WO2016079939A1 - Line-of-sight-direction-region setting apparatus and line-of-sight-direction-region setting system - Google Patents

Line-of-sight-direction-region setting apparatus and line-of-sight-direction-region setting system Download PDF

Info

Publication number
WO2016079939A1
WO2016079939A1 PCT/JP2015/005518 JP2015005518W WO2016079939A1 WO 2016079939 A1 WO2016079939 A1 WO 2016079939A1 JP 2015005518 W JP2015005518 W JP 2015005518W WO 2016079939 A1 WO2016079939 A1 WO 2016079939A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
driver
sight
unit
sight direction
Prior art date
Application number
PCT/JP2015/005518
Other languages
French (fr)
Japanese (ja)
Inventor
哲史 野呂
鎌田 忠
川内 正明
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016079939A1 publication Critical patent/WO2016079939A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/113Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/04Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present disclosure relates to a gaze direction area setting device and a gaze direction area setting system.
  • the number of times that the driver visually recognizes the side mirror is measured based on the fact that the driver's face faces the side mirror. When the number of times is equal to or less than a predetermined value, it is determined that the driver's attention is reduced.
  • the face orientation when the driver visually recognizes the mirror differs depending on various factors such as the driver's physique, the driver's seating position, the driver's posture, and the vehicle type of the host vehicle. For example, the face orientation when a driver with a high sitting height visually recognizes the side mirror is downward as compared with a driver with a low sitting height.
  • the present disclosure has been made in view of the above points, and an object thereof is to provide a gaze direction area setting device and a gaze direction area setting system that can accurately determine whether or not a driver is viewing a mirror.
  • a gaze direction area setting device includes a driver gaze direction information input unit to which driver gaze direction information representing a driver's gaze direction is input, and a collection unit in a gaze direction distribution based on the driver gaze direction information
  • a collective unit recognition unit for recognizing a collective unit, a collective unit determining unit for judging a collective unit corresponding to the mirror based on a rank among the collective units regarding the number of gaze directions included in the collective unit, and a collective unit corresponding to the mirror
  • a line-of-sight direction area setting unit that sets a line-of-sight direction area including at least one line of sight.
  • the gaze direction area setting device sets the gaze direction area based on the actual gaze direction of the driver. Therefore, for example, even if the driver's physique, the driver's seating position, the driver's posture, the vehicle type of the host vehicle, etc. are various, the gaze direction area including the gaze direction when the driver actually looks at the mirror is set with high accuracy can do.
  • a gaze direction area setting device recognizes a gaze direction distribution unit based on a driver gaze direction detection unit that detects a gaze direction of a driver and a gaze direction detected by the driver gaze direction detection unit. At least one set unit corresponding to the mirror, and a set unit determining unit for determining the set unit corresponding to the mirror based on the rank between the set units regarding the number of gaze directions included in the set unit.
  • the gaze direction area setting device sets the gaze direction area based on the actual gaze direction of the driver. Therefore, for example, even if the driver's physique, the driver's seating position, the driver's posture, the vehicle type of the host vehicle, etc. are various, the gaze direction area including the gaze direction when the driver actually looks at the mirror is set with high accuracy can do.
  • a gaze direction area setting system includes a driver gaze direction information output device that detects a gaze direction of a driver and outputs the driver gaze direction information, and a gaze direction area setting device according to the first aspect; including. Even with this line-of-sight direction region setting system, it is possible to accurately determine that the driver's line-of-sight direction does not face the mirror and is looking away.
  • FIG. 1 is an explanatory diagram showing the configuration of the line-of-sight direction region setting system.
  • FIG. 2 is a flowchart showing processing executed by the driver gaze direction information output device.
  • FIG. 3 is a flowchart showing a gaze direction area setting process executed by the gaze direction area setting device.
  • FIG. 4 is an explanatory diagram showing the positional relationship between the gaze direction, curved surface, and points of the driver.
  • FIG. 5 is an explanatory diagram showing the distribution in the line-of-sight direction
  • FIG. 6 is a flowchart showing alarm processing executed by the line-of-sight direction region setting device, FIG.
  • FIG. 7 is a block diagram showing the configuration of the line-of-sight direction region setting device
  • FIG. 8 is a flowchart showing a gaze direction area setting process executed by the gaze direction area setting device
  • FIG. 9 is a flowchart showing alarm processing executed by the line-of-sight direction region setting device.
  • the line-of-sight direction region setting system 1 includes a driver line-of-sight direction information output device 3 and a line-of-sight direction region setting device 5.
  • the driver gaze direction information output device 3 is provided in glasses that can be worn by the driver. When the driver wears the glasses, the driver gaze direction information output device 3 is worn on the driver's head.
  • the line-of-sight direction region setting device 5 is an in-vehicle device.
  • the vehicle on which the line-of-sight direction area setting device 5 is mounted is referred to as the own vehicle.
  • the driver line-of-sight direction information output device 3 includes a driver line-of-sight direction detection unit 7, a calculation unit 9, a display 11, an input unit 13, and a communication unit 15.
  • the driver gaze direction detection unit 7 includes a gyro sensor 17 and an electrooculogram sensor 19.
  • the gyro sensor 17 detects the face direction of the driver wearing the driver gaze direction information output device 3.
  • the electrooculogram sensor 19 detects a potential difference around the eye associated with eye movement, and detects the direction of the eyeball (the direction of the line of sight) based on the driver's face direction based on the potential difference.
  • the driver gaze direction detection unit 7 detects the driver's gaze direction by combining the driver's face direction and the eyeball direction based on the face direction.
  • the line-of-sight direction of the driver is a direction with reference to the own vehicle.
  • the arithmetic unit 9 is a known computer including a CPU, RAM, ROM and the like.
  • the arithmetic unit 9 functionally includes a wearer determination unit 21. The function of the wearer determination unit 21 will be described later.
  • the display 11 is composed of a liquid crystal display, an organic EL display, or the like and is capable of displaying an image.
  • the input unit 13 includes a keyboard, a touch panel, etc., and is configured to input information.
  • the communication unit 15 is configured to be able to perform wireless communication with the line-of-sight direction area setting device 5.
  • the line-of-sight direction region setting device 5 includes a speed detection unit 23, a calculation unit 25, a communication unit 27, a storage unit 29, a speaker 39, and a display 41.
  • the communication unit 27 is an example of a driver line-of-sight direction information input unit.
  • Speed detection unit 23 detects the speed of the host vehicle.
  • the arithmetic unit 25 is a known computer including a CPU, RAM, ROM, and the like.
  • the arithmetic unit 25 functionally includes a gathering part recognition unit 31, a gathering part determination unit 33, a line-of-sight direction region setting unit 35, and an alarm unit 37. The function of each unit will be described later.
  • the communication unit 27 is configured to perform wireless communication with the driver line-of-sight direction information output device 3.
  • the storage unit 29 is composed of an HDD (Hard Disk Drive) and can store, save, and read information.
  • the speaker 39 and the display 41 are installed in the passenger compartment of the host vehicle and are used in alarm processing described later.
  • step S1 in FIG. 2 it is determined whether or not the timing for executing the processing in step S2 and subsequent steps has been reached. This timing can be, for example, a timing at which a predetermined time has elapsed since the processing after step S2 was previously executed. If the timing has been reached, the process proceeds to step S2, and if not, the process ends.
  • step S2 the wearer determination unit 21 displays a message requesting ID input on the display 11.
  • the driver of the host vehicle can input the driver ID using the input unit 13 in response to this message.
  • step S3 the wearer determination unit 21 determines whether or not an ID has been input within a predetermined time after displaying the message in step S2. If there is an ID input, the process proceeds to step S4. If no ID is input, the process ends.
  • step S4 the wearer determination unit 21 transmits the wearer information using the communication unit 15.
  • the wearer information is information representing an ID input using the input unit 13.
  • step S5 the driver's gaze direction detection unit 7 is used to detect the driver's gaze direction.
  • step S6 the speed of the host vehicle is acquired using the communication unit 15. Note that the speed detection unit 23 of the line-of-sight direction region setting device 5 periodically detects the speed of the host vehicle and transmits it using the communication unit 27. In this step S6, the speed transmitted as described above is acquired.
  • driver gaze direction information is transmitted using the communication unit 15.
  • the driver's line-of-sight direction information is information including the driver's line-of-sight direction detected in step S5 and the speed of the host vehicle acquired in step S6.
  • the driver's line-of-sight direction included in one driver line-of-sight direction information and the speed of the host vehicle are acquired at substantially the same timing. Each time the processes of step S5 and step S6 are performed once, one driver gaze direction information is created.
  • step S8 it is determined whether or not N driver gaze direction information has been transmitted. If the transmission has been completed, the process is terminated. If the transmission has not been completed, the process proceeds to step S5.
  • N is a positive integer, and is preferably a sufficiently large number (for example, several tens to several tens of thousands).
  • step S ⁇ b> 1 of FIG. 3 it is determined whether or not the wearer information is received by the communication unit 27.
  • the wearer information is transmitted by the driver gaze direction information output device 3 in step S4. If the wearer information is received, the process proceeds to step S12. If not received, the process is terminated.
  • step S12 it is determined whether or not the data corresponding to the ID included in the wearer information received in step S11 is stored in the storage unit 29. If not stored, the process proceeds to step S13. If stored, the process proceeds to step S20.
  • step S13 the communication unit 27 is used to receive N driver line-of-sight direction information. That is, the driver gaze direction information is input to the communication unit 27. Note that each of the N driver line-of-sight direction information is transmitted by the driver line-of-sight direction information output device 3 in step S7.
  • step S14 the collective part recognition unit 31 recognizes the collective part in the gaze direction distribution based on the driver gaze direction information received in step S13. This process will be specifically described below.
  • the line-of-sight direction 45 of the driver 43 passes through a curved surface 47 made up of a WS (wind shield) of the host vehicle and a portion further extending to the outside.
  • the line-of-sight direction 45 of the driver 43 can be represented by a point 45 ⁇ / b> A where it passes through the curved surface 47.
  • N line-of-sight directions 45 included in the N driver line-of-sight direction information received in step S13 are represented as points 45A on the curved surface 47.
  • the group of points 45A on the curved surface 47 is an example of the distribution in the line-of-sight direction.
  • a predetermined threshold for example, 5 km / h
  • the line-of-sight direction included in the driver line-of-sight direction information is excluded from the distribution of the line-of-sight direction.
  • the collective unit recognition unit 31 recognizes the collective units 49, 51, 53, 55, 57, 59.
  • step S15 the gathering unit determination unit 33 first calculates the number of gaze directions included in the gathering part for each of the gathering parts 49, 51, 53, 55, 57, 59.
  • the order is given to the collective portions 49, 51, 53, 55, 57, 59... In descending order of the number of gaze directions included in the collective portion.
  • the rank of the set part including the most line-of-sight directions is No. 1
  • the rank of the set part including the i-th most line-of-sight directions is i (i is an integer of 2 or more). This rank is an example of the rank between the collective parts regarding the number of gaze directions included in the collective part.
  • the collective part with the highest rank is the collective part in the line of sight when the driver sees the vanishing point (the point at infinity in front of the host vehicle) (hereinafter referred to as the collective part corresponding to the vanishing point). It is judged that.
  • the collection unit 49 is a collection unit corresponding to the vanishing point.
  • step S16 the gathering part determination unit 33 judges the gathering part corresponding to the mirror based on the ranking given in step S15. Specifically, this is performed as follows.
  • the collective portion 51 having the highest rank on the left side of the collective portion 49 corresponding to the vanishing point is a collective portion in the line-of-sight direction when the driver looks at the left mirror (hereinafter, referred to as a collective portion 51 corresponding to the left mirror). Judge that there is.
  • the collection unit 53 having the highest rank on the right side of the collection unit 49 corresponding to the vanishing point is a collection unit in the line-of-sight direction when the driver looks at the right mirror (hereinafter referred to as a collection unit 53 corresponding to the right mirror). ).
  • the highest-order set unit 55 above the set unit 49 corresponding to the vanishing point is the set unit in the line-of-sight direction when the driver views the indoor rearview mirror (hereinafter referred to as the set unit 55 corresponding to the indoor rearview mirror). ).
  • step S17 the set unit determination unit 33 selects the set unit 57 having the highest rank below the set unit 49 corresponding to the vanishing point, and the set unit in the line-of-sight direction when the driver looks at the meter (hereinafter, corresponds to the meter). It is determined that it is a collecting unit 57).
  • the line-of-sight direction area setting unit 35 includes a collection unit 51 corresponding to the left mirror, a collection unit 53 corresponding to the right mirror, and a collection unit 55 corresponding to the indoor rearview mirror.
  • a direction area 61 is set on the curved surface 47.
  • the line-of-sight direction area 61 is a rectangular area.
  • the gathering part 51 corresponding to the left mirror, the gathering part 53 corresponding to the right mirror, and the gathering part 55 corresponding to the indoor rearview mirror are inscribed in the outer peripheral end of the line-of-sight direction region 61, respectively.
  • the gathering part 57 corresponding to the meter and the gathering part 59 corresponding to the navigation are not included in the line-of-sight direction area 61 and circumscribe the outer peripheral edge of the line-of-sight direction area 61.
  • a large area as an initial stage (for example, an area of 3 m in length and width if defined by length, and an area of 180 ° in length and width if defined by angle) Is set in advance.
  • the gaze direction area setting unit 35 associates the gaze direction area set in step S18 with the ID included in the wearer information received in step S11, and stores it in the storage unit 29.
  • the stored line-of-sight direction area is used in alarm processing described later.
  • step S12 determines whether the corresponding data is present. If it is determined in step S12 that the corresponding data is present, the process proceeds to step S20, and the line-of-sight area associated with the ID included in the wearer information received in step S11 is read from the storage unit 29. Note that the line-of-sight direction area read in step S12 is stored in association with the ID in the previous step S19. The read line-of-sight direction area is used in alarm processing described later.
  • driver gaze direction information is received using the communication unit 27.
  • the driver line-of-sight direction information output device 3 periodically creates and transmits driver line-of-sight direction information when the processing shown in FIG. 2 is not executed.
  • step S22 it is determined whether or not the driver's line-of-sight direction included in the driver line-of-sight direction information received in step S21 is outside the line-of-sight direction area. If it is outside the line-of-sight direction area, the process proceeds to step S23, and if it is within the line-of-sight direction area, this process ends.
  • step S23 an alarm sound is output using the speaker 39 and an alarm message is displayed on the display 41.
  • the line-of-sight direction area setting device 5 sets the line-of-sight direction area based on the actual line-of-sight direction of the driver. Therefore, for example, even if the driver's physique, the driver's seating position, the driver's posture, the vehicle type of the host vehicle, etc. are various, the gaze direction area including the gaze direction when the driver actually looks at the mirror is set with high accuracy can do.
  • the line-of-sight direction area setting device 5 identifies the line-of-sight direction of the driver based on the face direction of the driver and the direction of the eyeball based on the face direction. Therefore, the driver's line-of-sight direction can be detected with high accuracy.
  • Driver gaze direction information output device 3 is mounted on the head of the driver. Therefore, it is easier to adjust the position and direction of the driver gaze direction information output device 3 than when the driver gaze direction information output device 3 is fixed to the host vehicle.
  • Driver gaze direction information output device 3 is provided in glasses worn by the driver. Therefore, the distance between the driver gaze direction information output device 3 and the driver's eyes is short. As a result, the line-of-sight direction of the driver can be detected with high accuracy. Further, the driver can easily attach the driver gaze direction information output device 3.
  • the line-of-sight direction region setting device 5 determines that the set part having the highest order on the left is the set part corresponding to the left mirror with reference to the set part corresponding to the vanishing point, and the set having the highest order on the right side
  • the unit is determined to be the collecting unit corresponding to the right mirror, and the collecting unit having the highest rank in the upper part is determined to be the collecting unit corresponding to the indoor rearview mirror.
  • the line-of-sight area setting device 5 excludes the line-of-sight direction when the speed of the host vehicle is equal to or less than a predetermined threshold in the distribution of the line-of-sight direction. As a result, it is possible to prevent the driver's line-of-sight direction from affecting the setting of the line-of-sight region when the vehicle is not traveling.
  • the line-of-sight direction area setting system 1 can automatically calibrate the line-of-sight direction area while it is being used, even if the user does not make troublesome settings.
  • the line-of-sight direction region setting device 105 is an in-vehicle device mounted on the host vehicle.
  • the line-of-sight direction region setting device 105 includes an arithmetic unit 125, a speed detection unit 123, a driver line-of-sight direction detection unit 107, a display 141, an input unit 113, a speaker 139, and a storage unit 129.
  • the arithmetic unit 125 is a known computer including a CPU, RAM, ROM, and the like.
  • the arithmetic unit 125 functionally includes a collective part recognition unit 131, a collective part determination unit 133, a line-of-sight direction area setting unit 135, a wearer determination unit 121, and an alarm unit 137. The function of each unit will be described later.
  • the speed detection unit 123 detects the speed of the host vehicle.
  • the driver gaze direction detection unit 107 includes a camera 118 fixed in the passenger compartment of the host vehicle. The camera 118 can photograph the driver's face. The driver gaze direction detection unit 107 determines the driver's face direction based on the image captured by the camera 118. Then, assuming that the driver is looking toward the front of the face, the driver detects the direction of the driver's line of sight.
  • the display 141, the input unit 113, the speaker 139, and the storage unit 129 are the same as the display 41, the input unit 13, the speaker 39, and the storage unit 29 in the first embodiment, respectively.
  • step S31 it is determined whether or not it is time to execute the processes in and after step S32.
  • This timing can be, for example, a timing at which a predetermined time has elapsed since the processing after step S32 was executed last time. If the timing has been reached, the process proceeds to step S32. If the timing has not been reached, the process ends.
  • step S32 the wearer determination unit 121 displays a message requesting ID input on the display 141.
  • the driver of the own vehicle can input ID using the input unit 113 according to this message.
  • step S33 the wearer determination unit 121 determines whether or not an ID has been input within a predetermined time after displaying the message in step S32. If there is an ID input, the process proceeds to step S34. If no ID is input, the process ends.
  • step S34 the wearer determination unit 121 determines whether data corresponding to the ID determined to have been input in step S33 is stored in the storage unit 129. If not stored, the process proceeds to step S35, and if stored, the process proceeds to step S45.
  • step S35 the driver's line-of-sight direction detection unit 107 is used to detect the driver's line-of-sight direction.
  • step S36 the speed detection unit 123 is used to detect the speed of the host vehicle.
  • the speed of the host vehicle is detected at substantially the same timing as the driver's line-of-sight direction detected in the immediately preceding step S35.
  • the speed of the host vehicle detected in step S36 and the driver's line-of-sight direction detected in the previous step S35 are combined to obtain driver line-of-sight direction information. That is, each time the processes of step S35 and step S36 are executed, one driver gaze direction information is created.
  • step S37 it is determined whether or not N driver line-of-sight direction information has been accumulated by the processing in step S35 and step S36. If N driver line-of-sight direction information has been accumulated, the process proceeds to step S38. Otherwise, the process proceeds to step S35.
  • steps S38 to S43 as in steps S14 to S19 in the first embodiment, a line-of-sight direction area is set, and the line-of-sight direction area and the ID are associated and stored in the storage unit 129.
  • the stored line-of-sight direction area is used in alarm processing described later.
  • the collective unit recognition unit 131, the collective unit determination unit 133, and the line-of-sight direction area setting unit 135 are the collective unit recognition unit 31, the collective unit determination unit 33, and the collective unit determination unit 33 in the first embodiment, respectively. And the same function as the line-of-sight direction region setting unit 35.
  • step S34 determines whether the corresponding data exists. If it is determined in step S34 that the corresponding data exists, the process proceeds to step S45, and the line-of-sight direction area associated with the ID determined to be input in step S33 is read from the storage unit 129. Note that the line-of-sight direction area read in step S45 is stored in association with the ID in the previous step S43. The read line-of-sight direction area is used in alarm processing described later.
  • the driver's line-of-sight direction detection unit 107 is used to detect the driver's line-of-sight direction.
  • step S52 it is determined whether or not the driver's line-of-sight direction detected in step S51 is outside the line-of-sight direction area. If it is outside the line-of-sight direction area, the process proceeds to step S53, and if it is within the line-of-sight direction area, this process ends.
  • step S53 an alarm sound is output using the speaker 139 and an alarm message is displayed on the display 141.
  • the gaze direction area setting device 105 detects the driver's face direction and identifies the driver's gaze direction based on the face direction. Therefore, the driver's line-of-sight direction can be detected with a simple configuration.
  • the driver gaze direction detection units 7 and 107 may detect the driver's gaze direction by other methods.
  • the driver's face direction may be detected by the gyro sensor 17, and the driver's line of sight may be detected on the assumption that the driver is looking at the front of the face.
  • the driver's face direction and the eyeball direction based on the face direction may be detected, and the driver's gaze direction may be specified based on the face direction and the eyeball direction.
  • the line-of-sight direction of the driver may be detected by a combination of a gyro sensor and a geomagnetic sensor.
  • the collecting unit corresponding to the left mirror, the collecting unit corresponding to the right mirror, and the collecting unit corresponding to the indoor rearview mirror may be specified by other methods. For example, except for the 2nd to 5th aggregate parts with the lowest rank (the aggregate part corresponding to the meter), the remaining 3 aggregate parts correspond to the aggregate part corresponding to the left mirror and the right mirror And a collecting unit corresponding to the indoor rearview mirror.
  • the line-of-sight direction area may be periodically updated. That is, the line-of-sight direction area may be set periodically, and the past line-of-sight direction area may be overwritten and stored.
  • the timing at which the line-of-sight direction area is updated can be, for example, at the start of driving of the host vehicle.
  • the line-of-sight direction area may be updated every predetermined time.
  • the line-of-sight direction region may be updated with conditions. For example, the line-of-sight direction area may be updated on condition that the newly set line-of-sight direction area is smaller than the past line-of-sight direction area.
  • the driver line-of-sight direction information output device 3 may be other than the one provided in the glasses.
  • the driver gaze direction information output device 3 may be a mobile terminal (for example, a smartphone).
  • the line-of-sight direction region setting device 5 may be a device other than the in-vehicle device, for example, a mobile terminal (for example, a smartphone).
  • the line-of-sight direction region setting device 105 may be other than the in-vehicle device, and may be, for example, a mobile terminal (for example, a smartphone). Further, part or all of the line-of-sight direction region setting device 105 may be attached to a driver (for example, the head of the driver). Of the line-of-sight direction region setting device 105, a driver line-of-sight direction detection unit 107 can be provided in a portion attached to the driver. Of the line-of-sight direction region setting device 105, a portion that is worn by the driver can be provided in glasses worn by the driver.
  • the driver gaze direction information output device 3 may have a part of the functions of the gaze direction area setting device 5.
  • the arithmetic unit 9 of the driver gaze direction information output device 3 may include the collective unit recognition unit 31 or may include the collective unit recognition unit 31 and the collective unit determination unit 33.
  • the driver gaze direction information output device 3 may include a speed detection unit 23.
  • the speed detection unit 23 includes an acceleration sensor, and can calculate the speed of the host vehicle from the integrated value of the detected acceleration.
  • the line-of-sight direction area setting device 5 may perform pairing with the one having the strongest communication radio wave intensity among the plurality of driver line-of-sight direction information output devices 3.
  • the line-of-sight direction area setting device 5 may perform pairing with the driver line-of-sight direction information output device 3 whose power is turned on in accordance with an operation command from the line-of-sight direction region setting apparatus 5.
  • the line-of-sight direction region includes a part of a set part corresponding to a right mirror, a set part corresponding to a left mirror, and a set part corresponding to a room mirror. It may not include anything other than the part.
  • the functions of one component in the above embodiment may be distributed as a plurality of components, or the functions of a plurality of components may be integrated into one component. Further, at least a part of the configuration of the above embodiment may be replaced with a known configuration having the same function. Moreover, you may abbreviate
  • the line-of-sight direction region setting device 5 may not include the display 41 or the like.
  • the present invention is implemented in various forms such as a program for causing a computer to function as the line-of-sight direction area setting apparatus, a medium recording this program, and a line-of-sight direction area setting method. Disclosure can also be realized.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Human Computer Interaction (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)
  • Traffic Control Systems (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

This line-of-sight-direction-region setting apparatus is provided with: a driver-line-of-sight-direction-information input unit (27) to which driver-line-of-sight direction information representing a line-of-sight direction (45) of a driver is input; an assemblage recognition unit (31) that recognizes assemblages (49, 51, 53, 55, 57, and 59) on a distribution of the line-of-sight directions on the basis of the driver-line-of-sight direction information; an assemblage determination unit (33) that determines the assemblages corresponding to a mirror on the basis of the ranking, among the assemblages, as to the number of the line-of-sight directions contained in the assemblages; and a line-of-sight-direction-region setting unit (35) that sets a line-of-sight-direction-region (61) containing at least one of the assemblages corresponding to the mirror.

Description

視線方向領域設定装置及び視線方向領域設定システムGaze direction area setting device and gaze direction area setting system 関連出願の相互参照Cross-reference of related applications
 本出願は、2014年11月19日に出願された日本特許出願番号2014-234662号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2014-234661 filed on November 19, 2014, and the description is incorporated herein.
 本開示は、視線方向領域設定装置及び視線方向領域設定システムに関する。 The present disclosure relates to a gaze direction area setting device and a gaze direction area setting system.
 特許文献1記載の技術では、ドライバの顔がサイドミラーの方向を向いたことに基づいてドライバがサイドミラーを視認した回数を計測する。そして、その回数が所定の値以下であった場合に、ドライバの注意力が低下したと判定する。 In the technique described in Patent Document 1, the number of times that the driver visually recognizes the side mirror is measured based on the fact that the driver's face faces the side mirror. When the number of times is equal to or less than a predetermined value, it is determined that the driver's attention is reduced.
特開2014-48885号公報JP 2014-48885 A
 ドライバの体格、ドライバの着座位置、ドライバの姿勢、自車両の車種等様々な要因により、ドライバがミラーを視認するときの顔の向きは異なる。例えば、座高が高いドライバがサイドミラーを視認するときの顔の向きは、座高が低いドライバの場合に比べ、下向きとなる。 The face orientation when the driver visually recognizes the mirror differs depending on various factors such as the driver's physique, the driver's seating position, the driver's posture, and the vehicle type of the host vehicle. For example, the face orientation when a driver with a high sitting height visually recognizes the side mirror is downward as compared with a driver with a low sitting height.
 そのため、ドライバの顔の向きを検出しても、そのときドライバがミラーを視認しているか否かを正確に判断することは困難であった。 Therefore, even if the direction of the driver's face is detected, it is difficult to accurately determine whether or not the driver is viewing the mirror at that time.
 本開示は、上記点にかんがみてなされたものであり、ドライバがミラーを視認しているか否かを正確に判断できる視線方向領域設定装置及び視線方向領域設定システムを提供することを目的としている。 The present disclosure has been made in view of the above points, and an object thereof is to provide a gaze direction area setting device and a gaze direction area setting system that can accurately determine whether or not a driver is viewing a mirror.
 本開示の第1態様による視線方向領域設定装置は、ドライバの視線方向を表すドライバ視線方向情報が入力されるドライバ視線方向情報入力ユニットと、ドライバ視線方向情報に基づき、視線方向の分布における集合部を認識する集合部認識ユニットと、集合部に含まれる視線方向の数に関する集合部間での順位に基づき、ミラーに対応する集合部を判断する集合部判断ユニットと、ミラーに対応する集合部を少なくとも1以上含む視線方向領域を設定する視線方向領域設定ユニットとを備える。 A gaze direction area setting device according to a first aspect of the present disclosure includes a driver gaze direction information input unit to which driver gaze direction information representing a driver's gaze direction is input, and a collection unit in a gaze direction distribution based on the driver gaze direction information A collective unit recognition unit for recognizing a collective unit, a collective unit determining unit for judging a collective unit corresponding to the mirror based on a rank among the collective units regarding the number of gaze directions included in the collective unit, and a collective unit corresponding to the mirror A line-of-sight direction area setting unit that sets a line-of-sight direction area including at least one line of sight.
 上記視線方向領域設定装置は、ドライバの実際の視線方向に基づき、視線方向領域を設定する。そのため、例えば、ドライバの体格、ドライバの着座位置、ドライバの姿勢、自車両の車種等が様々であっても、ドライバが実際にミラーを見るときの視線方向を含む視線方向領域を高精度に設定することができる。 The gaze direction area setting device sets the gaze direction area based on the actual gaze direction of the driver. Therefore, for example, even if the driver's physique, the driver's seating position, the driver's posture, the vehicle type of the host vehicle, etc. are various, the gaze direction area including the gaze direction when the driver actually looks at the mirror is set with high accuracy can do.
 この視線方向領域とドライバの視線方向とを対比すれば、ドライバの視線方向がミラーに向っておらず、よそ見をしていることを正確に判断することができる。 If the line-of-sight direction area and the line-of-sight direction of the driver are compared, it is possible to accurately determine that the line-of-sight direction of the driver does not face the mirror and is looking away.
 本開示の第2態様による視線方向領域設定装置は、ドライバの視線方向を検出するドライバ視線方向検出ユニットと、ドライバ視線方向検出ユニットで検出した視線方向に基づき、視線方向の分布における集合部を認識する集合部認識ユニットと、集合部に含まれる視線方向の数に関する集合部間での順位に基づき、ミラーに対応する集合部を判断する集合部判断ユニットと、ミラーに対応する集合部を少なくとも1以上含む視線方向領域を設定する視線方向領域設定ユニットと、を備える。 A gaze direction area setting device according to a second aspect of the present disclosure recognizes a gaze direction distribution unit based on a driver gaze direction detection unit that detects a gaze direction of a driver and a gaze direction detected by the driver gaze direction detection unit. At least one set unit corresponding to the mirror, and a set unit determining unit for determining the set unit corresponding to the mirror based on the rank between the set units regarding the number of gaze directions included in the set unit A line-of-sight direction area setting unit for setting a line-of-sight direction area including the above.
 上記視線方向領域設定装置は、ドライバの実際の視線方向に基づき、視線方向領域を設定する。そのため、例えば、ドライバの体格、ドライバの着座位置、ドライバの姿勢、自車両の車種等が様々であっても、ドライバが実際にミラーを見るときの視線方向を含む視線方向領域を高精度に設定することができる。 The gaze direction area setting device sets the gaze direction area based on the actual gaze direction of the driver. Therefore, for example, even if the driver's physique, the driver's seating position, the driver's posture, the vehicle type of the host vehicle, etc. are various, the gaze direction area including the gaze direction when the driver actually looks at the mirror is set with high accuracy can do.
 この視線方向領域とドライバの視線方向とを対比すれば、ドライバの視線方向がミラーに向っておらず、よそ見をしていることを正確に判断することができる。 If the line-of-sight direction area and the line-of-sight direction of the driver are compared, it is possible to accurately determine that the line-of-sight direction of the driver does not face the mirror and is looking away.
 本開示の第3態様による視線方向領域設定システムは、ドライバの視線方向を検出し、前記ドライバ視線方向情報を出力するドライバ視線方向情報出力装置と、上記第1態様による視線方向領域設定装置と、を含む。この視線方向領域設定システムによっても、ドライバの視線方向がミラーに向っておらず、よそ見をしていることを正確に判断することができる。 A gaze direction area setting system according to a third aspect of the present disclosure includes a driver gaze direction information output device that detects a gaze direction of a driver and outputs the driver gaze direction information, and a gaze direction area setting device according to the first aspect; including. Even with this line-of-sight direction region setting system, it is possible to accurately determine that the driver's line-of-sight direction does not face the mirror and is looking away.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、視線方向領域設定システムの構成を表す説明図であり、 図2は、ドライバ視線方向情報出力装置が実行する処理を表すフローチャートであり、 図3は、視線方向領域設定装置が実行する視線方向領域設定処理を表すフローチャートであり、 図4は、ドライバの視線方向、曲面、及び点の位置関係を表す説明図であり、 図5は、視線方向の分布を表す説明図であり、 図6は、視線方向領域設定装置が実行する警報処理を表すフローチャートであり、 図7は、視線方向領域設定装置の構成を表すブロック図であり、 図8は、視線方向領域設定装置が実行する視線方向領域設定処理を表すフローチャートであり、 図9は、視線方向領域設定装置が実行する警報処理を表すフローチャートである。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is an explanatory diagram showing the configuration of the line-of-sight direction region setting system. FIG. 2 is a flowchart showing processing executed by the driver gaze direction information output device. FIG. 3 is a flowchart showing a gaze direction area setting process executed by the gaze direction area setting device. FIG. 4 is an explanatory diagram showing the positional relationship between the gaze direction, curved surface, and points of the driver. FIG. 5 is an explanatory diagram showing the distribution in the line-of-sight direction, FIG. 6 is a flowchart showing alarm processing executed by the line-of-sight direction region setting device, FIG. 7 is a block diagram showing the configuration of the line-of-sight direction region setting device, FIG. 8 is a flowchart showing a gaze direction area setting process executed by the gaze direction area setting device. FIG. 9 is a flowchart showing alarm processing executed by the line-of-sight direction region setting device.
 本開示の実施形態を図面に基づき説明する。 Embodiments of the present disclosure will be described with reference to the drawings.
 (第1の実施形態)
 1.視線方向領域設定システム1の構成
 視線方向領域設定システム1の構成を図1に基づき説明する。視線方向領域設定システム1は、ドライバ視線方向情報出力装置3と、視線方向領域設定装置5とを有する。ドライバ視線方向情報出力装置3は、ドライバが装着可能なメガネに設けられている。そのメガネをドライバがかけたとき、ドライバ視線方向情報出力装置3は、ドライバの頭部に装着される。視線方向領域設定装置5は車載装置である。以下では、視線方向領域設定装置5が搭載された車両を自車両とする。
(First embodiment)
1. Configuration of Gaze Direction Area Setting System 1 A configuration of the gaze direction area setting system 1 will be described with reference to FIG. The line-of-sight direction region setting system 1 includes a driver line-of-sight direction information output device 3 and a line-of-sight direction region setting device 5. The driver gaze direction information output device 3 is provided in glasses that can be worn by the driver. When the driver wears the glasses, the driver gaze direction information output device 3 is worn on the driver's head. The line-of-sight direction region setting device 5 is an in-vehicle device. Hereinafter, the vehicle on which the line-of-sight direction area setting device 5 is mounted is referred to as the own vehicle.
 ドライバ視線方向情報出力装置3は、ドライバ視線方向検出ユニット7と、演算ユニット9と、ディスプレイ11と、入力ユニット13と、通信ユニット15とを備える。 The driver line-of-sight direction information output device 3 includes a driver line-of-sight direction detection unit 7, a calculation unit 9, a display 11, an input unit 13, and a communication unit 15.
 ドライバ視線方向検出ユニット7は、ジャイロセンサ17と、眼電位センサ19とを備える。ジャイロセンサ17は、ドライバ視線方向情報出力装置3を装着したドライバの顔方向を検出する。また、眼電位センサ19は、眼球運動に伴う眼の周りの電位差を検出し、その電位差に基づき、ドライバの顔方向を基準とした眼球の方向(視線の方向)を検出する。ドライバ視線方向検出ユニット7は、ドライバの顔方向及び顔方向を基準とした眼球の方向を総合して、ドライバの視線方向を検出する。このドライバの視線方向は、自車両を基準とした方向である。 The driver gaze direction detection unit 7 includes a gyro sensor 17 and an electrooculogram sensor 19. The gyro sensor 17 detects the face direction of the driver wearing the driver gaze direction information output device 3. The electrooculogram sensor 19 detects a potential difference around the eye associated with eye movement, and detects the direction of the eyeball (the direction of the line of sight) based on the driver's face direction based on the potential difference. The driver gaze direction detection unit 7 detects the driver's gaze direction by combining the driver's face direction and the eyeball direction based on the face direction. The line-of-sight direction of the driver is a direction with reference to the own vehicle.
 演算ユニット9は、CPU、RAM、ROM等を備えた周知のコンピュータである。演算ユニット9は、機能的に、装着者判定ユニット21を備える。装着者判定ユニット21の機能は後述する。 The arithmetic unit 9 is a known computer including a CPU, RAM, ROM and the like. The arithmetic unit 9 functionally includes a wearer determination unit 21. The function of the wearer determination unit 21 will be described later.
 ディスプレイ11は、液晶ディスプレイ、有機ELディスプレイ等から成る、画像を表示可能な構成である。入力ユニット13は、キーボード、タッチパネル等から成る、情報を入力可能な構成である。通信ユニット15は、視線方向領域設定装置5との間で無線通信を行うことが可能な構成である。 The display 11 is composed of a liquid crystal display, an organic EL display, or the like and is capable of displaying an image. The input unit 13 includes a keyboard, a touch panel, etc., and is configured to input information. The communication unit 15 is configured to be able to perform wireless communication with the line-of-sight direction area setting device 5.
 視線方向領域設定装置5は、速度検出ユニット23と、演算ユニット25と、通信ユニット27と、記憶ユニット29と、スピーカ39と、ディスプレイ41とを備える。なお、通信ユニット27は、ドライバ視線方向情報入力ユニットの一例である。 The line-of-sight direction region setting device 5 includes a speed detection unit 23, a calculation unit 25, a communication unit 27, a storage unit 29, a speaker 39, and a display 41. The communication unit 27 is an example of a driver line-of-sight direction information input unit.
 速度検出ユニット23は、自車両の速度を検出する。演算ユニット25は、CPU、RAM、ROM等を備えた周知のコンピュータである。演算ユニット25は、機能的に、集合部認識ユニット31と、集合部判断ユニット33と、視線方向領域設定ユニット35と、警報ユニット37と、を備える。各ユニットの機能は後述する。 Speed detection unit 23 detects the speed of the host vehicle. The arithmetic unit 25 is a known computer including a CPU, RAM, ROM, and the like. The arithmetic unit 25 functionally includes a gathering part recognition unit 31, a gathering part determination unit 33, a line-of-sight direction region setting unit 35, and an alarm unit 37. The function of each unit will be described later.
 通信ユニット27は、ドライバ視線方向情報出力装置3との間で無線通信を行うことが可能な構成である。 The communication unit 27 is configured to perform wireless communication with the driver line-of-sight direction information output device 3.
 記憶ユニット29は、HDD(ハードディスクドライブ)から成り、情報の記憶、保存、及び読み出しが可能である。スピーカ39及びディスプレイ41は、自車両の車室内に設置され、後述する警報処理において使用される。 The storage unit 29 is composed of an HDD (Hard Disk Drive) and can store, save, and read information. The speaker 39 and the display 41 are installed in the passenger compartment of the host vehicle and are used in alarm processing described later.
 2.視線方向領域設定システム1が実行する処理
 (2-1)ドライバ視線方向情報出力装置3が実行する処理
 ドライバ視線方向情報出力装置3(特に演算ユニット9)が実行する処理を、図2に基づき説明する。図2のステップS1では、ステップS2以降の処理を実行するタイミングに達したか否かを判断する。このタイミングは、例えば、ステップS2以降の処理を前回実行してから、所定の時間が経過したタイミングとすることができる。前記のタイミングに達している場合はステップS2に進み、達していない場合は本処理を終了する。
2. Processing executed by the line-of-sight direction region setting system 1 (2-1) Processing executed by the driver line-of-sight direction information output device 3 Processing executed by the driver line-of-sight direction information output device 3 (particularly the arithmetic unit 9) will be described with reference to FIG. To do. In step S1 in FIG. 2, it is determined whether or not the timing for executing the processing in step S2 and subsequent steps has been reached. This timing can be, for example, a timing at which a predetermined time has elapsed since the processing after step S2 was previously executed. If the timing has been reached, the process proceeds to step S2, and if not, the process ends.
 ステップS2では、装着者判定ユニット21が、ディスプレイ11に、ID入力を要求するメッセージを表示する。なお、自車両のドライバは、このメッセージに応じて、入力ユニット13を用いてドライバのIDを入力することができる。 In step S2, the wearer determination unit 21 displays a message requesting ID input on the display 11. The driver of the host vehicle can input the driver ID using the input unit 13 in response to this message.
 ステップS3では、装着者判定ユニット21が、前記ステップS2でメッセージを表示してから所定時間以内にIDの入力があったか否かを判断する。IDの入力があった場合はステップS4に進み、IDの入力がなかった場合は本処理を終了する。 In step S3, the wearer determination unit 21 determines whether or not an ID has been input within a predetermined time after displaying the message in step S2. If there is an ID input, the process proceeds to step S4. If no ID is input, the process ends.
 ステップS4では、装着者判定ユニット21が、通信ユニット15を用いて、装着者情報を送信する。装着者情報は、入力ユニット13を用いて入力されたIDを表す情報である。 In step S4, the wearer determination unit 21 transmits the wearer information using the communication unit 15. The wearer information is information representing an ID input using the input unit 13.
 ステップS5では、ドライバ視線方向検出ユニット7を用いて、ドライバの視線方向を検出する。 In step S5, the driver's gaze direction detection unit 7 is used to detect the driver's gaze direction.
 ステップS6では、通信ユニット15を用いて、自車両の速度を取得する。なお、視線方向領域設定装置5の速度検出ユニット23は定期的に自車両の速度を検出し、通信ユニット27を用いて送信している。本ステップS6では、上記のように送信された速度を取得する。 In step S6, the speed of the host vehicle is acquired using the communication unit 15. Note that the speed detection unit 23 of the line-of-sight direction region setting device 5 periodically detects the speed of the host vehicle and transmits it using the communication unit 27. In this step S6, the speed transmitted as described above is acquired.
 ステップS7では、通信ユニット15を用いて、ドライバ視線方向情報を送信する。ドライバ視線方向情報は、前記ステップS5で検出したドライバの視線方向と、前記ステップS6で取得した自車両の速度とを含む情報である。1つのドライバ視線方向情報に含まれるドライバの視線方向と、自車両の速度とは、ほぼ同じタイミングで取得されたものである。前記ステップS5及び前記ステップS6の処理を1回行うごとに、1つのドライバ視線方向情報が作成される。 In step S7, driver gaze direction information is transmitted using the communication unit 15. The driver's line-of-sight direction information is information including the driver's line-of-sight direction detected in step S5 and the speed of the host vehicle acquired in step S6. The driver's line-of-sight direction included in one driver line-of-sight direction information and the speed of the host vehicle are acquired at substantially the same timing. Each time the processes of step S5 and step S6 are performed once, one driver gaze direction information is created.
 ステップS8では、N個のドライバ視線方向情報を送信済みであるか否かを判断する。送信済みである場合は本処理を終了し、送信済みではない場合はステップS5に進む。なお、Nは正の整数であり、十分大きい数(例えば、数十~数万)であることが好ましい。 In step S8, it is determined whether or not N driver gaze direction information has been transmitted. If the transmission has been completed, the process is terminated. If the transmission has not been completed, the process proceeds to step S5. N is a positive integer, and is preferably a sufficiently large number (for example, several tens to several tens of thousands).
 (2-2)視線方向領域設定装置5が実行する視線方向領域設定処理
 視線方向領域設定装置5(特に演算ユニット25)が実行する視線方向領域設定処理を図3~図5に基づき説明する。図3のステップS1では、通信ユニット27において装着者情報を受信したか否かを判断する。なお、装着者情報は、前記ステップS4においてドライバ視線方向情報出力装置3が送信したものである。装着者情報を受信した場合はステップS12に進み、受信しなかった場合は本処理を終了する。
(2-2) Gaze Direction Area Setting Process Performed by the Gaze Direction Area Setting Device 5 The gaze direction area setting process executed by the gaze direction area setting device 5 (particularly the arithmetic unit 25) will be described with reference to FIGS. In step S <b> 1 of FIG. 3, it is determined whether or not the wearer information is received by the communication unit 27. The wearer information is transmitted by the driver gaze direction information output device 3 in step S4. If the wearer information is received, the process proceeds to step S12. If not received, the process is terminated.
 ステップS12では、前記ステップS11で受信した装着者情報に含まれるIDに該当するデータが記憶ユニット29に記憶されているか否かを判断する。記憶されていない場合はステップS13に進み、記憶されている場合はステップS20に進む。 In step S12, it is determined whether or not the data corresponding to the ID included in the wearer information received in step S11 is stored in the storage unit 29. If not stored, the process proceeds to step S13. If stored, the process proceeds to step S20.
 ステップS13では、通信ユニット27を用いて、N個のドライバ視線方向情報を受信する。すなわち、ドライバ視線方向情報は、通信ユニット27に入力される。なお、N個のドライバ視線方向情報のそれぞれは、前記ステップS7においてドライバ視線方向情報出力装置3が送信したものである。 In step S13, the communication unit 27 is used to receive N driver line-of-sight direction information. That is, the driver gaze direction information is input to the communication unit 27. Note that each of the N driver line-of-sight direction information is transmitted by the driver line-of-sight direction information output device 3 in step S7.
 ステップS14では、集合部認識ユニット31が、前記ステップS13で受信したドライバ視線方向情報に基づき、視線方向の分布における集合部を認識する。この処理を以下で具体的に説明する。 In step S14, the collective part recognition unit 31 recognizes the collective part in the gaze direction distribution based on the driver gaze direction information received in step S13. This process will be specifically described below.
 図4に示すように、ドライバ43の視線方向45は、自車両のWS(ウインドシールド)と、それをさらに外側まで延長した部分から成る曲面47を通過する。ドライバ43の視線方向45は、それが曲面47を通過する点45Aにより表すことができる。 As shown in FIG. 4, the line-of-sight direction 45 of the driver 43 passes through a curved surface 47 made up of a WS (wind shield) of the host vehicle and a portion further extending to the outside. The line-of-sight direction 45 of the driver 43 can be represented by a point 45 </ b> A where it passes through the curved surface 47.
 図5に、前記ステップS13で受信したN個のドライバ視線方向情報に含まれる、N個の視線方向45を、曲面47上の点45Aとして表す。曲面47上における点45Aの群は、視線方向の分布の一例である。ただし、ドライバ視線方向情報に含まれる自車両の速度が所定の閾値(例えば、5km/h)以下である場合、そのドライバ視線方向情報に含まれる視線方向は、視線方向の分布から除外される。 In FIG. 5, N line-of-sight directions 45 included in the N driver line-of-sight direction information received in step S13 are represented as points 45A on the curved surface 47. The group of points 45A on the curved surface 47 is an example of the distribution in the line-of-sight direction. However, when the speed of the host vehicle included in the driver line-of-sight direction information is equal to or less than a predetermined threshold (for example, 5 km / h), the line-of-sight direction included in the driver line-of-sight direction information is excluded from the distribution of the line-of-sight direction.
 曲面47上には、点45Aが集合した部分(他の部分に比べて、点45A同士の間隔が小さい部分)である集合部49、51、53、55、57、59・・・が存在する。集合部認識ユニット31は、この集合部49、51、53、55、57、59・・・を認識する。 On the curved surface 47, there are aggregate portions 49, 51, 53, 55, 57, 59... That are portions where the points 45A are aggregated (portions where the distance between the points 45A is smaller than other portions). . The collective unit recognition unit 31 recognizes the collective units 49, 51, 53, 55, 57, 59.
 図3に戻り、ステップS15では、集合部判断ユニット33が、まず、集合部49、51、53、55、57、59・・・のそれぞれについて、集合部が含む視線方向の数を算出する。次に、集合部が含む視線方向の数が多い順に、集合部49、51、53、55、57、59・・・に順位をつける。例えば、最も多くの視線方向を含む集合部の順位は1番であり、i番目に多くの視線方向を含む集合部の順位はi番である(iは2以上の整数)。この順位は、集合部に含まれる視線方向の数に関する集合部間での順位の一例である。 3, in step S15, the gathering unit determination unit 33 first calculates the number of gaze directions included in the gathering part for each of the gathering parts 49, 51, 53, 55, 57, 59. Next, the order is given to the collective portions 49, 51, 53, 55, 57, 59... In descending order of the number of gaze directions included in the collective portion. For example, the rank of the set part including the most line-of-sight directions is No. 1, and the rank of the set part including the i-th most line-of-sight directions is i (i is an integer of 2 or more). This rank is an example of the rank between the collective parts regarding the number of gaze directions included in the collective part.
 そして、順位が1番である集合部を、ドライバが消失点(自車両の前方における無限遠の点)を見たときの視線方向の集合部(以下、消失点に対応する集合部とする)であると判断する。図5に示す例では、集合部49が、消失点に対応する集合部である。 Then, the collective part with the highest rank is the collective part in the line of sight when the driver sees the vanishing point (the point at infinity in front of the host vehicle) (hereinafter referred to as the collective part corresponding to the vanishing point). It is judged that. In the example illustrated in FIG. 5, the collection unit 49 is a collection unit corresponding to the vanishing point.
 ステップS16では、集合部判断ユニット33が、前記ステップS15で付けた順位に基づき、ミラーに対応する集合部を判断する。具体的には、以下のように行う。消失点に対応する集合部49の左方において最も順位が高い集合部51を、ドライバが左ミラーを見たときの視線方向の集合部(以下、左ミラーに対応する集合部51とする)であると判断する。また、消失点に対応する集合部49の右方において最も順位が高い集合部53を、ドライバが右ミラーを見たときの視線方向の集合部(以下、右ミラーに対応する集合部53とする)であると判断する。また、消失点に対応する集合部49の上方において最も順位が高い集合部55を、ドライバが室内バックミラーを見たときの視線方向の集合部(以下、室内バックミラーに対応する集合部55とする)であると判断する。 In step S16, the gathering part determination unit 33 judges the gathering part corresponding to the mirror based on the ranking given in step S15. Specifically, this is performed as follows. The collective portion 51 having the highest rank on the left side of the collective portion 49 corresponding to the vanishing point is a collective portion in the line-of-sight direction when the driver looks at the left mirror (hereinafter, referred to as a collective portion 51 corresponding to the left mirror). Judge that there is. In addition, the collection unit 53 having the highest rank on the right side of the collection unit 49 corresponding to the vanishing point is a collection unit in the line-of-sight direction when the driver looks at the right mirror (hereinafter referred to as a collection unit 53 corresponding to the right mirror). ). In addition, the highest-order set unit 55 above the set unit 49 corresponding to the vanishing point is the set unit in the line-of-sight direction when the driver views the indoor rearview mirror (hereinafter referred to as the set unit 55 corresponding to the indoor rearview mirror). ).
 ステップS17では、集合部判断ユニット33が、消失点に対応する集合部49の下方において最も順位が高い集合部57を、ドライバがメータを見たときの視線方向の集合部(以下、メータに対応する集合部57とする)であると判断する。 In step S17, the set unit determination unit 33 selects the set unit 57 having the highest rank below the set unit 49 corresponding to the vanishing point, and the set unit in the line-of-sight direction when the driver looks at the meter (hereinafter, corresponds to the meter). It is determined that it is a collecting unit 57).
 ステップS18では、視線方向領域設定ユニット35が、図5に示すように、左ミラーに対応する集合部51、右ミラーに対応する集合部53、及び室内バックミラーに対応する集合部55を含む視線方向領域61を、曲面47上で設定する。 In step S18, as shown in FIG. 5, the line-of-sight direction area setting unit 35 includes a collection unit 51 corresponding to the left mirror, a collection unit 53 corresponding to the right mirror, and a collection unit 55 corresponding to the indoor rearview mirror. A direction area 61 is set on the curved surface 47.
 視線方向領域61は、矩形の領域である。左ミラーに対応する集合部51、右ミラーに対応する集合部53、及び室内バックミラーに対応する集合部55は、それぞれ、視線方向領域61の外周端に内接する。 The line-of-sight direction area 61 is a rectangular area. The gathering part 51 corresponding to the left mirror, the gathering part 53 corresponding to the right mirror, and the gathering part 55 corresponding to the indoor rearview mirror are inscribed in the outer peripheral end of the line-of-sight direction region 61, respectively.
 メータに対応する集合部57と、ナビに対応する集合部59とは、視線方向領域61に含まれず、視線方向領域61の外周端に外接する。 The gathering part 57 corresponding to the meter and the gathering part 59 corresponding to the navigation are not included in the line-of-sight direction area 61 and circumscribe the outer peripheral edge of the line-of-sight direction area 61.
 なお、上記のように視線方向領域61を設定する前は、初期として大きめの領域(例えば、長さで定義すれば、縦横それぞれ3mの領域、角度で定義すれば、縦横それぞれ180°の領域)を設定しておく。 Before setting the line-of-sight direction area 61 as described above, a large area as an initial stage (for example, an area of 3 m in length and width if defined by length, and an area of 180 ° in length and width if defined by angle) Is set in advance.
 図3に戻り、ステップS19では、視線方向領域設定ユニット35が、前記ステップS18で設定した視線方向領域と、前記ステップS11で受信した装着者情報に含まれるIDとを関連付けて、記憶ユニット29に記憶する。記憶した視線方向領域は、後述する警報処理で使用する。 Returning to FIG. 3, in step S19, the gaze direction area setting unit 35 associates the gaze direction area set in step S18 with the ID included in the wearer information received in step S11, and stores it in the storage unit 29. Remember. The stored line-of-sight direction area is used in alarm processing described later.
 一方、前記ステップS12で該当データ有りと判断した場合はステップS20に進み、前記ステップS11で受信した装着者情報に含まれるIDと関連付けられた視線方向領域を記憶ユニット29から読み出す。なお、本ステップS12で読み出す視線方向領域は、過去の前記ステップS19においてIDと関連付けて記憶されたものである。読み出した視線方向領域は、後述する警報処理で使用する。 On the other hand, if it is determined in step S12 that the corresponding data is present, the process proceeds to step S20, and the line-of-sight area associated with the ID included in the wearer information received in step S11 is read from the storage unit 29. Note that the line-of-sight direction area read in step S12 is stored in association with the ID in the previous step S19. The read line-of-sight direction area is used in alarm processing described later.
 (2-3)視線方向領域設定装置5が実行する警報処理
 視線方向領域設定装置5(特に警報ユニット37)が所定時間ごとに繰り返し実行する警報処理を図6に基づき説明する。
(2-3) Alarm process executed by the line-of-sight direction area setting device 5 The alarm process repeatedly executed by the line-of-sight direction area setting device 5 (especially the alarm unit 37) every predetermined time will be described with reference to FIG.
 図6のステップS21では、通信ユニット27を用いて、ドライバ視線方向情報を受信する。なお、ドライバ視線方向情報出力装置3は、図2に示す処理を実行していないとき、ドライバ視線方向情報を定期的に作成し、送信している。 In step S21 in FIG. 6, driver gaze direction information is received using the communication unit 27. The driver line-of-sight direction information output device 3 periodically creates and transmits driver line-of-sight direction information when the processing shown in FIG. 2 is not executed.
 ステップS22では、前記ステップS21で受信したドライバ視線方向情報に含まれるドライバの視線方向が、視線方向領域の外であるか否かを判断する。視線方向領域の外である場合はステップS23に進み、視線方向領域の中である場合は本処理を終了する。 In step S22, it is determined whether or not the driver's line-of-sight direction included in the driver line-of-sight direction information received in step S21 is outside the line-of-sight direction area. If it is outside the line-of-sight direction area, the process proceeds to step S23, and if it is within the line-of-sight direction area, this process ends.
 ステップS23では、スピーカ39を用いて警報音を出力するとともに、ディスプレイ41に警報メッセージを表示する。 In step S23, an alarm sound is output using the speaker 39 and an alarm message is displayed on the display 41.
 3.視線方向領域設定システム1が奏する効果
 視線方向領域設定装置5は、ドライバの実際の視線方向に基づき、視線方向領域を設定する。そのため、例えば、ドライバの体格、ドライバの着座位置、ドライバの姿勢、自車両の車種等が様々であっても、ドライバが実際にミラーを見るときの視線方向を含む視線方向領域を高精度に設定することができる。
3. Effects produced by the line-of-sight direction area setting system 1 The line-of-sight direction area setting device 5 sets the line-of-sight direction area based on the actual line-of-sight direction of the driver. Therefore, for example, even if the driver's physique, the driver's seating position, the driver's posture, the vehicle type of the host vehicle, etc. are various, the gaze direction area including the gaze direction when the driver actually looks at the mirror is set with high accuracy can do.
 この視線方向領域とドライバの視線方向とを対比すれば、ドライバの視線方向がミラーに向っておらず、よそ見をしていることを正確に判断し、適切に警報処理を行うことができる。 If the line-of-sight direction area and the line-of-sight direction of the driver are compared, it is possible to accurately determine that the line-of-sight direction of the driver does not face the mirror and is looking away, and appropriately perform alarm processing.
 視線方向領域設定装置5は、ドライバの顔方向と、顔方向を基準とした眼球の方向とに基づき、ドライバの視線方向を特定する。そのため、ドライバの視線方向を高精度に検出することができる。 The line-of-sight direction area setting device 5 identifies the line-of-sight direction of the driver based on the face direction of the driver and the direction of the eyeball based on the face direction. Therefore, the driver's line-of-sight direction can be detected with high accuracy.
 ドライバ視線方向情報出力装置3は、ドライバの頭部に装着されている。そのため、自車両にドライバ視線方向情報出力装置3が固定されている場合に比べて、ドライバ視線方向情報出力装置3の位置や方向の調整が容易である。 Driver gaze direction information output device 3 is mounted on the head of the driver. Therefore, it is easier to adjust the position and direction of the driver gaze direction information output device 3 than when the driver gaze direction information output device 3 is fixed to the host vehicle.
 ドライバ視線方向情報出力装置3は、ドライバがかけるメガネに設けられている。そのため、ドライバ視線方向情報出力装置3と、ドライバの目との距離が短い。その結果、ドライバの視線方向を高精度に検出することができる。また、ドライバは、ドライバ視線方向情報出力装置3を容易に装着することができる。 Driver gaze direction information output device 3 is provided in glasses worn by the driver. Therefore, the distance between the driver gaze direction information output device 3 and the driver's eyes is short. As a result, the line-of-sight direction of the driver can be detected with high accuracy. Further, the driver can easily attach the driver gaze direction information output device 3.
 視線方向領域設定装置5は、消失点に対応する集合部を基準として、左方において最も順位が高い集合部を左ミラーに対応する集合部であると判断し、右方において最も順位が高い集合部を右ミラーに対応する集合部であると判断し、上方において最も順位が高い集合部を室内バックミラーに対応する集合部であると判断する。そのことにより、ミラーに対応する集合部を正確に判断することができる。 The line-of-sight direction region setting device 5 determines that the set part having the highest order on the left is the set part corresponding to the left mirror with reference to the set part corresponding to the vanishing point, and the set having the highest order on the right side The unit is determined to be the collecting unit corresponding to the right mirror, and the collecting unit having the highest rank in the upper part is determined to be the collecting unit corresponding to the indoor rearview mirror. As a result, it is possible to accurately determine the aggregate portion corresponding to the mirror.
 視線方向領域設定装置5は、視線方向の分布において、自車両の速度が所定の閾値以下であるときの視線方向は除外する。そのことにより、走行中以外のときのドライバの視線方向が視線方向領域の設定に影響してしまうことを抑制できる。 The line-of-sight area setting device 5 excludes the line-of-sight direction when the speed of the host vehicle is equal to or less than a predetermined threshold in the distribution of the line-of-sight direction. As a result, it is possible to prevent the driver's line-of-sight direction from affecting the setting of the line-of-sight region when the vehicle is not traveling.
 視線方向領域設定システム1は、使用者が煩わしい設定をしなくても、使用しているうちに自動的に、視線方向領域のキャリブレーションを行うことができる。 The line-of-sight direction area setting system 1 can automatically calibrate the line-of-sight direction area while it is being used, even if the user does not make troublesome settings.
 (第2の実施形態)
 1.視線方向領域設定装置105の構成
 視線方向領域設定装置105の構成を図7に基づき説明する。視線方向領域設定装置105は、自車両に搭載される車載装置である。視線方向領域設定装置105は、演算ユニット125と、速度検出ユニット123と、ドライバ視線方向検出ユニット107と、ディスプレイ141と、入力ユニット113と、スピーカ139と、記憶ユニット129と、を備える。
(Second Embodiment)
1. Configuration of Gaze Direction Area Setting Device 105 A configuration of the gaze direction area setting device 105 will be described with reference to FIG. The line-of-sight direction region setting device 105 is an in-vehicle device mounted on the host vehicle. The line-of-sight direction region setting device 105 includes an arithmetic unit 125, a speed detection unit 123, a driver line-of-sight direction detection unit 107, a display 141, an input unit 113, a speaker 139, and a storage unit 129.
 演算ユニット125は、CPU、RAM、ROM等を備えた周知のコンピュータである。演算ユニット125は、機能的に、集合部認識ユニット131、集合部判断ユニット133、視線方向領域設定ユニット135、装着者判定ユニット121、及び警報ユニット137を備える。各ユニットの機能は後述する。 The arithmetic unit 125 is a known computer including a CPU, RAM, ROM, and the like. The arithmetic unit 125 functionally includes a collective part recognition unit 131, a collective part determination unit 133, a line-of-sight direction area setting unit 135, a wearer determination unit 121, and an alarm unit 137. The function of each unit will be described later.
 速度検出ユニット123は、自車両の速度を検出する。ドライバ視線方向検出ユニット107は、自車両の車室内に固定されたカメラ118を備える。カメラ118は、ドライバの顔を撮影可能である。ドライバ視線方向検出ユニット107は、カメラ118で撮影した画像に基づき、ドライバの顔方向を判断する。そして、ドライバは顔の正面方向に視線を向けていると仮定し、ドライバの視線方向を検出する。 The speed detection unit 123 detects the speed of the host vehicle. The driver gaze direction detection unit 107 includes a camera 118 fixed in the passenger compartment of the host vehicle. The camera 118 can photograph the driver's face. The driver gaze direction detection unit 107 determines the driver's face direction based on the image captured by the camera 118. Then, assuming that the driver is looking toward the front of the face, the driver detects the direction of the driver's line of sight.
 ディスプレイ141、入力ユニット113、スピーカ139、及び記憶ユニット129は、それぞれ、前記第1の実施形態におけるディスプレイ41、入力ユニット13、スピーカ39、及び記憶ユニット29と同様のものである。 The display 141, the input unit 113, the speaker 139, and the storage unit 129 are the same as the display 41, the input unit 13, the speaker 39, and the storage unit 29 in the first embodiment, respectively.
 2.視線方向領域設定装置105が実行する処理
 (2-1)視線方向領域設定装置105が実行する視線方向領域設定処理
 視線方向領域設定装置105(特に演算ユニット125)が実行する視線方向領域設定処理を図8に基づき説明する。ステップS31では、ステップS32以降の処理を実行するタイミングに達したか否かを判断する。このタイミングは、例えば、ステップS32以降の処理を前回実行してから、所定の時間が経過したタイミングとすることができる。前記のタイミングに達している場合はステップS32に進み、達していない場合は本処理を終了する。
2. Processing executed by the line-of-sight direction region setting device 105 (2-1) Line-of-sight direction region setting processing executed by the line-of-sight direction region setting device 105 Line-of-sight direction region setting processing executed by the line-of-sight direction region setting device 105 (particularly the arithmetic unit 125) This will be described with reference to FIG. In step S31, it is determined whether or not it is time to execute the processes in and after step S32. This timing can be, for example, a timing at which a predetermined time has elapsed since the processing after step S32 was executed last time. If the timing has been reached, the process proceeds to step S32. If the timing has not been reached, the process ends.
 ステップS32では、装着者判定ユニット121が、ディスプレイ141に、ID入力を要求するメッセージを表示する。なお、自車両のドライバは、このメッセージに応じて、入力ユニット113を用いてIDを入力することができる。 In step S32, the wearer determination unit 121 displays a message requesting ID input on the display 141. In addition, the driver of the own vehicle can input ID using the input unit 113 according to this message.
 ステップS33では、装着者判定ユニット121が、前記ステップS32でメッセージを表示してから所定時間以内にIDの入力があったか否かを判断する。IDの入力があった場合はステップS34に進み、IDの入力がなかった場合は本処理を終了する。 In step S33, the wearer determination unit 121 determines whether or not an ID has been input within a predetermined time after displaying the message in step S32. If there is an ID input, the process proceeds to step S34. If no ID is input, the process ends.
 ステップS34では、装着者判定ユニット121が、前記ステップS33で入力があったと判断したIDに該当するデータが記憶ユニット129に記憶されているか否かを判断する。記憶されていない場合はステップS35に進み、記憶されている場合はステップS45に進む。 In step S34, the wearer determination unit 121 determines whether data corresponding to the ID determined to have been input in step S33 is stored in the storage unit 129. If not stored, the process proceeds to step S35, and if stored, the process proceeds to step S45.
 ステップS35では、ドライバ視線方向検出ユニット107を用いて、ドライバの視線方向を検出する。 In step S35, the driver's line-of-sight direction detection unit 107 is used to detect the driver's line-of-sight direction.
 ステップS36では、速度検出ユニット123を用いて、自車両の速度を検出する。この自車両の速度は、直前の前記ステップS35で検出したドライバの視線方向とほぼ同じタイミングで検出されたものである。本ステップS36で検出した自車両の速度と、直前の前記ステップS35で検出したドライバの視線方向とを合わせて、ドライバ視線方向情報とする。すなわち、前記ステップS35及び本ステップS36の処理を実行するごとに、1つのドライバ視線方向情報が作成される。 In step S36, the speed detection unit 123 is used to detect the speed of the host vehicle. The speed of the host vehicle is detected at substantially the same timing as the driver's line-of-sight direction detected in the immediately preceding step S35. The speed of the host vehicle detected in step S36 and the driver's line-of-sight direction detected in the previous step S35 are combined to obtain driver line-of-sight direction information. That is, each time the processes of step S35 and step S36 are executed, one driver gaze direction information is created.
 ステップS37では、前記ステップS35及び前記ステップS36の処理により、N個のドライバ視線方向情報が蓄積されたか否かを判断する。N個のドライバ視線方向情報が蓄積された場合はステップS38に進み、それ以外の場合はステップS35に進む。 In step S37, it is determined whether or not N driver line-of-sight direction information has been accumulated by the processing in step S35 and step S36. If N driver line-of-sight direction information has been accumulated, the process proceeds to step S38. Otherwise, the process proceeds to step S35.
 ステップS38~S43では、前記第1の実施形態における前記ステップS14~S19と同様に、視線方向領域を設定し、その視線方向領域とIDとを関連付けて記憶ユニット129に記憶する。記憶した視線方向領域は、後述する警報処理で使用する。 In steps S38 to S43, as in steps S14 to S19 in the first embodiment, a line-of-sight direction area is set, and the line-of-sight direction area and the ID are associated and stored in the storage unit 129. The stored line-of-sight direction area is used in alarm processing described later.
 ステップS38~S43の処理において、集合部認識ユニット131、集合部判断ユニット133、及び視線方向領域設定ユニット135は、それぞれ、前記第1の実施形態における集合部認識ユニット31、集合部判断ユニット33、及び視線方向領域設定ユニット35と同様の機能を有する。 In the processing of Steps S38 to S43, the collective unit recognition unit 131, the collective unit determination unit 133, and the line-of-sight direction area setting unit 135 are the collective unit recognition unit 31, the collective unit determination unit 33, and the collective unit determination unit 33 in the first embodiment, respectively. And the same function as the line-of-sight direction region setting unit 35.
 一方、前記ステップS34で該当データ有りと判断した場合はステップS45に進み、前記ステップS33で入力有りと判断したIDと関連付けられた視線方向領域を記憶ユニット129から読み出す。なお、本ステップS45で読み出す視線方向領域は、過去の前記ステップS43においてIDと関連付けて記憶されたものである。読み出した視線方向領域は、後述する警報処理で使用する。 On the other hand, if it is determined in step S34 that the corresponding data exists, the process proceeds to step S45, and the line-of-sight direction area associated with the ID determined to be input in step S33 is read from the storage unit 129. Note that the line-of-sight direction area read in step S45 is stored in association with the ID in the previous step S43. The read line-of-sight direction area is used in alarm processing described later.
 (2-2)視線方向領域設定装置105が実行する警報処理
 視線方向領域設定装置105(特に警報ユニット137)が所定時間ごとに繰り返し実行する警報処理を図9に基づき説明する。
(2-2) Alarm process executed by the line-of-sight direction area setting device 105 The alarm process repeatedly executed by the line-of-sight direction area setting device 105 (particularly the alarm unit 137) every predetermined time will be described with reference to FIG.
 図9のステップS51では、ドライバ視線方向検出ユニット107を用いて、ドライバの視線方向を検出する。 9, the driver's line-of-sight direction detection unit 107 is used to detect the driver's line-of-sight direction.
 ステップS52では、前記ステップS51で検出したドライバの視線方向が、視線方向領域の外であるか否かを判断する。視線方向領域の外である場合はステップS53に進み、視線方向領域の中である場合は本処理を終了する。 In step S52, it is determined whether or not the driver's line-of-sight direction detected in step S51 is outside the line-of-sight direction area. If it is outside the line-of-sight direction area, the process proceeds to step S53, and if it is within the line-of-sight direction area, this process ends.
 ステップS53では、スピーカ139を用いて警報音を出力するとともに、ディスプレイ141に警報メッセージを表示する。 In step S53, an alarm sound is output using the speaker 139 and an alarm message is displayed on the display 141.
 3.視線方向領域設定装置105が奏する効果 
 視線方向領域設定装置105は、ドライバの顔方向を検出し、その顔方向に基づき、ドライバの視線方向を特定する。そのため、ドライバの視線方向を簡易な構成で検出できる。
3. Effects exhibited by the line-of-sight direction region setting device 105
The gaze direction area setting device 105 detects the driver's face direction and identifies the driver's gaze direction based on the face direction. Therefore, the driver's line-of-sight direction can be detected with a simple configuration.
 (その他の実施形態)
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されることなく、種々の形態を採り得る。
(Other embodiments)
As mentioned above, although embodiment of this indication was described, this indication can take various forms, without being limited to the above-mentioned embodiment.
 前記第1、第2の実施形態において、ドライバ視線方向検出ユニット7、107は、他の方法でドライバの視線方向を検出してもよい。例えば、前記第1の実施形態において、ジャイロセンサ17でドライバの顔方向を検出し、ドライバは顔の正面方向に視線を向けていると仮定し、ドライバの視線方向を検出してもよい。 In the first and second embodiments, the driver gaze direction detection units 7 and 107 may detect the driver's gaze direction by other methods. For example, in the first embodiment, the driver's face direction may be detected by the gyro sensor 17, and the driver's line of sight may be detected on the assumption that the driver is looking at the front of the face.
 また、前記第2の実施形態において、ドライバの顔方向と、顔方向を基準とした眼球の方向とを検出し、顔方向及び眼球の方向に基づきドライバの視線方向を特定してもよい。 In the second embodiment, the driver's face direction and the eyeball direction based on the face direction may be detected, and the driver's gaze direction may be specified based on the face direction and the eyeball direction.
 また、ジャイロセンサと地磁気センサとの組み合わせにより、ドライバの視線方向を検出してもよい。 Also, the line-of-sight direction of the driver may be detected by a combination of a gyro sensor and a geomagnetic sensor.
 前記第1、第2の実施形態において、左ミラーに対応する集合部、右ミラーに対応する集合部、及び室内バックミラーに対応する集合部を、他の方法で特定してもよい。例えば、順位が2~5番目の集合部のうち、最も下方にあるもの(メータに対応する集合部)を除き、残りの3つの集合部を、左ミラーに対応する集合部、右ミラーに対応する集合部、及び室内バックミラーに対応する集合部とすることができる。 In the first and second embodiments, the collecting unit corresponding to the left mirror, the collecting unit corresponding to the right mirror, and the collecting unit corresponding to the indoor rearview mirror may be specified by other methods. For example, except for the 2nd to 5th aggregate parts with the lowest rank (the aggregate part corresponding to the meter), the remaining 3 aggregate parts correspond to the aggregate part corresponding to the left mirror and the right mirror And a collecting unit corresponding to the indoor rearview mirror.
 前記第1、第2の実施形態において、周期的に視線方向領域を更新してもよい。すなわち、視線方向領域を周期的に設定し、過去の視線方向領域に上書きして記憶してもよい。視線方向領域を更新するタイミングは、例えば、自車両のドライブ開始時とすることができる。また、所定の時間ごとに、視線方向領域を更新してもよい。また、条件付きで視線方向領域を更新してもよい。例えば、新たに設定した視線方向領域が過去の視線方向領域より小さいことを条件として、視線方向領域を更新してもよい。 In the first and second embodiments, the line-of-sight direction area may be periodically updated. That is, the line-of-sight direction area may be set periodically, and the past line-of-sight direction area may be overwritten and stored. The timing at which the line-of-sight direction area is updated can be, for example, at the start of driving of the host vehicle. Further, the line-of-sight direction area may be updated every predetermined time. Further, the line-of-sight direction region may be updated with conditions. For example, the line-of-sight direction area may be updated on condition that the newly set line-of-sight direction area is smaller than the past line-of-sight direction area.
 前記第1の実施形態において、ドライバ視線方向情報出力装置3は、メガネに設けられるもの以外であってもよい。例えば、ドライバ視線方向情報出力装置3は、携帯端末(例えばスマートフォン等)であってもよい。また、前記第1の実施形態において、視線方向領域設定装置5は、車載装置以外のものであってもよく、例えば、携帯端末(例えばスマートフォン等)であってもよい。 In the first embodiment, the driver line-of-sight direction information output device 3 may be other than the one provided in the glasses. For example, the driver gaze direction information output device 3 may be a mobile terminal (for example, a smartphone). In the first embodiment, the line-of-sight direction region setting device 5 may be a device other than the in-vehicle device, for example, a mobile terminal (for example, a smartphone).
 また、前記第2の実施形態において、視線方向領域設定装置105は、車載装置以外のものであってもよく、例えば、携帯端末(例えばスマートフォン等)であってもよい。また、視線方向領域設定装置105の一部又は全部は、ドライバ(例えばドライバの頭部)に装着されてもよい。視線方向領域設定装置105のうち、ドライバに装着される部分には、ドライバ視線方向検出ユニット107を設けることができる。視線方向領域設定装置105のうち、ドライバに装着される部分は、ドライバが装着するメガネに設けることができる。 In the second embodiment, the line-of-sight direction region setting device 105 may be other than the in-vehicle device, and may be, for example, a mobile terminal (for example, a smartphone). Further, part or all of the line-of-sight direction region setting device 105 may be attached to a driver (for example, the head of the driver). Of the line-of-sight direction region setting device 105, a driver line-of-sight direction detection unit 107 can be provided in a portion attached to the driver. Of the line-of-sight direction region setting device 105, a portion that is worn by the driver can be provided in glasses worn by the driver.
 前記第1の実施形態において、視線方向領域設定装置5が有する機能の一部を、ドライバ視線方向情報出力装置3が備えていてもよい。例えば、ドライバ視線方向情報出力装置3の演算ユニット9は、集合部認識ユニット31を備えていてもよいし、集合部認識ユニット31及び集合部判断ユニット33を備えていてもよい。 In the first embodiment, the driver gaze direction information output device 3 may have a part of the functions of the gaze direction area setting device 5. For example, the arithmetic unit 9 of the driver gaze direction information output device 3 may include the collective unit recognition unit 31 or may include the collective unit recognition unit 31 and the collective unit determination unit 33.
 また、ドライバ視線方向情報出力装置3は、速度検出ユニット23を備えていてもよい。この場合、速度検出ユニット23は加速度センサを備え、検出した加速度の積分値から、自車両の速度を算出することができる。 Further, the driver gaze direction information output device 3 may include a speed detection unit 23. In this case, the speed detection unit 23 includes an acceleration sensor, and can calculate the speed of the host vehicle from the integrated value of the detected acceleration.
 前記第1の実施形態において、視線方向領域設定装置5は、複数のドライバ視線方向情報出力装置3のうち、通信電波強度が最も強いものとペアリングを行うようにしてもよい。 In the first embodiment, the line-of-sight direction area setting device 5 may perform pairing with the one having the strongest communication radio wave intensity among the plurality of driver line-of-sight direction information output devices 3.
 また、視線方向領域設定装置5は、視線方向領域設定装置5からの操作指令に従って電源をオンにしたドライバ視線方向情報出力装置3とペアリングを行うようにしてもよい。 Further, the line-of-sight direction area setting device 5 may perform pairing with the driver line-of-sight direction information output device 3 whose power is turned on in accordance with an operation command from the line-of-sight direction region setting apparatus 5.
 前記第1、第2の実施形態において、視線方向領域は、右ミラーに対応する集合部、左ミラーに対応する集合部、及びルームミラーに対応する集合部のうちの一部を含み、前記一部以外は含まないものであってもよい。 In the first and second embodiments, the line-of-sight direction region includes a part of a set part corresponding to a right mirror, a set part corresponding to a left mirror, and a set part corresponding to a room mirror. It may not include anything other than the part.
 上記実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合させたりしてもよい。また、上記実施形態の構成の少なくとも一部を、同様の機能を有する公知の構成に置き換えてもよい。また、上記実施形態の構成の一部を省略してもよい。例えば、前記第1の実施形態において視線方向領域設定装置5はディスプレイ41等を備えていなくてもよい。 The functions of one component in the above embodiment may be distributed as a plurality of components, or the functions of a plurality of components may be integrated into one component. Further, at least a part of the configuration of the above embodiment may be replaced with a known configuration having the same function. Moreover, you may abbreviate | omit a part of structure of the said embodiment. For example, in the first embodiment, the line-of-sight direction region setting device 5 may not include the display 41 or the like.
 また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。なお、特許請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 Further, at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other embodiment. In addition, all the aspects included in the technical idea specified only by the wording described in the claims are embodiments of the present disclosure.
 上述した視線方向領域設定装置、視線方向領域設定システムの他、当該視線方向領域設定装置としてコンピュータを機能させるためのプログラム、このプログラムを記録した媒体、視線方向領域設定方法等、種々の形態で本開示を実現することもできる。 In addition to the above-described line-of-sight direction area setting device and line-of-sight direction area setting system, the present invention is implemented in various forms such as a program for causing a computer to function as the line-of-sight direction area setting apparatus, a medium recording this program, and a line-of-sight direction area setting method. Disclosure can also be realized.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範畴や思想範囲に入るものである。

 
Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (12)

  1.  ドライバの視線方向(45)を表すドライバ視線方向情報が入力されるドライバ視線方向情報入力ユニット(27)と、
     前記ドライバ視線方向情報に基づき、前記視線方向の分布における集合部(49、51、53、55、57、59)を認識する集合部認識ユニット(31)と、
     前記集合部に含まれる前記視線方向の数に関する前記集合部間での順位に基づき、ミラーに対応する前記集合部を判断する集合部判断ユニット(33)と、
     前記ミラーに対応する前記集合部を少なくとも1以上含む視線方向領域(61)を設定する視線方向領域設定ユニット(35)と、
     を備える視線方向領域設定装置。
    A driver gaze direction information input unit (27) to which driver gaze direction information indicating the gaze direction (45) of the driver is input;
    A set recognition unit (31) for recognizing the set (49, 51, 53, 55, 57, 59) in the distribution of the gaze direction based on the driver gaze direction information;
    A set unit determination unit (33) for determining the set unit corresponding to a mirror based on the rank among the set units with respect to the number of the line-of-sight directions included in the set unit;
    A line-of-sight direction area setting unit (35) for setting a line-of-sight direction area (61) including at least one or more of the collective portions corresponding to the mirror;
    A gaze direction area setting device.
  2.  ドライバの視線方向(45)を検出するドライバ視線方向検出ユニット(107)と、
     前記ドライバ視線方向検出ユニットで検出した前記視線方向に基づき、前記視線方向の分布における集合部(49、51、53、55、57、59)を認識する集合部認識ユニット(131)と、
     前記集合部に含まれる前記視線方向の数に関する前記集合部間での順位に基づき、ミラーに対応する前記集合部を判断する集合部判断ユニット(133)と、
     前記ミラーに対応する前記集合部を少なくとも1以上含む視線方向領域(61)を設定する視線方向領域設定ユニット(135)と、
     を備える視線方向領域設定装置(105)。
    A driver gaze direction detection unit (107) for detecting the gaze direction (45) of the driver;
    A set recognition unit (131) for recognizing the set (49, 51, 53, 55, 57, 59) in the distribution of the gaze direction based on the gaze direction detected by the driver gaze direction detection unit;
    A collective part determination unit (133) for judging the collective part corresponding to a mirror based on the rank among the collective parts with respect to the number of the line-of-sight directions included in the collective part;
    A line-of-sight direction area setting unit (135) for setting a line-of-sight direction area (61) including at least one or more of the collective portions corresponding to the mirror;
    A gaze direction area setting device (105).
  3.  請求項2に記載の視線方向領域設定装置であって、
     前記ドライバ視線方向検出ユニットは、ドライバの顔方向を検出し、その顔方向に基づき前記視線方向を特定する視線方向領域設定装置。
    The line-of-sight area setting device according to claim 2,
    The driver gaze direction detection unit is a gaze direction area setting device that detects a driver's face direction and identifies the gaze direction based on the face direction.
  4.  請求項2に記載の視線方向領域設定装置であって、
     前記ドライバ視線方向検出ユニットは、ドライバの顔方向と、前記顔方向を基準とした眼球の方向とを検出し、前記顔方向及び前記眼球の方向に基づき前記視線方向を特定する視線方向領域設定装置。
    The line-of-sight area setting device according to claim 2,
    The driver gaze direction detection unit detects the driver's face direction and the direction of the eyeball based on the face direction, and identifies the gaze direction area based on the face direction and the eyeball direction. .
  5.  請求項2~4のいずれか1項に記載の視線方向領域設定装置であって、
     少なくとも前記ドライバ視線方向検出ユニットは、ドライバに装着される視線方向領域設定装置。
    The line-of-sight direction region setting device according to any one of claims 2 to 4,
    At least the driver gaze direction detection unit is a gaze direction area setting device attached to a driver.
  6.  請求項2~5のいずれか1項に記載の視線方向領域設定装置であって、
     少なくとも前記ドライバ視線方向検出ユニットは、ドライバの頭部に装着される視線方向領域設定装置。
    A line-of-sight direction region setting device according to any one of claims 2 to 5,
    At least the driver line-of-sight direction detection unit is a line-of-sight direction area setting device mounted on a driver's head.
  7.  請求項2~6のいずれか1項に記載の視線方向領域設定装置であって、
     少なくとも前記ドライバ視線方向検出ユニットは、メガネに設けられている視線方向領域設定装置。
    The line-of-sight direction region setting device according to any one of claims 2 to 6,
    At least the driver gaze direction detection unit is a gaze direction area setting device provided in glasses.
  8.  請求項1~7のいずれか1項に記載の視線方向領域設定装置であって、
     前記集合部判断ユニットは、前記順位が1番目の前記集合部を基準として、左方、右方、及び上方のうちから選択される1の方向において、前記順位が最も高い前記集合部を、前記ミラーに対応する前記集合部と判断する視線方向領域設定装置。
    The line-of-sight direction region setting device according to any one of claims 1 to 7,
    The collective unit determination unit is configured to determine the collective unit having the highest rank in one direction selected from left, right, and above with reference to the collective unit having the first rank. A line-of-sight direction region setting device that determines the set portion corresponding to a mirror.
  9.  請求項1~8のいずれか1項に記載の視線方向領域設定装置であって、
     前記ミラーは、右ミラー、左ミラー、及びルームミラーを含むミラー群から選択される1以上である視線方向領域設定装置。
    The line-of-sight direction region setting device according to any one of claims 1 to 8,
    The line-of-sight direction region setting device, wherein the mirror is one or more selected from a mirror group including a right mirror, a left mirror, and a room mirror.
  10.  請求項1~9のいずれか1項に記載の視線方向領域設定装置であって、
     前記視線方向領域設定ユニットは、前記視線方向領域を所定時間ごとに更新する視線方向領域設定装置。
    The line-of-sight direction region setting device according to any one of claims 1 to 9,
    The line-of-sight direction area setting unit updates the line-of-sight direction area every predetermined time.
  11.  請求項1~10のいずれか1項に記載の視線方向領域設定装置であって、
     前記視線方向の分布において、自車両の速度が所定の閾値以下であるときの前記視線方向は除外される視線方向領域設定装置。
    The line-of-sight direction region setting device according to any one of claims 1 to 10,
    A line-of-sight direction region setting device that excludes the line-of-sight direction when the speed of the host vehicle is equal to or less than a predetermined threshold in the distribution of the line-of-sight direction.
  12.  ドライバの視線方向を検出し、前記ドライバ視線方向情報を出力するドライバ視線方向情報出力装置(3)と、
     請求項1に記載の視線方向領域設定装置と、を含む視線方向領域設定システム。

     
    A driver gaze direction information output device (3) for detecting a gaze direction of the driver and outputting the driver gaze direction information;
    A line-of-sight direction region setting system comprising: the line-of-sight direction region setting device according to claim 1.

PCT/JP2015/005518 2014-11-19 2015-11-03 Line-of-sight-direction-region setting apparatus and line-of-sight-direction-region setting system WO2016079939A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-234662 2014-11-19
JP2014234662A JP2016099718A (en) 2014-11-19 2014-11-19 Visual line direction area setting device and visual line direction area setting system

Publications (1)

Publication Number Publication Date
WO2016079939A1 true WO2016079939A1 (en) 2016-05-26

Family

ID=56013515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005518 WO2016079939A1 (en) 2014-11-19 2015-11-03 Line-of-sight-direction-region setting apparatus and line-of-sight-direction-region setting system

Country Status (2)

Country Link
JP (1) JP2016099718A (en)
WO (1) WO2016079939A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09238905A (en) * 1996-03-05 1997-09-16 Nissan Motor Co Ltd Apparatus for measurement of direction of visual axis
JP2007230314A (en) * 2006-02-28 2007-09-13 Nissan Motor Co Ltd Video presenting device and video presenting method
JP2009020569A (en) * 2007-07-10 2009-01-29 Denso Corp Vehicle traveling support apparatus
JP2009023565A (en) * 2007-07-20 2009-02-05 Denso It Laboratory Inc Drive assisting device and drive assisting method
JP2010029262A (en) * 2008-07-25 2010-02-12 Toyota Central R&D Labs Inc Sight line measuring apparatus and program
JP2015085719A (en) * 2013-10-28 2015-05-07 株式会社デンソーアイティーラボラトリ Gazing object estimation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09238905A (en) * 1996-03-05 1997-09-16 Nissan Motor Co Ltd Apparatus for measurement of direction of visual axis
JP2007230314A (en) * 2006-02-28 2007-09-13 Nissan Motor Co Ltd Video presenting device and video presenting method
JP2009020569A (en) * 2007-07-10 2009-01-29 Denso Corp Vehicle traveling support apparatus
JP2009023565A (en) * 2007-07-20 2009-02-05 Denso It Laboratory Inc Drive assisting device and drive assisting method
JP2010029262A (en) * 2008-07-25 2010-02-12 Toyota Central R&D Labs Inc Sight line measuring apparatus and program
JP2015085719A (en) * 2013-10-28 2015-05-07 株式会社デンソーアイティーラボラトリ Gazing object estimation device

Also Published As

Publication number Publication date
JP2016099718A (en) 2016-05-30

Similar Documents

Publication Publication Date Title
EP2891953B1 (en) Eye vergence detection on a display
US9451062B2 (en) Mobile device edge view display insert
KR101659027B1 (en) Mobile terminal and apparatus for controlling a vehicle
US9767373B2 (en) Head-mounted display head pose and activity estimation
EP3183151B1 (en) Wearable device and method of controlling the same
US10304228B2 (en) Vehicular display apparatus and vehicular display method
EP3165939A1 (en) Dynamically created and updated indoor positioning map
US20160133117A1 (en) System for monitoring vehicle operator compliance with safe operating conditions
US20140098008A1 (en) Method and apparatus for vehicle enabled visual augmentation
US10162409B2 (en) Locating a head mounted display in a vehicle
US9904359B2 (en) Head-mounted display controlled by tapping, method for controlling the same and computer program product for controlling the same
US10642348B2 (en) Display device and image display method
US20180229654A1 (en) Sensing application use while driving
CN104890570B (en) Worn type information of vehicles indicator and the method for indicating information of vehicles using it
JP2010018201A (en) Driver assistant device, driver assistant method, and driver assistant processing program
JP2008079737A (en) Concentration degree evaluating apparatus and display device for vehicle equipped with the same
JP5644414B2 (en) Awakening level determination device, awakening level determination method, and program
WO2017086022A1 (en) Information processing device, information processing method, and program
US11137600B2 (en) Display device, display control method, and display system
US10846040B2 (en) Information processing apparatus, information processing method, and non-transitory computer-readable recording medium
WO2016079939A1 (en) Line-of-sight-direction-region setting apparatus and line-of-sight-direction-region setting system
JP2017083308A (en) Electronic apparatus, facility specification method, and facility specification program
US11262894B2 (en) Information processing device and information processing method
JP6932007B2 (en) Information processing methods, information processing devices and programs
JP2015121623A (en) Electronic equipment, display control method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860934

Country of ref document: EP

Kind code of ref document: A1