WO2016080260A1 - Communication system - Google Patents

Communication system Download PDF

Info

Publication number
WO2016080260A1
WO2016080260A1 PCT/JP2015/081722 JP2015081722W WO2016080260A1 WO 2016080260 A1 WO2016080260 A1 WO 2016080260A1 JP 2015081722 W JP2015081722 W JP 2015081722W WO 2016080260 A1 WO2016080260 A1 WO 2016080260A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
base station
transmission
terminal device
enb
Prior art date
Application number
PCT/JP2015/081722
Other languages
French (fr)
Japanese (ja)
Inventor
秀章 新明
佐藤 保
嵯峨 洋行
洋和 小林
勝利 石倉
山崎 敦史
賢一 飯島
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016080260A1 publication Critical patent/WO2016080260A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations

Definitions

  • the present invention relates to a communication system, and more particularly to a wireless communication system used in a mobile phone network.
  • LTE Long Term Evolution
  • a frequency allocation method for each cell using the same frequency between adjacent cells is adopted in order to improve the use efficiency of frequency resources.
  • 3GPP 3rd Generation Partnership Project
  • Rel. 10 (Release 10) employs inter-cell interference coordination (ICIC).
  • e-ICIC enhanced-ICIC
  • 3GPP introduction of a communication service using LTE (Long Term Evolution) or LTE-Advanced (LTE-A) in an unlicensed band (hereinafter referred to as this communication service) is under consideration.
  • the unlicensed band is a frequency band that can be used without requiring authorization from the authorities.
  • An unlicensed band is also called a license-free frequency band.
  • the frequency band that can be used by the authorization by the authorities is called a licensed band or a frequency band that requires a license.
  • 3GPP Rel For such communication services, 3GPP Rel. It will be discussed after 13th.
  • the above communication service can be realized by using a license-free band (for example, 5 GHz band, etc.) that is common throughout the world even for a communication carrier that does not have a license band.
  • this communication service uses a license-free band, it is expected to be provided free of charge or economically. For this reason, when a large number of users who desire a free or economical service access the wireless network nodes all at once, interference may occur and communication quality and communication speed may be reduced. Therefore, in Patent Literature 1, a macro base station does not transmit or transmit in a heterogeneous mixed network (heterogeneous network) where a terminal device used by a user is a macro base station (macro cell) or a low power node (small cell).
  • heterogeneous mixed network heterogeneous network
  • the first reception quality in the first transmission interval when the power is reduced and the second reception quality in the second transmission interval when the macro base station and the low power node transmit are measured and transmitted to the macro base station.
  • the station performs coordinated multipoint transmission, the station allocates the radio resources of the terminal device existing at the end of the coordinated area to the first transmission interval based on the first and second reception qualities, and reduces the degradation of characteristics due to interference and the throughput. It is described that the improvement is performed.
  • the terminal device needs to acquire both the reception quality when the macro cell is not transmitted or the transmission power is reduced and the reception quality when the macro cell and the small cell transmit. Cost.
  • a macro cell generally communicates with a plurality of user terminals, the time for processing a specific user terminal is limited.
  • the conventional communication system has a problem that a highly urgent process in which a large delay (for example, several minutes) is not allowed cannot be performed.
  • a lot of time is required, in an environment where the reception quality frequently and dynamically fluctuates, there is a problem that reception quality cannot be acquired and correct information cannot be acquired.
  • One aspect of the present invention is a communication system including a first base station apparatus, a second base station apparatus, and a terminal apparatus, wherein the terminal apparatus transmits a transmission wave from the first base station apparatus;
  • An interference recognizing unit for recognizing interference with a transmission wave from the second base station device, and when the interference recognizing unit recognizes the interference, a suppression instruction for instructing suppression of transmission is transmitted to the second base station device
  • An interference notification unit, and the second base station device is a communication system including an interference processing unit that suppresses transmission to the terminal device when receiving the suppression instruction from the terminal device.
  • interference in a terminal device can be reduced in a short time in cooperative communication in a heterogeneous mixed network.
  • FIG. 1 is a conceptual diagram illustrating an example of a communication system 1 according to the present embodiment.
  • the communication system 1 includes a small cell S-eNB, a macro cell M-eNB, and a terminal device UE.
  • a small cell is a base station device having a small communicable range (for example, a radius of several hundred m or less) within which a radio wave to be transmitted reaches.
  • Small cells are microcells with a radius of tens of meters to several hundreds of meters, picocells (also called nanocells) with a radius of tens of meters to tens of meters, and a number of radii of coverage It is a generic name for femtocells that are 10 cm to several meters.
  • An ellipse surrounding the small cell S-eNB indicates the small cell area SC that is the communicable range.
  • a macro cell is a base station apparatus that has a larger range (for example, a radius of several hundred m to several km) for transmitting radio waves than a small cell.
  • An ellipse surrounding the macro cell M-eNB indicates the macro cell area MC that is the communicable range.
  • the small cell S-eNB is a base station device of the operator X that provides a license-free band.
  • a terminal device UE User Equipment
  • the macro cell M-eNB is a base station device of the operator Y that provides a license band.
  • the terminal apparatus UE can communicate using a licensed band.
  • the terminal apparatus UE since the terminal apparatus UE is located in an area where the small cell area SC and the macro cell area MC overlap, communication using both the license-unnecessary band and the license band is performed. Can transmit and receive data.
  • a transmission wave from the small cell S-eNB and a transmission wave from the macro cell M-eNB may interfere with each other. This is because the band and timing of the transmission wave are individually determined in the small cell S-eNB and the macro cell M-eNB, and the terminal apparatus UE is not involved in the determination. Note that the operator Y who operates the macro cell M-eNB may install the small cell S-eNB in order to eliminate the insensitive area where the transmission wave from the macro cell M-eNB does not reach.
  • the operator Y since the operator Y is the same between the small cell S-eNB and the macro cell M-eNB, the operator Y knows in advance the possibility of interference between the transmission waves, and Measures can be taken to avoid the occurrence of Therefore, the occurrence of interference may occur frequently when the operator Y that operates the macro cell M-eNB is different from the operator X that installs the small cell S-eNB.
  • the terminal apparatus UE recognizes interference between the transmission wave from the macro cell M-eNB and the transmission wave from the small cell S-eNB.
  • the terminal apparatus UE transmits priority change instruction information for instructing the small cell S-eNB to suppress the transmission wave in order to prioritize communication with the macro cell M-eNB.
  • the small cell S-eNB suppresses a transmission wave to the terminal device UE in response to receiving the priority change instruction information from the terminal device UE.
  • the terminal apparatus UE can efficiently perform communication via the macro cell M-eNB.
  • FIG. 2 is a block diagram illustrating a configuration of the base station apparatus 10 according to the present embodiment.
  • the base station apparatus 10 includes a control unit 101, an interference recognition unit 102, an interference processing unit 103, a communication control unit 104, a storage unit 105, a reception unit 106, a transmission unit 107, and a power source 108. Each processing unit is connected to each other through a bus.
  • the control unit 101 manages and controls the operation of the entire base station apparatus 10.
  • the control unit 101 includes, for example, a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and the like.
  • the interference recognition unit 102 receives interference notification information indicating detection of interference from the terminal device UE via the reception unit 106. By acquiring the interference notification information, the interference recognition unit 102 recognizes the detection of interference in the terminal device UE. Note that the interference recognition unit 102 may detect the occurrence of interference between the transmission wave from the terminal device UE and another incoming wave based on the reception signal input from the reception unit 106. Other incoming waves are, for example, transmission waves from the small cell S-eNB when the base station device 10 is the macro cell M-eNB.
  • the interference processing unit 103 receives priority processing request information from the terminal device UE via the receiving unit 106.
  • the priority processing request information is information for requesting that the communication with the terminal device UE by the own device (for example, the macro cell M-eNB) is given priority over the communication by another device (for example, the small cell S-eNB). is there.
  • the interference processing unit 103 immediately transmits priority processing approval information to the terminal device UE.
  • the priority processing approval information is information indicating that a priority processing request for the device itself is approved for the terminal device UE that is a transmission source.
  • the interference processing unit 103 instructs the transmission unit 107 to prioritize communication with the terminal device UE. For example, the interference processing unit 103 increases the output power of the transmission wave transmitted to the terminal device UE with respect to the transmission unit 107.
  • the interference processing unit 103 when the interference processing unit 103 receives the priority change instruction information from the terminal device UE from the receiving unit 106, the interference processing unit 103 communicates with the terminal device UE to the transmitting unit 107. Is changed so as to lower the priority, that is, the transmission is instructed to be suppressed. Specifically, in that case, the interference processing unit 103 suppresses transmission of a transmission wave addressed to the terminal device UE. Suppression of transmission means reduction of output power or stop of transmission.
  • the communication control unit 104 controls communication with the terminal device UE. For example, the communication control unit 104 executes processing related to establishment or disconnection of the connection with the terminal device UE. Moreover, the communication control part 104 allocates the resource block (RB: Resource Block) used for transmission / reception of data between the unused frequency bands and the terminal device UE based on the quality information received from the terminal device UE.
  • the RB is a minimum unit of radio resources used for data transmission / reception, that is, a unit bandwidth (for example, 180 kHz) within a unit time (for example, 1 ms).
  • the quality information is information indicating reception quality for each RB, for example, CQI (Channel Quality Indicator).
  • the communication control unit 104 is based on transmission power information (for example, RNTP: Relative Narrowband TX Power) received from another base station apparatus 10.
  • transmission power information for example, RNTP: Relative Narrowband TX Power
  • RNTP Relative Narrowband TX Power
  • the storage unit 105 stores various data used in the operation of each unit of the base station device 10, data generated by the operation of each unit of the base station device 10, and software for operating the base station device 10.
  • the storage unit 105 includes, for example, a RAM (Random Access Memory), a ROM (Read-only Memory), and the like.
  • the receiving unit 106 receives a transmission wave transmitted from another device (for example, the terminal device UE), demodulates the received radio band transmission wave into a baseband received signal, and outputs the received signal to each unit in the base station apparatus 10. To do.
  • the transmission unit 107 modulates a baseband transmission signal input from each unit of the base station device 10 into a radioband transmission wave, and transmits the modulated transmission wave to another device (for example, the terminal device UE) via an antenna. Send to.
  • the reception unit 106 and the transmission unit 107 may be configured as a single communication interface.
  • the power source 108 supplies power necessary for the operation of the base station apparatus 10.
  • the power source 108 includes, for example, a power plug connected to a power line for receiving power supply, a battery that temporarily stores the supplied power, and the like.
  • FIG. 3 is a block diagram illustrating a configuration of the terminal device UE according to the present embodiment.
  • the terminal device UE includes a control unit 201, an interference recognition unit 202, an interference notification unit 203, a communication control unit 204, a storage unit 205, a reception unit 206, a transmission unit 207, and a power source 208.
  • Each processing unit is connected to each other through a bus.
  • the control unit 201 manages and controls the operation of the entire terminal device UE.
  • the control unit 201 includes, for example, a CPU, a DSP, and the like.
  • the interference recognition unit 202 determines whether interference has been detected as the reception state of the transmission wave from the base station apparatus 10. For example, the interference recognition unit 202 determines that interference has been detected when a reference signal reception quality (RSRP: Reference Signal Received Power) for each RB of a reception signal received by the reception unit 206 is higher than a predetermined RSRP threshold. To do.
  • RSRP is a ratio of reference signal received power (RSRP: Reference Signal Received Power) to received signal strength (RSSI: Received Signal Strength Indicator) of the entire system band.
  • the interference recognition unit 202 determines that interference is not detected when the RSRP is equal to or less than a predetermined RSRP threshold.
  • the interference recognition unit 202 outputs interference notification information indicating the detection of interference to the interference notification unit 203.
  • the interference notification unit 203 transmits the input interference notification information to the macro cell M-eNB via the transmission unit 207.
  • the interference notification unit 203 generates priority processing request information for requesting that communication with the own device (terminal device UE) by the macro cell M-eNB is given priority over communication by the small cell S-eNB.
  • the interference notification unit 203 transmits the generated priority processing request information to the macro cell M-eNB via the transmission unit 207.
  • the interference notification unit 203 receives the priority processing approval information from the macro cell M-eNB via the reception unit 206 as a response to the transmission of the priority processing request information. After receiving the priority processing approval information, the interference notification unit 203 generates priority change instruction information, and transmits the generated priority change instruction information to the small cell S-eNB via the transmission unit 207.
  • the priority change instruction information transmitted to the small cell S-eNB is information that instructs suppression of transmission from the small cell S-eNB.
  • the communication control unit 204 controls communication with the base station apparatus 10. For example, the communication control unit 204 performs processing related to location registration in a public wireless communication network connected to the macro cell M-eNB. In addition, the communication control unit 204 executes processing related to establishment and disconnection of connections with the macro cell M-eNB and the small cell S-eNB. Further, the communication control unit 204 measures the reception quality for each RB for each of the macro cell M-eNB and the small cell S-eNB, and generates quality information, for example, CQI indicating the measured reception quality. The communication control unit 204 transmits the generated quality information to each of the macro cell M-eNB and the small cell S-eNB via the transmission unit 207.
  • the storage unit 205 stores various data used in the operation of each unit of the terminal device UE, data generated by the operation of each unit of the terminal device UE, and software for operating the terminal device.
  • the storage unit 205 includes, for example, a RAM, a ROM, and the like.
  • the reception unit 206 receives the transmission wave transmitted by the base station apparatus 10, demodulates the received transmission wave of the radio band into a reception signal of the base band, and outputs it to each unit of the terminal apparatus UE.
  • the transmission unit 207 modulates a baseband transmission signal input from each unit of the terminal device UE into a radio band transmission wave, and transmits the modulated transmission wave to another device (for example, the terminal device UE) via an antenna. Send.
  • the reception unit 206 and the transmission unit 207 may be configured as a single communication interface.
  • the power supply 208 supplies power required for the operation of the terminal device UE.
  • the power source 208 includes, for example, a power plug connected to a power line for receiving power supply, a battery that temporarily stores the supplied power, and the like.
  • FIG. 4 is a sequence diagram illustrating an example of inter-cell interference control.
  • the communication control unit 104 of the macro cell M-eNB determines allocation of RBs used for communication with the terminal device UE. Thereafter, the process proceeds to step S102.
  • the communication control unit 104 of the macro cell M-eNB determines the transmission power for each allocated RB, for example, using a method prescribed in LTE.
  • the communication control unit 104 of the macro cell M-eNB determines whether or not the power ratio of the transmission power to the average transmission power of the entire system band for each RB exceeds a predetermined power ratio threshold.
  • the communication control unit 104 of the macro cell M-eNB sets the signal value to 1 for RBs for which the power ratio exceeds a predetermined ratio threshold, and sets the signal value to 0 for RBs for which the power ratio does not exceed the predetermined ratio threshold.
  • Transmission power information RNTP is generated.
  • the communication control unit 104 transmits the generated transmission power information RNTP to the small cell S-eNB. Thereafter, the process proceeds to step S103.
  • Step S103 The communication control unit 104 of the small cell S-eNB receives the transmission power information RNTP from the macro cell M-eNB. Thereafter, the process proceeds to step S104.
  • Step S104 The communication control unit 104 of the small cell S-eNB recognizes that there is a possibility of interference for RBs whose signal value indicated by the transmission power information RNTP is 1, and interference occurs for other RBs. Recognize that there is no possibility. Thereafter, the process proceeds to step S105.
  • Step S105 The communication control unit 104 of the small cell S-eNB determines that an RB whose signal value indicated by the transmission power information RNTP is 1 is not used for communication with the terminal apparatus UE.
  • the communication control unit 104 of the small cell S-eNB generates RB non-use notification information indicating an RB determined not to be used, and transmits the generated RB non-use notification information to the macro cell M-eNB. Thereafter, the process proceeds to step S106.
  • Step S106 The communication control unit 104 of the macro cell M-eNB receives RB non-use notification information from the small cell S-eNB, and the small cell S-eNB uses the RB allocated for communication with the terminal device UE. It is determined that no interference occurs. Thereafter, the communication control unit 104 of the macro cell M-eNB starts communication with the terminal device UE using the allocated RB. Thereafter, the process shown in FIG.
  • FIG. 5 is a sequence diagram showing communication processing according to the present embodiment. The process shown in FIG. 5 is started when the terminal apparatus UE is communicating via the macro cell M-eNB and the small cell S-eNB.
  • Step S201 The interference recognition unit 202 of the terminal device UE determines whether or not interference has been detected for transmission waves from the macro cell M-eNB and the small cell S-eNB. If interference is detected, the process proceeds to step S202.
  • Step S202 The interference notification unit 203 of the terminal apparatus UE transmits interference notification information for notifying the detection of interference to the macro cell M-eNB. Thereafter, the process proceeds to step S203.
  • Step S203 The interference notifying unit 203 of the terminal device UE transmits priority processing request information for requesting that the communication by the macro cell M-eNB has priority over the communication by the small cell S-eNB to the macro cell M-eNB. To do. Thereafter, the process proceeds to step S204.
  • Step S204 Immediately after receiving the priority processing request information from the terminal device UE, the interference processing unit 103 of the macro cell M-eNB transmits priority processing approval information indicating that the priority processing request has been approved to the terminal device UE. Thereafter, the process proceeds to step S205.
  • Step S205 After receiving the priority processing approval information from the macro cell M-eNB, the interference notification unit 203 of the terminal device UE transmits priority change instruction information indicating suppression of transmission to the small cell S-eNB. Thereafter, the process proceeds to step S206.
  • Step S206 The interference processing unit 103 of the small cell S-eNB reduces the output power of the transmission wave with respect to the transmission unit 107 of the own device. Note that the interference processing unit 103 of the small cell S-eNB may stop the transmission unit 107 of its own device from transmitting a transmission wave. Thereafter, the process proceeds to step S207.
  • Step S207 The interference processing unit 103 of the macro cell M-eNB increases the output power of the transmission wave to the transmission unit 107 of the own device. Thereafter, the process shown in FIG.
  • the terminal apparatus UE when the terminal apparatus UE recognizes interference mainly, the priority change instruction information is transmitted to the small cell S-eNB, and transmission from the small cell S-eNB to the terminal apparatus UE is suppressed.
  • the present invention is not limited to this.
  • the terminal apparatus UE may transmit priority change instruction information to the macro cell M-eNB instead of the small cell S-eNB.
  • the macro cell M-eNB suppresses a transmission wave to the terminal device UE in response to receiving the priority change instruction information from the terminal device UE. Thereby, the terminal device UE can efficiently perform communication via the small cell S-eNB.
  • the transmission of the priority change instruction information to the macro cell M-eNB may be limited to a case where it is difficult to start communication via the small cell S-eNB.
  • a separate process having a higher priority than the communication may be assigned and an application program related to the process may be executed. is there.
  • the communication system 1 has the interference recognition unit 202 that recognizes interference between a transmission wave from the macro cell M-eNB and a transmission wave from the small cell S-eNB in the terminal device UE.
  • the terminal apparatus UE includes an interference notification unit 203 that transmits priority change instruction information that instructs the small cell S-eNB to suppress transmission when the interference recognition unit 202 recognizes interference.
  • the small cell S-eNB includes an interference processing unit 103 that suppresses transmission to the terminal device UE when receiving priority change instruction information from the terminal device UE.
  • the interference notifying unit 203 of the terminal device UE transmits priority processing request information instructing transmission with priority over the small cell S-eNB. To do. With this configuration, since the ratio of the signal component to the interference component recognized by the terminal device UE increases, the communication quality can be further improved.
  • FIG. 6 is a conceptual diagram illustrating an example of the communication system 1 according to the present embodiment.
  • the communication system 1 includes a macro cell M-eNB, a small cell S-eNB, and three terminal apparatuses UE1 to UE3.
  • the macro cell area MC includes a small cell area SC.
  • the configurations of the terminal apparatuses UE1 to UE3 are the same as the configuration of the UE described above.
  • a solid line arrow indicates that communication is performed wirelessly between the macro cell M-eNB and each of the terminal apparatuses UE1 to UE3.
  • a broken arrow indicates that communication is performed wirelessly between the small cell S-eNB and each of the terminal apparatuses UE1 to UE3. Therefore, in each of the terminal apparatuses UE1, UE2, and UE3, in addition to interference between the transmission wave from the macro cell M-eNB and the transmission wave from the small cell S-eNB, the terminal apparatuses UE1 to UE3 from the small cell S-eNB Interference may occur between the transmission waves addressed to each of the.
  • the interference wave is suppressed in any one of the three terminal apparatuses UE1 to UE3 (for example, the terminal apparatus UE1), if the power of the transmission wave from the small cell S-eNB is simply reduced, the other terminal apparatuses (For example, communication with UE2, UE3) may be hindered.
  • the small cell S-eNB when interference is detected in the terminal device UE1, the small cell S-eNB forms a null NB in the direction of the terminal device UE1.
  • Null NB is a range in the direction in which the power of the transmission wave is lower than the surrounding area. The formation of the null NB corresponds to a process opposite to the beam forming that increases the power of the transmission wave in a specific direction.
  • the base station apparatus 10 means the small cell S-eNB shown in FIG.
  • FIG. 7 is a block diagram showing a configuration of the base station apparatus 10 according to the present embodiment.
  • the base station apparatus 10 according to the present embodiment is configured to further include a GPS (Global Positioning System) receiving unit 109 in the base station apparatus 10 shown in FIG.
  • the base station apparatus 10 includes N (an integer greater than or equal to a predetermined 2) antennas in the transmission unit 107, and can transmit transmission waves related to transmission signals of maximum N streams.
  • the base station apparatus 10 includes N antennas in the reception unit 106, and can receive reception signals of maximum N streams.
  • the communication control unit 104 can control transmission of a maximum N stream transmission signal and reception of a maximum N stream reception signal.
  • the communication control unit 104 performs transmission / reception with each of the plurality of terminal apparatuses UE by time division multiplexing (TDD: Time Division Duplex) in different time zones between the terminal apparatuses UE.
  • TDD Time Division Duplex
  • the operation of the transmission unit 107 may be controlled. Because of this control, transmission waves addressed to each of the plurality of terminal apparatuses UE are not transmitted at the same time, so that interference between these transmission waves does not occur.
  • the GPS receiver 109 receives signals arriving from at least four GPS satellites, and calibrates time information serving as a reference for synchronizing the signals. Then, the GPS receiving unit 109 accurately measures its own position (latitude, longitude) based on the arrival time difference between the received signals. The GPS receiving unit 109 generates self-position information indicating the measured self-position, and outputs the generated self-position information to the interference processing unit 103.
  • Self-position information is input from the GPS receiver 109 to the interference processor 103.
  • the interference processing unit 103 when receiving the priority change instruction information from the terminal apparatus UE, the interference processing unit 103 generates terminal position request information for requesting position information from the terminal apparatus UE, and generates the generated terminal position request information. Is transmitted to the terminal device UE via the transmission unit 107. As a response, the interference processing unit 103 receives terminal position information indicating the position of the terminal device UE from the terminal device UE via the receiving unit 106.
  • the interference processing unit 103 specifies the direction of the terminal device UE indicated by the terminal position information on the basis of its own position indicated by the self-position information, and stores a precoding matrix having directivity having null in the specified direction. Read from. The interference processing unit 103 multiplies the read precoding matrix by a transmission vector having the transmission signal of each stream as an element, and calculates a transmission vector having the transmission signal to each antenna as an element. The interference processing unit 103 outputs the calculated transmission vector to the transmission unit 107. Therefore, the transmitting unit 107 transmits a transmission wave in which a null is formed in the direction of the terminal device UE as a transmission wave based on a transmission signal that is an element of the calculated transmission vector.
  • FIG. 8 is a block diagram illustrating a configuration of the terminal device UE according to the present embodiment.
  • the terminal device UE according to the present embodiment is configured to further include a GPS receiving unit 209 in the terminal device UE shown in FIG.
  • the GPS receiving unit 209 receives signals arriving from at least four GPS satellites, respectively, and provides a reference for synchronizing the signals. The time information is corrected. Then, the GPS receiving unit 209 accurately measures its own position based on the arrival time difference between the received signals.
  • the GPS reception unit 209 generates terminal position information indicating the measured position of itself, and transmits the generated terminal position information to the base station device 10 via the transmission unit 207.
  • FIG. 9 is a sequence diagram showing communication processing according to the present embodiment.
  • the process shown in FIG. 9 includes the processes of steps S201 to S205 and the processes of steps S301 to S304.
  • the description of FIG. 5 is used for the processing of steps S201 to S205.
  • the processes of steps S301 to S303 are executed at the time of position registration immediately after activation of the terminal apparatus UE and at the time of changing the position registration area. Note that the processing in steps S301 to S303 may be repeated periodically.
  • Step S301 After receiving the priority change instruction information from the terminal device UE, the interference processing unit 103 of the small cell S-eNB generates terminal location request information, and transmits the generated terminal location request information to the terminal device UE. (Location information request). Thereafter, the process proceeds to step S302.
  • Step S302 When receiving the terminal position request information from the base station apparatus 10, the GPS receiving unit 209 of the terminal apparatus UE measures its own position based on a received signal that has arrived from a GPS satellite. Thereafter, the process proceeds to step S303.
  • Step S303 The GPS reception unit 209 of the terminal device UE generates terminal position information indicating the measured position of itself, and transmits the generated terminal position information to the small cell S-eNB. Then, after the interference is detected in step S201, the processing in steps S202 to S205 is executed. After the process of step 205 is completed, the process proceeds to step S304.
  • the interference processing unit 103 of the small cell S-eNB specifies the direction of the terminal device UE indicated by the terminal location information received from the terminal device UE with reference to the own location indicated by the self location information.
  • the interference processing unit 103 of the small cell S-eNB multiplies a transmission vector having the transmission signal of each stream as an element by a precoding matrix having directivity that forms nulls in the specified direction, and transmits the transmission signal to each antenna.
  • a transmission vector having the element as an element is calculated.
  • Each antenna of the transmission unit 107 transmits a transmission wave based on the transmission signal of each element of the calculated transmission vector. Thereafter, the process shown in FIG. 9 ends.
  • a plurality of precoding matrices that provide directivity possessed by a plurality of regions (sectors) having lower transmission power than the surroundings may be stored in advance in the storage unit 105 of the small cell S-eNB. Assume that the arrangement of the regions differs between different precoding matrices. Then, the interference processing unit 103 of the small cell S-eNB selects a precoding matrix having directivity included in each region of each of the plurality of terminal apparatuses UE.
  • the interference processing unit 103 multiplies the selected precoding matrix by a transmission vector having the transmission signal of each stream as an element, and calculates a transmission vector having the transmission signal to each antenna as an element. Therefore, as illustrated in FIG. 10, the position of the terminal device UE1 to be controlled is included in the region SB1 where the transmission power of the transmission wave from the small cell S-eNB is low. Therefore, in the terminal device UE1, in addition to the transmission wave addressed to the terminal device UE1 from the macro cell M-eNB, the transmission wave addressed to each of the terminal devices UE2 and UE3 from the small cell S-eNB, and the terminal device from the small cell S-eNB to the terminal device Interference with the transmission wave addressed to UE1 is suppressed.
  • the GPS receiving unit 209 of the terminal device UE may measure its own position at predetermined time intervals without receiving the terminal position request information. In that case, the interference processing unit 103 of the small cell S-eNB can omit generation and transmission of terminal location request information. Further, if the position of the small cell S-eNB according to the present embodiment is fixed and the self-location information is stored in the interference processing unit 103 in advance, the GPS receiving unit 109 can be omitted.
  • the terminal apparatus UE detects the position of the terminal apparatus UE, and transmits the position information indicating the detected position to the small cell S-eNB. Is provided.
  • the interference processing unit 103 makes the intensity of the transmission wave to the area including the position indicated by the position information received from the terminal apparatus UE lower than the intensity of the transmission wave to the other area.
  • the GPS receiving unit 209 is taken as an example of the position detecting unit that detects its own position, but the position detecting unit is not limited to this, and may be, for example, an optical position sensor or an infrared position. It may be a sensor.
  • region where interference is suppressed can be limited to the area
  • FIG. 11 is a conceptual diagram illustrating an example of the communication system 1 according to the present embodiment.
  • FIG. 11 shows that the terminal apparatuses UE1 to UE3 are located in the macro cell area MC at a certain point in time.
  • the terminal apparatus UE1 is located at the peripheral edge (cell edge) of the small cell area SC, and communication is performed between the macro cell M-eNB and the small cell S-eNB.
  • the terminal device UE2 communicates with the small cell S-eNB, but does not communicate with the macro cell M-eNB.
  • the terminal device UE3 communicates with the macro cell M-eNB, but does not communicate with the small cell S-eNB. In this situation, the transmission wave from the macro cell M-eNB interferes with the transmission wave from the small cell S-eNB in the terminal device UE1, and the terminal devices UE1 and UE2 located in the small cell area SC Interference may occur between the transmission waves addressed to each.
  • FIG. 12 is a timing chart showing an example of the communication status of the communication system 1 according to the present embodiment.
  • the upper and lower sections of FIG. 12 show whether or not each of the macro cell M-eNB and the small cell S-eNB is communicating, and the partner terminal apparatus in communication.
  • the macro cell M-eNB performs communication with the terminal apparatuses UE1, UE3, and UE3 during the periods of time t1 to t2, t2 to t3, and t3 to t4, respectively.
  • the small cell S-eNB does not communicate during the time t1 to t2 and t3 to t4, but communicates with the UE 2 during the time t2 to t3, but does not communicate with the small cell area SC. No communication is performed with the terminal device UE1 that is in the area. Therefore, no interference occurs between the transmission waves addressed from the small cell area SC to each of the terminal apparatuses UE1 and UE2. Thus, in the present embodiment, for example, when interference is recognized in the terminal device UE1, the small cell S-eNB stops transmission of a transmission signal to the terminal device UE1.
  • FIG. 13 is a sequence diagram illustrating communication processing according to the present embodiment.
  • the process shown in FIG. 13 includes the processes of steps S201, S202, and S207, and the processes of steps S401 to S404.
  • the description of FIG. 5 is used for the processing of steps S201 to S205.
  • the process proceeds to step S401 after the processes of steps S201 and S205 are completed.
  • Step S401 The interference notifying unit 203 of the terminal device UE generates temporary stop notification information indicating that a temporary stop of communication by the small cell S-eNB is notified, and the generated temporary stop notification information is displayed in the macro cell M- Send to eNB. Thereafter, the process proceeds to step S402.
  • Step S402 The interference processing unit 103 of the macro cell M-eNB immediately receives the temporary stop notification information from the terminal apparatus UE, and immediately after the reception of the temporary stop notification information indicating the approval of the temporary stop of communication with the small cell S-eNB. Is generated.
  • the interference processing unit 103 transmits the generated stop process approval information to the terminal device UE. Thereafter, the process proceeds to step S403.
  • Step S403 After receiving the stop process approval information from the macro cell M-eNB, the interference notification unit 203 of the terminal device UE generates transmission stop instruction information indicating stop of transmission, and the generated transmission stop instruction information is set to the small cell. Send to S-eNB. Thereafter, the process proceeds to step S404.
  • Step S404 The interference processing unit 103 of the small cell S-eNB cancels allocation of RBs related to communication with the terminal device UE that is the transmission source of the transmission stop instruction information to the communication control unit 104 of the own device. The communication with the terminal device UE is stopped by releasing the RB.
  • the macro cell M-eNB ends the process illustrated in FIG.
  • FIG. 14 is a timing chart showing another example of the communication status of the communication system 1 according to the present embodiment.
  • FIG. 14 shows the communication status shown in FIG. 14, whether the macro cell M-eNB and the small cell S-eNB are in communication when the communication process shown in FIG. In the example shown in FIG. 14, between times t1 and t2, the macro cell M-eNB and the small cell S-eNB communicate with the terminal devices UE3 and UE2, respectively.
  • the macro cell M-eNB and the small cell S-eNB each start communication with the terminal device UE1.
  • the interference recognition unit 202 of the terminal apparatus UE1 detects interference (step S201).
  • the interference notification unit 203 of the terminal device UE1 executes steps S202, S401, and S402 with the macro cell M-eNB.
  • the interference notification unit 203 of the terminal device UE1 transmits transmission stop instruction information to the small cell S-eNB (step S403).
  • the interference processing unit 103 of the small cell S-eNB stops communication with the terminal device UE (step S404).
  • the terminal apparatus UE1 performs communication with the macro cell M-eNB without causing interference.
  • the macro cell M-eNB and the small cell S-eNB communicate with the terminal apparatuses UE3 and UE2, respectively. In this case, since the counterparts of the macro cell M-eNB and the small cell S-eNB are different from each other, there is no interference between the transmission waves addressed to each.
  • the present invention is not limited to this.
  • the number of terminal devices may be two, or four or more.
  • the macro cell M-eNB and the small cell S-eNB change the communication destination terminal apparatus UE from the terminal apparatus UE located in each area to the predetermined time intervals.
  • a communication control unit 104 is provided. Further, the interference processing unit 103 of the small cell S-eNB stops communication with the terminal apparatus UE that has transmitted the transmission stop instruction information to the communication control unit 104.
  • the small cell S-eNB Communication with the detected terminal device UE stops. Therefore, when there are a plurality of terminal apparatuses UE located in the small cell S-eNB, communication can be performed in a state where there is no interference between transmission waves addressed to each of the plurality of terminal apparatuses UE.
  • FIG. 15 is a conceptual diagram illustrating an example of the communication system 1 according to the present embodiment.
  • the communication system 1 includes one macro cell M-eNB and two small cells S-eNB1 and S-eNB2.
  • the small cell areas S-C1 and S-C2 are the cell areas of the small cells S-eNB1 and S-eNB2, and a part of them overlaps each other. Further, the small cell areas S-C1 and S-C2 overlap with the macro cell area MC, respectively.
  • FIG. 1 The communication system 1 includes one macro cell M-eNB and two small cells S-eNB1 and S-eNB2.
  • the small cell areas S-C1 and S-C2 are the cell areas of the small cells S-eNB1 and S-eNB2, and a part of them overlaps each other. Further, the small cell areas S-C1 and S-C2 overlap with the macro cell area MC, respectively.
  • two terminal apparatuses UE1 and UE2 are located in an area where the small cell areas S-C1 and S-C2 overlap each other.
  • the terminal device UE1 transmits a transmission wave from the small cell S-eNB1 addressed to the own device, and the terminal device. Interference with a transmission wave from the small cell S-eNB 2 addressed to the UE 2 may occur. Further, in the terminal device UE2, there may be interference between a transmission wave from the small cell S-eNB2 addressed to the own device and a transmission wave from the small cell S-eNB1 addressed to the terminal device UE1.
  • the communication system 1 has a configuration described below.
  • Each of the terminal devices UE1 and UE2 detects the position of the own device in the GPS receiving unit 209, and transmits terminal position information indicating the detected position to the small cells S-eNB1 and S-eNB2 that are communicating with the respective devices.
  • the interference processing unit 103 determines the intensity of the transmission wave to the area including the position indicated by the terminal position information received from each of the terminal apparatuses UE1 and UE2 Higher than the strength of.
  • the interference processing unit 103 can use a technique similar to the technique for reducing the intensity of the transmission wave described with reference to FIG. 9 as a technique for increasing the intensity of the transmission wave.
  • the small cells S-eNB1 and S-eNB2 respectively transmit regions (beams and sectors) SB1 and SB2 having higher transmission wave strengths than the surrounding regions to the terminal devices UE1 and UE2.
  • the strengths of the transmitted waves from the small cells S-eNB2 and S-eNB1 addressed to the terminal devices UE2 and UE1 respectively arriving at the terminal devices UE1 and UE2 are small cells S-eNB1 and S-eNB2 related to communication. It becomes relatively lower than the intensity of the transmitted wave from.
  • the effect increases as the directions between the terminal apparatuses UE1 and UE2 from the small cells S-eNB1 and S-eNB2 are separated from each other, or as the region where the intensity of the transmission wave is high is narrow.
  • FIG. 17 is a block diagram of the communication system 1 according to this modification.
  • the communication system 1 includes one macro cell M-eNB, two small cells S-eNB1, S-eNB2, and an operation management unit 30.
  • the operation management unit 30 may be configured as a separate device from the macro cell M-eNB, the small cell S-eNB1, and the S-eNB 2, or may be configured as a part of the macro cell M-eNB.
  • the operation management unit 30 manages the operations of the small cells S-eNB1 and S-eNB2. As described with reference to FIGS. 13 and 14, the small cells S-eNB1 and S-eNB2 use the communication control unit 104 to select a communication destination terminal apparatus UE from among the existing terminal apparatuses UE for a predetermined time. Set for each. In this modification, before starting data transmission to the communication destination determined by the communication control unit 104, the interference processing unit 103 transmits transmission permission request information for requesting permission to transmit data to the communication destination. Generate. The interference processing unit 103 transmits the generated transmission permission request information to the operation management unit 30.
  • the interference processing unit 103 causes the communication control unit 104 to start transmitting data to the communication destination.
  • the communication control unit 104 transmits transmission start information and transmission end information to the operation management unit 30 at the start of data transmission and at the end of transmission, respectively.
  • the operation management unit 30 determines whether data is transmitted in each of the small cells S-eNB1 and S-eNB2 based on the transmission management information and the transmission end information received from the small cells S-eNB1 and S-eNB2, respectively. Can be determined.
  • the operation management unit 30 receives the transmission permission request information from the small cells S-eNB1 and S-eNB2, and any of the small cells other than the small cell (for example, S-eNB1) that transmitted the transmission permission request information (for example, S-eNB1) , S-eNB 2) determines whether data is being transmitted. When it is determined that no small cell (for example, S-eNB 2) is transmitting data, the operation management unit 30 immediately permits transmission and transmits the transmission permission request information to the small cell (for example, S-eNB 1).
  • the operation management unit 30 that does not cause interference in the terminal devices UE1 and UE2 determines that any of the small cells (for example, the S-eNB 2) is also transmitting data, the data transmission ends. Wait until Thereafter, the operation management unit 30 permits transmission and transmits the transmission permission information to the small cell (for example, S-eNB 1) that has transmitted the transmission permission request information.
  • the small cell for example, S-eNB 1
  • the operation management unit 30 When the operation management unit 30 simultaneously receives transmission permission request information from the small cells S-eNB1 and S-eNB2, the operation management unit 30 sets the transmission order for transmitting the transmission permission information between the small cells S-eNB1 and S-eNB2. Determine. For example, the operation management unit 30 increases the transmission order as the priority of the transmission data related to the transmission permission request information increases.
  • the priority of transmission data is so high that high real-time property and urgency are required.
  • the priority of moving images is higher than that of text and still images
  • the priority of calling voice is higher than that of moving images.
  • the priority of the emergency call is higher than the normal information transmission.
  • the operation management unit 30 advances the transmission order of the transmission permission information related to the terminal device UE that has not detected the interference rather than the transmission permission information related to the terminal device UE that has detected the interference.
  • the operation management unit 30 sets the transmission order earlier in the transmission permission information related to the terminal apparatus UE that has detected the interference as the terminal apparatus UE has a lower interference detection frequency.
  • the operation management unit 30 can determine the presence / absence of interference detection and the frequency of interference detection for each terminal device UE by receiving the interference notification information transmitted by the terminal device UE that has detected interference.
  • FIG. 18 is a timing chart showing an example of the communication status of the communication system 1 according to this modification. 18 shows whether or not each small cell S-eNB1 and S-eNB2 is communicating, and the partner terminal device during communication.
  • the small cell S-eNB1 performs communication with the terminal device UE1 during the period of time t1 to t2, and t3 to t4, and does not perform communication during the period of time t2 to t3.
  • the small cell S-eNB2 performs communication with the terminal device UE2 during the period of time t2 to t3, and does not perform communication during the period of time t1 to t2 and t3 to t4. Therefore, in the terminal devices UE1 and UE2 that are located in an area where the small cell areas S-C1 and S-C2 overlap, transmission waves addressed to the respective devices from the small cells S-eNB1 and S-eNB2, Interference with the transmission waves from the small cells S-eNB2 and S-eNB1 is avoided.
  • the present embodiment has exemplified the case where the number of small cells where the small cell areas overlap each other is mainly two in the macro cell area MC, the present invention is not limited to this.
  • the number of small cells where the small cell areas overlap may be three or more, and the number of regions where the small cell areas overlap may be two or more.
  • the macro cell M-eNB may be omitted.
  • the communication system 1 includes a plurality of small cells S-eNB1 and S-eNB each having a region where the small cell areas S-C1 and S-C2 overlap each other.
  • the interference processing unit 103 of each of the small cells S-eNB1 and S-eNB is different in time or space for each of the terminal apparatuses UE1 and UE2.
  • the transmission of data to one of the terminal devices UE1 and UE2 is prioritized over other terminal devices.
  • the terminal devices UE1 and UE2 that are located in the area where the small cell areas S-C1 and S-C2 overlap each other cause interference of transmission waves from the small cells S-eNB2 and S-eNB1, respectively. Communication is possible in situations where there is no such situation.
  • a communication system including a first base station apparatus, a second base station apparatus, and a terminal apparatus, wherein the terminal apparatus transmits a transmission wave from the first base station apparatus, and the second base station An interference recognition unit for recognizing interference with a transmission wave from the device, and an interference notification unit for transmitting a suppression instruction for instructing suppression of transmission to the second base station device when the interference recognition unit recognizes interference, And the second base station device includes an interference processing unit that suppresses transmission to the terminal device when receiving the suppression instruction from the terminal device.
  • the interference notification unit of the terminal device transmits a priority processing request instructing the first base station device to perform transmission with priority over the second base station device.
  • the terminal device detects a position of the device itself, and transmits position information indicating the position to the second base station device.
  • the first base station device and the second base station device each include a communication control unit that determines a communication destination terminal device from a terminal device residing in each of the first base station device and the second base station device.
  • the interference processing unit causes the communication control unit to stop communication with the terminal device that has transmitted the suppression instruction.
  • the interference processing unit of the second base station device is: The communication system according to any one of (1) to (4), wherein transmission of data to one of the terminal devices is given priority over other terminal devices at different times or in a space between the terminal devices.
  • An interference recognition unit for recognizing interference between a transmission wave from the first base station device and a transmission wave from the second base station device, and when the interference recognition unit recognizes interference, the second base station An interference notification unit that transmits a suppression instruction that instructs the apparatus to suppress transmission.
  • a communication method in a terminal apparatus wherein an interference recognition process for recognizing interference between a transmission wave from a first base station apparatus and a transmission wave from a second base station apparatus, and interference in the interference recognition process
  • An interference recognition procedure for recognizing interference between a transmission wave from the first base station apparatus and a transmission wave from the second base station apparatus having a cell area smaller than that of the first base station apparatus in the computer of the terminal apparatus
  • a part of the base station device 10 for example, the control unit 101, the interference recognition unit 102, the interference processing unit 103 and the communication control unit 104, a part of the terminal device UE, for example, the control unit 201, the interference recognition unit 202, the interference
  • the notification unit 203 and the communication control unit 204 may be realized by a computer.
  • the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
  • Each functional block of the base station apparatus 10 and a part of the terminal apparatus UE may be individually made into a processor, or part or all of them may be integrated into a processor.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention is provided with a first base station device, a second base station device, and a terminal device. The terminal device recognizes interference between transmission waves from the first base station device and transmission waves from the second base station device, and transmits a suppression instruction instructing the second base station device to suppress transmission. When receiving the suppression instruction from the terminal device, the second base station device suppresses transmissions to the terminal device.

Description

通信システムCommunications system
 本発明は、通信システム、特に携帯電話網で用いられる無線通信システムに関する。
 本願は、2014年11月21日に、日本に出願された特願2014-236507号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a communication system, and more particularly to a wireless communication system used in a mobile phone network.
This application claims priority based on Japanese Patent Application No. 2014-236507 filed in Japan on November 21, 2014, the contents of which are incorporated herein by reference.
 無線通信システム、例えば、LTE(Long Term Evolution)では周波数リソースの利用効率を向上させるために、隣接セル同士で同一の周波数を用いる1セル毎の周波数割り当て方式を採用している。セル間の干渉が大きいセル境界付近では、スループットを改善するために、3GPP(3rd Generation Partnership Project)Rel.10(Release 10)では、セル間干渉制御(ICIC:Inter-Cell Interference Coordination)が採用されている。また、Rel.11では、ICICを拡張した方式である、e-ICIC(enhanced-ICIC)が採用されている。他方、3GPPでは、ライセンス不要バンド(unlicensed band)でLTE(Long Term Evolution)またはLTE-Advanced(LTE-A)を使用した通信サービス(以下、本通信サービス、と呼ぶ)の導入が検討されている。ライセンス不要バンドは、当局による許認可を要することなく利用できる周波数帯域である。ライセンス不要バンドは、免許不要の周波数帯域とも呼ばれる。これに対し、当局による許認可により利用できる周波数帯域は、ライセンスバンド(licensed band)、又は、免許を要する周波数帯域と呼ばれる。このような通信サービスに関しては、3GPPのRel.13以降で議論されることになっている。 In a wireless communication system, for example, LTE (Long Term Evolution), a frequency allocation method for each cell using the same frequency between adjacent cells is adopted in order to improve the use efficiency of frequency resources. In the vicinity of a cell boundary where interference between cells is large, in order to improve throughput, 3GPP (3rd Generation Partnership Project) Rel. 10 (Release 10) employs inter-cell interference coordination (ICIC). Also, Rel. 11 adopts e-ICIC (enhanced-ICIC), which is an extended ICIC system. On the other hand, in 3GPP, introduction of a communication service using LTE (Long Term Evolution) or LTE-Advanced (LTE-A) in an unlicensed band (hereinafter referred to as this communication service) is under consideration. . The unlicensed band is a frequency band that can be used without requiring authorization from the authorities. An unlicensed band is also called a license-free frequency band. On the other hand, the frequency band that can be used by the authorization by the authorities is called a licensed band or a frequency band that requires a license. For such communication services, 3GPP Rel. It will be discussed after 13th.
 上記の通信サービスは、ライセンスバンドを所有しない通信事業者であっても、世界各国共通のライセンス不要バンド(例えば、5GHz帯、等)を使用することによって可能となる。また、本通信サービスは、ライセンス不要バンドを利用するため、無償または経済的に提供されることが期待される。そのため、無償または経済的なサービスを希望する多数のユーザが無線ネットワークノードに一斉にアクセスすると、干渉が発生し通信品質や通信速度が低下することがある。
 そこで、特許文献1には、ユーザが利用する端末装置がマクロ基地局(マクロセル)や低電力ノード(スモールセル)との異種混合ネットワーク(ヘテロジニアスネットワーク)での、マクロ基地局が無送信又は送信電力減のときの第1送信区間における第1受信品質とマクロ基地局及び低電力ノードが送信するときの第2送信区間における第2受信品質とを測定してマクロ基地局へ送信し、マクロ基地局は協調マルチポイント送信を行う際に第1及び第2受信品質に基づいて、協調エリアの端に存在する端末装置の無線リソースを第1送信区間に割り当てて、干渉による特性劣化の軽減とスループットの向上を行うことが記載されている。
The above communication service can be realized by using a license-free band (for example, 5 GHz band, etc.) that is common throughout the world even for a communication carrier that does not have a license band. In addition, since this communication service uses a license-free band, it is expected to be provided free of charge or economically. For this reason, when a large number of users who desire a free or economical service access the wireless network nodes all at once, interference may occur and communication quality and communication speed may be reduced.
Therefore, in Patent Literature 1, a macro base station does not transmit or transmit in a heterogeneous mixed network (heterogeneous network) where a terminal device used by a user is a macro base station (macro cell) or a low power node (small cell). The first reception quality in the first transmission interval when the power is reduced and the second reception quality in the second transmission interval when the macro base station and the low power node transmit are measured and transmitted to the macro base station. When the station performs coordinated multipoint transmission, the station allocates the radio resources of the terminal device existing at the end of the coordinated area to the first transmission interval based on the first and second reception qualities, and reduces the degradation of characteristics due to interference and the throughput. It is described that the improvement is performed.
特開2013-42342号公報JP 2013-42342 A
 しかしながら、上述した処理において、端末装置は、マクロセルが無送信又は送信電力減のときの受信品質と、マクロセル及びスモールセルが送信するときの受信品質の双方を取得する必要があるので多くの時間を要する。また、マクロセルは、一般に複数のユーザ端末と通信するため、特定のユーザ端末について処理を行う時間が限定される。加えて、マクロセルが受信品質情報に基づいて新たなリソース割り当てを決定するためにも時間を要し、決定した割り当て情報をマクロセルからスモールセル及び端末装置に送信するための時間も要する。そのため、従来の通信システムでは、大きな遅延(例えば、数分秒)が許されない緊急性の高い処理を行うことができないという課題が生じていた。また、多くの時間を要することにより、受信品質が頻繁かつ動的に変動する環境では、受信品質の取得が追い付かず、正しい情報取得ができないという課題も生じる。 However, in the above-described processing, the terminal device needs to acquire both the reception quality when the macro cell is not transmitted or the transmission power is reduced and the reception quality when the macro cell and the small cell transmit. Cost. Moreover, since a macro cell generally communicates with a plurality of user terminals, the time for processing a specific user terminal is limited. In addition, it takes time for the macro cell to determine a new resource allocation based on the reception quality information, and it also takes time for the determined allocation information to be transmitted from the macro cell to the small cell and the terminal device. For this reason, the conventional communication system has a problem that a highly urgent process in which a large delay (for example, several minutes) is not allowed cannot be performed. In addition, since a lot of time is required, in an environment where the reception quality frequently and dynamically fluctuates, there is a problem that reception quality cannot be acquired and correct information cannot be acquired.
 異種混合ネットワークでの協調通信においては、干渉低減の処理に時間を要するとの課題も生ずる。 In cooperative communication in heterogeneous networks, there is a problem that it takes time to reduce interference.
 本発明の一態様は、第1基地局装置と、第2の基地局装置と、端末装置とを備える通信システムであって、前記端末装置は、前記第1基地局装置からの送信波と、前記第2基地局装置からの送信波との干渉を認識する干渉認識部と、前記干渉認識部が干渉を認識するとき、前記第2基地局装置に送信の抑制を指示する抑制指示を送信する干渉通知部と、を備え、前記第2基地局装置は、前記端末装置から前記抑制指示を受信するとき、前記端末装置への送信を抑制する干渉処理部を備える通信システムである。 One aspect of the present invention is a communication system including a first base station apparatus, a second base station apparatus, and a terminal apparatus, wherein the terminal apparatus transmits a transmission wave from the first base station apparatus; An interference recognizing unit for recognizing interference with a transmission wave from the second base station device, and when the interference recognizing unit recognizes the interference, a suppression instruction for instructing suppression of transmission is transmitted to the second base station device An interference notification unit, and the second base station device is a communication system including an interference processing unit that suppresses transmission to the terminal device when receiving the suppression instruction from the terminal device.
 本発明によれば、異種混合ネットワークでの協調通信において短時間で端末装置での干渉を低減することができる。 According to the present invention, interference in a terminal device can be reduced in a short time in cooperative communication in a heterogeneous mixed network.
第1の実施形態に係る通信システムの一例を示す概念図である。It is a key map showing an example of a communications system concerning a 1st embodiment. 第1の実施形態に係る基地局装置の構成を示すブロック図である。It is a block diagram which shows the structure of the base station apparatus which concerns on 1st Embodiment. 第1の実施形態に係る端末装置の構成を示すブロック図である。It is a block diagram which shows the structure of the terminal device which concerns on 1st Embodiment. セル間干渉制御の例を示すシーケンス図である。It is a sequence diagram which shows the example of inter-cell interference control. 第1の実施形態に係る通信処理を示すシーケンス図である。It is a sequence diagram which shows the communication process which concerns on 1st Embodiment. 第2の実施形態に係る通信システムの一例を示す概念図である。It is a conceptual diagram which shows an example of the communication system which concerns on 2nd Embodiment. 第2の実施形態に係る基地局装置の構成を示すブロック図である。It is a block diagram which shows the structure of the base station apparatus which concerns on 2nd Embodiment. 第2の本実施形態に係る端末装置の構成を示すブロック図である。It is a block diagram which shows the structure of the terminal device which concerns on 2nd this embodiment. 第2の実施形態に係る通信処理を示すシーケンス図である。It is a sequence diagram which shows the communication process which concerns on 2nd Embodiment. 第2の実施形態に係る通信システムの他の例を示す概念図である。It is a conceptual diagram which shows the other example of the communication system which concerns on 2nd Embodiment. 第3の実施形態に係る通信システムの一例を示す概念図である。It is a conceptual diagram which shows an example of the communication system which concerns on 3rd Embodiment. 第3の実施形態に係る通信システムの通信状況の一例を示すタイミングチャートである。It is a timing chart which shows an example of the communication situation of the communications system concerning a 3rd embodiment. 第3の実施形態に係る通信処理を示すシーケンス図である。It is a sequence diagram which shows the communication process which concerns on 3rd Embodiment. 第3の実施形態に係る通信システムの通信状況の他の例を示すタイミングチャートである。It is a timing chart which shows the other example of the communication condition of the communication system which concerns on 3rd Embodiment. 第4の実施形態に係る通信システムの一例を示す概念図である。It is a conceptual diagram which shows an example of the communication system which concerns on 4th Embodiment. 第4の実施形態に係るスモールセルの処理を示す概念図である。It is a conceptual diagram which shows the process of the small cell which concerns on 4th Embodiment. 第4の実施形態の変形例に係る通信システムのブロック図である。It is a block diagram of the communication system which concerns on the modification of 4th Embodiment. 第4の実施形態の変形例に係る通信システムの通信状況の一例を示すタイミングチャートである。It is a timing chart which shows an example of the communication condition of the communication system which concerns on the modification of 4th Embodiment.
(第1の実施形態)
 以下、図面を参照しながら本発明の第1の実施形態について説明する。
 図1は、本実施形態に係る通信システム1の一例を示す概念図である。
 通信システム1は、スモールセルS-eNB、マクロセルM-eNB、及び端末装置UEを含んで構成される。スモールセルとは、送信する電波が届く通信可能範囲が小さい(例えば、半径数百m以下)基地局装置である。スモールセルは、通信可能範囲の半径が数十m~数百mであるマイクロセル、通信可能範囲の半径が数m~数十mであるピコセル(ナノセルとも呼ばれる)及び通信可能範囲の半径が数十cm~数mであるフェムトセルの総称である。スモールセルS-eNBを囲む楕円は、その通信可能範囲であるスモールセルエリアS-Cを示す。マクロセルとは、スモールセルよりも送信する電波が届く範囲が大きい(例えば、半径数百m~数km)基地局装置である。マクロセルM-eNBを囲む楕円は、その通信可能範囲であるマクロセルエリアM-Cを示す。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a conceptual diagram illustrating an example of a communication system 1 according to the present embodiment.
The communication system 1 includes a small cell S-eNB, a macro cell M-eNB, and a terminal device UE. A small cell is a base station device having a small communicable range (for example, a radius of several hundred m or less) within which a radio wave to be transmitted reaches. Small cells are microcells with a radius of tens of meters to several hundreds of meters, picocells (also called nanocells) with a radius of tens of meters to tens of meters, and a number of radii of coverage It is a generic name for femtocells that are 10 cm to several meters. An ellipse surrounding the small cell S-eNB indicates the small cell area SC that is the communicable range. A macro cell is a base station apparatus that has a larger range (for example, a radius of several hundred m to several km) for transmitting radio waves than a small cell. An ellipse surrounding the macro cell M-eNB indicates the macro cell area MC that is the communicable range.
 スモールセルS-eNBは、ライセンス不要バンドを提供する事業者Xの基地局装置である。スモールセルエリアS-C内では、端末装置UE(User Equipment)はライセンス不要バンド(unlicensed band)を用いて通信可能である。マクロセルM-eNBは、ライセンスバンドを提供する事業者Yの基地局装置である。
 マクロセルエリアM-C内では、端末装置UEはライセンスバンド(licensed band)を用いて通信可能である。図1に示す例では、端末装置UEは、スモールセルエリアS-CとマクロセルエリアM-Cとが重複する領域内に所在しているので、ライセンス不要バンドとライセンスバンドの両者を用いての通信によりデータを送受信可能である。端末装置UEがその両者を用いて通信を行うと、スモールセルS-eNBからの送信波とマクロセルM-eNBからの送信波とが干渉することがある。送信波の帯域やタイミングは、スモールセルS-eNB及びマクロセルM-eNBにおいて個々に定められ、端末装置UEはその決定に関与しないためである。
 なお、マクロセルM-eNBを運用する事業者Yが、マクロセルM-eNBからの送信波が届かない不感地域を解消するためにスモールセルS-eNBを設置することもある。
 その場合には、スモールセルS-eNBとマクロセルM-eNBとの間で、事業者Yが同一となるので、事業者Yは、予め送信波同士で干渉が発生する可能性を把握し、干渉の発生を回避するための措置を講ずることができる。よって、干渉の発生は、マクロセルM-eNBを運用する事業者Yと、スモールセルS-eNBを設置する事業者Xとが異なる場合に頻発する可能性がある。
The small cell S-eNB is a base station device of the operator X that provides a license-free band. In the small cell area SC, a terminal device UE (User Equipment) can communicate using an unlicensed band. The macro cell M-eNB is a base station device of the operator Y that provides a license band.
In the macro cell area MC, the terminal apparatus UE can communicate using a licensed band. In the example shown in FIG. 1, since the terminal apparatus UE is located in an area where the small cell area SC and the macro cell area MC overlap, communication using both the license-unnecessary band and the license band is performed. Can transmit and receive data. When the terminal device UE performs communication using both of them, a transmission wave from the small cell S-eNB and a transmission wave from the macro cell M-eNB may interfere with each other. This is because the band and timing of the transmission wave are individually determined in the small cell S-eNB and the macro cell M-eNB, and the terminal apparatus UE is not involved in the determination.
Note that the operator Y who operates the macro cell M-eNB may install the small cell S-eNB in order to eliminate the insensitive area where the transmission wave from the macro cell M-eNB does not reach.
In that case, since the operator Y is the same between the small cell S-eNB and the macro cell M-eNB, the operator Y knows in advance the possibility of interference between the transmission waves, and Measures can be taken to avoid the occurrence of Therefore, the occurrence of interference may occur frequently when the operator Y that operates the macro cell M-eNB is different from the operator X that installs the small cell S-eNB.
 ここで、端末装置UEは、マクロセルM-eNBからの送信波と、スモールセルS-eNBからの送信波のとの干渉を認識する。端末装置UEは、干渉を認識したとき、マクロセルM-eNBとの通信を優先させるため、スモールセルS-eNBへ送信波の抑制を指示する優先度変更指示情報を送信する。スモールセルS-eNBは、端末装置UEから優先度変更指示情報を受信したことに応じて、端末装置UEへの送信波を抑制する。このとき、スモールセルS-eNBからの送信波が停止、または送信レベルが低減されるので、端末装置UEは、マクロセルM-eNBを介した通信を効率的に行うことができる。 Here, the terminal apparatus UE recognizes interference between the transmission wave from the macro cell M-eNB and the transmission wave from the small cell S-eNB. When recognizing the interference, the terminal apparatus UE transmits priority change instruction information for instructing the small cell S-eNB to suppress the transmission wave in order to prioritize communication with the macro cell M-eNB. The small cell S-eNB suppresses a transmission wave to the terminal device UE in response to receiving the priority change instruction information from the terminal device UE. At this time, since the transmission wave from the small cell S-eNB is stopped or the transmission level is reduced, the terminal apparatus UE can efficiently perform communication via the macro cell M-eNB.
(基地局装置の構成)
 次に、マクロセルM-eNB、スモールセルS-eNBの構成について説明する。マクロセルM-eNBの構成は、スモールセルS-eNBの構成と同様である。以下の説明では、マクロセルM-eNBとスモールセルS-eNBの両者を特に区別しない場合、その両者又はいずれか一方を基地局装置10と総称する。
 図2は、本実施形態に係る基地局装置10の構成を示すブロック図である。
 基地局装置10は、制御部101、干渉認識部102、干渉処理部103、通信制御部104、記憶部105、受信部106、送信部107、及び電源108を含んで構成される。各処理部は、バスを通じて相互に接続されている。
(Configuration of base station equipment)
Next, configurations of the macro cell M-eNB and the small cell S-eNB will be described. The configuration of the macro cell M-eNB is the same as that of the small cell S-eNB. In the following description, when the macro cell M-eNB and the small cell S-eNB are not particularly distinguished from each other, both or one of them is collectively referred to as the base station apparatus 10.
FIG. 2 is a block diagram illustrating a configuration of the base station apparatus 10 according to the present embodiment.
The base station apparatus 10 includes a control unit 101, an interference recognition unit 102, an interference processing unit 103, a communication control unit 104, a storage unit 105, a reception unit 106, a transmission unit 107, and a power source 108. Each processing unit is connected to each other through a bus.
 制御部101は、基地局装置10全体の動作の管理及び制御を行う。制御部101は、例えば、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、等を含んで構成される。
 干渉認識部102は、受信部106を介して端末装置UEから干渉の検出を示す干渉通知情報を受信する。干渉通知情報を取得することで、干渉認識部102は、端末装置UEにおける干渉の検出を認識する。
 なお、干渉認識部102は、受信部106から入力された受信信号に基づいて端末装置UEからの送信波と、他の到来波との干渉の発生を検出してもよい。他の到来波は、例えば、基地局装置10がマクロセルM-eNBである場合、スモールセルS-eNBからの送信波である。
The control unit 101 manages and controls the operation of the entire base station apparatus 10. The control unit 101 includes, for example, a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and the like.
The interference recognition unit 102 receives interference notification information indicating detection of interference from the terminal device UE via the reception unit 106. By acquiring the interference notification information, the interference recognition unit 102 recognizes the detection of interference in the terminal device UE.
Note that the interference recognition unit 102 may detect the occurrence of interference between the transmission wave from the terminal device UE and another incoming wave based on the reception signal input from the reception unit 106. Other incoming waves are, for example, transmission waves from the small cell S-eNB when the base station device 10 is the macro cell M-eNB.
 マクロセルM-eNBとスモールセルS-eNBの一方において、干渉処理部103は、端末装置UEから受信部106を介して優先処理要求情報を受信する。優先処理要求情報は、端末装置UEとの自装置(例えば、マクロセルM-eNB)による通信を、他装置(例えば、スモールセルS-eNB)による通信よりも優先することを要求するための情報である。干渉処理部103は、優先処理要求情報を受信後、直ちに優先処理承認情報を端末装置UEに送信する。優先処理承認情報は、自装置に対する優先処理要求を送信元である端末装置UEに対して承認することを示す情報である。その後、干渉処理部103は、送信部107に端末装置UEとの通信を優先することを指示する。干渉処理部103は、例えば、送信部107に対して端末装置UE宛に送信する送信波の出力電力を上昇させる。 In one of the macro cell M-eNB and the small cell S-eNB, the interference processing unit 103 receives priority processing request information from the terminal device UE via the receiving unit 106. The priority processing request information is information for requesting that the communication with the terminal device UE by the own device (for example, the macro cell M-eNB) is given priority over the communication by another device (for example, the small cell S-eNB). is there. After receiving the priority processing request information, the interference processing unit 103 immediately transmits priority processing approval information to the terminal device UE. The priority processing approval information is information indicating that a priority processing request for the device itself is approved for the terminal device UE that is a transmission source. Thereafter, the interference processing unit 103 instructs the transmission unit 107 to prioritize communication with the terminal device UE. For example, the interference processing unit 103 increases the output power of the transmission wave transmitted to the terminal device UE with respect to the transmission unit 107.
 マクロセルM-eNBとスモールセルS-eNBの他方において、干渉処理部103は、端末装置UEから優先度変更指示情報を受信部106から受信した場合には、送信部107に端末装置UEとの通信の優先度を低下させるように変更すること、つまり送信の抑制を指示する。具体的には、その場合、干渉処理部103は、端末装置UE宛の送信波の送信を抑制する。送信の抑制とは、出力電力の低下または送信の停止を意味する。 In the other of the macro cell M-eNB and the small cell S-eNB, when the interference processing unit 103 receives the priority change instruction information from the terminal device UE from the receiving unit 106, the interference processing unit 103 communicates with the terminal device UE to the transmitting unit 107. Is changed so as to lower the priority, that is, the transmission is instructed to be suppressed. Specifically, in that case, the interference processing unit 103 suppresses transmission of a transmission wave addressed to the terminal device UE. Suppression of transmission means reduction of output power or stop of transmission.
 通信制御部104は、端末装置UEとの間の通信を制御する。例えば、通信制御部104は、端末装置UEとの接続の確立や切断に係る処理を実行する。また、通信制御部104は、端末装置UEから受信した品質情報に基づいて、未使用の周波数帯域から端末装置UEとの間でデータの送受信に用いるリソースブロック(RB:Resource Block)を割り当てる。RBとは、データの送受信に用いられる無線リソースの最小単位、つまり、単位時間(例えば、1ms)内の単位帯域幅(例えば、180kHz)である。品質情報は、RB毎の受信品質を示す情報、例えば、CQI(Channel Quality Indicator)である。
 なお、干渉認識部102において端末装置UEにおける干渉が検出されない場合には、通信制御部104は、他の基地局装置10から受信した送信電力情報(例えば、RNTP:Relative Narrowband TX Power)に基づいて上述したセル間干渉制御を実行する。セル間干渉制御の例については、後述する。
The communication control unit 104 controls communication with the terminal device UE. For example, the communication control unit 104 executes processing related to establishment or disconnection of the connection with the terminal device UE. Moreover, the communication control part 104 allocates the resource block (RB: Resource Block) used for transmission / reception of data between the unused frequency bands and the terminal device UE based on the quality information received from the terminal device UE. The RB is a minimum unit of radio resources used for data transmission / reception, that is, a unit bandwidth (for example, 180 kHz) within a unit time (for example, 1 ms). The quality information is information indicating reception quality for each RB, for example, CQI (Channel Quality Indicator).
When interference in the terminal apparatus UE is not detected in the interference recognition unit 102, the communication control unit 104 is based on transmission power information (for example, RNTP: Relative Narrowband TX Power) received from another base station apparatus 10. The above-described inter-cell interference control is executed. An example of inter-cell interference control will be described later.
 記憶部105は、基地局装置10の各部の動作で用いられる各種のデータ、基地局装置10の各部の動作により生成されたデータ、基地局装置10を動作させるためのソフトウェアを記憶する。記憶部105は、例えば、RAM(Random Access Memory)、ROM(Read-only Memory)、等を含んで構成される。
 受信部106は、他の機器(例えば、端末装置UE)が送信した送信波を受信し、受信した無線帯域の送信波を基底帯域の受信信号に復調して基地局装置10内の各部に出力する。
 送信部107は、基地局装置10の各部から入力された基底帯域の送信信号を無線帯域の送信波に変調し、変調した送信波を、アンテナを介して他の機器(例えば、端末装置UE)に送信する。
 受信部106と送信部107は、例えば、単一の通信インタフェースとして構成されていてもよい。
 電源108は、基地局装置10の動作に要する電力を供給する。電源108は、例えば、電力の供給を受けるための電力線と接続する電源プラグ、供給された電力を一時的に蓄積するバッテリ、等を含んで構成される。
The storage unit 105 stores various data used in the operation of each unit of the base station device 10, data generated by the operation of each unit of the base station device 10, and software for operating the base station device 10. The storage unit 105 includes, for example, a RAM (Random Access Memory), a ROM (Read-only Memory), and the like.
The receiving unit 106 receives a transmission wave transmitted from another device (for example, the terminal device UE), demodulates the received radio band transmission wave into a baseband received signal, and outputs the received signal to each unit in the base station apparatus 10. To do.
The transmission unit 107 modulates a baseband transmission signal input from each unit of the base station device 10 into a radioband transmission wave, and transmits the modulated transmission wave to another device (for example, the terminal device UE) via an antenna. Send to.
For example, the reception unit 106 and the transmission unit 107 may be configured as a single communication interface.
The power source 108 supplies power necessary for the operation of the base station apparatus 10. The power source 108 includes, for example, a power plug connected to a power line for receiving power supply, a battery that temporarily stores the supplied power, and the like.
(端末装置の構成)
 次に、端末装置UEの構成について説明する。
 図3は、本実施形態に係る端末装置UEの構成を示すブロック図である。
 端末装置UEは、制御部201、干渉認識部202、干渉通知部203、通信制御部204、記憶部205、受信部206、送信部207、及び電源208を含んで構成される。各処理部は、バスを通じて相互に接続されている。
(Configuration of terminal device)
Next, the configuration of the terminal device UE will be described.
FIG. 3 is a block diagram illustrating a configuration of the terminal device UE according to the present embodiment.
The terminal device UE includes a control unit 201, an interference recognition unit 202, an interference notification unit 203, a communication control unit 204, a storage unit 205, a reception unit 206, a transmission unit 207, and a power source 208. Each processing unit is connected to each other through a bus.
 制御部201は、端末装置UE全体の動作の管理及び制御を行う。制御部201は、例えば、CPU、DSP、等を含んで構成される。
 干渉認識部202は、基地局装置10からの送信波の受信状態として干渉を検出したか否かを判定する。干渉認識部202は、例えば、受信部206において受信される受信信号についてRB毎の基準信号受信品質(RSRP:Reference Signal Received Power)が所定のRSRPの閾値よりも高い場合、干渉を検出したと判定する。RSRPは、基準信号受信電力(RSRP:Reference Signal Received Power)の全システム帯域の受信信号強度(RSSI:Received Signal Strength Indicator)に対する比である。干渉認識部202は、RSRPが所定のRSRPの閾値以下である場合、干渉を検出していないと判定する。干渉認識部202は、干渉の検出を示す干渉通知情報を干渉通知部203に出力する。
The control unit 201 manages and controls the operation of the entire terminal device UE. The control unit 201 includes, for example, a CPU, a DSP, and the like.
The interference recognition unit 202 determines whether interference has been detected as the reception state of the transmission wave from the base station apparatus 10. For example, the interference recognition unit 202 determines that interference has been detected when a reference signal reception quality (RSRP: Reference Signal Received Power) for each RB of a reception signal received by the reception unit 206 is higher than a predetermined RSRP threshold. To do. RSRP is a ratio of reference signal received power (RSRP: Reference Signal Received Power) to received signal strength (RSSI: Received Signal Strength Indicator) of the entire system band. The interference recognition unit 202 determines that interference is not detected when the RSRP is equal to or less than a predetermined RSRP threshold. The interference recognition unit 202 outputs interference notification information indicating the detection of interference to the interference notification unit 203.
 干渉通知部203は、干渉認識部202から干渉通知情報が入力される場合、入力された干渉通知情報を、送信部207を介してマクロセルM-eNBに送信する。この場合、干渉通知部203は、自装置(端末装置UE)とのマクロセルM-eNBによる通信を、スモールセルS-eNBによる通信よりも優先することを要求するための優先処理要求情報を生成する。干渉通知部203は、生成した優先処理要求情報をマクロセルM-eNBに送信部207を介して送信する。 When the interference notification information is input from the interference recognition unit 202, the interference notification unit 203 transmits the input interference notification information to the macro cell M-eNB via the transmission unit 207. In this case, the interference notification unit 203 generates priority processing request information for requesting that communication with the own device (terminal device UE) by the macro cell M-eNB is given priority over communication by the small cell S-eNB. . The interference notification unit 203 transmits the generated priority processing request information to the macro cell M-eNB via the transmission unit 207.
 干渉通知部203は、優先処理要求情報の送信に対する応答として、マクロセルM-eNBから受信部206を介して優先処理承認情報を受信する。優先処理承認情報を受信した後、干渉通知部203は、優先度変更指示情報を生成し、生成した優先度変更指示情報をスモールセルS-eNBに送信部207を介して送信する。スモールセルS-eNBに送信する優先度変更指示情報は、スモールセルS-eNBからの送信の抑制を指示する情報である。 The interference notification unit 203 receives the priority processing approval information from the macro cell M-eNB via the reception unit 206 as a response to the transmission of the priority processing request information. After receiving the priority processing approval information, the interference notification unit 203 generates priority change instruction information, and transmits the generated priority change instruction information to the small cell S-eNB via the transmission unit 207. The priority change instruction information transmitted to the small cell S-eNB is information that instructs suppression of transmission from the small cell S-eNB.
 通信制御部204は、基地局装置10との間の通信を制御する。例えば、通信制御部204は、マクロセルM-eNBに接続された公衆無線通信網への位置登録に係る処理を行う。また、通信制御部204は、マクロセルM-eNB、スモールセルS-eNBそれぞれとの接続の確立や切断に係る処理を実行する。また、通信制御部204は、マクロセルM-eNB、スモールセルS-eNBそれぞれについて、RB毎の受信品質を測定し、測定した受信品質を示す品質情報、例えば、CQIを生成する。通信制御部204は、生成した品質情報をマクロセルM-eNB、スモールセルS-eNBのそれぞれに送信部207を介して送信する。 The communication control unit 204 controls communication with the base station apparatus 10. For example, the communication control unit 204 performs processing related to location registration in a public wireless communication network connected to the macro cell M-eNB. In addition, the communication control unit 204 executes processing related to establishment and disconnection of connections with the macro cell M-eNB and the small cell S-eNB. Further, the communication control unit 204 measures the reception quality for each RB for each of the macro cell M-eNB and the small cell S-eNB, and generates quality information, for example, CQI indicating the measured reception quality. The communication control unit 204 transmits the generated quality information to each of the macro cell M-eNB and the small cell S-eNB via the transmission unit 207.
 記憶部205は、端末装置UEの各部の動作で用いられる各種のデータ、端末装置UEの各部の動作により生成されたデータ、端末装置を動作させるためのソフトウェアを記憶する。記憶部205は、例えば、RAM、ROM、等を含んで構成される。
 受信部206は、基地局装置10が送信した送信波を受信し、受信した無線帯域の送信波を基底帯域の受信信号に復調して端末装置UEの各部に出力する。
 送信部207は、端末装置UEの各部から入力された基底帯域の送信信号を無線帯域の送信波に変調し、変調した送信波を、アンテナを介して他の機器(例えば、端末装置UE)に送信する。
 受信部206と送信部207は、例えば、単一の通信インタフェースとして構成されていてもよい。
 電源208は、端末装置UEの動作に要する電力を供給する。電源208は、例えば、電力の供給を受けるための電力線と接続する電源プラグ、供給された電力を一時的に蓄積するバッテリ、等を含んで構成される。
The storage unit 205 stores various data used in the operation of each unit of the terminal device UE, data generated by the operation of each unit of the terminal device UE, and software for operating the terminal device. The storage unit 205 includes, for example, a RAM, a ROM, and the like.
The reception unit 206 receives the transmission wave transmitted by the base station apparatus 10, demodulates the received transmission wave of the radio band into a reception signal of the base band, and outputs it to each unit of the terminal apparatus UE.
The transmission unit 207 modulates a baseband transmission signal input from each unit of the terminal device UE into a radio band transmission wave, and transmits the modulated transmission wave to another device (for example, the terminal device UE) via an antenna. Send.
For example, the reception unit 206 and the transmission unit 207 may be configured as a single communication interface.
The power supply 208 supplies power required for the operation of the terminal device UE. The power source 208 includes, for example, a power plug connected to a power line for receiving power supply, a battery that temporarily stores the supplied power, and the like.
(セル間干渉制御)
 次に、セル間干渉制御の例について説明する。以下に説明するセル間干渉制御は、端末装置UEにおいて干渉が検出されていない場合においてマクロセルM-eNBとスモールセルS-eNBとの間で実行される。
 図4は、セル間干渉制御の例を示すシーケンス図である。
 (ステップS101)マクロセルM-eNBの通信制御部104は、端末装置UEとの間の通信に用いるRBの割り当てを定める。その後、ステップS102に進む。
 (ステップS102)マクロセルM-eNBの通信制御部104は、割り当てたRB毎に送信電力を、例えば、LTEで規定の方式を用いて定める。マクロセルM-eNBの通信制御部104は、RB毎に送信電力のシステム帯域全体の平均送信電力に対する電力比が所定の電力比の閾値を超えるか否かを判定する。マクロセルM-eNBの通信制御部104は、当該電力比が所定の比の閾値を超えるRBについて信号値を1とし、当該電力比が所定の比の閾値を超えないRBについて信号値を0とする送信電力情報RNTPを生成する。通信制御部104は、生成した送信電力情報RNTPをスモールセルS-eNBに送信する。その後、ステップS103に進む。
(Inter-cell interference control)
Next, an example of inter-cell interference control will be described. Inter-cell interference control described below is performed between the macro cell M-eNB and the small cell S-eNB when no interference is detected in the terminal device UE.
FIG. 4 is a sequence diagram illustrating an example of inter-cell interference control.
(Step S101) The communication control unit 104 of the macro cell M-eNB determines allocation of RBs used for communication with the terminal device UE. Thereafter, the process proceeds to step S102.
(Step S102) The communication control unit 104 of the macro cell M-eNB determines the transmission power for each allocated RB, for example, using a method prescribed in LTE. The communication control unit 104 of the macro cell M-eNB determines whether or not the power ratio of the transmission power to the average transmission power of the entire system band for each RB exceeds a predetermined power ratio threshold. The communication control unit 104 of the macro cell M-eNB sets the signal value to 1 for RBs for which the power ratio exceeds a predetermined ratio threshold, and sets the signal value to 0 for RBs for which the power ratio does not exceed the predetermined ratio threshold. Transmission power information RNTP is generated. The communication control unit 104 transmits the generated transmission power information RNTP to the small cell S-eNB. Thereafter, the process proceeds to step S103.
 (ステップS103)スモールセルS-eNBの通信制御部104は、マクロセルM-eNBから送信電力情報RNTPを受信する。その後、ステップS104に進む。
 (ステップS104)スモールセルS-eNBの通信制御部104は、送信電力情報RNTPが示す信号値が1であるRBについて干渉の発生の可能性があると認識し、それ以外のRBについて干渉が発生の可能性がないと認識する。その後、ステップS105に進む。
 (ステップS105)スモールセルS-eNBの通信制御部104は、送信電力情報RNTPが示す信号値が1であるRBについて、端末装置UEとの通信に用いないと判定する。スモールセルS-eNBの通信制御部104は、用いないと判定したRBを示すRB不使用通知情報を生成し、生成したRB不使用通知情報をマクロセルM-eNBに送信する。その後、ステップS106に進む。
(Step S103) The communication control unit 104 of the small cell S-eNB receives the transmission power information RNTP from the macro cell M-eNB. Thereafter, the process proceeds to step S104.
(Step S104) The communication control unit 104 of the small cell S-eNB recognizes that there is a possibility of interference for RBs whose signal value indicated by the transmission power information RNTP is 1, and interference occurs for other RBs. Recognize that there is no possibility. Thereafter, the process proceeds to step S105.
(Step S105) The communication control unit 104 of the small cell S-eNB determines that an RB whose signal value indicated by the transmission power information RNTP is 1 is not used for communication with the terminal apparatus UE. The communication control unit 104 of the small cell S-eNB generates RB non-use notification information indicating an RB determined not to be used, and transmits the generated RB non-use notification information to the macro cell M-eNB. Thereafter, the process proceeds to step S106.
 (ステップS106)マクロセルM-eNBの通信制御部104は、スモールセルS-eNBからRB不使用通知情報を受信し、スモールセルS-eNBが端末装置UEとの通信に用いるために割り当てたRBについて、干渉が発生しないと判定する。その後、マクロセルM-eNBの通信制御部104は、割り当てたRBを用いて端末装置UEとの通信を開始する。その後、図4に示す処理を終了する。 (Step S106) The communication control unit 104 of the macro cell M-eNB receives RB non-use notification information from the small cell S-eNB, and the small cell S-eNB uses the RB allocated for communication with the terminal device UE. It is determined that no interference occurs. Thereafter, the communication control unit 104 of the macro cell M-eNB starts communication with the terminal device UE using the allocated RB. Thereafter, the process shown in FIG.
(通信処理)
 図4に示す処理では、マクロセルM-eNB、スモールセルS-eNBは、端末装置UEが計測したそれぞれのセルとの間の品質情報をそれぞれのセルが受け取り、受け取った品質情報に基づきRB毎の通信品質を認識する。そして、マクロセルM-eNB、スモールセルS-eNBは、認識した通信品質に基づいてRBの割り当てを定めるため、処理に多くの時間を要していた。本実施形態では、次に説明する通信処理により、処理時間を短縮することができる。図5は、本実施形態に係る通信処理を示すシーケンス図である。
 図5に示す処理は、端末装置UEがマクロセルM-eNB、スモールセルS-eNBを介して通信しているときに開始される。
(Communication processing)
In the process shown in FIG. 4, the macro cell M-eNB and the small cell S-eNB receive the quality information between the cells measured by the terminal apparatus UE, and each cell receives the quality information for each RB based on the received quality information. Recognize communication quality. Since the macro cell M-eNB and the small cell S-eNB determine RB allocation based on the recognized communication quality, a long time is required for processing. In the present embodiment, the processing time can be shortened by the communication processing described below. FIG. 5 is a sequence diagram showing communication processing according to the present embodiment.
The process shown in FIG. 5 is started when the terminal apparatus UE is communicating via the macro cell M-eNB and the small cell S-eNB.
 (ステップS201)端末装置UEの干渉認識部202は、マクロセルM-eNB及びスモールセルS-eNBからの送信波について干渉を検出したか否かを判定する。干渉が検出された場合、ステップS202に進む。
 (ステップS202)端末装置UEの干渉通知部203は、干渉の検出を通知するための干渉通知情報をマクロセルM-eNBに送信する。その後、ステップS203に進む。
 (ステップS203)端末装置UEの干渉通知部203は、マクロセルM-eNBによる通信を、スモールセルS-eNBによる通信よりも優先することを要求するための優先処理要求情報をマクロセルM-eNBに送信する。その後、ステップS204に進む。
 (ステップS204)マクロセルM-eNBの干渉処理部103は、端末装置UEからの優先処理要求情報の受信直後に、優先処理要求を承認したことを示す優先処理承認情報を端末装置UEに送信する。その後、ステップS205に進む。
(Step S201) The interference recognition unit 202 of the terminal device UE determines whether or not interference has been detected for transmission waves from the macro cell M-eNB and the small cell S-eNB. If interference is detected, the process proceeds to step S202.
(Step S202) The interference notification unit 203 of the terminal apparatus UE transmits interference notification information for notifying the detection of interference to the macro cell M-eNB. Thereafter, the process proceeds to step S203.
(Step S203) The interference notifying unit 203 of the terminal device UE transmits priority processing request information for requesting that the communication by the macro cell M-eNB has priority over the communication by the small cell S-eNB to the macro cell M-eNB. To do. Thereafter, the process proceeds to step S204.
(Step S204) Immediately after receiving the priority processing request information from the terminal device UE, the interference processing unit 103 of the macro cell M-eNB transmits priority processing approval information indicating that the priority processing request has been approved to the terminal device UE. Thereafter, the process proceeds to step S205.
 (ステップS205)端末装置UEの干渉通知部203は、マクロセルM-eNBから優先処理承認情報を受信した後、送信の抑制を示す優先度変更指示情報をスモールセルS-eNBに送信する。その後、ステップS206に進む。
 (ステップS206)スモールセルS-eNBの干渉処理部103は、自装置の送信部107に対して送信波の出力電力を低下させる。なお、スモールセルS-eNBの干渉処理部103は、自装置の送信部107に対して送信波の送信を停止させてもよい。その後、ステップS207に進む。
 (ステップS207)マクロセルM-eNBの干渉処理部103は、自装置の送信部107に対して送信波の出力電力を上昇させる。その後、図5に示す処理を終了する。
(Step S205) After receiving the priority processing approval information from the macro cell M-eNB, the interference notification unit 203 of the terminal device UE transmits priority change instruction information indicating suppression of transmission to the small cell S-eNB. Thereafter, the process proceeds to step S206.
(Step S206) The interference processing unit 103 of the small cell S-eNB reduces the output power of the transmission wave with respect to the transmission unit 107 of the own device. Note that the interference processing unit 103 of the small cell S-eNB may stop the transmission unit 107 of its own device from transmitting a transmission wave. Thereafter, the process proceeds to step S207.
(Step S207) The interference processing unit 103 of the macro cell M-eNB increases the output power of the transmission wave to the transmission unit 107 of the own device. Thereafter, the process shown in FIG.
 なお、上述の説明では、主に端末装置UEが干渉を認識したとき、スモールセルS-eNBへ優先度変更指示情報を送信し、スモールセルS-eNBから端末装置UEへの送信を抑制する場合を例にしたが、これには限られない。端末装置UEは、干渉を認識したとき、スモールセルS-eNBに代えマクロセルM-eNBへ優先度変更指示情報を送信してもよい。マクロセルM-eNBは、端末装置UEから優先度変更指示情報を受信したことに応じて、端末装置UEへの送信波を抑制する。これにより、端末装置UEは、スモールセルS-eNBを介した通信を効率的に行うことができる。マクロセルM-eNBへ優先度変更指示情報を送信する場合は、スモールセルS-eNBを介した通信を開始することが困難である場合に限定されてもよい。そのような場合には、例えば、スモールセルS-eNBを介した通信の終了直後に、当該通信よりも優先度が高い別個のプロセスが割り当てられ、そのプロセスに係るアプリケーションプログラムが実行される場合がある。 In the above description, when the terminal apparatus UE recognizes interference mainly, the priority change instruction information is transmitted to the small cell S-eNB, and transmission from the small cell S-eNB to the terminal apparatus UE is suppressed. However, the present invention is not limited to this. When recognizing interference, the terminal apparatus UE may transmit priority change instruction information to the macro cell M-eNB instead of the small cell S-eNB. The macro cell M-eNB suppresses a transmission wave to the terminal device UE in response to receiving the priority change instruction information from the terminal device UE. Thereby, the terminal device UE can efficiently perform communication via the small cell S-eNB. The transmission of the priority change instruction information to the macro cell M-eNB may be limited to a case where it is difficult to start communication via the small cell S-eNB. In such a case, for example, immediately after the end of communication via the small cell S-eNB, a separate process having a higher priority than the communication may be assigned and an application program related to the process may be executed. is there.
 以上に説明したように、本実施形態に係る通信システム1は、端末装置UEにおいてマクロセルM-eNBからの送信波と、スモールセルS-eNBからの送信波との干渉を認識する干渉認識部202を備える。端末装置UEは、干渉認識部202が干渉を認識するとき、スモールセルS-eNBに対して送信の抑制を指示する優先度変更指示情報を送信する干渉通知部203を備える。また、スモールセルS-eNBは、端末装置UEから優先度変更指示情報を受信するとき、端末装置UEへの送信を抑制する干渉処理部103を備える。
 この構成により、スモールセルS-eNBにおいて端末装置UEにおいて発生した干渉が直ちに認識され、干渉が認識された直後、スモールセルS-eNBからの送信波が抑制される。そのため、短時間で干渉が低減され、無線リソースの利用効率が高い通信を実現することができる。
As described above, the communication system 1 according to the present embodiment has the interference recognition unit 202 that recognizes interference between a transmission wave from the macro cell M-eNB and a transmission wave from the small cell S-eNB in the terminal device UE. Is provided. The terminal apparatus UE includes an interference notification unit 203 that transmits priority change instruction information that instructs the small cell S-eNB to suppress transmission when the interference recognition unit 202 recognizes interference. Further, the small cell S-eNB includes an interference processing unit 103 that suppresses transmission to the terminal device UE when receiving priority change instruction information from the terminal device UE.
With this configuration, the interference generated in the terminal apparatus UE is immediately recognized in the small cell S-eNB, and the transmission wave from the small cell S-eNB is suppressed immediately after the interference is recognized. Therefore, interference can be reduced in a short time, and communication with high utilization efficiency of radio resources can be realized.
 本実施形態に係る通信システム1において、干渉認識部202が干渉を認識するとき、端末装置UEの干渉通知部203は、スモールセルS-eNBよりも優先した送信を指示する優先処理要求情報を送信する。
 この構成により、端末装置UEで認識される干渉成分に対する信号成分の割合が増加するので、通信品質をさらに向上させることができる。
In the communication system 1 according to the present embodiment, when the interference recognizing unit 202 recognizes interference, the interference notifying unit 203 of the terminal device UE transmits priority processing request information instructing transmission with priority over the small cell S-eNB. To do.
With this configuration, since the ratio of the signal component to the interference component recognized by the terminal device UE increases, the communication quality can be further improved.
(第2の実施形態)
 次に、本発明の第2の実施形態について説明する。上述した実施形態と同一の構成については、同一の番号を付して説明を援用する。
 図6は、本実施形態に係る通信システム1の一例を示す概念図である。通信システム1は、マクロセルM-eNB、スモールセルS-eNB、及び3台の端末装置UE1~UE3を含んで構成される。マクロセルエリアM-CはスモールセルエリアS-Cを含む。端末装置UE1~UE3の構成は、それぞれ上述したUEの構成と同様である。実線の矢印は、マクロセルM-eNBと端末装置UE1~UE3のそれぞれとの間において無線で通信が行われていることを示す。破線の矢印は、スモールセルS-eNBと端末装置UE1~UE3のそれぞれとの間において無線で通信が行われていることを示す。そのため、端末装置UE1、UE2、UE3のそれぞれにおいて、マクロセルM-eNBからの送信波とスモールセルS-eNBからの送信波との間の干渉の他、スモールセルS-eNBから端末装置UE1~3のそれぞれに宛てた送信波間で干渉が生じることがある。但し、3台の端末装置UE1~UE3のいずれか(例えば、端末装置UE1)において干渉を抑圧する際に、スモールセルS-eNBからの送信波の電力を単純に低下させると、他の端末装置(例えば、UE2、UE3)との通信に支障をきたすことがある。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. About the same structure as embodiment mentioned above, the same number is attached | subjected and description is used.
FIG. 6 is a conceptual diagram illustrating an example of the communication system 1 according to the present embodiment. The communication system 1 includes a macro cell M-eNB, a small cell S-eNB, and three terminal apparatuses UE1 to UE3. The macro cell area MC includes a small cell area SC. The configurations of the terminal apparatuses UE1 to UE3 are the same as the configuration of the UE described above. A solid line arrow indicates that communication is performed wirelessly between the macro cell M-eNB and each of the terminal apparatuses UE1 to UE3. A broken arrow indicates that communication is performed wirelessly between the small cell S-eNB and each of the terminal apparatuses UE1 to UE3. Therefore, in each of the terminal apparatuses UE1, UE2, and UE3, in addition to interference between the transmission wave from the macro cell M-eNB and the transmission wave from the small cell S-eNB, the terminal apparatuses UE1 to UE3 from the small cell S-eNB Interference may occur between the transmission waves addressed to each of the. However, when the interference wave is suppressed in any one of the three terminal apparatuses UE1 to UE3 (for example, the terminal apparatus UE1), if the power of the transmission wave from the small cell S-eNB is simply reduced, the other terminal apparatuses (For example, communication with UE2, UE3) may be hindered.
 そこで、本実施形態では、図6に例示されるように端末装置UE1において干渉が検出される場合には、スモールセルS-eNBは端末装置UE1の方向にヌルNBを形成する。ヌルNBとは、その周囲よりも送信波の電力が低い方向の範囲である。ヌルNBの形成は、特定の方向への送信波の電力を高くするビームフォーミングとは逆の処理に相当する。 Therefore, in the present embodiment, as illustrated in FIG. 6, when interference is detected in the terminal device UE1, the small cell S-eNB forms a null NB in the direction of the terminal device UE1. Null NB is a range in the direction in which the power of the transmission wave is lower than the surrounding area. The formation of the null NB corresponds to a process opposite to the beam forming that increases the power of the transmission wave in a specific direction.
(基地局装置の構成)
 次に、本実施形態に係る基地局装置10の構成について説明する。次の説明では基地局装置10は、図6に示すスモールセルS-eNBを意味する。
 図7は、本実施形態に係る基地局装置10の構成を示すブロック図である。
 本実施形態に係る基地局装置10は、図2に示す基地局装置10において、さらにGPS(Global Positioning System)受信部109を含んで構成される。
 基地局装置10は、送信部107においてN(予め定めた2以上の整数)本のアンテナを備え、最大Nストリームの送信信号に係る送信波を送信することができる。また、基地局装置10は、受信部106においてN本のアンテナを備え、最大Nストリームの受信信号を受信することができる。また、通信制御部104は、最大Nストリームの送信信号の送信、最大Nストリームの受信信号の受信を制御することができる。なお、通信制御部104は、時分割多重(TDD:Time Division Duplex)により、複数の端末装置UEのそれぞれとの間の送受信を、端末装置UE間でそれぞれ異なる時間帯に行うように受信部106、送信部107の動作を制御してもよい。この制御により複数の端末装置UE間のそれぞれに宛てた送信波が同時に送信されないので、それらの送信波の相互間の干渉が発生しない。
(Configuration of base station equipment)
Next, the configuration of the base station apparatus 10 according to this embodiment will be described. In the following description, the base station apparatus 10 means the small cell S-eNB shown in FIG.
FIG. 7 is a block diagram showing a configuration of the base station apparatus 10 according to the present embodiment.
The base station apparatus 10 according to the present embodiment is configured to further include a GPS (Global Positioning System) receiving unit 109 in the base station apparatus 10 shown in FIG.
The base station apparatus 10 includes N (an integer greater than or equal to a predetermined 2) antennas in the transmission unit 107, and can transmit transmission waves related to transmission signals of maximum N streams. In addition, the base station apparatus 10 includes N antennas in the reception unit 106, and can receive reception signals of maximum N streams. Further, the communication control unit 104 can control transmission of a maximum N stream transmission signal and reception of a maximum N stream reception signal. In addition, the communication control unit 104 performs transmission / reception with each of the plurality of terminal apparatuses UE by time division multiplexing (TDD: Time Division Duplex) in different time zones between the terminal apparatuses UE. The operation of the transmission unit 107 may be controlled. Because of this control, transmission waves addressed to each of the plurality of terminal apparatuses UE are not transmitted at the same time, so that interference between these transmission waves does not occur.
 GPS受信部109は、少なくとも4個のGPS衛星から到来した信号をそれぞれ受信し、信号間の同期をとるための基準となる時刻情報を校正する。そして、GPS受信部109は、受信信号間の到達時間差に基づいて自己の位置(緯度、経度)を精度よく計測する。GPS受信部109は、計測した自己の位置を示す自己位置情報を生成し、生成した自己位置情報を干渉処理部103に出力する。 The GPS receiver 109 receives signals arriving from at least four GPS satellites, and calibrates time information serving as a reference for synchronizing the signals. Then, the GPS receiving unit 109 accurately measures its own position (latitude, longitude) based on the arrival time difference between the received signals. The GPS receiving unit 109 generates self-position information indicating the measured self-position, and outputs the generated self-position information to the interference processing unit 103.
 干渉処理部103には、GPS受信部109から自己位置情報が入力される。他方、干渉処理部103は、端末装置UEから優先度変更指示情報を受信するとき、当該端末装置UEに対して位置情報を要求するための端末位置要求情報を生成し、生成した端末位置要求情報を端末装置UEに送信部107を介して送信する。干渉処理部103は、その応答として、端末装置UEの位置を示す端末位置情報を当該端末装置UEから受信部106を介して受信する。 Self-position information is input from the GPS receiver 109 to the interference processor 103. On the other hand, when receiving the priority change instruction information from the terminal apparatus UE, the interference processing unit 103 generates terminal position request information for requesting position information from the terminal apparatus UE, and generates the generated terminal position request information. Is transmitted to the terminal device UE via the transmission unit 107. As a response, the interference processing unit 103 receives terminal position information indicating the position of the terminal device UE from the terminal device UE via the receiving unit 106.
 干渉処理部103は、自己位置情報が示す自己の位置を基準として、端末位置情報が示す端末装置UEの方向を特定し、特定した方向にヌルを有する指向性を有するプリコーディングマトリクスを記憶部105から読み取る。干渉処理部103は、読み取ったプリコーディングマトリクスを、各ストリームの送信信号を要素とする送信ベクトルに乗算して、各アンテナへの送信信号を要素とする送信ベクトルを算出する。干渉処理部103は、算出した送信ベクトルを送信部107に出力する。
 よって、送信部107は、各アンテナは、算出した送信ベクトルのそれぞれの要素である送信信号に基づく送信波として、端末装置UEの方向にヌルが形成された送信波を送信する。
The interference processing unit 103 specifies the direction of the terminal device UE indicated by the terminal position information on the basis of its own position indicated by the self-position information, and stores a precoding matrix having directivity having null in the specified direction. Read from. The interference processing unit 103 multiplies the read precoding matrix by a transmission vector having the transmission signal of each stream as an element, and calculates a transmission vector having the transmission signal to each antenna as an element. The interference processing unit 103 outputs the calculated transmission vector to the transmission unit 107.
Therefore, the transmitting unit 107 transmits a transmission wave in which a null is formed in the direction of the terminal device UE as a transmission wave based on a transmission signal that is an element of the calculated transmission vector.
 (端末装置の構成)
 次に、本実施形態に係る端末装置UEの構成について説明する。
 図8は、本実施形態に係る端末装置UEの構成を示すブロック図である。
 本実施形態に係る端末装置UEは、図3に示す端末装置UEにおいて、さらにGPS受信部209を含んで構成される。
 GPS受信部209は、基地局装置10から受信部206を介して端末位置要求情報を受信するとき、少なくとも4個のGPS衛星から到来した信号をそれぞれ受信し、信号間の同期をとるための基準となる時刻情報を校正する。そして、GPS受信部209は、受信信号間の到達時間差に基づいて自己の位置を精度よく計測する。GPS受信部209は、計測した自己の位置を示す端末位置情報を生成し、生成した端末位置情報を基地局装置10に送信部207を介して送信する。
(Configuration of terminal device)
Next, the configuration of the terminal device UE according to the present embodiment will be described.
FIG. 8 is a block diagram illustrating a configuration of the terminal device UE according to the present embodiment.
The terminal device UE according to the present embodiment is configured to further include a GPS receiving unit 209 in the terminal device UE shown in FIG.
When receiving the terminal location request information from the base station device 10 via the receiving unit 206, the GPS receiving unit 209 receives signals arriving from at least four GPS satellites, respectively, and provides a reference for synchronizing the signals. The time information is corrected. Then, the GPS receiving unit 209 accurately measures its own position based on the arrival time difference between the received signals. The GPS reception unit 209 generates terminal position information indicating the measured position of itself, and transmits the generated terminal position information to the base station device 10 via the transmission unit 207.
(通信処理)
 次に、本実施形態に係る通信処理について説明する。
 図9は、本実施形態に係る通信処理を示すシーケンス図である。図9に示す処理は、ステップS201~S205の処理と、ステップS301~S304の処理を有する。ステップS201~S205の処理については、図5の説明を援用する。図9に示す処理において、ステップS301~S303の処理は、端末装置UEの起動直後の位置登録時、位置登録エリアの変更時において実行される。なお、ステップS301~S303の処理は、周期的に繰り返されてもよい。
(Communication processing)
Next, communication processing according to the present embodiment will be described.
FIG. 9 is a sequence diagram showing communication processing according to the present embodiment. The process shown in FIG. 9 includes the processes of steps S201 to S205 and the processes of steps S301 to S304. The description of FIG. 5 is used for the processing of steps S201 to S205. In the process shown in FIG. 9, the processes of steps S301 to S303 are executed at the time of position registration immediately after activation of the terminal apparatus UE and at the time of changing the position registration area. Note that the processing in steps S301 to S303 may be repeated periodically.
 (ステップS301)スモールセルS-eNBの干渉処理部103は、端末装置UEから優先度変更指示情報を受信した後、端末位置要求情報を生成し、生成した端末位置要求情報を端末装置UEに送信する(位置情報要求)。その後、ステップS302に進む。
 (ステップS302)端末装置UEのGPS受信部209は、基地局装置10から端末位置要求情報を受信するとき、GPS衛星から到来した受信信号に基づいて自己の位置を計測する。その後、ステップS303に進む。
 (ステップS303)端末装置UEのGPS受信部209は、計測した自己の位置を示す端末位置情報を生成し、生成した端末位置情報をスモールセルS-eNBに送信する。
 そして、ステップS201において干渉が検出された後、ステップS202~S205の処理が実行される。ステップ205の処理の終了後、ステップS304に進む。
(Step S301) After receiving the priority change instruction information from the terminal device UE, the interference processing unit 103 of the small cell S-eNB generates terminal location request information, and transmits the generated terminal location request information to the terminal device UE. (Location information request). Thereafter, the process proceeds to step S302.
(Step S302) When receiving the terminal position request information from the base station apparatus 10, the GPS receiving unit 209 of the terminal apparatus UE measures its own position based on a received signal that has arrived from a GPS satellite. Thereafter, the process proceeds to step S303.
(Step S303) The GPS reception unit 209 of the terminal device UE generates terminal position information indicating the measured position of itself, and transmits the generated terminal position information to the small cell S-eNB.
Then, after the interference is detected in step S201, the processing in steps S202 to S205 is executed. After the process of step 205 is completed, the process proceeds to step S304.
 (ステップS304)スモールセルS-eNBの干渉処理部103は、自己位置情報が示す自己の位置を基準として、端末装置UEから受信した端末位置情報が示す端末装置UEの方向を特定する。スモールセルS-eNBの干渉処理部103は、特定した方向にヌルを形成する指向性を有するプリコーディングマトリクスを各ストリームの送信信号を要素とする送信ベクトルに乗算して、各アンテナへの送信信号を要素とする送信ベクトルを算出する。送信部107の各アンテナは、算出した送信ベクトルの各要素の送信信号に基づく送信波を送信する。その後、図9に示す処理を終了する。 (Step S304) The interference processing unit 103 of the small cell S-eNB specifies the direction of the terminal device UE indicated by the terminal location information received from the terminal device UE with reference to the own location indicated by the self location information. The interference processing unit 103 of the small cell S-eNB multiplies a transmission vector having the transmission signal of each stream as an element by a precoding matrix having directivity that forms nulls in the specified direction, and transmits the transmission signal to each antenna. A transmission vector having the element as an element is calculated. Each antenna of the transmission unit 107 transmits a transmission wave based on the transmission signal of each element of the calculated transmission vector. Thereafter, the process shown in FIG. 9 ends.
 なお、上述では、一度に1つの端末装置UE1において干渉が検出された場合を例にしたが、これには限られない。そこで、その周囲よりも送信電力が低い領域(セクタ)が複数個有する指向性をもたらすプリコーディングマトリクスを、スモールセルS-eNBの記憶部105に予め複数個記憶させておいてもよい。異なるプリコーディングマトリクス間で、その領域の配置が互いに異なるものとする。
 そして、スモールセルS-eNBの干渉処理部103は、複数の端末装置UEのそれぞれの位置が、その領域に含まれる指向性を有するプリコーディングマトリクスを選択する。干渉処理部103は、選択したプリコーディングマトリクスを各ストリームの送信信号を要素とする送信ベクトルに乗算して、各アンテナへの送信信号を要素とする送信ベクトルを算出する。
 よって、図10に例示されるように、制御対象の端末装置UE1の位置が、スモールセルS-eNBからの送信波の送信電力が低い領域SB1に含まれる。そのため、端末装置UE1において、マクロセルM-eNBから端末装置UE1宛の送信波の他、スモールセルS-eNBから端末装置UE2、UE3のそれぞれに宛てた送信波と、スモールセルS-eNBから端末装置UE1に宛てた送信波との干渉が抑制される。
In addition, although the case where interference was detected in one terminal device UE1 at a time was taken as an example in the above description, the present invention is not limited to this. Therefore, a plurality of precoding matrices that provide directivity possessed by a plurality of regions (sectors) having lower transmission power than the surroundings may be stored in advance in the storage unit 105 of the small cell S-eNB. Assume that the arrangement of the regions differs between different precoding matrices.
Then, the interference processing unit 103 of the small cell S-eNB selects a precoding matrix having directivity included in each region of each of the plurality of terminal apparatuses UE. The interference processing unit 103 multiplies the selected precoding matrix by a transmission vector having the transmission signal of each stream as an element, and calculates a transmission vector having the transmission signal to each antenna as an element.
Therefore, as illustrated in FIG. 10, the position of the terminal device UE1 to be controlled is included in the region SB1 where the transmission power of the transmission wave from the small cell S-eNB is low. Therefore, in the terminal device UE1, in addition to the transmission wave addressed to the terminal device UE1 from the macro cell M-eNB, the transmission wave addressed to each of the terminal devices UE2 and UE3 from the small cell S-eNB, and the terminal device from the small cell S-eNB to the terminal device Interference with the transmission wave addressed to UE1 is suppressed.
 なお、端末装置UEのGPS受信部209は、端末位置要求情報を受信せずに、所定時間間隔で自己の位置を計測してもよい。その場合には、スモールセルS-eNBの干渉処理部103は、端末位置要求情報の生成、送信を省略可能である。
 また、本実施形態に係るスモールセルS-eNBは、その位置が固定され、自己位置情報が予め干渉処理部103に記憶されていれば、GPS受信部109は省略可能である。
Note that the GPS receiving unit 209 of the terminal device UE may measure its own position at predetermined time intervals without receiving the terminal position request information. In that case, the interference processing unit 103 of the small cell S-eNB can omit generation and transmission of terminal location request information.
Further, if the position of the small cell S-eNB according to the present embodiment is fixed and the self-location information is stored in the interference processing unit 103 in advance, the GPS receiving unit 109 can be omitted.
 以上に説明したように、本実施形態に係る通信システム1において、端末装置UEは、自装置の位置を検出し、検出した位置を示す位置情報をスモールセルS-eNBに送信するGPS受信部209を備える。スモールセルS-eNBにおいて、干渉処理部103は、端末装置UEから受信した位置情報が示す位置を含む領域への送信波の強度を他の領域への送信波の強度よりも低くする。ここで、自己の位置を検出する位置検出部としてGPS受信部209を例にしたが、位置検出部は、これには限られず、例えば、光学式の位置センサであってもよいし、赤外線位置センサであってもよい。これにより、GSP衛星からの信号が到来しにくい屋内や地下においても、自己の位置を検出することができる。
 従って、干渉が抑制されている領域をそれぞれの端末装置UEの位置を含む領域に限定することができるので、それぞれの処理の影響を他の端末装置UEの通信への影響を抑えることができる。
As described above, in the communication system 1 according to the present embodiment, the terminal apparatus UE detects the position of the terminal apparatus UE, and transmits the position information indicating the detected position to the small cell S-eNB. Is provided. In the small cell S-eNB, the interference processing unit 103 makes the intensity of the transmission wave to the area including the position indicated by the position information received from the terminal apparatus UE lower than the intensity of the transmission wave to the other area. Here, the GPS receiving unit 209 is taken as an example of the position detecting unit that detects its own position, but the position detecting unit is not limited to this, and may be, for example, an optical position sensor or an infrared position. It may be a sensor. As a result, it is possible to detect its own position even indoors or underground where it is difficult for signals from the GSP satellite to arrive.
Therefore, since the area | region where interference is suppressed can be limited to the area | region containing the position of each terminal device UE, the influence of each process can suppress the influence on communication of another terminal device UE.
(第3の実施形態)
 次に、本発明の第3の実施形態について説明する。上述した実施形態と同一の構成については、同一の番号を付して説明を援用する。
 図11は、本実施形態に係る通信システム1の一例を示す概念図である。図11は、ある時点において端末装置UE1~UE3は、それぞれマクロセルエリアM-C内に在圏していることを示す。端末装置UE1は、スモールセルエリアS-Cの周縁部(セルエッジ)に所在し、マクロセルM-eNB、スモールセルS-eNBそれぞれとの間で通信が行われている。端末装置UE2は、スモールセルS-eNBとの間で通信を行っているが、マクロセルM-eNBとの間では通信を行っていない。端末装置UE3は、マクロセルM-eNBとの間で通信を行っているが、スモールセルS-eNBとの間では通信を行っていない。この状況では、端末装置UE1においてマクロセルM-eNBからの送信波とスモールセルS-eNBからの送信波が干渉する他、スモールセルエリアS-Cに在圏している、端末装置UE1、UE2のそれぞれに宛てた送信波間で干渉が生じることがある。
(Third embodiment)
Next, a third embodiment of the present invention will be described. About the same structure as embodiment mentioned above, the same number is attached | subjected and description is used.
FIG. 11 is a conceptual diagram illustrating an example of the communication system 1 according to the present embodiment. FIG. 11 shows that the terminal apparatuses UE1 to UE3 are located in the macro cell area MC at a certain point in time. The terminal apparatus UE1 is located at the peripheral edge (cell edge) of the small cell area SC, and communication is performed between the macro cell M-eNB and the small cell S-eNB. The terminal device UE2 communicates with the small cell S-eNB, but does not communicate with the macro cell M-eNB. The terminal device UE3 communicates with the macro cell M-eNB, but does not communicate with the small cell S-eNB. In this situation, the transmission wave from the macro cell M-eNB interferes with the transmission wave from the small cell S-eNB in the terminal device UE1, and the terminal devices UE1 and UE2 located in the small cell area SC Interference may occur between the transmission waves addressed to each.
 上述したように、マクロセルM-eNB、スモールセルS-eNBの通信制御部104は、それぞれ所定時間毎に在圏している各端末装置UEにRBを割り当てる。そのため、次に説明するように通信相手先の端末装置が時間経過に応じて変化することがある。
 図12は、本実施形態に係る通信システム1の通信状況の一例を示すタイミングチャートである。図12の上段、下段に、マクロセルM-eNB、スモールセルS-eNBのそれぞれについて通信中であるか否か、通信中における相手先の端末装置を示す。マクロセルM-eNBは、時刻t1~t2、t2~t3、t3~t4の期間において、それぞれ、端末装置UE1、UE3、UE3との間で通信を行う。スモールセルS-eNBは、時刻t1~t2、t3~t4の期間において、通信を行わないが、時刻t2~t3の期間において、UE2との間で通信を行うが、スモールセルエリアS-Cに在圏している端末装置UE1との間では通信を行わない。従って、スモールセルエリアS-Cから端末装置UE1、UE2のそれぞれに宛てた送信波間で干渉が生じない。そこで、本実施形態では、例えば、端末装置UE1において干渉が認識されたとき、スモールセルS-eNBは、端末装置UE1への送信信号の送信を停止する。
As described above, the communication control unit 104 of the macro cell M-eNB and the small cell S-eNB allocates RBs to each terminal apparatus UE located in each predetermined time. Therefore, as will be described next, the terminal device of the communication partner may change over time.
FIG. 12 is a timing chart showing an example of the communication status of the communication system 1 according to the present embodiment. The upper and lower sections of FIG. 12 show whether or not each of the macro cell M-eNB and the small cell S-eNB is communicating, and the partner terminal apparatus in communication. The macro cell M-eNB performs communication with the terminal apparatuses UE1, UE3, and UE3 during the periods of time t1 to t2, t2 to t3, and t3 to t4, respectively. The small cell S-eNB does not communicate during the time t1 to t2 and t3 to t4, but communicates with the UE 2 during the time t2 to t3, but does not communicate with the small cell area SC. No communication is performed with the terminal device UE1 that is in the area. Therefore, no interference occurs between the transmission waves addressed from the small cell area SC to each of the terminal apparatuses UE1 and UE2. Thus, in the present embodiment, for example, when interference is recognized in the terminal device UE1, the small cell S-eNB stops transmission of a transmission signal to the terminal device UE1.
(通信処理)
 次に、本実施形態に係る通信処理について説明する。図13は、本実施形態に係る通信処理を示すシーケンス図である。図13に示す処理は、ステップS201、S202及びS207の処理と、ステップS401~S404の処理を有する。ステップS201~S205の処理については、図5の説明を援用する。図13に示す処理では、ステップS201、S205の処理の終了後、ステップS401に進む。
(Communication processing)
Next, communication processing according to the present embodiment will be described. FIG. 13 is a sequence diagram illustrating communication processing according to the present embodiment. The process shown in FIG. 13 includes the processes of steps S201, S202, and S207, and the processes of steps S401 to S404. The description of FIG. 5 is used for the processing of steps S201 to S205. In the process shown in FIG. 13, the process proceeds to step S401 after the processes of steps S201 and S205 are completed.
 (ステップS401)端末装置UEの干渉通知部203は、スモールセルS-eNBによる通信の一時的な停止を通知することを示す一時停止通知情報を生成し、生成した一時停止通知情報をマクロセルM-eNBに送信する。その後、ステップS402に進む。
 (ステップS402)マクロセルM-eNBの干渉処理部103は、端末装置UEからの一時停止通知情報の受信直後に、スモールセルS-eNBとの通信の一時的な停止の承認を示す停止処理承認情報を生成する。干渉処理部103は、生成した停止処理承認情報を端末装置UEに送信する。その後、ステップS403に進む。
(Step S401) The interference notifying unit 203 of the terminal device UE generates temporary stop notification information indicating that a temporary stop of communication by the small cell S-eNB is notified, and the generated temporary stop notification information is displayed in the macro cell M- Send to eNB. Thereafter, the process proceeds to step S402.
(Step S402) The interference processing unit 103 of the macro cell M-eNB immediately receives the temporary stop notification information from the terminal apparatus UE, and immediately after the reception of the temporary stop notification information indicating the approval of the temporary stop of communication with the small cell S-eNB. Is generated. The interference processing unit 103 transmits the generated stop process approval information to the terminal device UE. Thereafter, the process proceeds to step S403.
 (ステップS403)端末装置UEの干渉通知部203は、マクロセルM-eNBから停止処理承認情報を受信した後、送信の停止を示す送信停止指示情報を生成し、生成した送信停止指示情報をスモールセルS-eNBに送信する。その後、ステップS404に進む。
 (ステップS404)スモールセルS-eNBの干渉処理部103は、自装置の通信制御部104に対して送信停止指示情報の送信元である端末装置UEとの通信に係るRBの割り当てを解除する。RBの解除により、端末装置UEとの通信が停止する。マクロセルM-eNBは、ステップS207を実行した後、図13に示す処理を終了する。
(Step S403) After receiving the stop process approval information from the macro cell M-eNB, the interference notification unit 203 of the terminal device UE generates transmission stop instruction information indicating stop of transmission, and the generated transmission stop instruction information is set to the small cell. Send to S-eNB. Thereafter, the process proceeds to step S404.
(Step S404) The interference processing unit 103 of the small cell S-eNB cancels allocation of RBs related to communication with the terminal device UE that is the transmission source of the transmission stop instruction information to the communication control unit 104 of the own device. The communication with the terminal device UE is stopped by releasing the RB. After executing step S207, the macro cell M-eNB ends the process illustrated in FIG.
 図14は、本実施形態に係る通信システム1の通信状況の他の例を示すタイミングチャートである。図14に示す通信状況、図13に示す通信処理が行われる場合のマクロセルM-eNB、スモールセルS-eNBそれぞれが通信中であるか否か、通信中における通信相手先の端末装置を示す。
 図14に示す例では、時刻t1~t2の間、マクロセルM-eNB、スモールセルS-eNBは、それぞれ端末装置UE3、UE2との間で通信を行う。
 (1)時刻t2において、マクロセルM-eNB、スモールセルS-eNBは、それぞれ端末装置UE1との通信を開始する。
 (2-1)その後、時刻t3において、端末装置UE1の干渉認識部202は、干渉を検出する(ステップS201)。端末装置UE1の干渉通知部203は、マクロセルM-eNBとの間で、ステップS202、S401及びS402を実行する。
 (2-2)時刻t4において、端末装置UE1の干渉通知部203は、送信停止指示情報をスモールセルS-eNBに送信する(ステップS403)。その後、スモールセルS-eNBの干渉処理部103は、端末装置UEとの通信を停止させる(ステップS404)。
 (3)時刻t4~t5の間、端末装置UE1はマクロセルM-eNBとの間で干渉が生じない状態で通信を行う。
 (4)時刻t5~t6の期間、マクロセルM-eNB、スモールセルS-eNBは、それぞれ端末装置UE3、UE2との通信を行う。この場合には、マクロセルM-eNB、スモールセルS-eNBの相手先がそれぞれ異なるため、それぞれに宛てた送信波同士の干渉が生じない。
FIG. 14 is a timing chart showing another example of the communication status of the communication system 1 according to the present embodiment. FIG. 14 shows the communication status shown in FIG. 14, whether the macro cell M-eNB and the small cell S-eNB are in communication when the communication process shown in FIG.
In the example shown in FIG. 14, between times t1 and t2, the macro cell M-eNB and the small cell S-eNB communicate with the terminal devices UE3 and UE2, respectively.
(1) At time t2, the macro cell M-eNB and the small cell S-eNB each start communication with the terminal device UE1.
(2-1) Thereafter, at time t3, the interference recognition unit 202 of the terminal apparatus UE1 detects interference (step S201). The interference notification unit 203 of the terminal device UE1 executes steps S202, S401, and S402 with the macro cell M-eNB.
(2-2) At time t4, the interference notification unit 203 of the terminal device UE1 transmits transmission stop instruction information to the small cell S-eNB (step S403). Thereafter, the interference processing unit 103 of the small cell S-eNB stops communication with the terminal device UE (step S404).
(3) From time t4 to t5, the terminal apparatus UE1 performs communication with the macro cell M-eNB without causing interference.
(4) During the period from time t5 to t6, the macro cell M-eNB and the small cell S-eNB communicate with the terminal apparatuses UE3 and UE2, respectively. In this case, since the counterparts of the macro cell M-eNB and the small cell S-eNB are different from each other, there is no interference between the transmission waves addressed to each.
 なお、本実施形態は、主にスモールセルエリアS-C内において、在圏している端末装置の数が3台である場合を例にしたが、これには限られない。端末装置の数は、2台であってもよいし、4台以上であってもよい。 In addition, although this embodiment has exemplified the case where the number of terminal devices located in the small cell area SC is mainly three, the present invention is not limited to this. The number of terminal devices may be two, or four or more.
 以上に説明したように、本実施形態に係る通信システム1において、マクロセルM-eNB、スモールセルS-eNBは、それぞれに在圏している端末装置UEから通信先の端末装置UEを所定時間毎に定める通信制御部104を備える。また、スモールセルS-eNBの干渉処理部103は、通信制御部104に送信停止指示情報を送信した端末装置UEとの通信を停止させる。
 この構成により、マクロセルM-eNB、スモールセルS-eNBが時間経過に応じて独立に通信先の端末装置を定める場合に送信波の干渉が検出されたとき、スモールセルS-eNBは、干渉を検出した端末装置UEとの通信が停止する。そのため、スモールセルS-eNBに在圏する端末装置UEの個数が複数である場合において、複数の端末装置UEのそれぞれに宛てた送信波同士の干渉が生じない状態で通信を行うことができる。
As described above, in the communication system 1 according to the present embodiment, the macro cell M-eNB and the small cell S-eNB change the communication destination terminal apparatus UE from the terminal apparatus UE located in each area to the predetermined time intervals. A communication control unit 104 is provided. Further, the interference processing unit 103 of the small cell S-eNB stops communication with the terminal apparatus UE that has transmitted the transmission stop instruction information to the communication control unit 104.
With this configuration, when interference of a transmission wave is detected when the macro cell M-eNB and the small cell S-eNB determine a communication destination terminal device independently with time, the small cell S-eNB Communication with the detected terminal device UE stops. Therefore, when there are a plurality of terminal apparatuses UE located in the small cell S-eNB, communication can be performed in a state where there is no interference between transmission waves addressed to each of the plurality of terminal apparatuses UE.
(第4の実施形態)
 次に、本発明の第4の実施形態について説明する。上述した実施形態と同一の構成については、同一の番号を付して説明を援用する。
 図15は、本実施形態に係る通信システム1の一例を示す概念図である。通信システム1は、1台のマクロセルM-eNBと2台のスモールセルS-eNB1、S-eNB2を含んで構成される。スモールセルエリアS-C1、S-C2は、スモールセルS-eNB1、S-eNB2それぞれのセルエリアであり、相互に一部が重複している。また、スモールセルエリアS-C1、S-C2は、それぞれマクロセルエリアM-Cと重複している。図15に示す例では、スモールセルエリアS-C1、S-C2が相互に重複している領域内に、2台の端末装置UE1、UE2が在圏している。
 この状況下では、端末装置UE1、UE2が、スモールセルS-eNB1、S-eNB2とそれぞれ通信を行う場合、端末装置UE1において、自装置宛のスモールセルS-eNB1からの送信波と、端末装置UE2宛のスモールセルS-eNB2からの送信波との干渉が生じることがある。また、端末装置UE2において、自装置宛のスモールセルS-eNB2からの送信波と、端末装置UE1宛のスモールセルS-eNB1からの送信波との干渉が生じることがある。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described. About the same structure as embodiment mentioned above, the same number is attached | subjected and description is used.
FIG. 15 is a conceptual diagram illustrating an example of the communication system 1 according to the present embodiment. The communication system 1 includes one macro cell M-eNB and two small cells S-eNB1 and S-eNB2. The small cell areas S-C1 and S-C2 are the cell areas of the small cells S-eNB1 and S-eNB2, and a part of them overlaps each other. Further, the small cell areas S-C1 and S-C2 overlap with the macro cell area MC, respectively. In the example shown in FIG. 15, two terminal apparatuses UE1 and UE2 are located in an area where the small cell areas S-C1 and S-C2 overlap each other.
Under this situation, when the terminal devices UE1 and UE2 communicate with the small cells S-eNB1 and S-eNB2, respectively, the terminal device UE1 transmits a transmission wave from the small cell S-eNB1 addressed to the own device, and the terminal device. Interference with a transmission wave from the small cell S-eNB 2 addressed to the UE 2 may occur. Further, in the terminal device UE2, there may be interference between a transmission wave from the small cell S-eNB2 addressed to the own device and a transmission wave from the small cell S-eNB1 addressed to the terminal device UE1.
 そこで、本実施形態に係る通信システム1は、次に説明する構成を備える。端末装置UE1、UE2は、それぞれGPS受信部209において、自装置の位置を検出し、検出した位置を示す端末位置情報をそれぞれと通信中のスモールセルS-eNB1、S-eNB2に送信する。スモールセルS-eNB1、S-eNB2において、干渉処理部103は、端末装置UE1、UE2のそれぞれから受信した端末位置情報が示す位置を含む領域への送信波の強度を他の領域への送信波の強度よりも高くする。干渉処理部103は、送信波の強度を高くする手法として、図9を用いて説明した送信波の強度を低くする手法と同様な手法を用いることができる。 Therefore, the communication system 1 according to the present embodiment has a configuration described below. Each of the terminal devices UE1 and UE2 detects the position of the own device in the GPS receiving unit 209, and transmits terminal position information indicating the detected position to the small cells S-eNB1 and S-eNB2 that are communicating with the respective devices. In the small cells S-eNB1 and S-eNB2, the interference processing unit 103 determines the intensity of the transmission wave to the area including the position indicated by the terminal position information received from each of the terminal apparatuses UE1 and UE2 Higher than the strength of. The interference processing unit 103 can use a technique similar to the technique for reducing the intensity of the transmission wave described with reference to FIG. 9 as a technique for increasing the intensity of the transmission wave.
 この構成によって、図16に示すようにスモールセルS-eNB1、S-eNB2は、それぞれ、その周囲の領域よりも送信波の強度が高い領域(ビーム、セクタ)SB1、SB2を端末装置UE1、UE2の方向に向けることができる。そのため、端末装置UE1、UE2にそれぞれ到来する端末装置UE2、UE1のそれぞれに宛てたスモールセルS-eNB2、S-eNB1からの送信波の強度が、通信に係るスモールセルS-eNB1、S-eNB2からの送信波の強度よりも相対的に低くなる。その結果、端末装置UE1、UE2において発生する干渉を抑制することができる。特に、スモールセルS-eNB1,S-eNB2それぞれからの端末装置UE1、UE2間の方向が互いに離れるほど、または送信波の強度が高い領域が狭いほど効果が高くなる。 With this configuration, as shown in FIG. 16, the small cells S-eNB1 and S-eNB2 respectively transmit regions (beams and sectors) SB1 and SB2 having higher transmission wave strengths than the surrounding regions to the terminal devices UE1 and UE2. Can be directed in the direction of Therefore, the strengths of the transmitted waves from the small cells S-eNB2 and S-eNB1 addressed to the terminal devices UE2 and UE1 respectively arriving at the terminal devices UE1 and UE2 are small cells S-eNB1 and S-eNB2 related to communication. It becomes relatively lower than the intensity of the transmitted wave from. As a result, it is possible to suppress interference that occurs in the terminal apparatuses UE1 and UE2. In particular, the effect increases as the directions between the terminal apparatuses UE1 and UE2 from the small cells S-eNB1 and S-eNB2 are separated from each other, or as the region where the intensity of the transmission wave is high is narrow.
(変形例)
 次に、本実施形態の変形例について説明する。図17は、本変形例に係る通信システム1のブロック図である。図17において、端末装置UE1、UE2の図示が省略されている。通信システム1は、1台のマクロセルM-eNB、2台のスモールセルS-eNB1、S-eNB2、及び動作管理部30を含んで構成される。動作管理部30は、マクロセルM-eNB、スモールセルS-eNB1、S-eNB2とは、別個の装置として構成されてもよいし、マクロセルM-eNBの一部として構成されてもよい。
(Modification)
Next, a modification of this embodiment will be described. FIG. 17 is a block diagram of the communication system 1 according to this modification. In FIG. 17, illustration of the terminal apparatuses UE1 and UE2 is omitted. The communication system 1 includes one macro cell M-eNB, two small cells S-eNB1, S-eNB2, and an operation management unit 30. The operation management unit 30 may be configured as a separate device from the macro cell M-eNB, the small cell S-eNB1, and the S-eNB 2, or may be configured as a part of the macro cell M-eNB.
 動作管理部30は、スモールセルS-eNB1、S-eNB2の動作を管理する。スモールセルS-eNB1、S-eNB2は、図13、図14を用いて説明したように、通信制御部104において、在圏している端末装置UEの中から通信先の端末装置UEを所定時間毎に定める。本変形例では、通信制御部104が定めた通信先へのデータ送信を開始する前に、干渉処理部103は、当該通信先へのデータの送信の許可を要求するための送信許可要求情報を生成する。干渉処理部103は、生成した送信許可要求情報を動作管理部30に送信する。干渉処理部103は、その応答として送信許可情報を動作管理部30から受信した直後、通信制御部104に対して定めた通信先へのデータの送信を開始させる。通信制御部104は、データの送信開始時、送信終了時にそれぞれ、送信開始情報、送信終了情報を動作管理部30に送信する。 The operation management unit 30 manages the operations of the small cells S-eNB1 and S-eNB2. As described with reference to FIGS. 13 and 14, the small cells S-eNB1 and S-eNB2 use the communication control unit 104 to select a communication destination terminal apparatus UE from among the existing terminal apparatuses UE for a predetermined time. Set for each. In this modification, before starting data transmission to the communication destination determined by the communication control unit 104, the interference processing unit 103 transmits transmission permission request information for requesting permission to transmit data to the communication destination. Generate. The interference processing unit 103 transmits the generated transmission permission request information to the operation management unit 30. Immediately after receiving the transmission permission information from the operation management unit 30 as a response, the interference processing unit 103 causes the communication control unit 104 to start transmitting data to the communication destination. The communication control unit 104 transmits transmission start information and transmission end information to the operation management unit 30 at the start of data transmission and at the end of transmission, respectively.
 動作管理部30は、スモールセルS-eNB1、S-eNB2からそれぞれ受信した送信管理情報及び送信終了情報に基づいて、各スモールセルS-eNB1、S-eNB2においてデータの送信が行われているか否かを判定することができる。
 動作管理部30は、スモールセルS-eNB1、S-eNB2から送信許可要求情報を受信し、送信許可要求情報を送信したスモールセル(例えば、S-eNB1)以外の、スモールセルのいずれも(例えば、S-eNB2)がデータを送信中であるか否かを判定する。動作管理部30は、いずれのスモールセル(例えば、S-eNB2)もデータを送信中でないと判定した場合、直ちに送信を許可し、送信許可要求情報を送信したスモールセル(例えば、S-eNB1)に送信許可情報を送信する。この場合には、端末装置UE1、UE2において干渉が生じない動作管理部30は、いずれかのスモールセル(例えば、S-eNB2)もデータを送信中であると判定した場合、データの送信が終了するまで待機する。その後、動作管理部30は、送信を許可し、送信許可要求情報を送信したスモールセル(例えば、S-eNB1)に送信許可情報を送信する。
The operation management unit 30 determines whether data is transmitted in each of the small cells S-eNB1 and S-eNB2 based on the transmission management information and the transmission end information received from the small cells S-eNB1 and S-eNB2, respectively. Can be determined.
The operation management unit 30 receives the transmission permission request information from the small cells S-eNB1 and S-eNB2, and any of the small cells other than the small cell (for example, S-eNB1) that transmitted the transmission permission request information (for example, S-eNB1) , S-eNB 2) determines whether data is being transmitted. When it is determined that no small cell (for example, S-eNB 2) is transmitting data, the operation management unit 30 immediately permits transmission and transmits the transmission permission request information to the small cell (for example, S-eNB 1). Send permission information to. In this case, if the operation management unit 30 that does not cause interference in the terminal devices UE1 and UE2 determines that any of the small cells (for example, the S-eNB 2) is also transmitting data, the data transmission ends. Wait until Thereafter, the operation management unit 30 permits transmission and transmits the transmission permission information to the small cell (for example, S-eNB 1) that has transmitted the transmission permission request information.
 なお、動作管理部30は、同時にスモールセルS-eNB1、S-eNB2から送信許可要求情報を受信する場合、スモールセルS-eNB1、S-eNB2間で送信許可情報を送信するための送信順序を定める。例えば、動作管理部30は、送信許可要求情報に係る送信データの優先度が高いほど送信順序を早くする。送信データの優先度は、高い実時間性や緊急性が要求されるほど高い。例えば、テキストや静止画よりも動画の優先度が高く、動画よりも通話音声の優先度が高い。また、通常の情報伝達よりも緊急通報の優先度が高い。また、動作管理部30は、干渉を検出した端末装置UEに係る送信許可情報よりも、干渉を検出していない端末装置UEに係る送信許可情報について送信順序を早くする。動作管理部30は、干渉を検出した端末装置UEに係る送信許可情報同士では、干渉の検出頻度が低い端末装置UEほど送信順序を早くする。動作管理部30は、干渉を検出した端末装置UEが送信する干渉通知情報を受信することによって、端末装置UE毎の干渉の検出の有無や干渉の検出頻度を判定することができる。 When the operation management unit 30 simultaneously receives transmission permission request information from the small cells S-eNB1 and S-eNB2, the operation management unit 30 sets the transmission order for transmitting the transmission permission information between the small cells S-eNB1 and S-eNB2. Determine. For example, the operation management unit 30 increases the transmission order as the priority of the transmission data related to the transmission permission request information increases. The priority of transmission data is so high that high real-time property and urgency are required. For example, the priority of moving images is higher than that of text and still images, and the priority of calling voice is higher than that of moving images. Moreover, the priority of the emergency call is higher than the normal information transmission. In addition, the operation management unit 30 advances the transmission order of the transmission permission information related to the terminal device UE that has not detected the interference rather than the transmission permission information related to the terminal device UE that has detected the interference. The operation management unit 30 sets the transmission order earlier in the transmission permission information related to the terminal apparatus UE that has detected the interference as the terminal apparatus UE has a lower interference detection frequency. The operation management unit 30 can determine the presence / absence of interference detection and the frequency of interference detection for each terminal device UE by receiving the interference notification information transmitted by the terminal device UE that has detected interference.
 上述した構成により、スモールセルS-eNB1、S-eNB2の通信制御部104は、図18に示すように複数の端末装置UE1、UE2間で同時の通信を回避し、互いに異なる時間帯で通信を行う。
 図18は、本変形例に係る通信システム1の通信状況の一例を示すタイミングチャートである。図18の上段、下段に、スモールセルS-eNB1、S-eNB2のそれぞれについて通信中であるか否か、通信中における相手先の端末装置を示す。スモールセルS-eNB1は、時刻t1~t2、t3~t4の期間において端末装置UE1との間で通信を行い、時刻t2~t3の期間において通信を行わない。他方、スモールセルS-eNB2は、時刻t2~t3の期間において端末装置UE2との間で通信を行い、時刻t1~t2、t3~t4の期間において通信を行わない。従って、スモールセルエリアS-C1、S-C2が重複する領域内に在圏している端末装置UE1、UE2において、スモールセルS-eNB1、S-eNB2からそれぞれの自装置宛の送信波と、スモールセルS-eNB2、S-eNB1からの送信波との干渉が回避される。
With the configuration described above, the communication control unit 104 of the small cells S-eNB1 and S-eNB2 avoids simultaneous communication between the plurality of terminal apparatuses UE1 and UE2 as shown in FIG. 18, and performs communication in different time zones. Do.
FIG. 18 is a timing chart showing an example of the communication status of the communication system 1 according to this modification. 18 shows whether or not each small cell S-eNB1 and S-eNB2 is communicating, and the partner terminal device during communication. The small cell S-eNB1 performs communication with the terminal device UE1 during the period of time t1 to t2, and t3 to t4, and does not perform communication during the period of time t2 to t3. On the other hand, the small cell S-eNB2 performs communication with the terminal device UE2 during the period of time t2 to t3, and does not perform communication during the period of time t1 to t2 and t3 to t4. Therefore, in the terminal devices UE1 and UE2 that are located in an area where the small cell areas S-C1 and S-C2 overlap, transmission waves addressed to the respective devices from the small cells S-eNB1 and S-eNB2, Interference with the transmission waves from the small cells S-eNB2 and S-eNB1 is avoided.
 なお、本実施形態は、主にマクロセルエリアM-C内において、互いにスモールセルエリアが重複するスモールセルの数が2台である場合を例にしたが、これには限られない。
 スモールセルエリアが重複するスモールセルの数は、3台以上であってもよいし、スモールセルエリアが重複する領域の数は2個以上であってもよい。なお、本実施形態に係る通信システム1において、マクロセルM-eNBが省略されてもよい。
Although the present embodiment has exemplified the case where the number of small cells where the small cell areas overlap each other is mainly two in the macro cell area MC, the present invention is not limited to this.
The number of small cells where the small cell areas overlap may be three or more, and the number of regions where the small cell areas overlap may be two or more. In the communication system 1 according to the present embodiment, the macro cell M-eNB may be omitted.
 以上に説明したように、本実施形態に係る通信システム1は、互いにスモールセルエリアS-C1、S-C2が重複する領域を有する複数のスモールセルS-eNB1、S-eNBを備え、セルエリアが重複する領域に複数の端末装置UE1、UE2が所在しているとき、スモールセルS-eNB1、S-eNBのそれぞれの干渉処理部103は、端末装置UE1、UE2毎に異なる時間においてまたは空間に向けて端末装置UE1、UE2のうちの1つへのデータの送信を他の端末装置よりも優先する。
 この構成により、スモールセルエリアS-C1、S-C2が重複する領域内に在圏している端末装置UE1、UE2は、それぞれスモールセルS-eNB2、S-eNB1からの送信波の干渉が生じない状況で、通信を行うことができる。
As described above, the communication system 1 according to the present embodiment includes a plurality of small cells S-eNB1 and S-eNB each having a region where the small cell areas S-C1 and S-C2 overlap each other. When a plurality of terminal apparatuses UE1 and UE2 are located in an overlapping area, the interference processing unit 103 of each of the small cells S-eNB1 and S-eNB is different in time or space for each of the terminal apparatuses UE1 and UE2. The transmission of data to one of the terminal devices UE1 and UE2 is prioritized over other terminal devices.
With this configuration, the terminal devices UE1 and UE2 that are located in the area where the small cell areas S-C1 and S-C2 overlap each other cause interference of transmission waves from the small cells S-eNB2 and S-eNB1, respectively. Communication is possible in situations where there is no such situation.
 以上、図面を参照して本発明の実施形態について説明したが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更、例えば、組み合わせ、構成の一部の省略、等をすることが可能である。 The embodiment of the present invention has been described above with reference to the drawings. However, the specific configuration is not limited to the above-described configuration, and various design changes such as combinations can be made without departing from the gist of the present invention. It is possible to omit a part of the configuration.
 なお、上述した実施形態は、次の態様でも実施することができる。
 (1)第1基地局装置と、第2基地局装置と、端末装置とを備える通信システムであって、前記端末装置は、前記第1基地局装置からの送信波と、前記第2基地局装置からの送信波との干渉を認識する干渉認識部と、前記干渉認識部が干渉を認識するとき、前記第2基地局装置に送信の抑制を指示する抑制指示を送信する干渉通知部と、を備え、前記第2基地局装置は、前記端末装置から前記抑制指示を受信するとき、前記端末装置への送信を抑制する干渉処理部を備える通信システム。
The embodiment described above can also be implemented in the following manner.
(1) A communication system including a first base station apparatus, a second base station apparatus, and a terminal apparatus, wherein the terminal apparatus transmits a transmission wave from the first base station apparatus, and the second base station An interference recognition unit for recognizing interference with a transmission wave from the device, and an interference notification unit for transmitting a suppression instruction for instructing suppression of transmission to the second base station device when the interference recognition unit recognizes interference, And the second base station device includes an interference processing unit that suppresses transmission to the terminal device when receiving the suppression instruction from the terminal device.
 (2)前記端末装置の干渉通知部は、前記干渉認識部が干渉を認識するとき、前記第1基地局装置に前記第2基地局装置よりも優先した送信を指示する優先処理要求を送信し、前記第1基地局装置は、前記端末装置から優先処理要求を受信するとき、前記端末装置への送信を優先する干渉処理部を備える(1)の通信システム。 (2) When the interference recognizing unit recognizes the interference, the interference notification unit of the terminal device transmits a priority processing request instructing the first base station device to perform transmission with priority over the second base station device. The communication system according to (1), wherein the first base station device includes an interference processing unit that prioritizes transmission to the terminal device when receiving a priority processing request from the terminal device.
 (3)前記端末装置は、自装置の位置を検出し、前記位置を示す位置情報を前記第2基地局装置に送信する位置検出部と、前記第2基地局装置において、前記干渉処理部は、前記端末装置から受信した位置情報が示す位置を含む領域への送信波の強度を他の領域への送信波の強度よりも低くする(1)又は(2)の通信システム。 (3) In the second base station device, the terminal device detects a position of the device itself, and transmits position information indicating the position to the second base station device. The communication system according to (1) or (2), wherein the intensity of the transmission wave to the area including the position indicated by the position information received from the terminal device is lower than the intensity of the transmission wave to the other area.
 (4)前記第1基地局装置、前記第2基地局装置は、それぞれに在圏している端末装置から通信先の端末装置を所定時間毎に定める通信制御部を備え、前記第2基地局装置において、前記干渉処理部は、前記通信制御部に、前記抑制指示を送信した端末装置との通信を停止させる(1)から(3)のいずれかの通信システム。 (4) The first base station device and the second base station device each include a communication control unit that determines a communication destination terminal device from a terminal device residing in each of the first base station device and the second base station device. In the apparatus, the interference processing unit causes the communication control unit to stop communication with the terminal device that has transmitted the suppression instruction.
 (5)互いにセルエリアが重複する領域を有する複数の前記第2基地局装置を備え、前記領域に複数の前記端末装置が所在しているとき、前記第2基地局装置の干渉処理部は、端末装置間で異なる時間においてまたは空間に向けて前記端末装置の1つへのデータの送信を他の端末装置よりも優先する(1)から(4)のいずれかの通信システム。 (5) comprising a plurality of the second base station devices having areas where the cell areas overlap each other, and when the plurality of terminal devices are located in the area, the interference processing unit of the second base station device is: The communication system according to any one of (1) to (4), wherein transmission of data to one of the terminal devices is given priority over other terminal devices at different times or in a space between the terminal devices.
 (6)第1基地局装置からの送信波と、第2基地局装置からの送信波との干渉を認識する干渉認識部と、前記干渉認識部が干渉を認識するとき、前記第2基地局装置に送信の抑制を指示する抑制指示を送信する干渉通知部と、を備える端末装置。 (6) An interference recognition unit for recognizing interference between a transmission wave from the first base station device and a transmission wave from the second base station device, and when the interference recognition unit recognizes interference, the second base station An interference notification unit that transmits a suppression instruction that instructs the apparatus to suppress transmission.
 (7)端末装置における通信方法であって、第1基地局装置からの送信波と、第2基地局装置からの送信波との干渉を認識する干渉認識過程と、前記干渉認識過程において干渉が認識されるとき、前記第2基地局装置に送信の抑制を指示する抑制指示を送信する干渉通知過程と、を有する通信方法。 (7) A communication method in a terminal apparatus, wherein an interference recognition process for recognizing interference between a transmission wave from a first base station apparatus and a transmission wave from a second base station apparatus, and interference in the interference recognition process An interference notification step of transmitting a suppression instruction to instruct the second base station apparatus to suppress transmission when recognized.
 (8)端末装置のコンピュータに、第1基地局装置からの送信波と、前記第1基地局装置よりもセルエリアが狭い第2基地局装置からの送信波との干渉を認識する干渉認識手順、前記干渉認識手順において干渉が認識されるとき、前記第2基地局装置に送信の抑制を指示する抑制指示を送信する干渉通知手順、を実行させるためのプログラム。 (8) An interference recognition procedure for recognizing interference between a transmission wave from the first base station apparatus and a transmission wave from the second base station apparatus having a cell area smaller than that of the first base station apparatus in the computer of the terminal apparatus A program for executing an interference notification procedure for transmitting a suppression instruction for instructing the second base station apparatus to suppress transmission when interference is recognized in the interference recognition procedure.
 なお、基地局装置10の一部、例えば、制御部101、干渉認識部102、干渉処理部103及び通信制御部104、端末装置UEの一部、例えば、制御部201、干渉認識部202、干渉通知部203及び通信制御部204は、コンピュータで実現するようにしてもよい。その場合、この制御機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。
 また、上述した実施形態における基地局装置10、端末装置UEの一部、または全部を、LSI(Large Scale Integration)等の集積回路として実現してもよい。基地局装置10、端末装置UEの一部、の各機能ブロックは個別にプロセッサ化してもよいし、一部、または全部を集積してプロセッサ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いてもよい。
In addition, a part of the base station device 10, for example, the control unit 101, the interference recognition unit 102, the interference processing unit 103 and the communication control unit 104, a part of the terminal device UE, for example, the control unit 201, the interference recognition unit 202, the interference The notification unit 203 and the communication control unit 204 may be realized by a computer. In that case, the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
Moreover, you may implement | achieve part or all of the base station apparatus 10 in the embodiment mentioned above, and the terminal device UE as integrated circuits, such as LSI (Large Scale Integration). Each functional block of the base station apparatus 10 and a part of the terminal apparatus UE may be individually made into a processor, or part or all of them may be integrated into a processor. Further, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. In addition, when an integrated circuit technology that replaces LSI appears due to the advancement of semiconductor technology, an integrated circuit based on the technology may be used.
1…通信システム
10(M-eNB、S-eNB、S-eNB1、S-eNB2)…基地局装置
101…制御部
102…干渉認識部
103…干渉処理部
104…通信制御部
105…記憶部
106…受信部
107…送信部
108…電源
109…GPS受信部
UE(UE1、UE2、UE3)…端末装置
201…制御部
202…干渉認識部
203…干渉通知部
204…通信制御部
205…記憶部
206…受信部
207…送信部
208…電源
209…GPS受信部
DESCRIPTION OF SYMBOLS 1 ... Communication system 10 (M-eNB, S-eNB, S-eNB1, S-eNB2) ... Base station apparatus 101 ... Control part 102 ... Interference recognition part 103 ... Interference processing part 104 ... Communication control part 105 ... Storage part 106 ... Receiving unit 107 ... Transmitting unit 108 ... Power supply 109 ... GPS receiving unit UE (UE1, UE2, UE3) ... Terminal device 201 ... Control unit 202 ... Interference recognition unit 203 ... Interference notification unit 204 ... Communication control unit 205 ... Storage unit 206 ... Reception unit 207 ... Transmission unit 208 ... Power source 209 ... GPS reception unit

Claims (5)

  1.  第1基地局装置と、第2基地局装置と、端末装置とを備える通信システムであって、
     前記端末装置は、
     前記第1基地局装置からの送信波と、前記第2基地局装置からの送信波との干渉を認識する干渉認識部と、
     前記干渉認識部が干渉を認識するとき、前記第2基地局装置に送信の抑制を指示する抑制指示を送信する干渉通知部と、を備え
     前記第2基地局装置は、
     前記端末装置から前記抑制指示を受信するとき、前記端末装置への送信を抑制する干渉処理部
     を備える通信システム。
    A communication system comprising a first base station device, a second base station device, and a terminal device,
    The terminal device
    An interference recognition unit for recognizing interference between a transmission wave from the first base station apparatus and a transmission wave from the second base station apparatus;
    When the interference recognition unit recognizes interference, an interference notification unit that transmits a suppression instruction that instructs the second base station device to suppress transmission, the second base station device includes:
    A communication system comprising: an interference processing unit that suppresses transmission to the terminal device when receiving the suppression instruction from the terminal device.
  2.  前記端末装置の干渉通知部は、前記干渉認識部が干渉を認識するとき、前記第1基地局装置に前記第2基地局装置よりも優先した送信を指示する優先処理要求を送信し、
     前記第1基地局装置は、
     前記端末装置から優先処理要求を受信するとき、前記端末装置への送信を優先する干渉処理部
     を備える請求項1に記載の通信システム。
    When the interference recognition unit recognizes interference, the interference notification unit of the terminal device transmits a priority processing request that instructs the first base station device to give priority to transmission over the second base station device,
    The first base station apparatus
    The communication system according to claim 1, further comprising: an interference processing unit that prioritizes transmission to the terminal device when receiving a priority processing request from the terminal device.
  3.  前記端末装置は、
     自装置の位置を検出し、前記位置を示す位置情報を前記第2基地局装置に送信する位置検出部と、
     前記第2基地局装置において、
     前記干渉処理部は、
     前記端末装置から受信した位置情報が示す位置を含む領域への送信波の強度を他の領域への送信波の強度よりも低くする
     請求項1または請求項2に記載の通信システム。
    The terminal device
    A position detection unit that detects the position of the own device and transmits position information indicating the position to the second base station device;
    In the second base station apparatus,
    The interference processing unit
    The communication system according to claim 1 or 2, wherein the intensity of a transmission wave to an area including a position indicated by position information received from the terminal device is lower than an intensity of a transmission wave to another area.
  4.  前記第1基地局装置、前記第2基地局装置は、それぞれに在圏している端末装置から通信先の端末装置を所定時間毎に定める通信制御部を備え、
     前記第2基地局装置において、
     前記干渉処理部は、前記通信制御部に、前記抑制指示を送信した端末装置との通信を停止させる
     請求項1から請求項3のいずれか一項に記載の通信システム。
    The first base station device and the second base station device each include a communication control unit that determines a communication destination terminal device from a terminal device located in each of the first base station device every predetermined time,
    In the second base station apparatus,
    The communication system according to any one of claims 1 to 3, wherein the interference processing unit causes the communication control unit to stop communication with a terminal device that has transmitted the suppression instruction.
  5.  互いにセルエリアが重複する領域を有する複数の前記第2基地局装置を備え、
     前記領域に複数の前記端末装置が所在しているとき、
     前記第2基地局装置の干渉処理部は、端末装置間で異なる時間においてまたは空間に向けて前記端末装置の1つへのデータの送信を他の端末装置よりも優先する
     請求項1から請求項4のいずれか一項に記載の通信システム。
    A plurality of the second base station devices having areas where the cell areas overlap each other;
    When a plurality of the terminal devices are located in the area,
    The interference processing unit of the second base station apparatus gives priority to data transmission to one of the terminal apparatuses over other terminals at different times or toward the space between the terminal apparatuses. 5. The communication system according to any one of 4.
PCT/JP2015/081722 2014-11-21 2015-11-11 Communication system WO2016080260A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-236507 2014-11-21
JP2014236507 2014-11-21

Publications (1)

Publication Number Publication Date
WO2016080260A1 true WO2016080260A1 (en) 2016-05-26

Family

ID=56013802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081722 WO2016080260A1 (en) 2014-11-21 2015-11-11 Communication system

Country Status (1)

Country Link
WO (1) WO2016080260A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110521261A (en) * 2017-02-03 2019-11-29 株式会社Ntt都科摩 User terminal, wireless base station and wireless communications method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114779A (en) * 2008-11-07 2010-05-20 Kyocera Corp Radio base station and radio communication method
WO2011024310A1 (en) * 2009-08-31 2011-03-03 富士通株式会社 Mobile communication system, mobile station device, base station device, and electric wave interference reducing method
WO2011039935A1 (en) * 2009-10-01 2011-04-07 日本電気株式会社 Mobile communication system, base stations, network device and control method and program for same
JP2013207563A (en) * 2012-03-28 2013-10-07 Kyocera Corp Radio communication system, base station, mobile station, and radio communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114779A (en) * 2008-11-07 2010-05-20 Kyocera Corp Radio base station and radio communication method
WO2011024310A1 (en) * 2009-08-31 2011-03-03 富士通株式会社 Mobile communication system, mobile station device, base station device, and electric wave interference reducing method
WO2011039935A1 (en) * 2009-10-01 2011-04-07 日本電気株式会社 Mobile communication system, base stations, network device and control method and program for same
JP2013207563A (en) * 2012-03-28 2013-10-07 Kyocera Corp Radio communication system, base station, mobile station, and radio communication method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110521261A (en) * 2017-02-03 2019-11-29 株式会社Ntt都科摩 User terminal, wireless base station and wireless communications method
CN110521261B (en) * 2017-02-03 2023-08-22 株式会社Ntt都科摩 Terminal and wireless communication method

Similar Documents

Publication Publication Date Title
US20220085876A1 (en) Communication apparatus and communication method
JP6958594B2 (en) Base stations, terminal devices, and communication methods
CN105704822B (en) Spectrum resource management device and method, wireless communication device and method
EP2923522B1 (en) Systems and methods for interference avoidance, channel sounding, and other signaling for multi-user full duplex transmission
US10917742B2 (en) Electronic apparatus, device and method for adjusting a parameter for a proximity-based service communication
US20180062775A1 (en) Communication control apparatus, communication control method and radio communication apparatus
EP3235300B1 (en) Methods, base station, mobile node and relay node
CN111757403B (en) Resource allocation method and communication device
US11357016B2 (en) Base station device, terminal device, and method
JP2020526077A (en) Electronic device, wireless communication device, and wireless communication method
WO2012130269A1 (en) Distributed control of channel selection in a communication system
WO2017061157A1 (en) Device and method
JPWO2016072443A1 (en) User equipment, base station and uplink carrier aggregation communication method
WO2016054933A1 (en) Device to device interference coordination method, device, base station and user equipment
CN110036684A (en) Random access for NR
JPWO2020031593A1 (en) Communication device
US20180092121A1 (en) Systems and methods relating to granting transmissions in a multi-carrier dynamic time division duplexing (tdd) cellular communications system
WO2016054931A1 (en) Device-to-device interference coordination method, device and base station, and user equipment
WO2016054932A1 (en) Device to device interference coordination method, device, base station and user equipment
WO2016080260A1 (en) Communication system
EP4096323A1 (en) Wireless communication method and device
WO2014033854A1 (en) Base station apparatus, communication system and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15860416

Country of ref document: EP

Kind code of ref document: A1