WO2016080090A1 - Ammonia absorption/desorption apparatus - Google Patents

Ammonia absorption/desorption apparatus Download PDF

Info

Publication number
WO2016080090A1
WO2016080090A1 PCT/JP2015/078097 JP2015078097W WO2016080090A1 WO 2016080090 A1 WO2016080090 A1 WO 2016080090A1 JP 2015078097 W JP2015078097 W JP 2015078097W WO 2016080090 A1 WO2016080090 A1 WO 2016080090A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
container
storage material
ammonia storage
particles
Prior art date
Application number
PCT/JP2015/078097
Other languages
French (fr)
Japanese (ja)
Inventor
浩康 河内
河村 清美
近藤 照明
山内 崇史
研二 森
Original Assignee
株式会社豊田自動織機
株式会社豊田中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, 株式会社豊田中央研究所 filed Critical 株式会社豊田自動織機
Publication of WO2016080090A1 publication Critical patent/WO2016080090A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels

Definitions

  • the present invention relates to an ammonia absorption / release device.
  • a device described in Patent Document 1 is known as a conventional ammonia absorption / release device.
  • the ammonia storage / release device described in Patent Document 1 includes an ammonia storage material that stores ammonia and releases ammonia by heating, an ammonia storage tank that stores the ammonia storage material, and an ammonia storage material that is stored in the ammonia storage tank. And a heater for heating.
  • the ammonia occlusion material When ammonia is occluded in the ammonia occlusion material, the ammonia occlusion material expands in volume and a surface pressure acts on the ammonia occlusion tank. At this time, if the surface pressure acting on the ammonia storage tank is too high, the ammonia storage tank may be damaged. Therefore, it is necessary to increase the thickness of the ammonia storage tank. However, increasing the thickness of the ammonia storage tank increases the size of the ammonia storage tank and increases the weight of the ammonia storage tank.
  • An object of the present invention is to provide an ammonia storage / release device capable of reducing the thickness of the container and reducing the size and weight of the container by reducing the surface pressure acting on the container containing the ammonia storage material. It is.
  • the inventors of the present invention reduced the particle size of the ammonia storage material contained in the container, and when ammonia was stored in the ammonia storage material, the ammonia was stored by volume expansion of the ammonia storage material. The fact that the surface pressure acting on the storage tank is low has been found, and the present invention has been completed.
  • an ammonia storage / release apparatus is an ammonia storage / release apparatus including an ammonia storage material that stores ammonia and releases ammonia by heat, and a container that stores the ammonia storage material.
  • D maximum particle diameter of the occlusion material particles
  • Pal Pal
  • the ammonia storage material when ammonia is stored in the ammonia storage material, the ammonia storage material expands in volume. At this time, since the maximum particle diameter D of the ammonia storage material particles is 58.4 ⁇ Pal 0.51 or less, it is considered that other particles easily enter the gaps between the particles and the surface pressure acting on the container is reduced. It is done. Since the surface pressure acting on the container is reduced in this manner, the thickness of the container can be reduced to reduce the size and weight of the container.
  • the maximum particle diameter D of the ammonia storage material particles may be 102 ⁇ m or less.
  • the surface pressure acting on the container during the volume expansion of the ammonia storage material can be suppressed to 3 MPa or less.
  • the ammonia storage material may contain any of MgCl 2 , SrCl 2 and MgBr 2 .
  • the maximum particle diameter D of the ammonia storage material particles is set to 58.4 ⁇ Pal 0.51 or less, the surface pressure acting on the container can be reliably reduced.
  • An ammonia storage / release apparatus is an ammonia storage / release apparatus including an ammonia storage material that stores ammonia and releases ammonia by heat, and a container that stores the ammonia storage material.
  • an ammonia storage / release apparatus including an ammonia storage material that stores ammonia and releases ammonia by heat, and a container that stores the ammonia storage material.
  • T thickness
  • safety factor
  • allowable stress of the material of the container
  • MPa
  • the maximum particle diameter of the ammonia occlusion material is D ( ⁇ m)
  • T ⁇ ⁇ ⁇ L ⁇ (D / 58.4) (1 / 0.51) / 2 / ⁇ It is characterized by satisfying.
  • the ammonia storage material expands in volume.
  • T ⁇ ⁇ ⁇ L ⁇ (D / 58.4) (1 / 0.51) / 2 / ⁇ is satisfied, by reducing the maximum particle diameter D of the ammonia storage material particles, The lower limit value of the thickness T becomes smaller.
  • the maximum particle diameter D of the ammonia storage material particles is reduced, it is considered that other particles easily enter the gaps between the particles, and the surface pressure acting on the container is reduced. Thereby, thickness of a container can be made small and reduction in size and weight of a container can be achieved.
  • T ⁇ ⁇ ⁇ L ⁇ (D / 58.4) (1 / 0.51) / 2 / ⁇ is satisfied, the strength of the container can be ensured.
  • the maximum particle diameter D of the ammonia storage material particles may be 102 ⁇ m or less. The strength of the container can be reliably ensured.
  • the ammonia absorption-and-release apparatus which can reduce the thickness of a container and can attain the size reduction of a container is provided. .
  • FIG. 1 is a schematic configuration diagram illustrating an exhaust purification system including an embodiment of an ammonia absorption / release device.
  • FIG. 2 is a schematic diagram illustrating a state before and after NH 3 is stored in the ammonia storage material in the ammonia storage / release apparatus illustrated in FIG.
  • FIG. 3 is an image diagram showing a state of change of the ammonia storage material when the ammonia storage material expands in volume and a surface pressure acts on the container.
  • FIG. 4 is a graph showing the relationship between the elapsed time from the start of occlusion of NH 3 in the ammonia occlusion material and the surface pressure acting on the container.
  • FIG. 1 is a schematic configuration diagram illustrating an exhaust purification system including an embodiment of an ammonia absorption / release device.
  • FIG. 2 is a schematic diagram illustrating a state before and after NH 3 is stored in the ammonia storage material in the ammonia storage / release apparatus illustrated in FIG.
  • FIG. 3 is an image diagram
  • FIG. 5 is an image diagram showing a change in the ammonia storage material when the volume of the ammonia storage material expands when the particle size of the particles of the ammonia storage material is reduced.
  • FIG. 6 is a cross-sectional view of the surface pressure measuring device.
  • FIG. 7 is a graph showing the relationship between the particle size of MgCl 2 particles as the ammonia storage material, the elapsed time from the start of storage of NH 3 in the ammonia storage material, and the surface pressure acting on the container.
  • FIG. 8 is a diagram showing sieving using a mesh as an example of a method for defining the maximum particle size of ammonia storage material particles.
  • FIG. 9 is a graph showing the relationship between the maximum particle size of MgCl 2 particles as the ammonia storage material and the maximum surface pressure acting on the container.
  • FIG. 10 is a graph showing the maximum surface pressure acting on the container when the maximum particle diameter of particles of MgCl 2 , SrCl 2 and MgBr 2 that are ammonia storage materials is 210 ⁇ m.
  • FIG. 11 is a schematic configuration diagram showing a modified example of the exhaust purification system shown in FIG. 12 is a cross-sectional view of the heat exchanger with a reaction part shown in FIG.
  • FIG. 1 is a schematic configuration diagram showing an exhaust purification system provided with an embodiment of an ammonia absorption / release device.
  • an exhaust purification system 1 is provided in an exhaust system of a diesel engine 2 (hereinafter simply referred to as “engine 2”) of a vehicle, and purifies harmful substances (environmental pollutants) contained in exhaust gas discharged from the engine 2. To do.
  • the exhaust purification system 1 includes a diesel oxidation catalyst (DOC) 4, a diesel exhaust particulate filter (DPF) 5, a selective reduction catalyst (SCR: Selective Catalytic Reduction) 6, and an ammonia slip catalyst. (ASC: Ammonia Slip Catalyst) 7.
  • DOC diesel oxidation catalyst
  • DPF diesel exhaust particulate filter
  • SCR Selective Catalytic Reduction
  • ASC Ammonia Slip Catalyst
  • the DOC 4, DPF 5, SCR 6, and ASC 7 are arranged in order from the upstream side to the downstream side in the exhaust passage 8 connected to the engine 2.
  • the DOC 4 oxidizes and purifies HC and CO contained in the exhaust gas.
  • the DPF 5 collects particulate matter (PM) contained in the exhaust gas and removes PM from the exhaust gas.
  • the SCR 6 reduces and purifies NOx contained in the exhaust gas with ammonia (NH 3 ).
  • ASC7 oxidizes NH 3 passing through the SCR6.
  • the exhaust purification system 1 is configured to supply the ammonia absorption / release device 10 of the present embodiment, the ammonia injector 12 for injecting NH 3 into the exhaust gas flowing through the exhaust passage 8, and supplying NH 3 to the ammonia absorption / release device 10.
  • an ammonia introduction pipe 13 for connecting the ammonia absorption / release apparatus 10 to the ammonia supply source 11 and an ammonia lead-out pipe 14 for connecting the ammonia absorption / release apparatus 10 and the ammonia injector 12 are provided.
  • the ammonia inlet pipe 13 and the ammonia outlet pipe 14 are provided with on-off valves 15 and 16 for opening and closing the NH 3 flow path, respectively.
  • Ammonia storage and release device 10 as also shown in FIG. 2, a container 17 as ammonia storage tank is housed within the container 17, powdery ammonia releasing NH 3 by heat as well as absorbing the NH 3 And an occlusion material 18.
  • 2A shows a normal state of the ammonia storage material 18
  • FIG. 2B shows a state in which the ammonia storage material 18 is volume-expanded.
  • the container 17 has a base portion 17b, a cylindrical side wall portion 17a integrated with the base portion 17b, and a lid portion 17c fixed to the upper end of the side wall portion 17a.
  • the side wall portion 17a has a cylindrical shape (a cylindrical shape with a circular cross section) or a rectangular shape (a cylindrical shape with a rectangular cross section).
  • the shape of the side wall part 17a is cylindrical
  • the shape of the base part 17b and the cover part 17c is circular.
  • the shape of the side wall portion 17a is a quadrangular cylindrical shape
  • the shape of the base portion 17b and the lid portion 17c is a quadrangular shape.
  • the container 17 is made of, for example, stainless steel. The thickness of the container 17 will be described later in detail.
  • magnesium chloride (MgCl 2 ), strontium chloride (SrCl 2 ), or magnesium bromide (MgBr 2 ) is used as the ammonia storage material 18.
  • MgCl 2 magnesium chloride
  • strontium chloride (SrCl 2 ) strontium chloride
  • MgBr 2 magnesium bromide
  • the ammonia storage material 18 may contain an additive such as a carbon fiber that improves thermal conductivity. The particles of the ammonia storage material 18 will be described in detail later.
  • a filter 19 for preventing the ammonia storage material 18 from escaping from the ammonia introduction pipe 13 and the ammonia discharge pipe 14 to the outside of the container 17 is attached to the upper portion of the container 17.
  • a heater 29 for heating the ammonia storage material 18 accommodated in the container 17 is disposed around the side wall portion 17 a of the container 17.
  • NH 3 is released from the ammonia storage material 18.
  • the released NH 3 is supplied to the ammonia injector 12 through the ammonia outlet pipe 14. Then, NH 3 is injected into the exhaust gas by the ammonia injector 12, and NOx is reduced by NH 3 in the SCR 6.
  • a porous member (not shown) for spreading NH 3 as a whole may be arranged.
  • a porous member for example, a sheet-like metal fiber (stainless steel fiber or the like) is used.
  • a partition wall extending from the base portion 17 b toward the lid portion 17 c may be disposed in the container 17.
  • the ammonia storage material 18 is filled so that a free space J exists in the container 17 as shown in FIG.
  • the total amount of ammonia storage material 18 is filled into the container 17 before storage of NH 3 to the ammonia storage material 18, the bulk density at the time of full storage on the NH 3 ammonia absorber 18 NH 3 Is an amount that is smaller than the true density when fully occluded in the ammonia occlusion material 18. That is, the following formula is obtained.
  • NH 3 When NH 3 is introduced into the container 17 by connecting the ammonia introduction pipe 13 to the ammonia supply source 11, NH 3 is occluded in the ammonia occlusion material 18, and as shown in FIG. The occlusion material 18 expands in volume. At this time, there is almost no free space J in the container 17, the ammonia storage material 18 is pressed against the inner wall surface of the container 17, and a surface pressure acts on the container 17. Note that NH 3 may be introduced into the container 17 by connecting the ammonia introduction pipe 13 to the ammonia supply source 11 with the container 17 removed from the exhaust purification system 1.
  • FIG. 3 is an image diagram showing a state of change of the ammonia storage material 18 when the ammonia storage material 18 undergoes volume expansion.
  • FIG. 4 is a graph showing an example of the relationship between the elapsed time from the start of occlusion of NH 3 in the ammonia occlusion material and the surface pressure acting on the container 17.
  • FIG. 3A shows the state of the ammonia storage material 18 before storing NH 3 .
  • the reduced particle 18a When the particle 18a is collapsed and reduced in diameter, as shown in FIG. 3D, the reduced particle 18a enters the gap K between the particles 18a. Thus, it weakens the pressing force of the container 17 by the particles 18a, the surface pressure acting on the container 17 is low (see time T 3 in FIG. 4). Then, as shown in FIG. 3E, when the particle 18a is sufficiently reduced in diameter and the gap K between the particles 18a is filled, the container 17 is prevented from being pressed by the particle 18a. surface pressure almost ceases to act on (see the time T 4 in FIG. 4).
  • the ammonia storage material 18 When the ammonia storage material 18 expands in volume, the ammonia storage material 18 changes as described above. Therefore, when the particle size of the particles 18a of the ammonia storage material 18 is reduced, other particles 18a enter the gap K between the particles 18a. It is considered that the surface pressure acting on the container 17 becomes low.
  • FIG. 5 is an image diagram showing a change in the ammonia storage material 18 when the ammonia storage material 18 undergoes volume expansion when the particle size of the particles 18a of the ammonia storage material 18 is reduced.
  • FIG. 5A shows the state of the ammonia storage material 18 before storing NH 3 .
  • the surface pressure measuring device 20 includes a container 21 having a cylindrical shape.
  • a plunger 22 and a load cell 23 for measuring a load applied to the plunger 22 are arranged inside the container 21.
  • An upper region of the load cell 23 inside the container 21 is an ammonia storage material storage portion 24 in which the ammonia storage material 18 is stored.
  • the inner diameter of the ammonia storage material container 24 is 15 mm, and the depth of the ammonia storage material container 24 is 5 mm.
  • An ammonia introduction pipe 25 for introducing NH 3 into the ammonia storage material accommodating portion 24 is fixed to the lid portion 21 a of the container 21.
  • the ammonia introduction pipe 25 is provided with an on-off valve 26 for opening and closing the NH 3 flow path.
  • a filter 27 for preventing the ammonia storage material 18 from escaping to the outside of the container 21 when the ammonia storage material 18 undergoes volume expansion is disposed at the upper portion of the container 21.
  • anhydrous MgCl 2 was used as the ammonia storage material 18.
  • 0.969 g of Mg (NH 3 ) 6 Cl 2 is generated.
  • the bulk density of Mg (NH 3 ) 6 Cl 2 is 1.1 g / cm 3 .
  • the true density of Mg (NH 3 ) 6 Cl 2 is about 1.25 g / cm 3 . That is, the bulk density under the experimental conditions corresponds to about 0.9 times the true density.
  • the reason why the bulk density has a margin of about 10% with respect to the true density is to suppress the fluctuation of the bulk density due to the influence of disturbance.
  • the result of measuring the surface pressure using the surface pressure measuring device 20 is shown in FIG.
  • the horizontal axis represents the elapsed time from the start of storing NH 3 in the ammonia storage material 18, and the vertical axis represents the surface pressure acting on the container 21.
  • the thick solid line Pa is a measurement result when the particle size of the particles 18a of the ammonia storage material 18 is 40 ⁇ m or less.
  • a thin solid line Qa is a measurement result when the particle size of the particles 18a of the ammonia storage material 18 is larger than 40 ⁇ m and 75 ⁇ m or less.
  • a broken line Ra is a measurement result when the particle size of the particles 18a of the ammonia storage material 18 is larger than 75 ⁇ m and 106 ⁇ m or less.
  • a dotted line Sa is a measurement result when the particle size of the particles 18a of the ammonia storage material 18 is larger than 106 ⁇ m and 150 ⁇ m or less.
  • a one-dot chain line Ta is a measurement result when the particle size of the particles 18a of the ammonia storage material 18 is larger than 150 ⁇ m and equal to or smaller than 210 ⁇ m.
  • the particle diameter of the particles 18a of the ammonia storage material 18 is represented by a value classified by sieving using five types of meshes having different mesh opening sizes. As shown in FIG. 8, the mesh 30 used has a square mesh. As the mesh 30, five kinds of mesh opening sizes M of 40 ⁇ m, 75 ⁇ m, 106 ⁇ m, 150 ⁇ m, and 210 ⁇ m are prepared. By passing the particles 18a through these meshes 30, the particle size of the particles 18a is classified.
  • FIG. 9 is a graph showing the relationship between the maximum particle diameter of the particles 18 a of the ammonia storage material 18 and the maximum surface pressure acting on the container 17.
  • the horizontal axis represents the maximum particle diameter D of the particles 18 a of the ammonia storage material 18, and the vertical axis represents the maximum surface pressure P acting on the container 17.
  • the maximum surface pressure P acting on the container 17 is obtained from the graph shown in FIG.
  • the maximum particle diameter D of the particles 18a is determined by the mesh through which the particles 18a pass among the above five types of meshes. Specifically, the maximum particle diameter D of the particle 18a is the mesh size of a mesh having the smallest mesh size among meshes through which the particle 18a passes. For example, when the particle 18a passes through all five types of meshes, the maximum particle diameter D of the particle 18a is 40 ⁇ m. When the particle 18a passes through a mesh having an opening size of 75 ⁇ m, 106 ⁇ m, 150 ⁇ m, and 210 ⁇ m among the five types of meshes, the maximum particle diameter D of the particle 18a is 75 ⁇ m.
  • the maximum particle diameter D of the particle 18a is 106 ⁇ m.
  • the maximum particle diameter D of the particle 18a is 150 ⁇ m.
  • the maximum particle diameter D of the particle 18a is 210 ⁇ m.
  • the maximum surface pressure P acting on the container 17 is 3 MPa or less.
  • the maximum particle diameter D of the particles 18a may be set to 102 ⁇ m or less.
  • the maximum surface pressure P acting on the container 17 is more preferably 1 MPa or less, and for this purpose, the maximum particle diameter D of the particles 18a may be 58 ⁇ m or less.
  • the maximum surface pressure P acting on the container 17 is more preferably 0.5 MPa or less, and for this purpose, the maximum particle diameter D of the particles 18a may be 40 ⁇ m or less.
  • a resin such as polytetrafluoroethylene (PTFE) that is lighter than stainless steel can be used as the material of the container 17.
  • the thickness T (mm) of the container 17 only needs to satisfy the relationship of the following formula.
  • is the safety factor of the container 17
  • is the allowable stress (MPa) of the material of the container 17
  • L is the distance (mm) between the opposing inner wall surfaces of the side wall portion 17 a of the container 17.
  • L is the inner diameter of the side wall portion 17a.
  • L is the distance between the inner side surfaces which oppose the long side direction of the side wall part 17a.
  • the container 17 When the container 17 is mounted on a vehicle as in this embodiment, it is desirable to set the safety factor ⁇ of the container 17 to 1.2 or more.
  • the maximum surface pressure P acting on the container 17 can be suppressed to 3 MPa or less, so that the safety factor ⁇ of the container 17 is ensured to be 1.2 or more.
  • the thickness T of the container 17 may satisfy the following formula. T ⁇ 1.8 ⁇ L / ⁇ (6)
  • the maximum surface pressure P acting on the container 17 can be suppressed to 1 MPa or less, so that the safety factor ⁇ of the container 17 is ensured to be 1.2 or more.
  • the thickness T of the container 17 may satisfy the following formula. T ⁇ 0.6 ⁇ L / ⁇ (7)
  • the maximum surface pressure P acting on the container 17 can be suppressed to 0.5 MPa or less, and therefore the safety factor ⁇ of the container 17 is secured to 1.2 or more.
  • thickness T of such a container 17 the following formula may be satisfied. T ⁇ 0.3 ⁇ L / ⁇ (8)
  • the measurement result at that time is shown in FIG.
  • the graph shown in FIG. 10 corresponds to the graph shown in FIG.
  • the maximum surface pressure P acting on the container 17 was about 12 MPa (see circle X).
  • the maximum surface pressure P acting on the container 17 is about 10 MPa (see rhombus Y) and about 5 MPa (square mark), respectively. Z). That is, the maximum surface pressure P acting on the container 17 when using SrCl 2 and MgBr 2 is lower than the maximum surface pressure P acting on the container 17 when using MgCl 2 .
  • the maximum particle diameter of the particles 18a of the ammonia storage material 18 is D ( ⁇ m) and the allowable surface pressure of the container 17 is Pal (MPa)
  • the container 17 can be reduced in size and weight. Further, the bulk density when NH 3 is fully occluded in the ammonia occlusion material 18 can be increased by the amount by which the surface pressure acting on the container 17 becomes lower. In this case, since the inner volume of the container 17 can be reduced, the container 17 can be reduced in size and weight.
  • the maximum particle diameter D of the particles 18a of the ammonia storage material 18 is set to 102 ⁇ m or less, the maximum surface pressure P acting on the container 17 during the volume expansion of the ammonia storage material 18 can be suppressed to 3 MPa or less.
  • the ammonia storage material 18 contains any of MgCl 2 , SrCl 2 and MgBr 2 , when the maximum particle diameter D of the particles 18a of the ammonia storage material 18 is 58.4 ⁇ Pal 0.51 or less, the container The surface pressure acting on 17 can be reliably reduced.
  • the thickness of the container 17 is T (mm)
  • the safety factor of the container 17 is ⁇
  • the allowable stress of the material of the container 17 is ⁇ (MPa)
  • the inner side of the side wall portion 17a of the container 17 is opposed.
  • L (mm) is the distance between the wall surfaces
  • D ( ⁇ m) is the maximum particle size of the particles 18a of the ammonia storage material 18. Since / 2 / ⁇ is satisfied, the lower limit value of the thickness T of the container 17 is reduced by reducing the maximum particle diameter D of the particles 18a of the ammonia storage material 18.
  • the present invention is not limited to the above embodiment.
  • the powdery ammonia storage material 18 is accommodated in the container 17, but is not particularly limited thereto, and the powdery ammonia storage material 18 is compression-molded and pelletized.
  • the ammonia storage material 18 may be accommodated in the container 17.
  • ammonia absorption / release device of the present invention may be applied to a reaction part of a chemical heat storage device.
  • An example in which the ammonia absorption / release device is applied to the reaction section of a chemical heat storage device is shown in FIG.
  • FIG. 11 is a schematic configuration diagram showing a modification of the exhaust purification system 1 shown in FIG.
  • the exhaust purification system 1 includes a chemical heat storage device 40.
  • Chemical heat storage device 40 includes a reaction section with the heat exchanger 3 disposed between the engine 2 and the DOC4 in the exhaust passage 8, the holding and NH 3 by physical adsorption of NH 3 desorption of activated carbon can be the adsorber 42 having an adsorbent 41, a reaction part with the heat exchanger 3 with connecting the adsorber 42, the NH 3 supply pipe 43 is NH 3 flows, is disposed in the NH 3 supply pipe 43, And a valve 44 for opening and closing the NH 3 flow path.
  • the heat exchanger 3 with a reaction unit surrounds a laminate 47 in which a plurality of heat exchange units 45 and a plurality of reaction units 46 are alternately laminated, and surrounds the laminate 47. It has a cylindrical pipe 48 arranged. A circular lid member (not shown) is fixed to both ends of the pipe 48 so as to expose the heat exchange units 45 and cover the reaction units 46.
  • the heat exchanging unit 45 forms a flow path through which the exhaust gas flows, and performs heat exchange between the exhaust gas and the reaction unit 46.
  • the heat exchanging part 45 includes a tube 49 having a rectangular cross section and a wave-like fin 50 disposed in the tube 49.
  • the tube 49 is opened on the upstream side and the downstream side.
  • the reaction unit 46 includes ammonia storage material 51 that emits NH 3 by exhaust heat of exhaust gas while occluding and NH 3. In a state where the ammonia storage material 51 does not store NH 3 , a free space is formed in the reaction unit 46.
  • the ammonia storage material 51 is configured by pelletizing the atomized material.
  • a heat insulating material 52 is disposed between the ammonia storage material 51 and the pipe 48.
  • the pipe 48, the tube 49, the heat insulating material 52, and the lid member constitute a container that accommodates the ammonia storage material 51.
  • the thickness of the tube 49 and the lid member (not shown) constituting a part of the container for storing the ammonia storage material 51 is used.
  • the size of the component can be reduced and the weight can be reduced.
  • ammonia absorption / release apparatus 10 is arrange
  • the ammonia absorption / release apparatus of this invention may be arrange
  • the ammonia adsorption / desorption device is applied to the reaction unit of the chemical heat storage device that heats the exhaust gas, but the present invention is a reaction unit of the chemical heat storage device that heats a heating target other than the exhaust system of the engine. It is also applicable to.
  • Such heating object may be various heat media such as engine oil, transmission oil, cooling water, or air.
  • the reaction part of the chemical heat storage device may be disposed on the outer peripheral part (a part of the outer peripheral part or the entire outer periphery of the outer peripheral part) of the heat medium flow path through which the heat medium flows to heat the heat medium flow path itself. .
  • a heat exchanger may be disposed in the heat medium flow path through which the heat medium flows, and the heat medium may be heated through the heat exchanger in the reaction unit.
  • a heat exchange unit integrated heater is configured in which a plurality of reaction units including heat storage materials and heat exchange units such as heat exchange fins are alternately stacked, and the heat exchanger integrated heater is heated. You may arrange
  • the present invention can also be applied to a chemical heat storage device arranged other than the engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

An ammonia absorption/desorption apparatus 10 is equipped with: an ammonia-absorbing material 18 which can absorb and can desorb ammonia upon the application of heat; and a container 17 in which the ammonia-absorbing material 18 is housed. In the ammonia absorption/desorption apparatus 10, the requirement represented by the formula: D ≤ 58.4 × Pal0.51 is satisfied, wherein D (μm) represents the largest particle diameter of particles of the ammonia-absorbing material 18 and Pal (MPa) represents a contact pressure which the container 17 can tolerate.

Description

アンモニア吸放出装置Ammonia absorption / release device
 本発明は、アンモニア吸放出装置に関する。 The present invention relates to an ammonia absorption / release device.
 従来のアンモニア吸放出装置としては、例えば特許文献1に記載されている装置が知られている。特許文献1に記載のアンモニア吸放出装置は、アンモニアを吸蔵すると共に加熱によりアンモニアを放出するアンモニア吸蔵材と、アンモニア吸蔵材を収容するアンモニア吸蔵タンクと、アンモニア吸蔵タンクに収容されたアンモニア吸蔵材を加熱するヒータと、を備えている。 For example, a device described in Patent Document 1 is known as a conventional ammonia absorption / release device. The ammonia storage / release device described in Patent Document 1 includes an ammonia storage material that stores ammonia and releases ammonia by heating, an ammonia storage tank that stores the ammonia storage material, and an ammonia storage material that is stored in the ammonia storage tank. And a heater for heating.
特開2012-47156号公報JP 2012-47156 A
 アンモニア吸蔵材にアンモニアが吸蔵されると、アンモニア吸蔵材が体積膨張し、アンモニア吸蔵タンクに面圧が作用する。このとき、アンモニア吸蔵タンクに作用する面圧が高すぎると、アンモニア吸蔵タンクが破損するおそれがあるため、アンモニア吸蔵タンクの厚さを大きくする必要がある。しかし、アンモニア吸蔵タンクの厚さを大きくすると、アンモニア吸蔵タンクが大型化すると共に、アンモニア吸蔵タンクの重量が増加する。 When ammonia is occluded in the ammonia occlusion material, the ammonia occlusion material expands in volume and a surface pressure acts on the ammonia occlusion tank. At this time, if the surface pressure acting on the ammonia storage tank is too high, the ammonia storage tank may be damaged. Therefore, it is necessary to increase the thickness of the ammonia storage tank. However, increasing the thickness of the ammonia storage tank increases the size of the ammonia storage tank and increases the weight of the ammonia storage tank.
 本発明の目的は、アンモニア吸蔵材を収容する容器に作用する面圧を低減することにより、容器の厚さを小さくして容器の小型軽量化を図ることができるアンモニア吸放出装置を提供することである。 An object of the present invention is to provide an ammonia storage / release device capable of reducing the thickness of the container and reducing the size and weight of the container by reducing the surface pressure acting on the container containing the ammonia storage material. It is.
 本発明者等は、鋭意検討を重ねた結果、容器に収容されるアンモニア吸蔵材の粒子の粒径を小さくすると、アンモニア吸蔵材にアンモニアが吸蔵されたときに、アンモニア吸蔵材の体積膨張によりアンモニア吸蔵タンクに作用する面圧が低くなるという事実を見出し、本発明を完成させるに至った。 As a result of intensive studies, the inventors of the present invention reduced the particle size of the ammonia storage material contained in the container, and when ammonia was stored in the ammonia storage material, the ammonia was stored by volume expansion of the ammonia storage material. The fact that the surface pressure acting on the storage tank is low has been found, and the present invention has been completed.
 即ち、本発明の一側面に係るアンモニア吸放出装置は、アンモニアを吸蔵すると共に熱によりアンモニアを放出するアンモニア吸蔵材と、アンモニア吸蔵材を収容する容器と、を備えたアンモニア吸放出装置において、アンモニア吸蔵材の粒子の最大粒径をD(μm)、容器に許容される面圧をPal(MPa)としたときに、D≦58.4×Pal0.51を満たすことを特徴とする。 That is, an ammonia storage / release apparatus according to one aspect of the present invention is an ammonia storage / release apparatus including an ammonia storage material that stores ammonia and releases ammonia by heat, and a container that stores the ammonia storage material. When the maximum particle diameter of the occlusion material particles is D (μm) and the surface pressure allowed for the container is Pal (MPa), D ≦ 58.4 × Pal 0.51 is satisfied.
 以上のような本発明の一側面に係るアンモニア吸放出装置においては、アンモニア吸蔵材にアンモニアが吸蔵されると、アンモニア吸蔵材が体積膨張する。このとき、アンモニア吸蔵材の粒子の最大粒径Dが58.4×Pal0.51以下であるため、粒子間の隙間に他の粒子が入り込みやすくなり、容器に作用する面圧が低くなると考えられる。このように容器に作用する面圧が低減されるため、容器の厚さを小さくして容器の小型軽量化を図ることができる。 In the ammonia storage / release device according to one aspect of the present invention as described above, when ammonia is stored in the ammonia storage material, the ammonia storage material expands in volume. At this time, since the maximum particle diameter D of the ammonia storage material particles is 58.4 × Pal 0.51 or less, it is considered that other particles easily enter the gaps between the particles and the surface pressure acting on the container is reduced. It is done. Since the surface pressure acting on the container is reduced in this manner, the thickness of the container can be reduced to reduce the size and weight of the container.
 アンモニア吸蔵材の粒子の最大粒径Dは、102μm以下であってもよい。この場合には、アンモニア吸蔵材の体積膨張時に容器に作用する面圧を3MPa以下に抑えることができる。 The maximum particle diameter D of the ammonia storage material particles may be 102 μm or less. In this case, the surface pressure acting on the container during the volume expansion of the ammonia storage material can be suppressed to 3 MPa or less.
 アンモニア吸蔵材は、MgCl、SrCl及びMgBrのいずれかを含んでもよい。この場合には、アンモニア吸蔵材の粒子の最大粒径Dを58.4×Pal0.51以下としたときに、容器に作用する面圧を確実に低減することができる。 The ammonia storage material may contain any of MgCl 2 , SrCl 2 and MgBr 2 . In this case, when the maximum particle diameter D of the ammonia storage material particles is set to 58.4 × Pal 0.51 or less, the surface pressure acting on the container can be reliably reduced.
 また、本発明の一側面に係るアンモニア吸放出装置は、アンモニアを吸蔵すると共に熱によりアンモニアを放出するアンモニア吸蔵材と、アンモニア吸蔵材を収容する容器と、を備えたアンモニア吸放出装置において、容器は、筒状の側壁部を有し、容器の厚さをT(mm)、容器の安全率をα、容器の材料の許容応力をσ(MPa)、側壁部の対向する内壁面間の距離をL(mm)、アンモニア吸蔵材の粒子の最大粒径をD(μm)としたときに、T≧α×L×(D/58.4)(1/0.51)/2/σを満たすことを特徴とする。 An ammonia storage / release apparatus according to one aspect of the present invention is an ammonia storage / release apparatus including an ammonia storage material that stores ammonia and releases ammonia by heat, and a container that stores the ammonia storage material. Has a cylindrical side wall, the thickness of the container is T (mm), the safety factor of the container is α, the allowable stress of the material of the container is σ (MPa), and the distance between the opposing inner wall surfaces of the side wall is Is L (mm) and the maximum particle diameter of the ammonia occlusion material is D (μm), T ≧ α × L × (D / 58.4) (1 / 0.51) / 2 / σ It is characterized by satisfying.
 以上のような本発明の一側面に係るアンモニア吸放出装置においては、アンモニア吸蔵材にアンモニアが吸蔵されると、アンモニア吸蔵材が体積膨張する。このとき、T≧α×L×(D/58.4)(1/0.51)/2/σを満たしているため、アンモニア吸蔵材の粒子の最大粒径Dを小さくすることで、容器の厚さTの下限値が小さくなる。アンモニア吸蔵材の粒子の最大粒径Dを小さくすると、粒子間の隙間に他の粒子が入り込みやすくなり、容器に作用する面圧が低くなると考えられる。これにより、容器の厚さを小さくして容器の小型軽量化を図ることができる。また、T≧α×L×(D/58.4)(1/0.51)/2/σを満たしているため、容器の強度を確保することができる。 In the ammonia storage / release device according to one aspect of the present invention as described above, when ammonia is stored in the ammonia storage material, the ammonia storage material expands in volume. At this time, since T ≧ α × L × (D / 58.4) (1 / 0.51) / 2 / σ is satisfied, by reducing the maximum particle diameter D of the ammonia storage material particles, The lower limit value of the thickness T becomes smaller. When the maximum particle diameter D of the ammonia storage material particles is reduced, it is considered that other particles easily enter the gaps between the particles, and the surface pressure acting on the container is reduced. Thereby, thickness of a container can be made small and reduction in size and weight of a container can be achieved. Moreover, since T ≧ α × L × (D / 58.4) (1 / 0.51) / 2 / σ is satisfied, the strength of the container can be ensured.
 T≧1.8×L/σを満たしてもよい。この場合には、例えば容器の安全率αを1.2以上に確保しつつ、容器に作用する面圧を3MPa以下に抑えるために、アンモニア吸蔵材の粒子の最大粒径Dを102μm以下としても、容器の強度を確実に確保することができる。 It may satisfy T ≧ 1.8 × L / σ. In this case, for example, in order to suppress the surface pressure acting on the container to 3 MPa or less while securing the safety factor α of the container to 1.2 or more, the maximum particle diameter D of the ammonia storage material particles may be 102 μm or less. The strength of the container can be reliably ensured.
 本発明によれば、アンモニア吸蔵材を収容する容器に作用する面圧を低減することにより、容器の厚さを小さくして容器の小型軽量化を図ることができるアンモニア吸放出装置が提供される。 ADVANTAGE OF THE INVENTION According to this invention, by reducing the surface pressure which acts on the container which accommodates an ammonia occlusion material, the ammonia absorption-and-release apparatus which can reduce the thickness of a container and can attain the size reduction of a container is provided. .
図1は、アンモニア吸放出装置の一実施形態を備えた排気浄化システムを示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating an exhaust purification system including an embodiment of an ammonia absorption / release device. 図2は、図1に示されたアンモニア吸放出装置においてアンモニア吸蔵材にNHが吸蔵される前後の状態を示す概略図である。FIG. 2 is a schematic diagram illustrating a state before and after NH 3 is stored in the ammonia storage material in the ammonia storage / release apparatus illustrated in FIG. 図3は、アンモニア吸蔵材が体積膨張して容器に面圧が作用する時のアンモニア吸蔵材の変化の様子を示すイメージ図である。FIG. 3 is an image diagram showing a state of change of the ammonia storage material when the ammonia storage material expands in volume and a surface pressure acts on the container. 図4は、NHをアンモニア吸蔵材に吸蔵開始からの経過時間と容器に作用する面圧との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the elapsed time from the start of occlusion of NH 3 in the ammonia occlusion material and the surface pressure acting on the container. 図5は、アンモニア吸蔵材の粒子の粒径を小さくした場合に、アンモニア吸蔵材が体積膨張する時のアンモニア吸蔵材の変化の様子を示すイメージ図である。FIG. 5 is an image diagram showing a change in the ammonia storage material when the volume of the ammonia storage material expands when the particle size of the particles of the ammonia storage material is reduced. 図6は、面圧測定装置の断面図である。FIG. 6 is a cross-sectional view of the surface pressure measuring device. 図7は、アンモニア吸蔵材であるMgClの粒子の粒径とNHをアンモニア吸蔵材に吸蔵開始からの経過時間と容器に作用する面圧との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the particle size of MgCl 2 particles as the ammonia storage material, the elapsed time from the start of storage of NH 3 in the ammonia storage material, and the surface pressure acting on the container. 図8は、アンモニア吸蔵材の粒子の最大粒径を規定する方法の一例として、メッシュを用いたふるい分けを示す図である。FIG. 8 is a diagram showing sieving using a mesh as an example of a method for defining the maximum particle size of ammonia storage material particles. 図9は、アンモニア吸蔵材であるMgClの粒子の最大粒径と容器に作用する最大面圧との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the maximum particle size of MgCl 2 particles as the ammonia storage material and the maximum surface pressure acting on the container. 図10は、アンモニア吸蔵材であるMgCl、SrCl及びMgBrの粒子の最大粒径を210μmとした場合における容器に作用する最大面圧を示すグラフである。FIG. 10 is a graph showing the maximum surface pressure acting on the container when the maximum particle diameter of particles of MgCl 2 , SrCl 2 and MgBr 2 that are ammonia storage materials is 210 μm. 図11は、図1に示された排気浄化システムの変形例を示す概略構成図である。FIG. 11 is a schematic configuration diagram showing a modified example of the exhaust purification system shown in FIG. 図12は、図11に示された反応部付き熱交換器の断面図である。12 is a cross-sectional view of the heat exchanger with a reaction part shown in FIG.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、図面において、同一または同等の要素には同じ符号を付し、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent elements are denoted by the same reference numerals, and redundant description is omitted.
 図1は、アンモニア吸放出装置の一実施形態を備えた排気浄化システムを示す概略構成図である。図1において、排気浄化システム1は、車両のディーゼルエンジン2(以下、単にエンジン2という)の排気系に備えられ、エンジン2から排出される排気ガスに含まれる有害物質(環境汚染物質)を浄化する。 FIG. 1 is a schematic configuration diagram showing an exhaust purification system provided with an embodiment of an ammonia absorption / release device. In FIG. 1, an exhaust purification system 1 is provided in an exhaust system of a diesel engine 2 (hereinafter simply referred to as “engine 2”) of a vehicle, and purifies harmful substances (environmental pollutants) contained in exhaust gas discharged from the engine 2. To do.
 排気浄化システム1は、ディーゼル酸化触媒(DOC:Diesel Oxidation Catalyst)4と、ディーゼル排気微粒子除去フィルタ(DPF:Diesel Particulate Filter)5と、選択還元触媒(SCR:Selective Catalytic Reduction)6と、アンモニアスリップ触媒(ASC:Ammonia Slip Catalyst)7と、を備えている。DOC4、DPF5、SCR6及びASC7は、エンジン2と接続された排気通路8の途中に、上流側から下流側に向けて順に配置されている。 The exhaust purification system 1 includes a diesel oxidation catalyst (DOC) 4, a diesel exhaust particulate filter (DPF) 5, a selective reduction catalyst (SCR: Selective Catalytic Reduction) 6, and an ammonia slip catalyst. (ASC: Ammonia Slip Catalyst) 7. The DOC 4, DPF 5, SCR 6, and ASC 7 are arranged in order from the upstream side to the downstream side in the exhaust passage 8 connected to the engine 2.
 DOC4は、排気ガス中に含まれるHC及びCO等を酸化して浄化する。DPF5は、排気ガス中に含まれる粒子状物質(PM:Particulate Matter)を捕集し、排気ガスからPMを取り除く。SCR6は、アンモニア(NH)によって、排気ガス中に含まれるNOxを還元して浄化する。ASC7は、SCR6を通過したNHを酸化する。 The DOC 4 oxidizes and purifies HC and CO contained in the exhaust gas. The DPF 5 collects particulate matter (PM) contained in the exhaust gas and removes PM from the exhaust gas. The SCR 6 reduces and purifies NOx contained in the exhaust gas with ammonia (NH 3 ). ASC7 oxidizes NH 3 passing through the SCR6.
 また、排気浄化システム1は、本実施形態のアンモニア吸放出装置10と、排気通路8を流れる排気ガスにNHを注入するアンモニア注入器12と、アンモニア吸放出装置10にNHを供給する際にアンモニア吸放出装置10をアンモニア供給源11に接続するためのアンモニア導入管13と、アンモニア吸放出装置10とアンモニア注入器12とを接続するアンモニア導出管14と、を備えている。アンモニア導入管13及びアンモニア導出管14には、NHの流路を開閉する開閉弁15,16がそれぞれ配設されている。 Further, the exhaust purification system 1 is configured to supply the ammonia absorption / release device 10 of the present embodiment, the ammonia injector 12 for injecting NH 3 into the exhaust gas flowing through the exhaust passage 8, and supplying NH 3 to the ammonia absorption / release device 10. In addition, an ammonia introduction pipe 13 for connecting the ammonia absorption / release apparatus 10 to the ammonia supply source 11 and an ammonia lead-out pipe 14 for connecting the ammonia absorption / release apparatus 10 and the ammonia injector 12 are provided. The ammonia inlet pipe 13 and the ammonia outlet pipe 14 are provided with on-off valves 15 and 16 for opening and closing the NH 3 flow path, respectively.
 アンモニア吸放出装置10は、図2にも示されるように、アンモニア吸蔵タンクとしての容器17と、この容器17内に収容され、NHを吸蔵すると共に熱によりNHを放出する粉末状のアンモニア吸蔵材18とを備えている。なお、図2(a)は、アンモニア吸蔵材18の通常状態を示し、図2(b)は、アンモニア吸蔵材18が体積膨張した状態を示している。 Ammonia storage and release device 10, as also shown in FIG. 2, a container 17 as ammonia storage tank is housed within the container 17, powdery ammonia releasing NH 3 by heat as well as absorbing the NH 3 And an occlusion material 18. 2A shows a normal state of the ammonia storage material 18, and FIG. 2B shows a state in which the ammonia storage material 18 is volume-expanded.
 容器17は、基部17bと、この基部17bと一体化された筒状の側壁部17aと、この側壁部17aの上端に固定された蓋部17cとを有している。側壁部17aは、円筒状(断面円形の筒状)または四角形筒状(断面四角形の筒状)を呈している。側壁部17aの形状が円筒状である場合、基部17b及び蓋部17cの形状は円形状である。側壁部17aの形状が四角形筒状である場合、基部17b及び蓋部17cの形状は四角形状である。蓋部17cには、容器17の内部にNHを導入するための上記のアンモニア導入管13の一端部と、容器17の外部にNHを導出するための上記のアンモニア導出管14の一端部とが固定されている。容器17は、例えばステンレス鋼で形成されている。なお、容器17の厚さについては、後で詳述する。 The container 17 has a base portion 17b, a cylindrical side wall portion 17a integrated with the base portion 17b, and a lid portion 17c fixed to the upper end of the side wall portion 17a. The side wall portion 17a has a cylindrical shape (a cylindrical shape with a circular cross section) or a rectangular shape (a cylindrical shape with a rectangular cross section). When the shape of the side wall part 17a is cylindrical, the shape of the base part 17b and the cover part 17c is circular. When the shape of the side wall portion 17a is a quadrangular cylindrical shape, the shape of the base portion 17b and the lid portion 17c is a quadrangular shape. One end of the ammonia introduction pipe 13 for introducing NH 3 into the interior of the container 17 and one end of the ammonia delivery pipe 14 for deriving NH 3 to the outside of the container 17 are provided on the lid portion 17c. And are fixed. The container 17 is made of, for example, stainless steel. The thickness of the container 17 will be described later in detail.
 アンモニア吸蔵材18としては、塩化マグネシウム(MgCl)、塩化ストロンチウム(SrCl)または臭化マグネシウム(MgBr)が用いられる。アンモニア吸蔵材18の通常状態(図2(a)参照)において、アンモニア吸蔵材18にNHが吸蔵されると、アンモニア吸蔵材18が体積膨張する(図2(b)参照)と共に、アンモニア吸蔵材18から熱が発生する。なお、アンモニア吸蔵材18には、熱伝導性を向上させるカーボンファイバ等の添加物が含まれていてもよい。アンモニア吸蔵材18の粒子については、後で詳述する。 As the ammonia storage material 18, magnesium chloride (MgCl 2 ), strontium chloride (SrCl 2 ), or magnesium bromide (MgBr 2 ) is used. In the normal state of the ammonia storage material 18 (see FIG. 2A), when NH 3 is stored in the ammonia storage material 18, the ammonia storage material 18 expands in volume (see FIG. 2B) and ammonia storage. Heat is generated from the material 18. The ammonia storage material 18 may contain an additive such as a carbon fiber that improves thermal conductivity. The particles of the ammonia storage material 18 will be described in detail later.
 容器17の上部には、アンモニア吸蔵材18が体積膨張した時にアンモニア吸蔵材18がアンモニア導入管13及びアンモニア導出管14から容器17の外部に逃げることを防ぐためのフィルタ19が取り付けられている。 A filter 19 for preventing the ammonia storage material 18 from escaping from the ammonia introduction pipe 13 and the ammonia discharge pipe 14 to the outside of the container 17 is attached to the upper portion of the container 17.
 容器17の側壁部17aの周囲には、容器17内に収容されたアンモニア吸蔵材18を加熱するヒータ29が配置されている。アンモニア吸蔵材18にNHが吸蔵されている状態で、ヒータ29によりアンモニア吸蔵材18が加熱されると、アンモニア吸蔵材18からNHが放出される。放出されたNHがアンモニア導出管14を通ってアンモニア注入器12に供給される。そして、アンモニア注入器12によって排気ガスにNHが注入され、SCR6においてNHによりNOxが還元される。 A heater 29 for heating the ammonia storage material 18 accommodated in the container 17 is disposed around the side wall portion 17 a of the container 17. When the ammonia storage material 18 is heated by the heater 29 in a state where NH 3 is stored in the ammonia storage material 18, NH 3 is released from the ammonia storage material 18. The released NH 3 is supplied to the ammonia injector 12 through the ammonia outlet pipe 14. Then, NH 3 is injected into the exhaust gas by the ammonia injector 12, and NOx is reduced by NH 3 in the SCR 6.
 なお、容器17内には、NHを全体的に行き渡らせるための多孔質部材(図示せず)が配置されていてもよい。多孔質部材としては、例えばシート状の金属繊維(ステンレス鋼繊維等)が用いられる。また、ヒータ29で発生した熱をアンモニア吸蔵材18に効果的に伝えるために、容器17内に基部17bから蓋部17cに向けて延びる隔壁を配置してもよい。 In the container 17, a porous member (not shown) for spreading NH 3 as a whole may be arranged. As the porous member, for example, a sheet-like metal fiber (stainless steel fiber or the like) is used. In order to effectively transmit the heat generated by the heater 29 to the ammonia storage material 18, a partition wall extending from the base portion 17 b toward the lid portion 17 c may be disposed in the container 17.
 このようなアンモニア吸放出装置10において、アンモニア吸蔵材18は、図2(a)に示されるように、容器17内に自由空間Jが存在するように充填されている。具体的には、アンモニア吸蔵材18へのNHの吸蔵前に容器17内に充填されるアンモニア吸蔵材18の総量は、NHをアンモニア吸蔵材18にフル吸蔵した時のかさ密度がNHをアンモニア吸蔵材18にフル吸蔵した時の真密度よりも小さくなるような量である。つまり、下記式が得られる。
 
    NHをフル吸蔵した時のかさ密度=(NHをフル吸蔵した時のアンモニア吸蔵材の重量/NHをフル吸蔵した時のアンモニア吸蔵材の体積)<NHをフル吸蔵した時の真密度
In such an ammonia storage / release device 10, the ammonia storage material 18 is filled so that a free space J exists in the container 17 as shown in FIG. In particular, the total amount of ammonia storage material 18 is filled into the container 17 before storage of NH 3 to the ammonia storage material 18, the bulk density at the time of full storage on the NH 3 ammonia absorber 18 NH 3 Is an amount that is smaller than the true density when fully occluded in the ammonia occlusion material 18. That is, the following formula is obtained.

Bulk density when NH 3 was full occlusion = (volume of ammonia storage material when the weight / NH 3 was full occlusion of ammonia storage material when NH 3 was full occlusion) <true when NH 3 was full occlusion density
 アンモニア供給源11にアンモニア導入管13を接続することで、容器17内にNHが導入されると、アンモニア吸蔵材18にNHが吸蔵され、図2(b)に示されるように、アンモニア吸蔵材18が体積膨張する。このとき、容器17内の自由空間Jが殆ど無くなり、アンモニア吸蔵材18が容器17の内壁面に押し付けられ、容器17に面圧が作用する。なお、容器17を排気浄化システム1から取り外した状態で、アンモニア導入管13をアンモニア供給源11に接続することで、容器17にNHを導入するようにしてもよい。 When NH 3 is introduced into the container 17 by connecting the ammonia introduction pipe 13 to the ammonia supply source 11, NH 3 is occluded in the ammonia occlusion material 18, and as shown in FIG. The occlusion material 18 expands in volume. At this time, there is almost no free space J in the container 17, the ammonia storage material 18 is pressed against the inner wall surface of the container 17, and a surface pressure acts on the container 17. Note that NH 3 may be introduced into the container 17 by connecting the ammonia introduction pipe 13 to the ammonia supply source 11 with the container 17 removed from the exhaust purification system 1.
 図3は、アンモニア吸蔵材18が体積膨張した時のアンモニア吸蔵材18の変化の様子を示すイメージ図である。図4は、NHをアンモニア吸蔵材に吸蔵開始からの経過時間と容器17に作用する面圧との関係の一例を示すグラフである。図3(a)は、NH吸蔵前のアンモニア吸蔵材18の状態を示している。NH吸蔵前は、アンモニア吸蔵材18の粒子18aが容器17の内壁面を押し付けないため、容器17には面圧が殆ど作用しない(図4中の時間T参照)。 FIG. 3 is an image diagram showing a state of change of the ammonia storage material 18 when the ammonia storage material 18 undergoes volume expansion. FIG. 4 is a graph showing an example of the relationship between the elapsed time from the start of occlusion of NH 3 in the ammonia occlusion material and the surface pressure acting on the container 17. FIG. 3A shows the state of the ammonia storage material 18 before storing NH 3 . NH 3 storage before, since the particles 18a of ammonia absorber 18 is not pressed against the inner wall surface of the container 17, hardly acts surface pressure in the vessel 17 (see time T 0 in Figure 4).
 図3(a)に示される状態から、NHがアンモニア吸蔵材18に吸蔵されると、図3(b)に示されるように、アンモニア吸蔵材18の粒子18aが体積膨張する。そして、アンモニア吸蔵材18の粒子18aが容器17の内壁面を押し付けると、粒子18a同士が押し合うことで、容器17に面圧が作用する(図4中の時間T参照)。このとき、一部の粒子18aが容器17の内壁面を押し付けており、粒子18a間には隙間Kが存在する。 When NH 3 is occluded in the ammonia occlusion material 18 from the state shown in FIG. 3A, the particles 18a of the ammonia occlusion material 18 expand in volume as shown in FIG. 3B. When the particles 18a of ammonia absorber 18 presses the inner wall surface of the container 17, that mutually push the particles 18a together, the surface pressure is exerted on the container 17 (see time T 1 of the in Figure 4). At this time, some of the particles 18a press against the inner wall surface of the container 17, and a gap K exists between the particles 18a.
 その後、アンモニア吸蔵材18の更なる体積膨張によってアンモニア吸蔵材18の粒子18aによる容器17の押付力が強くなることで、容器17に作用する面圧が更に高くなる(図4中の時間T参照)。粒子18aが自身の形状を保持できなくなると、図3(c)に示されるように、粒子18aが崩壊し始める。 Thereafter, the pressing force of the container 17 by the particles 18a of the ammonia storage material 18 is increased by the further volume expansion of the ammonia storage material 18, so that the surface pressure acting on the container 17 is further increased (time T 2 in FIG. 4). reference). When the particle 18a cannot maintain its own shape, the particle 18a starts to collapse as shown in FIG.
 粒子18aが崩壊して細径化されると、図3(d)に示されるように、粒子18a間の隙間Kに、細径化された粒子18aが入り込む。これにより、粒子18aによる容器17の押付力が弱くなり、容器17に作用する面圧が低くなる(図4中の時間T参照)。そして、図3(e)に示されるように、粒子18aが十分に細径化されて、粒子18a間の隙間Kが埋め尽くされると、粒子18aによる容器17の押し付けが抑えられるため、容器17に面圧が殆ど作用しなくなる(図4中の時間T参照)。 When the particle 18a is collapsed and reduced in diameter, as shown in FIG. 3D, the reduced particle 18a enters the gap K between the particles 18a. Thus, it weakens the pressing force of the container 17 by the particles 18a, the surface pressure acting on the container 17 is low (see time T 3 in FIG. 4). Then, as shown in FIG. 3E, when the particle 18a is sufficiently reduced in diameter and the gap K between the particles 18a is filled, the container 17 is prevented from being pressed by the particle 18a. surface pressure almost ceases to act on (see the time T 4 in FIG. 4).
 アンモニア吸蔵材18が体積膨張すると、上記のようにアンモニア吸蔵材18が変化することから、アンモニア吸蔵材18の粒子18aの粒径を小さくすると、粒子18a間の隙間Kに他の粒子18aが入り込みやすくなり、容器17に作用する面圧が低くなると考えられる。 When the ammonia storage material 18 expands in volume, the ammonia storage material 18 changes as described above. Therefore, when the particle size of the particles 18a of the ammonia storage material 18 is reduced, other particles 18a enter the gap K between the particles 18a. It is considered that the surface pressure acting on the container 17 becomes low.
 図5は、アンモニア吸蔵材18の粒子18aの粒径を小さくした場合に、アンモニア吸蔵材18が体積膨張した時のアンモニア吸蔵材18の変化の様子を示すイメージ図である。図5(a)は、NH吸蔵前のアンモニア吸蔵材18の状態を示している。 FIG. 5 is an image diagram showing a change in the ammonia storage material 18 when the ammonia storage material 18 undergoes volume expansion when the particle size of the particles 18a of the ammonia storage material 18 is reduced. FIG. 5A shows the state of the ammonia storage material 18 before storing NH 3 .
 図5(a)に示される状態から、NHがアンモニア吸蔵材18に吸蔵されると、図5(b)に示されるように、アンモニア吸蔵材18の粒子18aが体積膨張する。このとき、粒子18aの粒径が小さいため、粒子18a間の隙間Kに他の粒子18aが入り込みやすくなり、図5(c)に示されるように、粒子18a間の隙間Kの大部分が埋まる。その結果、粒子18aが容器17の内壁面を押し付ける力が弱くなるため、容器17に作用する面圧が低くなる。 When NH 3 is occluded in the ammonia occlusion material 18 from the state shown in FIG. 5A, the particles 18a of the ammonia occlusion material 18 expand in volume as shown in FIG. 5B. At this time, since the particle diameter of the particles 18a is small, other particles 18a can easily enter the gaps K between the particles 18a, and as shown in FIG. 5C, most of the gaps K between the particles 18a are filled. . As a result, since the force with which the particles 18a press the inner wall surface of the container 17 becomes weak, the surface pressure acting on the container 17 becomes low.
 そのような事実を確認するために、アンモニア吸蔵材18の粒子18aの粒径と容器17に作用する面圧との関係について実験を行った。このとき、面圧の測定は、図6に示されるような面圧測定装置20を用いて行った。 In order to confirm such a fact, an experiment was conducted on the relationship between the particle size of the particles 18 a of the ammonia storage material 18 and the surface pressure acting on the container 17. At this time, the surface pressure was measured using a surface pressure measuring device 20 as shown in FIG.
 面圧測定装置20は、円筒状を有する容器21を備えている。容器21の内部には、プランジャ22と、このプランジャ22に加わる荷重を計測するロードセル23とが配置されている。容器21の内部におけるロードセル23の上側の領域は、アンモニア吸蔵材18が収容されるアンモニア吸蔵材収容部24となっている。アンモニア吸蔵材収容部24の内径は15mmであり、アンモニア吸蔵材収容部24の深さは5mmである。 The surface pressure measuring device 20 includes a container 21 having a cylindrical shape. A plunger 22 and a load cell 23 for measuring a load applied to the plunger 22 are arranged inside the container 21. An upper region of the load cell 23 inside the container 21 is an ammonia storage material storage portion 24 in which the ammonia storage material 18 is stored. The inner diameter of the ammonia storage material container 24 is 15 mm, and the depth of the ammonia storage material container 24 is 5 mm.
 容器21の蓋部21aには、アンモニア吸蔵材収容部24にNHを導入するためのアンモニア導入管25が固定されている。アンモニア導入管25には、NHの流路を開閉する開閉弁26が配設されている。容器21の上部には、アンモニア吸蔵材18が体積膨張した時にアンモニア吸蔵材18が容器21の外部に逃げることを防ぐためのフィルタ27が配置されている。 An ammonia introduction pipe 25 for introducing NH 3 into the ammonia storage material accommodating portion 24 is fixed to the lid portion 21 a of the container 21. The ammonia introduction pipe 25 is provided with an on-off valve 26 for opening and closing the NH 3 flow path. A filter 27 for preventing the ammonia storage material 18 from escaping to the outside of the container 21 when the ammonia storage material 18 undergoes volume expansion is disposed at the upper portion of the container 21.
 アンモニア吸蔵材18にNHが吸蔵されてアンモニア吸蔵材18が体積膨張することで、容器21の内壁面に面圧が作用すると、プランジャ22が押し下げられる。このとき、プランジャ22に加わる荷重がロードセル23によって計測される。容器21に作用する面圧は、プランジャ22に加わる荷重からプランジャ22の断面積を除することによって求められる。 When NH 3 is occluded in the ammonia occlusion material 18 and the ammonia occlusion material 18 undergoes volume expansion, when the surface pressure acts on the inner wall surface of the container 21, the plunger 22 is pushed down. At this time, the load applied to the plunger 22 is measured by the load cell 23. The surface pressure acting on the container 21 is obtained by dividing the cross-sectional area of the plunger 22 from the load applied to the plunger 22.
 ここでは、アンモニア吸蔵材18として、無水のMgClを0.467g使用した。そのアンモニア吸蔵材18にNHがフル吸蔵されると、0.969gのMg(NHClが生成される。このとき、Mg(NHClのかさ密度は、1.1g/cmになる。なお、Mg(NHClの真密度は、約1.25g/cmである。つまり、実験した条件でのかさ密度は、真密度の約0.9倍に相当する。なお、真密度に対してかさ密度に10%程度の余裕を持たせた理由は、外乱の影響によるかさ密度の変動を抑制するためである。なお、アンモニア吸蔵材収容部24にNHを供給する際には、アンモニア吸蔵材収容部24を真空引きした後、0.1MPaの供給圧力でNHを供給した。 Here, 0.467 g of anhydrous MgCl 2 was used as the ammonia storage material 18. When NH 3 is fully stored in the ammonia storage material 18, 0.969 g of Mg (NH 3 ) 6 Cl 2 is generated. At this time, the bulk density of Mg (NH 3 ) 6 Cl 2 is 1.1 g / cm 3 . The true density of Mg (NH 3 ) 6 Cl 2 is about 1.25 g / cm 3 . That is, the bulk density under the experimental conditions corresponds to about 0.9 times the true density. The reason why the bulk density has a margin of about 10% with respect to the true density is to suppress the fluctuation of the bulk density due to the influence of disturbance. At the time of supplying NH 3 to the ammonia storage material accommodating portion 24, after the ammonia storage material container 24 was evacuated, it was supplied NH 3 in the supply pressure of 0.1 MPa.
 面圧測定装置20を用いて面圧を測定した結果を図7に示す。図7に示されるグラフにおいて、横軸は、NHをアンモニア吸蔵材18に吸蔵開始からの経過時間を表し、縦軸は、容器21に作用する面圧を表している。 The result of measuring the surface pressure using the surface pressure measuring device 20 is shown in FIG. In the graph shown in FIG. 7, the horizontal axis represents the elapsed time from the start of storing NH 3 in the ammonia storage material 18, and the vertical axis represents the surface pressure acting on the container 21.
 また、太実線Paは、アンモニア吸蔵材18の粒子18aの粒径が40μm以下のときの測定結果である。細実線Qaは、アンモニア吸蔵材18の粒子18aの粒径が40μmよりも大きく且つ75μm以下のときの測定結果である。破線Raは、アンモニア吸蔵材18の粒子18aの粒径が75μmよりも大きく且つ106μm以下のときの測定結果である。点線Saは、アンモニア吸蔵材18の粒子18aの粒径が106μmよりも大きく且つ150μm以下のときの測定結果である。1点鎖線Taは、アンモニア吸蔵材18の粒子18aの粒径が150μmよりも大きく且つ210μm以下のときの測定結果である。 Moreover, the thick solid line Pa is a measurement result when the particle size of the particles 18a of the ammonia storage material 18 is 40 μm or less. A thin solid line Qa is a measurement result when the particle size of the particles 18a of the ammonia storage material 18 is larger than 40 μm and 75 μm or less. A broken line Ra is a measurement result when the particle size of the particles 18a of the ammonia storage material 18 is larger than 75 μm and 106 μm or less. A dotted line Sa is a measurement result when the particle size of the particles 18a of the ammonia storage material 18 is larger than 106 μm and 150 μm or less. A one-dot chain line Ta is a measurement result when the particle size of the particles 18a of the ammonia storage material 18 is larger than 150 μm and equal to or smaller than 210 μm.
 アンモニア吸蔵材18の粒子18aの粒径は、網目の目開き寸法が異なる5種類のメッシュを用いたふるい分けにより分級された値で表されている。図8に示されるように、使用されるメッシュ30は、正方形状の網目を有している。メッシュ30としては、網目の目開き寸法Mが40μm、75μm、106μm、150μm、210μmという5種類が用意されている。これらのメッシュ30に粒子18aを通過させることで、粒子18aの粒径が分級される。 The particle diameter of the particles 18a of the ammonia storage material 18 is represented by a value classified by sieving using five types of meshes having different mesh opening sizes. As shown in FIG. 8, the mesh 30 used has a square mesh. As the mesh 30, five kinds of mesh opening sizes M of 40 μm, 75 μm, 106 μm, 150 μm, and 210 μm are prepared. By passing the particles 18a through these meshes 30, the particle size of the particles 18a is classified.
 図7に示されるグラフから分かるように、アンモニア吸蔵材18の粒子18aの粒径が小さくなるほど、容器21に作用する最大面圧が低くなる。 As can be seen from the graph shown in FIG. 7, the smaller the particle size of the particles 18a of the ammonia storage material 18, the lower the maximum surface pressure acting on the container 21.
 図9は、アンモニア吸蔵材18の粒子18aの最大粒径と容器17に作用する最大面圧との関係を示すグラフである。図9に示されるグラフにおいて、横軸は、アンモニア吸蔵材18の粒子18aの最大粒径Dを表し、縦軸は、容器17に作用する最大面圧Pを表している。容器17に作用する最大面圧Pは、図7に示されるグラフから得られる。 FIG. 9 is a graph showing the relationship between the maximum particle diameter of the particles 18 a of the ammonia storage material 18 and the maximum surface pressure acting on the container 17. In the graph shown in FIG. 9, the horizontal axis represents the maximum particle diameter D of the particles 18 a of the ammonia storage material 18, and the vertical axis represents the maximum surface pressure P acting on the container 17. The maximum surface pressure P acting on the container 17 is obtained from the graph shown in FIG.
 粒子18aの最大粒径Dは、上記5種類のメッシュのうち粒子18aが通過するメッシュによって決まる。具体的には、粒子18aの最大粒径Dは、粒子18aが通過するメッシュのうち網目の目開き寸法が最も小さいメッシュの当該目開き寸法である。例えば、粒子18aが5種類のメッシュの全てを通過するときは、当該粒子18aの最大粒径Dは40μmである。5種類のメッシュのうち目開き寸法が75μm、106μm、150μm及び210μmのメッシュを粒子18aが通過するときは、当該粒子18aの最大粒径Dは75μmである。5種類のメッシュのうち目開き寸法が106μm、150μm及び210μmのメッシュを粒子18aが通過するときは、当該粒子18aの最大粒径Dは106μmである。5種類のメッシュのうち目開き寸法が150μm及び210μmのメッシュを粒子18aが通過するときは、当該粒子18aの最大粒径Dは150μmである。5種類のメッシュのうち目開き寸法が210μmのメッシュのみを粒子18aが通過するときは、当該粒子18aの最大粒径Dは210μmである。 The maximum particle diameter D of the particles 18a is determined by the mesh through which the particles 18a pass among the above five types of meshes. Specifically, the maximum particle diameter D of the particle 18a is the mesh size of a mesh having the smallest mesh size among meshes through which the particle 18a passes. For example, when the particle 18a passes through all five types of meshes, the maximum particle diameter D of the particle 18a is 40 μm. When the particle 18a passes through a mesh having an opening size of 75 μm, 106 μm, 150 μm, and 210 μm among the five types of meshes, the maximum particle diameter D of the particle 18a is 75 μm. When the particle 18a passes through a mesh having an opening size of 106 μm, 150 μm, and 210 μm among the five types of meshes, the maximum particle diameter D of the particle 18a is 106 μm. When the particle 18a passes through a mesh having an opening size of 150 μm and 210 μm among the five types of meshes, the maximum particle diameter D of the particle 18a is 150 μm. When the particle 18a passes only through a mesh having an opening size of 210 μm among the five types of meshes, the maximum particle diameter D of the particle 18a is 210 μm.
 図9に示されるグラフから明らかなように、アンモニア吸蔵材18の粒子18aの最大粒径Dが小さくなるほど、容器17に作用する最大面圧Pが低くなる。このとき、以下の関係式が成り立つ。
   D=58.4×P0.51  …(1)
As is clear from the graph shown in FIG. 9, the maximum surface pressure P acting on the container 17 decreases as the maximum particle diameter D of the particles 18 a of the ammonia storage material 18 decreases. At this time, the following relational expression holds.
D = 58.4 × P 0.51 (1)
 従って、容器17に作用する最大面圧P(MPa)を容器17の許容面圧Pal(MPa)以下にするには、下記式の関係を満たす最大粒径D(μm)を有する粒子18aを使用すればよい。なお、容器17の許容面圧Palは、容器17の材料等によって決まる。
   D≦58.4×Pal0.51  …(2)
Therefore, in order to make the maximum surface pressure P (MPa) acting on the container 17 equal to or less than the allowable surface pressure Pal (MPa) of the container 17, particles 18a having a maximum particle diameter D (μm) satisfying the relationship of the following formula are used. do it. The allowable surface pressure Pal of the container 17 is determined by the material of the container 17 and the like.
D ≦ 58.4 × Pal 0.51 (2)
 このとき、容器17の強度の観点から、容器17に作用する最大面圧Pを3MPa以下とすることが好ましい。このためには、粒子18aの最大粒径Dを102μm以下にすればよい。また、容器17に作用する最大面圧Pを1MPa以下とすることがより好ましく、このためには粒子18aの最大粒径Dを58μm以下にすればよい。また、容器17に作用する最大面圧Pを0.5MPa以下とすることが更に好ましく、このためには粒子18aの最大粒径Dを40μm以下にすればよい。容器17に作用する最大面圧Pを0.5MPa以下とした場合には、容器17の材料として、ステンレス鋼よりも軽いポリテトラフルオロエチレン(PTFE)等の樹脂を使用することが可能となる。 At this time, from the viewpoint of the strength of the container 17, it is preferable that the maximum surface pressure P acting on the container 17 is 3 MPa or less. For this purpose, the maximum particle diameter D of the particles 18a may be set to 102 μm or less. The maximum surface pressure P acting on the container 17 is more preferably 1 MPa or less, and for this purpose, the maximum particle diameter D of the particles 18a may be 58 μm or less. Further, the maximum surface pressure P acting on the container 17 is more preferably 0.5 MPa or less, and for this purpose, the maximum particle diameter D of the particles 18a may be 40 μm or less. When the maximum surface pressure P acting on the container 17 is 0.5 MPa or less, a resin such as polytetrafluoroethylene (PTFE) that is lighter than stainless steel can be used as the material of the container 17.
 また、容器17の強度を確保するためには、容器17の厚さT(mm)が下記式の関係を満たせばよい。ここで、αは容器17の安全率、σは容器17の材料の許容応力(MPa)、Lは容器17の側壁部17aの対向する内壁面間の距離(mm)である。容器17の側壁部17aの形状が円筒状である場合、Lは側壁部17aの内径である。容器17の側壁部17aの形状が四角形筒状である場合、Lは側壁部17aの長辺方向に対向する内側面間の距離である。
   T≧α×L×P/2/σ  …(3)
Further, in order to ensure the strength of the container 17, the thickness T (mm) of the container 17 only needs to satisfy the relationship of the following formula. Here, α is the safety factor of the container 17, σ is the allowable stress (MPa) of the material of the container 17, and L is the distance (mm) between the opposing inner wall surfaces of the side wall portion 17 a of the container 17. When the shape of the side wall portion 17a of the container 17 is cylindrical, L is the inner diameter of the side wall portion 17a. When the shape of the side wall part 17a of the container 17 is a quadrangular cylinder shape, L is the distance between the inner side surfaces which oppose the long side direction of the side wall part 17a.
T ≧ α × L × P / 2 / σ (3)
 上記(1)式により、下記式が得られる。
   P=(D/58.4)(1/0.51)  …(4)
The following formula is obtained from the formula (1).
P = (D / 58.4) ( 1 / 0.51) ... (4)
 従って、上記(3)式は、下記式で表される。
   T≧α×L×(D/58.4)(1/0.51)/2/σ  …(5)
Therefore, the above formula (3) is expressed by the following formula.
T ≧ α × L × (D / 58.4) (1 / 0.51) / 2 / σ (5)
 本実施形態のように容器17を車両に搭載する場合には、容器17の安全率αを1.2以上に設定することが望ましい。最大粒径Dが102μm以下の粒子18aを使用する場合には、容器17に作用する最大面圧Pを3MPa以下に抑制できることから、容器17の安全率αを1.2以上に確保するような容器17の厚さTとしては、下記式を満たせばよい。
   T≧1.8×L/σ  …(6)
When the container 17 is mounted on a vehicle as in this embodiment, it is desirable to set the safety factor α of the container 17 to 1.2 or more. When the particles 18a having the maximum particle diameter D of 102 μm or less are used, the maximum surface pressure P acting on the container 17 can be suppressed to 3 MPa or less, so that the safety factor α of the container 17 is ensured to be 1.2 or more. The thickness T of the container 17 may satisfy the following formula.
T ≧ 1.8 × L / σ (6)
 最大粒径Dが58μm以下の粒子18aを使用する場合には、容器17に作用する最大面圧Pを1MPa以下に抑制できることから、容器17の安全率αを1.2以上に確保するような容器17の厚さTとしては、下記式を満たせばよい。
   T≧0.6×L/σ  …(7)
When using the particles 18a having the maximum particle diameter D of 58 μm or less, the maximum surface pressure P acting on the container 17 can be suppressed to 1 MPa or less, so that the safety factor α of the container 17 is ensured to be 1.2 or more. The thickness T of the container 17 may satisfy the following formula.
T ≧ 0.6 × L / σ (7)
 最大粒径Dが40μm以下の粒子18aを使用する場合には、容器17に作用する最大面圧Pを0.5MPa以下に抑制できることから、容器17の安全率αを1.2以上に確保するような容器17の厚さTとしては、下記式を満たせばよい。
   T≧0.3×L/σ  …(8)
When using the particles 18a having a maximum particle diameter D of 40 μm or less, the maximum surface pressure P acting on the container 17 can be suppressed to 0.5 MPa or less, and therefore the safety factor α of the container 17 is secured to 1.2 or more. As thickness T of such a container 17, the following formula may be satisfied.
T ≧ 0.3 × L / σ (8)
 以上は、アンモニア吸蔵材18としてMgClを使用した場合の測定結果及び評価であるが、アンモニア吸蔵材18としてSrCl及びMgBrを使用した場合の測定も行った。具体的には、粒子18aの最大粒径Dが210μmであるSrCl及びMgBrを使用した場合に、容器17に作用する最大面圧Pを測定した。 The above are the measurement results and evaluation when MgCl 2 is used as the ammonia storage material 18, but the measurement was also performed when SrCl 2 and MgBr 2 were used as the ammonia storage material 18. Specifically, the maximum surface pressure P acting on the container 17 was measured when SrCl 2 and MgBr 2 having a maximum particle diameter D of 210 μm were used.
 その時の測定結果を図10に示す。図10に示されるグラフは、図9に示されるグラフに対応している。図10に示されるグラフから分かるように、粒子の最大粒径Dが210μmであるMgClを使用した場合に容器17に作用する最大面圧Pが約12MPa(丸印X参照)であった。これに対し、粒子の最大粒径Dが210μmであるSrCl及びMgBrを使用した場合に容器17に作用する最大面圧Pは、それぞれ約10MPa(菱形印Y参照)、約5MPa(四角印Z参照)であった。つまり、SrCl及びMgBrを使用した場合に容器17に作用する最大面圧Pは、MgClを使用した場合に容器17に作用する最大面圧Pよりも低くなっている。 The measurement result at that time is shown in FIG. The graph shown in FIG. 10 corresponds to the graph shown in FIG. As can be seen from the graph shown in FIG. 10, when MgCl 2 having a maximum particle diameter D of 210 μm was used, the maximum surface pressure P acting on the container 17 was about 12 MPa (see circle X). On the other hand, when SrCl 2 and MgBr 2 having a maximum particle diameter D of 210 μm are used, the maximum surface pressure P acting on the container 17 is about 10 MPa (see rhombus Y) and about 5 MPa (square mark), respectively. Z). That is, the maximum surface pressure P acting on the container 17 when using SrCl 2 and MgBr 2 is lower than the maximum surface pressure P acting on the container 17 when using MgCl 2 .
 従って、アンモニア吸蔵材18としてSrCl及びMgBrを使用する場合にも、アンモニア吸蔵材18としてMgClを使用する場合における上記関係式(1)~(8)を適用可能である。 Therefore, even when SrCl 2 and MgBr 2 are used as the ammonia storage material 18, the above relational expressions (1) to (8) when using MgCl 2 as the ammonia storage material 18 can be applied.
 以上のように本実施形態においては、アンモニア吸蔵材18の粒子18aの最大粒径をD(μm)、容器17の許容面圧をPal(MPa)としたときに、D≦58.4×Pal0.51を満たす。従って、NHがアンモニア吸蔵材18に吸蔵されてアンモニア吸蔵材18が体積膨張したときに、アンモニア吸蔵材18の粒子18a間の隙間Kに他の粒子18aが入り込みやすくなる。従って、粒子18aが容器17を押し付ける力が弱くなるため、容器17に作用する面圧が低くなる。これにより、容器17の耐圧強度を低減できるため、容器17の厚さを小さくすることができる。その結果、容器17の小型軽量化を図ることが可能となる。また、容器17に作用する面圧が低くなる分だけ、NHをアンモニア吸蔵材18にフル吸蔵した時のかさ密度を増加させることができる。この場合には、容器17の内容積を小さくできるため、容器17の小型軽量化を図ることが可能となる。 As described above, in the present embodiment, when the maximum particle diameter of the particles 18a of the ammonia storage material 18 is D (μm) and the allowable surface pressure of the container 17 is Pal (MPa), D ≦ 58.4 × Pal. It satisfies 0.51 . Therefore, when NH 3 is occluded in the ammonia occlusion material 18 and the ammonia occlusion material 18 undergoes volume expansion, other particles 18a are likely to enter the gaps K between the particles 18a of the ammonia occlusion material 18. Therefore, since the force with which the particles 18a press the container 17 becomes weak, the surface pressure acting on the container 17 becomes low. Thereby, since the pressure resistance strength of the container 17 can be reduced, the thickness of the container 17 can be reduced. As a result, the container 17 can be reduced in size and weight. Further, the bulk density when NH 3 is fully occluded in the ammonia occlusion material 18 can be increased by the amount by which the surface pressure acting on the container 17 becomes lower. In this case, since the inner volume of the container 17 can be reduced, the container 17 can be reduced in size and weight.
 このとき、アンモニア吸蔵材18の粒子18aの最大粒径Dを102μm以下とすることにより、アンモニア吸蔵材18の体積膨張時に容器17に作用する最大面圧Pを3MPa以下に抑えることができる。 At this time, by setting the maximum particle diameter D of the particles 18a of the ammonia storage material 18 to 102 μm or less, the maximum surface pressure P acting on the container 17 during the volume expansion of the ammonia storage material 18 can be suppressed to 3 MPa or less.
 また、アンモニア吸蔵材18はMgCl、SrCl及びMgBrのいずれかを含むので、アンモニア吸蔵材18の粒子18aの最大粒径Dを58.4×Pal0.51以下としたときに、容器17に作用する面圧を確実に低くすることができる。 Further, since the ammonia storage material 18 contains any of MgCl 2 , SrCl 2 and MgBr 2 , when the maximum particle diameter D of the particles 18a of the ammonia storage material 18 is 58.4 × Pal 0.51 or less, the container The surface pressure acting on 17 can be reliably reduced.
 さらに、本実施形態においては、容器17の厚さをT(mm)、容器17の安全率をα、容器17の材料の許容応力をσ(MPa)、容器17の側壁部17aの対向する内壁面間の距離をL(mm)、アンモニア吸蔵材18の粒子18aの最大粒径をD(μm)としたときに、T≧α×L×(D/58.4)(1/0.51)/2/σを満たすので、アンモニア吸蔵材18の粒子18aの最大粒径Dを小さくすることで、容器17の厚さTの下限値が小さくなる。アンモニア吸蔵材18の粒子18aの最大粒径Dを小さくすると、アンモニア吸蔵材18の粒子18a間の隙間Kに他の粒子18aが入り込みやすくなり、粒子18aが容器17を押し付ける力が弱くなるため、容器17に作用する面圧が低くなる。これにより、容器17の厚さを小さくすることができる。また、T≧α×L×(D/58.4)(1/0.51)/2/σを満たしているため、容器17の強度を確保することができる。 Furthermore, in the present embodiment, the thickness of the container 17 is T (mm), the safety factor of the container 17 is α, the allowable stress of the material of the container 17 is σ (MPa), and the inner side of the side wall portion 17a of the container 17 is opposed. T ≧ α × L × (D / 58.4) (1 / 0.51 ) where L (mm) is the distance between the wall surfaces, and D (μm) is the maximum particle size of the particles 18a of the ammonia storage material 18. Since / 2 / σ is satisfied, the lower limit value of the thickness T of the container 17 is reduced by reducing the maximum particle diameter D of the particles 18a of the ammonia storage material 18. When the maximum particle diameter D of the particles 18a of the ammonia storage material 18 is reduced, other particles 18a are likely to enter the gap K between the particles 18a of the ammonia storage material 18, and the force with which the particles 18a press the container 17 is weakened. The surface pressure acting on the container 17 is reduced. Thereby, the thickness of the container 17 can be made small. Moreover, since T ≧ α × L × (D / 58.4) (1 / 0.51) / 2 / σ is satisfied, the strength of the container 17 can be ensured.
 このとき、T≧1.8×L/σを満たすことにより、容器17の安全率αを1.2以上に確保しつつ、容器17に作用する最大面圧を3MPa以下に抑えるために、アンモニア吸蔵材18の粒子18aの最大粒径Dを102μm以下としても、容器17の強度を確実に確保することができる。 At this time, by satisfying T ≧ 1.8 × L / σ, in order to suppress the maximum surface pressure acting on the container 17 to 3 MPa or less while ensuring the safety factor α of the container 17 to 1.2 or more, ammonia Even if the maximum particle diameter D of the particles 18a of the occlusion material 18 is set to 102 μm or less, the strength of the container 17 can be reliably ensured.
 なお、本発明は、上記実施形態には限定されない。例えば、上記実施形態では、粉末状のアンモニア吸蔵材18が容器17内に収容されているが、特にそれには限られず、粉末状のアンモニア吸蔵材18を圧縮成形してペレット化し、そのペレット化されたアンモニア吸蔵材18を容器17内に収容してもよい。 Note that the present invention is not limited to the above embodiment. For example, in the above embodiment, the powdery ammonia storage material 18 is accommodated in the container 17, but is not particularly limited thereto, and the powdery ammonia storage material 18 is compression-molded and pelletized. The ammonia storage material 18 may be accommodated in the container 17.
 また、本発明のアンモニア吸放出装置を化学蓄熱装置の反応部に適用してもよい。アンモニア吸放出装置を化学蓄熱装置の反応部に適用した一例を図11に示す。 Further, the ammonia absorption / release device of the present invention may be applied to a reaction part of a chemical heat storage device. An example in which the ammonia absorption / release device is applied to the reaction section of a chemical heat storage device is shown in FIG.
 図11は、図1に示された排気浄化システム1の変形例を示す概略構成図である。図11において、排気浄化システム1は、化学蓄熱装置40を備えている。化学蓄熱装置40は、排気通路8におけるエンジン2とDOC4との間に配設された反応部付き熱交換器3と、NHの物理吸着による保持及びNHの脱離が可能な活性炭等の吸着材41を有する吸着器42と、反応部付き熱交換器3と吸着器42とを接続すると共に、NHが流通するNH供給管43と、このNH供給管43に配設され、NHの流路を開閉させるバルブ44と、を備えている。 FIG. 11 is a schematic configuration diagram showing a modification of the exhaust purification system 1 shown in FIG. In FIG. 11, the exhaust purification system 1 includes a chemical heat storage device 40. Chemical heat storage device 40 includes a reaction section with the heat exchanger 3 disposed between the engine 2 and the DOC4 in the exhaust passage 8, the holding and NH 3 by physical adsorption of NH 3 desorption of activated carbon can be the adsorber 42 having an adsorbent 41, a reaction part with the heat exchanger 3 with connecting the adsorber 42, the NH 3 supply pipe 43 is NH 3 flows, is disposed in the NH 3 supply pipe 43, And a valve 44 for opening and closing the NH 3 flow path.
 反応部付き熱交換器3は、図12に示されるように、複数の熱交換部45と複数の反応部46とが交互に積層されてなる積層体47と、この積層体47を取り囲むように配置された円筒状の配管48とを有している。配管48の両端部には、各熱交換部45を露出させると共に各反応部46を覆う円形状の蓋部材(図示せず)が固定されている。 As shown in FIG. 12, the heat exchanger 3 with a reaction unit surrounds a laminate 47 in which a plurality of heat exchange units 45 and a plurality of reaction units 46 are alternately laminated, and surrounds the laminate 47. It has a cylindrical pipe 48 arranged. A circular lid member (not shown) is fixed to both ends of the pipe 48 so as to expose the heat exchange units 45 and cover the reaction units 46.
 熱交換部45は、排気ガスを流通させる流路を形成すると共に、排気ガスと反応部46との間で熱交換を行う。熱交換部45は、断面矩形状のチューブ49と、このチューブ49内に配置された波状のフィン50とを有している。チューブ49は、上流側及び下流側に開口されている。 The heat exchanging unit 45 forms a flow path through which the exhaust gas flows, and performs heat exchange between the exhaust gas and the reaction unit 46. The heat exchanging part 45 includes a tube 49 having a rectangular cross section and a wave-like fin 50 disposed in the tube 49. The tube 49 is opened on the upstream side and the downstream side.
 反応部46は、NHを吸蔵すると共に排気ガスの排熱によりNHを放出するアンモニア吸蔵材51を有している。アンモニア吸蔵材51がNHを吸蔵していない状態では、反応部46内に自由空間が形成される。アンモニア吸蔵材51は、微粒化された材料がペレット成型されることで構成されている。アンモニア吸蔵材51と配管48との間には、断熱材52が配置されている。上記の配管48、チューブ49、断熱材52及び蓋部材(図示せず)は、アンモニア吸蔵材51を収容する容器を構成している。 The reaction unit 46 includes ammonia storage material 51 that emits NH 3 by exhaust heat of exhaust gas while occluding and NH 3. In a state where the ammonia storage material 51 does not store NH 3 , a free space is formed in the reaction unit 46. The ammonia storage material 51 is configured by pelletizing the atomized material. A heat insulating material 52 is disposed between the ammonia storage material 51 and the pipe 48. The pipe 48, the tube 49, the heat insulating material 52, and the lid member (not shown) constitute a container that accommodates the ammonia storage material 51.
 このような化学蓄熱装置40において、排気ガスの温度が低いときは、吸着器42から各反応部46にNHが供給され、各反応部46のアンモニア吸蔵材51とNHとが化学反応して化学吸着し、アンモニア吸蔵材51から熱が発生する。そして、アンモニア吸蔵材51から発生した熱が熱交換部45に伝わり、熱交換部45を流れる排気ガスが加熱される。そして、暖められた排気ガスによってDOC4が汚染物質の浄化に適した活性温度まで上昇する。一方、排気ガスの温度が高くなると、排気ガスの排熱が熱交換部45からアンモニア吸蔵材51に与えられることで、アンモニア吸蔵材51とNHとが分離する。そして、アンモニア吸蔵材51から放出されたNHは、吸着器42に戻り回収される。 In such a chemical heat storage device 40, when the temperature of the exhaust gas is low, NH 3 is supplied from the adsorber 42 to each reaction section 46, and the ammonia storage material 51 and NH 3 in each reaction section 46 chemically react. Thus, heat is generated from the ammonia storage material 51. Then, the heat generated from the ammonia storage material 51 is transmitted to the heat exchange unit 45, and the exhaust gas flowing through the heat exchange unit 45 is heated. Then, the heated exhaust gas raises the DOC 4 to an activation temperature suitable for purification of pollutants. On the other hand, when the temperature of the exhaust gas increases, exhaust heat of the exhaust gas is given from the heat exchange unit 45 to the ammonia storage material 51, whereby the ammonia storage material 51 and NH 3 are separated. Then, NH 3 released from the ammonia storage material 51 returns to the adsorber 42 and is recovered.
 以上のような化学蓄熱装置40では、本発明のアンモニア吸放出装置が適用されるため、アンモニア吸蔵材51を収容する容器の一部を構成するチューブ49及び蓋部材(図示せず)の厚さを小さくして、当該部品の小型軽量化を図ることができる。 In the chemical heat storage device 40 as described above, since the ammonia storage / release device of the present invention is applied, the thickness of the tube 49 and the lid member (not shown) constituting a part of the container for storing the ammonia storage material 51 is used. The size of the component can be reduced and the weight can be reduced.
 また、上記実施形態では、アンモニア吸放出装置10がディーゼルエンジンの排気系に配設されているが、本発明のアンモニア吸放出装置は、ガソリンエンジンの排気系に配設されていてもよいし、或いはエンジンの排気系以外に配設されていてもよい。 Moreover, in the said embodiment, although the ammonia absorption / release apparatus 10 is arrange | positioned in the exhaust system of a diesel engine, the ammonia absorption / release apparatus of this invention may be arrange | positioned in the exhaust system of a gasoline engine, Alternatively, it may be disposed other than the exhaust system of the engine.
 上述の実施形態では、アンモニア吸放出装置を、排気ガスを加熱する化学蓄熱装置の反応部に適用しているが、本発明はエンジンの排気系以外の加熱対象を加熱する化学蓄熱装置の反応部にも適用可能である。そのような加熱対象としては、例えばエンジンオイル、変速機オイル、冷却水、又は空気等の種々の熱媒体であってもよい。このとき、化学蓄熱装置の反応部を熱媒体が流れる熱媒体流路の外周部(外周部の一部又は外周部の全周)に配置して、熱媒体流路そのものを加熱してもよい。また、熱媒体が流れる熱媒体流路内に熱交換器を配置して、反応部でその熱交換器を介して熱媒体を加熱するとしてもよい。また、蓄熱材を備える反応部と熱交換フィンなどの熱交換部とを交互に複数個重ねて配置した熱交換部一体型の加熱器を構成し、その熱交換部一体型の加熱器を熱媒体が貯蔵されている熱媒体貯蔵部内や熱媒体が流れる熱媒体流路上に配置してもよい。さらに、本発明は、エンジン以外に配設される化学蓄熱装置にも適用可能である。 In the above-described embodiment, the ammonia adsorption / desorption device is applied to the reaction unit of the chemical heat storage device that heats the exhaust gas, but the present invention is a reaction unit of the chemical heat storage device that heats a heating target other than the exhaust system of the engine. It is also applicable to. Such heating object may be various heat media such as engine oil, transmission oil, cooling water, or air. At this time, the reaction part of the chemical heat storage device may be disposed on the outer peripheral part (a part of the outer peripheral part or the entire outer periphery of the outer peripheral part) of the heat medium flow path through which the heat medium flows to heat the heat medium flow path itself. . Further, a heat exchanger may be disposed in the heat medium flow path through which the heat medium flows, and the heat medium may be heated through the heat exchanger in the reaction unit. In addition, a heat exchange unit integrated heater is configured in which a plurality of reaction units including heat storage materials and heat exchange units such as heat exchange fins are alternately stacked, and the heat exchanger integrated heater is heated. You may arrange | position in the heat-medium storage part in which the medium is stored, and the heat-medium flow path through which a heat-medium flows. Furthermore, the present invention can also be applied to a chemical heat storage device arranged other than the engine.
 10…アンモニア吸放出装置、17…容器、17a…側壁部、18…アンモニア吸蔵材、18a…粒子。 10 ... Ammonia absorption / release device, 17 ... container, 17a ... side wall, 18 ... ammonia storage material, 18a ... particles.

Claims (5)

  1.  アンモニアを吸蔵すると共に熱により前記アンモニアを放出するアンモニア吸蔵材と、前記アンモニア吸蔵材を収容する容器と、を備えたアンモニア吸放出装置において、
     前記アンモニア吸蔵材の粒子の最大粒径をD(μm)、前記容器に許容される面圧をPal(MPa)としたときに、D≦58.4×Pal0.51を満たすことを特徴とするアンモニア吸放出装置。
    In an ammonia storage / release apparatus comprising: an ammonia storage material that stores ammonia and releases the ammonia by heat; and a container that stores the ammonia storage material.
    When the maximum particle diameter of the ammonia storage material particles is D (μm) and the surface pressure allowed for the container is Pal (MPa), D ≦ 58.4 × Pal 0.51 is satisfied. Ammonia absorption / release device.
  2.  前記アンモニア吸蔵材の粒子の最大粒径Dは、102μm以下であることを特徴とする請求項1記載のアンモニア吸放出装置。 The ammonia storage / release device according to claim 1, wherein the maximum particle diameter D of the ammonia storage material particles is 102 µm or less.
  3.  前記アンモニア吸蔵材は、MgCl、SrCl及びMgBrのいずれかを含むことを特徴とする請求項1または2記載のアンモニア吸放出装置。 The ammonia absorber is, MgCl 2, SrCl 2 and ammonia absorbing and releasing device according to claim 1 or 2, characterized in that it comprises one of MgBr 2.
  4.  アンモニアを吸蔵すると共に熱により前記アンモニアを放出するアンモニア吸蔵材と、前記アンモニア吸蔵材を収容する容器と、を備えたアンモニア吸放出装置において、
     前記容器は、筒状の側壁部を有し、
     前記容器の厚さをT(mm)、前記容器の安全率をα、前記容器の材料の許容応力をσ(MPa)、前記側壁部の対向する内壁面間の距離をL(mm)、前記アンモニア吸蔵材の粒子の最大粒径をD(μm)としたときに、T≧α×L×(D/58.4)(1/0.51)/2/σを満たすことを特徴とするアンモニア吸放出装置。
    In an ammonia storage / release apparatus comprising: an ammonia storage material that stores ammonia and releases the ammonia by heat; and a container that stores the ammonia storage material.
    The container has a cylindrical side wall,
    The thickness of the container is T (mm), the safety factor of the container is α, the allowable stress of the material of the container is σ (MPa), the distance between the inner wall surfaces facing the side walls is L (mm), When the maximum particle diameter of the ammonia storage material particle is D (μm), T ≧ α × L × (D / 58.4) (1 / 0.51) / 2 / σ is satisfied. Ammonia absorption / release device.
  5.  T≧1.8×L/σを満たすことを特徴とする請求項4記載のアンモニア吸放出装置。 The ammonia absorption / release device according to claim 4, wherein T ≧ 1.8 × L / σ is satisfied.
PCT/JP2015/078097 2014-11-19 2015-10-02 Ammonia absorption/desorption apparatus WO2016080090A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-234640 2014-11-19
JP2014234640A JP2018009582A (en) 2014-11-19 2014-11-19 Ammonia occlusion and discharge device

Publications (1)

Publication Number Publication Date
WO2016080090A1 true WO2016080090A1 (en) 2016-05-26

Family

ID=56013648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078097 WO2016080090A1 (en) 2014-11-19 2015-10-02 Ammonia absorption/desorption apparatus

Country Status (2)

Country Link
JP (1) JP2018009582A (en)
WO (1) WO2016080090A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154801A (en) * 2000-11-15 2002-05-28 Japan Steel Works Ltd:The Air permeable material for hydrogen storage vessel
JP2013072558A (en) * 2011-09-26 2013-04-22 Toyota Central R&D Labs Inc Heat recovery type heating device
JP2014015360A (en) * 2012-07-10 2014-01-30 Toyota Industries Corp Ammonia storage tank

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154801A (en) * 2000-11-15 2002-05-28 Japan Steel Works Ltd:The Air permeable material for hydrogen storage vessel
JP2013072558A (en) * 2011-09-26 2013-04-22 Toyota Central R&D Labs Inc Heat recovery type heating device
JP2014015360A (en) * 2012-07-10 2014-01-30 Toyota Industries Corp Ammonia storage tank

Also Published As

Publication number Publication date
JP2018009582A (en) 2018-01-18

Similar Documents

Publication Publication Date Title
US9021790B2 (en) Recharge device and method for NH3 cartridge
JP6745718B2 (en) Ammonia storage structure and related system
JP2015531465A (en) Method of filling a sorption reservoir with gas
WO2011123309A1 (en) Ammonia dosing cartridge and method
US20130011316A1 (en) Strontium chloride expansive disks and compression welded cartridge and method
US20160053651A1 (en) Ammonia storage structure and associated systems
WO2014175854A1 (en) Reductant storage
WO2016080090A1 (en) Ammonia absorption/desorption apparatus
WO2016017428A1 (en) Chemical heat storage apparatus
US20170335739A1 (en) Chemical heat storage apparatus
JP2005325708A (en) Canister
JP6757613B2 (en) Heat storage system, heat storage container, heat storage device using heat storage container, and warming device using heat storage device
JP2016023907A (en) Chemical heat storage device
JP2005325707A (en) Canister
JP4439995B2 (en) Canister
WO2016194682A1 (en) Chemical heat storage device
JP6187414B2 (en) Chemical heat storage device
WO2016158514A1 (en) Chemical heat storage apparatus
JP6424716B2 (en) Chemical heat storage device
WO2017110812A1 (en) Chemical heat storage apparatus
JP2016223761A (en) Chemical heat storage device
JP6320551B2 (en) Chemical heat storage device
JP2016194399A (en) Chemical heat storage device
JP2016044860A (en) Gas occlusion device and chemical heat storage device
JP6369129B2 (en) Ammonia storage and release device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15861526

Country of ref document: EP

Kind code of ref document: A1