WO2016078507A1 - 一种光伏智能电源 - Google Patents

一种光伏智能电源 Download PDF

Info

Publication number
WO2016078507A1
WO2016078507A1 PCT/CN2015/093203 CN2015093203W WO2016078507A1 WO 2016078507 A1 WO2016078507 A1 WO 2016078507A1 CN 2015093203 W CN2015093203 W CN 2015093203W WO 2016078507 A1 WO2016078507 A1 WO 2016078507A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
pid
power supply
photovoltaic
control unit
Prior art date
Application number
PCT/CN2015/093203
Other languages
English (en)
French (fr)
Inventor
冯江华
蹇芳
吴强
郭积晶
吴恒亮
张洪浩
陈艺峰
唐海燕
王南
赵香桂
刘昭翼
李少龙
张蓉
Original Assignee
南车株洲电力机车研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南车株洲电力机车研究所有限公司 filed Critical 南车株洲电力机车研究所有限公司
Priority to US15/528,515 priority Critical patent/US10122176B2/en
Publication of WO2016078507A1 publication Critical patent/WO2016078507A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/08Limitation or suppression of earth fault currents, e.g. Petersen coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention mainly relates to the field of photovoltaic power generation technology, and particularly relates to a photovoltaic intelligent power source suitable for a photovoltaic power generation system.
  • the U-I and P-I characteristics of photovoltaic cells vary with irradiance and temperature and exhibit typical nonlinear characteristics. Due to the low output voltage and current of a single photovoltaic module, multiple photovoltaic modules are connected in series and then converted into electrical energy. At this time, many factors such as the occlusion of the solar panel or other objects on the panel, the inconsistency of the component temperature and the layout orientation, etc., may cause the power mismatch of the PV string, and the MPPT control mode (maximum power point tracking, that is, distributed) Maintaining the power system at its maximum power output state is a common means of solving this problem.
  • the conventional MPPT method for solving the wide input range of the power plant-level photovoltaic array is to use a string inverter, and the string inverter includes a boost module and an inverter module.
  • the disadvantages of this method and structure are: high cost, small single machine power, parallel structure of output AC complicates the wiring, and the adaptability of multi-stage parallel power grid is poor.
  • the protection of DC arc and the suppression of the PV array PID effect potential induced degradation, that is, the bias between the component and the frame caused by the battery
  • the disadvantage is that to achieve these functions, it is necessary to additionally add a separate device, which is costly.
  • the technical problem to be solved by the present invention is that, in view of the technical problems existing in the prior art, the present invention provides an MPPT control, can effectively detect an arc and initiate protection, can ensure normal operation of the inverter, and improve reliability of the power generation system. Sexual photovoltaic smart power.
  • the present invention adopts the following technical solutions:
  • a photovoltaic intelligent power supply comprises a plurality of unit modules, a communication unit and a control unit, all of which are connected with a control unit and a communication unit, each unit module includes an input collection unit, a data acquisition unit, a boost unit, and an arc An isolation unit and an anti-PID unit, the input collection unit is connected to a photovoltaic component, the data acquisition unit is configured to collect voltage and current state signals, and the boosting unit is configured to perform interlaced chopping and work in an MPPT mode,
  • the arc isolation unit is configured to receive an instruction issued by the control unit to open and close; the anti-PID unit is configured to receive an instruction issued by the control unit to form an appropriate DC voltage applied between the negative pole of the panel and the ground.
  • the input collection unit comprises more than two input branches connected to the photovoltaic module
  • the circuit has a fuse connected in series with each input branch.
  • the arc isolation unit comprises a DC circuit breaker.
  • the anti-PID unit is composed of a DC/DC or AC/DC unit, and the anti-PID unit is powered by an anti-PID power source.
  • the boosting unit comprises an input capacitor, two IGBT modules with reversed diodes, two inductors, two main loop diodes, one output capacitor and two bypass diodes.
  • the boost chopper circuit in the boosting unit when the data acquisition unit detects that the input voltage is higher than the output voltage, the boost chopper circuit in the boosting unit does not operate, the current is passed by the bypass diode; when the input voltage is lower than the output The voltage, the boost chopper circuit of the boosting unit operates, the bypass diode is turned off, and the two-way boost chopper circuit performs interleaved chopping output according to the requirements of the MPPT.
  • a first driving circuit is provided between the control unit and the boosting unit for directly receiving an instruction of the control unit and then driving the boost chopper circuit.
  • a second driving circuit is provided between the control unit and the anti-PID unit for directly receiving an instruction of the control unit and then driving the anti-PID unit.
  • the photovoltaic intelligent power source of the invention can be applied to a photovoltaic power plant DC system, effectively widening the input voltage range and the MPPT range of the centralized inverter, fully utilizing the solar energy resources, and having the DC side arc detection and suppressing the PV module PID. The function of the effect.
  • the photovoltaic intelligent power source of the invention can increase the number of MPPTs for the power generation system of the centralized inverter, widen the DC voltage range and the MPPT range of the power generation system; effectively detect the arc and start protection to ensure the normal operation of the inverter, The reliability of the power generation system is improved; the photovoltaic intelligent power source of the invention integrates the PID effect suppression function of the photovoltaic component, reduces the attenuation of the photovoltaic panel, and thereby improves the power generation efficiency of the photovoltaic power generation system.
  • Figure 1 is a schematic view of the structural frame of the present invention.
  • FIG. 2 is a schematic view showing the structural principle of the present invention in a specific application example.
  • FIG. 3 is a schematic view showing the structure of a boosting unit in a specific application example of the present invention.
  • FIG. 4 is a schematic diagram showing the structure of an anti-PID unit in a specific application example of the present invention.
  • Figure 5 is a schematic diagram of the working principle of the present invention in a specific application example.
  • 101 input collection unit; 102, data acquisition unit; 103, communication unit; 104, boost unit; 105, arc isolation unit; 106, control unit; 107, anti-PID unit; 207, first drive circuit; Second drive Circuit; 210, anti-PID power supply; 301, input capacitance; 302, IGBT module; 303, inductor; 304, main loop diode; 305, output capacitor; 306, bypass diode; 401, first anti-PID unit input terminal; 402 a second anti-PID unit input terminal; 403, a third anti-PID unit input terminal; 404, a main circuit; 405, a first output terminal; 406, and a second output terminal.
  • the photovoltaic intelligent power supply of the present invention adopts a modular design, which includes a plurality of unit modules and a communication unit 103 and a control unit 106. All of the unit modules are connected to the control unit 106 and the communication unit 103, each of which is connected to each other.
  • the unit modules each include an input collection unit 101, a data acquisition unit 102, a boost unit 104, an arc isolation unit 105, and an anti-PID unit 107.
  • the input collection unit 101 in the unit module includes two or more input branches connected to the photovoltaic modules, and each of the input branches has a fuse connected in series, that is, the number of fuses corresponds to the number of input paths.
  • the data acquisition unit 102 includes a DC voltage sensor, a DC current sensor, and an AC current sensor for collecting voltage and current of the unit module.
  • the boosting unit 104 is formed by two boost chopper circuits (boost circuits) and two diode bypasses in parallel, which can be interlaced and operated in the MPPT mode.
  • the arc isolation unit 105 includes a DC circuit breaker that can receive commands issued by the control unit 106 for opening and closing.
  • the anti-PID unit 107 is composed of a DC/DC or AC/DC unit for forming an appropriate DC voltage applied between the negative pole of the panel and the ground, and the anti-PID unit 107 is powered by an anti-PID power source 210.
  • the anti-PID power supply 210 includes both a direct current and an alternating current, including both a battery and an external power grid.
  • the communication unit 103 is shared by a plurality of unit modules, and receives data information of the unit module and uploads and monitors.
  • the communication mode of the communication unit 103 may be wired such as RS485 or Ethernet, or may be a wireless mode such as wifi or GPRS.
  • Control unit 106 is also common to a plurality of unit modules for data processing and to issue commands to boost unit 104 and arc isolation unit 105, and to maintain communication with communication unit 103.
  • a first driving circuit 207 is further included between the control unit 106 and the boosting unit 104 for directly receiving an instruction of the control unit 106 and then driving a boost chopper circuit (boost circuit).
  • a second driving circuit 208 is provided between the control unit 106 and the anti-PID unit 107 for receiving an instruction of the control unit 106 and then driving the anti-PID unit 107 for PWM control.
  • the input positive electrode of the boosting unit 104 is connected to the output positive electrode of the input collecting unit 101, and the input negative electrode is connected to the output negative electrode of the input collecting unit 101.
  • the boosting unit 104 includes an input capacitor 301, two IGBT modules 302 (with reverse diodes), two inductors 303, two main loop diodes 304, one output capacitor 305, and two bypass diodes 306.
  • An input capacitor 301 is connected between the input positive and negative electrodes for stabilizing the input voltage and achieving energy transfer; an output capacitor 305 is connected between the positive and negative terminals for stabilizing the output voltage and filtering; the inductor 303 and the main are respectively.
  • the loop diodes 304 are connected in series and then connected in parallel with the bypass diode 306.
  • the two IGBT modules 302 respectively form a T-type circuit with the inductor 303 and the main loop diode 304, and the sources of the IGBT module 302 are respectively connected to the anode of the main loop diode 304, and the IGBT module 302 is connected.
  • the drains are respectively connected to the negative of the main circuit. This constitutes a dual parallel boost circuit with dual bypass diodes.
  • the main circuit 404 of the anti-PID unit 107 is composed of a DC/DC or AC/DC isolation conversion unit.
  • the input terminal includes a first anti-PID unit input terminal 401, a second anti-PID unit input terminal 402, and a third anti-PID unit input terminal 403. If the anti-PID power supply 210 is a three-phase alternating current, the first anti-PID unit input terminal 401 It is connected to A of the anti-PID power supply 210, the second anti-PID unit input terminal 402 is connected to the B of the anti-PID power supply 210, and the third anti-PID unit input terminal 403 is connected to the C of the anti-PID power supply 210.
  • the main circuit 404 only has a first anti-PID unit input terminal 401 and a second anti-PID unit input terminal 402, which are respectively connected to the two output ends of the anti-PID power supply 210. If the anti-PID power supply 210 is DC power, the main circuit 404 only has the first anti-PID unit input terminal 401 and the second anti-PID unit input terminal 402. The first anti-PID unit input terminal 401 is connected to the anti-PID power supply 210 positively, and the second The anti-PID unit input terminal 402 is connected to the negative pole of the anti-PID power source 210.
  • the main circuit 404 employs an isolated DC/DC or AC/DC circuit depending on the type of anti-PID power source 210.
  • the first output terminal 405 is connected to the negative pole of the photovoltaic module, and the second output terminal 406 is connected to the ground.
  • the working principle of the photovoltaic intelligent power supply of the present invention is: Since the modular design is adopted, only the working principle of the single unit module will be described here.
  • the multi-channel photovoltaic module is assembled by the input collection unit 101, which is provided with overcurrent and short circuit protection by means of a fuse.
  • the DC voltage sensor, the DC current sensor and the AC current sensor of the data acquisition unit 102 collect relevant signals and send them to the control unit 106 for processing, wherein the DC voltage and the DC current signals are used together for MPPT control.
  • the DC current and the AC current signal are used together to detect whether the DC side has an arc characteristic.
  • control unit 106 reports to the monitoring system through the communication unit 103, and simultaneously sends a signal switch to the arc isolation unit 105, so that the inverter will not be stopped due to protection, and other normal modules can continue. Work, it is also convenient for maintenance personnel to locate the fault location.
  • the boost circuit in the boosting unit 104 when the input voltage is higher than the output voltage, the boost circuit in the boosting unit 104 does not operate, and the current is passed by the bypass diode 306.
  • the boost circuit of the boosting device When the input voltage is lower than the output voltage, the boost circuit of the boosting device operates, and the bypass diode 306 is naturally turned off, and the control unit 106 performs interleaved chopping output on the two boost circuits according to the requirements of the MPPT.
  • the control unit 106 forms a second drive circuit 208 that is sent to the DC/DC or AC/DC conversion in the anti-PID unit 107 to generate a corresponding DC voltage applied to the DC negative pole and the ground. In between, the negative voltage difference between the negative electrode and the ground is compensated, and the anti-PID power supply 210 supplies energy to the PID prevention unit 107, thereby effectively suppressing the component PID effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

一种光伏智能电源,包括多个单元模块及通讯单元(103)、控制单元(106),有的单元模块均与控制单元(106)和通讯单元(103)相连,每个单元模块均包括输入汇集单元(101)、数据采集单元(102)、升压单元(104)、电弧隔离单元(105)及防PID单元(107),输入汇集单元(101)与光伏组件相连,数据采集单元(102)用来采集电压和电流状态信号,升压单元(104)用来进行交错斩波并工作于MPPT模式,电弧隔离单元(105)用来接收控制单元(106)下达的指令进行断开与闭合;防PID单元(107)用来接收控制单元(106)下达的指令以形成适当的直流电压加于电池板负极和地之间。所述光伏智能电源支持MPPT控制、能有效检测电弧并启动保护、能保证逆变器的正常运行,且提高发电系统可靠性。

Description

一种光伏智能电源 【技术领域】
本发明主要涉及到光伏发电技术领域,特指一种适用于光伏发电系统的光伏智能电源。
【背景技术】
在正常工作情况下,光伏电池的U-I和P-I特性曲线随辐照度和温度变化且呈现出典型的非线性特性。由于单个光伏组件输出电压电流低,工程中将多个光伏组件串并连接后再进行电能变换。此时,云层或其他物体对电池板的遮挡、组件温度和布局方位的不一致等诸多因素会导致光伏组串的功率失配,MPPT控制方式(最大功率点跟踪:maximum power point tracking,即令分布式发电系统保持在其最大功率输出状态)是解决这一问题的通用手段。
目前,传统解决电站级光伏阵列宽输入范围内的MPPT方式是使用组串型逆变器,组串型逆变器内部含升压模块和逆变模块。这种方式和结构的缺点是:成本较高,单机功率小,输出交流的并联结构使接线复杂化,多级并联的电网适应能力较差。同时,在目前的光伏电站中,还进一步逐步重视直流电弧的保护和光伏阵列PID效应(电势诱发衰减:potential induced degradation,即组件和边框之间的偏压而引起电池的衰减现象)的抑制,其缺点是要实现这些功能必须额外增加相应单独的装置,成本较高。
【发明内容】
本发明要解决的技术问题就在于:针对现有技术存在的技术问题,本发明提供一种可支持MPPT控制、能有效检测电弧并启动保护、能保证逆变器的正常运行、提高发电系统可靠性的光伏智能电源。
为解决上述技术问题,本发明采用以下技术方案:
一种光伏智能电源,包括多个单元模块及通讯单元、控制单元,所有的单元模块均与控制单元和通讯单元相连,每个单元模块均包括输入汇集单元、数据采集单元、升压单元、电弧隔离单元及防PID单元,所述输入汇集单元与光伏组件相连,所述数据采集单元用来采集电压和电流状态信号,所述升压单元用来进行交错斩波并工作于MPPT模式,所述电弧隔离单元用来接收控制单元下达的指令进行断开与闭合;所述防PID单元用来接收控制单元下达的指令以形成适当的直流电压加于电池板负极和地之间。
作为本发明的进一步改进:所述输入汇集单元包括两个以上与光伏组件相连的输入支 路,每个输入支路均串联有熔断器。
作为本发明的进一步改进:所述电弧隔离单元包括一个直流断路器。
作为本发明的进一步改进:所述防PID单元由一个DC/DC或AC/DC单元组成,所述防PID单元由防PID电源提供能量。
作为本发明的进一步改进:所述升压单元包括一个输入电容、两个带反向二极管的IGBT模块、两个电感、两个主回路二极管、一个输出电容和两个旁路二极管。
作为本发明的进一步改进:当所述数据采集单元检测到输入电压高于输出电压,所述升压单元中的升压斩波电路不工作,电流由旁路二极管通过;当输入电压低于输出电压,所述升压单元的升压斩波电路工作,所述旁路二极管关断,两路升压斩波电路根据MPPT的要求进行交错斩波输出。
作为本发明的进一步改进:所述控制单元与升压单元之间设有第一驱动电路,用来直接接收控制单元的指令然后驱动升压斩波电路。
作为本发明的进一步改进:所述控制单元与防PID单元之间设有第二驱动电路,用来直接接收控制单元的指令然后驱动防PID单元。
与现有技术相比,本发明的优点在于:
1、本发明的光伏智能电源,可应用于光伏电站直流系统,有效拓宽集中型逆变器的输入电压范围和MPPT范围,更充分地利用太阳能资源,同时具备直流侧电弧检测和抑制光伏组件PID效应的功能。
2、本发明的光伏智能电源,可为集中式逆变器的发电系统增加MPPT数量,拓宽发电系统的直流电压范围和MPPT范围;有效检测电弧并启动保护,保证了逆变器的正常运行,提高了发电系统可靠性;本发明的光伏智能电源,集成了光伏组件PID效应抑制功能,降低光伏电池板的衰减,从而提高光伏发电系统的发电效率。
【附图说明】
图1是本发明的结构框架示意图。
图2是本发明在具体应用实例中的结构原理示意图。
图3是本发明在具体应用实例中升压单元的结构原理示意图。
图4是本发明在具体应用实例中防PID单元的结构原理示意图。
图5是本发明在具体应用实例中的工作原理示意图。
图例说明:
101、输入汇集单元;102、数据采集单元;103、通讯单元;104、升压单元;105、电弧隔离单元;106、控制单元;107、防PID单元;207、第一驱动电路;208、第二驱动 电路;210、防PID电源;301、输入电容;302、IGBT模块;303、电感;304、主回路二极管;305、输出电容;306、旁路二极管;401、第一防PID单元输入端子;402、第二防PID单元输入端子;403、第三防PID单元输入端子;404、主电路;405、第一输出端子;406、第二输出端子。
【具体实施方式】
以下将结合说明书附图和具体实施例对本发明做进一步详细说明。
如图1所示,本发明的光伏智能电源,采用模块化设计,其包括多个单元模块及通讯单元103、控制单元106,所有的单元模块均与控制单元106和通讯单元103相连,每个单元模块均包括输入汇集单元101、数据采集单元102、升压单元104、电弧隔离单元105及防PID单元107。
如图2所示,单元模块中的输入汇集单元101包括两个以上与光伏组件相连的输入支路,每个输入支路均串联有熔断器,即熔断器的数量与输入路的数量对应。数据采集单元102包括直流电压传感器、直流电流传感器、交流电流传感器,用来采集单元模块的电压和电流。升压单元104由两个升压斩波电路(boost电路)和两个带二极管旁路并联而成,可以交错斩波并工作于MPPT模式。电弧隔离单元105包括一个直流断路器,可接收控制单元106下达的指令进行断开与闭合。防PID单元107由一个DC/DC或AC/DC单元组成,用于形成适当的直流电压加于电池板负极和地之间,防PID单元107由一防PID电源210提供能量。该防PID电源210既包括直流,也包括交流,既包括蓄电池,也包括外部电网。
本实施例中,通讯单元103为多个单元模块所共用,接收单元模块的数据信息并上传监控。在具体应用时,通讯单元103的通讯方式可以是RS485、以太网等有线,也可以是wifi、GPRS等无线方式。控制单元106同样为多个单元模块所共用,用于数据处理并向升压单元104和电弧隔离单元105下达指令,且与通讯单元103保持通讯。
本实施例中,在控制单元106与升压单元104之间还包括第一驱动电路207,用来直接接收控制单元106的指令然后驱动升压斩波电路(boost电路)。在控制单元106与防PID单元107之间设置有第二驱动电路208,用来接收控制单元106的指令然后驱动防PID单元107进行PWM控制。
如图3所示,升压单元104的输入正极与输入汇集单元101的输出正极相连,输入负极与输入汇集单元101的输出负极相连。升压单元104包括一个输入电容301、两个IGBT模块302(带反向二极管)、两个电感303、两个主回路二极管304、一个输出电容305和两个旁路二极管306。其中输入正负极之间接有输入电容301用于稳定输入电压和实现能量传递;输出正负极之间接有输出电容305用于稳定输出电压和滤波;电感303分别和主 回路二极管304串联后再与旁路二极管306并联,两IGBT模块302分别与电感303、主回路二极管304构成T型电路,IGBT模块302的源极分别与主回路二极管304的阳极相连,IGBT模块302的漏极分别与主回路负极相连。这样就构成了带双旁路二极管的双并联boost电路。
如图4所示,防PID单元107的主电路404采用DC/DC或AC/DC隔离变换单元组成。其中输入端子包括第一防PID单元输入端子401、第二防PID单元输入端子402、第三防PID单元输入端子403,若防PID电源210为三相交流电,则第一防PID单元输入端子401与防PID电源210的A相连接,第二防PID单元输入端子402与防PID电源210的B相连接,第三防PID单元输入端子403与防PID电源210的C相连接。若防PID电源210为单相交流电,则主电路404只具备第一防PID单元输入端子401和第二防PID单元输入端子402,分别与防PID电源210的两个输出端连接。若防PID电源210为直流电,则主电路404只具备第一防PID单元输入端子401和第二防PID单元输入端子402,第一防PID单元输入端子401与防PID电源210正极连接,第二防PID单元输入端子402与防PID电源210的负极连接。根据防PID电源210类别的不同,主电路404采用隔离型DC/DC或AC/DC电路。第一输出端子405与光伏组件的负极连接,第二输出端子406与大地连接。
如图5所示,本发明的光伏智能电源的工作原理为:由于采用模块化设计,故在此只介绍单单元模块的工作原理。参见图2,多路光伏组件由输入汇集单元101汇集,利用熔断器使其具备过流和短路保护。经输入汇集单元101汇集后,通过数据采集单元102的直流电压传感器、直流电流传感器和交流电流传感器采集相关信号并送控制单元106中进行处理,其中直流电压和直流电流信号共同用来进行MPPT控制,直流电流和交流电流信号共同用来检测直流侧是否具备电弧特征。若有直流拉弧出现,则控制单元106通过通讯单元103上报至监控系统,同时向电弧隔离单元105发送信号开关断开,这样就不会引起逆变器因保护停机,且其他正常模块可继续工作,也方便维护人员对故障位置的定位。
参见图3,当输入电压高于输出电压,升压单元104中的boost电路不工作,而电流由旁路二极管306通过。当输入电压低于输出电压,升压装置的boost电路工作,而旁路二极管306自然关断,控制单元106根据MPPT的要求对两路boost电路进行交错斩波输出。根据数据采集单元102检测的直流电压,控制单元106形成指令送至防PID单元107中的DC/DC或AC/DC变换的第二驱动电路208,生成相应的直流电压加于直流负极与大地之间,补偿负极与大地间的负压差,防PID电源210为防PID单元107提供能量,从而有效抑制组件PID效应。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属 于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

Claims (8)

  1. 一种光伏智能电源,其特征在于,包括多个单元模块及通讯单元(103)、控制单元(106),所有的单元模块均与控制单元(106)和通讯单元(103)相连,每个单元模块均包括输入汇集单元(101)、数据采集单元(102)、升压单元(104)、电弧隔离单元(105)及防PID单元(107),所述输入汇集单元(101)与光伏组件相连,所述数据采集单元(102)用来采集电压和电流状态信号,所述升压单元(104)用来进行交错斩波并工作于MPPT模式,所述电弧隔离单元(105)用来接收控制单元(106)下达的指令进行断开与闭合;所述防PID单元(107)用来接收控制单元(106)下达的指令以形成适当的直流电压加于电池板负极和地之间。
  2. 根据权利要求1所述的光伏智能电源,其特征在于,所述输入汇集单元(101)包括两个以上与光伏组件相连的输入路,每个输入路均串联有熔断器。
  3. 根据权利要求1所述的光伏智能电源,其特征在于,所述电弧隔离单元(105)包括一个直流断路器。
  4. 根据权利要求1所述的光伏智能电源,其特征在于,所述防PID单元(107)由一个DC/DC或AC/DC单元组成,所述防PID单元(107)由一防PID电源(210)提供能量。
  5. 根据权利要求1或2或3或4所述的光伏智能电源,其特征在于,所述升压单元(104)包括一个输入电容(301)、两个带反向二极管的IGBT模块(302)、两个电感(303)、两个主回路二极管(304)、一个输出电容(305)和两个旁路二极管(306)。
  6. 根据权利要求5所述的光伏智能电源,其特征在于,当所述数据采集单元(102)检测到输入电压高于输出电压,所述升压单元(104)中的升压斩波电路不工作,电流由旁路二极管(306)通过;当输入电压低于输出电压,所述升压单元(104)的升压斩波电路工作,所述旁路二极管(306)关断,两路升压斩波电路根据MPPT的要求进行交错斩波输出。
  7. 根据权利要求6所述的光伏智能电源,其特征在于,所述控制单元(106)与升压单元(104)之间设有第一驱动电路(207),用来直接接收控制单元(106)的指令然后驱动升压斩波电路。
  8. 根据权利要求6所述的光伏智能电源,其特征在于,所述控制单元(106)与防PID单元(107)之间设有第二驱动电路(208),用来直接接收控制单元(106)的指令然后驱动防PID单元(107)。
PCT/CN2015/093203 2014-11-21 2015-10-29 一种光伏智能电源 WO2016078507A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/528,515 US10122176B2 (en) 2014-11-21 2015-10-29 Photovoltaic intelligent power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410673766.6A CN104393833A (zh) 2014-11-21 2014-11-21 一种光伏智能电源
CN201410673766.6 2014-11-21

Publications (1)

Publication Number Publication Date
WO2016078507A1 true WO2016078507A1 (zh) 2016-05-26

Family

ID=52611683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093203 WO2016078507A1 (zh) 2014-11-21 2015-10-29 一种光伏智能电源

Country Status (3)

Country Link
US (1) US10122176B2 (zh)
CN (1) CN104393833A (zh)
WO (1) WO2016078507A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2769039C1 (ru) * 2021-09-23 2022-03-28 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования «Новосибирский Государственный Технический Университет» Устройство отслеживания точки максимальной мощности для инвертора с питанием от солнечных батарей

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393833A (zh) * 2014-11-21 2015-03-04 南车株洲电力机车研究所有限公司 一种光伏智能电源
CN104949246A (zh) * 2015-06-29 2015-09-30 南车株洲电力机车研究所有限公司 一种太阳能变频空调系统
CN105763157A (zh) * 2016-03-22 2016-07-13 苏州玄禾物联网科技有限公司 一种光伏组件的掉电检测及控制装置
CN105915172B (zh) * 2016-05-11 2017-12-22 阳光电源股份有限公司 一种抑制电势诱导衰减的装置及系统
CN106505626B (zh) * 2016-12-21 2019-04-09 阳光电源股份有限公司 一种光伏逆变系统及其pid效应补偿方法和装置
US10651735B2 (en) 2017-02-06 2020-05-12 Futurewei Technologies, Inc. Series stacked DC-DC converter with serially connected DC power sources and capacitors
US10665743B2 (en) * 2017-02-16 2020-05-26 Futurewei Technologies, Inc. Distributed/central optimizer architecture
JP6950209B2 (ja) * 2017-03-14 2021-10-13 オムロン株式会社 太陽光発電システム
US10333314B2 (en) 2017-04-17 2019-06-25 Futurewei Technologies, Inc. Multiple buck stage single boost stage optimizer
US11626749B2 (en) * 2018-01-16 2023-04-11 Kaneka Corporation Photovoltaic system
EP3657409A1 (en) * 2018-11-23 2020-05-27 Total Solar Computer-implemented method of providing technical sizing parameters of an energy supply system, computer program product for providing such technical sizing parameters, and computer system for providing such an energy supply system
CN109742926A (zh) * 2018-12-27 2019-05-10 深圳市建筑科学研究院股份有限公司 一体式低压直流排插
CN109995127B (zh) * 2019-03-28 2022-06-21 湖南科技大学 一种光储电解电源系统及其控制方法
CN110380454B (zh) * 2019-07-17 2021-02-23 南瑞集团有限公司 抑制vsc-hvdc送端孤岛系统暂态高频的多电源协调控制方法
CN110535176B (zh) * 2019-08-21 2023-06-23 上海质卫环保科技有限公司 一种有多路mppt单元的逆变器及其应用
CN112653192B (zh) * 2019-10-10 2023-05-26 阳光电源股份有限公司 微电网系统的电源功率平衡控制方法及其应用装置
CN110867897B (zh) * 2019-11-28 2023-07-14 云南电网有限责任公司电力科学研究院 一种多端口能量路由器多模态下的协调控制策略
CN112953216A (zh) * 2019-12-11 2021-06-11 台达电子工业股份有限公司 电源转换电路及所适用的电源转换器
CN111555461A (zh) * 2020-05-28 2020-08-18 天合光能股份有限公司 一种光伏电站安全性健康度的智能诊断系统及判断方法
TWI737547B (zh) * 2020-11-23 2021-08-21 力瑪科技股份有限公司 太陽能直流饋線防災系統
CN112421945B (zh) * 2020-11-20 2021-11-05 中国科学院电工研究所 一种针对光伏直流升压变换器模块化设计的通信方法
CN112994100B (zh) * 2021-03-05 2023-08-22 河北工业大学 一种基于智能配变终端的多模式控制的光伏并网逆变器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148507A (zh) * 2010-02-08 2011-08-10 南京冠亚电源设备有限公司 基于导纳最优法的光伏并网逆变器mppt系统
CN103475208A (zh) * 2013-09-18 2013-12-25 江苏兆伏新能源有限公司 一种光伏系统的pid抑制电路
CN104092440A (zh) * 2014-07-21 2014-10-08 阳光电源股份有限公司 光伏系统直流电弧故障检测方法、装置、处理器及其系统
CN104377732A (zh) * 2014-11-21 2015-02-25 南车株洲电力机车研究所有限公司 一种基于直流母线分布式mppt光伏发电系统
CN104393833A (zh) * 2014-11-21 2015-03-04 南车株洲电力机车研究所有限公司 一种光伏智能电源

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861734A (en) * 1997-10-14 1999-01-19 Lucent Technologies, Inc. Control architecture for interleaved converters
TWI258265B (en) * 2004-11-05 2006-07-11 Delta Electronics Inc DC-AC conveter
US8013472B2 (en) * 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US9225199B2 (en) * 2011-03-22 2015-12-29 Triune Ip, Llc Variable power energy harvesting system
CN102510234A (zh) * 2011-11-10 2012-06-20 珠海天兆新能源技术有限公司 光伏并网逆变器变直流母线电压控制方法和控制系统
CN102882233A (zh) * 2012-10-12 2013-01-16 吴加林 中压分布式mppt大功率光伏并网电站
CN203218893U (zh) * 2013-04-24 2013-09-25 阳光电源(上海)有限公司 一种解决电势诱导衰减的设备
US20140340062A1 (en) * 2013-05-14 2014-11-20 Navsemi Energy Private Limited Single-stage solar-photovoltaic power conversion circuitry
JP2014236530A (ja) * 2013-05-30 2014-12-15 富士電機株式会社 電力変換装置
US20140373894A1 (en) * 2013-06-25 2014-12-25 Volterra Semiconductor Corporation Photovoltaic Panels Having Electrical Arc Detection Capability, And Associated Systems And Methods
CN103529899B (zh) * 2013-10-17 2015-10-21 深圳市禾望电气股份有限公司 Mppt控制器、功率跟踪装置、光伏发电及储能系统
US9799779B2 (en) * 2013-11-08 2017-10-24 The Board Of Trustees Of The University Of Illinois Systems and methods for photovoltaic string protection
CN203617965U (zh) * 2013-12-09 2014-05-28 北京科诺伟业科技股份有限公司 光伏组串/阵列输出功率优化、汇流、火灾监控装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148507A (zh) * 2010-02-08 2011-08-10 南京冠亚电源设备有限公司 基于导纳最优法的光伏并网逆变器mppt系统
CN103475208A (zh) * 2013-09-18 2013-12-25 江苏兆伏新能源有限公司 一种光伏系统的pid抑制电路
CN104092440A (zh) * 2014-07-21 2014-10-08 阳光电源股份有限公司 光伏系统直流电弧故障检测方法、装置、处理器及其系统
CN104377732A (zh) * 2014-11-21 2015-02-25 南车株洲电力机车研究所有限公司 一种基于直流母线分布式mppt光伏发电系统
CN104393833A (zh) * 2014-11-21 2015-03-04 南车株洲电力机车研究所有限公司 一种光伏智能电源

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2769039C1 (ru) * 2021-09-23 2022-03-28 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования «Новосибирский Государственный Технический Университет» Устройство отслеживания точки максимальной мощности для инвертора с питанием от солнечных батарей

Also Published As

Publication number Publication date
US10122176B2 (en) 2018-11-06
US20170271878A1 (en) 2017-09-21
CN104393833A (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
WO2016078507A1 (zh) 一种光伏智能电源
US20150236638A1 (en) Solar photovoltaic module power control and status monitoring system utilizing laminateembedded remote access module switch
Dhople et al. Multiple-input boost converter to minimize power losses due to partial shading in photovoltaic modules
KR101708388B1 (ko) 태양전지를 위한 전자 관리 시스템
CN106253330B (zh) 一种光伏功率优化系统
CN105164909B (zh) Dc-ac转换方法
US11722000B2 (en) Power converters and methods of controlling same
JP2016519851A5 (zh)
AU2017201476B2 (en) Single phase inverters cooperatively controlled to provide one two, or three phase unipolar electricity
CN202513588U (zh) 一种dsp和fpga双控制系统光伏并网逆变器
CN104377732A (zh) 一种基于直流母线分布式mppt光伏发电系统
CN104506132A (zh) 一种高效率低损耗的光伏电池板输出功率优化器的硬件电路
US10998761B2 (en) Rapid shutdown of photovoltaic systems
CN215498289U (zh) 一种光伏并网发电的快速关断系统
CN109494793B (zh) 一种基于锂电容的兼顾一次调频的光伏分级储能系统
US20230223898A1 (en) Safety Switch for Photovoltaic Systems
CN106329565B (zh) 一种光伏功率优化系统的数据通信方法
CN105262138B (zh) 一种光伏组件优化器
CN115663907A (zh) 基于双工作模式asic芯片控制安全的光伏装置与发电系统
CN104377827B (zh) 一种光伏直流电源
CN114865685A (zh) 一种快速关断系统及其控制方法
CN114142587B (zh) 一种田园综合体发电系统装置及控制方法
CN210297271U (zh) 一种储能逆变模组的拓扑结构
CN114884117A (zh) 安全光伏发电系统
JP5912417B2 (ja) 太陽光発電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860373

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15528515

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860373

Country of ref document: EP

Kind code of ref document: A1