자원 요소의 위치가 서로 다르고, 심볼 15 및 심볼 16, 심볼 31 및 심볼 32가 할당되는 자원 요소의 위치가 서로 다르다.
이렇게 심볼이 매핑된 자원 구조에서, 심볼 1과 심볼 2가 할당된 위치에 셀 간 간섭 참조 신호를 매핑시킬 수 있고, 이를 비트맵으로 나타내면 "11000000"과 같은 8비트 정보로 표현할 수 있다.
기지국 B는 도 10b와 같이 제1 안테나 포트와 제2 안테나 포트의 자원에 특정 시간 동안 주파수 축으로 심볼 1 내지 16을 할당하고, 특정 시간 이후에 심볼 17 내지 32를 할당한다.
도 10a와 같이 도 10b에도 제1 안테나 포트 및 제2 안테나 포트에는 8개의 심볼이 하나의 세트를 구성하는 IR 패턴이 반복적으로 할당된다.
제1 안테나 포트에 할당되는 심볼의 순서는 "심볼 1, 심볼 8, 심볼 3, 심볼 2, 심볼 5, 심볼 4, 심볼 7 및 심볼 6"이고, 이러한 순서는 나머지 심볼(심볼 9 내지 16, 심볼 16 내지 24, 심볼 25 내지 32)에서도 반복적으로 적용된다.
제2 안테나 포트에 할당되는 심볼의 순서는 "심볼 2, 심볼 7, 심볼 4, 심볼 1, 심볼 6, 심볼 3, 심볼 8 및 심볼 5"이고, 이러한 순서는 나머지 심볼(심볼 9 내지 16, 심볼 16 내지 24, 심볼 25 내지 32)에서도 반복적으로 적용된다.
이렇게 심볼이 매핑된 자원 구조에서, 심볼 3과 심볼 4가 할당된 위치에 셀 간 간섭 참조 신호를 매핑시킬 수 있고, 이를 비트맵으로 나타내면 "00110000"과 같은 8비트 정보로 표현할 수 있다.
기지국 A는 제2 자원 정보로 "11000000"을 단말로 전송할 수 있고, 기지국 B는 제2 자원 정보로 "00110000"을 단말로 전송할 수 있다.
도 11a와 도 11b는 본 발명의 또 다른 실시예에 따른 셀 간 간섭 측정 참조 신호가 할당된 IR 패턴을 도시한 도면이다. 도 11a는 기지국 A에서 생성된 IR 패턴을 도시한 것이고, 도 11b는 기지국 A와 인접한 기지국 B에서 생성된 IR 패턴을 도시한 도면이다.
본 실시예에 따르면, 자원 블록 내 IR 패턴이 반복되는 회수를 N이라고 하면, N 비트의 비트맵을 이용하여 셀 간 간섭 참조 신호가 할당되는 IR 패턴을 식별할 수 있다. 그리고, 각 IR 패턴 내 몇 번째 심볼에 셀 간 간섭 참조 신호가 할당되는지를 나타내는 또 다른 비트맵을 통하여 셀 간 간섭 참조 신호에 대한 정보를 생성할 수 있다.
도 11a와 도 11b는 도 10a와 도 10b와 동일한 자원 할당 구조를 갖는다. 즉, 특정 시간 및 주파수 영역에 동일한 심볼이 할당된다.
다만, 도 11a와 같이 셀 간 간섭 참조 신호는 심볼 1, 심볼 2, 심볼 9 및 심볼 10이 할당되는 자원 요소를 통하여 전송될 수 있다. 즉, 반복되는 IR 패턴 중 첫 번째 패턴과 두 번째 패턴에는 셀 간 간섭 참조 신호가 전송되지만, 세 번째 및 네 번째 패턴에는 셀 간 간섭 참조 신호가 전송되지 않는다.
본 실시예에 따른 제2 자원 정보는 반복되는 패턴을 식별하는 제1 비트맵과 IR 패턴 내의 셀 간 간섭 참조 신호를 식별하는 제2 비트맵으로 생성될 수 있다.
이를 도 11a에 적용하면, 반복되는 4개의 패턴 중 첫 번째와 두 번째 패턴에 셀 간 간섭 참조 신호가 포함되어 있으므로 제 비트맵은 4비트의 "1100"와 같은 형태가 된다. 또한, 반복되는 IR 패턴 중 심볼 1 및 심볼 2가 위치하는 자원 요소에 참조 신호가 할당될 수 있으므로 제2 비트맵은 "11000000"와 같이 표현할 수 있다.
기지국 B 역시 도 11b과 같이 반복되는 IR 패턴 중 첫 번째 패턴과 두 번째 패턴에 셀 간 간섭 참조 신호를 포함시켜 전송하지만, 세 번째 및 네 번째 패턴에는 셀 간 간섭 참조 신호를 포함시키지 않는다.
제1 안테나 포트 및 제2 안테나 포트를 통하여 전송되는 셀 간 간섭 참조 신호는 심볼 3, 심볼 4, 심볼 11 및 심볼 12가 매핑될 자원 요소에 매핑될 수 있다.
이를 도 11b의 자원 할당 구조를 제1 비트맵과 제2 비트맵으로 표현하면, 반복되는 4개의 패턴 중 첫 번째와 두 번째 패턴에 셀 간 간섭 참조 신호가 포함되어 있으므로 제 비트맵은 4비트의 "1100"와 같은 형태가 되고, 반복되는 IR 패턴 중 심볼 3 및 심볼 4가 위치하는 자원 요소에 참조 신호가 할당될 수 있으므로 제2 비트맵은 "00110000"이 될 수 있다.
마지막으로, 기지국은 단말이 측정된 파라미터에 기초하여 패턴의 변경을 요청할 수 있는 조건, 즉 보고 이벤트 트리거(reporting event trigger) 조건에 대한 정보를 단말로 전송할 수 있다(S830).
기지국은 IR 게인이 충분히 크지 않거나 주파수 선택성에 비하여, 즉 균일한 대역폭(coherent bandwidth)에 비하여 IR 패턴이 크면 IR 패턴에 대한 변경을 요청할 수 있는 조건에 대한 정보를 단말에 전송할 수 있다.
다양한 조건 또는 환경에 따라 IR 게인이 크지 않은 것으로 판단될 수 있다. 예를 들어, 셀 간 간섭 수신 전력 대비 수신 전력 결합(Rx combining) 후 셀 간 간섭 전력 비율이 특정 임계값(Th_IR_gain)보다 낮고, 채널 게인을 추정하기 위한 참조 신호로 측정한 채널 이득이 기설정된 임계값보다 낮으면 IR 게인은 충분히 크지 않은 것으로 판단될 수 있다.
또는 다양한 실시예에 따라, 수신 전력 결합 후 셀 간 간섭 전력 비율이 특정 임계값(Th_IR_SIR)보다 낮거나, 셀 간 간섭 수신 전력 비율이 특정 임계값(Th_ICI_SIR)보가 낮거나, 셀 간 간섭 수신 전력이 특정 임계값(Th_ICI_peak)보가 크거나, 수신 전력 결합 후 셀 간 간섭 전력이 특정 임계값(Th_IR_peak)보가 큰 경우 IR 게인은 충분히 크지 않는 것으로 판단될 수 있다.
기지국은 이러한 조건에 대한 정보와 셀 간 간섭 전력 비율에 대한 임계값(Th_IR_gain), 특정 임계값(Th_IR_SIR, Th_ICI_SIR, Th_ICI_peak, Th_IR_peak)에 대한 정보를 단말로 전송할 수 있다. 특정 임계값은 하나 또는 그 이상이 전송될 수 있다.
또는, 기지국은 간섭 랜덤화 결합(IR combining) 후 셀 간 간섭 전력이 특정 임계값(Th_IR) 보다 크면 단말이 IR 패턴 변경을 요청할 수 있도록 임계값(Th_IR)에 대한 정보를 단말로 전송할 수 있다.
기지국으로부터 단말로 전달되는 참조 세트 정보 또는 보고 이벤트 트리거 조건은 IR 패턴이 변경될 때마다 새롭게 설정되거나 변경될 수 있다. 또는 이미 설정된 정해진 룩업 테이블을 통하여 변경되거나 설정될 수 있다.
설명의 편의를 위하여 단계 S810 내지 단계 S830은 순차적으로 수행되는 것으로 도시하였으나, 이를 동시에 또는 병렬적으로 수행될 수 있으며, 그 순서 역시 바뀔 수 있다.
다시 도 8로 돌아가서, 기지국이 IR 패턴 정보, IR 게인 측정을 위한 참조 신호 세트 정보 및 보고 이벤트 트리저 조건을 단말로 전송하면, 단말은 기지국이 전송한 정보에 기초하여 피드백 정보를 생성하기 위한 파라미터를 측정한다(S840).
단말은 채널 또는 가상 채널의 게인과 채널 주파수 선택성을 측정할 수 있다. 이러한 두 가지 파라미터는 채널 상태 정보(channel state informtaion, CSI) 보고용 참조 신호를 통해 측정할 수 있다.
또한, 단말은 셀 간 간섭 강도, 즉 셀 간 간섭 수신 전력과, IR 패턴 적용시 셀 간 간섭 강도인 IR 게인을 측정할 수 있다. 이러한 두 가지 파라미터는 간섭 측정을 위하여 생성된 새로운 참조 신호, 예를 들어 도 9a 내지 도10b와 같은 IR 패턴을 통해 전송되는 참조 신호를 통하여 측정할 수 있다.
단말은 셀 도 9a 내지 도10b와 같은 IR 패턴을 통해 전송되는 참조 신호의 에너지를 측정하여 셀 간 간섭 수신 전력을 추정할 수 있다. 예를 들어, 기지국 A가 셀 간 간섭 참조 신호를 할당한 자원에 어떠한 신호도 전송하지 않으면 그 자원을 통해 측정되는 신호는 간섭 신호로 작용한다.
또한, 단말은 이러한 셀 간 간섭 자원을 통해 수신되는 신호에 IR 패턴에 따른 수신 전력 결합을 수행하고, 이러한 전력 결합 후 신호의 에너지를 측정하여 셀 간 간섭 전력을 추정할 수 있다. 즉, 단말은 IR 패턴에 따른 수신 전력과 셀 간 간섭 수신 전력과의 차이를 통하여 IR 게인을 추정할 수 있다.
단말은 측정된 파라미터에 기초한 채널 상태 및 간섭의 상태가 기지국으로부터 전송된 보고 이벤트 트리거 조건을 만족하는지 여부를 판단할 수 있다(S850).
판단 결과, 보고 이벤트 트리거 조건을 만족하지 않으면, 단말은 기지국으로부터 전송된 데이터 신호 및 참조 신호를 수신하고 피드백 정보를 생성하기 위한 파라미터를 측정한다.
반면, 보고 이벤트 트리거 조건이 만족하는 경우, 즉 IR 패턴 변경을 요청할 이벤트가 발생하면 단말은 이를 기지국에 보고한다(S860).
단말은 IR 게인이 충분히 크지 않거나 주파수 선택성에 비하여 IR 패턴이 크면 IR 패턴에 대한 변경을 요청할 수 있는 조건에 대한 정보를 단말에 전송할 수 있다.
단말은 단계 S830을 통하여 수신된 임계값에 기초하여 IR 게인이 크지 않는 경우를 판단할 수 있고, 이 경우 단말은 IR 게인 증가를 요청할 수 있다.
또는 단말은 주파수 선택성에 비하여 IR 패턴이 크면 기지국으로 IR 게인 감소를 요청할 수 있다.
단말로부터 이벤트 트리거에 대한 보고를 수신하면, 기지국은 IR 처리 게인을 변경하고, 이에 기초하여 IR 패턴을 변경한다(S870).
단말로부터 IR 게인의 증가가 요청되면, 기지국은 심볼의 반복 회수를 늘리거나 IR 패턴의 길이를 증가시켜 보다 많은 셀에 의한 간섭을 랜덤화가 이루어도록할 수 있다.
만약, 단말로부터 IR 게인의 감소가 요청되면, 기지국은 IR 패턴 길이의 감소를 위하여 심볼의 반복 회수를 줄이거나 반복 전송되는 심볼 간의 최대 이격 거리(셀 간 간섭을 위한 참조 신호가 매핑된 자원 요소의 간격)를 감소시킬 수 있다. 짧은 IR 패턴 길이를 통하여 IR 게인이 감소될 수 있다.
변경된 IR 패턴은 새롭게 자원 할당되어 단말로 전송되고(S880), 변경된 IR 패턴에 대응하여 보고 이벤트 트리거 조건이 재 설정될 수 있다(S890).
이와 같이, 본 발명에 따르면 전송단의 채널 상황에 따라 간섭 패턴을 조정하는 시그널링과 이에 기초하여 채널 정보를 측정하고 이를 피드백하는 방법 및 이를 위한 장치가 제공된다.
도 12는 발명의 일 실시예에 따른 무선 통신 시스템의 블록도이다.
기지국(800)은 프로세서(810; processor), 메모리(820; memory) 및 RF부(830; radio frequency unit)을 포함한다. 프로세서(810)는 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(810)에 의해 구현될 수 있다. 메모리(820)는 프로세서(810)와 연결되어, 프로세서(810)를 구동하기 위한 다양한 정보를 저장한다. RF부(830)는 프로세서(810)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
단말(900)은 프로세서(910), 메모리(920) 및 RF부(930)을 포함한다. 프로세서(910)는 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(910)에 의해 구현될 수 있다. 메모리(920)는 프로세서(910)와 연결되어, 프로세서(910)를 구동하기 위한 다양한 정보를 저장한다. RF부(930)는 프로세서(910)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
이와 같이, 본 발명은 서로 다른 무선 네트워크를 통하여 무선 접속이 가능할 때, 단말이 업 링크를 위한 무선 노드를 소정 조건에 따라 선택할 수 있는 방법 및 장치를 제공한다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로서 순서도를 기초로 설명되고 있으나, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당해 기술 분야에서 통상의 지식을 가진 자라면 순서도에 나타난 단계들이 배타적이지 않고, 다른 단계가 포함되거나, 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (6)

  1. 간섭 랜덤화를 지원하기 위한 피드백 정보 전송 방법에 있어서,
    기지국으로부터 셀 간 간섭 측정 참조 신호를 포함하는 간섭 패턴에 대한 정보 및 상기 간섭 패턴 변경에 대한 트리거 조건을 수신하는 단계와;
    상기 셀 간 간섭 측정 참조 신호에 기초하여 간섭 랜덤화 게인을 측정하는 단계와;
    상기 간섭 랜덤화 게인에 기초하여 상기 간섭 패턴의 변경을 요청할지 여부를 판단하는 단계와;
    상기 간섭 패턴의 변경을 요청하는 것으로 판단되면, 상기 기지국으로 상기 간섭 패턴의 변경을 요청하는 단계와;
    상기 기지국으로부터 변경된 간섭 패턴 및 변경된 트리거 조건을 수신하는 단계를 포함하는 방법.
  2. 제1항에 있어서,
    상기 간섭 패턴에 대한 정보는 상기 간섭 패턴에 할당된 심볼에 상기 셀 간 간섭 측정 참조 신호가 매핑시킨 비트맵인 것을 특징으로 하는 방법.
  3. 제1항에 있어서,
    상기 간섭 패턴의 변경을 요청하는 단계는,
    상기 간섭 랜덤화 게인이 소정의 임계값보다 작으면 상기 간섭 패턴의 길이를 증가시킬 것을 요청하는 것을 특징으로 하는 방법.
  4. 제3항에 있어서,
    상기 임계값은 트리거 조건에 포함되어 전송되는 것을 특징으로 하는 방법.
  5. 제1항에 있어서,
    상기 간섭 패턴의 변경을 요청하는 단계는,
    주파수 선택성에 비하여 상기 간섭 패턴이 크면 상기 간섭 패턴의 길이를 감소키킬 것을 요청하는 것을 특징으로 하는 방법.
  6. 간섭 랜덤화를 지원하기 위한 피드백 정보를 전송하는 단말에 있어서,
    신호 송수신부와;
    상기 신호 송수신부와 연결되어 있는 프로세서를 포함하고,
    상기 프로세서는 기지국으로부터 셀 간 간섭 측정 참조 신호를 포함하는 간섭 패턴에 대한 정보 및 상기 간섭 패턴 변경에 대한 트리거 조건을 수신하고, 상기 셀 간 간섭 측정 참조 신호에 기초하여 간섭 랜덤화 게인을 측정하고, 상기 간섭 랜덤화 게인에 기초하여 상기 간섭 패턴의 변경을 요청할지 여부를 판단하고, 상기 간섭 패턴의 변경을 요청하는 것으로 판단되면, 상기 기지국으로 상기 간섭 패턴의 변경을 요청하고, 상기 기지국으로부터 변경된 간섭 패턴 및 변경된 트리거 조건을 수신하는 것을 특징으로 하는 단말.
PCT/KR2014/011012 2014-11-17 2014-11-17 간섭 랜덤화를 지원하기 위한 피드백 방법 및 이를 위한 장치 WO2016080560A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/526,050 US20170317800A1 (en) 2014-11-17 2014-11-17 Feedback method for supporting interference randomization and apparatus therefor
PCT/KR2014/011012 WO2016080560A1 (ko) 2014-11-17 2014-11-17 간섭 랜덤화를 지원하기 위한 피드백 방법 및 이를 위한 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/011012 WO2016080560A1 (ko) 2014-11-17 2014-11-17 간섭 랜덤화를 지원하기 위한 피드백 방법 및 이를 위한 장치

Publications (1)

Publication Number Publication Date
WO2016080560A1 true WO2016080560A1 (ko) 2016-05-26

Family

ID=56014087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011012 WO2016080560A1 (ko) 2014-11-17 2014-11-17 간섭 랜덤화를 지원하기 위한 피드백 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US20170317800A1 (ko)
WO (1) WO2016080560A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10375701B2 (en) * 2016-02-29 2019-08-06 British Telecommunications Public Limited Company Controlling adaptive reference signal patterns
US10382179B2 (en) * 2016-02-29 2019-08-13 British Telecommunications Public Limited Company Adapting reference signal density
US10491350B2 (en) 2016-02-29 2019-11-26 British Telecommunications Public Limited Company Adaptive reference signal patterns

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11963213B2 (en) * 2020-09-07 2024-04-16 Qualcomm Incorporated Interference variation indication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080064756A (ko) * 2007-01-05 2008-07-09 삼성전자주식회사 이동통신 시스템에서 셀간 간섭을 랜덤화하기 위한제어정보 송수신 방법 및 장치
US20130315212A1 (en) * 2012-05-23 2013-11-28 Telefonaktiebolaget L M Ericsson (Publ) Methods, systems and devices for decoupled interference randomization for uplink reference signals
WO2013173961A1 (en) * 2012-05-21 2013-11-28 Nokia Siemens Networks Oy Interference randomization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080064756A (ko) * 2007-01-05 2008-07-09 삼성전자주식회사 이동통신 시스템에서 셀간 간섭을 랜덤화하기 위한제어정보 송수신 방법 및 장치
WO2013173961A1 (en) * 2012-05-21 2013-11-28 Nokia Siemens Networks Oy Interference randomization
US20130315212A1 (en) * 2012-05-23 2013-11-28 Telefonaktiebolaget L M Ericsson (Publ) Methods, systems and devices for decoupled interference randomization for uplink reference signals

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ITR I ET AL.: "Interference Randomization Method for PUCCH", R1-090839, 3GPP TSG RAN WG1 MEETING #56, 3 February 2009 (2009-02-03), Athens, Greece, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_56/Docs> *
R. BOSISIO ET AL.: "Interference Coordination vs. Interference Randomization in Multicell 3GPP LTE system", WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, 31 March 2008 (2008-03-31), Las Vegas, pages 824 - 829, XP031243736, Retrieved from the Internet <URL:http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=9925347> *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10375701B2 (en) * 2016-02-29 2019-08-06 British Telecommunications Public Limited Company Controlling adaptive reference signal patterns
US10382179B2 (en) * 2016-02-29 2019-08-13 British Telecommunications Public Limited Company Adapting reference signal density
US10491350B2 (en) 2016-02-29 2019-11-26 British Telecommunications Public Limited Company Adaptive reference signal patterns

Also Published As

Publication number Publication date
US20170317800A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
WO2018084616A1 (en) Apparatus and method for beam management in wireless communication system
WO2019240530A1 (en) Method and apparatus for performing communication in heterogeneous network
WO2015142103A1 (en) Method and apparatus for transmitting interference information for network assisted interference cancellation and suppression in wireless communication system
WO2014084605A1 (en) Mimo transmission method and apparatus for use in wireless communication system
WO2015065087A1 (en) Apparatus and method for cancelling inter-cell interference in communication system
WO2014069956A1 (en) Method and apparatus for performing interference measurement in wireless communication system
WO2016043523A1 (ko) 반송파 집성 기법을 지원하는 무선 통신 시스템에서 단말이 기지국과 신호를 송수신하는 방법 및 장치
WO2011014014A2 (en) Apparatus and method of multi cell cooperation in wireless communication system
WO2018084660A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2016171513A1 (ko) 비인가 대역을 지원하는 무선 통신 시스템에서 데이터 송수신 방법 및 장치
WO2018030678A1 (ko) 가변 구조 참조신호
WO2016186378A1 (ko) 다중 안테나 무선 통신 시스템에서의 참조신호 정보 피드백 방법 및 이를 위한 장치
WO2010018909A1 (en) Method of transmitting data in multi-cell cooperative wireless communication system
WO2016043352A1 (ko) 셀 간 간섭을 완화하는 방법 및 장치
WO2014123388A1 (ko) 간섭 제거를 위해 네트워크 지원 정보를 전송하는 방법 및 서빙셀 기지국
WO2014123389A1 (ko) 간섭 제거를 위해 네트워크 지원 정보를 전송하는 방법 및 서빙셀 기지국
WO2016204365A1 (ko) 차량 간 통신 시스템에서 계층 구조 프리코더 설계 방법 및 그 장치
WO2015147558A1 (en) Method and apparatus for receiving downlink data in wireless communication system
WO2021246834A1 (ko) 무선 통신 시스템에서 복수의 업링크 밴드들에 대한 srs를 전송하는 방법 및 이를 위한 장치
WO2018208053A1 (ko) 무선 통신 시스템에서 단말의 d2d 동작 방법 및 상기 방법을 이용하는 단말
WO2018212505A1 (ko) 무선 통신 시스템에서 자원 블록에 ptrs를 할당하는 방법 및 그 장치
WO2014112825A1 (ko) 간섭 제거를 지원하기 위한 자원 할당 방법 및 서빙셀 기지국
WO2020226437A1 (en) Apparatus and method for managing interference in wireless communication system
WO2018062833A1 (ko) 무선 통신 시스템에서 간섭 측정을 위한 방법 및 이를 위한 장치
WO2016080560A1 (ko) 간섭 랜덤화를 지원하기 위한 피드백 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906396

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15526050

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14906396

Country of ref document: EP

Kind code of ref document: A1