WO2016080529A1 - Thermostatic bath type crystal oscillator frequency correction method and thermostatic bath type crystal oscillator - Google Patents

Thermostatic bath type crystal oscillator frequency correction method and thermostatic bath type crystal oscillator Download PDF

Info

Publication number
WO2016080529A1
WO2016080529A1 PCT/JP2015/082727 JP2015082727W WO2016080529A1 WO 2016080529 A1 WO2016080529 A1 WO 2016080529A1 JP 2015082727 W JP2015082727 W JP 2015082727W WO 2016080529 A1 WO2016080529 A1 WO 2016080529A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal oscillator
thermostat
leakage heat
heat amount
frequency correction
Prior art date
Application number
PCT/JP2015/082727
Other languages
French (fr)
Japanese (ja)
Inventor
昌明 神谷
竜司 有吉
Original Assignee
インターチップ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インターチップ株式会社 filed Critical インターチップ株式会社
Publication of WO2016080529A1 publication Critical patent/WO2016080529A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator

Definitions

  • the present invention relates to a frequency correction method for a thermostat crystal oscillator and a thermostat crystal oscillator.
  • Quartz crystal oscillators applied to crystal oscillators have the property that the characteristics of the oscillation frequency with respect to temperature vary greatly, and various techniques for compensating for this have been proposed.
  • a constant temperature chamber type crystal oscillator for example, Patent Document 1 is known.
  • the thermostat crystal oscillator (OCXO) disclosed in Patent Document 1 is basically a so-called thermostat crystal oscillator (OCXO) that is controlled so as to maintain a predetermined temperature by appropriately supplying heat from a heat source such as a heater.
  • a heat source such as a heater.
  • it is devised so as to suppress fluctuations in the oscillation frequency generated for each individual including a module in which the crystal resonator and its driving means are integrated.
  • the module refers to, for example, an integrated circuit in which an oscillation circuit of a crystal resonator, a temperature sensor, a heater, and the like are integrated, that is, a circuit portion excluding the crystal resonator in the thermostat crystal oscillator.
  • the fluctuation of the oscillation frequency as described above in the thermostat crystal oscillator disclosed in Patent Document 1 is mainly due to the distance between the temperature sensor that detects the temperature in the module and the crystal unit being separated. That is, even if the temperature in the module is controlled to a set value by a heater or the like based on the temperature detected by the temperature sensor, a divergence occurs between this temperature and the temperature of the crystal resonator that defines the oscillation frequency. . This is because the temperature of the crystal resonator depends on various factors such as heat leakage from a package which is a casing constituting the thermostatic layer. Therefore, the amount of heat leaked from the package with respect to the ambient temperature differs for each individual thermostatic crystal oscillator.
  • a temperature signal output from a temperature sensor that detects the temperature in the module is taken into the arithmetic processing unit in order to control the amount of heat generated by the heater. Then, a predetermined calculation is performed based on the internal temperature signal in the arithmetic processing unit using a correction function for each constant temperature chamber type crystal oscillator obtained in advance, and a correction signal representing a correction amount of the oscillation frequency is obtained. . Based on this correction signal, for example, the control voltage of the voltage controlled crystal oscillator (VCXO) is controlled to correct the oscillation frequency.
  • VCXO voltage controlled crystal oscillator
  • the oven controlled crystal oscillator (OCXO) disclosed in Patent Document 1 adopts OCXO as a basic structure and is stable in a wide temperature range even if the ambient temperature changes by applying the concept of temperature compensation (TC). It can be said that the device is devised so as to obtain a highly accurate oscillation frequency.
  • the present invention provides a frequency correction method for a thermostat crystal oscillator and a thermostat crystal oscillator that can easily and accurately correct the oscillation frequency caused by the amount of heat leaked from the thermostat etc.
  • the purpose is to provide.
  • the first aspect of the present invention for achieving the above object is as follows: A method of correcting a frequency of the crystal oscillator in a thermostatic crystal oscillator (OCXO) configured by storing a crystal oscillator (XO) in a thermostatic bath, A frequency correction method for a thermostat crystal oscillator, wherein the oscillation frequency of the crystal oscillator is corrected based on the amount of heat leaked from the thermostat to the outside.
  • OCXO thermostatic crystal oscillator
  • XO crystal oscillator
  • the second aspect of the present invention is: In the frequency correction method for the thermostat crystal oscillator described in the first aspect,
  • the crystal oscillator is a voltage controlled crystal oscillator (VCXO), and the oscillation frequency is corrected by controlling the control voltage of the voltage controlled crystal oscillator. .
  • VXO voltage controlled crystal oscillator
  • the third aspect of the present invention is: In the frequency correction method for the thermostat crystal oscillator described in the first or second aspect, The leaking heat amount is detected based on a power consumption amount consumed by a heater for maintaining the temperature of the thermostatic chamber at a predetermined temperature, in the frequency correction method of the thermostatic crystal oscillator.
  • the fourth aspect of the present invention is: A thermostat crystal oscillator (OCXO) configured by housing a crystal oscillator (XO) in a thermostat, Leakage heat amount detection means for detecting the amount of heat leaking from the thermostat to the outside,
  • An oven controlled crystal oscillator comprising: an oscillation frequency correcting unit that corrects an oscillation frequency of the crystal oscillator based on a leakage heat amount detected by the leakage heat amount detecting unit.
  • the crystal oscillator is a voltage controlled crystal oscillator (VCXO), and the oscillation frequency correction means is performed by controlling a control voltage of the voltage controlled crystal oscillator.
  • VXO voltage controlled crystal oscillator
  • the sixth aspect of the present invention is:
  • the leakage heat amount detection means includes a power monitoring means for generating a leakage heat amount signal representing the leakage heat amount based on power consumption consumed by a heater for maintaining the temperature of the thermostatic chamber at a predetermined temperature.
  • the constant-temperature bath crystal oscillator characterized in that the frequency correction means includes a calculation processing unit that performs a predetermined calculation based on the leakage heat amount signal and generates a frequency correction signal representing an oscillation frequency correction amount of the crystal oscillator. is there.
  • the seventh aspect of the present invention is in the thermostatic chamber type crystal oscillator described in the fifth aspect,
  • the leakage heat amount detection means includes a power monitoring means for generating a leakage heat amount signal representing the leakage heat amount based on power consumption consumed by a heater for maintaining the temperature of the thermostatic chamber at a predetermined temperature.
  • the oscillation frequency correction means includes a calculation processing unit that performs a predetermined calculation based on the leakage heat amount signal and generates a control voltage that represents a frequency correction amount of the voltage controlled crystal oscillator. It is in.
  • the amount of heat leaked to the outside from the thermostat is equal to the amount of heat supplied from the heat source in order to maintain the inside of the thermostat constant, and the oscillation frequency of the crystal oscillator is corrected with the energy consumed by the heat source.
  • the oscillation frequency of the crystal oscillator is corrected with the energy consumed by the heat source.
  • thermostat type crystal oscillator which concerns on embodiment of this invention. It is a block diagram which shows the thermostat type crystal oscillator which concerns on embodiment of this invention. It is a block diagram which shows an example of the specific structure of the electric power monitor in the said embodiment.
  • FIG. 1 is a schematic diagram showing an outline of a thermostatic chamber type crystal oscillator according to an embodiment of the present invention.
  • the thermostatic chamber type crystal oscillator I according to the present embodiment is an integrated crystal vibration mounted on an IC 1 and an IC 1 substrate 2 on which an oscillation circuit, a temperature sensor, a heater and the like are integrated.
  • the child 3 is housed in a package 4 which is a hermetically sealed casing, and is controlled so as to reach a predetermined temperature by a heater while measuring the temperature in the IC 1 with a temperature sensor.
  • the thermostat crystal oscillator according to the present embodiment includes a crystal resonator, an oscillation circuit, a temperature sensor, a heater, and the like as constituent components.
  • the integrated circuit 1 including the heater and the temperature sensor is controlled so as to have a certain constant temperature. Therefore, the crystal resonator is not always held at the constant temperature. Leakage heat of the ambient temperature T a is greater as lower than the set temperature of the heater. It also depends on the heat shielding characteristics of the package 4. That is, in general, it depends on what kind of package 4 is used and how the parts are arranged in the package 4, and once it is decided and manufacturing is started, It will change.
  • FIG. A constant-temperature bath type crystal oscillator configured as shown in FIG.
  • FIG. 2 is a block diagram showing a thermostatic crystal oscillator according to an embodiment of the present invention.
  • the thermostat crystal oscillator according to the present embodiment is configured by housing a voltage controlled crystal oscillator (VCXO) in a package 4 which is a casing constituting the thermostat.
  • VCXO voltage controlled crystal oscillator
  • the leakage heat quantity detection means A and the oscillation frequency correction means B are integrated as an integrated circuit (IC) 1.
  • the leakage heat amount detection means A in this embodiment includes a temperature sensor 11, a set temperature 12, a comparator 13, a heater 14, a MOS transistor 15, and a power monitor 16.
  • the current of the heater 14 is controlled in accordance with the deviation signal S 1 representing the deviation applied to the gate of the MOS transistor 15 based on the deviation between the temperature sensor 11 detected by the comparator 13 and the set temperature 12.
  • the heater 14 is supplied with a current corresponding to the deviation signal S1. Therefore, the power consumed by the heater 14 can be detected by the product of the current I and the power supply voltage Vcc .
  • the power monitor 16 monitors the power consumption W consumed by the heater 14.
  • the power consumption W monitored by the power monitor 16 is substantially equal to the leakage heat leaking from the package 4 to the surroundings.
  • the reason why the temperature in the IC 1 controlled to the set temperature 12 changes due to the deviation between the temperature sensor 11 and the set temperature 12 is mainly because heat leaks from the package 4 to the surrounding environment. This is because the power consumption W is considered to increase. That is, in this embodiment, the power signal representing the power consumed by the heater 14 is the leakage heat amount signal S2 representing the amount of leakage heat leaking from the package 4 to the surroundings.
  • the oscillation frequency correcting means B is composed of an arithmetic processing unit 17 and a ROM 18.
  • the arithmetic processing unit 17 generates a frequency correction signal S3 representing the frequency correction amount of the oscillation frequency with respect to the leakage heat amount from the package 4 based on a predetermined function with reference to the leakage heat amount signal S2.
  • the function in the arithmetic processing unit 17 is created by parameters given from the ROM 18. The parameters depend on the type of the crystal unit 3 to be used, the type of the package 4, the arrangement of each part in the package 4, and the like, that is, the overall design of the OCXO module. Once a certain overall design is determined, the relationship between the amount of leakage heat and the oscillation frequency correction amount inherent to the overall design can be obtained experimentally or by simulation, and appropriate parameters can be preset in the ROM 18. .
  • the crystal oscillator in this embodiment includes the crystal resonator 3 and the oscillation circuit 19.
  • the oscillation circuit 19 includes a variable capacitance diode (varicap) 19A, and a voltage controlled crystal oscillator (VCXO) that variably controls the oscillation frequency by changing the capacitance of the variable capacitance diode 19A by a control voltage applied from the outside. ).
  • the amount of heat leaked from the package 4 to the outside is the power consumption consumed by the heater 14, and the consumption given in advance by monitoring this power consumption.
  • the correction amount of the oscillation frequency can be determined based on the relationship between the power and the frequency correction amount. Therefore, a desired correction amount can be obtained simply and easily.
  • FIG. 3 is a block diagram showing an example of a specific configuration of the power monitor 6 in the above embodiment.
  • the power monitor 16 of this example includes a power supply voltage detection circuit 16A, a consumption current detection circuit 16B, a multiplication circuit 16C, and a leakage heat amount signal generation unit 16D.
  • the power supply voltage detection circuit 16A detects the power supply voltage Vcc.
  • the consumption current detection circuit 16B detects the current I flowing through the heater 14 portion.
  • the multiplication circuit 16C calculates the power consumption W by multiplying the power supply voltage Vcc detected by the power supply voltage detection circuit 16A and the current I detected by the current consumption detection circuit 16B.
  • the leakage heat amount signal generation unit 16D generates a leakage heat amount signal S2 that is a current or voltage output proportional to the power consumption W based on the multiplication circuit 16C and the multiplication result of the multiplication circuit 16C. As a result, the leakage heat amount signal S2 is sent as an output signal of the leakage heat amount signal generation unit 16D.
  • the power supply voltage Vcc is detected by the power supply voltage detection circuit 16A.
  • the leakage heat quantity signal S2 can be generated simply by detecting only the current I without using the multiplication circuit 16C, and can function as the power monitor 16.
  • the leakage heat amount is regarded as the power consumption of the heater and a predetermined process is performed.
  • the detection of the leakage heat amount is not limited to this.
  • a plurality of temperature sensors may be provided in the entire module. The amount of heat leaked can also be calculated from the distance between the temperature sensors and the difference between the measured values, the thermal conductivity between them, and the like.
  • the crystal oscillator it is not necessary to limit the crystal oscillator to a voltage controlled crystal oscillator. In the case of a normal crystal oscillator, for example, it is conceivable to correct the output frequency of the crystal oscillator with a digital amount based on the correction amount.
  • the present invention can be effectively used in an industrial field in which an electronic device incorporating a crystal oscillator is manufactured and sold.
  • Constant temperature chamber crystal oscillator A Leakage heat detection means B Oscillation frequency correction means C Crystal oscillator H Leakage heat 1 IC 2 Substrate 3 Crystal resonator 4 Package

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

A thermostatic bath type crystal oscillator (OCXO), which is configured by accommodating a crystal oscillator C into a thermostatic bath and which corrects the oscillation frequency of the crystal oscillator C in the thermostatic bath type crystal oscillator, comprises: a leakage heat amount detection means A that detects the amount of heat leaking outwardly from a package 4 that is a housing constituting the thermostatic bath; and an oscillation frequency correction means B that corrects the oscillation frequency of the crystal oscillator C on the basis of the leakage heat amount detected by the leakage heat amount detection means A.

Description

恒温槽型水晶発振器の周波数補正方法および恒温槽型水晶発振器Frequency correction method for temperature chamber crystal oscillator and temperature chamber crystal oscillator
  本発明は恒温槽型水晶発振器の周波数補正方法および恒温槽型水晶発振器に関する。 The present invention relates to a frequency correction method for a thermostat crystal oscillator and a thermostat crystal oscillator.
 水晶発振器に適用される水晶振動子は温度に対する発振周波数の特性が大きく変動するという性質を有しており、これを補償する技術が種々提案されている。従来より知られている恒温槽型水晶発振器(OCXO)もその一種で、例えば特許文献1が公知である。特許文献1に開示する恒温槽型水晶発振器(OCXO)は、基本的には、ヒーター等の熱源により適宜熱を供給して所定温度を維持するように制御する、いわゆる恒温槽型水晶発振器(OCXO)として構成し、それでも水晶振動子およびその駆動手段等を集積したモジュールを含む個体毎に生起される発振周波数の変動を抑制するように工夫したものである。ここで、モジュールとは、例えば水晶振動子の発振回路、温度センサー、ヒーター等が集積された集積回路、すなわち当該恒温槽型水晶発振器における水晶振動子を除く回路部分をいう。 Quartz crystal oscillators applied to crystal oscillators have the property that the characteristics of the oscillation frequency with respect to temperature vary greatly, and various techniques for compensating for this have been proposed. Conventionally known is a constant temperature chamber type crystal oscillator (OCXO), for example, Patent Document 1 is known. The thermostat crystal oscillator (OCXO) disclosed in Patent Document 1 is basically a so-called thermostat crystal oscillator (OCXO) that is controlled so as to maintain a predetermined temperature by appropriately supplying heat from a heat source such as a heater. However, it is devised so as to suppress fluctuations in the oscillation frequency generated for each individual including a module in which the crystal resonator and its driving means are integrated. Here, the module refers to, for example, an integrated circuit in which an oscillation circuit of a crystal resonator, a temperature sensor, a heater, and the like are integrated, that is, a circuit portion excluding the crystal resonator in the thermostat crystal oscillator.
 特許文献1に開示する恒温槽型水晶発振器における上述の如き発振周波数の変動は、主にモジュール内の温度を検出する温度センサーと水晶振動子の距離が離間していることに起因する。すなわち、温度センサーで検出した温度に基づきモジュール内の温度をヒーター等により設定値に制御しても、この温度と、発振周波数を規定する水晶振動子の温度との間には乖離が生起される。水晶振動子の温度は、恒温層を構成する筐体であるパッケージからの熱の漏洩等、種々の要因に左右されるからである。したがって、周囲温度に対するパッケージからの漏洩熱量は恒温槽型水晶発振器の個体毎に異なる。そこで、特許文献1に係る恒温槽型水晶発振器(OCXO)では、ヒーターの発熱量を制御すべくモジュール内の温度を検出する温度センサーが出力する温度信号を演算処理部にも取り込んでいる。そして、予め求めておいた各恒温槽型水晶発振器毎の補正関数を利用して前記演算処理部で前記内部温度信号に基づき所定の演算を行って、発振周波数の補正量を表す補正信号を得る。この補正信号に基づき、例えば電圧制御型水晶発振器(VCXO)の制御電圧を制御して発振周波数の補正を行っている。すなわち、特許文献1に開示する恒温槽型水晶発振器(OCXO)は、OCXOを基本構造として採用するとともに温度補償(TC)の考え方を適用して周囲温度が変化しても広い温度範囲で安定した高精度の発振周波数を得ることができるように工夫したものであるといい得る。 The fluctuation of the oscillation frequency as described above in the thermostat crystal oscillator disclosed in Patent Document 1 is mainly due to the distance between the temperature sensor that detects the temperature in the module and the crystal unit being separated. That is, even if the temperature in the module is controlled to a set value by a heater or the like based on the temperature detected by the temperature sensor, a divergence occurs between this temperature and the temperature of the crystal resonator that defines the oscillation frequency. . This is because the temperature of the crystal resonator depends on various factors such as heat leakage from a package which is a casing constituting the thermostatic layer. Therefore, the amount of heat leaked from the package with respect to the ambient temperature differs for each individual thermostatic crystal oscillator. Therefore, in the thermostatic chamber crystal oscillator (OCXO) according to Patent Document 1, a temperature signal output from a temperature sensor that detects the temperature in the module is taken into the arithmetic processing unit in order to control the amount of heat generated by the heater. Then, a predetermined calculation is performed based on the internal temperature signal in the arithmetic processing unit using a correction function for each constant temperature chamber type crystal oscillator obtained in advance, and a correction signal representing a correction amount of the oscillation frequency is obtained. . Based on this correction signal, for example, the control voltage of the voltage controlled crystal oscillator (VCXO) is controlled to correct the oscillation frequency. That is, the oven controlled crystal oscillator (OCXO) disclosed in Patent Document 1 adopts OCXO as a basic structure and is stable in a wide temperature range even if the ambient temperature changes by applying the concept of temperature compensation (TC). It can be said that the device is devised so as to obtain a highly accurate oscillation frequency.
US 7,573,345米国特許US 7,573,345 US patent
 しかしながら、特許文献1に開示された恒温槽型水晶発振器(OCXO)では、前記補正関数を作成するのに周囲温度の複数の計測点における各恒温槽型水晶発振器毎の発振周波数をそれぞれ検出する必要がある。したがって、この補正関数の作成が面倒であるという問題を有している。 However, in the thermostat crystal oscillator (OCXO) disclosed in Patent Document 1, it is necessary to detect the oscillation frequency for each thermostat crystal oscillator at a plurality of measurement points of the ambient temperature in order to create the correction function. There is. Therefore, there is a problem that the creation of this correction function is troublesome.
 本発明は、上記従来技術に鑑み、恒温槽からの漏洩熱量等に起因する発振周波数の補正を容易かつ高精度に行うことができる恒温槽型水晶発振器の周波数補正方法および恒温槽型水晶発振器を提供することを目的とする。 In view of the above prior art, the present invention provides a frequency correction method for a thermostat crystal oscillator and a thermostat crystal oscillator that can easily and accurately correct the oscillation frequency caused by the amount of heat leaked from the thermostat etc. The purpose is to provide.
 上記目的を達成する本発明の第1の態様は、
水晶発振器(XO)を恒温槽に収納して構成した恒温槽型水晶発振器(OCXO)における前記水晶発振器の周波数補正方法であって、
 前記恒温槽から外部に漏洩する熱量に基づき前記水晶発振器の発振周波数を補正することを特徴とする恒温槽型水晶発振器の周波数補正方法にある。
The first aspect of the present invention for achieving the above object is as follows:
A method of correcting a frequency of the crystal oscillator in a thermostatic crystal oscillator (OCXO) configured by storing a crystal oscillator (XO) in a thermostatic bath,
A frequency correction method for a thermostat crystal oscillator, wherein the oscillation frequency of the crystal oscillator is corrected based on the amount of heat leaked from the thermostat to the outside.
 本発明の第2の態様は、
 第1の態様に記載する恒温槽型水晶発振器の周波数補正方法において、
 前記水晶発振器は電圧制御水晶発振器(VCXO)であり、前記発振周波数の補正は前記電圧制御水晶発振器の制御電圧を制御することにより行うことを特徴とする恒温槽型水晶発振器の周波数補正方法にある。
The second aspect of the present invention is:
In the frequency correction method for the thermostat crystal oscillator described in the first aspect,
The crystal oscillator is a voltage controlled crystal oscillator (VCXO), and the oscillation frequency is corrected by controlling the control voltage of the voltage controlled crystal oscillator. .
 本発明の第3の態様は、
 第1または第2の態様に記載する恒温槽型水晶発振器の周波数補正方法において、
 前記漏洩する熱量は、前記恒温槽の温度を所定温度に維持するためのヒーターが消費する消費電力量に基づき検出することを特徴とする恒温槽型水晶発振器の周波数補正方法にある。
The third aspect of the present invention is:
In the frequency correction method for the thermostat crystal oscillator described in the first or second aspect,
The leaking heat amount is detected based on a power consumption amount consumed by a heater for maintaining the temperature of the thermostatic chamber at a predetermined temperature, in the frequency correction method of the thermostatic crystal oscillator.
 本発明の第4の態様は、
 水晶発振器(XO)を恒温槽に収納して構成した恒温槽型水晶発振器(OCXO)であって、
 前記恒温槽から外部に漏洩する熱量を検出する漏洩熱量検出手段と、
 前記漏洩熱量検出手段で検出した漏洩熱量に基づき前記水晶発振器の発振周波数を補正する発振周波数補正手段とを有することを特徴とする恒温槽型水晶発振器にある。
The fourth aspect of the present invention is:
A thermostat crystal oscillator (OCXO) configured by housing a crystal oscillator (XO) in a thermostat,
Leakage heat amount detection means for detecting the amount of heat leaking from the thermostat to the outside,
An oven controlled crystal oscillator comprising: an oscillation frequency correcting unit that corrects an oscillation frequency of the crystal oscillator based on a leakage heat amount detected by the leakage heat amount detecting unit.
 本発明の第5の態様は、
 第4の態様に記載する恒温槽型水晶発振器において、
 前記水晶発振器は電圧制御水晶発振器(VCXO)であり、前記発振周波数補正手段は前記電圧制御水晶発振器の制御電圧を制御することにより行うものであることを特徴とする恒温槽型水晶発振器にある。
According to a fifth aspect of the present invention,
In the thermostat crystal oscillator described in the fourth aspect,
The crystal oscillator is a voltage controlled crystal oscillator (VCXO), and the oscillation frequency correction means is performed by controlling a control voltage of the voltage controlled crystal oscillator.
 本発明の第6の態様は、
 第4の態様に記載する恒温槽型水晶発振器において、
 前記漏洩熱量検出手段は、前記恒温槽の温度を所定温度に維持するためのヒーターで消費される消費電力に基づき前記漏洩熱量を表す漏洩熱量信号を生成する電力モニター手段を有するとともに、
 前記周波数補正手段は、前記漏洩熱量信号に基づき所定の演算を行い、前記水晶発振器の発振周波数補正量を表す周波数補正信号を生成する演算処理部を有することを特徴とする恒温槽型水晶発振器にある。
The sixth aspect of the present invention is:
In the thermostat crystal oscillator described in the fourth aspect,
The leakage heat amount detection means includes a power monitoring means for generating a leakage heat amount signal representing the leakage heat amount based on power consumption consumed by a heater for maintaining the temperature of the thermostatic chamber at a predetermined temperature.
The constant-temperature bath crystal oscillator characterized in that the frequency correction means includes a calculation processing unit that performs a predetermined calculation based on the leakage heat amount signal and generates a frequency correction signal representing an oscillation frequency correction amount of the crystal oscillator. is there.
 本発明の第7の態様は、
 第5の態様に記載する恒温槽型水晶発振器において、
 前記漏洩熱量検出手段は、前記恒温槽の温度を所定温度に維持するためのヒーターで消費される消費電力に基づき前記漏洩熱量を表す漏洩熱量信号を生成する電力モニター手段を有するとともに、
 前記発振周波数補正手段は、前記漏洩熱量信号に基づき所定の演算を行い、前記電圧制御水晶発振器の周波数補正量を表す制御電圧を生成する演算処理部を有することを特徴とする恒温槽型水晶発振器にある。
The seventh aspect of the present invention is
In the thermostatic chamber type crystal oscillator described in the fifth aspect,
The leakage heat amount detection means includes a power monitoring means for generating a leakage heat amount signal representing the leakage heat amount based on power consumption consumed by a heater for maintaining the temperature of the thermostatic chamber at a predetermined temperature.
The oscillation frequency correction means includes a calculation processing unit that performs a predetermined calculation based on the leakage heat amount signal and generates a control voltage that represents a frequency correction amount of the voltage controlled crystal oscillator. It is in.
 本発明によれば、恒温槽から外部に漏洩する熱量は恒温槽内を一定に維持するために熱源から供給する熱量に等しい点に着目して熱源で消費するエネルギーで水晶発振器の発振周波数を補正しているので、喪失した熱を補充しつつ発振周波数の適格な補正を容易に行うことができる。 According to the present invention, the amount of heat leaked to the outside from the thermostat is equal to the amount of heat supplied from the heat source in order to maintain the inside of the thermostat constant, and the oscillation frequency of the crystal oscillator is corrected with the energy consumed by the heat source. As a result, it is possible to easily perform an appropriate correction of the oscillation frequency while supplementing the lost heat.
本発明の実施の形態に係る恒温槽型水晶発振器の概略を示す模式図である。It is a schematic diagram which shows the outline of the thermostat type crystal oscillator which concerns on embodiment of this invention. 本発明の実施の形態に係る恒温槽型水晶発振器を示すブロック図である。It is a block diagram which shows the thermostat type crystal oscillator which concerns on embodiment of this invention. 上記実施の形態における電力モニターの具体的な構成の一例を示すブロック図である。It is a block diagram which shows an example of the specific structure of the electric power monitor in the said embodiment.
 以下、本発明の実施の形態を図面に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は本発明の実施の形態に係る恒温槽型水晶発振器の概略を示す模式図である。同図に示すように、本形態に係る恒温槽型水晶発振器Iは、発振回路、温度センサー、ヒーター等が集積されたIC1およびIC1の基板2上に載置されて一体となっている水晶振動子3を、密閉された筐体であるパッケージ4内に収納してなり、温度センサーでIC1内の温度を計測しつつヒーターにより所定の温度になるように制御している。このように、本形態に係る恒温槽型水晶発振器は、水晶振動子、発振回路、温度センサー、ヒーター等を構成部品としているが、水晶振動子以外の構成部品は、通常、一つ、あるいは複数個のICに集積される。上述の如く、図1に示す恒温槽型水晶発振器では、ヒーター、温度センサーを含む集積回路1は或る一定温度になるように制御されているが、パッケージ4(全体系)には必ず漏洩熱が発生するので、水晶振動子がその一定温度に保持されるとは限らない。漏洩熱は、周囲温度Tが、ヒーターの設定温度より低いほど大きい。また、パッケージ4の遮熱特性にも依存する。すなわち、一般的には、どういうパッケージ4を使用するか、パッケージ4の中に部品をどう配置するか、に依存するし、また一旦それを決めて製造を開始しても、個体ごとのバラつきによって変わってしまう。 FIG. 1 is a schematic diagram showing an outline of a thermostatic chamber type crystal oscillator according to an embodiment of the present invention. As shown in the figure, the thermostatic chamber type crystal oscillator I according to the present embodiment is an integrated crystal vibration mounted on an IC 1 and an IC 1 substrate 2 on which an oscillation circuit, a temperature sensor, a heater and the like are integrated. The child 3 is housed in a package 4 which is a hermetically sealed casing, and is controlled so as to reach a predetermined temperature by a heater while measuring the temperature in the IC 1 with a temperature sensor. As described above, the thermostat crystal oscillator according to the present embodiment includes a crystal resonator, an oscillation circuit, a temperature sensor, a heater, and the like as constituent components. However, there are usually one or more component components other than the crystal resonator. Integrated into individual ICs. As described above, in the thermostatic chamber type crystal oscillator shown in FIG. 1, the integrated circuit 1 including the heater and the temperature sensor is controlled so as to have a certain constant temperature. Therefore, the crystal resonator is not always held at the constant temperature. Leakage heat of the ambient temperature T a is greater as lower than the set temperature of the heater. It also depends on the heat shielding characteristics of the package 4. That is, in general, it depends on what kind of package 4 is used and how the parts are arranged in the package 4, and once it is decided and manufacturing is started, It will change.
 本形態は、かかる個体毎の熱の漏洩特性の違いを容易かつ適確に補正して広い温度範囲で安定した高精度の発振周波数を得られるように工夫したもので、具体的には図2に示すような構成の恒温槽型水晶発振器である。 This embodiment is devised so that a difference in heat leakage characteristics between individuals can be easily and accurately corrected to obtain a stable and highly accurate oscillation frequency in a wide temperature range. Specifically, FIG. A constant-temperature bath type crystal oscillator configured as shown in FIG.
 図2は本発明の実施の形態に係る恒温槽型水晶発振器を示すブロック図である。同図に示すように、本形態に係る恒温槽型水晶発振器は、電圧制御水晶発振器(VCXO)を恒温槽を構成する筐体であるパッケージ4に収納して構成したものであり、パッケージ4から外部に漏洩する漏洩熱Hの熱量を検出する漏洩熱量検出手段Aと、漏洩熱量検出手段Aで検出した漏洩熱量に基づき水晶発振器Cの発振周波数を補正する発振周波数補正手段Bとを有する。ここで、漏洩熱量検出手段Aおよび発振周波数補正手段Bは、IC(集積回路)1として一体的に集積してある。 FIG. 2 is a block diagram showing a thermostatic crystal oscillator according to an embodiment of the present invention. As shown in the figure, the thermostat crystal oscillator according to the present embodiment is configured by housing a voltage controlled crystal oscillator (VCXO) in a package 4 which is a casing constituting the thermostat. There is a leakage heat amount detection means A for detecting the amount of leakage heat H leaked to the outside, and an oscillation frequency correction means B for correcting the oscillation frequency of the crystal oscillator C based on the leakage heat amount detected by the leakage heat amount detection means A. Here, the leakage heat quantity detection means A and the oscillation frequency correction means B are integrated as an integrated circuit (IC) 1.
 本形態における漏洩熱量検出手段Aは、温度センサー11と,設定温度12、コンパレータ13、ヒーター14、MOSトランジスタ15および電力モニター16からなる。ここで、ヒーター14は、コンパレータ13で検出された温度センサー11と設定温度12との偏差に基づきMOSトランジスタ15のゲートに印加される前記偏差を表す偏差信号S1に応じて電流が制御される。この結果、ヒーター14には偏差信号S1に応じた電流が供給される。そこで、この電流Iと電源電圧Vccとの積でヒーター14で消費される電力を検出することができる。電力モニター16はヒーター14で消費される消費電力Wをモニターする。この電力モニター16でモニターされる消費電力Wは、パッケージ4から周囲に漏洩する漏洩熱にほぼ等しい。温度センサー11と設定温度12との偏差により設定温度12に制御されるIC1内の温度が変化するのは、主にパッケージ4から周囲環境に熱が漏出するためであり、かかる漏出熱量を補うべく消費電力Wが増加すると考えられるからである。すなわち、本形態において、ヒーター14で消費される電力を表す電力信号はパッケージ4から周囲に漏洩する漏洩熱量を表す漏洩熱量信号S2である。 The leakage heat amount detection means A in this embodiment includes a temperature sensor 11, a set temperature 12, a comparator 13, a heater 14, a MOS transistor 15, and a power monitor 16. Here, the current of the heater 14 is controlled in accordance with the deviation signal S 1 representing the deviation applied to the gate of the MOS transistor 15 based on the deviation between the temperature sensor 11 detected by the comparator 13 and the set temperature 12. As a result, the heater 14 is supplied with a current corresponding to the deviation signal S1. Therefore, the power consumed by the heater 14 can be detected by the product of the current I and the power supply voltage Vcc . The power monitor 16 monitors the power consumption W consumed by the heater 14. The power consumption W monitored by the power monitor 16 is substantially equal to the leakage heat leaking from the package 4 to the surroundings. The reason why the temperature in the IC 1 controlled to the set temperature 12 changes due to the deviation between the temperature sensor 11 and the set temperature 12 is mainly because heat leaks from the package 4 to the surrounding environment. This is because the power consumption W is considered to increase. That is, in this embodiment, the power signal representing the power consumed by the heater 14 is the leakage heat amount signal S2 representing the amount of leakage heat leaking from the package 4 to the surroundings.
 発振周波数補正手段Bは、演算処理部17およびROM18からなる。これらのうち、演算処理部17は、漏洩熱量信号S2を参照して所定の関数に基づきパッケージ4からの漏洩熱量に対する発振周波数の周波数補正量を表す周波数補正信号S3を生成する。ここで、演算処理部17における関数は、ROM18から与えるパラメータにより作成される。そのパラメータは、使用される水晶振動子3の種類や、パッケージ4の種類、パッケージ4の中での各部品の配置など、すなわちOCXOモジュールの全体設計に依存する。或る全体設計が一旦決定されれば、その全体設計に固有である漏洩熱量と発振周波数補正量との関係を、実験的、或いはシミュレーションにより求め、適切なパラメータをROM18にプリセットしておけばよい。 The oscillation frequency correcting means B is composed of an arithmetic processing unit 17 and a ROM 18. Among these, the arithmetic processing unit 17 generates a frequency correction signal S3 representing the frequency correction amount of the oscillation frequency with respect to the leakage heat amount from the package 4 based on a predetermined function with reference to the leakage heat amount signal S2. Here, the function in the arithmetic processing unit 17 is created by parameters given from the ROM 18. The parameters depend on the type of the crystal unit 3 to be used, the type of the package 4, the arrangement of each part in the package 4, and the like, that is, the overall design of the OCXO module. Once a certain overall design is determined, the relationship between the amount of leakage heat and the oscillation frequency correction amount inherent to the overall design can be obtained experimentally or by simulation, and appropriate parameters can be preset in the ROM 18. .
 本形態における水晶発振器は、水晶振動子3と発振回路19で構成される。発振回路19はその中に可変容量ダイオード(バリキャップ)19Aを含んでおり、外部から印加した制御電圧によって可変容量ダイオード19Aの容量を変化させて発振周波数を可変制御する電圧制御型水晶発振器(VCXO)を構成している。 The crystal oscillator in this embodiment includes the crystal resonator 3 and the oscillation circuit 19. The oscillation circuit 19 includes a variable capacitance diode (varicap) 19A, and a voltage controlled crystal oscillator (VCXO) that variably controls the oscillation frequency by changing the capacitance of the variable capacitance diode 19A by a control voltage applied from the outside. ).
 かかる本形態によれば、恒温槽型水晶発振器において、パッケージ4から外部に漏洩する漏洩熱量がヒーター14で消費される消費電力であるとして、この消費電力をモニターすることにより予め与えられている消費電力と周波数補正量との関係に基づいて発振周波数の補正量を決定することができる。したがって、簡単かつ容易に所望の補正量を求めることができる。 According to this embodiment, in the thermostat crystal oscillator, the amount of heat leaked from the package 4 to the outside is the power consumption consumed by the heater 14, and the consumption given in advance by monitoring this power consumption. The correction amount of the oscillation frequency can be determined based on the relationship between the power and the frequency correction amount. Therefore, a desired correction amount can be obtained simply and easily.
 図3は、上記実施の形態における電力モニター6の具体的な構成の一例を示すブロック図である。同図に示すように、本例の電力モニター16は、電源電圧検出回路16A、消費電流検出回路16B、乗算回路16Cおよび漏洩熱量信号生成部16Dを有している。ここで、電源電圧検出回路16Aは電源電圧Vccを検出する。消費電流検出回路16Bは、ヒーター14部分を流れる電流Iを検出する。乗算回路16Cは、電源電圧検出回路16Aが検出した電源電圧Vccと消費電流検出回路16Bが検出した電流Iとを乗算して消費電力Wを算出する。漏洩熱量信号生成部16Dは、乗算回路16Cおよび乗算回路16Cの乗算結果に基づき消費電力Wに比例する電流または電圧出力である漏洩熱量信号S2を生成する。この結果、漏洩熱量信号生成部16Dの出力信号として漏洩熱量信号S2が送出される。 FIG. 3 is a block diagram showing an example of a specific configuration of the power monitor 6 in the above embodiment. As shown in the figure, the power monitor 16 of this example includes a power supply voltage detection circuit 16A, a consumption current detection circuit 16B, a multiplication circuit 16C, and a leakage heat amount signal generation unit 16D. Here, the power supply voltage detection circuit 16A detects the power supply voltage Vcc. The consumption current detection circuit 16B detects the current I flowing through the heater 14 portion. The multiplication circuit 16C calculates the power consumption W by multiplying the power supply voltage Vcc detected by the power supply voltage detection circuit 16A and the current I detected by the current consumption detection circuit 16B. The leakage heat amount signal generation unit 16D generates a leakage heat amount signal S2 that is a current or voltage output proportional to the power consumption W based on the multiplication circuit 16C and the multiplication result of the multiplication circuit 16C. As a result, the leakage heat amount signal S2 is sent as an output signal of the leakage heat amount signal generation unit 16D.
 なお、図3に示す例では電源電圧Vccを電源電圧検出回路16Aで検出するようにしたが、OCXO全体が、電圧レギュレータ等による一定電圧下で動作するような構成を採用する場合には、電源電圧Vccは一定値であるので、乗算回路16Cを用いることなく、単純に電流Iのみを検出するだけで、漏洩熱量信号S2を生成することはでき、電力モニター16として機能させることができる。 In the example shown in FIG. 3, the power supply voltage Vcc is detected by the power supply voltage detection circuit 16A. However, in the case of adopting a configuration in which the entire OCXO operates under a constant voltage by a voltage regulator or the like, Since the voltage Vcc is a constant value, the leakage heat quantity signal S2 can be generated simply by detecting only the current I without using the multiplication circuit 16C, and can function as the power monitor 16.
 さらに、上記実施の形態においては、漏洩熱量をヒーターの消費電力と見なして所定の処理を行うようにしたが、漏洩熱量の検出はこれに限定するものではない。例えば、全体のモジュールに複数個の温度センサーを設けるようにしてもよい。温度センサー間の距離とそれぞれの計測値の差、間の熱伝導率などから漏洩熱量を算出することもできる。 Furthermore, in the above embodiment, the leakage heat amount is regarded as the power consumption of the heater and a predetermined process is performed. However, the detection of the leakage heat amount is not limited to this. For example, a plurality of temperature sensors may be provided in the entire module. The amount of heat leaked can also be calculated from the distance between the temperature sensors and the difference between the measured values, the thermal conductivity between them, and the like.
 また、水晶発振器を電圧制御型水晶発振器に限定する必要もない。通常の水晶発振器の場合には、例えば水晶発振器の出力周波数を補正量に基づくデジタル量で補正することが考えられる。 Also, it is not necessary to limit the crystal oscillator to a voltage controlled crystal oscillator. In the case of a normal crystal oscillator, for example, it is conceivable to correct the output frequency of the crystal oscillator with a digital amount based on the correction amount.
 本発明は水晶発振器を内蔵する電子機器を製造・販売する産業分野において有効に利用することができる。 The present invention can be effectively used in an industrial field in which an electronic device incorporating a crystal oscillator is manufactured and sold.
 I        恒温槽水晶発振器
 A        漏洩熱量検出手段
 B        発振周波数補正手段
 C        水晶発振器
 H        漏洩熱
 1        IC
 2        基板
 3        水晶振動子
 4        パッケージ
I Constant temperature chamber crystal oscillator A Leakage heat detection means B Oscillation frequency correction means C Crystal oscillator H Leakage heat 1 IC
2 Substrate 3 Crystal resonator 4 Package

Claims (7)

  1. 水晶発振器(XO)を恒温槽に収納して構成した恒温槽型水晶発振器(OCXO)における前記水晶発振器の周波数補正方法であって、
    前記恒温槽から外部に漏洩する熱量に基づき前記水晶発振器の発振周波数を補正することを特徴とする恒温槽型水晶発振器の周波数補正方法。
    A method of correcting a frequency of the crystal oscillator in a thermostatic crystal oscillator (OCXO) configured by storing a crystal oscillator (XO) in a thermostatic bath,
    A frequency correction method for a thermostat crystal oscillator, wherein the oscillation frequency of the crystal oscillator is corrected based on an amount of heat leaking from the thermostat to the outside.
  2.  請求項1に記載する恒温槽型水晶発振器の周波数補正方法において、
     前記水晶発振器は電圧制御水晶発振器(VCXO)であり、前記発振周波数の補正は前記電圧制御水晶発振器の制御電圧を制御することにより行うことを特徴とする恒温槽型水晶発振器の周波数補正方法。
    In the frequency correction method of the thermostat crystal oscillator according to claim 1,
    The crystal oscillator is a voltage controlled crystal oscillator (VCXO), and the oscillation frequency is corrected by controlling a control voltage of the voltage controlled crystal oscillator.
  3.  請求項1または請求項2に記載する恒温槽型水晶発振器の周波数補正方法において、
     前記漏洩する熱量は、前記恒温槽の温度を所定温度に維持するためのヒーターが消費する消費電力量に基づき検出することを特徴とする恒温槽型水晶発振器の周波数補正方法。
    In the frequency correction method of the thermostat crystal oscillator according to claim 1 or 2,
    The method for correcting a frequency of a thermostat crystal oscillator, wherein the leaking heat quantity is detected based on a power consumption amount consumed by a heater for maintaining the temperature of the thermostat at a predetermined temperature.
  4.  水晶発振器(XO)を恒温槽に収納して構成した恒温槽型水晶発振器(OCXO)であって、
     前記恒温槽から外部に漏洩する熱量を検出する漏洩熱量検出手段と、
     前記漏洩熱量検出手段で検出した漏洩熱量に基づき前記水晶発振器の発振周波数を補正する発振周波数補正手段とを有することを特徴とする恒温槽型水晶発振器。
    A thermostat crystal oscillator (OCXO) configured by housing a crystal oscillator (XO) in a thermostat,
    Leakage heat amount detection means for detecting the amount of heat leaking from the thermostat to the outside,
    An oven controlled crystal oscillator comprising: an oscillation frequency correction unit that corrects an oscillation frequency of the crystal oscillator based on a leakage heat amount detected by the leakage heat amount detection unit.
  5.  請求項4に記載する恒温槽型水晶発振器において、
     前記水晶発振器は電圧制御水晶発振器(VCXO)であり、前記発振周波数補正手段は前記電圧制御水晶発振器の制御電圧を制御することにより行うものであることを特徴とする恒温槽型水晶発振器。
    In the thermostat crystal oscillator according to claim 4,
    The oven controlled crystal oscillator, wherein the crystal oscillator is a voltage controlled crystal oscillator (VCXO), and the oscillation frequency correcting means is performed by controlling a control voltage of the voltage controlled crystal oscillator.
  6.  請求項4に記載する恒温槽型水晶発振器において、
     前記漏洩熱量検出手段は、前記恒温槽の温度を所定温度に維持するためのヒーターで消費される消費電力に基づき前記漏洩熱量を表す漏洩熱量信号を生成する電力モニター手段を有するとともに、
     前記周波数補正手段は、前記漏洩熱量信号に基づき所定の演算を行い、前記水晶発振器の発振周波数補正量を表す周波数補正信号を生成する演算処理部を有することを特徴とする恒温槽型水晶発振器。
    In the thermostat crystal oscillator according to claim 4,
    The leakage heat amount detection means includes a power monitoring means for generating a leakage heat amount signal representing the leakage heat amount based on power consumption consumed by a heater for maintaining the temperature of the thermostatic chamber at a predetermined temperature.
    The thermostat crystal oscillator, wherein the frequency correction means includes a calculation processing unit that performs a predetermined calculation based on the leakage heat amount signal and generates a frequency correction signal representing an oscillation frequency correction amount of the crystal oscillator.
  7.  請求項5に記載する恒温槽型水晶発振器において、
     前記漏洩熱量検出手段は、前記恒温槽の温度を所定温度に維持するためのヒーターで消費される消費電力に基づき前記漏洩熱量を表す漏洩熱量信号を生成する電力モニター手段を有するとともに、
     前記発振周波数補正手段は、前記漏洩熱量信号に基づき所定の演算を行い、前記電圧制御水晶発振器の周波数補正量を表す制御電圧を生成する演算処理部を有することを特徴とする恒温槽型水晶発振器。
    In the thermostat crystal oscillator according to claim 5,
    The leakage heat amount detection means includes a power monitoring means for generating a leakage heat amount signal representing the leakage heat amount based on power consumption consumed by a heater for maintaining the temperature of the thermostatic chamber at a predetermined temperature.
    The oscillation frequency correction means includes a calculation processing unit that performs a predetermined calculation based on the leakage heat amount signal and generates a control voltage that represents a frequency correction amount of the voltage controlled crystal oscillator. .
PCT/JP2015/082727 2014-11-21 2015-11-20 Thermostatic bath type crystal oscillator frequency correction method and thermostatic bath type crystal oscillator WO2016080529A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014237063 2014-11-21
JP2014-237063 2014-11-21
JP2015065051A JP5800171B1 (en) 2014-11-21 2015-03-26 Thermostatic bath crystal oscillator
JP2015-065051 2015-03-26

Publications (1)

Publication Number Publication Date
WO2016080529A1 true WO2016080529A1 (en) 2016-05-26

Family

ID=54477666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082727 WO2016080529A1 (en) 2014-11-21 2015-11-20 Thermostatic bath type crystal oscillator frequency correction method and thermostatic bath type crystal oscillator

Country Status (2)

Country Link
JP (1) JP5800171B1 (en)
WO (1) WO2016080529A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11356057B2 (en) 2019-10-17 2022-06-07 Asahi Kasei Microdevices Corporation Temperature control circuit, oscillation control circuit, and temperature control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049071A1 (en) * 2017-09-08 2019-03-14 Rakon Limited A temperature stabilized device with accelerated response to power supply variations
JP7419748B2 (en) 2019-10-29 2024-01-23 セイコーエプソン株式会社 Vibration devices, electronic equipment and moving objects

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030197567A1 (en) * 2001-12-21 2003-10-23 Villella David A. On-board processor compensated oven controlled crystal oscillator
JP2010200051A (en) * 2009-02-25 2010-09-09 Furuno Electric Co Ltd Reference frequency generator
JP2010213102A (en) * 2009-03-11 2010-09-24 Daishinku Corp Piezoelectric oscillator and ambient temperature measuring method for the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006067080A (en) * 2004-08-25 2006-03-09 Seiko Epson Corp Temperature controlled oscillator
JP5809851B2 (en) * 2011-06-06 2015-11-11 日本電波工業株式会社 Crystal oscillator with temperature chamber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030197567A1 (en) * 2001-12-21 2003-10-23 Villella David A. On-board processor compensated oven controlled crystal oscillator
JP2010200051A (en) * 2009-02-25 2010-09-09 Furuno Electric Co Ltd Reference frequency generator
JP2010213102A (en) * 2009-03-11 2010-09-24 Daishinku Corp Piezoelectric oscillator and ambient temperature measuring method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11356057B2 (en) 2019-10-17 2022-06-07 Asahi Kasei Microdevices Corporation Temperature control circuit, oscillation control circuit, and temperature control method

Also Published As

Publication number Publication date
JP5800171B1 (en) 2015-10-28
JP2016105572A (en) 2016-06-09

Similar Documents

Publication Publication Date Title
WO2017199956A1 (en) Thermostatic-chamber electronic device
JP5218169B2 (en) Piezoelectric oscillator and method for measuring ambient temperature of this piezoelectric oscillator
JP2011205166A5 (en)
US8749314B2 (en) Oven-controlled crystal oscillator
WO2016080529A1 (en) Thermostatic bath type crystal oscillator frequency correction method and thermostatic bath type crystal oscillator
US6784756B2 (en) On-board processor compensated oven controlled crystal oscillator
JP6587560B2 (en) Crystal oscillator with temperature chamber
JP6190664B2 (en) Crystal oscillator
TWI566529B (en) Crystal oscillator and oscillation apparatus
US9013244B2 (en) Oscillating device, oscillating element and electronic apparatus
US9240793B2 (en) Method for providing a stabilized oscillator signal
JP2021192060A5 (en) Control method of electronically controlled mechanical clock and electronically controlled mechanical clock
JP2008311884A (en) Oscillation frequency control method, and oscillator
JP6060011B2 (en) Oscillator
US8575994B2 (en) Circuit and method for generating a clock signal
TW201419929A (en) Heater device and oscillation apparatus
EP3348969A1 (en) Measurement of a fluid parameter and sensor device therefore
JP5977197B2 (en) Temperature control circuit, thermostatic chamber type piezoelectric oscillator, and temperature control method
JP2015065511A (en) Crystal oscillator with constant temperature bath
JP2013017074A (en) Temperature compensation oscillator and electronic apparatus
JP2009182881A (en) Temperature compensated crystal oscillator
JP2010171968A (en) Temperature compensated crystal oscillator
Ishii et al. A new generation DSP-OCXO using crystal temperature sensor
JPH1155035A (en) Method and device for correcting temperature of oscillation circuit
TW201308908A (en) Temperature control system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860100

Country of ref document: EP

Kind code of ref document: A1