WO2016078195A1 - 一种臭氧水溶液制取装置 - Google Patents

一种臭氧水溶液制取装置 Download PDF

Info

Publication number
WO2016078195A1
WO2016078195A1 PCT/CN2015/000001 CN2015000001W WO2016078195A1 WO 2016078195 A1 WO2016078195 A1 WO 2016078195A1 CN 2015000001 W CN2015000001 W CN 2015000001W WO 2016078195 A1 WO2016078195 A1 WO 2016078195A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
gas
pipeline
liquid mixing
control system
Prior art date
Application number
PCT/CN2015/000001
Other languages
English (en)
French (fr)
Inventor
邓煜宝
陈达理
李长松
李彦
管雪强
周仙红
张悦丽
段陈波
刘孝永
Original Assignee
青岛欧帝欧环保科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛欧帝欧环保科技发展有限公司 filed Critical 青岛欧帝欧环保科技发展有限公司
Publication of WO2016078195A1 publication Critical patent/WO2016078195A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention relates to the field of preparation of special aqueous solutions, in particular to an ozone aqueous solution preparation device for agricultural production.
  • High-concentration ozone aqueous solution and its hydroxyl radicals are highly oxidizing and non-toxic. Residual, no secondary pollution, become the most commonly used advanced oxidation reaction solution.
  • High-concentration ozone water has the advantages of strong oxidizing property and long duration of effective concentration. It is suitable for applications such as soil pest control and long-lasting application. It contains high-concentration oxygen aqueous solution with high oxygen content and magnetized water. Applicable to freshwater or marine aquaculture applications; ozone gas has the advantage of space sterilization, and is suitable for application fields of agricultural product preservation and air sterilization.
  • the well-known ozone water preparation equipment is typically composed of a gas-liquid mixing device as a core, and oxygen, ozone gas production, water supply and the like are all connected to a gas-liquid mixing device to prepare an ozone aqueous solution.
  • One solution uses an ozone water circulation reflux device to re-enter the prepared ozone water into the water storage tank to realize circulation.
  • the actual situation that occurs in practical applications is that most applications require immediate production and immediate use, and it is difficult to meet the long waiting time for loop production.
  • Another scheme uses flow control equipment to reduce the water output of the equipment to improve the concentration of the effluent ozone water. In practical applications, the scheme cannot produce large-flow high-concentration water bodies in a short period of time, such as agricultural irrigation requirements per hour. Take 20-30 cubic meters of ozone aqueous solution and require ozone content > 2 PPM in water. The half-life of O 3 content and O 2 content in the treated water is required to reach 30-60 minutes.
  • Ozone aqueous solution, high oxygen-containing magnetized aqueous solution and ozone gas are widely used as advanced oxidizing substances, and each has its own advantages in various application fields, but the prior art and products are difficult to satisfy the same product capable of providing these three advanced oxidizing substances, users Different equipments need to be configured according to different needs to obtain one of the advanced oxidizing substances, which reduces the utilization rate of the equipment. The single function of the equipment is difficult to meet the requirements of the versatility and applicability of the same equipment in different application fields.
  • the invention provides an ozone aqueous solution preparation device, which solves the problems of cumbersome and high cost for preparing a large flow rate and high concentration ozone aqueous solution, and the device can simultaneously provide magnetized water, ozone aqueous solution, high oxygenated magnetized water and ozone gas.
  • the products meet the needs of different fields of application.
  • the device can remotely transmit equipment operation information to the data center for storage, realizing real-time, real and standardized records of equipment operation data, and enabling the use of equipment to access the quality of agricultural products. Traceability systems are possible.
  • an ozone aqueous solution preparation device comprising a control system and an air pretreatment system controlled by a control system, an ozone generation system, a gas-liquid mixing system and a water treatment system, characterized in that the gas output is further included a control system, a water body magnetization system, and a remote data transmission system, wherein the air pretreatment system, the ozone generation system, the gas output control system, and the gas-liquid mixing system are sequentially connected by a pipeline, and the water treatment system includes a water flow control system And a water storage tank, wherein the water storage tank is provided with a water level detector, and the water flow control system is connected to the water storage tank through the water inlet device and the pipeline, and the water storage tank is connected to the gas-liquid mixing system through the pipeline.
  • the water outlet of the liquid mixing system is connected to the water flow control system;
  • the water body magnetization system comprises a first-stage water magnetization device and a second-stage water magnetization device, and the first-stage water magnetization device is disposed on the pipeline of the water flow control system.
  • the secondary water magnetization device is disposed on a pipeline between the water storage tank and the gas-liquid mixing system;
  • the remote data transmission system is electrically connected to the control system for acquiring and transmitting the operation data recorded by the control system.
  • the first-stage water magnetization device and the second-stage water magnetization device are all the same water body magnetization device
  • the water body magnetization device includes a pipe body, and the two ends of the pipe body are respectively connected to the water inlet joint and the water outlet joint
  • the tube body comprises a plastic inner tube, and the outer side of the plastic inner tube is covered with a stainless steel tube, and a magnetic tile is arranged between the plastic inner tube and the stainless steel tube.
  • the magnetic force of the magnetic tile is between 3000-8000 Gauss.
  • the gas output control system comprises a gas-liquid mixing pump intake anti-backwater counterflow device, a gas-liquid selection tee, a gas-liquid mixing pump intake control solenoid valve, a gas output control solenoid valve and a gas output interface.
  • the gas-liquid selection tee is respectively connected to an ozone generating system, one end of the gas-liquid mixing pump intake control solenoid valve and one end of the gas output control solenoid valve, and the other end of the gas-liquid mixing pump intake control solenoid valve is connected to the gas-liquid mixing pump
  • the intake and anti-backwater reflux device inlet, the gas-liquid mixing pump intake anti-backwater counterflow device outlet is connected to the gas-liquid mixing system, and the other end of the gas output control solenoid valve is connected to the gas output interface.
  • the gas-liquid mixing system comprises a gas-liquid mixing pump, a check valve, a gas-liquid separation tank, a water outlet tee and a water outlet pressure regulating valve, and the water outlet of the gas-liquid mixing pump is connected to the check valve through the pipeline.
  • the return valve is connected to the inlet of the gas-liquid separation tank through a pipeline
  • the water outlet of the gas-liquid separation tank is connected to one end of the water outlet tee
  • the other end of the water outlet tee is connected to the outlet water pressure regulating valve
  • the outlet pressure regulating valve is connected to the water flow control through the pipeline.
  • the third end of the water outlet tee is provided with a pressure relief solenoid valve.
  • the water flow control system includes an inlet pipe, a first-stage diverting pipe, a secondary diverting pipe, a first water outlet port, a second water outlet port, a water pump, a sampling bucket, the water inlet pipe, the water inlet device, and a
  • the stage splitting pipeline is connected through the first variable diameter tee, and the first water dividing device is provided on the official road between the inlet water pipe and the first variable diameter tee, and the first-stage diverting pipe, the second-stage diverting pipe and the first water outlet interface pass the first
  • the second variable diameter tee is connected, and the first control valve is disposed on the pipeline between the first water outlet interface and the second variable diameter tee, and the second split pipeline is connected to one end of the third variable diameter tee through the pipeline,
  • the other end of the three variable diameter tee is connected to one end of the fourth variable diameter tee through a pipeline, and the third end of the third variable diameter tee is connected to one end of the
  • the cooling system includes a heat exchange radiator, a coolant adding device, a coolant liquid level display device, a cooling water flow detector, and a cooling water pump
  • the heat exchange radiator is disposed in the water storage tank and is externally connected a water outlet pipe and an water inlet pipe
  • the water outlet pipe, the coolant liquid level display device and the cooling water flow detector are connected by a three-way
  • the coolant liquid level display device is further connected with an outlet of the coolant inlet device
  • the cooling water flow detector is connected to the inlet end of the cooling water pump through a pipeline
  • the water outlet end of the cooling water pump is connected to the water inlet of the cooling pipeline in the ozone generator through the pipeline, and the water outlet of the cooling pipeline in the ozone generator and the heat exchange radiator are fed into the water. Pipe connection.
  • the manufacturing control system comprises a human-computer interaction panel, an electrical control board for preparing a process, and a cable connecting the electrical control board of the preparation process with other system equipment;
  • the human-machine interaction panel comprises an ORP oxidation-reduction potential display instrument And obtaining a solution type selection button and a gas-liquid selection type button, wherein the electrical control board of the preparation process comprises a time-sharing starting device and a cable for controlling the time-division start of each system, and is used for controlling the gas output control system electromagnetic valve Closed gas output control equipment and cables.
  • the remote data transmission system includes a positioning data acquisition device, a wireless communication transceiver device, and a communication controller, and the positioning data acquisition device and the wireless communication transceiver device are respectively connected to the communication controller through a cable, and the The communication controller is connected to the control system via a cable.
  • the positioning data acquiring device is one of the following devices: a satellite geographic location receiver, an ID card reader, and a wireless short-distance position recognition transceiver.
  • Advanced oxidation reaction as a harmless pest control method has important application value for agricultural breeding, but because the technology is still in the process of continuous improvement, the equipment accessories are used, frequency and environment. Different time of failure is uncertain, which makes it difficult for equipment suppliers to provide timely repair, replacement parts and other after-sales services. Many advanced oxidation preparation equipments are considered by users to be products with high failure rate, which greatly affect the process of replacing chemical agents with advanced oxidation technology.
  • This patent proposes remote transmission technology to realize remote transmission of equipment operation status information. Timely discovery of abnormal operation of equipment, timely troubleshooting, and accurate and timely after-sales service.
  • a four-stage water magnetization system is adopted.
  • a water-magnetization device is arranged between the water inlet pipe and the water storage tank of the water treatment system, and a secondary water magnetization device is provided between the water treatment system and the gas-liquid mixing system, and the gas-liquid mixing device is provided.
  • the technical solution proposed by the patent can achieve an ozone concentration of 2.5 PPM in the effluent water in the case of water treatment of 20 cubic meters per hour, and a solution duration of 2 hours in the case of 35 ° C sun exposure.
  • FIG. 1 is a block diagram showing the principle structure of the system of the present invention.
  • FIG. 2 is a schematic structural diagram of a remote data transmission system according to the present invention.
  • Figure 3 is a cross-sectional structural view of the water magnetization device of the present invention.
  • Figure 4 is a schematic structural view of an air pretreatment system of the present invention.
  • FIG. 5 is a block diagram showing the structure of the gas output control system of the present invention.
  • FIG. 6 is a block diagram showing the principle structure of the water flow control system of the present invention.
  • Figure 7 is a block diagram showing the connection structure of the water storage bucket and the front and rear systems of the present invention.
  • Figure 8 is a block diagram showing the principle structure of the gas-liquid mixing system of the present invention.
  • Figure 9 is a block diagram showing the structure of a cooling system of the present invention.
  • FIG. 3 marked: 1 water inlet joint, 2 pipe body, 21 inner pipe, 22 stainless steel pipe, 23 magnetic tile, 3 water outlet joint.
  • Figure 6 marked: 4 water inlet pipe, 5 first variable diameter tee, 6 first-stage diverting pipe, 7 second variable-diameter tee, 8 first control valve, 9 first water outlet port, 10 second-stage diverting pipe, 11 first-class water magnetization device, 12 third variable diameter tee, 13 fourth variable diameter tee, 14 sampling barrel, 15 water quality detector, 16 sampling water pump, 17 fifth variable diameter tee, 18 second control valve, 19 second outlet interface.
  • An ozone aqueous solution preparation device as shown in FIG. 1 includes a control system and an air pretreatment system controlled by a control system, an ozone generation system, a gas-liquid mixing system, a water treatment system, a gas output control system, a water body magnetization system,
  • the remote data transmission system and the cooling system, the air pretreatment system, the ozone generation system, the gas output control system, and the gas-liquid mixing system are sequentially connected by a pipeline, and the water treatment system includes a water flow control system and a water storage bucket.
  • the water storage tank is provided with a water level detector, and the water flow control system is connected to the water storage tank through the water inlet device and the pipeline, and the water storage tank is connected to the gas-liquid mixing system through a pipeline, the gas
  • the water outlet of the liquid mixing system is also connected to the water flow control system;
  • the water body magnetization system comprises a first-stage water magnetization device and a second-stage water magnetization device, and the first-stage water magnetization device is disposed on the pipeline of the water flow control system
  • the secondary water magnetization device is disposed on a pipeline between the water storage tank and the gas-liquid mixing system; the remote data transmission
  • the system is electrically connected to the control system for acquiring and transmitting operational data recorded by the control system.
  • the first-stage water magnetization device and the second-stage water magnetization device are all the same water body magnetization devices.
  • the water body magnetization device includes a pipe body 2, and two ends of the pipe body 2 are respectively connected to the water.
  • the joint 1 and the water outlet joint 3 are connected to the pipeline through a water inlet joint and a water outlet joint
  • the tubular body 2 includes a plastic inner tube 21, and the outer side of the plastic inner tube 21 is covered with a stainless steel tube 22, the plastic inner tube A magnetic tile 23 is provided between the 21 and the stainless steel tube 22.
  • the magnetic strength of the magnetic tile is 3000-8000 Gauss.
  • the air pretreatment system includes an air dryer, an air compressor, a compressed air drying drum, a SPA molecular sieve oxygen generator, an oxygen flow meter, and a gas line connecting the above devices, converting ordinary air into Oxygen-rich air.
  • the air inlet of the air dryer is sucked into the air, and the air outlet of the air dryer is connected to the air inlet of the air compressor through the air pipe, and the air outlet of the air compressor is connected to the air inlet of the compressed air drying drum through the air pipe, and the air drying drum is compressed.
  • the air outlet is connected to the air inlet of the molecular sieve oxygen generator through a gas pipe, and the gas outlet of the molecular sieve oxygen generator is connected to the air inlet of the oxygen flow meter; the dry air drying barrel and the compressed air drying barrel are respectively placed with dry particles.
  • the dry granules described are reusable discolored silica gel particles.
  • the oxygen flow meter controls the oxygen flow rate to 2-10 L/min (liters per minute) while the apparatus is operating.
  • the oxygen-enriched air is sent to an ozone generating system, which includes an ozone generator, a power source, an ammeter, and a power protection device.
  • the ozone generator includes an ozone high-voltage generating tube and a high-voltage power board, and the power source is connected to the high voltage through an ammeter.
  • the power board, the power protection device is electrically connected to the control system, the air inlet of the ozone generator is connected to the oxygen flow meter, and the air outlet is connected to the gas output control device.
  • the gas output control system includes a gas-liquid mixing pump intake anti-backwater counterflow device, a gas-liquid selection tee, a gas-liquid mixing pump intake control solenoid valve, a gas output control solenoid valve, and a gas output interface.
  • the gas-liquid selection tee is respectively connected to an ozone generating system, one end of the gas-liquid mixing pump intake control solenoid valve and one end of the gas output control solenoid valve, and the other end of the gas-liquid mixing pump intake control solenoid valve is connected to the gas-liquid mixing pump
  • the intake and anti-backwater reflux device inlet, the gas-liquid mixing pump intake anti-backwater counterflow device outlet is connected to the gas-liquid mixing system, and the other end of the gas output control solenoid valve is connected to the gas output interface.
  • the ozone gas extracted from the gas output interface can be directly used, or the gas output interface can be connected to the ozone aqueous solution preparation device, and the ozone aqueous solution meeting the requirements of the ozone can be separately prepared.
  • the gas-liquid mixing system includes a gas-liquid mixing pump, a check valve, a gas-liquid separation tank, a water outlet tee, and a water outlet pressure regulating valve, and the water outlet of the gas-liquid mixing pump is connected to the check valve through the pipeline.
  • the return valve is connected to the inlet of the gas-liquid separation tank through a pipeline
  • the water outlet of the gas-liquid separation tank is connected to one end of the water outlet tee
  • the other end of the water outlet tee is connected to the outlet water pressure regulating valve
  • the outlet pressure regulating valve is connected to the water flow control through the pipeline.
  • the third end of the water outlet tee is provided with a pressure relief solenoid valve.
  • the gas-liquid mixing pump can be replaced by a jet or a static mixer, and the outlet pressure regulating valve controls the pressure between the gas-liquid separation tank outlet to the outlet pressure regulating valve to be 0.3-0.4 MPa, and the pressure-relieving solenoid valve can be used
  • the auxiliary outlet pressure regulating valve realizes pressure regulation to prevent the pressure from being too high.
  • the external pipeline can be connected through the outlet three-way port where the pressure relief solenoid valve is located, and the high concentration ozone aqueous solution is output.
  • a secondary water magnetization device is arranged on the pipeline between the water storage tank and the gas-liquid mixing system, and the water storage tank is connected with the water inlet equipment through a pipeline
  • the water inlet equipment here includes a water inlet pump, Influent quantity control solenoid valve, water level detector is respectively arranged in the water storage barrel, the water level detector includes a low water level detector and a high water level detector, and the inlet water pump, the electromagnetic valve, the low water level detector and the high water level detector respectively
  • the corresponding control device of the control system is electrically connected by a cable.
  • the water flow control system includes a water inlet pipe 4, a first-stage diverting pipe 6, a second-stage diverting pipe 10, a first water outlet port 9, a second water outlet port 19, a water pump 16, and a sampling bucket 14,
  • the water pipe 4, the water inlet device and the first-stage branch pipe 6 are connected by the first variable diameter tee 5, and the first water magnetizing device 11 is provided on the official road between the water inlet pipe 4 and the first variable diameter tee 5, one stage
  • the split pipe 6, the second split pipe 10 and the first water outlet port 9 are connected by a second variable diameter tee 7, and the first control valve 8 is arranged on the pipe between the first water outlet port 9 and the second variable diameter tee 7.
  • the second branching pipe 10 is connected to one end of the third variable-diameter tee 12 through a pipeline, and the other end of the third variable-diameter tee 12 is connected to one end of the fourth variable-diameter tee 13 through a pipeline, and the third variable-diameter tee
  • the third end of 12 is connected to one end of the fifth variable diameter tee 17 through a pipeline, and the other end of the fourth variable diameter tee 13 is connected to the water outlet of the gas-liquid mixing system, and the third end of the fourth variable diameter tee 13 passes
  • the pipeline is connected to the sampling bucket 14, and the other end of the fifth variable-diameter tee 17 is connected to the sampling bucket 14 through a pipeline with a water pump 16, the sampling bucket 14 Quality detector 15 is provided, the third three-way adjustable fifth terminal 17 through conduit 18 is provided with a second control valve connected to the second water outlet 19.
  • the ordinary water flow in the water inlet pipe 4 passes through the first-stage water magnetization device 11 to become a magnetic water solution, and the first water outlet port 9 flows out of the magnetized irrigation water, and the first control valve 8 controls the water flow rate of the first water outlet port 9 to achieve the right
  • the flow of water entering the secondary split line 10 is controlled; the water entering the secondary split line 10 passes through the third variable diameter tee 12, and at the same time, the small flow of high concentration ozone water passes through the fourth variable diameter tee 13 It is integrated into the large-flow magnetized water flowing through the third variable-diameter tee 12, and is thoroughly mixed and diluted to form a certain concentration of high-oxygen-rich magnetic water, flows through the fifth variable-diameter tee 17, and finally flows out through the second outlet port 19.
  • the sampling bucket 14 of the water quality detector 15 is connected to the fifth variable-diameter tee 17 through the pipeline with the water pump 16, thereby realizing the sampling detection of the oxidation-reduction potential of the aqueous solution output of the device.
  • the first control valve 8 controlling the water flow rate entering the secondary splitting pipeline 10 by controlling the outlet flow rate of the first water outlet interface 9; the mixing ratio is based on the data collected by the control system, and the first outlet water interface 9 is used for direct primary irrigation.
  • the second outlet interface 19 effluent is used for secondary irrigation after completion of one irrigation.
  • the instrument After the ozone aqueous solution or the high oxygen-enriched aqueous solution generated by the gas-liquid mixing system is sampled and detected by the oxidation-reduction potential, the instrument displays the data through the ORP oxidation-reduction potential display panel of the human-machine interaction panel, and compares the standard value of the redox potential corresponding to the application. Or the automatic control operation adjusts the opening degree of the first control valve 8 and the second control valve 18 to form an aqueous ozone solution or a high oxygen-enriched magnetic aqueous solution adapted to crop growth requirements, and finally flows out from the second water outlet port 19.
  • the cooling system includes a heat exchange radiator, a coolant adding device, a coolant liquid level display device, a cooling water flow detector, a cooling water pump, and the heat exchange radiator is disposed in the water storage tank. And an external water outlet pipe and an water inlet pipe, the water outlet pipe, the coolant liquid level display device and the cooling water flow detector are connected through a three-way, and the coolant liquid level display device is further connected with the outlet of the coolant inlet device
  • the cooling water flow detector is connected to the water inlet end of the cooling water pump through a pipeline, and the water outlet end of the cooling water pump is connected to the water inlet of the cooling pipeline in the ozone generator through the pipeline, and the water outlet of the cooling pipeline in the ozone generator is cooled by heat exchange.
  • the water inlet pipe is connected.
  • the cooling pipe is located in the ozone generator, and is in the form of a serpentine, a ring, etc., which meets the heat dissipation requirement; the cooling water pump and its connecting pipe are filled with the coolant through the coolant adding device, and are kept in a sealed state during the flow process.
  • the heat exchange radiator is installed in the water storage tank, and the coolant exchanges with the water body in the barrel for rapid heat exchange.
  • control system includes a human-machine interaction panel, a process control electrical control board, and a cable connecting the electrical control board of the preparation process with other system equipment.
  • the electrical control board of the preparation process includes water inlet control equipment and cables for opening and closing the water inlet equipment, water tank water level monitoring equipment and cables, gas control equipment and lines for opening and closing the air pretreatment system and the ozone generation system.
  • the water control device and cable of the quantity control system are used to control the time-sharing starting devices and cables of each system to start and control, and the gas output control device and cable for controlling the opening and closing of the solenoid valve of the gas output control system.
  • the water inlet control device of the water inlet and outlet water inlet device is electrically connected with the water inlet water pump and the water inlet control solenoid valve through a cable;
  • the water tank water level monitoring device is electrically connected with the high water level and the low water level detector through a cable, and the water level of the water storage tank
  • the monitoring equipment and the cooling water flow monitoring device are electrically connected by a cable, and the gas control device is electrically connected with the air cooling machine, the air compressor, the SPA, the sieve oxygen generator and the ozone generator through the cable;
  • the gas-liquid mixing pump control and protection device The gas-liquid mixing pump is electrically connected through the cable, and the cooling water pump control protection device and the cooling water pump are electrically connected through the cable, and the cooling water flow monitoring device and the cooling water flow detector are electrically connected through the cable, the cooling water flow monitoring device and the gas control device,
  • the gas-liquid mixing pump control protection device, the cooling water pump control protection device, the pressure relief solenoid valve are electrically connected through the cable
  • the electrical control board control device of the preparation process comprises a DC coil AC contactor, a DC intermediate relay, a DC 24V switching power supply, and a time relay; the electrical control board of the preparation process controls the AC contactor of each system to realize time-sharing startup through a time relay, To reduce the equipment startup current requirements for the power supply system.
  • the human-computer interaction panel includes a low water level indicator, a high water level indicator, a system power indicator, a system start button, a system operation button, a water quality display meter, a solution type selection button, a gas and liquid selection type button, and a preparation process.
  • the electrical control board is connected to the solution selection button through the cable and the human-machine interaction panel, and the solution type selection button is pressed, and the electrical control board of the preparation process controls the gas control device through the cable connected thereto Activating the ozone generator ozone generator to prepare ozone gas, and finally forming an ozone aqueous solution; preparing a solution type selection button in a state of being pressed, and preparing an electrical control panel to control the gas through a cable connected thereto
  • the control device turns off the ozone generating system ozone generator to prepare a high concentration oxygen gas, and finally forms a high oxygen containing magnetized aqueous solution.
  • the remote data transmission system includes a positioning data acquisition device, a wireless communication transceiver device, and a communication control.
  • the positioning data acquisition device and the wireless communication transceiver device are respectively connected to the communication controller through a cable, and the communication controller is connected to the control system through a cable.
  • the positioning data acquisition device is one of a satellite geographical location receiver, an ID card reader, and a wireless short-range position recognition transceiver for acquiring an accurate geographical location of the device operation;
  • the communication controller transmits the data.
  • the wireless communication transceiver device Directing to the wireless communication transceiver device, the wireless communication transceiver device sends the command to the remote control center receiver through the wireless communication network, the wireless communication network is an existing wireless data transmission network such as 3G and short message;
  • the communication controller passes the cable Connecting with the positioning data acquisition device, the wireless communication transceiver device, the water quality display instrument data output port installed on the human-machine interaction panel, and other related system devices, the communication controller starts the device startup time and runs each time the device is running.
  • the ORP oxidation-reduction potential value of the water effluent, the operating position of the device, and the like are sent to the remote control center receiver through the wireless communication transceiver device; the communication controller passes the wireless communication transceiver device during each device operation Receiving the control finger sent by the remote control center transmitter Enable remote control of field devices.
  • the water flow rate has an effect on the O 3 content and O 2 content in the water under the condition of magnetized water treatment: the flow rate of the adjusted water is 0.1 m./s, 0.3 m/s, The changes of ozone and oxygen content were measured at 0.5m/s, 0.6m/s, 0.8m/s and 1.0m/s. The results showed that under the same magnetization conditions, the ozone and oxygen dissolved content in the magnetic water of 0.5m/s under the same magnetization conditions. to reach maximum.
  • the patent applicant has the effect of the number of cutting magnetic fields on the O 3 content and O 2 content in the water under the condition of magnetized water treatment. It is concluded that under the same magnetization conditions, we have selected the flow rate to be 0.5 m/s. For the optimum flow rate, under this flow rate condition, adjust the number of times the water repeatedly passes through the magnetic field, respectively, 1 time, 2 times, 3 times, 4 times, 5 times, 7 times, 9 times, measuring conductivity, pH, O 3 The change of content and O 2 content, conductivity, pH, O 3 content and O 2 content began to increase with the increase of the number of times of passing the magnetic field, and finally no longer increased, but decreased after a certain value fluctuated, then rose again and repeatedly.
  • the ozone content is greatly increased.
  • the magnetization is 3 times, 4 times, 5 times
  • the O 3 content and the O 2 content reach the maximum value
  • the magnetization is 3 times, 5 times, 7 times
  • the solution is in the normal temperature. 3
  • the half-life and O 2 half-life reached the maximum value.
  • the magnetization was 5 times, the O 3 content and the O 2 content decreased, and the magnetization 9 times O 3 content and O 2 content were close to the untreated water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

一种臭氧水溶液制取装置,包括控制系统以及通过控制系统控制的空气预处理系统、臭氧发生系统、气液混合系统、水处理系统、气体输出控制系统、水体磁化系统和远程数据传输系统。空气预处理系统、臭氧发生系统、气体输出控制系统、气液混合系统依次相连;水处理系统包括水流量控制系统和带水位探测器的储水桶,水流量控制系统、储水桶、气液混合系统依次连接,气液混合系统的出水口与水流量控制系统连接;水体磁化系统包括一到四级水磁化装置,分别设在水流量控制系统、储水桶、气液混合系统相关的管路上。

Description

一种臭氧水溶液制取装置 技术领域
本发明涉及特种水溶液的制取领域,具体地说是用于农业上产的一种臭氧水溶液制取装置。
背景技术
上世纪末开始,高级氧化反应被被广泛的使用于农业病虫害防治、污染土壤修复、废弃物无害化处理等众多领域,其中高浓度臭氧水溶液及其产生的羟基自由基因为具有氧化性强、无残留、无二次污染,成为使用最为普遍的高级氧化反应溶液。高浓度臭氧水具有氧化性较强、有效浓度持续时间较长等优点,适合作为土壤病虫害防治等持续作用时间较长的应用领域;含有高浓度氧气水溶液具有含氧量大、磁化水的特点,适用于淡水或海水养殖的应用领域;臭氧气体具有空间杀菌优势,适用于农产品保鲜处理、空气消毒灭菌的应用领域。
目前,公知的臭氧水制取设备典型构成是:以气液混合装置为核心,将制氧、臭氧气体制取、供水等设备均连接到气液混合装置上,制取臭氧水溶液。
在实际应用中,现有臭氧水制取设备在制取不同应用需要的高级氧化物的设备通用性、制取大流量高浓度臭氧水溶液及高含氧磁化水溶液、设备故障可维护性、设备接入全程质量追溯系统等方面存在现有设计及产品难以满足要求的现状,为此本专利在以下几方面提出了创新性技术设计方案,解决了已有专利在实际应用中的不足,本专利在实用性、适用性、高效性、设备通用性等多个方面完善了现有技术在实际应用中的不足。
为获取高浓度臭氧水,现有技术及产品采取两种解决方案,一种方案采用臭氧水循环回流装置将制取的臭氧水重新进入储水桶内实现循环制取。该方案在实际应用中出现的实际情况是,绝大多数的应用需要即时制取、即时使用,难以满足循环制取的长时间等待时 间。另一种方案采用流量控制设备减少设备出水量,来实现出水臭氧水浓度的提升,该方案在实际应用中,无法在较短时间内制取大流量高浓度水体,如农业灌溉要求每小时制取20-30立方米的臭氧水溶液,并要求水中臭氧含量>2PPM,处理后水中O3含量和O2含量的半衰期要求达到30-60分钟。
臭氧水溶液、高含氧磁化水溶液及臭氧气体作为被广泛使用的高级氧化物质,在各个应用领域具有各自的优势,但现有技术及产品,难以满足同一产品能够提供这三种高级氧化物质,用户需要根据不同需要,配置不同的设备,以制取其中一种高级氧化物质,降低了设备利用率,设备单一的功能难以满足不同应用领域对同一设备通用性、适用性的要求。
高级氧化反应作为一种无害化的病虫害防治手段,替代了已被泛滥使用的化学要求,对农业种养殖具有重要作用,但是作为有机、无公害、绿色的种养殖过程,其数据必须被真实、及时、标准化的记录,并作为日后采摘、收获后的种养殖过程提供给追溯信息使用方,而现有技术中无类似应用,难以满足设备远程接入全程质量追溯系统对设备远程通讯技术设计方案的要求。
发明内容
本发明提供了一种臭氧水溶液制取装置,解决制取大流量高浓度臭氧水溶液制取繁琐、成本高等问题,同时该装置可以同时提供磁化水、臭氧水溶液、高含氧磁化水、臭氧气体四种产物,满足不同领域的应用需要,此外,本装置还能将设备运行信息远程传输至数据中心保存,实现了对设备运行数据的实时、真实、标准化的记录,使设备的使用接入农产品质量追溯系统成为可能。
本发明采用以下技术方案:一种臭氧水溶液制取装置,包括控制系统以及通过控制系统控制的空气预处理系统、臭氧发生系统、气液混合系统和水处理系统,其特征在于,还包括气体输出控制系统、水体磁化系统和远程数据传输系统,所述的空气预处理系统、臭氧发生系统、气体输出控制系统、气液混合系统通过管路依次相连,所述的水处理系统包括水流量控制系统和储水桶,所述的储水桶上设有水位探测器,所述的水流量控制系统通过进水设备和管路与储水桶连接,所述的储水桶通过管路与气液混合系统连接,所述的气 液混合系统的出水口与水流量控制系统连接;所述的水体磁化系统包括一级水磁化装置、二级水磁化装置,所述的一级水磁化装置设置在水流量控制系统的管路上,所述的二级水磁化装置设置在储水桶与气液混合系统之间的管路上;所述的远程数据传输系统与控制系统电连接,用来获取并传输控制系统记录的运行数据。
进一步的,所述的一级水磁化装置、二级水磁化装置均为结构相同的水体磁化装置,该水体磁化装置包括管体,所述管体的两端分别连接进水接头和出水接头,所述的管体包括塑料内管,塑料内管的外侧包覆有不锈钢管,所述的塑料内管和不锈钢管之间设有磁瓦。
进一步的,所述磁瓦的磁力强度为3000-8000高斯之间。
进一步的,所述的气体输出控制系统包括气液混合泵进气防回水逆流装置、气液选择三通、气液混合泵进气控制电磁阀、气体输出控制电磁阀和气体输出接口,所述的气液选择三通分别连接臭氧发生系统、气液混合泵进气控制电磁阀一端和气体输出控制电磁阀一端,所述气液混合泵进气控制电磁阀的另一端连接气液混合泵进气防回水逆流装置进口,气液混合泵进气防回水逆流装置出口连接气液混合系统,所述气体输出控制电磁阀的另一端连接气体输出接口。
进一步的,所述的气液混合系统包括气液混合泵、止回阀、气液分离罐、出水三通和出水压力调节阀,气液混合泵的出水口通过管路连接止回阀,止回阀通过管路与气液分离罐入水口相连,气液分离罐的出水口连接出水三通一端,出水三通的另一端连接出水压力调节阀,出水压力调节阀通过管路连接水流量控制系统,出水三通的第三端设有泄压电磁阀。
进一步的,所述水流量控制系统包括进水管道、一级分流管道、二级分流管道、第一出水接口、第二出水接口、水泵、取样桶,所述进水管道、进水设备和一级分流管道通过第一变径三通连通,进水管道和第一变径三通之间的官道上设有一级水磁化装置,一级分流管道、二级分流管道和第一出水接口通过第二变径三通连通,第一出水接口和第二变径三通之间的管道上设有第一控制阀,二级分流管道通过管路连接第三变径三通的一端,第 三变径三通的另一端通过管路连接第四变径三通的一端,第三变径三通的第三端通过管路连接第五变径三通的一端,第四变径三通的另一端连接气液混合系统的出水口,第四变径三通的第三端通过管路连接取样桶出水端,第五变径三通的另一端通过带水泵的管路连接取样桶,所述的取样桶上设有水质探测器,第五变径三通的第三端通过设有第二控制阀的管路连接第二出水接口。
进一步的,所述的冷却系统包括热交换散热器、冷却液加入装置、冷却液液位显示装置、冷却水流量探测器、冷却水泵,所述的热交换散热器设置在储水桶内并外接一条出水管道和一条进水管道,出水管道、冷却液液位显示装置和冷却水流量探测器通过一个三通连通,所述的冷却液液位显示装置还与冷却液加入装置的出口连接,所述的冷却水流量探测器通过管道连接冷却水泵进水端,冷却水泵出水端通过管路与臭氧发生器内的冷却管道进水口连通,臭氧发生器内的冷却管道出水口与热交换散热器进水管道连接。
进一步的,所述制取控制系统包括人机交互面板、制取过程电气控制板及连接制取过程电气控制板与其他系统设备的线缆;所述人机交互面板包括ORP氧化还原电位显示仪表、制取溶液类型选择按键、气液选择类型按键,所述制取过程电气控制板包括用于控制各系统分时启动的分时启动设备及线缆,用于控制气体输出控制系统电磁阀启闭的气体输出控制设备及线缆。
进一步的,所述的远程数据传输系统包括定位数据获取设备、无线通讯收发设备和通讯控制器,所述的定位数据获取设备和无线通讯收发设备分别通过线缆与通讯控制器连接,所述的通讯控制器通过线缆与控制系统连接。
进一步的,所述定位数据获取设备为以下设备中的一种:卫星地理位置定位接收器、ID卡读取器、无线短距离位置识别收发器。
本发明的有益效果是:
1、高级氧化反应作为一种无害化的病虫害防治手段,对农业种养殖具有重要的应用价值,但由于该技术尚处于不断完善的过程中,设备各配件由于使用情况、频率、使用环境的不同其故障时间不确定,导致设备提供方难以提供及时的维修、更换零部件等售后服 务,众多高级氧化制取设备被用户认为是故障率很高的产品,极大的影响了高级氧化技术替代化学药剂的进程,本专利提出以远程通讯技术实现对设备运行状况信息的远程传送,及时发现设备运行异常、及时排除故障,提供准确实时的售后服务。
2、在农业种植领域,对灌溉用水同时提出了很高的流量和水中臭氧浓度要求,本专利提出设有灌溉水出水管路出水口和稀释水流出水管路出水口,灌溉水出水管路出水直接用于一次灌溉,混合水流出水管路快装接头出水用于在一次灌溉完成后的二次灌溉,采用未处理水一次灌溉后立即对同一土壤进行二次灌溉,二次灌溉采用处理后的高浓度臭氧水,这种方式保证了高浓度臭氧水被存留在地表以下30CM以上的土壤中,而该土层是病虫害较为集中的区域,极大的提高了臭氧水的利用率、有效作用率,提高了臭氧水杀灭土传病虫害的效果。
3、设计的水体磁化系统,对水体进行反复磁化后,水体的物理和化学性质发生了改变,水体的溶解度提升了67%,对所制取臭氧水溶液的浓度及常温下的半衰期起到关键作用。
4、采用四级水体磁化系统,进水处理系统进水管路与储水桶之间设有一级水磁化装置,进水处理系统与气液混合系统之间设有二级水磁化装置,气液混合系统气液混合泵出水管路与止回阀之间的设有三级水磁化装置,水流量控制系统稀释水流管路与稀释水流混合变径三通之间设有四级水磁化装置,采用该专利提出的技术方案,可在进行每小时20立方米的水体处理的情况下,出水水中臭氧浓度达到2.5PPM,35℃日晒情况下溶液伴随时长达到2小时。
附图说明
图1为本发明的系统原理结构框图;
图2为本发明远程数据传输系统的原理结构示意图;
图3是本发明水磁化装置剖视结构示意图;
图4是本发明空气预处理系统的结构示意图;
图5是本发明气体输出控制系统的结构框图;
图6是本发明水流量控制系统的原理结构框图;
图7是本发明储水桶与前后系统的连接结构框图;
图8是本发明气液混合系统的原理结构框图。
图9是本发明冷却系统的结构框图。
图3中标注:1进水接头,2管体,21内管,22不锈钢管,23磁瓦,3出水接头。
图6中标注:4进水管道,5第一变径三通,6一级分流管道,7第二变径三通,8第一控制阀,9第一出水接口,10二级分流管道,11一级水磁化装置,12第三变径三通,13第四变径三通,14取样桶,15水质探测器,16取样水泵,17第五变径三通,18第二控制阀,19第二出水接口。
具体实施方式
如图1所示的一种臭氧水溶液制取装置,包括控制系统以及通过控制系统控制的空气预处理系统、臭氧发生系统、气液混合系统、水处理系统、气体输出控制系统、水体磁化系统、远程数据传输系统和冷却系统,所述的空气预处理系统、臭氧发生系统、气体输出控制系统、气液混合系统通过管路依次相连,所述的水处理系统包括水流量控制系统和储水桶,所述的储水桶上设有水位探测器,所述的水流量控制系统通过进水设备和管路与储水桶连接,所述的储水桶通过管路与气液混合系统连接,所述的气液混合系统的出水口还与水流量控制系统连接;所述的水体磁化系统包括一级水磁化装置、二级水磁化装置,所述的一级水磁化装置设置在水流量控制系统的管路上,所述的二级水磁化装置设置在储水桶与气液混合系统之间的管路上;所述的远程数据传输系统与控制系统电连接,用来获取并传输控制系统记录的运行数据。
对于各个系统的机构和功能,详细分析如下:
所述的一级水磁化装置、二级水磁化装置均为结构相同的水体磁化装置,如图3所示,该水体磁化装置包括管体2,所述管体2的两端分别连接进水接头1和出水接头3,通过进水接头和出水接头连接到管路上,所述的管体2包括塑料内管21,塑料内管21的外侧包覆有不锈钢管22,所述的塑料内管21和不锈钢管22之间设有磁瓦23。其中,所 述磁瓦的磁力强度为3000-8000高斯。
如图4所示,所述空气预处理系统包括空气冷干机、空气压缩机、压缩空气干燥桶、SPA分子筛制氧机、氧气流量计及连接以上设备的气体管路,将普通空气转换为富含氧气的空气。空气冷干机的入口吸入空气,空气冷干机的出气口通过气管连接空气压缩机的进气口,空气压缩机的出气口通过气管连接压缩空气干燥桶的进气口,压缩空气干燥桶的出气口通过气管连接分子筛制氧机的进气口,分子筛制氧机的出气口与氧气流量计进气口相连;所述的进气干燥桶和压缩空气干燥桶内分别放置有干燥颗粒,所述的干燥颗粒为可反复使用的变色硅胶颗粒。在装置运行时,所述氧气流量计控制氧气流量为2-10L/min(升/分钟)。
富含氧气的空气会送到臭氧发生系统,所述的臭氧发生系统包括臭氧发生器、电源、电流表和电源保护装置,臭氧发生器包括臭氧高压发生管和高压电源板,电源通过电流表接入高压电源板,电源保护装置与控制系统电连接,所述臭氧发生器的进气口与氧气流量计相连,出气口与气体输出控制装置相连。
如图5所示,气体输出控制系统包括气液混合泵进气防回水逆流装置、气液选择三通、气液混合泵进气控制电磁阀、气体输出控制电磁阀和气体输出接口,所述的气液选择三通分别连接臭氧发生系统、气液混合泵进气控制电磁阀一端和气体输出控制电磁阀一端,所述气液混合泵进气控制电磁阀的另一端连接气液混合泵进气防回水逆流装置进口,气液混合泵进气防回水逆流装置出口连接气液混合系统,所述气体输出控制电磁阀的另一端连接气体输出接口。
在使用时,可以直接使用从气体输出接口引出的臭氧气体,也可以将气体输出接口与臭氧水溶液制取装置连接,单独制取符合自己要求的臭氧水溶液。
如图8所示,气液混合系统包括气液混合泵、止回阀、气液分离罐、出水三通和出水压力调节阀,气液混合泵的出水口通过管路连接止回阀,止回阀通过管路与气液分离罐入水口相连,气液分离罐的出水口连接出水三通一端,出水三通的另一端连接出水压力调节阀,出水压力调节阀通过管路连接水流量控制系统,出水三通的第三端设有泄压电磁阀。 其中,气液混合泵可以由射流器或静态混合器来替代,出水压力调节阀控制气液分离罐出水口至出水压力调节阀门之间的压力为0.3-0.4Mpa,泄压电磁阀可以用来辅助出水压力调节阀实现压力调节,防止压力过高,同时,可以通过泄压电磁阀所在的出水三通端口连接外部管道,输出高浓度的臭氧水溶液。
如图7所示,储水桶与气液混合系统之间的管路上设有二级水磁化装置,储水桶与进水设备之间通过管路连接,此处的进水设备包括进水水泵、进水量控制电磁阀,储水桶内分别设有水位探测器,水位探测器包括低水位探测器和高水位探测器,所述的进水水泵、电磁阀、低水位探测器和高水位探测器分别与控制系统的相应控制设备通过线缆电连接。
如图6所示,所述水流量控制系统包括进水管道4、一级分流管道6、二级分流管道10、第一出水接口9、第二出水接口19、水泵16、取样桶14,进水管道4、进水设备和一级分流管道6通过第一变径三通5连通,进水管道4和第一变径三通5之间的官道上设有一级水磁化装置11,一级分流管道6、二级分流管道10和第一出水接口9通过第二变径三通7连通,第一出水接口9和第二变径三通7之间的管道上设有第一控制阀8,二级分流管道10通过管路连接第三变径三通12的一端,第三变径三通12的另一端通过管路连接第四变径三通13的一端,第三变径三通12的第三端通过管路连接第五变径三通17的一端,第四变径三通13的另一端连接气液混合系统的出水口,第四变径三通13的第三端通过管路连接取样桶14,第五变径三通17的另一端通过带水泵16的管路连接取样桶14,所述的取样桶14上设有水质探测器15,第五变径三通17的第三端通过设有第二控制阀18的管路连接第二出水接口19。
进水管路4内的普通水流经过一级水磁化装置11,成为磁性水溶液,第一出水接口9流出的是磁化灌溉水,第一控制阀8通过控制第一出水接口9的出水流量,实现对进入二级分流管路10水流量的控制;进入二级分流管路10内的水流经过第三变径三通12,与此同时,小流量的高浓度臭氧水经过第四变径三通13融入流经第三变径三通12的大流量磁化水中,充分混合稀释后形成一定浓度的高富氧磁性水,流经第五变径三通17,最后通过第二出水接口19流出。
设有水质探测器15的取样桶14,通过带水泵16的管路连接第五变径三通17,从而实现对装置输出水溶液的氧化还原电位的抽样检测,需要注意的是,第一控制阀8通过控制第一出水接口9的出水流量,实现对进入二级分流管路10水流量的控制;混合的比例以控制系统采集的数据为准,第一出水接口9出水用于直接一次灌溉,第二出水接口19出水用于在一次灌溉完成后的二次灌溉。
气液混合系统生成的臭氧水溶液或高富氧水溶液经过氧化还原电位的抽样检测后,通过所述人机交互面板ORP氧化还原电位显示仪表显示数据,对照该应用所对应的氧化还原电位标准值,人工或自动控制操作调整第一控制阀8和第二控制阀18的开度,形成适应作物生长要求的臭氧水溶液或高富氧磁性水溶液,最后从第二出水接口19流出。
如图9所示,所述的冷却系统包括热交换散热器、冷却液加入装置、冷却液液位显示装置、冷却水流量探测器、冷却水泵,所述的热交换散热器设置在储水桶内并外接一条出水管道和一条进水管道,出水管道、冷却液液位显示装置和冷却水流量探测器通过一个三通连通,所述的冷却液液位显示装置还与冷却液加入装置的出口连接,所述的冷却水流量探测器通过管道连接冷却水泵进水端,冷却水泵出水端通过管路与臭氧发生器内的冷却管道进水口连通,臭氧发生器内的冷却管道出水口与热交换散热器进水管道连接。
冷却管道位于臭氧发生器内,为蛇形、环形等符合散热要求的管道形状;冷却水泵及其连接管路内通过冷却液加入装置装入冷却液,并保其在流动过程中始终处于密闭,不外泄;热交换散热器安装在储水桶内,冷却液与桶内水体实现快速热交换。
为了更好的控制上述的各个系统,所述控制系统包括人机交互面板、制取过程电气控制板及连接制取过程电气控制板与其他系统设备的线缆。
制取过程电气控制板包括用于启闭进水设备的进水控制设备及线缆、储水桶水位监测设备及线缆、用于启闭空气预处理系统和臭氧发生系统的气体控制设备及线缆、用于启闭气液混合泵的气液混合泵控制保护设备及线缆,用于启闭冷却水泵的冷却水泵控制保护设备及线缆,用于连接冷却水流量探测器,监测冷却水流,保护臭氧发生系统的冷却水流监控设备及线缆,用于关停机自动控制泄压设备的泄压电磁阀及线缆、用于控制所述的水流 量控制系统的出水控制设备及线缆,用于控制各系统分时启动的分时启动设备及线缆,用于控制气体输出控制系统电磁阀启闭的气体输出控制设备及线缆。
启闭进水设备的进水控制设备与进水水泵、进水控制电磁阀通过线缆电连接;所述储水桶水位监测设备与高水位和低水位探测器通过线缆电连接,储水桶水位监测设备与冷却水流监控设备通过线缆电连接,气体控制设备与空气冷干机、空气压缩机、SPA分了筛制氧机和臭氧发生器通过线缆电连接;气液混合泵控制保护设备与气液混合泵通过线缆电连接,冷却水泵控制保护设备与冷却水泵通过线缆电连接,冷却水流监控设备与冷却水流量探测器通过线缆电连接,冷却水流监控设备与气体控制设备、气液混合泵控制保护设备、冷却水泵控制保护设备、泄压电磁阀通过线缆电连接,泄压电磁阀与自动控制泄压设备通过线缆电连接、出水控制设备与所述的水流量控制系统水质探测器、水样提取水泵通过线缆电连接、分时启动设备与以上控制设备通过线缆电连接,所述气体输出控制设备通过线缆与控制气体输出控制系统气液混合泵进气控制电磁阀连接,气体输出控制设备通过线缆与气体输出控制电磁阀连接。
制取过程电气控制板控制设备,包括直流线圈交流接触器、直流中间继电器、直流24V开关电源、时间继电器;所述制取过程电气控制板通过时间继电器控制各系统交流接触器实现分时启动,以减少设备启动电流对供电系统的要求。
人机交互面板包括低水位指示灯、高水位指示灯、系统电源指示灯、系统启动按键、系统运行按键、水质显示仪表、制取溶液类型选择按键、制取气液选择类型按键,制取过程电气控制板通过线缆与人机交互面板制取溶液选择按键连接,制取溶液类型选择按键处于按下状态,所述制取过程电气控制板通过连接其上的线缆控制所述气体控制设备,启动所述臭氧发生系统臭氧发生器,制取臭氧气体,并最终形成臭氧水溶液;制取溶液类型选择按键处于按起状态,制取过程电气控制板通过连接其上的线缆控制所述气体控制设备,关闭所述臭氧发生系统臭氧发生器,制取高浓度氧气气体,并最终形成高含氧磁化水溶液。
为了满足设备远程接入全程质量追溯系统对设备远程通讯技术设计方案的要求,如图2所示,所述的远程数据传输系统包括定位数据获取设备、无线通讯收发设备和通讯控制 器,所述的定位数据获取设备和无线通讯收发设备分别通过线缆与通讯控制器连接,所述的通讯控制器通过线缆与控制系统连接。
在实际使用时,定位数据获取设备为卫星地理位置定位接收器、ID卡读取器、无线短距离位置识别收发器中的一种,用以获取设备运行的准确地理位置;通讯控制器发送数据指令给所述无线通讯收发设备,无线通讯收发设备将该指令通过无线通讯网络发送至远程控制中心接收器,无线通讯网络为现有的3G及短信等无线数据传输网络;通讯控制器通过线缆与定位数据获取设备、无线通讯收发设备、安装在人机交互面板上的水质显示仪表数据输出端口及其他相关系统设备连接,所述通讯控制器在每次设备运行过程中将设备启动时间、运行时间、制取水出水ORP氧化还原电位数值、设备运行位置等信息,通过所述无线通讯收发设备发送至远程控制中心接收器;通讯控制器在每次设备运行过程中通过所述无线通讯收发设备接收远程控制中心发送器发送的控制指令实现远程控制现场设备。
在本专利方案的实际调试和运行过程中发现了最优操作方案:
1、本专利申请方经过长期试验,对水流速对磁化水处理条件下水中O3含量和O2含量结果的影响得出结论:调节水的流速为0.1m./s、0.3m/s、0.5m/s、0.6m/s、0.8m/s、1.0m/s,测定臭氧及氧气含量的变化,结果显示,在相同磁化条件下,流速在0.5m/s磁化水中臭氧和氧气溶解含量达到最大。
2、本专利申请方经过长期试验,对切割磁场次数对磁化水处理条件下水中O3含量和O2含量结果的影响得出结论:在相同磁化条件下,我们选定流速为0.5m/s为最佳流速,在此流速条件下,调节水反复通过磁场的次数,分别为1次、2次、3次、4次、5次、7次、9次,测量电导率、pH、O3含量和O2含量的变化,电导率、pH、O3含量和O2含量开始随通过磁场的次数增加而增加,最后不再增加,而在某值附近波动后下降,然后再次上升反复以上波动;磁化后臭氧含量有很大幅度的升高,磁化3次、4次、5次时O3含量和O2含量达到最大值,磁化3次、5次、7次时常温情况下溶液中O3半衰期和O2半衰期达到最大值,磁化5次时O3含量和O2含量减少,磁化9次O3含量和O2含量接近未处理水。
3、本专利申请方经过长期试验,对含有高浓度O3和O2磁化水溶解进入大流量水中处理条件下的水中O3含量和O2含量结果的影响得出结论:在相同磁化条件下,我们选定流速为0.5m/s为最佳流速,在此流速条件下,调节水反复通过磁场3次,水中O3含量和O2含量达到最大值,调节水分别溶解进入未处理水、经过磁化处理的磁化水,得到的结果是,溶解进入磁化处理的磁化水后,其水中O3含量和O2含量分别是溶解进入为经磁化处理的水中O3含量和O2含量的237%和183%,常温情况下溶液中O3半衰期和O2半衰期延长532%和261%。
在实际使用时,获得了良好的效果,具体案例如下:
2014年7月,山东省农业科学院植保研究所采用该专利技术方案,针对韭蛆3龄幼虫和蛹进行灭活试验,平均死亡率达到97%,针对根结线虫进行灭活试验,平均死亡率达到93%,均达到并超过同类农药产品的杀灭效果。
2014年8月,山东省农业科学院农产品研究所采用该专利技术方案,针对葡萄霜霉菌进行防治试验,有效防治率达到75.80%,达到并超过同类农药产品的杀灭效果。
2014年8月,山东省农业科学院农产品研究所山东省农业科学院精深加工技术重点实验室采用该专利技术方案,针对葡萄常温保鲜效果进行测定试验,失重率降低了14.39%,落果率降低了68.07%,腐烂率降低了73.27%。
除本发明所述的结构外,其余均为现有技术。
以上所述只是本发明的优选实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也被视为本发明的保护范围。

Claims (10)

  1. 一种臭氧水溶液制取装置,包括控制系统以及通过控制系统控制的空气预处理系统、臭氧发生系统、气液混合系统和水处理系统,其特征在于,还包括气体输出控制系统、水体磁化系统和远程数据传输系统,所述的空气预处理系统、臭氧发生系统、气体输出控制系统、气液混合系统通过管路依次相连,所述的水处理系统包括水流量控制系统和储水桶,所述的储水桶上设有水位探测器,所述的水流量控制系统通过进水设备和管路与储水桶连接,所述的储水桶通过管路与气液混合系统连接,所述的气液混合系统的出水口与水流量控制系统连接;所述的水体磁化系统包括一级水磁化装置、二级水磁化装置,所述的一级水磁化装置设置在水流量控制系统的管路上,所述的二级水磁化装置设置在储水桶与气液混合系统之间的管路上;所述的远程数据传输系统与控制系统电连接,用来获取并传输控制系统记录的运行数据。
  2. 根据权利要求1所述的一种臭氧水溶液制取装置,其特征在于,所述的一级水磁化装置、二级水磁化装置均为结构相同的水体磁化装置,该水体磁化装置包括管体,所述管体的两端分别连接进水接头和出水接头,所述的管体包括塑料内管,塑料内管的外侧包覆有不锈钢管,所述的塑料内管和不锈钢管之间设有磁瓦。
  3. 根据权利要求2所述的一种臭氧水溶液制取装置,其特征在于,所述磁瓦的磁力强度为3000-8000高斯之间。
  4. 根据权利要求1-3任意一项所述的一种臭氧水溶液制取装置,其特征在于,所述的气体输出控制系统包括气液混合泵进气防回水逆流装置、气液选择三通、气液混合泵进气控制电磁阀、气体输出控制电磁阀和气体输出接口,所述的气液选择三通分别连接臭氧发生系统、气液混合泵进气控制电磁阀一端和气体输出控制电磁阀一端,所述气液混合泵进气控制电磁阀的另一端连接气液混合泵进气防回水逆流装置进口,气液混合泵进气防回水逆流装置出口连接气液混合系统,所述气体输出控制电磁阀的另一端连接气体输出接口。
  5. 根据权利要求4所述的一种臭氧水溶液制取装置,其特征在于,所述的气液混合系统包括气液混合泵、止回阀、气液分离罐、出水三通和出水压力调节阀,气液混合泵的出水口通过管路连接止回阀,止回阀通过管路与气液分离罐入水口相连,气液分离罐的出水口连接出水三通一端,出水三通的另一端连接出水压力调节阀,出水压力调节阀通过管路连接水流量控制系统,出水三通的第三端设有泄压电磁阀。
  6. 根据权利要求5所述的一种臭氧水溶液制取装置,其特征在于,所述水流量控制系统包括进水管道、一级分流管道、二级分流管道、第一出水接口、第二出水接口、水泵、取样 桶,所述进水管道、进水设备和一级分流管道通过第一变径三通连通,进水管道和第一变径三通之间的官道上设有一级水磁化装置,一级分流管道、二级分流管道和第一出水接口通过第二变径三通连通,第一出水接口和第二变径三通之间的管道上设有第一控制阀,二级分流管道通过管路连接第三变径三通的一端,第三变径三通的另一端通过管路连接第四变径三通的一端,第三变径三通的第三端通过管路连接第五变径三通的一端,第四变径三通的另一端连接气液混合系统的出水口,第四变径三通的第三端通过管路连接取样桶出水端,第五变径三通的另一端通过带水泵的管路连接取样桶,所述的取样桶上设有水质探测器,第五变径三通的第三端通过设有第二控制阀的管路连接第二出水接口。
  7. 根据权利要求6所述的一种臭氧水溶液制取装置,其特征在于,所述的冷却系统包括热交换散热器、冷却液加入装置、冷却液液位显示装置、冷却水流量探测器、冷却水泵,所述的热交换散热器设置在储水桶内并外接一条出水管道和一条进水管道,出水管道、冷却液液位显示装置和冷却水流量探测器通过一个三通连通,所述的冷却液液位显示装置还与冷却液加入装置的出口连接,所述的冷却水流量探测器通过管道连接冷却水泵进水端,冷却水泵出水端通过管路与臭氧发生器内的冷却管道进水口连通,臭氧发生器内的冷却管道出水口与热交换散热器进水管道连接。
  8. 根据权利要求7所述的一种臭氧水溶液制取装置,其特征在于,所述制取控制系统包括人机交互面板、制取过程电气控制板及连接制取过程电气控制板与其他系统设备的线缆;所述人机交互面板包括ORP氧化还原电位显示仪表、制取溶液类型选择按键、气液选择类型按键,所述制取过程电气控制板包括用于控制各系统分时启动的分时启动设备及线缆,用于控制气体输出控制系统电磁阀启闭的气体输出控制设备及线缆。
  9. 根据权利要求8所述的一种臭氧水溶液制取装置,其特征在于,所述的远程数据传输系统包括定位数据获取设备、无线通讯收发设备和通讯控制器,所述的定位数据获取设备和无线通讯收发设备分别通过线缆与通讯控制器连接,所述的通讯控制器通过线缆与控制系统连接。
  10. 根据权利要求9所述的一种臭氧水溶液制取装置,其特征在于,所述定位数据获取设备为以下设备中的一种:卫星地理位置定位接收器、ID卡读取器、无线短距离位置识别收发器。
PCT/CN2015/000001 2014-11-21 2015-01-04 一种臭氧水溶液制取装置 WO2016078195A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410673479.5A CN104324627B (zh) 2014-11-21 2014-11-21 一种臭氧水溶液制取装置
CN201410673479.5 2014-11-21

Publications (1)

Publication Number Publication Date
WO2016078195A1 true WO2016078195A1 (zh) 2016-05-26

Family

ID=52399505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000001 WO2016078195A1 (zh) 2014-11-21 2015-01-04 一种臭氧水溶液制取装置

Country Status (2)

Country Link
CN (1) CN104324627B (zh)
WO (1) WO2016078195A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019040839A1 (en) * 2017-08-24 2019-02-28 Absolutaire, Inc. OZONE GENERATOR CONTROL SYSTEM
CN109966940A (zh) * 2019-04-26 2019-07-05 浙江优食环境科技有限公司 一种控制方便的臭氧水清洗设备
CN110686943A (zh) * 2019-11-01 2020-01-14 合肥鼎锐测控技术有限公司 探入式高温高粉尘窑炉取气装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104624070A (zh) * 2015-01-29 2015-05-20 于小波 气液混合系统及方法
CN104587878A (zh) * 2015-01-29 2015-05-06 于小波 一种气液混合装置
CN107081099A (zh) * 2016-02-14 2017-08-22 优尼克生技股份有限公司 包括二氧化氯气体的水溶液的制造设备及其制备方法
CN106807261A (zh) * 2016-12-23 2017-06-09 深圳市兰德玛水环境工程科技有限公司 一种制冷型气液微‑纳米泡发生系统及方法
CN107314147B (zh) * 2017-07-31 2023-08-04 湖南长翔实业有限公司 一种水气混合器用电磁阀及该水气混合器
CN107741342B (zh) * 2017-11-14 2023-12-26 河南省产品质量监督检验院 一种油品装卸自动取样装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM247588U (en) * 2003-12-10 2004-10-21 Satv Co Ltd Ozone and water mixing machine conformation
CN2654114Y (zh) * 2003-09-06 2004-11-10 唐平安 一种灭菌消毒、人体保健的洗洁装置
US7137621B1 (en) * 2005-06-03 2006-11-21 BAGLEY David System for super-oxygenating water
CN103100323A (zh) * 2013-02-05 2013-05-15 济南润土农业科技有限公司 臭氧水智能制取系统
CN203061077U (zh) * 2013-02-05 2013-07-17 济南润土农业科技有限公司 臭氧水智能制取系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1220976A (zh) * 1997-12-23 1999-06-30 于铭 磁化臭氧水的生产方法及其装置
CN1199874C (zh) * 2002-08-09 2005-05-04 王海妮 一种制取臭氧氧化水的方法及设备
CN2743336Y (zh) * 2004-06-15 2005-11-30 朱方俊 高浓度臭氧循环水设备
WO2006088210A1 (ja) * 2005-02-21 2006-08-24 Nature S Co Ltd 家畜消毒方法、家畜消毒装置、家畜又は家畜肉
CN2878368Y (zh) * 2006-03-23 2007-03-14 济南丹穗净水设备有限公司 管道直饮水净化设备
CN201220157Y (zh) * 2008-06-27 2009-04-15 张嘎 一种臭氧水浓度监测自动控制生成装置
CN201433098Y (zh) * 2009-06-09 2010-03-31 天津市福康源科技发展有限公司 新型臭氧气水机
CN202700379U (zh) * 2012-05-29 2013-01-30 南京易德高臭氧有限公司 一体化臭氧水处理机
CN203946938U (zh) * 2014-06-23 2014-11-19 袁世有 多功能臭氧净化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2654114Y (zh) * 2003-09-06 2004-11-10 唐平安 一种灭菌消毒、人体保健的洗洁装置
TWM247588U (en) * 2003-12-10 2004-10-21 Satv Co Ltd Ozone and water mixing machine conformation
US7137621B1 (en) * 2005-06-03 2006-11-21 BAGLEY David System for super-oxygenating water
CN103100323A (zh) * 2013-02-05 2013-05-15 济南润土农业科技有限公司 臭氧水智能制取系统
CN203061077U (zh) * 2013-02-05 2013-07-17 济南润土农业科技有限公司 臭氧水智能制取系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019040839A1 (en) * 2017-08-24 2019-02-28 Absolutaire, Inc. OZONE GENERATOR CONTROL SYSTEM
CN109966940A (zh) * 2019-04-26 2019-07-05 浙江优食环境科技有限公司 一种控制方便的臭氧水清洗设备
CN109966940B (zh) * 2019-04-26 2024-01-02 浙江优食环境科技有限公司 一种控制方便的臭氧水清洗设备
CN110686943A (zh) * 2019-11-01 2020-01-14 合肥鼎锐测控技术有限公司 探入式高温高粉尘窑炉取气装置

Also Published As

Publication number Publication date
CN104324627A (zh) 2015-02-04
CN104324627B (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
WO2016078195A1 (zh) 一种臭氧水溶液制取装置
CN105123072B (zh) 一种智能化移动臭氧杀菌装置
CN202603293U (zh) 农业大棚臭氧水滴灌、喷洒系统
CN104865908A (zh) 小区直饮水处理站智能监控系统
CN108310428A (zh) 一种兔舍用消毒杀菌通道
CN205613399U (zh) 一种安全型二氧化氯消毒液制备装置
CN203777357U (zh) 一种基于臭氧的环保型土壤消毒装置
CN204014664U (zh) 一种智能滴灌设备
CN206642589U (zh) 一种臭氧水制备装置
CN109699482A (zh) 一种蔬菜气雾培营养液循环系统
CN103845750B (zh) 一种基于臭氧的环保型土壤消毒装置
CN207645856U (zh) 管道直饮水紫外灭菌循环系统
CN202722342U (zh) 一种循环倒药熏蒸系统
CN207980054U (zh) 一种固定式降温消毒除臭装置
CN108829146A (zh) 开放式冷却水加药装置的控制方法及系统
CN109362638A (zh) 用于鱼类增殖放流站循环水处理设备的控制系统
CN211301320U (zh) 一种大棚病害杀菌消毒装置
CN209302321U (zh) 一种营养液智能消毒装置
CN220609873U (zh) 一种地埋式设备消杀除臭即时配比装置
CN202909149U (zh) 一种臭氧杀菌装置
CN206950374U (zh) 一种养殖场臭氧消毒气液两用喷雾设施
CN101781013A (zh) 地上泳池的臭氧消毒集合装置
KR20160029190A (ko) 원격제어가 가능한 패키지형 배관 세척 및 살균소독 장치
CN206244561U (zh) 一种铜材酸洗液处理装置
CN208321607U (zh) 一种用于土壤治理过程中的加药装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860830

Country of ref document: EP

Kind code of ref document: A1