WO2016080503A1 - Powdered coating material - Google Patents

Powdered coating material Download PDF

Info

Publication number
WO2016080503A1
WO2016080503A1 PCT/JP2015/082610 JP2015082610W WO2016080503A1 WO 2016080503 A1 WO2016080503 A1 WO 2016080503A1 JP 2015082610 W JP2015082610 W JP 2015082610W WO 2016080503 A1 WO2016080503 A1 WO 2016080503A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder coating
epoxy resin
hours
coating material
type epoxy
Prior art date
Application number
PCT/JP2015/082610
Other languages
French (fr)
Japanese (ja)
Inventor
弘光 根岸
文幸 佐々木
Original Assignee
ソマール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソマール株式会社 filed Critical ソマール株式会社
Priority to JP2016560293A priority Critical patent/JP6732657B2/en
Publication of WO2016080503A1 publication Critical patent/WO2016080503A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09D161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints

Definitions

  • the present invention relates to a powder coating, and more particularly to a powder coating suitable for forming a coating film on a molded product such as an automobile part.
  • resin-based coatings are used for automobiles, including insulation coatings for motors and generators.
  • the methods for producing these coatings include a method using a liquid varnish and a method using a powder coating. From the viewpoint of production efficiency, work environment, reuse of coating, etc., powder coating using a powder coating is used. Is considered advantageous.
  • Patent Document 1 discloses an epoxy resin having a naphthalene skeleton in 100 parts by weight of an epoxy resin powder containing an epoxy resin having a melting point of 90 ° C. to 140 ° C., an average molecular weight of 1000 to 4000, and an epoxy equivalent of 800 to 4000, and a curing agent.
  • a thermosetting epoxy resin powder coating containing 1 to 10 parts by weight of is disclosed.
  • Patent Document 1 as a curing agent, an amine curing agent, an acid curing agent, an acid anhydride curing agent, a polyamide curing agent, a phenolic hydroxyl group-containing curing agent, a dicyandiamide curing agent, a cationic polymerization reaction curing agent.
  • a curing agent an amine curing agent, an acid curing agent, an acid anhydride curing agent, a polyamide curing agent, a phenolic hydroxyl group-containing curing agent, a dicyandiamide curing agent, a cationic polymerization reaction curing agent.
  • hydrazine-based curing agents and the like are shown.
  • an object of this invention is to provide the powder coating material for manufacturing the coating film which is excellent in heat resistance and can maintain the outstanding performance over a long period of time in the high temperature environment of 250 degreeC or more.
  • the present inventors have found that the above problems can be solved by using a powder coating containing an epoxy resin having an naphthalene skeleton and an aralkyl resin, and have arrived at the present invention.
  • the powder coating material of the present invention contains a naphthalene type epoxy resin and an aralkyl resin.
  • the aralkyl resin is preferably a phenol aralkyl resin.
  • the time required for the residual weight to reach 95% of the initial weight at 250 ° C. calculated by the Flynn-Wall-Ozawa method of the powder coating of the present invention is preferably 10 hours or more.
  • the molded article of the present invention is provided with a coating film coated with the above powder coating material.
  • the powder coating of the present invention can provide a coating film that has excellent heat resistance and can maintain excellent performance over a long period of time in a high temperature environment of 250 ° C. or higher.
  • the powder coating material of the present invention contains a naphthalene type epoxy resin and an aralkyl resin. Below, the detail of the powder coating material of this invention is demonstrated.
  • Epoxy resin In the powder coating of the present invention, a naphthalene type epoxy resin is used as the main epoxy resin.
  • a naphthalene type epoxy resin having a rigid skeleton exhibits a high glass transition temperature (Tg).
  • Tg glass transition temperature
  • a naphthalene type epoxy resin having a naphthalene skeleton having a planar structure has a small steric hindrance, so that the nucleophilic attack of the curing agent is hardly inhibited. For this reason, the curing reaction proceeds in a relatively short time. Since naphthalene type epoxy resin has a condensed ring structure, it has long-term heat resistance.
  • the naphthalene type epoxy resin used for this invention is not specifically limited, The naphthalene type epoxy resin represented by Formula (1), Formula (2), Formula (3), etc., and mixtures thereof can be used. Examples of commercially available products include EPICLON HP-4700, HP-4710, HP-4770, HP-6000 (above, manufactured by DIC Corporation) and the like. In order to improve the brittleness of the resulting coating film, the number of functional groups of the naphthalene type epoxy resin is preferably 2 to 4, and is particularly preferably 2.
  • the softening point of the naphthalene type epoxy resin used in the present invention is preferably 60 ° C. or higher and 120 ° C. or lower.
  • the temperature is lower than 60 ° C., the storage stability after the powder coating material may be deteriorated.
  • the temperature is higher than 120 ° C., it may cause the roughness of the coating surface.
  • a powder coating using a naphthalene type epoxy resin having a softening point in the above range a coating film having an excellent appearance is obtained, and productivity is improved.
  • problems such as powder melting and solidifying during storage hardly occur, and storage stability is improved.
  • you may add epoxy resins other than a naphthalene type epoxy resin if desired in the range which does not impair the effect of this invention. It is preferable that the compounding quantity is 40 mass% or less of all the epoxy resins.
  • an aralkyl resin is used as a curing agent.
  • an aralkyl resin as a curing agent for a naphthalene type epoxy resin
  • the long-term stability of the cured film is improved, and the performance of the film is maintained even after being held for a long time in a high-temperature environment. This is because there are few structures that cause thermal decomposition in the cured product. Since the powder coating material of the present invention has such a high heat-resistant structure and good film formability and adhesiveness, a coating film having high heat resistance can be easily obtained by coating.
  • the aralkyl resin is represented by the following general formula (4). Among these, a phenol aralkyl resin in which Ar 2 is phenol is preferable because it is easily available and has excellent oxygen barrier properties.
  • Ar 1 is a phenyl group, a biphenyl group, a fluorenyl group, or a naphthyl group
  • Ar 2 is a group represented by the following general formula (5-1) or (5-2).
  • R represents a hydrogen atom, a hydrocarbon group having 1 to 15 carbon atoms, a trifluoromethyl group, an allyl group or an aryl group, and may be the same or different from each other.
  • m represents an integer of 0 to 3, and may be the same or different. If they are different, they may be arranged in any order.
  • n represents an average value of the number of repetitions of 1 to 10.
  • the curing agent has the aralkyl skeleton.
  • an epoxy-modified aralkyl resin was added to the main agent, the excellent effect of the present invention could not be obtained when no aralkyl resin was used as a curing agent.
  • the same effect as in the present invention can be obtained.
  • the proportion of the aralkyl resin used is preferably 0.6 to 1.2 equivalents, more preferably 0.7 to 1.0 equivalents, in terms of functional group equivalents per epoxy equivalent of the naphthalene type epoxy resin. preferable.
  • additives can be added to the powder coating material of the present invention as necessary within a range not impairing the effects of the invention.
  • the additive include a filler, a leveling agent, a colorant, a curing accelerator, an antifoaming agent, an adhesion improver, and an impact modifier.
  • the filler examples include silica, alumina, aluminum hydroxide, magnesium oxide, calcium carbonate, talc, mica, clay, and cellulose. By adding these fillers, the flow of the powder coating material can be more suitably controlled. In addition, these fillers may be used individually by 1 type, or may mix and use 2 or more types.
  • the manufacturing method of the powder coating material of this invention is not specifically limited, For example, it can manufacture with the following method.
  • a filler to a powder coating material
  • a naphthalene type epoxy resin and a filler are mixed.
  • the mixing method include melt mixing using a kneader or an extruder.
  • the mixing temperature and mixing time are not particularly limited, and are set according to the type and composition ratio of the raw materials.
  • the mixing temperature is preferably 70 ° C. to 150 ° C., more preferably 100 ° C. to 140 ° C.
  • the mixing time depends on the mixing method and the like, but in the case of a kneader, it is preferably 15 minutes to 60 minutes, more preferably 30 minutes to 50 minutes. In the case of an extruder, it is preferably 60 seconds or shorter, and more preferably 30 seconds or shorter. Thereafter, the obtained mixture is cooled and solidified, and coarsely pulverized. An aralkyl resin and other additives as required are added to the coarsely pulverized product, melt mixed, and then cooled and solidified. Thereafter, the solidified mixture is pulverized and classified to obtain a powder coating material.
  • the powder coating of the present invention contains a naphthalene type epoxy resin and an aralkyl resin. Depending on the mixing conditions, partial polymerization proceeds, and a polymer containing a structural unit derived from a naphthalene type epoxy resin and a structural unit derived from an aralkyl resin is contained.
  • the particle diameter of the powder coating material of the present invention is not particularly limited, but the volume average particle diameter by laser diffraction / scattering method (JIS 8825-1) is preferably in the range of 30 ⁇ m to 70 ⁇ m.
  • the volume average particle size can be measured using a laser diffraction particle size distribution analyzer (manufactured by SYMPATEC, HELOS and PODOS analysis software: WINDOX5).
  • a laser diffraction particle size distribution analyzer manufactured by SYMPATEC, HELOS and PODOS analysis software: WINDOX5
  • the horizontal flow rate of the powder coating of the present invention is preferably in the range of 1 to 50%.
  • a powder paint having a large horizontal flow rate has a low viscosity when melted and the paint flows easily, whereas a powder paint having a small horizontal flow rate has a high viscosity and hardly flows when melted.
  • the horizontal flow rate of the powder coating is more preferably 5% to 30%. The horizontal flow rate is calculated by the following method.
  • 1 g of the powder coating material is put into a tablet molding die having an inner diameter of 16 mm ⁇ , and the diameter (a) of the tablet obtained by pressurizing with a load of 90 MPa for 60 seconds is measured with a caliper.
  • the tablet is placed on a slide glass, heated in a hot air dryer at 140 ° C. for 10 minutes, and the tablet diameter (b) is measured in the same manner.
  • the horizontal flow rate (%) is obtained by multiplying the value obtained by dividing the increase in diameter (ba) by heating by the diameter (a) before heating by 100.
  • the softening temperature of the powder coating material of the present invention is preferably 60 ° C. or higher and 120 ° C. or lower.
  • the softening point of the powder coating within the above range, the productivity of the coating film is improved, and a coating film having a more excellent appearance can be obtained.
  • dissolving and solidifying during storage do not arise easily and storage stability improves.
  • the time required for the residual weight to reach 95% of the initial weight at 250 ° C. is preferably 10 hours or more.
  • this value can be calculated by the Flynn-Wall-Ozawa method using the result of the thermogravimetric change of the powder paint measured using a differential thermothermogravimetric simultaneous analysis (TG / DTA) apparatus.
  • TG / DTA differential thermothermogravimetric simultaneous analysis
  • the behavior of the thermogravimetric change can be adjusted by the kind and blending amount of the naphthalene type epoxy resin used for the powder coating material of the present invention.
  • the method of applying the powder coating of the present invention is not particularly limited, and a known coating method can be applied. Specifically, electrostatic coating, triboelectric charging, non-charged coating, fluid immersion, and the like can be given. According to the above method, a coating film can be obtained by applying a powder coating on the surface of the object to be coated and then curing. If necessary, the adhesion of the coating film can be improved by applying a surface treatment to the object to be coated in advance. Although the film thickness of the coating film obtained from the powder coating material of this invention is not specifically limited, 50 micrometers or more and 500 micrometers or less are preferable.
  • Examples 1-2, Comparative Examples 1-3 The main component and curing agent were mixed together with a leveling agent and a curing accelerator at a blending ratio (mass) shown in Table 1 with a mixer, and then melt mixed with an extruder.
  • the mixing temperature was 110 ° C.
  • the mixing time was 30 seconds or less.
  • the mixture was cooled and solidified, and then finely pulverized to obtain powder coating materials of Examples and Comparative Examples.
  • a filler such as an inorganic filler is not added.
  • 1 mass part of imidazole was added with respect to 100 mass parts of main agents as a hardening accelerator. Table 1 shows the result of calculating the estimated time until the residual weight of the obtained powder coating material reaches 95% at 250 ° C. by the method described later.
  • Example 4 Comparative Examples 4 to 6, Reference Example 1
  • the above main agent and filler were melt-mixed with an extruder at the blending ratio (mass) shown in Table 2, then cooled and solidified, and coarsely pulverized.
  • the curing agent shown in Table 2 was added together with a leveling agent and a curing accelerator, mixed with a mixer, and then melt mixed with an extruder.
  • the mixing temperature was 110 ° C.
  • the mixing time was 30 seconds or less.
  • the mixture was cooled and solidified, and then finely pulverized to obtain powder coating materials of Examples, Comparative Examples, and Reference Examples.
  • silica was used as the filler.
  • thermogravimetric change of the powder coating sample of an Example, a comparative example, and a reference example was measured using the differential thermal thermogravimetric simultaneous analysis (TG / DTA) apparatus.
  • TG / DTA differential thermal thermogravimetric simultaneous analysis
  • the temperature increase rate was measured at 5 K / min, 10 K / min, 20 K / min, and 30 K / min, respectively. From each of the results, the temperature when the residual amount reached 95% by weight of the initial weight was read, and the residual amount was 95% of the initial weight at 250 ° C. by the Flynn-Wall-Ozawa method, which is one of the equivariant rate methods. Estimated time to be calculated.
  • Example 4 of the present invention using a naphthalene type epoxy resin and biphenyl aralkyl phenol, the tensile strength maintenance ratios after holding for 200 hours and after holding for 1000 hours were 63% and 59%, respectively.
  • the coating film tensile strength maintenance rate is required to be 50% or more after both 200 hours and 1000 hours.
  • the above requirement may be satisfied. all right.
  • the value of the tensile strength maintenance ratio after holding for 1000 hours / the tensile strength maintenance ratio after holding for 200 hours is as high as 0.94. After holding for 200 hours, the physical properties of the coating film at high temperature It was confirmed that the change was remarkably suppressed.
  • the values of the tensile strength maintenance ratio after holding for 1000 hours / the tensile strength maintenance ratio after holding for 200 hours were 0.83, 0.83, and 0.76, which were not as high as those of Example 4.
  • biphenylaralkyl type epoxy resin was used as the main agent, but sufficient effects were not obtained. From this, it is considered effective to use a resin having an aralkyl skeleton as the curing agent as in the present invention.

Abstract

[Problem] To provide a powdered coating material for producing a coating that exhibits superior heat resistance and can maintain superior properties over a long period of time in a high-temperature environment of 250°C or higher. [Solution] A powdered coating material containing a naphthalene epoxy resin and an aralkyl resin is prepared. A phenol aralkyl resin is used as the aralkyl resin. The powdered coating material is prepared so that it takes at least 10 hours for the residual weight to become 95% of the initial weight at 250°C as calculated by the Flynn-Wall-Ozawa (FWO) method.

Description

粉体塗料Powder paint
 本発明は、粉体塗料に関し、特に自動車部品等の成形品への塗膜形成に好適な粉体塗料に関する。 The present invention relates to a powder coating, and more particularly to a powder coating suitable for forming a coating film on a molded product such as an automobile part.
 モータや発電機等の絶縁塗膜を初め、多くの樹脂系塗膜が自動車用途等に用いられている。これらの塗膜の製法としては、液状ワニスを用いる方法と粉体塗料を用いる方法が挙げられるが、生産効率、作業環境、塗料の再利用等の観点からは粉体塗料を用いた粉体塗装が有利とされている。 Many resin-based coatings are used for automobiles, including insulation coatings for motors and generators. The methods for producing these coatings include a method using a liquid varnish and a method using a powder coating. From the viewpoint of production efficiency, work environment, reuse of coating, etc., powder coating using a powder coating is used. Is considered advantageous.
 特許文献1には、融点90℃~140℃、平均分子量1000~4000、エポキシ当量800~4000のエポキシ樹脂と、硬化剤とを含有するエポキシ樹脂粉体100重量部に、ナフタレン骨格を有するエポキシ樹脂を1~10重量部添加した熱硬化型エポキシ樹脂粉体塗料が開示されている。ここで、ナフタレン骨格を有するエポキシ樹脂の添加により、得られる塗膜の防食性が向上することが記載されている。特許文献1には、硬化剤として、アミン系硬化剤、酸系硬化剤、酸無水物系硬化剤、ポリアミド系硬化剤、フェノール性水酸基含有硬化剤、ジシアンジアミド系硬化剤、カチオン重合反応系硬化剤及びヒドラジン系硬化剤等が示されている。 Patent Document 1 discloses an epoxy resin having a naphthalene skeleton in 100 parts by weight of an epoxy resin powder containing an epoxy resin having a melting point of 90 ° C. to 140 ° C., an average molecular weight of 1000 to 4000, and an epoxy equivalent of 800 to 4000, and a curing agent. A thermosetting epoxy resin powder coating containing 1 to 10 parts by weight of is disclosed. Here, it is described that the addition of an epoxy resin having a naphthalene skeleton improves the corrosion resistance of the resulting coating film. In Patent Document 1, as a curing agent, an amine curing agent, an acid curing agent, an acid anhydride curing agent, a polyamide curing agent, a phenolic hydroxyl group-containing curing agent, a dicyandiamide curing agent, a cationic polymerization reaction curing agent. In addition, hydrazine-based curing agents and the like are shown.
特開2003-286436号公報JP 2003-286436 A
 しかしながら、特許文献1の粉体塗料では、十分な耐熱性を有する塗膜を得ることは困難である。特に、近年自動車分野においては、より高温でより長時間にわたり塗膜性能を維持することが求められている。例えば、ハイブリッド電気自動車(HEV)や電気自動車(EV)等では、高出力化により駆動モータや発電機付近は、200℃以上の高温環境に曝される。そのため、このような環境でも劣化することなく、長期にわたり性能を維持できる塗膜が求められている。
 そこで、本発明は、耐熱性に優れ、250℃以上の高温環境下において、長期にわたり優れた性能を維持できる塗膜を製造するための粉体塗料を提供することを目的とする。
However, with the powder coating of Patent Document 1, it is difficult to obtain a coating film having sufficient heat resistance. In particular, in the automotive field in recent years, it has been required to maintain the coating film performance at a higher temperature for a longer time. For example, in a hybrid electric vehicle (HEV), an electric vehicle (EV), and the like, the drive motor and the vicinity of the generator are exposed to a high-temperature environment of 200 ° C. or higher due to high output. Therefore, a coating film that can maintain performance over a long period of time without being deteriorated even in such an environment is demanded.
Then, an object of this invention is to provide the powder coating material for manufacturing the coating film which is excellent in heat resistance and can maintain the outstanding performance over a long period of time in the high temperature environment of 250 degreeC or more.
 上記課題に鑑み鋭意研究の結果、本発明者らは、ナフタレン骨格を有するエポキシ樹脂及びアラルキル樹脂を含有する粉体塗料を用いることにより、前記課題を解決できることを見出し、本発明に想到した。すなわち、本発明の粉体塗料は、ナフタレン型エポキシ樹脂及びアラルキル樹脂を含有することを特徴とする。
 上記アラルキル樹脂は、フェノールアラルキル樹脂であることが好ましい。
 また、本発明の粉体塗料のFlynn-Wall-Ozawa法で算出される、250℃において残存重量が初期重量の95%となるまでの所要時間は10時間以上であることが好ましい。
 本発明の成形品は上記粉体塗料を塗装した塗膜を備えることを特徴とする。
As a result of intensive studies in view of the above problems, the present inventors have found that the above problems can be solved by using a powder coating containing an epoxy resin having an naphthalene skeleton and an aralkyl resin, and have arrived at the present invention. That is, the powder coating material of the present invention contains a naphthalene type epoxy resin and an aralkyl resin.
The aralkyl resin is preferably a phenol aralkyl resin.
The time required for the residual weight to reach 95% of the initial weight at 250 ° C. calculated by the Flynn-Wall-Ozawa method of the powder coating of the present invention is preferably 10 hours or more.
The molded article of the present invention is provided with a coating film coated with the above powder coating material.
 本発明の粉体塗料により、耐熱性に優れ、250℃以上の高温環境下において、長期にわたり優れた性能を維持できる塗膜を得ることができる。 The powder coating of the present invention can provide a coating film that has excellent heat resistance and can maintain excellent performance over a long period of time in a high temperature environment of 250 ° C. or higher.
 以下に本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本発明の粉体塗料は、ナフタレン型エポキシ樹脂及びアラルキル樹脂を含有することを特徴とする。
 以下に、本発明の粉体塗料の詳細について説明する。
The powder coating material of the present invention contains a naphthalene type epoxy resin and an aralkyl resin.
Below, the detail of the powder coating material of this invention is demonstrated.
(1)エポキシ樹脂
 本発明の粉体塗料では、主剤のエポキシ樹脂として、ナフタレン型エポキシ樹脂を用いる。剛直骨格を有するナフタレン型エポキシ樹脂は、高いガラス転移温度(Tg)を示す。また、平面構造のナフタレン骨格を有するナフタレン型エポキシ樹脂は、立体障害が小さいため、硬化剤の求核攻撃が阻害されにくい。このため、比較的短時間で硬化反応が進行する。ナフタレン型エポキシ樹脂は、縮合環構造を有するため、長期耐熱性を有する。本発明に用いられるナフタレン型エポキシ樹脂は、特に限定されず、式(1)、式(2)、式(3)等で表されるナフタレン型エポキシ樹脂及びそれらの混合物を用いることができる。市販品としては、EPICLON  HP-4700、HP-4710、HP-4770、HP-6000(以上、DIC株式会社製)等が挙げられる。得られる塗膜の脆性を改善するためには、ナフタレン型エポキシ樹脂の官能基数は2~4が好ましく、2とするのが特に好ましい。
(1) Epoxy resin In the powder coating of the present invention, a naphthalene type epoxy resin is used as the main epoxy resin. A naphthalene type epoxy resin having a rigid skeleton exhibits a high glass transition temperature (Tg). In addition, a naphthalene type epoxy resin having a naphthalene skeleton having a planar structure has a small steric hindrance, so that the nucleophilic attack of the curing agent is hardly inhibited. For this reason, the curing reaction proceeds in a relatively short time. Since naphthalene type epoxy resin has a condensed ring structure, it has long-term heat resistance. The naphthalene type epoxy resin used for this invention is not specifically limited, The naphthalene type epoxy resin represented by Formula (1), Formula (2), Formula (3), etc., and mixtures thereof can be used. Examples of commercially available products include EPICLON HP-4700, HP-4710, HP-4770, HP-6000 (above, manufactured by DIC Corporation) and the like. In order to improve the brittleness of the resulting coating film, the number of functional groups of the naphthalene type epoxy resin is preferably 2 to 4, and is particularly preferably 2.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 本発明に用いるナフタレン型エポキシ樹脂の軟化点は、60℃以上120℃以下であることが好ましい。60℃より低い場合には、粉体塗料とした後の保存安定性が悪くなる可能性があり、120℃を超える場合には、塗装表面の粗さの原因となることがある。上記範囲の軟化点を有するナフタレン型エポキシ樹脂を用いた粉体塗料では、外観の優れた塗膜が得られ、生産性が向上する。さらに、上記粉体塗料では、保管中に粉体が溶けて固まる等の問題が生じにくく、保存安定性が向上する。また、本発明の効果が損なわれない範囲で、所望により、ナフタレン型エポキシ樹脂以外のエポキシ樹脂を添加してもよい。その配合量は全エポキシ樹脂の40質量%以下であることが好ましい。 The softening point of the naphthalene type epoxy resin used in the present invention is preferably 60 ° C. or higher and 120 ° C. or lower. When the temperature is lower than 60 ° C., the storage stability after the powder coating material may be deteriorated. When the temperature is higher than 120 ° C., it may cause the roughness of the coating surface. In a powder coating using a naphthalene type epoxy resin having a softening point in the above range, a coating film having an excellent appearance is obtained, and productivity is improved. Furthermore, in the above-mentioned powder coating, problems such as powder melting and solidifying during storage hardly occur, and storage stability is improved. Moreover, you may add epoxy resins other than a naphthalene type epoxy resin if desired in the range which does not impair the effect of this invention. It is preferable that the compounding quantity is 40 mass% or less of all the epoxy resins.
(2)アラルキル樹脂
 本発明の粉体塗料では、硬化剤として、アラルキル樹脂を用いる。ナフタレン型エポキシ樹脂の硬化剤として、アラルキル樹脂を用いることにより、硬化物である塗膜の長期安定性が向上し、高温環境で長時間保持後も塗膜の性能が保持される。これは、硬化物中に熱分解の原因となる構造が少ないためである。本発明の粉体塗料は、このように高耐熱構造を有し、且つ成膜性及び接着性が良好なため、塗装により、高耐熱性の良好な塗膜を容易に得ることができる。
 アラルキル樹脂は、下記一般式(4)で表される。これらの中でも、入手が容易で、酸素バリア性に優れていることから、Arがフェノールであるフェノールアラルキル樹脂が好ましい。 
(2) Aralkyl resin In the powder coating material of the present invention, an aralkyl resin is used as a curing agent. By using an aralkyl resin as a curing agent for a naphthalene type epoxy resin, the long-term stability of the cured film is improved, and the performance of the film is maintained even after being held for a long time in a high-temperature environment. This is because there are few structures that cause thermal decomposition in the cured product. Since the powder coating material of the present invention has such a high heat-resistant structure and good film formability and adhesiveness, a coating film having high heat resistance can be easily obtained by coating.
The aralkyl resin is represented by the following general formula (4). Among these, a phenol aralkyl resin in which Ar 2 is phenol is preferable because it is easily available and has excellent oxygen barrier properties.
Figure JPOXMLDOC01-appb-C000004
 
(式中Arは、フェニル基、ビフェニル基、フルオレニル基、ナフチル基であり、Ar2は、下記一般式(5-1)又は(5-2)で表される基である。)
Figure JPOXMLDOC01-appb-C000004

(In the formula, Ar 1 is a phenyl group, a biphenyl group, a fluorenyl group, or a naphthyl group, and Ar 2 is a group represented by the following general formula (5-1) or (5-2).)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-I000006
  (各式中、Rはそれぞれ水素原子、炭素数1~15の炭化水素基、トリフルオロメチル基、アリル基またはアリール基を表し、互いに同一でも異なっていてもよい。
  mは0~3の整数を表し、互いに同一でも異なっていてもよい。異なっている場合は任意の順で配列していてもよい。
  nは1~10の繰り返し数の平均値を表す。)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-I000006
(In each formula, R represents a hydrogen atom, a hydrocarbon group having 1 to 15 carbon atoms, a trifluoromethyl group, an allyl group or an aryl group, and may be the same or different from each other.
m represents an integer of 0 to 3, and may be the same or different. If they are different, they may be arranged in any order.
n represents an average value of the number of repetitions of 1 to 10. )
 本発明では、硬化剤が上記アラルキル骨格を有することが必要である。例えば、主剤にアラルキル樹脂のエポキシ変性体を添加しても、硬化剤としてアラルキル樹脂を使用しない場合には本発明の優れた効果は得られないことが確認された。もちろん、硬化剤として、上記アラルキル樹脂を用い、主剤のナフタレン型エポキシ樹脂に、アラルキル樹脂のエポキシ変性体を加えた構成では、本発明と同様の効果を得ることができる。
 また、アラルキル樹脂の使用割合はナフタレン型エポキシ樹脂のエポキシ当量あたり、官能基の当量で、0.6~1.2当量であることが好ましく、0.7~1.0当量であることがより好ましい。ナフタレン型エポキシ樹脂とアラルキル樹脂の当量比を上記範囲とすることにより、粉体塗料の成膜性や接着性がさらに優れ、得られる塗膜の長期耐熱性がさらに向上する。
In the present invention, it is necessary that the curing agent has the aralkyl skeleton. For example, it was confirmed that even if an epoxy-modified aralkyl resin was added to the main agent, the excellent effect of the present invention could not be obtained when no aralkyl resin was used as a curing agent. Of course, in the configuration in which the above aralkyl resin is used as a curing agent and an epoxy modified product of the aralkyl resin is added to the main component naphthalene type epoxy resin, the same effect as in the present invention can be obtained.
The proportion of the aralkyl resin used is preferably 0.6 to 1.2 equivalents, more preferably 0.7 to 1.0 equivalents, in terms of functional group equivalents per epoxy equivalent of the naphthalene type epoxy resin. preferable. By making the equivalent ratio of naphthalene type epoxy resin and aralkyl resin in the above range, the film formability and adhesiveness of the powder coating are further improved, and the long-term heat resistance of the resulting coating film is further improved.
(3)添加剤
 本発明の粉体塗料には、発明の効果が損なわれない範囲で、必要に応じて各種添加剤を添加することができる。上記添加剤としては、充填剤、レベリング剤、着色剤、硬化促進剤、消泡剤、密着向上剤、衝撃緩和剤等が挙げられる。
 充填剤としては、例えばシリカ、アルミナ、水酸化アルミニウム、酸化マグネシウム、炭酸カルシウム、タルク、マイカ、クレー、セルロース等を用いることができる。これらの充填剤を添加することにより、粉体塗料の流れをより好適に制御することができる。なお、これらの充填剤は1種単独で用いても、2種以上を混合して用いても良い。
(3) Additives Various additives can be added to the powder coating material of the present invention as necessary within a range not impairing the effects of the invention. Examples of the additive include a filler, a leveling agent, a colorant, a curing accelerator, an antifoaming agent, an adhesion improver, and an impact modifier.
Examples of the filler that can be used include silica, alumina, aluminum hydroxide, magnesium oxide, calcium carbonate, talc, mica, clay, and cellulose. By adding these fillers, the flow of the powder coating material can be more suitably controlled. In addition, these fillers may be used individually by 1 type, or may mix and use 2 or more types.
(4)粉体塗料の製造方法
 本発明の粉体塗料の製造方法は特に限定されないが、例えば以下の方法により製造することができる。粉体塗料に充填剤を添加する場合には、初めに、ナフタレン型エポキシ樹脂と充填剤を混合する。混合法としては、ニーダやエクストルーダを用いた溶融混合等が挙げられる。混合温度や混合時間は、特に限定されず、原料の種類や組成比等に応じて設定される。通常、混合温度は、70℃~150℃が好ましく、100℃~140℃がより好ましい。混合時間は、混合方法等にもよるが、ニーダの場合、15分~60分が好ましく、30分~50分がより好ましい。また、エクストルーダの場合、60秒以下が好ましく、30秒以下がより好ましい。
 その後、得られた混合物を冷却固化し、粗粉砕する。上記粗粉砕物にアラルキル樹脂及び必要によりその他の添加剤を加えて、溶融混合した後、冷却固化する。その後、固化した混合物を微粉砕して、分級することにより粉体塗料が得られる。
(4) Manufacturing method of powder coating material Although the manufacturing method of the powder coating material of this invention is not specifically limited, For example, it can manufacture with the following method. When adding a filler to a powder coating material, first, a naphthalene type epoxy resin and a filler are mixed. Examples of the mixing method include melt mixing using a kneader or an extruder. The mixing temperature and mixing time are not particularly limited, and are set according to the type and composition ratio of the raw materials. Usually, the mixing temperature is preferably 70 ° C. to 150 ° C., more preferably 100 ° C. to 140 ° C. The mixing time depends on the mixing method and the like, but in the case of a kneader, it is preferably 15 minutes to 60 minutes, more preferably 30 minutes to 50 minutes. In the case of an extruder, it is preferably 60 seconds or shorter, and more preferably 30 seconds or shorter.
Thereafter, the obtained mixture is cooled and solidified, and coarsely pulverized. An aralkyl resin and other additives as required are added to the coarsely pulverized product, melt mixed, and then cooled and solidified. Thereafter, the solidified mixture is pulverized and classified to obtain a powder coating material.
(5)粉体塗料
 本発明の粉末塗料は、ナフタレン型エポキシ樹脂及びアラルキル樹脂を含有する。混合条件によっては、一部重合が進行し、ナフタレン型エポキシ樹脂に由来する構造単位及びアラルキル樹脂に由来する構造単位を含む重合体を含有する。
 本発明の粉体塗料の粒子径は、特に限定されないが、レーザー回折・散乱法(JIS8825-1)による体積平均粒子径が30μm~70μmの範囲であることが好ましい。なお、上記体積平均粒子径は、レーザー回折式粒子径分布測定装置(SYMPATEC社製、HELOS and PODOS 解析ソフト:WINDOX5)を用いて測定することができる。
 体積平均粒子径が上記範囲の粉体塗料を用いることにより、より優れた成膜性が得られる。
(5) Powder coating The powder coating of the present invention contains a naphthalene type epoxy resin and an aralkyl resin. Depending on the mixing conditions, partial polymerization proceeds, and a polymer containing a structural unit derived from a naphthalene type epoxy resin and a structural unit derived from an aralkyl resin is contained.
The particle diameter of the powder coating material of the present invention is not particularly limited, but the volume average particle diameter by laser diffraction / scattering method (JIS 8825-1) is preferably in the range of 30 μm to 70 μm. The volume average particle size can be measured using a laser diffraction particle size distribution analyzer (manufactured by SYMPATEC, HELOS and PODOS analysis software: WINDOX5).
By using a powder coating material having a volume average particle diameter in the above range, better film formability can be obtained.
 また、本発明の粉体塗料の水平流れ率は、1~50%の範囲であることが好ましい。一般に水平流れ率が大きい粉体塗料は、溶融時に低粘度で塗料が流れやすく、一方、水平流れ率が小さい粉体塗料は、溶融時に高粘度で塗料が流れにくい。粉体塗料の水平流れ率を上記範囲にすることにより、ピンホール等の塗膜欠陥やタレが生じにくく、目的とする膜厚の良質な塗膜が得られやすい。粉体塗料の水平流れ率は、5%~30%であることがより好ましい。
 なお、水平流れ率は以下の方法により算出される。粉体塗料1gを内径16mmφの錠剤成形用金型に入れ、荷重90MPaで60秒加圧して得られる錠剤の直径(a)をノギスで測定する。上記錠剤をスライドガラスに載せ、熱風乾燥機中にて140℃で10分間加熱後、同様に錠剤の直径(b)を測定する。加熱による直径の増加値(b-a)を加熱前の直径(a)で除した値に100をかけて水平流れ率(%)とする。
The horizontal flow rate of the powder coating of the present invention is preferably in the range of 1 to 50%. In general, a powder paint having a large horizontal flow rate has a low viscosity when melted and the paint flows easily, whereas a powder paint having a small horizontal flow rate has a high viscosity and hardly flows when melted. By setting the horizontal flow rate of the powder coating within the above range, coating film defects such as pinholes and sagging are less likely to occur, and a high-quality coating film with a desired film thickness can be easily obtained. The horizontal flow rate of the powder coating is more preferably 5% to 30%.
The horizontal flow rate is calculated by the following method. 1 g of the powder coating material is put into a tablet molding die having an inner diameter of 16 mmφ, and the diameter (a) of the tablet obtained by pressurizing with a load of 90 MPa for 60 seconds is measured with a caliper. The tablet is placed on a slide glass, heated in a hot air dryer at 140 ° C. for 10 minutes, and the tablet diameter (b) is measured in the same manner. The horizontal flow rate (%) is obtained by multiplying the value obtained by dividing the increase in diameter (ba) by heating by the diameter (a) before heating by 100.
 本発明の粉体塗料の軟化温度は、60℃以上120℃以下であることが好ましい。粉体塗料の軟化点を上記範囲とすることにより、塗膜の生産性が向上し、より優れた外観の塗膜が得られる。また、上記粉体塗料では、保管中に粉体が溶けて固まる等の問題が生じにくく、保存安定性が向上する。
 また、本発明の粉体塗料は、250℃において残存重量が初期重量の95%となるまでの所要時間が、10時間以上であることが好ましい。この値は、後述するように、示差熱熱重量同時分析(TG/DTA)装置を用いて測定した粉体塗料の熱重量変化の結果を用いて、Flynn-Wall-Ozawa法により算出できる。上記値が、10時間以上であれば、250℃以上の使用においても長期にわたり十分な耐熱性を維持できる。なお、熱重量変化の挙動は、本発明の粉体塗料に用いられるナフタレン型エポキシ樹脂の種類や配合量などによって調整することができる。
The softening temperature of the powder coating material of the present invention is preferably 60 ° C. or higher and 120 ° C. or lower. By making the softening point of the powder coating within the above range, the productivity of the coating film is improved, and a coating film having a more excellent appearance can be obtained. Moreover, in the said powder coating material, problems, such as a powder melt | dissolving and solidifying during storage, do not arise easily and storage stability improves.
In the powder coating material of the present invention, the time required for the residual weight to reach 95% of the initial weight at 250 ° C. is preferably 10 hours or more. As will be described later, this value can be calculated by the Flynn-Wall-Ozawa method using the result of the thermogravimetric change of the powder paint measured using a differential thermothermogravimetric simultaneous analysis (TG / DTA) apparatus. When the above value is 10 hours or longer, sufficient heat resistance can be maintained over a long period of time even when used at 250 ° C. or higher. In addition, the behavior of the thermogravimetric change can be adjusted by the kind and blending amount of the naphthalene type epoxy resin used for the powder coating material of the present invention.
(6)粉体塗料の塗装方法
 本発明の粉体塗料の塗装方法は、特に限定されず、公知の塗装方法が適用できる。具体的には、静電塗装、摩擦帯電塗装、無荷電塗装、流動浸漬等が挙げられる。上記方法により、被塗装体表面に粉体塗料を塗装した後、硬化することにより塗膜を得ることができる。必要に応じて被塗装体に予め表面処理を施すことにより、塗膜の密着性等を向上させることもできる。
 本発明の粉体塗料から得られる塗膜の膜厚は特に限定されないが、50μm以上500μm以下が好ましい。
(6) Powder coating method The method of applying the powder coating of the present invention is not particularly limited, and a known coating method can be applied. Specifically, electrostatic coating, triboelectric charging, non-charged coating, fluid immersion, and the like can be given. According to the above method, a coating film can be obtained by applying a powder coating on the surface of the object to be coated and then curing. If necessary, the adhesion of the coating film can be improved by applying a surface treatment to the object to be coated in advance.
Although the film thickness of the coating film obtained from the powder coating material of this invention is not specifically limited, 50 micrometers or more and 500 micrometers or less are preferable.
 以下の実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例によって限定されるものではない。なお、実施例中、特に記載がない場合には、「%」及び「部」は質量%及び質量部を示す。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. In the examples, unless otherwise specified, “%” and “part” indicate mass% and mass part.
〈粉体塗料の構成成分〉
(A)主剤
 (A1)ナフタレン型エポキシ樹脂:EPICLON  HP-4770、DIC株式会社製
 (A2)ビスフェノールA型エポキシ樹脂:jER1004 三菱化学株式会社製
 (A3)ビスフェノールF型エポキシ樹脂:YDF-2004 新日鉄住金化学株式会社製
 (A4)クレゾールノボラック型エポキシ樹脂:EPICLON N―670 DIC株式会社製
 (A5)ビフェニルアラルキルフェノール型エポキシ樹脂:NC―3000-H 日本化薬株式会社製
(B)硬化剤
 (B1-1)ビフェニルアラルキルフェノール:KAYAHARD GPH-65 日本化薬株式会社製(軟化点:65℃)
 (B1-2)ビフェニルアラルキルフェノール:KAYAHARD GPH-103 日本化薬株式会社製(軟化点:102℃)
 (B2)酸無水物:3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物
<Components of powder paint>
(A) Main agent (A1) Naphthalene type epoxy resin: EPICLON HP-4770, manufactured by DIC Corporation (A2) Bisphenol A type epoxy resin: jER1004 Mitsubishi Chemical Corporation (A3) Bisphenol F type epoxy resin: YDF-2004 NS (A4) Cresol novolak type epoxy resin manufactured by Chemical Co., Ltd .: EPICLON N-670 manufactured by DIC Corporation (A5) biphenylaralkylphenol type epoxy resin: NC-3000-H manufactured by Nippon Kayaku Co., Ltd. (B) curing agent (B1- 1) Biphenylaralkylphenol: KAYAHARD GPH-65 Nippon Kayaku Co., Ltd. (softening point: 65 ° C.)
(B1-2) Biphenylaralkylphenol: KAYAHARD GPH-103 manufactured by Nippon Kayaku Co., Ltd. (softening point: 102 ° C.)
(B2) Acid anhydride: 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride
(実施例1~2、比較例1~3)
 表1に示す配合比(質量)で上記主剤及び硬化剤をレベリング剤、硬化促進剤とともにミキサーで混合後、エクストルーダにより溶融混合した。ここで、混合温度は、110℃、混合時間は、30秒以下とした。混合物を冷却固化した後、微粉砕することにより、各実施例及び比較例の粉体塗料を得た。なお、ここでは、無機フィラー等の充填剤は添加していない。また、硬化促進剤として、イミダゾールを主剤100質量部に対して、1質量部添加した。得られた粉体塗料の250℃で残存重量95%となるまでの推定時間を後述する方法で算出した結果を、表1に示す。
(Examples 1-2, Comparative Examples 1-3)
The main component and curing agent were mixed together with a leveling agent and a curing accelerator at a blending ratio (mass) shown in Table 1 with a mixer, and then melt mixed with an extruder. Here, the mixing temperature was 110 ° C., and the mixing time was 30 seconds or less. The mixture was cooled and solidified, and then finely pulverized to obtain powder coating materials of Examples and Comparative Examples. Here, a filler such as an inorganic filler is not added. Moreover, 1 mass part of imidazole was added with respect to 100 mass parts of main agents as a hardening accelerator. Table 1 shows the result of calculating the estimated time until the residual weight of the obtained powder coating material reaches 95% at 250 ° C. by the method described later.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(実施例4、比較例4~6、参考例1)
 表2に示す配合比(質量)で上記主剤及びフィラ―をエクストルーダにより、溶融混合した後、冷却固化し、粗粉砕した。この粗粉砕物に表2に示す硬化剤をレベリング剤、硬化促進剤とともに加えてミキサーで混合後、エクストルーダにより溶融混合した。ここで、混合温度は、110℃、混合時間は、30秒以下とした。混合物を冷却固化した後、微粉砕することにより、各実施例、比較例及び参考例の粉体塗料を得た。なお、ここでは、フィラーとしてシリカを用いた。また、硬化促進剤として、イミダゾールを主剤100質量部に対して、1質量部添加した。得られた粉体塗料を短冊状に成型して引張り強さ測定用の試料を作製した。それぞれの試料の加熱前の引張り強さ及び250℃の電気炉中で、200時間及び1000時間保持後の引張り強さを測定した。なお、引張り強さは、JIS K 7161に基づいて測定した。加熱前の引張り強さに対する200時間及び1000時間加熱後の引張り強さの比(塗膜引張り強さ維持率)を算出した結果を表2に示す。
(Example 4, Comparative Examples 4 to 6, Reference Example 1)
The above main agent and filler were melt-mixed with an extruder at the blending ratio (mass) shown in Table 2, then cooled and solidified, and coarsely pulverized. To this coarsely pulverized product, the curing agent shown in Table 2 was added together with a leveling agent and a curing accelerator, mixed with a mixer, and then melt mixed with an extruder. Here, the mixing temperature was 110 ° C., and the mixing time was 30 seconds or less. The mixture was cooled and solidified, and then finely pulverized to obtain powder coating materials of Examples, Comparative Examples, and Reference Examples. Here, silica was used as the filler. Moreover, 1 mass part of imidazole was added with respect to 100 mass parts of main agents as a hardening accelerator. The obtained powder coating was molded into a strip shape to prepare a sample for measuring tensile strength. The tensile strength before heating of each sample and the tensile strength after holding for 200 hours and 1000 hours in an electric furnace at 250 ° C. were measured. The tensile strength was measured based on JIS K 7161. Table 2 shows the results of calculating the ratio of the tensile strength after heating for 200 hours and 1000 hours with respect to the tensile strength before heating (coating film tensile strength maintenance ratio).
(250℃で残量重量95%となるまでの時間の算出)
 示差熱熱重量同時分析(TG/DTA)装置を用いて、実施例、比較例及び参考例の粉体塗料試料の熱重量変化を測定した。ここで、昇温速度は、5K/min、10K/min、20K/min及び30K/minでそれぞれ測定を行った。それぞれの結果から残存量が初期重量の95重量%となったときの温度を読み取り、等変化率法の1種であるFlynn-Wall-Ozawa法により250℃で残存量が初期重量の95%となるまでの推定時間を算出した。
(Calculation of the time until the remaining weight reaches 95% at 250 ° C)
The thermogravimetric change of the powder coating sample of an Example, a comparative example, and a reference example was measured using the differential thermal thermogravimetric simultaneous analysis (TG / DTA) apparatus. Here, the temperature increase rate was measured at 5 K / min, 10 K / min, 20 K / min, and 30 K / min, respectively. From each of the results, the temperature when the residual amount reached 95% by weight of the initial weight was read, and the residual amount was 95% of the initial weight at 250 ° C. by the Flynn-Wall-Ozawa method, which is one of the equivariant rate methods. Estimated time to be calculated.
 表1に示すように、主剤として、ビスフェノールA型エポキシ樹脂及びビスフェノールF型エポキシ樹脂をそれぞれ用い、硬化剤として、ビフェニルアラルキルフェノールを用いた比較例1及び2では、250℃で残存重量が95%となるまでの推定時間がそれぞれ、2.5時間及び2.0時間と極めて短いことがわかる。また、主剤として、ナフタレン型エポキシ樹脂を用い、硬化剤として、酸無水物を用いた比較例3でも、250℃で残存重量が95%となるまでの推定時間が、3時間と極めて短いことが確認された。
 これに対して、主剤として、ナフタレン型エポキシ樹脂を用い、硬化剤として異なる種類のビフェニルアラルキルフェノールをそれぞれ用いた実施例1及び2では、250℃で残存重量が95%となるまでの推定時間が55時間及び73時間となり、比較例1、2及び3に比べて、耐熱性が大幅に向上することが確認された。
 以上の結果より、ナフタレン型エポキシ樹脂とアラルキル樹脂を含有する本発明の粉体塗料の有効性が認められた。
As shown in Table 1, in Comparative Examples 1 and 2 using bisphenol A type epoxy resin and bisphenol F type epoxy resin as the main agent and biphenylaralkylphenol as the curing agent, the residual weight was 95% at 250 ° C. It can be seen that the estimated times to become 2.5 hours and 2.0 hours are extremely short, respectively. Further, even in Comparative Example 3 in which naphthalene type epoxy resin is used as the main agent and acid anhydride is used as the curing agent, the estimated time until the residual weight reaches 95% at 250 ° C. may be as short as 3 hours. confirmed.
On the other hand, in Examples 1 and 2 using naphthalene type epoxy resin as the main agent and different types of biphenylaralkylphenol as the curing agent, the estimated time until the remaining weight reaches 95% at 250 ° C. It was 55 hours and 73 hours, and it was confirmed that the heat resistance was significantly improved as compared with Comparative Examples 1, 2, and 3.
From the above results, the effectiveness of the powder coating of the present invention containing a naphthalene type epoxy resin and an aralkyl resin was confirmed.
 表2より、ビスフェノールA型エポキシ樹脂と酸無水物から得られる参考例1では、250℃で200時間及び1000時間保持後の引張り強さ維持率は、それぞれ36%及び18%と低いことがわかる。また、参考例1では、200時間保持後の引張り強さ維持率に対する1000時間保持後の引張り強さ維持率の比(1000時間保持後の引張り強さ維持率/200時間保持後の引張り強さ維持率)は、0.5であり、200時間経過後も塗膜の物性の低下が続いていることが確認された。これに対して、ナフタレン型エポキシ樹脂とビフェニルアラルキルフェノールを用いた本発明の実施例4では、200時間保持後及び1000時間保持後の引張り強さ維持率がそれぞれ63%及び59%であった。長期耐熱性を維持するためには、200時間後及び1000時間後ともに塗膜引張強さ維持率は50%以上であることが求められており、実施例4では、上記要求が満たされることがわかった。なお、実施例4では、1000時間保持後の引張り強さ維持率/200時間保持後の引張り強さ維持率の値が0.94と高く、200時間保持後は、高温下における塗膜の物性変化が著しく抑制されることが確認された。実施例4と同じ組成で、当量比を0.7又は1とした場合にも、200時間保持後及び1000時間保持後の塗膜引張り強さ維持率は50%を超え、1000時間保持後の引張り強さ維持率/200時間保持後の引張り強さ維持率の値は0.9を超え、同様に優れた長期耐熱性が得られることが確認された。
 主剤の構成を参考例1と変えた比較例4、5及び6では、250時間後及び1000時間後のいずれの引張り強さ維持率とも参考例より上昇することが確認された。ただし、比較例4、5及び6のいずれの試料でも1000時間後の維持率は50%未満であった。また、1000時間保持後の引張り強さ維持率/200時間保持後の引張り強さ維持率の値が0.83、0.83及び0.76と実施例4には及ばなかった。
 比較例4及び5では、主剤として、ビフェニルアラルキル型エポキシ樹脂を用いているが、十分な効果が得られなかった。このことから、本発明のように硬化剤として、アラルキル骨格を有する樹脂を用いることが有効と考えられる。
From Table 2, it can be seen that in Reference Example 1 obtained from bisphenol A type epoxy resin and acid anhydride, the tensile strength retention after holding at 250 ° C. for 200 hours and 1000 hours is as low as 36% and 18%, respectively. . In Reference Example 1, the ratio of the tensile strength maintenance ratio after holding for 1000 hours to the tensile strength maintenance ratio after holding for 200 hours (tensile strength maintenance ratio after holding for 1000 hours / tensile strength after holding for 200 hours) The maintenance ratio) was 0.5, and it was confirmed that the physical properties of the coating film continued to decline after 200 hours. On the other hand, in Example 4 of the present invention using a naphthalene type epoxy resin and biphenyl aralkyl phenol, the tensile strength maintenance ratios after holding for 200 hours and after holding for 1000 hours were 63% and 59%, respectively. In order to maintain long-term heat resistance, the coating film tensile strength maintenance rate is required to be 50% or more after both 200 hours and 1000 hours. In Example 4, the above requirement may be satisfied. all right. In Example 4, the value of the tensile strength maintenance ratio after holding for 1000 hours / the tensile strength maintenance ratio after holding for 200 hours is as high as 0.94. After holding for 200 hours, the physical properties of the coating film at high temperature It was confirmed that the change was remarkably suppressed. Even when the equivalent ratio is 0.7 or 1 with the same composition as in Example 4, the coating film tensile strength maintenance ratio after holding for 200 hours and after holding for 1000 hours exceeds 50%, and after holding for 1000 hours The value of tensile strength maintenance ratio / tensile strength maintenance ratio after holding for 200 hours exceeded 0.9, and it was confirmed that excellent long-term heat resistance was obtained similarly.
In Comparative Examples 4, 5 and 6 in which the composition of the main agent was changed from that of Reference Example 1, it was confirmed that both the tensile strength maintenance rates after 250 hours and 1000 hours were higher than those of the Reference Example. However, in any of the samples of Comparative Examples 4, 5, and 6, the retention rate after 1000 hours was less than 50%. Moreover, the values of the tensile strength maintenance ratio after holding for 1000 hours / the tensile strength maintenance ratio after holding for 200 hours were 0.83, 0.83, and 0.76, which were not as high as those of Example 4.
In Comparative Examples 4 and 5, biphenylaralkyl type epoxy resin was used as the main agent, but sufficient effects were not obtained. From this, it is considered effective to use a resin having an aralkyl skeleton as the curing agent as in the present invention.
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 

Claims (4)

  1.  ナフタレン型エポキシ樹脂及びアラルキル樹脂を含有することを特徴とする粉体塗料。 Powder coating characterized by containing naphthalene type epoxy resin and aralkyl resin.
  2.  前記アラルキル樹脂がフェノールアラルキル樹脂であることを特徴とする請求項1に記載の粉体塗料。 The powder paint according to claim 1, wherein the aralkyl resin is a phenol aralkyl resin.
  3.  前記粉体塗料のFlynn-Wall-Ozawa法で算出される、250℃において残存重量が初期重量の95%となるまでの所要時間が10時間以上であることを特徴とする請求項1又は2に記載の粉体塗料。 The time required for the residual weight to reach 95% of the initial weight at 250 ° C. calculated by the Flynn-Wall-Ozawa method of the powder coating material is 10 hours or more. The powder coating described.
  4.  請求項1~3のいずれか1項に記載の粉体塗料を塗装した塗膜を備えることを特徴とする成形品。 A molded product comprising a coating film coated with the powder paint according to any one of claims 1 to 3.
PCT/JP2015/082610 2014-11-20 2015-11-19 Powdered coating material WO2016080503A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016560293A JP6732657B2 (en) 2014-11-20 2015-11-19 Powder paint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-235943 2014-11-20
JP2014235943 2014-11-20

Publications (1)

Publication Number Publication Date
WO2016080503A1 true WO2016080503A1 (en) 2016-05-26

Family

ID=56014035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082610 WO2016080503A1 (en) 2014-11-20 2015-11-19 Powdered coating material

Country Status (3)

Country Link
JP (1) JP6732657B2 (en)
TW (1) TWI675076B (en)
WO (1) WO2016080503A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002208A (en) * 2015-06-11 2017-01-05 ソマール株式会社 Powder coating
WO2018163929A1 (en) * 2017-03-08 2018-09-13 三菱マテリアル株式会社 Low-refractive-index film-forming liquid composition and method of forming low-refractive-index film using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116514A (en) * 1992-10-02 1994-04-26 Nippon Kayaku Co Ltd Flexible powder coating composition
JPH1017793A (en) * 1996-07-02 1998-01-20 Mitsui Petrochem Ind Ltd Epoxy resin-based powder coating composition
JP2003286436A (en) * 2002-03-28 2003-10-10 Kansai Paint Co Ltd Thermosetting epoxy resin powder coating
JP2004256622A (en) * 2003-02-25 2004-09-16 Dainippon Ink & Chem Inc Curing agent for epoxy resin
JP2012229312A (en) * 2011-04-25 2012-11-22 Air Water Inc Phenolic polymer, and method for producing the same and use of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116514A (en) * 1992-10-02 1994-04-26 Nippon Kayaku Co Ltd Flexible powder coating composition
JPH1017793A (en) * 1996-07-02 1998-01-20 Mitsui Petrochem Ind Ltd Epoxy resin-based powder coating composition
JP2003286436A (en) * 2002-03-28 2003-10-10 Kansai Paint Co Ltd Thermosetting epoxy resin powder coating
JP2004256622A (en) * 2003-02-25 2004-09-16 Dainippon Ink & Chem Inc Curing agent for epoxy resin
JP2012229312A (en) * 2011-04-25 2012-11-22 Air Water Inc Phenolic polymer, and method for producing the same and use of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002208A (en) * 2015-06-11 2017-01-05 ソマール株式会社 Powder coating
WO2018163929A1 (en) * 2017-03-08 2018-09-13 三菱マテリアル株式会社 Low-refractive-index film-forming liquid composition and method of forming low-refractive-index film using same
CN110291165A (en) * 2017-03-08 2019-09-27 三菱综合材料株式会社 Low refractive index film forms the forming method of the low refractive index film with liquid composition and using the composition

Also Published As

Publication number Publication date
TWI675076B (en) 2019-10-21
JP6732657B2 (en) 2020-07-29
JPWO2016080503A1 (en) 2017-09-28
TW201619301A (en) 2016-06-01

Similar Documents

Publication Publication Date Title
EP3445797B1 (en) Two-component epoxy resin paint
TW201706476A (en) Fiber-reinforced plastic molding material, method for producing same, and molded article
JP5354723B2 (en) Epoxy resin powder coating for electronic parts and electronic parts using the same
JP6680523B2 (en) Powder paint
JP6968018B2 (en) Epoxy resin powder paint
TW201704334A (en) Epoxy resin composition
JP6602563B2 (en) Powder paint
JP6732657B2 (en) Powder paint
JP5792593B2 (en) Epoxy resin composition for dip coating
JP2008248100A (en) Epoxy resin powder coating composition
JP6691760B2 (en) Epoxy resin powder coating composition
JP2013203764A (en) Epoxy resin powder coating material and article coated by using the same
JP6742212B2 (en) Epoxy resin powder coating
JP2008056838A (en) Epoxy resin powder coating
JP6902839B2 (en) Powder paint
JP2007246783A (en) Epoxy resin powder coating and method for producing the same
JP2020169314A (en) Epoxy resin powder coating
JP2006233056A (en) Epoxy resin composition for powder coating
JP6179720B2 (en) Cyanate ester resin composition
JP2018145410A (en) Resin composition, chip resistor protective film, and chip resistor
JP2004292645A (en) Epoxy resin powder coating
JP4736213B2 (en) Epoxy resin powder coating composition
JP2005263939A (en) Epoxy resin powder coating
JP6342696B2 (en) Powder coating material and method for producing coating film using powder coating material
JP2004238555A (en) Thermosetting epoxy resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016560293

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860995

Country of ref document: EP

Kind code of ref document: A1