WO2016076678A1 - Four-way refrigerant valve for refrigerator - Google Patents

Four-way refrigerant valve for refrigerator Download PDF

Info

Publication number
WO2016076678A1
WO2016076678A1 PCT/KR2015/012303 KR2015012303W WO2016076678A1 WO 2016076678 A1 WO2016076678 A1 WO 2016076678A1 KR 2015012303 W KR2015012303 W KR 2015012303W WO 2016076678 A1 WO2016076678 A1 WO 2016076678A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve body
valve
outlets
switching position
center
Prior art date
Application number
PCT/KR2015/012303
Other languages
French (fr)
Korean (ko)
Inventor
우갑택
김동연
Original Assignee
주식회사 에스 씨디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스 씨디 filed Critical 주식회사 에스 씨디
Priority claimed from KR1020150160659A external-priority patent/KR20160058063A/en
Publication of WO2016076678A1 publication Critical patent/WO2016076678A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves

Definitions

  • the present invention relates to a four-way refrigerant valve installed in the refrigerant passage of the refrigerator to control the flow of the refrigerant.
  • Prior art four-way refrigerant valves for refrigerator refrigerant control having one inlet and three outlets typically operate in a mode of opening and closing only one outlet of the three outlets. Therefore, such a four-way refrigerant valve of the prior art has a limitation in use, and from this, it is impossible to expect a differential pressure action related to energy saving.
  • Korean Patent Laid-Open Publication No. 2004-0084784 proposes a four-way refrigerant valve having an operating mode of closing both outlets using two valve bodies.
  • using two valve bodies complicates the internal structure of the valve, increases the volume and manufacturing cost of the valve, and does not achieve energy saving.
  • the present invention was devised to solve the above-mentioned problems of the prior art, and provides a four-way refrigerant valve having an improved maneuverability due to switching of several refrigerant flow paths using a single valve body and a small area occlusion portion.
  • the four-way refrigerant valve according to an exemplary embodiment of the present invention, the drive unit, the valve plate having an inlet and the first to third outlet, and sealingly coupled to the valve plate to form a chamber in which the refrigerant flows with the valve plate And a valve body disposed in the chamber and rotated by the driving part to open and close the first to third outlets.
  • the valve body includes a blocking portion for blocking at least one of the first to third outlets, and an opening for opening at least one of the first to third outlets to flow the refrigerant.
  • the centers of the first to third outlets are located in a fan shape centered on the center of rotation of the valve body and having a central angle of 300 degrees or less.
  • the center of each of the first to third outlets may be located at the circumference of a circle around the center of rotation of the valve body.
  • the centers of the first to third outlets may be equidistantly spaced from the center of rotation of the valve body.
  • the blocking portion has a blocking surface for closing the first to third outlets.
  • the closure surface has a fan shape centered at least on the center of rotation of the valve body.
  • the center of rotation of the valve body is located in the closure portion, the closure portion and the opening is formed to be circular in the valve body.
  • the closure portion has a second edge extending between an arcuate first edge and both ends of the first edge, the second edge may have a linear or corrugated shape.
  • the drive unit rotates the valve body in the forward and reverse directions such that the valve body is positioned in the first switching position, the second switching position, the third switching position and the fourth switching position.
  • the first switching position all of the first to third outlets are blocked by the blocking portion.
  • the opening is located in any one of the first to third outlets and the other two are occluded by the occlusion.
  • the closure portion includes a recess groove extending from the outer periphery of the closure portion toward the rotation center of the valve body in the radial direction of the rotation center of the valve body.
  • the concave groove is formed in the closure portion so as to be located in any one of the first to third outlets.
  • the opening portion includes a first opening portion located opposite the closure portion in the valve body and a second opening portion positioned in the concave groove.
  • the occlusion portion comprises a first occlusion portion and a second occlusion portion separated by the concave groove.
  • the first closure portion has a fan shape centered at least on the center of rotation of the valve body and has a central angle of 90 degrees to 180 degrees
  • the second closure portion is centered on at least the center of rotation of the valve body and has a center angle. It has a fan shape of 90 degrees or less.
  • the valve body has a first switching position, a second switching position, a third switching position, a fourth switching position, a first intermediate switching position between the first and second switching positions
  • the second And the drive unit rotates the valve body in the forward and reverse directions so as to be located at the second intermediate switching position between the third switching position and the third intermediate switching position between the third and fourth switching positions.
  • the first switching position all of the first to third outlets are blocked by the blocking portion.
  • the first opening is located at any one of the first to third outlets and the other two are occluded by the occlusion.
  • the first opening is located at any one of the first to third outlets
  • the second opening is located at the other of the first to third outlets
  • the occlusion blocks the other of the first to third outlets.
  • the four-way refrigerant valve has a valve body spring biasing the valve body toward the valve plate.
  • the valve body spring has a plurality of positioning legs in resilient contact with the inner surface of the valve housing.
  • the center of each of the first to third outlets is arranged in a fan shape centering on the rotational center of the valve body and having a central angle of 300 degrees or less, thereby reducing the area of the occlusion portion and Improved maneuverability
  • the occlusion and opening of the valve body block all of the first to third outlets of the valve plate at each switching position of the valve body, or open one of them and close the rest. Therefore, the four-way refrigerant valve can supply the high temperature and high pressure refrigerant
  • the closing part of the valve body can close all of the first to third outlets at the first switching position, the pressure of the compressor can be maintained when the compressor is turned off, and the start time of the compressor when the compressor is turned on later is In other words, it can act as a differential pressure to save energy.
  • the closing portion of the valve body closes all of the first to third outlets, the differential pressure effect is maximized.
  • the closing portion of the valve body has two recessed openings of the first to third outlets, and one outlet has a concave groove for closing the outlet, thereby realizing more switching of the refrigerant passage.
  • the four-way refrigerant valve of the embodiment has one valve body, it realizes a compact and simple structure, easy switching to various modes, and reduction in manufacturing cost.
  • FIG. 1 is a perspective view of a four-way refrigerant valve according to an embodiment.
  • FIG. 2 is a perspective view of a four-way refrigerant valve according to one embodiment showing the interior of the valve housing by cutting the valve housing.
  • FIG 3 is an exploded perspective view of a four-way refrigerant valve according to one embodiment showing components located within the valve housing, the valve plate, and the valve housing.
  • valve body rotating mechanism is a lower perspective view showing the valve body rotating mechanism and the valve plate.
  • FIG. 5 is a bottom view illustrating the valve body of the four-way refrigerant valve according to one embodiment.
  • FIG. 6 is a bottom view illustrating a portion of a valve plate of a four-way refrigerant valve according to one embodiment.
  • FIG. 7 is a bottom view showing the valve body of the four-way refrigerant valve according to one embodiment in the home position.
  • FIG. 8 is a bottom view showing the valve body of the four-way refrigerant valve according to one embodiment in the first switching position.
  • FIG. 9 is a bottom view illustrating the valve body of the four-way refrigerant valve according to one embodiment in the second switching position.
  • FIG. 10 is a bottom view showing the valve body of the four-way refrigerant valve according to one embodiment in the third switching position.
  • FIG. 11 is a bottom view illustrating the valve body of the four-way refrigerant valve according to one embodiment in the fourth switching position.
  • FIG. 12 is a bottom view illustrating a valve body of a four-way refrigerant valve according to another embodiment.
  • FIG. 13 is a bottom view illustrating the valve body of the four-way refrigerant valve according to another embodiment in the home position.
  • FIG. 14 is a bottom view showing the valve body of the four-way refrigerant valve according to another embodiment in the first switching position.
  • FIG. 15 is a bottom view showing the valve body of the four-way refrigerant valve according to another embodiment in the first intermediate switching position.
  • 16 is a bottom view showing the valve body of the four-way refrigerant valve according to another embodiment in the second switching position.
  • 17 is a bottom view showing the valve body of the four-way refrigerant valve according to another embodiment in the second intermediate switching position.
  • FIG. 18 is a bottom view showing the valve body of the four-way refrigerant valve according to another embodiment in the third switching position.
  • 19 is a bottom view showing the valve body of the four-way refrigerant valve according to another embodiment in the third intermediate switching position.
  • 20 is a bottom view illustrating the valve body of the four-way refrigerant valve according to another embodiment in the fourth switching position.
  • the four-way refrigerant valve 100 includes a drive unit 110, one inlet 121, and first to third to rotate the valve body 140 in stages.
  • a valve plate 120 having outlets 122A, 122B, and 122C, a valve housing 131 sealingly coupled to the valve plate 120 to form a chamber VC, which is a space in which refrigerant flows, and a chamber VC
  • a valve body 140 disposed therein and rotated by the drive unit 110 to selectively open and close the first to third outlets 122A, 122B, and 122C.
  • the four-way refrigerant valve 100 may control three refrigerant passages through which the refrigerant flows from the inlet 121 to the first to third outlets 122A, 122B, and 122C, and selectively selects the valve body 140.
  • the three refrigerant passages are switched individually or in combination by an opening and closing operation.
  • the driving unit 110 includes a stator 111 and a rotor 112 as a power source for driving.
  • the stator 111 has a donut shape and includes a wound coil.
  • the stator 111 generates magnetic force by feeding.
  • the stator 111 is disposed inside the stator housing 132.
  • the stator housing 132 holding the stator 111 is removably coupled to the bracket 133 and positioned to surround the valve housing 131.
  • the bracket 133 is engaged with the valve plate 120 at its opening 134.
  • the bracket 133 has a pair of hook fixing hook fingers 135 facing each other, and the stator housing 132 is attached to the bracket 133 by a locking engagement between the hook finger 135 and the outer surface of the stator housing 132.
  • the stator 111 is positioned to surround the rotor 112.
  • the valve housing 131 has a cylindrical large diameter portion 131LD having a size substantially covering the valve plate 120 and a cylindrical shape extending coaxially from the large diameter portion 131LD and having a diameter smaller than the diameter of the large diameter portion 131LD.
  • the small diameter part 131SD is provided.
  • the rotor 112 includes a cylindrical body in which a bore is vertically bored, and includes a magnet. The rotor 112 is disposed inside the small diameter portion 131SD of the valve housing 131. The rotor 112 rotates in the forward and reverse directions stepwise by the magnetic force generated by the stator 111.
  • the drive part 110 is equipped with the valve body rotating mechanism for rotating the valve body 140 by receiving the rotational force which the stator 111 and the rotor 112 generate
  • the valve body rotation mechanism is coupled to the drive gear 113 and the drive gear 113 and the drive gear 113 that is detachably coupled to the lower end of the rotor 112 and rotates with the rotor 112, the drive gear.
  • the driven gear 114 which rotates by the rotation of 113 is provided.
  • the drive gear 113 includes a cylindrical body in which a bore 113BR into which the rotor rotation shaft 124 is inserted is bored in the longitudinal direction, and a plurality of fittings formed at equal intervals on the upper end of the gear tooth 113GT.
  • the groove 113FG is provided.
  • the rotor 112 has a part (not shown) that fits in the gap between the fitting groove 113FG at its lower end to effect a separable engagement between the rotor 112 and the drive gear 113.
  • the rotor 112 is supported against the valve plate 120 by the drive gear 113.
  • the driven gear 114 has a gear tooth 114GT engaged with the gear tooth 113GT of the drive gear 113 around it.
  • the driven gear 114 has a pair of stoppers 114ST which protrude more than the gear teeth 114GT at its upper periphery, and the stopper 114ST is in contact with a cylindrical portion in the middle of the drive gear 113. Do. If the stopper 114ST of the driven gear 114 comes into contact with the cylindrical portion of the drive gear 113 while the driven gear 114 is rotated by the rotation of the rotor 112, the valve body ( Gear transmission to 140 is stopped.
  • the four-way refrigerant valve 100 includes a valve body spring 150 disposed in the valve housing 131 and biasing the valve body 140 to the valve plate 120, and a rotor ( A rotor spring 160 biasing 112 toward the drive gear 113.
  • the valve body spring 150 is disposed between the stepped portion 113SP of the drive gear 113 and the upper surface of the valve plate 120.
  • the rotor spring 160 is disposed between the upper inner surface of the valve housing 131 and the upper end of the rotor 112.
  • the valve body spring 150 may be biased toward the valve plate 120 by the elastic force of the rotor spring 160.
  • the valve body spring 150 has a disc portion 151, two support legs 152 bent downward from the outer circumference of the disc portion 151, and three positions bent downwardly between the support legs 152.
  • the support leg 152 and the positioning leg 153 are located outside the drive gear 113 and the driven gear 114.
  • the support leg 152 is in contact with the upper surface of the valve plate 120.
  • the length of the positioning leg 153 is shorter than the length of the support leg 152 and has a protrusion 154 protruding outward on the outer surface.
  • the positioning leg 153 is bent relative to the disc portion 151 such that its lower end is located outside the lower end of the support leg 162, for example, the large diameter portion of the valve housing 131 at the protrusion 154.
  • valve body spring 150 is positioned in the large diameter portion 131LD by the elastic force that the positioning leg 153 exerts on the inner surface of the large diameter portion 131LD of the valve housing 131, and the positioning leg 153 ) Is not easily separated from the large diameter portion 131LD due to the elastic force applied to the large diameter portion 131LD through the protrusion 154.
  • the through hole 155 through which the rotor rotation shaft 124 of the valve plate 120 passes and the valve body rotation shaft 125 of the valve plate 120 are fitted into the disc portion 151 of the valve body spring 150.
  • the through hole 156 is formed.
  • the valve body spring 150 is provided with a spring for pressing the driven gear 114 and the valve body 140 elastically downward to closely adhere the valve body 140 to the valve plate 120.
  • the valve body spring 150 includes a leaf spring 157 extending in an arc shape from the disk portion 151.
  • the leaf spring 157 is formed in the disk portion 151 in the form of a cantilever.
  • the leaf spring 157 is slightly bent with respect to the disk portion 151 so that its tip is positioned lower than the disk portion 161.
  • the through hole 156 into which the valve body rotating shaft 125 is fitted is drilled at the tip of the leaf spring 157.
  • the valve body spring 150 also has a holder arm 158 that projects in an arc shape from the disk 151 on the outside of the leaf spring 157.
  • the holder arm 158 can be fitted into a groove 114HG formed in the circumferential direction at the top of the driven gear 114. For example, when assembling the valve housing 131 to the valve plate 120, the holder arm 158 is inserted into the groove 114HG of the driven gear 114 to separate the valve body 140 from the valve plate 120. Assembly can be performed in the state.
  • the rotor spring 160 has three elastic legs 161 that are bent upward, and a through hole 162 into which the rotor rotation shaft 124 of the valve plate 120 is fitted is drilled in the center thereof.
  • the rotor spring 160 is slightly deformed so that the resilient leg 161 applies spring force to the rotor 112 and is disposed between the rotor 112 and the top inner surface of the valve housing 131.
  • the rotor 112 is biased toward the valve body spring 150 by the rotor spring 160.
  • the valve plate 120 having the inlet 121 through which the refrigerant flows into the chamber VC and the first through third outlets 122A, 122B, and 122C through which the refrigerant flows out of the chamber VC has a disk portion 126. Include. The inlet 121 and the first to third outlets 122A, 122B, and 122C are formed through the disk portion 126.
  • the rotor shaft 124 penetrating the rotor 112 and the drive gear 113 extends upward from the center of the upper surface of the disk portion 126.
  • a circular valve seat 123 is provided on the upper surface of the disk portion 126 in surface contact with the blocking portion 142 of the valve body 140.
  • the first to third outlets 122A, 122B, and 122C are formed in the disk portion 126 through the valve seat 123. Moreover, the valve body rotating shaft 125 which penetrates the driven gear 114 from the center of the upper surface of the valve seat 123 extends upwards. The inlet 121 is located opposite the valve seat 123 with respect to the rotor rotation shaft 124.
  • an inlet pipe mount 127 for connection with an inlet pipe IP (see FIG. 1) is provided on the lower surface of the valve plate 120 corresponding to the inlet port 121. Further, in the lower surface of the valve plate 120, fitting holes 128A, 128B, and 128C corresponding to the first to third outlets 122A, 122B, and 122C are formed, respectively, and the outlet pipe OP (see Fig. 1). Is provided with an outlet pipe mount 128 for connection. The first to third outlets 122A, 122B, and 122C open at the fitting holes 128A, 128B, and 128C. Outflow pipe IP is fitted in fitting holes 128A, 128B, and 128C, respectively.
  • the valve housing 131 is sealingly coupled with the disc portion 126 of the valve plate 120. That is, the outer circumference of the large diameter portion 131LD of the valve housing 131 and the outer circumference of the disk portion 126 of the valve plate 120 are joined by welding, so that the valve housing 131 and the valve plate 120 are joined.
  • a chamber VC through which the refrigerant flows is formed.
  • the small diameter portion 131SD of the valve housing 131 is inserted into the cylindrical space in the stator 111.
  • the valve body 140 is coupled with the driven gear 114. Therefore, by the rotation of the rotor 112 and the drive gear 113 and the driven gear 114, the valve body 140 is rotated relative to the valve plate 120 to the first to third outlets 122A, 122B, 122C) is opened and closed.
  • the valve body 140 may be integrated with the driven gear 114 or may be provided separately and coupled to the driven gear 114.
  • the valve body 140 may be rotated clockwise and counterclockwise by the forward and reverse rotation of the rotor 112.
  • the valve body 140 includes a disk portion 141, a closure portion 142, and an opening portion 143.
  • the valve body 140 may be formed by injection using a plastic material having good abrasion resistance.
  • the obstruction 142 occludes one or more or all of the first to third outlets 122A, 122B, and 122C.
  • the obstruction part 142 is formed in the pad shape which protrudes slightly downward from the disc part 141. As shown in FIG.
  • the opening 143 opens one of the first to third outlets 122A, 122B, and 122C.
  • the opening part 143 becomes a space which subtracted the space of the obstruction part 142 from the disc-shaped space which has the thickness of the height which protrudes from the disc part 141.
  • the closure portion 142 and the opening portion 143 form a circular disk shape in the valve body 140.
  • the opening portion 143 faces the blocking portion 142.
  • the obstruction 142 closes one or more of the first to third outlets 122A, 122B, and 122C
  • the remaining outlet communicates with the chamber VC through the opening 143, such that the refrigerant exits the remaining outlet. Let it flow into the sphere.
  • the through-hole 145 which penetrates the disk part 141 and the blocking part 142, and the valve body rotation shaft 125 of the valve plate 120 is fitted is formed. Therefore, the center of rotation RC of the valve body 140 becomes the center of the through hole 145 or the valve body rotating shaft 125 and is located in the closure portion 142.
  • the centers 122AC, 122BC, and 122CC of the first to third outlets 122A, 122B, and 122C are formed of the valve body 140.
  • the first to third outlets 122A, 122B, and 122C are formed in the valve plate 120 so as to be located in the sector FS centered on the rotation center RC of the valve.
  • the center angle CA1 of the sector FS may be, for example, 300 degrees or less, preferably 180 degrees or less. In this embodiment, as shown in Fig. 6, the center angle of the fan FS is about 180 degrees.
  • the centers 122AC, 122BC, and 122CC of the first to third outlets 122A, 122B, and 122C have a rotational center RC of the valve body 140 rather than the outer periphery of the disc portion 141 of the valve body 140. Disposed close to).
  • the centers 122AC, 122BC, and 122CC of the first to third outlets 122A, 122B, and 122C are formed in the valve body 140 more than the centers of the fitting holes 128A, 128B, and 128C of the outlet pipe mount 128. It is disposed close to the center of rotation RC.
  • the centers 122AC, 122BC, 122CC of the outlets 122A, 122B, 122C and the centers of the fitting holes 128A, 128B, 128C are not concentric.
  • the centers 122AC, 122BC, and 122CC of the first to third outlets 122A, 122B, and 122C are formed around the circumference of one virtual circle IC centered on the center of rotation RC of the valve body 140. Can be deployed.
  • the centers 122AC, 122BC, and 122CC of the first to third outlets 122A, 122B, and 122C may be spaced apart from each other at an equilibrium with respect to the center of rotation RC of the valve body 140.
  • the centers 122AC, 122BC, 122CC of the first to third outlets 122A, 122B, and 122C are spaced at an angle of 90 degrees with respect to the center of rotation RC of the valve body 140, for example. . That is, the center angle with respect to the center of rotation RC between any one of the centers of the first to third outlets 122A, 122B, and 122C and the other is half of the center angle CA1 of the fan shape FS described above.
  • the blocking portion 142 blocking the first to third outlets 122A, 122B, and 122C protrudes from the lower surface of the disk portion 141 to a substantially uniform thickness.
  • This occlusion surface 142S is formed, and the occlusion surface 141S is in surface contact with the valve seat 123.
  • the occlusion surface 142S of the occlusion portion 142 is at least about a rotational center RC of the valve body 140 and has a central shape of, for example, 300 degrees or less, Preferably, it may have a shape that can cover all of the first to third outlets 122A, 122B, and 122C.
  • the closed surface 142S of the closed portion 142 has a shape slightly larger than the semicircle when the valve body 140 is viewed from below.
  • the obstruction 142 has a corrugated second edge 142WE extending between an arcuate first edge 142CE and both ends of the first edge 142CE.
  • the second edge 142WE may have a linear shape.
  • the arc 142CE of circular arc shape corresponds to the circular arc of the fan shape FS centering on the rotation center RC of the valve body 140 mentioned above. Due to the second edge 142WE of the waveform, the obstruction 142 has a pair of recesses 142CP at the second edge 142WE.
  • the recess 142CP is located closer to the center of rotation RC of the valve body 140 than the edge of the valve body 140. When the valve body 140 rotates, the recess 142CP may be positioned adjacent to the first to third outlets 122A, 122B, and 122C.
  • the opening 143 is formed with a protrusion 144 that protrudes less than the closing surface 142S, and the protrusion 144 is for engagement with the driven gear 114.
  • the valve body 140 rotates relative to the valve plate 120, so that the closing portion 142 and the opening portion 143 of the valve body 140 are first to first.
  • the third outlets 122A, 122B, and 122C are selectively opened and closed.
  • the rotation of the valve body 140 is performed by the rotation of the rotor 112, the drive gear 113, and the driven gear 114 which rotate by the magnetic force of the stator 111.
  • Pulse power is applied to the stator 111.
  • the following pps is an abbreviation of Pulse Per Second, which means the number of pulses per second, and the pulse refers to a short flow of electricity.
  • Power in the form of a pulse is applied to the stator 111 so that the rotor 112 rotates intermittently, so that the driven gear 114 meshing with the driving gear 113 that rotates together with the rotor 112 also stator. It rotates intermittently in accordance with the number of pulses per second of the power of the pulse form applied to the (111).
  • the four-way refrigerant valve 100 of one embodiment is relative to the valve plate 120 of the valve body 140 (clockwise (CW) and counterclockwise (CCW) around the center of rotation (RC)) ), The flow path of the refrigerant passing through the four-way refrigerant valve 100 is switched.
  • the valve body 140 of the four-way refrigerant valve 100 of one embodiment performs a switching operation between the first to fourth switching positions to switch the flow path of the refrigerant.
  • the 1st switching position is the position of the valve body 140 shown in FIG. 8, In the 1st switching position, the blocking part 142 of the valve body 140 is the 1st outlet 122A of the valve plate 120, Both the second outlet 122B and the third outlet 122C are closed. Therefore, in the first switching position, the refrigerant does not flow from the outlet 121 to the first to third outlets 122A, 122B, and 122C.
  • the 2nd switching position is the position of the valve body 140 shown in FIG. 9, and the valve body 140 is rotated counterclockwise from the said 1st switching position.
  • the first outlet 122A communicates with the inlet 121 of the valve plate 120 by the opening 143 of the valve body 140, and the second outlet 122B and the third outlet 122C is blocked by the blocking portion 142. Therefore, in the second switching position, the refrigerant flows from the inlet 121 to the first outlet 122A.
  • the third switching position is the position of the valve body 140 shown in FIG. 10, and the valve body 140 is further rotated counterclockwise from the second switching position.
  • the second outlet 122B communicates with the inlet 121 by the opening 143 of the valve body 140, and the first outlet 122A and the third outlet 122C are closed. It is blocked by the part 142.
  • the fourth switching position is the position of the valve body 140 shown in FIG. 11, and the valve body 140 is rotated counterclockwise from the third switching position.
  • the third outlet 122C is in communication with the inlet 121 by the opening 143, and the first outlet 122A and the second outlet 122B are closed by the obstruction 142. do. Therefore, in the fourth switching position, the refrigerant flows from the inlet 121 to the third outlet 122C.
  • the stator 111 is not supplied with power, i.e., 0 pps, and the valve body 140 is in the home position.
  • 4pps of electric power is supplied to the stator 111, and the valve body 140 is slightly rotated counterclockwise (CCW).
  • the rotor 112 is slightly rotated by supplying 4pps of power to the stator 111 to prevent noise generated between the drive gear 113 and the driven gear 114.
  • the valve body 140 shown in FIG. 7 and FIG.
  • the first to third outlets 122A, 122B, and 122C are closed by the blocking portion 142 of the valve body 140, and the refrigerant is It may not flow from the inlet 121 to the first to third outlets 122A, 122B, and 122C. Therefore, the four-way refrigerant valve 100 performs the differential pressure action.
  • the stator 111 is supplied with 64pps of electric power, and the valve body 140 has an angle with respect to the rotational center RC of the neighboring outlet in the counterclockwise direction CCW (for example, this embodiment). In the example by 90 degrees) and located at the second switching position from the first switching position. Then, the second outlet 122B and the third outlet 122C are closed by the blocking portion 142, and the opening 143 of the valve body 140 is positioned at the first outlet 122A, so that the inlet ( The refrigerant introduced into the chamber VC through 121 is discharged to the first outlet 122A.
  • the power of 124pps is supplied to the stator 111 so that the valve body 140 rotates by an angle with respect to the center of rotation RC of the neighboring outlet in the counterclockwise direction CCW. It is located in said 3rd switching position from a 2 switching position. Then, the first outlet 122A and the third outlet 122C are closed by the blocking portion 142, and the opening portion 143 of the valve body 140 is positioned at the second outlet 122B, so that the inlet opening ( The refrigerant introduced into the chamber VC through 121 is discharged to the second outlet 122B.
  • the power of 184pps is supplied to the stator 111 so that the valve body 140 rotates by an angle with respect to the center of rotation RC of the neighboring outlet in the counterclockwise direction CCW. It is located in said 4th switching position from 3 switching positions. Then, the first outlet 122A and the second outlet 122B are closed by the occlusion portion 142, and the opening 144 of the valve body 140 is positioned at the third outlet 122C, so that the inlet ( The refrigerant introduced into the chamber VC through 121 is discharged to the third outlet 122C.
  • valve body 140 In addition, electric power for rotating the valve body 140 in the clockwise direction CW is supplied to the stator 111 so that the valve body 140 may be located at any one of the first to fourth switching positions.
  • FIG. 12 illustrates a valve body of a four-way refrigerant valve according to another embodiment.
  • the valve body 240 shown in FIG. 12 is configured to have an additional opening compared with the valve body 140 of the above-described embodiment.
  • the valve body 240 of this embodiment can open one or more of the first to third outlets 122A, 122B, and 122C, and close the rest. Therefore, the valve body 240 of this embodiment can flow a refrigerant through two refrigerant passages at the same time.
  • the obstruction 242 of the valve body 240 is similar to the obstruction 142 described above, but some of the arcuate edges 142CE go deep into the center of rotation RC of the valve body 242.
  • the obstruction 242 includes a concave recess 245 recessed from the outer circumference of the obstruction 242 (that is, the first edge 142CE) toward the center of rotation RC.
  • Concave groove 245 extends in the radial direction of the center of rotation (RC).
  • the concave groove 245 is formed in the closure portion 242 so as to be located at any one of the first to third outlets 122A, 122B, and 122C when the valve body 240 rotates. Accordingly, the valve body 240 has an additional opening by the recessed groove 245 of the closure portion 242.
  • the opening portion of the valve body 240 is the first opening portion 243A positioned opposite the closure portion 242 and the second opening positioned in the recessed groove 245 of the closure portion 242.
  • the 1st opening part 243A of the valve body 240 has a shape substantially the same as the opening part 143 of the valve body 140 mentioned above.
  • the blocking part 242 of the valve body 240 is comprised by the 1st blocking part 242A and the 2nd blocking part 242B divided by the recessed groove 245.
  • the first blocking portion 242A has a fan shape centered at least on the rotational center RC of the valve body 240 and having a central angle of 90 degrees or more and 180 degrees or less.
  • the second obstruction 242B extends from the first obstruction 242A integrally with the first obstruction 242A.
  • the second closure portion 242B has a fan shape centered at least on the center of rotation RC of the valve body 240 and having a central angle of 90 degrees or less. As shown in FIG.
  • the angle CA2 positioned in the second occlusion portion 242B may be an angle smaller than 90, for example, 45 degrees, and the angle angle positioned in the first occlusion portion 242A.
  • CA3 may be an angle obtained by subtracting the angle CA2 from 180 degrees.
  • the four-way refrigerant valve of another embodiment having such a valve body 240 is a four-way refrigerant by relative rotation (clockwise and counterclockwise rotation) with respect to the valve plate 120 of the valve body 240.
  • the refrigerant passage through the valve 100 is switched.
  • the four-way refrigerant valve of another embodiment is between the first switching position, the first intermediate switching position, the second switching position, the second and third switching positions between the first and second switching positions.
  • a switching operation is performed between the third intermediate switching position and the fourth switching position between the second intermediate switching position, the third switching position, and the third and fourth switching positions.
  • the first switching position is the position of the valve body 240 illustrated in FIG. 14, which is the same as the first switching position in the above-described embodiment, and the closing portion 242 of the valve body 240 is used.
  • the first intermediate switching position is the position of the valve body 240 shown in FIG. 15, and the valve body 240 is rotated counterclockwise from the first switching position.
  • the first outlet 122A is in communication with the inlet 121 by the first opening 243A of the valve body 240
  • the third outlet 122C is the valve body 240.
  • the second switching position is the position of the valve body 240 shown in FIG. 16, and the valve body 240 is rotated counterclockwise from the first intermediate switching position.
  • the first outlet 122A is opened, and the second and third outlets 122B and 122C are closed by the obstruction 242. do.
  • the second intermediate switching position is the position of the valve body 240 shown in FIG. 17, and the valve body 240 is rotated counterclockwise from the second switching position.
  • the third switching position is the position of the valve body 240 shown in FIG. 18, and the valve body 240 is rotated counterclockwise from the second intermediate switching position.
  • the second outlet 122B is opened, and the first and third outlets 122A and 122C are closed by the occlusion portion 242. .
  • the third intermediate switching position is the position of the valve body 240 illustrated in FIG.
  • the fourth switching position of another embodiment is the position of the valve body 240 shown in FIG. 20, and the valve body 240 is rotated counterclockwise from the third intermediate switching position. In this fourth switching position, similar to the fourth switching position of the above-described embodiment, the third outlet 122C is opened, and the first and second outlets 122A and 122B are closed by the occlusion portion 242. .
  • the stator 111 is not powered, that is, at a state of 0 pps, and the valve body 240 is at a home position.
  • 4pps of electric power is supplied to the stator 111, and the valve body 240 is rotated slightly in the counterclockwise direction (CCW).
  • the first and second outlets 122A and 122B are closed by the first blocking portion 242A of the valve body 240, and the third The outlet port 122C is blocked by the second blocking portion 242B of the valve body 240. Therefore, the refrigerant does not flow from the inlet 121 to the first to third outlets 122A, 122B, and 122C, thereby performing a differential pressure action.
  • valve body 240 is half of the angle with respect to the rotational center RC of the outlet outlet adjacent in the counterclockwise direction CCW. For example, in this embodiment, by 45 degrees), it is located in the first intermediate switching position from the first switching position.
  • the second outlet 122B is closed by the first blocking portion 242A, and the first and second openings 243A and the second opening of the valve body 242 are opened at the first and third outlets 122A and 122C.
  • the portions 243B are positioned so that the refrigerant flowing into the chamber VC through the inlet 121 flows out into the first and third outlets 122A and 122C.
  • a recess 245 between the first occlusion portion 242A and the second occlusion portion 242B is positioned at the third outlet 122C.
  • the power of 64pps is supplied to the stator 111, and the valve body 240 is an angle with respect to the rotation center RC of the neighboring outlet in the counterclockwise direction CCW. It rotates by half and is located from the first intermediate switching position to the second switching position. Then, the second outlet 122B and the third outlet 122C are closed by the first blocking portion 242A, and the first opening 243A of the valve body 240 is positioned at the first outlet 122A. Thus, the refrigerant introduced through the inlet 121 is discharged to the first outlet 122A.
  • valve body 240 has an angle with respect to the rotation center RC of the neighboring outlet in the counterclockwise direction CCW. It rotates by half and is located from the second switching position to the second intermediate switching position. Then, the third outlet 122C is closed by the first blocking portion 242A, and the first opening 243A of the valve body 240 is positioned at the first and second outlets 122A and 122B, Refrigerant introduced through the inlet 121 is discharged to the first and second outlets 122A and 122B.
  • valve body 240 has the angle of the angle with respect to the center of rotation RC of the said outlet outlet in the counterclockwise direction CCW. It rotates by half and is located from the second intermediate switching position to the third switching position. Then, the first outlet 122A and the third outlet 122C are closed by the second closure portion 242B and the first closure portion 242A, respectively, and the first opening 243A of the valve body 240. Is positioned in the second outlet 122B, the refrigerant introduced through the inlet 121 flows into the second outlet 122B.
  • the power of 154pps is supplied to the stator 111, and the valve body 240 has an angle with respect to the center of rotation RC of the neighboring outlet in the counterclockwise direction CCW. It is rotated by half to position from the third switching position to the third intermediate switching position. Then, the second opening 243B of the valve body 240 is positioned at the first outlet 122A, and the first opening 243A of the valve body 240 is the second and third outlets 122B and 122C. The refrigerant flowed in through the inlet 121 is discharged to the first to third outlets 122A, 122B, and 122C. In the third intermediate switching position, the recess 245 between the first occlusion portion 242A and the second occlusion portion 242B is positioned at the first outlet 122A.
  • the power of 184pps is supplied to the stator 111, and the valve body 240 has the angle of the angle with respect to the center of rotation RC of the neighboring outlet in the counterclockwise direction CCW. It is rotated by half to position from the third intermediate switching position to the fourth switching position. Then, the first outlet 122A and the second outlet 122B are closed by the first closure portion 242A and the second closure portion 242B, respectively, and the first opening 243A of the valve body 240. Is located in the third outlet 122C, the refrigerant introduced through the inlet 121 is discharged to the third outlet 122C.
  • valve body 240 is in the first to fourth switching positions and the first to third intermediate switching positions. It may be located at either.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Multiple-Way Valves (AREA)

Abstract

The present invention provides a four-way refrigerant valve for controlling the refrigerant flow of a refrigerant. The four-way refrigerant valve comprises: a driving part; a valve plate having an inlet and first to third outlets; a valve housing which is sealedly coupled to the valve plate and defines a chamber in which a refrigerant flows along the valve plate; and a valve body which is arranged within the chamber and selectively opens and closes the first to third outlets. The valve body has: a closing part which closes at least one of the first to third outlets; and an opening part which opens at least one of the first to third outlets and allows the refrigerant to flow.

Description

냉장고용 4방향 냉매 밸브4-way refrigerant valve for refrigerator
본 발명은 냉장고의 냉매 유로에 설치되어 냉매의 유동을 제어하는 4방향 냉매 밸브에 관한 것이다.The present invention relates to a four-way refrigerant valve installed in the refrigerant passage of the refrigerator to control the flow of the refrigerant.
1개의 유입구와 3개의 유출구를 가지는 종래기술의 냉장고 냉매 제어용 4방향 냉매 밸브는 통상 3개의 유출구 중 1개의 유출구만을 개폐하는 모드로 작동한다. 따라서, 이러한 종래기술의 4방향 냉매 밸브는 사용상 한계를 가지며, 이로부터는 에너지 절약에 관련되는 차압 작용을 기대할 수 없다.Prior art four-way refrigerant valves for refrigerator refrigerant control having one inlet and three outlets typically operate in a mode of opening and closing only one outlet of the three outlets. Therefore, such a four-way refrigerant valve of the prior art has a limitation in use, and from this, it is impossible to expect a differential pressure action related to energy saving.
이러한 문제에 대처하기 위해 2방향 냉매 밸브를 냉매 유로에 추가하는 것이 당해 분야에 알려져 있다. 그러나, 2방향 냉매 밸브를 추가하는 것은, 냉매 유로의 구조를 복잡하게 하고, 제조 원가를 상승시킨다. 또한, 4방향 냉매 밸브와 2방향 냉매 밸브를 사용하므로, 에너지 절약을 달성하지 못한다.In order to cope with this problem, it is known in the art to add a two-way refrigerant valve to the refrigerant passage. However, the addition of the two-way refrigerant valve complicates the structure of the refrigerant passage and increases the manufacturing cost. In addition, since four-way refrigerant valves and two-way refrigerant valves are used, energy saving cannot be achieved.
종래기술의 4방향 냉매 밸브의 일 예로서, 대한민국 공개특허공보 제2004-0084784호는 두개의 밸브체를 사용하여 유출구 모두를 폐쇄하는 작동 모드를 갖는 4방향 냉매밸브를 제안한다. 그러나, 두개의 밸브체를 사용하는 것은, 밸브의 내부 구조를 복잡하게 하고, 밸브의 부피 및 제조 원가를 증대시키며, 에너지 절약을 달성하지 못한다.As an example of the four-way refrigerant valve of the prior art, Korean Patent Laid-Open Publication No. 2004-0084784 proposes a four-way refrigerant valve having an operating mode of closing both outlets using two valve bodies. However, using two valve bodies complicates the internal structure of the valve, increases the volume and manufacturing cost of the valve, and does not achieve energy saving.
본 발명은 전술한 종래기술의 문제를 해결하기 위하여 창안된 것으로, 하나의 밸브체를 사용하여 여러 냉매 유로를 절환하고 작은 면적의 폐색부로 인해 향상된 기동성을 갖는 4방향 냉매 밸브를 제공한다.The present invention was devised to solve the above-mentioned problems of the prior art, and provides a four-way refrigerant valve having an improved maneuverability due to switching of several refrigerant flow paths using a single valve body and a small area occlusion portion.
본 발명의 대표적 실시예에 따른 4방향 냉매 밸브는, 구동부와, 유입구 및 제1 내지 제3 유출구를 가지는 밸브 플레이트와, 상기 밸브 플레이트에 밀봉 결합되어 상기 밸브 플레이트와 함께 냉매가 유동하는 챔버를 형성하는 밸브 하우징과, 상기 챔버 내에 배치되고 상기 구동부에 의해 회전되어 상기 제1 내지 제3 유출구를 개폐하는 밸브체를 포함한다. 상기 밸브체는 상기 제1 내지 제3 유출구 중 하나 이상을 폐색하는 폐색부와 상기 제1 내지 제3 유출구 중 하나 이상을 개방하여 냉매를 유동시키는 개방부를 구비한다.The four-way refrigerant valve according to an exemplary embodiment of the present invention, the drive unit, the valve plate having an inlet and the first to third outlet, and sealingly coupled to the valve plate to form a chamber in which the refrigerant flows with the valve plate And a valve body disposed in the chamber and rotated by the driving part to open and close the first to third outlets. The valve body includes a blocking portion for blocking at least one of the first to third outlets, and an opening for opening at least one of the first to third outlets to flow the refrigerant.
일 실시예에 있어서, 상기 제1 내지 제3 유출구의 중심은 상기 밸브체의 회전중심을 중심으로 하고 중심각이 300도 이하인 부채꼴의 내에 위치한다. 또한, 상기 제1 내지 제3 유출구의 각각의 중심은 상기 밸브체의 회전중심을 중심으로 하는 원의 원주에 위치할 수 있다. 또한, 상기 제1 내지 제3 유출구의 중심은 상기 밸브체의 회전중심에 대하여 등각으로 이격될 수 있다.In one embodiment, the centers of the first to third outlets are located in a fan shape centered on the center of rotation of the valve body and having a central angle of 300 degrees or less. In addition, the center of each of the first to third outlets may be located at the circumference of a circle around the center of rotation of the valve body. In addition, the centers of the first to third outlets may be equidistantly spaced from the center of rotation of the valve body.
일 실시예에 있어서, 상기 폐색부는 상기 제1 내지 제3 유출구를 폐색하는 폐색면을 구비한다. 상기 폐색면은 적어도 상기 밸브체의 회전중심을 중심으로 하는 부채꼴 형상을 가진다.In one embodiment, the blocking portion has a blocking surface for closing the first to third outlets. The closure surface has a fan shape centered at least on the center of rotation of the valve body.
일 실시예에 있어서, 상기 밸브체의 회전중심은 상기 폐색부 내에 위치하고, 상기 폐색부와 상기 개방부는 상기 밸브체에서 원형을 이루도록 형성된다.In one embodiment, the center of rotation of the valve body is located in the closure portion, the closure portion and the opening is formed to be circular in the valve body.
일 실시예에 있어서, 상기 폐색부는 원호형의 제1 가장자리와 상기 제1 가장자리의 양단 사이에서 연장하는 제2 가장자리를 가지며, 상기 제2 가장자리는 선형 또는 파형을 가질 수 있다.In one embodiment, the closure portion has a second edge extending between an arcuate first edge and both ends of the first edge, the second edge may have a linear or corrugated shape.
일 실시예에 있어서, 상기 밸브체가 제1 절환 위치, 제2 절환 위치, 제3 절환 위치 및 제4 절환 위치에 위치하도록 상기 구동부가 상기 밸브체를 정방향 및 역방향으로 회전시킨다. 상기 제1 절환 위치에서는 상기 제1 내지 제3 유출구 모두가 상기 폐색부에 의해 폐색된다. 상기 제2, 제3 및 제4 절환 위치에서는 상기 개방부가 상기 제1 내지 제3 유출구 중 어느 하나에 위치하고 나머지 둘은 상기 폐색부에 의해 폐색된다.In one embodiment, the drive unit rotates the valve body in the forward and reverse directions such that the valve body is positioned in the first switching position, the second switching position, the third switching position and the fourth switching position. In the first switching position, all of the first to third outlets are blocked by the blocking portion. In the second, third and fourth switching positions the opening is located in any one of the first to third outlets and the other two are occluded by the occlusion.
일 실시예에 있어서, 상기 폐색부는 상기 폐색부의 외주로부터 상기 밸브체의 회전중심 쪽으로 상기 밸브체의 회전중심의 반경방향으로 연장하는 요입홈을 구비한다. 상기 요입홈은 상기 제1 내지 제3 유출구 중 어느 하나에 위치하도록 상기 폐색부에 형성된다. 상기 개방부는 상기 밸브체에서 상기 폐색부와 대향하여 위치하는 제1 개방부와 상기 요입홈에 위치하는 제2 개방부를 포함한다.In one embodiment, the closure portion includes a recess groove extending from the outer periphery of the closure portion toward the rotation center of the valve body in the radial direction of the rotation center of the valve body. The concave groove is formed in the closure portion so as to be located in any one of the first to third outlets. The opening portion includes a first opening portion located opposite the closure portion in the valve body and a second opening portion positioned in the concave groove.
이러한 실시예에 있어서, 상기 폐색부는 상기 요입홈에 의해 구분되는 제1 폐색부와 제2 폐색부로 이루어진다. 일 예로서, 상기 제1 폐색부는 적어도 상기 밸브체의 회전중심을 중심으로하고 중심각이 90도 이상 180도 이하인 부채꼴 형상을 갖고, 상기 제2 폐색부는 적어도 상기 밸브체의 회전중심을 중심으로하고 중심각이 90도 이하인 부채꼴 형상을 가진다.In this embodiment, the occlusion portion comprises a first occlusion portion and a second occlusion portion separated by the concave groove. As an example, the first closure portion has a fan shape centered at least on the center of rotation of the valve body and has a central angle of 90 degrees to 180 degrees, and the second closure portion is centered on at least the center of rotation of the valve body and has a center angle. It has a fan shape of 90 degrees or less.
또한, 이러한 실시예에 있어서, 상기 밸브체가 제1 절환 위치, 제2 절환 위치, 제3 절환 위치, 제4 절환 위치, 상기 제1 및 제2 절환 위치 사이의 제1 중간 절환 위치, 상기 제2 및 제3 절환 위치 사이의 제2 중간 절환 위치, 및 상기 제3 및 제4 절환 위치 사이의 제3 중간 절환 위치에 위치하도록, 상기 구동부가 상기 밸브체를 정방향 및 역방향으로 회전시킨다. 상기 제1 절환 위치에서는 상기 제1 내지 제3 유출구 모두가 상기 폐색부에 의해 폐색된다. 상기 제2, 제3 및 제4 절환 위치에서는 상기 제1 개방부가 상기 제1 내지 제3 유출구 중 어느 하나에 위치하고 나머지 둘은 상기 폐색부에 의해 폐색된다. 상기 제1, 제2 및 제3 중간 절환 위치에서는 상기 제1 개방부가 상기 제1 내지 제3 유출구 중 어느 하나에 위치하고, 상기 제2 개방부가 상기 제1 내지 제3 유출구 중 다른 하나에 위치하고, 상기 폐색부가 상기 제1 내지 제3 유출구 중 나머지 하나를 폐색한다.Further, in this embodiment, the valve body has a first switching position, a second switching position, a third switching position, a fourth switching position, a first intermediate switching position between the first and second switching positions, the second And the drive unit rotates the valve body in the forward and reverse directions so as to be located at the second intermediate switching position between the third switching position and the third intermediate switching position between the third and fourth switching positions. In the first switching position, all of the first to third outlets are blocked by the blocking portion. In the second, third and fourth switching positions the first opening is located at any one of the first to third outlets and the other two are occluded by the occlusion. In the first, second and third intermediate switching positions, the first opening is located at any one of the first to third outlets, the second opening is located at the other of the first to third outlets, The occlusion blocks the other of the first to third outlets.
일 실시예에 있어서, 4방향 냉매 밸브는 상기 밸브체를 상기 밸브 플레이트 쪽으로 바이어스하는 밸브체 스프링을 구비한다. 상기 밸브체 스프링은 상기 밸브 하우징의 내면에 탄력적으로 접촉하는 복수의 위치설정 다리를 구비한다.In one embodiment, the four-way refrigerant valve has a valve body spring biasing the valve body toward the valve plate. The valve body spring has a plurality of positioning legs in resilient contact with the inner surface of the valve housing.
실시예에 따른 4방향 냉매 밸브에 의하면, 제1 내지 제3 유출구의 각각의 중심은 밸브체의 회전중심을 중심으로하고 중심각이 300도 이하인 부채꼴 내에 배치되어, 폐색부의 면적을 축소시키고 밸브체의 기동성을 향상시킨다.According to the four-way refrigerant valve according to the embodiment, the center of each of the first to third outlets is arranged in a fan shape centering on the rotational center of the valve body and having a central angle of 300 degrees or less, thereby reducing the area of the occlusion portion and Improved maneuverability
밸브체의 폐색부와 개방부는 밸브체의 각 절환 위치에서 밸브 플레이트의 제1 내지 제3 유출구 모두를 폐색하거나, 그중 하나를 개방하고 나머지는 폐색한다. 따라서, 4방향 냉매 밸브는, 컴프레셔로부터의 고온 고압의 냉매를 냉장고의 각 저장실로 공급할 수 있다. 또한, 밸브체의 폐색부는 제1 절환 위치에서 제1 내지 제3 유출구 모두를 폐색할 수 있으므로, 컴프레셔의 오프시에 컴프레셔의 압력을 유지시킬 수 있으며, 차후 컴프레셔의 온 시에 컴프레셔의 기동시간을 줄여서 에너지를 절약을 위한 차압 작용을 할 수 있다. 또한, 밸브체의 폐색부가 제1 내지 제3 유출구 모두를 폐색하므로, 차압 효과를 극대화 시킨다. 또한, 밸브체의 폐색부는 제1 내지 제3 유출구 중 두개의 유출구를 개방하고 하나의 유출구는 폐색하기 위한 요입홈을 가져, 더욱 다양한 냉매 유로의 절환을 실현할 수 있다.The occlusion and opening of the valve body block all of the first to third outlets of the valve plate at each switching position of the valve body, or open one of them and close the rest. Therefore, the four-way refrigerant valve can supply the high temperature and high pressure refrigerant | coolant from a compressor to each storage chamber of a refrigerator. In addition, since the closing part of the valve body can close all of the first to third outlets at the first switching position, the pressure of the compressor can be maintained when the compressor is turned off, and the start time of the compressor when the compressor is turned on later is In other words, it can act as a differential pressure to save energy. In addition, since the closing portion of the valve body closes all of the first to third outlets, the differential pressure effect is maximized. In addition, the closing portion of the valve body has two recessed openings of the first to third outlets, and one outlet has a concave groove for closing the outlet, thereby realizing more switching of the refrigerant passage.
또한, 실시예의 4방향 냉매 밸브는 하나의 밸브체를 가지므로, 컴팩트하고 단순한 구조, 여러 모드로의 용이한 전환 및 제조원가의 절감을 실현한다.In addition, since the four-way refrigerant valve of the embodiment has one valve body, it realizes a compact and simple structure, easy switching to various modes, and reduction in manufacturing cost.
도 1은 일 실시예에 따른 4방향 냉매 밸브의 사시도이다.1 is a perspective view of a four-way refrigerant valve according to an embodiment.
도 2는 밸브 하우징을 절개하여 밸브 하우징의 내부를 도시하는 일 실시예에 따른 4방향 냉매 밸브의 사시도이다.2 is a perspective view of a four-way refrigerant valve according to one embodiment showing the interior of the valve housing by cutting the valve housing.
도 3은 밸브 하우징, 밸브 플레이트 및 밸브 하우징의 내부에 위치하는 구성요소를 도시하는 일 실시예에 따른 4방향 냉매 밸브의 분해 사시도이다.3 is an exploded perspective view of a four-way refrigerant valve according to one embodiment showing components located within the valve housing, the valve plate, and the valve housing.
도 4는 밸브체 회전 기구와 밸브 플레이트를 도시하는 하방 사시도이다.4 is a lower perspective view showing the valve body rotating mechanism and the valve plate.
도 5는 일 실시예에 따른 4방향 냉매 밸브의 밸브체를 도시하는 저면도이다.5 is a bottom view illustrating the valve body of the four-way refrigerant valve according to one embodiment.
도 6은 일 실시예에 따른 4방향 냉매 밸브의 밸브 플레이트의 일부를 도시하는 저면도이다.FIG. 6 is a bottom view illustrating a portion of a valve plate of a four-way refrigerant valve according to one embodiment. FIG.
도 7은 일 실시예에 따른 4방향 냉매 밸브의 밸브체가 원점 위치에 있는 것을 도시하는 저면도이다.7 is a bottom view showing the valve body of the four-way refrigerant valve according to one embodiment in the home position.
도 8은 일 실시예에 따른 4방향 냉매 밸브의 밸브체가 제1 절환 위치에 있는 것을 도시하는 저면도이다.8 is a bottom view showing the valve body of the four-way refrigerant valve according to one embodiment in the first switching position.
도 9는 일 실시예에 따른 4방향 냉매 밸브의 밸브체가 제2 절환 위치에 있는 것을 도시하는 저면도이다.9 is a bottom view illustrating the valve body of the four-way refrigerant valve according to one embodiment in the second switching position.
도 10은 일 실시예에 따른 4방향 냉매 밸브의 밸브체가 제3 절환 위치에 있는 것을 도시하는 저면도이다.10 is a bottom view showing the valve body of the four-way refrigerant valve according to one embodiment in the third switching position.
도 11은 일 실시예에 따른 4방향 냉매 밸브의 밸브체가 제4 절환 위치에 있는 것을 도시하는 저면도이다.FIG. 11 is a bottom view illustrating the valve body of the four-way refrigerant valve according to one embodiment in the fourth switching position. FIG.
도 12는 또 하나의 실시예에 따른 4방향 냉매 밸브의 밸브체를 도시하는 저면도이다.12 is a bottom view illustrating a valve body of a four-way refrigerant valve according to another embodiment.
도 13은 또 하나의 실시예에 따른 4방향 냉매 밸브의 밸브체가 원점 위치에 있는 것을 도시하는 저면도이다.FIG. 13 is a bottom view illustrating the valve body of the four-way refrigerant valve according to another embodiment in the home position.
도 14는 또 하나의 실시예에 따른 4방향 냉매 밸브의 밸브체가 제1 절환 위치에 있는 것을 도시하는 저면도이다.FIG. 14 is a bottom view showing the valve body of the four-way refrigerant valve according to another embodiment in the first switching position. FIG.
도 15는 또 하나의 실시예에 따른 4방향 냉매 밸브의 밸브체가 제1 중간 절환 위치에 있는 것을 도시하는 저면도이다.FIG. 15 is a bottom view showing the valve body of the four-way refrigerant valve according to another embodiment in the first intermediate switching position. FIG.
도 16은 또 하나의 실시예에 따른 4방향 냉매 밸브의 밸브체가 제2 절환 위치에 있는 것을 도시하는 저면도이다.16 is a bottom view showing the valve body of the four-way refrigerant valve according to another embodiment in the second switching position.
도 17은 또 하나의 실시예에 따른 4방향 냉매 밸브의 밸브체가 제2 중간 절환 위치에 있는 것을 도시하는 저면도이다.17 is a bottom view showing the valve body of the four-way refrigerant valve according to another embodiment in the second intermediate switching position.
도 18은 또 하나의 실시예에 따른 4방향 냉매 밸브의 밸브체가 제3 절환 위치에 있는 것을 도시하는 저면도이다.18 is a bottom view showing the valve body of the four-way refrigerant valve according to another embodiment in the third switching position.
도 19는 또 하나의 실시예에 따른 4방향 냉매 밸브의 밸브체가 제3 중간 절환 위치에 있는 것을 도시하는 저면도이다.19 is a bottom view showing the valve body of the four-way refrigerant valve according to another embodiment in the third intermediate switching position.
도 20은 또 하나의 실시예에 따른 4방향 냉매 밸브의 밸브체가 제4 절환 위치에 있는 것을 도시하는 저면도이다.20 is a bottom view illustrating the valve body of the four-way refrigerant valve according to another embodiment in the fourth switching position.
첨부하는 도면을 참조하여 4방향 냉매 밸브의 실시예를 설명한다. 첨부하는 도면에서, 동일한 참조부호는 동일하거나 대응하는 구성요소 또는 부품을 지시한다.An embodiment of a four-way refrigerant valve will be described with reference to the accompanying drawings. In the accompanying drawings, like reference numerals designate like or corresponding components or parts.
도 1 내지 도 11을 참조하면, 일 실시예의 4방향 냉매 밸브(100)는, 밸브체(140)를 단계적으로 회전시키기 위한 구동부(110)와, 1개의 유입구(121) 및 제1 내지 제3 유출구(122A, 122B, 122C)를 가지는 밸브 플레이트(120)와, 밸브 플레이트(120)에 밀봉 결합되어 냉매가 유동하는 공간인 챔버(VC)를 형성하는 밸브 하우징(131)과, 챔버(VC) 내에 배치되고 구동부(110)에 의해 회전되며 제1 내지 제3 유출구(122A, 122B, 122C)를 선택적으로 개폐하는 밸브체(140)를 포함한다. 따라서, 4방향 냉매 밸브(100)는 유입구(121)로부터 제1 내지 제3 유출구(122A, 122B, 122C)로 냉매가 유동하는 3개의 냉매 유로를 제어할 수 있으며, 밸브체(140)의 선택적 개폐 동작에 의해 상기 3개의 냉매 유로가 단독으로 또는 복합적으로 절환한다.1 to 11, the four-way refrigerant valve 100 according to an embodiment includes a drive unit 110, one inlet 121, and first to third to rotate the valve body 140 in stages. A valve plate 120 having outlets 122A, 122B, and 122C, a valve housing 131 sealingly coupled to the valve plate 120 to form a chamber VC, which is a space in which refrigerant flows, and a chamber VC And a valve body 140 disposed therein and rotated by the drive unit 110 to selectively open and close the first to third outlets 122A, 122B, and 122C. Accordingly, the four-way refrigerant valve 100 may control three refrigerant passages through which the refrigerant flows from the inlet 121 to the first to third outlets 122A, 122B, and 122C, and selectively selects the valve body 140. The three refrigerant passages are switched individually or in combination by an opening and closing operation.
도 1 내지 도 3을 참조하면, 구동부(110)는 구동을 위한 동력원으로서 스테이터(111)와 로터(112)를 구비한다. 스테이터(111)는 도넛 형상을 가지며 권선된 코일을 포함한다. 스테이터(111)는 급전에 의해 자기력을 발생시킨다. 일 실시예의 4방향 냉매 밸브(100)에 있어서, 스테이터(111)는 스테이터 하우징(132)의 내부에 배치된다. 스테이터(111)를 유지하는 스테이터 하우징(132)이 브라켓(133)에 제거가능하게 결합되어 밸브 하우징(131)을 둘러싸도록 위치한다. 브라켓(133)은 그 개구(134)에서 밸브 플레이트(120)와 결합된다. 브라켓(133)은 대향하는 한 쌍의 걸림고정용 후크 핑거(135)를 가지며, 후크 핑거(135)와 스테이터 하우징(132)의 외면 간의 걸림결합에 의해 스테이터 하우징(132)이 브라켓(133)에 결합되어, 스테이터(111)가 로터(112)를 둘러싸도록 위치한다. 밸브 하우징(131)은 대략 밸브 플레이트(120)를 덮는 크기를 가지며 원통형인 대경부(131LD)와, 대경부(131LD)로부터 동축으로 연장하고 대경부(131LD)의 직경보다 작은 직경을 가지는 원통형의 소경부(131SD)를 구비한다. 로터(112)는 보어가 수직으로 뚫린 원통체를 포함하며, 마그넷을 포함한다. 로터(112)는 밸브 하우징(131)의 소경부(131SD)의 내부에 배치된다. 로터(112)는 스테이터(111)가 발생하는 자기력에 의해 단계적으로 정방향 및 역방향으로 회전한다.1 to 3, the driving unit 110 includes a stator 111 and a rotor 112 as a power source for driving. The stator 111 has a donut shape and includes a wound coil. The stator 111 generates magnetic force by feeding. In the four-way refrigerant valve 100 of one embodiment, the stator 111 is disposed inside the stator housing 132. The stator housing 132 holding the stator 111 is removably coupled to the bracket 133 and positioned to surround the valve housing 131. The bracket 133 is engaged with the valve plate 120 at its opening 134. The bracket 133 has a pair of hook fixing hook fingers 135 facing each other, and the stator housing 132 is attached to the bracket 133 by a locking engagement between the hook finger 135 and the outer surface of the stator housing 132. In combination, the stator 111 is positioned to surround the rotor 112. The valve housing 131 has a cylindrical large diameter portion 131LD having a size substantially covering the valve plate 120 and a cylindrical shape extending coaxially from the large diameter portion 131LD and having a diameter smaller than the diameter of the large diameter portion 131LD. The small diameter part 131SD is provided. The rotor 112 includes a cylindrical body in which a bore is vertically bored, and includes a magnet. The rotor 112 is disposed inside the small diameter portion 131SD of the valve housing 131. The rotor 112 rotates in the forward and reverse directions stepwise by the magnetic force generated by the stator 111.
또한, 구동부(110)는 스테이터(111)와 로터(112)가 발생시키는 회전력을 받아 밸브체(140)를 회전시키기 위한 밸브체 회전 기구를 구비한다. 이 실시예에 있어서, 상기 밸브체 회전 기구는, 로터(112)의 하단에 분리가능하게 결합되며 로터(112)와 함께 회전하는 구동 기어(113)와, 구동 기어(113)에 치합되어 구동 기어(113)의 회전에 의해 회전하는 종동 기어(114)를 구비한다. 구동 기어(113)는 그 내부에 로터 회전축(124)이 삽입되는 보어(113BR)가 길이방향으로 뚫린 원기둥체를 포함하며, 하단에 기어치(113GT)와 상단에 등간격으로 형성된 복수의 끼워맞춤 홈(113FG)을 구비한다. 로터(112)는 그 하단에 끼워맞춤 홈(113FG) 간의 간극에 끼워져 로터(112)와 구동 기어(113) 간의 분리가능한 결합을 실행하는 부품(미도시)을 가진다. 로터(112)는 구동 기어(113)에 의해 밸브 플레이트(120)에 대하여 지지된다. 종동 기어(114)는 그 둘레에 구동 기어(113)의 기어치(113GT)와 치합하는 기어치(114GT)를 구비한다. 또한, 종동 기어(114)는 그 상단 외주에서 기어치(114GT)보다 더 돌출하는 한 쌍의 스토퍼(114ST)를 구비하며, 스토퍼(114ST)는 구동 기어(113)의 중간의 원통부에 접촉가능하다. 로터(112)의 회전에 의해 종동 기어(114)가 회전하는 도중, 종동 기어(114)의 스토퍼(114ST)가 구동 기어(113)의 상기 원통부에 접촉하면, 로터(112)로부터 밸브체(140)까지의 기어 전동이 정지된다.Moreover, the drive part 110 is equipped with the valve body rotating mechanism for rotating the valve body 140 by receiving the rotational force which the stator 111 and the rotor 112 generate | occur | produce. In this embodiment, the valve body rotation mechanism is coupled to the drive gear 113 and the drive gear 113 and the drive gear 113 that is detachably coupled to the lower end of the rotor 112 and rotates with the rotor 112, the drive gear. The driven gear 114 which rotates by the rotation of 113 is provided. The drive gear 113 includes a cylindrical body in which a bore 113BR into which the rotor rotation shaft 124 is inserted is bored in the longitudinal direction, and a plurality of fittings formed at equal intervals on the upper end of the gear tooth 113GT. The groove 113FG is provided. The rotor 112 has a part (not shown) that fits in the gap between the fitting groove 113FG at its lower end to effect a separable engagement between the rotor 112 and the drive gear 113. The rotor 112 is supported against the valve plate 120 by the drive gear 113. The driven gear 114 has a gear tooth 114GT engaged with the gear tooth 113GT of the drive gear 113 around it. In addition, the driven gear 114 has a pair of stoppers 114ST which protrude more than the gear teeth 114GT at its upper periphery, and the stopper 114ST is in contact with a cylindrical portion in the middle of the drive gear 113. Do. If the stopper 114ST of the driven gear 114 comes into contact with the cylindrical portion of the drive gear 113 while the driven gear 114 is rotated by the rotation of the rotor 112, the valve body ( Gear transmission to 140 is stopped.
도 2 및 도 3을 참조하면, 4방향 냉매 밸브(100)는, 밸브 하우징(131) 내에 배치되며 밸브체(140)를 밸브 플레이트(120)로 바이어스하는 밸브체 스프링(150)과, 로터(112)를 구동 기어(113) 쪽으로 바이어스 하는 로터 스프링(160)을 구비한다. 밸브체 스프링(150)은 구동 기어(113)의 단차부(113SP)와 밸브 플레이트(120)의 상면 사이에 배치된다. 로터 스프링(160)은 밸브 하우징(131)의 상단 내면과 로터(112)의 상단 사이에 배치된다. 로터 스프링(160)의 탄성력에 의해 밸브체 스프링(150)이 밸브 플레이트(120) 쪽으로 바이어스될 수 있다.2 and 3, the four-way refrigerant valve 100 includes a valve body spring 150 disposed in the valve housing 131 and biasing the valve body 140 to the valve plate 120, and a rotor ( A rotor spring 160 biasing 112 toward the drive gear 113. The valve body spring 150 is disposed between the stepped portion 113SP of the drive gear 113 and the upper surface of the valve plate 120. The rotor spring 160 is disposed between the upper inner surface of the valve housing 131 and the upper end of the rotor 112. The valve body spring 150 may be biased toward the valve plate 120 by the elastic force of the rotor spring 160.
밸브체 스프링(150)은 디스크부(151)와, 디스크부(151)의 외주로부터 하방으로 절곡된 2개의 지지 다리(152)와, 지지 다리(152) 사이에 위치하고 하방으로 절곡된 3개의 위치설정 다리(153)를 가진다. 지지 다리(152)와 위치설정 다리(153)는 구동 기어(113)와 종동 기어(114)의 외측에 위치한다. 지지 다리(152)는 밸브 플레이트(120)의 상면과 접촉한다. 위치설정 다리(153)의 길이는 지지 다리(152)의 길이보다 짧으며, 외면에 외측으로 돌출하는 돌기(154)를 가진다. 위치설정 다리(153)는 그 하단이 지지 다리(162)의 하단보다 더 외측에 위치하도록 디스크부(151)에 대해 절곡되어 있으며, 예컨대, 돌기(154)에서 밸브 하우징(131)의 대경부(131LD)의 내면과 탄력적으로 접촉한다. 따라서, 밸브체 스프링(150)은 위치설정 다리(153)가 밸브 하우징(131)의 대경부(131LD)의 내면에 가하는 탄성력에 의해 대경부(131LD) 내에서 위치설정되며, 위치설정 다리(153)가 돌기(154)를 통해 대경부(131LD)에 가하는 탄성력으로 인해 대경부(131LD)로부터 쉽게 분리되지 않는다.The valve body spring 150 has a disc portion 151, two support legs 152 bent downward from the outer circumference of the disc portion 151, and three positions bent downwardly between the support legs 152. Has a set leg 153. The support leg 152 and the positioning leg 153 are located outside the drive gear 113 and the driven gear 114. The support leg 152 is in contact with the upper surface of the valve plate 120. The length of the positioning leg 153 is shorter than the length of the support leg 152 and has a protrusion 154 protruding outward on the outer surface. The positioning leg 153 is bent relative to the disc portion 151 such that its lower end is located outside the lower end of the support leg 162, for example, the large diameter portion of the valve housing 131 at the protrusion 154. 131LD) elastic contact with the inner surface. Therefore, the valve body spring 150 is positioned in the large diameter portion 131LD by the elastic force that the positioning leg 153 exerts on the inner surface of the large diameter portion 131LD of the valve housing 131, and the positioning leg 153 ) Is not easily separated from the large diameter portion 131LD due to the elastic force applied to the large diameter portion 131LD through the protrusion 154.
또한, 밸브체 스프링(150)의 디스크부(151)에는 밸브 플레이트(120)의 로터 회전축(124)이 통과하는 관통공(155)과 밸브 플레이트(120)의 밸브체 회전축(125)이 끼워지는 관통공(156)이 형성되어 있다. 밸브체 스프링(150)은 종동 기어(114) 및 밸브체(140)를 하방으로 탄력적으로 눌러 밸브체(140)를 밸브 플레이트(120)에 밀착시키기 위한 스프링을 구비한다. 이 실시예에 있어서, 상기 스프링으로서, 밸브체 스프링(150)은 디스크부(151)로부터 원호 형상으로 연장하는 리프 스프링(157)을 구비한다. 리프 스프링(157)은 디스크부(151)에 캔틸레버 형태로 형성되어 있다. 리프 스프링(157)은 그 선단이 디스크부(161)보다 낮게 위치하도록 디스크부(151)에 대하여 약간 절곡되어 있다. 밸브체 회전축(125)이 끼워지는 관통공(156)은 리프 스프링(157)의 선단에 뚫려 있다.In addition, the through hole 155 through which the rotor rotation shaft 124 of the valve plate 120 passes and the valve body rotation shaft 125 of the valve plate 120 are fitted into the disc portion 151 of the valve body spring 150. The through hole 156 is formed. The valve body spring 150 is provided with a spring for pressing the driven gear 114 and the valve body 140 elastically downward to closely adhere the valve body 140 to the valve plate 120. In this embodiment, as the spring, the valve body spring 150 includes a leaf spring 157 extending in an arc shape from the disk portion 151. The leaf spring 157 is formed in the disk portion 151 in the form of a cantilever. The leaf spring 157 is slightly bent with respect to the disk portion 151 so that its tip is positioned lower than the disk portion 161. The through hole 156 into which the valve body rotating shaft 125 is fitted is drilled at the tip of the leaf spring 157.
또한, 밸브체 스프링(150)은 리프 스프링(157)의 외측에서 디스크(151)로부터 원호 형상으로 돌출하는 홀더 아암(158)을 구비한다. 홀더 아암(158)은 종동 기어(114)의 상단에 둘레방향으로 형성되어 있는 홈(114HG)에 끼워질 수 있다. 예컨대, 밸브 하우징(131)을 밸브 플레이트(120)에 조립할 때, 홀더 아암(158)을 종동 기어(114)의 홈(114HG)에 끼워서, 밸브체(140)를 밸브 플레이트(120)로부터 분리시킨 상태로 조립 작업을 수행할 수 있다.The valve body spring 150 also has a holder arm 158 that projects in an arc shape from the disk 151 on the outside of the leaf spring 157. The holder arm 158 can be fitted into a groove 114HG formed in the circumferential direction at the top of the driven gear 114. For example, when assembling the valve housing 131 to the valve plate 120, the holder arm 158 is inserted into the groove 114HG of the driven gear 114 to separate the valve body 140 from the valve plate 120. Assembly can be performed in the state.
로터 스프링(160)은 상방으로 절곡된 3개의 탄성 다리(161)를 가지며, 그 중앙에는 밸브 플레이트(120)의 로터 회전축(124)이 끼워지는 관통공(162)이 뚫어져 있다. 로터 스프링(160)은 탄성 다리(161)가 스프링 힘을 로터(112)에 인가하도록 약간 변형되어, 로터(112)와 밸브 하우징(131)의 상단 내면 사이에 배치된다. 로터 스프링(160에 의해 로터(112)는 밸브체 스프링(150) 쪽으로 바이어스된다.The rotor spring 160 has three elastic legs 161 that are bent upward, and a through hole 162 into which the rotor rotation shaft 124 of the valve plate 120 is fitted is drilled in the center thereof. The rotor spring 160 is slightly deformed so that the resilient leg 161 applies spring force to the rotor 112 and is disposed between the rotor 112 and the top inner surface of the valve housing 131. The rotor 112 is biased toward the valve body spring 150 by the rotor spring 160.
냉매가 챔버(VC)로 유입하는 유입구(121)와 챔버(VC)로부터 냉매가 유출하는 제1 내지 제3 유출구(122A, 122B, 122C)를 가지는 밸브 플레이트(120)는 디스크부(126)를 포함한다. 유입구(121)와 제1 내지 제3 유출구(122A, 122B, 122C)는 디스크부(126)를 관통해 형성되어 있다. 디스크부(126)의 상면의 중앙으로부터 로터(112)와 구동 기어(113)를 관통하는 로터 회전축(124)이 상방으로 연장한다. 또한, 디스크부(126)의 상면에는 밸브체(140)의 폐색부(142)와 면접촉하는 원형의 밸브 시트(123)가 마련되어 있다. 제1 내지 제3 유출구(122A, 122B, 122C)는 밸브 시트(123)를 관통해 디스크부(126)에 형성되어 있다. 또한, 밸브 시트(123)의 상면의 중앙으로부터 종동 기어(114)를 관통하는 밸브체 회전축(125)이 상방으로 연장한다. 유입구(121)는 로터 회전축(124)을 기준으로 밸브 시트(123)의 반대쪽에 위치한다.The valve plate 120 having the inlet 121 through which the refrigerant flows into the chamber VC and the first through third outlets 122A, 122B, and 122C through which the refrigerant flows out of the chamber VC has a disk portion 126. Include. The inlet 121 and the first to third outlets 122A, 122B, and 122C are formed through the disk portion 126. The rotor shaft 124 penetrating the rotor 112 and the drive gear 113 extends upward from the center of the upper surface of the disk portion 126. In addition, a circular valve seat 123 is provided on the upper surface of the disk portion 126 in surface contact with the blocking portion 142 of the valve body 140. The first to third outlets 122A, 122B, and 122C are formed in the disk portion 126 through the valve seat 123. Moreover, the valve body rotating shaft 125 which penetrates the driven gear 114 from the center of the upper surface of the valve seat 123 extends upwards. The inlet 121 is located opposite the valve seat 123 with respect to the rotor rotation shaft 124.
도 4를 참조하면, 밸브 플레이트(120)의 하면에는 유입관(IP)(도 1 참조)과의 연결을 위한 유입관 마운트(127)가 유입구(121)에 대응하여 마련되어 있다. 또한, 밸브 플레이트(120)의 하면에는, 제1 내지 제3 유출구(122A, 122B, 122C)에 각각 대응하는 끼움구멍(128A, 128B, 128C)이 형성되고 유출관(OP)(도 1 참조)과의 연결을 위한 유출관 마운트(128)가 마련되어 있다. 제1 내지 제3 유출구(122A, 122B, 122C)는 각 끼움구멍(128A, 128B, 128C)에서 개방한다. 끼움구멍(128A, 128B, 128C)에 유출관(IP)이 각각 끼워진다.Referring to FIG. 4, an inlet pipe mount 127 for connection with an inlet pipe IP (see FIG. 1) is provided on the lower surface of the valve plate 120 corresponding to the inlet port 121. Further, in the lower surface of the valve plate 120, fitting holes 128A, 128B, and 128C corresponding to the first to third outlets 122A, 122B, and 122C are formed, respectively, and the outlet pipe OP (see Fig. 1). Is provided with an outlet pipe mount 128 for connection. The first to third outlets 122A, 122B, and 122C open at the fitting holes 128A, 128B, and 128C. Outflow pipe IP is fitted in fitting holes 128A, 128B, and 128C, respectively.
밸브 하우징(131)은 밸브 플레이트(120)의 디스크부(126)와 밀봉 결합된다. 즉, 밸브 하우징(131)의 대경부(131LD)의 외주연과 밸브 플레이트(120)의 디스크부(126)의 외주연이 용접에 의해 결합되어, 밸브 하우징(131)과 밸브 플레이트(120)가 냉매가 유동하는 챔버(VC)를 형성한다. 밸브 하우징(131)의 소경부(131SD)는 스테이터(111)의 내의 원통형 공간에 삽입된다.The valve housing 131 is sealingly coupled with the disc portion 126 of the valve plate 120. That is, the outer circumference of the large diameter portion 131LD of the valve housing 131 and the outer circumference of the disk portion 126 of the valve plate 120 are joined by welding, so that the valve housing 131 and the valve plate 120 are joined. A chamber VC through which the refrigerant flows is formed. The small diameter portion 131SD of the valve housing 131 is inserted into the cylindrical space in the stator 111.
밸브체(140)는 종동 기어(114)와 결합되어 있다. 따라서, 로터(112)의 회전과 구동 기어(113) 및 종동 기어(114)에 의해, 밸브체(140)는 밸브 플레이트(120)에 대해 상대 회전되어 제1 내지 제3 유출구(122A, 122B, 122C)를 개폐한다. 밸브체(140)는 종동 기어(114)와 일체로 되거나, 별개로 마련되어 종동 기어(114)에 결합될 수 있다. 밸브체(140)는 로터(112)의 정방향 및 역방향 회전에 의해 시계방향과 반시계방향으로 회전될 수 있다.The valve body 140 is coupled with the driven gear 114. Therefore, by the rotation of the rotor 112 and the drive gear 113 and the driven gear 114, the valve body 140 is rotated relative to the valve plate 120 to the first to third outlets 122A, 122B, 122C) is opened and closed. The valve body 140 may be integrated with the driven gear 114 or may be provided separately and coupled to the driven gear 114. The valve body 140 may be rotated clockwise and counterclockwise by the forward and reverse rotation of the rotor 112.
도 4 및 도 5를 참조하면, 밸브체(140)는 디스크부(141)와 폐색부(142)와 개방부(143)를 구비한다. 밸브체(140)는 내마모성이 양호한 플라스틱 재료를 이용해 사출에 의해 형성될 수 있다. 폐색부(142)는 제1 내지 제3 유출구(122A, 122B, 122C) 중 하나 이상 또는 모두를 폐색한다. 폐색부(142)는 디스크부(141)로부터 하방으로 약간 돌출한 패드 형상으로 형성되어 있다. 개방부(143)는 제1 내지 제3 유출구(122A, 122B, 122C) 중 하나를 개방한다. 개방부(143)는 디스크부(141)로부터 폐색부(142)가 돌출하는 높이만큼의 두께를 갖는 디스크 형상의 공간에서 폐색부(142)의 공간을 뺀 공간으로 된다. 따라서, 디스크부(141)의 형상에 대응하게, 폐색부(142)와 개방부(143)는 밸브체(140)에서 원형의 디스크 형상을 이룬다. 또한, 밸브체(140)에 있어서, 개방부(143)는 폐색부(142)와 대향한다. 폐색부(142)가 제1 내지 제3 유출구(122A, 122B, 122C) 중 하나 이상을 폐색할 때, 나머지 유출구는 개방부(143)를 통해 챔버(VC)와 연통하여, 냉매가 상기 나머지 유출구로 유동되게 한다. 디스크부(141)와 폐색부(142)를 관통해 밸브 플레이트(120)의 밸브체 회전축(125)이 끼워지는 관통공(145)이 형성되어 있다. 따라서, 밸브체(140)의 회전중심(RC)은 관통공(145)의 중심 또는 밸브체 회전축(125)으로 되며, 폐색부(142) 내에 위치한다.4 and 5, the valve body 140 includes a disk portion 141, a closure portion 142, and an opening portion 143. The valve body 140 may be formed by injection using a plastic material having good abrasion resistance. The obstruction 142 occludes one or more or all of the first to third outlets 122A, 122B, and 122C. The obstruction part 142 is formed in the pad shape which protrudes slightly downward from the disc part 141. As shown in FIG. The opening 143 opens one of the first to third outlets 122A, 122B, and 122C. The opening part 143 becomes a space which subtracted the space of the obstruction part 142 from the disc-shaped space which has the thickness of the height which protrudes from the disc part 141. Therefore, corresponding to the shape of the disk portion 141, the closure portion 142 and the opening portion 143 form a circular disk shape in the valve body 140. In the valve body 140, the opening portion 143 faces the blocking portion 142. When the obstruction 142 closes one or more of the first to third outlets 122A, 122B, and 122C, the remaining outlet communicates with the chamber VC through the opening 143, such that the refrigerant exits the remaining outlet. Let it flow into the sphere. The through-hole 145 which penetrates the disk part 141 and the blocking part 142, and the valve body rotation shaft 125 of the valve plate 120 is fitted is formed. Therefore, the center of rotation RC of the valve body 140 becomes the center of the through hole 145 or the valve body rotating shaft 125 and is located in the closure portion 142.
도 3 내지 도 6을 참조하면, 밸브 플레이트(120)를 상방 또는 하방에서 볼 때, 제1 내지 제3 유출구(122A, 122B, 122C)의 중심(122AC, 122BC, 122CC)은 밸브체(140)의 회전중심(RC)을 중심으로하는 부채꼴(FS) 내에 위치하도록, 제1 내지 제3 유출구(122A, 122B, 122C)가 밸브 플레이트(120)에 형성되어 있다. 이 경우, 부채꼴(FS)의 중심각(CA1)은 예컨대, 300도 이하, 바람직하게는 180도 이하가 될 수 있다. 이 실시예에 있어서, 도 6에 도시하는 바와 같이, 부채꼴(FS)의 중심각은 약 180도 이다. 또한, 제1 내지 제3 유출구(122A, 122B, 122C)의 중심(122AC, 122BC, 122CC)은 밸브체(140)의 디스크부(141)의 외주연보다 밸브체(140)의 회전중심(RC)에 근접하게 배치된다. 또한, 제1 내지 제3 유출구(122A, 122B, 122C)의 중심(122AC, 122BC, 122CC)은 유출관 마운트(128)의 끼움구멍(128A, 128B, 128C)의 중심보다 밸브체(140)의 회전중심(RC)에 근접하게 배치된다. 즉, 각 유출구(122A, 122B, 122C)의 중심(122AC, 122BC, 122CC)과 끼움구멍(128A, 128B, 128C)의 중심은 동심을 이루지 않는다. 또한, 제1 내지 제3 유출구(122A, 122B, 122C)의 중심(122AC, 122BC, 122CC)은 밸브체(140)의 회전중심(RC)을 중심으로 하는 하나의 가상 원(IC)의 원주에 배치될 수 있다. 또한, 제1 내지 제3 유출구(122A, 122B, 122C)의 중심(122AC, 122BC, 122CC)은 밸브체(140)의 회전중심(RC)에 대하여 등각으로 서로 이격될 수 있다. 이 실시예에 있어서, 제1 내지 제3 유출구(122A, 122B, 122C)의 중심(122AC, 122BC, 122CC)은 밸브체(140)의 회전중심(RC)에 대하여 예컨대 90도의 등각으로 이격되어 있다. 즉, 제1 내지 제3 유출구(122A, 122B, 122C)의 중심중 어느 하나와 다른 하나 사이의 회전중심(RC)에 대한 중심각은 전술한 부채꼴(FS)의 중심각(CA1)의 반으로 된다.3 to 6, when the valve plate 120 is viewed from above or below, the centers 122AC, 122BC, and 122CC of the first to third outlets 122A, 122B, and 122C are formed of the valve body 140. The first to third outlets 122A, 122B, and 122C are formed in the valve plate 120 so as to be located in the sector FS centered on the rotation center RC of the valve. In this case, the center angle CA1 of the sector FS may be, for example, 300 degrees or less, preferably 180 degrees or less. In this embodiment, as shown in Fig. 6, the center angle of the fan FS is about 180 degrees. In addition, the centers 122AC, 122BC, and 122CC of the first to third outlets 122A, 122B, and 122C have a rotational center RC of the valve body 140 rather than the outer periphery of the disc portion 141 of the valve body 140. Disposed close to). In addition, the centers 122AC, 122BC, and 122CC of the first to third outlets 122A, 122B, and 122C are formed in the valve body 140 more than the centers of the fitting holes 128A, 128B, and 128C of the outlet pipe mount 128. It is disposed close to the center of rotation RC. That is, the centers 122AC, 122BC, 122CC of the outlets 122A, 122B, 122C and the centers of the fitting holes 128A, 128B, 128C are not concentric. In addition, the centers 122AC, 122BC, and 122CC of the first to third outlets 122A, 122B, and 122C are formed around the circumference of one virtual circle IC centered on the center of rotation RC of the valve body 140. Can be deployed. In addition, the centers 122AC, 122BC, and 122CC of the first to third outlets 122A, 122B, and 122C may be spaced apart from each other at an equilibrium with respect to the center of rotation RC of the valve body 140. In this embodiment, the centers 122AC, 122BC, 122CC of the first to third outlets 122A, 122B, and 122C are spaced at an angle of 90 degrees with respect to the center of rotation RC of the valve body 140, for example. . That is, the center angle with respect to the center of rotation RC between any one of the centers of the first to third outlets 122A, 122B, and 122C and the other is half of the center angle CA1 of the fan shape FS described above.
도 4 및 도 5를 참조하면, 제1 내지 제3 유출구(122A, 122B, 122C)를 폐색하는 폐색부(142)는 디스크부(141)의 하면으로부터 대략 균일한 두께로 돌출해 있으며, 그 하면이 폐색면(142S)으로 되고, 폐색면(141S)이 밸브 시트(123)와 면접촉한다. 예컨대, 밸브체(140)를 하방에서 볼 때, 폐색부(142)의 폐색면(142S)은 적어도 밸브체(140)의 회전중심(RC)을 중심으로하고 중심각이 예컨대 300도 이하인 부채꼴 형상, 바람직하게는 제1 내지 제3 유출구(122A, 122B, 122C)를 모두 덮을 수 있는 형상을 가질 수 있다. 즉, 폐색부(142)의 폐색면(142S)은 밸브체(140)를 하방에서 볼 때 대략 반원보다 약간 큰 형상을 가진다. 이 실시예에 있어서, 폐색부(142)는 원호형의 제1 가장자리(142CE)와 제1 가장자리(142CE)의 양단 사이에서 연장하는 파형의 제2 가장자리(142WE)를 가진다. 다른 예로서, 제2 가장자리(142WE)는 선형을 가질 수 있다. 원호형의 가장자리(142CE)는, 전술한 밸브체(140)의 회전중심(RC)을 중심으로하는 부채꼴(FS)의 원호에 대응한다. 파형의 제2 가장자리(142WE)로 인해, 폐색부(142)는 제2 가장자리(142WE)에 한 쌍의 오목부(142CP)를 가진다. 오목부(142CP)는 밸브체(140)의 가장자리보다 밸브체(140)의 회전중심(RC)에 근접하게 위치한다. 밸브체(140)의 회전 시, 오목부(142CP)가 제1 내지 제3 유출구(122A, 122B, 122C)에 인접하게 위치할 수 있다. 개방부(143)에는 폐색면(142S)보다 덜 돌출하는 돌기(144)가 형성되어 있으며, 이 돌기(144)는 종동 기어(114)와의 결합을 위한 것이다.4 and 5, the blocking portion 142 blocking the first to third outlets 122A, 122B, and 122C protrudes from the lower surface of the disk portion 141 to a substantially uniform thickness. This occlusion surface 142S is formed, and the occlusion surface 141S is in surface contact with the valve seat 123. For example, when the valve body 140 is viewed from below, the occlusion surface 142S of the occlusion portion 142 is at least about a rotational center RC of the valve body 140 and has a central shape of, for example, 300 degrees or less, Preferably, it may have a shape that can cover all of the first to third outlets 122A, 122B, and 122C. That is, the closed surface 142S of the closed portion 142 has a shape slightly larger than the semicircle when the valve body 140 is viewed from below. In this embodiment, the obstruction 142 has a corrugated second edge 142WE extending between an arcuate first edge 142CE and both ends of the first edge 142CE. As another example, the second edge 142WE may have a linear shape. The arc 142CE of circular arc shape corresponds to the circular arc of the fan shape FS centering on the rotation center RC of the valve body 140 mentioned above. Due to the second edge 142WE of the waveform, the obstruction 142 has a pair of recesses 142CP at the second edge 142WE. The recess 142CP is located closer to the center of rotation RC of the valve body 140 than the edge of the valve body 140. When the valve body 140 rotates, the recess 142CP may be positioned adjacent to the first to third outlets 122A, 122B, and 122C. The opening 143 is formed with a protrusion 144 that protrudes less than the closing surface 142S, and the protrusion 144 is for engagement with the driven gear 114.
일 실시예의 4방향 냉매 밸브(100)에서는, 밸브체(140)가 밸브 플레이트(120)에 대해 상대 회전하여, 밸브체(140)의 폐색부(142)와 개방부(143)가 제1 내지 제3 유출구(122A, 122B, 122C)를 선택적으로 개방하고 폐색한다. 밸브체(140)의 회전은, 스테이터(111)의 자기력에 의해 회전하는 로터(112)와 구동 기어(113) 및 종동 기어(114)의 회전에 의해 행해진다. 스테이터(111)에는 펄스 형태의 전력이 인가된다. 이하에 표시되는 pps는 Pulse Per Second의 약어로서, 초당 펄스 수를 의미하며, 펄스는 단시간의 전기 흐름을 말한다. 스테이터(111)에 펄스 형태의 전력이 인가되어, 로터(112)는 단속적으로 회전하게 되며, 따라서, 로터(112)와 함께 회전하는 구동 기어(113)에 치합하고 있는 종동 기어(114)도 스테이터(111)에 인가되는 펄스 형태의 전력의 초당 펄스 수에 따라 단속적으로 회전하게 된다.In the four-way refrigerant valve 100 of one embodiment, the valve body 140 rotates relative to the valve plate 120, so that the closing portion 142 and the opening portion 143 of the valve body 140 are first to first. The third outlets 122A, 122B, and 122C are selectively opened and closed. The rotation of the valve body 140 is performed by the rotation of the rotor 112, the drive gear 113, and the driven gear 114 which rotate by the magnetic force of the stator 111. Pulse power is applied to the stator 111. The following pps is an abbreviation of Pulse Per Second, which means the number of pulses per second, and the pulse refers to a short flow of electricity. Power in the form of a pulse is applied to the stator 111 so that the rotor 112 rotates intermittently, so that the driven gear 114 meshing with the driving gear 113 that rotates together with the rotor 112 also stator. It rotates intermittently in accordance with the number of pulses per second of the power of the pulse form applied to the (111).
일 실시예의 4방향 냉매 밸브(100)는 밸브체(140)의 밸브 플레이트(120)에 대한 상대 회전(회전중심(RC)을 중심으로 하는 시계방향(CW) 및 반시계방향(CCW)의 회전)에 의해 4방향 냉매 밸브(100)를 통하는 냉매의 유로를 절환시킨다. 예컨대, 일 실시예의 4방향 냉매 밸브(100)의 밸브체(140)는 제1 내지 제4 절환 위치의 사이에서 절환 동작을 행하여 냉매의 유로를 절환시킨다.The four-way refrigerant valve 100 of one embodiment is relative to the valve plate 120 of the valve body 140 (clockwise (CW) and counterclockwise (CCW) around the center of rotation (RC)) ), The flow path of the refrigerant passing through the four-way refrigerant valve 100 is switched. For example, the valve body 140 of the four-way refrigerant valve 100 of one embodiment performs a switching operation between the first to fourth switching positions to switch the flow path of the refrigerant.
제1 절환 위치는 도 8에 도시하는 밸브체(140)의 위치로서, 제1 절환 위치에서는, 밸브체(140)의 폐색부(142)가 밸브 플레이트(120)의 제1 유출구(122A), 제2 유출구(122B) 및 제3 유출구(122C)를 모두 폐색한다. 따라서, 상기 제1 절환 위치에서는, 냉매는 유출구(121)로부터 제1 내지 제3 유출구(122A, 122B, 122C)로 유동하지 않는다. 제2 절환 위치는 도 9에 도시하는 밸브체(140)의 위치로서, 밸브체(140)는 상기 제1 절환 위치로부터 반시계방향으로 회전되어 있다. 제2 절환 위치에서는, 제1 유출구(122A)는 밸브체(140)의 개방부(143)에 의해 밸브 플레이트(120)의 유입구(121)와 연통되며, 제2 유출구(122B) 및 제3 유출구(122C)는 폐색부(142)에 의해 폐색된다. 따라서, 상기 제2 절환 위치에서는, 냉매는 유입구(121)로부터 제1 유출구(122A)로 유동한다. 제3 절환 위치는 도 10에 도시하는 밸브체(140)의 위치로서, 밸브체(140)는 상기 제2 절환 위치로부터 반시계방향으로 더 회전되어 있다. 상기 제3 절환 위치에서는, 제2 유출구(122B)는 밸브체(140)의 개방부(143)에 의해 유입구(121)와 연통되며, 제1 유출구(122A)와 제3 유출구(122C)는 폐색부(142)에 의해 폐색되어 있다. 따라서, 상기 제3 절환 위치에서는, 냉매는 유입구(121)로부터 제2 유출구(122B)로 유동한다. 제4 절환 위치는 도 11에 도시하는 밸브체(140)의 위치로서, 밸브체(140)는 상기 제3 절환 위치로부터 반시계방향으로 회전되어 있다. 제4 절환 위치에서는, 제3 유출구(122C)는 개방부(143)에 의해 유입구(121)와 연통되며, 제1 유출구(122A)와 제2 유출구(122B)는 폐색부(142)에 의해 폐색된다. 따라서, 상기 제4 절환 위치에서는, 냉매는 유입구(121)로부터 제3 유출구(122C)로 유동한다.The 1st switching position is the position of the valve body 140 shown in FIG. 8, In the 1st switching position, the blocking part 142 of the valve body 140 is the 1st outlet 122A of the valve plate 120, Both the second outlet 122B and the third outlet 122C are closed. Therefore, in the first switching position, the refrigerant does not flow from the outlet 121 to the first to third outlets 122A, 122B, and 122C. The 2nd switching position is the position of the valve body 140 shown in FIG. 9, and the valve body 140 is rotated counterclockwise from the said 1st switching position. In the second switching position, the first outlet 122A communicates with the inlet 121 of the valve plate 120 by the opening 143 of the valve body 140, and the second outlet 122B and the third outlet 122C is blocked by the blocking portion 142. Therefore, in the second switching position, the refrigerant flows from the inlet 121 to the first outlet 122A. The third switching position is the position of the valve body 140 shown in FIG. 10, and the valve body 140 is further rotated counterclockwise from the second switching position. In the third switching position, the second outlet 122B communicates with the inlet 121 by the opening 143 of the valve body 140, and the first outlet 122A and the third outlet 122C are closed. It is blocked by the part 142. Therefore, in the third switching position, the refrigerant flows from the inlet 121 to the second outlet 122B. The fourth switching position is the position of the valve body 140 shown in FIG. 11, and the valve body 140 is rotated counterclockwise from the third switching position. In the fourth switching position, the third outlet 122C is in communication with the inlet 121 by the opening 143, and the first outlet 122A and the second outlet 122B are closed by the obstruction 142. do. Therefore, in the fourth switching position, the refrigerant flows from the inlet 121 to the third outlet 122C.
도 7 내지 도 11을 다시 참조하여, 일 실시예의 4방향 냉매 밸브(100)의 작동예를 설명한다.Referring back to Figures 7 to 11, an operation example of the four-way refrigerant valve 100 of one embodiment will be described.
도 7을 참조하면, 스테이터(111)에는 전력이 공급되지 않은, 즉 0pps인 상태에 있으며, 밸브체(140)는 원점 위치에 있다. 도 8을 참조하면, 스테이터(111)에는 4pps의 전력이 공급되며, 밸브체(140)는 반시계방향(CCW)으로 약간 회전되어 있다. 도 7에 도시하는 초기 위치에서, 스테이터(111)에 4pps의 전력을 공급하여 로터(112)를 근소하게 회전시킴으로써, 구동 기어(113)와 종동 기어(114) 간에 발생하는 소음을 방지한다. 도 7과 도 8에 도시하는 밸브체(140)의 위치에서, 제1 내지 제3 유출구(122A, 122B, 122C)는 밸브체(140)의 폐색부(142)에 의해 폐색되어 있으며, 냉매는 유입구(121)로부터 제1 내지 제3 유출구(122A, 122B, 122C)로 유동하지 못한다. 따라서, 4방향 냉매 밸브(100)는 차압 작용을 행한다.Referring to FIG. 7, the stator 111 is not supplied with power, i.e., 0 pps, and the valve body 140 is in the home position. Referring to FIG. 8, 4pps of electric power is supplied to the stator 111, and the valve body 140 is slightly rotated counterclockwise (CCW). In the initial position shown in FIG. 7, the rotor 112 is slightly rotated by supplying 4pps of power to the stator 111 to prevent noise generated between the drive gear 113 and the driven gear 114. At the position of the valve body 140 shown in FIG. 7 and FIG. 8, the first to third outlets 122A, 122B, and 122C are closed by the blocking portion 142 of the valve body 140, and the refrigerant is It may not flow from the inlet 121 to the first to third outlets 122A, 122B, and 122C. Therefore, the four-way refrigerant valve 100 performs the differential pressure action.
다음으로 도 9를 참조하면, 스테이터(111)에는 64pps의 전력이 공급되고, 밸브체(140)는 반시계방향(CCW)으로 이웃하는 유출구의 회전중심(RC)에 대한 각도(예컨대, 이 실시예에서는 90도) 만큼 회전하여 상기 제1 절환 위치로부터 상기 제2 절환 위치에 위치한다. 그러면, 제2 유출구(122B)와 제3 유출구(122C)는 폐색부(142)에 의해 폐색되고, 밸브체(140)의 개방부(143)가 제1 유출구(122A)에 위치하여, 유입구(121)를 통해 챔버(VC)에 유입한 냉매가 제1 유출구(122A)로 유출된다.Next, referring to FIG. 9, the stator 111 is supplied with 64pps of electric power, and the valve body 140 has an angle with respect to the rotational center RC of the neighboring outlet in the counterclockwise direction CCW (for example, this embodiment). In the example by 90 degrees) and located at the second switching position from the first switching position. Then, the second outlet 122B and the third outlet 122C are closed by the blocking portion 142, and the opening 143 of the valve body 140 is positioned at the first outlet 122A, so that the inlet ( The refrigerant introduced into the chamber VC through 121 is discharged to the first outlet 122A.
다음으로 도 10을 참조하면, 스테이터(111)에는 124pps의 전력이 공급되어 밸브체(140)는 반시계방향(CCW)으로 상기 이웃하는 유출구의 회전중심(RC)에 대한 각도만큼 회전하여 상기 제2 절환 위치로부터 상기 제3 절환 위치에 위치한다. 그러면, 제1 유출구(122A)와 제3 유출구(122C)는 폐색부(142)에 의해 폐색되고, 밸브체(140)의 개방부(143)가 제2 유출구(122B)에 위치하여, 유입구(121)를 통해 챔버(VC)로 유입한 냉매가 제2 유출구(122B)로 유출된다.Next, referring to FIG. 10, the power of 124pps is supplied to the stator 111 so that the valve body 140 rotates by an angle with respect to the center of rotation RC of the neighboring outlet in the counterclockwise direction CCW. It is located in said 3rd switching position from a 2 switching position. Then, the first outlet 122A and the third outlet 122C are closed by the blocking portion 142, and the opening portion 143 of the valve body 140 is positioned at the second outlet 122B, so that the inlet opening ( The refrigerant introduced into the chamber VC through 121 is discharged to the second outlet 122B.
다음으로 도 11을 참조하면, 스테이터(111)에는 184pps의 전력이 공급되어 밸브체(140)는 반시계방향(CCW)으로 상기 이웃하는 유출구의 회전중심(RC)에 대한 각도 만큼 회전하여 상기 제3 절환 위치로부터 상기 제4 절환 위치에 위치한다. 그러면, 제1 유출구(122A)와 제2 유출구(122B)는 폐색부(142)에 의해 폐색되고, 밸브체(140)의 개방부(144)가 제3 유출구(122C)에 위치하여, 유입구(121)를 통해 챔버(VC)로 유입한 냉매가 제3 유출구(122C)로 유출된다.Next, referring to FIG. 11, the power of 184pps is supplied to the stator 111 so that the valve body 140 rotates by an angle with respect to the center of rotation RC of the neighboring outlet in the counterclockwise direction CCW. It is located in said 4th switching position from 3 switching positions. Then, the first outlet 122A and the second outlet 122B are closed by the occlusion portion 142, and the opening 144 of the valve body 140 is positioned at the third outlet 122C, so that the inlet ( The refrigerant introduced into the chamber VC through 121 is discharged to the third outlet 122C.
또한, 밸브체(140)를 시계방향(CW)으로 회전시키기 위한 전력이 스테이터(111)에 공급되어, 밸브체(140)는 상기 제1 내지 제4 절환 위치 중 어느 하나에 위치할 수 있다.In addition, electric power for rotating the valve body 140 in the clockwise direction CW is supplied to the stator 111 so that the valve body 140 may be located at any one of the first to fourth switching positions.
도 12는 또 하나의 실시예에 따른 4방향 냉매 밸브의 밸브체를 도시한다.12 illustrates a valve body of a four-way refrigerant valve according to another embodiment.
도 12에 도시하는 밸브체(240)는 전술한 실시예의 밸브체(140)와 비교하여 추가의 개방부를 가지도록 구성되어 있다. 이 실시예의 밸브체(240)는 제1 내지 제3 유출구(122A, 122B, 122C) 중 하나 이상을 개방하고 나머지는 폐색할 수 있다. 따라서, 이 실시예의 밸브체(240)는 동시에 2개의 냉매 유로를 통해 냉매를 유동시킬 수 있다. 밸브체(240)의 폐색부(242)는 전술한 폐색부(142)와 유사하지만, 원호형의 가장자리(142CE) 중 일부가 밸브체(242)의 회전중심(RC) 쪽으로 깊게 들어간다. 따라서, 폐색부(242)는 폐색부(242)의 외주(즉, 제1 가장자리(142CE))로부터 회전중심(RC) 쪽으로 오목한 요입홈(245)을 구비한다. 요입홈(245)은 회전중심(RC)의 반경방향으로 연장한다. 또한, 요입홈(245)은 밸브체(240)의 회전시 제1 내지 제3 유출구(122A, 122B, 122C) 중 어느 하나에 위치하도록 폐색부(242)에 형성된다. 따라서, 밸브체(240)는 폐색부(242)의 요입홈(245)에 의해 추가의 개방부를 가진다. 이 실시예에 있어서, 밸브체(240)의 개방부는, 폐색부(242)와 대향하여 위치하는 제1 개방부(243A)와 폐색부(242)의 요입홈(245)에 위치하는 제2 개방부(243B)를 포함한다. 밸브체(240)의 제1 개방부(243A)는 전술한 밸브체(140)의 개방부(143)와 대략 동일한 형상을 가진다.The valve body 240 shown in FIG. 12 is configured to have an additional opening compared with the valve body 140 of the above-described embodiment. The valve body 240 of this embodiment can open one or more of the first to third outlets 122A, 122B, and 122C, and close the rest. Therefore, the valve body 240 of this embodiment can flow a refrigerant through two refrigerant passages at the same time. The obstruction 242 of the valve body 240 is similar to the obstruction 142 described above, but some of the arcuate edges 142CE go deep into the center of rotation RC of the valve body 242. Accordingly, the obstruction 242 includes a concave recess 245 recessed from the outer circumference of the obstruction 242 (that is, the first edge 142CE) toward the center of rotation RC. Concave groove 245 extends in the radial direction of the center of rotation (RC). In addition, the concave groove 245 is formed in the closure portion 242 so as to be located at any one of the first to third outlets 122A, 122B, and 122C when the valve body 240 rotates. Accordingly, the valve body 240 has an additional opening by the recessed groove 245 of the closure portion 242. In this embodiment, the opening portion of the valve body 240 is the first opening portion 243A positioned opposite the closure portion 242 and the second opening positioned in the recessed groove 245 of the closure portion 242. Section 243B. The 1st opening part 243A of the valve body 240 has a shape substantially the same as the opening part 143 of the valve body 140 mentioned above.
또한, 밸브체(240)의 폐색부(242)는, 요입홈(245)에 의해 구분되는 제1 폐색부(242A)와 제2 폐색부(242B)로 이루어진다. 제1 폐색부(242A)는 적어도 밸브체(240)의 회전중심(RC)을 중심으로하고 중심각이 90도 이상 180도 이하인 부채꼴 형상을 가진다. 제2 폐색부(242B)는 제1 폐색부(242A)와 일체로 제1 폐색부(242A)에서 연장한다. 제2 폐색부(242B)는 적어도 밸브체(240)의 회전중심(RC)을 중심으로하고 중심각이 90도 이하인 부채꼴 형상을 갖는다. 도 12에 도시하는 바와 같이, 제2 폐색부(242B)의 중간과 회전중심(RC)을 반경방향에서 지나는 직선(L1)과 요입홈(245)의 중간과 회전중심(RC)을 지나는 반경방향에서 직선(L2)을 가정하는 경우, 제2 폐색부(242B)에 위치하는 사이각(CA2)은 90보다 작은 각도, 예컨대 45도가 될 수 있고, 제1 폐색부(242A)에 위치하는 사이각(CA3)은 180도에서 사이각(CA2)을 뺀 각도가 될 수 있다.In addition, the blocking part 242 of the valve body 240 is comprised by the 1st blocking part 242A and the 2nd blocking part 242B divided by the recessed groove 245. As shown in FIG. The first blocking portion 242A has a fan shape centered at least on the rotational center RC of the valve body 240 and having a central angle of 90 degrees or more and 180 degrees or less. The second obstruction 242B extends from the first obstruction 242A integrally with the first obstruction 242A. The second closure portion 242B has a fan shape centered at least on the center of rotation RC of the valve body 240 and having a central angle of 90 degrees or less. As shown in FIG. 12, the straight line L1 passing through the middle of the second blocking portion 242B and the rotational center RC in the radial direction and the radial direction passing through the middle of the concave groove 245 and the rotational center RC. When a straight line L2 is assumed to be, the angle CA2 positioned in the second occlusion portion 242B may be an angle smaller than 90, for example, 45 degrees, and the angle angle positioned in the first occlusion portion 242A. CA3 may be an angle obtained by subtracting the angle CA2 from 180 degrees.
이러한 밸브체(240)를 가지는 또 하나의 실시예의 4방향 냉매 밸브는 밸브체(240)의 밸브 플레이트(120)에 대한 상대 회전(전술한 시계방향 및 반시계방향의 회전)에 의해 4방향 냉매 밸브(100)를 통하는 냉매 유로를 절환시킨다. 예컨대, 또 하나의 실시예의 4방향 냉매 밸브는 제1 절환 위치, 제1 및 제2 절환 위치의 사이에 있는 제1 중간 절환 위치, 제2 절환 위치, 제2 및 제3 절환 위치의 사이에 있는 제2 중간 절환 위치, 제3 절환 위치, 제3 및 제4 절환 위치의 사이에 있는 제3 중간 절환 위치, 제4 절환 위치의 사이에서 절환 동작을 행한다.The four-way refrigerant valve of another embodiment having such a valve body 240 is a four-way refrigerant by relative rotation (clockwise and counterclockwise rotation) with respect to the valve plate 120 of the valve body 240. The refrigerant passage through the valve 100 is switched. For example, the four-way refrigerant valve of another embodiment is between the first switching position, the first intermediate switching position, the second switching position, the second and third switching positions between the first and second switching positions. A switching operation is performed between the third intermediate switching position and the fourth switching position between the second intermediate switching position, the third switching position, and the third and fourth switching positions.
또 하나의 실시예에서의 제1 절환 위치는 도 14에 도시하는 밸브체(240)의 위치로서, 전술한 실시예에서의 제1 절환 위치와 동일하게, 밸브체(240)의 폐색부(242)가 제1 내지 제3 유출구(122A, 122B, 122C)를 폐색한다. 제1 중간 절환 위치는 도 15에 도시하는 밸브체(240)의 위치로서, 밸브체(240)는 상기 제1 절환 위치로부터 반시계방향으로 회전되어 있다. 상기 제1 중간 절환 위치에서는, 제1 유출구(122A)는 밸브체(240)의 제1 개방부(243A)에 의해 유입구(121)와 연통되고, 제3 유출구(122C)는 밸브체(240)의 제2 개방부(243B)에 의해 유입구(121)와 연통되며, 제2 유출구(122B)는 폐색부(242)에 의해 폐색된다. 또 하나의 실시예의 제2 절환 위치는 도 16에 도시하는 밸브체(240)의 위치로서, 밸브체(240)는 상기 제1 중간 절환 위치로부터 반시계방향으로 회전되어 있다. 이러한 제2 중간 절환 위치에서는, 전술한 실시예의 제2 절환 위치와 동일하게, 제1 유출구(122A)는 개방되고, 제2 및 제3 유출구(122B, 122C)는 폐색부(242)에 의해 폐색된다. 제2 중간 절환 위치는 도 17에 도시하는 밸브체(240)의 위치로서, 밸브체(240)는 상기 제2 절환 위치로부터 반시계방향으로 회전되어 있다. 상기 제2 중간 절환 위치에서는, 제1 유출구(122A)와 제2 유출구(122B)는 밸브체(240)의 제1 개방부(243A)에 의해 유입구(121)와 연통되고, 제3 유출구(122C)는 밸브체(240)의 폐색부(242)에 의해 폐색된다. 또 하나의 실시예의 제3 절환 위치는 도 18에 도시하는 밸브체(240)의 위치로서, 밸브체(240)는 상기 제2 중간 절환 위치로부터 반시계방향으로 회전되어 있다. 이러한 제3 절환 위치에서는, 전술한 실시예의 제3 절환 위치와 동일하게, 제2 유출구(122B)는 개방되고, 제1 및 제3 유출구(122A, 122C)는 폐색부(242)에 의해 폐색된다. 제3 중간 절환 위치는 도 19에 도시하는 밸브체(240)의 위치로서, 밸브체(240)는 상기 제3 절환 위치로부터 반시계방향으로 회전되어 있다. 상기 제3 중간 절환 위치에서는, 제2 유출구(122B)와 제3 유출구(122C)는 밸브체(240)의 제1 개방부(243A)에 의해 유입구(121)와 연통되고, 제1 유출구(122A)는 밸브체(240)의 제2 개방부(243A)에 의해 유입구(121)와 연통된다. 또 하나의 실시예의 제4 절환 위치는 도 20에 도시하는 밸브체(240)의 위치로서, 밸브체(240)는 상기 제3 중간 절환 위치로부터 반시계방향으로 회전되어 있다. 이러한 제4 절환 위치에서는, 전술한 실시예의 제4 절환 위치와 동일하게, 제3 유출구(122C)는 개방되고, 제1 및 제2 유출구(122A, 122B)는 폐색부(242)에 의해 폐색된다.In another embodiment, the first switching position is the position of the valve body 240 illustrated in FIG. 14, which is the same as the first switching position in the above-described embodiment, and the closing portion 242 of the valve body 240 is used. ) Closes the first to third outlets 122A, 122B, 122C. The first intermediate switching position is the position of the valve body 240 shown in FIG. 15, and the valve body 240 is rotated counterclockwise from the first switching position. In the first intermediate switching position, the first outlet 122A is in communication with the inlet 121 by the first opening 243A of the valve body 240, and the third outlet 122C is the valve body 240. Is communicated with the inlet 121 by the second opening 243B, and the second outlet 122B is blocked by the obstruction 242. In another embodiment, the second switching position is the position of the valve body 240 shown in FIG. 16, and the valve body 240 is rotated counterclockwise from the first intermediate switching position. In this second intermediate switching position, similarly to the second switching position of the above-described embodiment, the first outlet 122A is opened, and the second and third outlets 122B and 122C are closed by the obstruction 242. do. The second intermediate switching position is the position of the valve body 240 shown in FIG. 17, and the valve body 240 is rotated counterclockwise from the second switching position. In the second intermediate switching position, the first outlet 122A and the second outlet 122B communicate with the inlet 121 by the first opening 243A of the valve body 240, and the third outlet 122C ) Is blocked by the blocking portion 242 of the valve body 240. In another embodiment, the third switching position is the position of the valve body 240 shown in FIG. 18, and the valve body 240 is rotated counterclockwise from the second intermediate switching position. In this third switching position, similarly to the third switching position of the above-described embodiment, the second outlet 122B is opened, and the first and third outlets 122A and 122C are closed by the occlusion portion 242. . The third intermediate switching position is the position of the valve body 240 illustrated in FIG. 19, and the valve body 240 is rotated counterclockwise from the third switching position. In the third intermediate switching position, the second outlet 122B and the third outlet 122C communicate with the inlet 121 by the first opening 243A of the valve body 240, and the first outlet 122A. ) Is in communication with the inlet 121 by the second opening 243A of the valve body 240. The fourth switching position of another embodiment is the position of the valve body 240 shown in FIG. 20, and the valve body 240 is rotated counterclockwise from the third intermediate switching position. In this fourth switching position, similar to the fourth switching position of the above-described embodiment, the third outlet 122C is opened, and the first and second outlets 122A and 122B are closed by the occlusion portion 242. .
도 13 내지 도 20을 다시 참조하여, 또 하나의 실시예의 4방향 냉매 밸브의 작동예를 설명한다.Referring back to FIGS. 13 to 20 again, an operation example of the four-way refrigerant valve of another embodiment will be described.
도 13을 참조하면, 스테이터(111)에는 전력이 공급되지 않은, 즉 0pps인 상태에 있으며, 밸브체(240)는 원점 위치에 있다. 도 14를 참조하면, 스테이터(111)에 4pps의 전력이 공급되어 밸브체(240)는 반시계방향(CCW)으로 약간 회전되어 있다. 도 13과 도 14에 도시하는 밸브체(240)의 위치에서, 제1 및 제2 유출구(122A, 122B)는 밸브체(240)의 제1 폐색부(242A)에 의해 폐색되어 있고, 제3 유출구(122C)는 밸브체(240)의 제2 폐색부(242B)에 의해 폐색되어 있다. 따라서, 냉매는 유입구(121)로부터 제1 내지 제3 유출구(122A, 122B, 122C)로 유동하지 못하여, 차압 작용을 실행한다.Referring to FIG. 13, the stator 111 is not powered, that is, at a state of 0 pps, and the valve body 240 is at a home position. Referring to FIG. 14, 4pps of electric power is supplied to the stator 111, and the valve body 240 is rotated slightly in the counterclockwise direction (CCW). At the position of the valve body 240 shown in FIGS. 13 and 14, the first and second outlets 122A and 122B are closed by the first blocking portion 242A of the valve body 240, and the third The outlet port 122C is blocked by the second blocking portion 242B of the valve body 240. Therefore, the refrigerant does not flow from the inlet 121 to the first to third outlets 122A, 122B, and 122C, thereby performing a differential pressure action.
다음으로, 도 15에 도시하는 바와 같이, 스테이터(111)에 34pps의 전력이 공급되어 밸브체(240)는 반시계방향(CCW)으로 이웃하는 유출구의 회전중심(RC)에 대한 각도의 반(예컨대, 이 실시예에서는 45도) 만큼 회전하여, 상기 제1 절환 위치로부터 상기 제1 중간 절환 위치에 위치한다. 그러면, 제2 유출구(122B)는 제1 폐색부(242A)에 의해 폐색되고, 제1 및 제3 유출구(122A, 122C)에는 밸브체(242)의 제1 개방부(243A)와 제2 개방부(243B)가 각각 위치하여, 유입구(121)를 통해 챔버(VC)에 유입한 냉매가 제1 및 제3 유출구(122A, 122C)로 유출된다. 상기 제1 중간 절환 위치에서, 제1 폐색부(242A)와 제2 폐색부(242B) 사이에 있는 요입홈(245)이 제3 유출구(122C)에 위치한다.Next, as shown in FIG. 15, 34pps of electric power is supplied to the stator 111 so that the valve body 240 is half of the angle with respect to the rotational center RC of the outlet outlet adjacent in the counterclockwise direction CCW. For example, in this embodiment, by 45 degrees), it is located in the first intermediate switching position from the first switching position. Then, the second outlet 122B is closed by the first blocking portion 242A, and the first and second openings 243A and the second opening of the valve body 242 are opened at the first and third outlets 122A and 122C. The portions 243B are positioned so that the refrigerant flowing into the chamber VC through the inlet 121 flows out into the first and third outlets 122A and 122C. In the first intermediate switching position, a recess 245 between the first occlusion portion 242A and the second occlusion portion 242B is positioned at the third outlet 122C.
다음으로, 도 16에 도시하는 바와 같이, 스테이터(111)에는 64pps의 전력이 공급되어, 밸브체(240)는 반시계방향(CCW)으로 상기 이웃하는 유출구의 회전중심(RC)에 대한 각도의 반 만큼 회전하여, 상기 제1 중간 절환 위치로부터 상기 제2 절환 위치로 위치한다. 그러면, 제2 유출구(122B)와 제3 유출구(122C)는 제1 폐색부(242A)에 의해 폐색되고, 밸브체(240)의 제1 개방부(243A)가 제1 유출구(122A)에 위치하여, 유입구(121)를 통해 유입된 냉매가 제1 유출구(122A)로 유출된다.Next, as shown in FIG. 16, the power of 64pps is supplied to the stator 111, and the valve body 240 is an angle with respect to the rotation center RC of the neighboring outlet in the counterclockwise direction CCW. It rotates by half and is located from the first intermediate switching position to the second switching position. Then, the second outlet 122B and the third outlet 122C are closed by the first blocking portion 242A, and the first opening 243A of the valve body 240 is positioned at the first outlet 122A. Thus, the refrigerant introduced through the inlet 121 is discharged to the first outlet 122A.
다음으로, 도 17에 도시하는 바와 같이, 스테이터(111)에는 94pps의 전력이 공급되어, 밸브체(240)는 반시계방향(CCW)으로 상기 이웃하는 유출구의 회전중심(RC)에 대한 각도의 반 만큼 회전하여, 상기 제2 절환 위치로부터 상기 제2 중간 절환 위치로 위치한다. 그러면, 제3 유출구(122C)는 제1 폐색부(242A)에 의해 폐색되고, 밸브체(240)의 제1 개방부(243A)가 제1 및 제2 유출구(122A, 122B)에 위치하여, 유입구(121)를 통해 유입된 냉매가 제1 및 제2 유출구(122A,122B)로 유출된다.Next, as shown in FIG. 17, 94pps of electric power is supplied to the stator 111, and the valve body 240 has an angle with respect to the rotation center RC of the neighboring outlet in the counterclockwise direction CCW. It rotates by half and is located from the second switching position to the second intermediate switching position. Then, the third outlet 122C is closed by the first blocking portion 242A, and the first opening 243A of the valve body 240 is positioned at the first and second outlets 122A and 122B, Refrigerant introduced through the inlet 121 is discharged to the first and second outlets 122A and 122B.
다음으로, 도 18에 도시하는 바와 같이, 스테이터(111)에는 122pps의 전력이 공급되어, 밸브체(240)는 반시계방향(CCW)으로 상기 이웃하는 유출구의 회전중심(RC)에 대한 각도의 반 만큼 회전하여, 상기 제2 중간 절환 위치로부터 상기 제3 절환 위치로 위치한다. 그러면, 제1 유출구(122A)와 제3 유출구(122C)는 각각 제2 폐색부(242B)와 제1 폐색부(242A)에 의해 폐색되고, 밸브체(240)의 제1 개방부(243A)가 제2 유출구(122B)에 위치하여, 유입구(121)를 통해 유입된 냉매가 제2 유출구(122B)로 유출된다.Next, as shown in FIG. 18, 122 ppms of electric power is supplied to the stator 111, and the valve body 240 has the angle of the angle with respect to the center of rotation RC of the said outlet outlet in the counterclockwise direction CCW. It rotates by half and is located from the second intermediate switching position to the third switching position. Then, the first outlet 122A and the third outlet 122C are closed by the second closure portion 242B and the first closure portion 242A, respectively, and the first opening 243A of the valve body 240. Is positioned in the second outlet 122B, the refrigerant introduced through the inlet 121 flows into the second outlet 122B.
다음으로, 도 19에 도시하는 바와 같이, 스테이터(111)에는 154pps의 전력이 공급되어, 밸브체(240)는 반시계방향(CCW)으로 상기 이웃하는 유출구의 회전중심(RC)에 대한 각도의 반 만큼 회전하여 상기 제3 절환 위치로부터 상기 제3 중간 절환 위치로 위치한다. 그러면, 밸브체(240)의 제2 개방부(243B)는 제1 유출구(122A)에 위치하고, 밸브체(240)의 제1 개방부(243A)는 제2 및 제3 유출구(122B,122C)에 위치하여, 유입구(121)를 통해 유입된 냉매가 제1 내지 제3 유출구(122A,122B,122C)로 유출된다. 상기 제3 중간 절환 위치에서, 제1 폐색부(242A)와 제2 폐색부(242B) 사이의 요입홈(245)이 제1 유출구(122A)에 위치한다.Next, as shown in FIG. 19, the power of 154pps is supplied to the stator 111, and the valve body 240 has an angle with respect to the center of rotation RC of the neighboring outlet in the counterclockwise direction CCW. It is rotated by half to position from the third switching position to the third intermediate switching position. Then, the second opening 243B of the valve body 240 is positioned at the first outlet 122A, and the first opening 243A of the valve body 240 is the second and third outlets 122B and 122C. The refrigerant flowed in through the inlet 121 is discharged to the first to third outlets 122A, 122B, and 122C. In the third intermediate switching position, the recess 245 between the first occlusion portion 242A and the second occlusion portion 242B is positioned at the first outlet 122A.
다음으로, 도 20에 도시하는 바와 같이, 스테이터(111)에는 184pps의 전력이 공급되어, 밸브체(240)는 반시계방향(CCW)으로 상기 이웃하는 유출구의 회전중심(RC)에 대한 각도의 반 만큼 회전하여 상기 제3 중간 절환 위치로부터 상기 제4 절환 위치로 위치한다. 그러면, 제1 유출구(122A)와 제2 유출구(122B)는 제1 폐색부(242A)와 제2 폐색부(242B)에 의해 각각 폐색되고, 밸브체(240)의 제1 개방부(243A)가 제3 유출구(122C)에 위치하여, 유입구(121)를 통해 유입된 냉매가 제3 유출구(122C)로 유출된다.Next, as shown in FIG. 20, the power of 184pps is supplied to the stator 111, and the valve body 240 has the angle of the angle with respect to the center of rotation RC of the neighboring outlet in the counterclockwise direction CCW. It is rotated by half to position from the third intermediate switching position to the fourth switching position. Then, the first outlet 122A and the second outlet 122B are closed by the first closure portion 242A and the second closure portion 242B, respectively, and the first opening 243A of the valve body 240. Is located in the third outlet 122C, the refrigerant introduced through the inlet 121 is discharged to the third outlet 122C.
또한, 밸브체(240)를 시계방향(CW)으로 회전시키기 위한 전력이 스테이터(111)에 공급되어, 밸브체(240)는 상기 제1 내지 제4 절환 위치 및 제1 내지 제3 중간 절환 위치 중 어느 하나에 위치할 수 있다.In addition, electric power for rotating the valve body 240 in the clockwise direction CW is supplied to the stator 111 so that the valve body 240 is in the first to fourth switching positions and the first to third intermediate switching positions. It may be located at either.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 도시하는 예에 의해 한정되는 것은 아니다. 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.The present invention described above is not limited to the above-described embodiment and the examples shown in the accompanying drawings. It will be apparent to those skilled in the art that various substitutions, modifications, and changes can be made without departing from the spirit of the present invention.

Claims (12)

  1. 구동부와, Drive unit,
    유입구 및 제1 내지 제3 유출구를 가지는 밸브 플레이트와, A valve plate having an inlet port and first to third outlet ports,
    상기 밸브 플레이트에 밀봉 결합되어 상기 밸브 플레이트와 함께 냉매가 유동하는 챔버를 형성하는 밸브 하우징과, A valve housing sealingly coupled to the valve plate to form a chamber in which refrigerant flows together with the valve plate;
    상기 챔버 내에 배치되고 상기 구동부에 의해 회전되어 상기 제1 내지 제3 유출구를 개폐하는 밸브체를 포함하고, A valve body disposed in the chamber and rotated by the driving part to open and close the first to third outlets,
    상기 밸브체는 상기 제1 내지 제3 유출구 중 하나 이상을 폐색하는 폐색부와 상기 제1 내지 제3 유출구 중 하나 이상을 개방하여 냉매를 유동시키는 개방부를 구비하는 The valve body includes a blocking portion for blocking at least one of the first to third outlets and an opening for opening at least one of the first to third outlets to flow the refrigerant.
    4방향 냉매 밸브.4-way refrigerant valve.
  2. 제1항에 있어서, The method of claim 1,
    상기 제1 내지 제3 유출구의 중심은 상기 밸브체의 회전중심을 중심으로 하고 중심각이 300도 이하인 부채꼴의 내에 위치하는 The centers of the first to third outlets are located in a fan shape centered on the center of rotation of the valve body and having a central angle of 300 degrees or less.
    4방향 냉매 밸브.4-way refrigerant valve.
  3. 제1항에 있어서, The method of claim 1,
    상기 제1 내지 제3 유출구의 각각의 중심은 상기 밸브체의 회전중심을 중심으로 하는 원의 원주에 위치하는 The center of each of the first to third outlets is located at the circumference of a circle around the center of rotation of the valve body.
    4방향 냉매 밸브.4-way refrigerant valve.
  4. 제1항에 있어서, The method of claim 1,
    상기 제1 내지 제3 유출구의 중심은 상기 밸브체의 회전중심에 대하여 등각으로 이격되어 있는 Centers of the first to third outlets are equidistantly spaced from the center of rotation of the valve body.
    4방향 냉매 밸브.4-way refrigerant valve.
  5. 제1항에 있어서, The method of claim 1,
    상기 폐색부는 상기 제1 내지 제3 유출구를 폐색하는 폐색면을 구비하고, The blocking portion has a blocking surface for closing the first to third outlets,
    상기 폐색면은 적어도 상기 밸브체의 회전중심을 중심으로 하는 부채꼴 형상을 가지는 The closed surface has a fan shape centered at least on the center of rotation of the valve body.
    4방향 냉매 밸브.4-way refrigerant valve.
  6. 제5항에 있어서, The method of claim 5,
    상기 밸브체의 회전중심은 상기 폐색부 내에 위치하고, 상기 폐색부와 상기 개방부는 상기 밸브체에서 원형을 이루도록 형성되는 The center of rotation of the valve body is located in the closure portion, and the closure portion and the opening are formed to form a circle in the valve body.
    4방향 냉매 밸브.4-way refrigerant valve.
  7. 제5항에 있어서, The method of claim 5,
    상기 폐색부는 원호형의 제1 가장자리와 상기 제1 가장자리의 양단 사이에서 연장하는 제2 가장자리를 가지며, 상기 제2 가장자리는 선형 또는 파형을 가지는 The obstruction has a second edge extending between an arcuate first edge and both ends of the first edge, the second edge having a linear or corrugated shape.
    4방향 냉매 밸브.4-way refrigerant valve.
  8. 제1항에 있어서, The method of claim 1,
    상기 밸브체가 제1 절환 위치, 제2 절환 위치, 제3 절환 위치 및 제4 절환 위치에 위치하도록 상기 밸브체가 상기 구동부에 의해 정방향 및 역방향으로 회전되고, The valve body is rotated in the forward and reverse directions by the drive unit such that the valve body is positioned in a first switching position, a second switching position, a third switching position and a fourth switching position,
    상기 제1 절환 위치에서는 상기 제1 내지 제3 유출구 모두가 상기 폐색부에 의해 폐색되고, In the first switching position, all of the first to third outlets are blocked by the blocking portion,
    상기 제2, 제3 및 제4 절환 위치에서는 상기 개방부가 상기 제1 내지 제3 유출구 중 어느 하나에 위치하고 나머지 둘은 상기 폐색부에 의해 폐색되는 In the second, third and fourth switching positions, the opening is located at any one of the first to third outlets and the other two are occluded by the closure.
    4방향 냉매 밸브.4-way refrigerant valve.
  9. 제1항에 있어서, The method of claim 1,
    상기 폐색부는 상기 폐색부의 외주로부터 상기 밸브체의 회전중심 쪽으로 상기 밸브체의 회전중심의 반경방향으로 연장하는 요입홈을 구비하고, The closure portion includes a recess groove extending from the outer circumference of the closure portion toward the rotation center of the valve body in the radial direction of the rotation center of the valve body;
    상기 요입홈은 상기 제1 내지 제3 유출구 중 어느 하나에 위치하도록 상기 폐색부에 형성되고, The concave groove is formed in the closure portion to be located in any one of the first to third outlet,
    상기 개방부는 상기 밸브체에서 상기 폐색부와 대향하여 위치하는 제1 개방부와 상기 요입홈에 위치하는 제2 개방부를 포함하는 The opening part includes a first opening part located in the valve body opposite to the occlusion part and a second opening part located in the concave groove.
    4방향 냉매 밸브.4-way refrigerant valve.
  10. 제9항에 있어서, The method of claim 9,
    상기 폐색부는 상기 요입홈에 의해 구분되는 제1 폐색부와 제2 폐색부를 포함하고, The occlusion portion includes a first occlusion portion and a second occlusion portion separated by the concave groove,
    상기 제1 폐색부는 적어도 상기 밸브체의 회전중심을 중심으로하고 중심각이 90도 이상 180도 이하인 부채꼴 형상을 갖고, 상기 제2 폐색부는 적어도 상기 밸브체의 회전중심을 중심으로하고 중심각이 90도 이하인 부채꼴 형상을 갖는 The first closure portion has a fan shape centered at least on the rotational center of the valve body and has a central angle of 90 degrees or more and 180 degrees or less, and the second closure portion has a center angle of at least 90 degrees and at least the center of rotation of the valve body. Fan-shaped
    4방향 냉매 밸브.4-way refrigerant valve.
  11. 제9항에 있어서, The method of claim 9,
    상기 밸브체가 제1 절환 위치, 제2 절환 위치, 제3 절환 위치, 제4 절환 위치, 상기 제1 및 제2 절환 위치 사이의 제1 중간 절환 위치, 상기 제2 및 제3 절환 위치 사이의 제2 중간 절환 위치, 및 상기 제3 및 제4 절환 위치 사이의 제3 중간 절환 위치에 위치하도록 상기 구동부에 의해 상기 밸브체가 정방향 및 역방향으로 회전되고, The valve body is arranged between a first switching position, a second switching position, a third switching position, a fourth switching position, a first intermediate switching position between the first and second switching positions, and between the second and third switching positions. The valve body is rotated in the forward and reverse directions by the drive unit so as to be located at a second intermediate switching position and a third intermediate switching position between the third and fourth switching positions,
    상기 제1 절환 위치에서는 상기 제1 내지 제3 유출구 모두가 상기 폐색부에 의해 폐색되고, In the first switching position, all of the first to third outlets are blocked by the blocking portion,
    상기 제2, 제3 및 제4 절환 위치에서는 상기 제1 개방부가 상기 제1 내지 제3 유출구 중 어느 하나에 위치하고 나머지 둘은 상기 폐색부에 의해 폐색되고, In the second, third and fourth switching positions the first opening is located in any one of the first to third outlets and the other two are occluded by the occlusion,
    상기 제1, 제2 및 제3 중간 절환 위치에서는 상기 제1 개방부가 상기 제1 내지 제3 유출구 중 어느 하나에 위치하고, 상기 제2 개방부가 상기 제1 내지 제3 유출구 중 다른 하나에 위치하고, 상기 폐색부가 상기 제1 내지 제3 유출구 중 나머지 하나를 폐색하는 In the first, second and third intermediate switching positions, the first opening is located at any one of the first to third outlets, the second opening is located at the other of the first to third outlets, The occlusion unit occludes the other one of the first to third outlets.
    4방향 냉매 밸브.4-way refrigerant valve.
  12. 제1항에 있어서, The method of claim 1,
    상기 밸브체를 상기 밸브 플레이트 쪽으로 바이어스하는 밸브체 스프링을 더 포함하고, A valve body spring biasing the valve body toward the valve plate,
    상기 밸브체 스프링은 상기 밸브 하우징의 내면에 탄력적으로 접촉하는 복수의 위치설정 다리를 구비하는 The valve body spring has a plurality of positioning legs in resilient contact with the inner surface of the valve housing.
    4방향 냉매 밸브.4-way refrigerant valve.
PCT/KR2015/012303 2014-11-14 2015-11-16 Four-way refrigerant valve for refrigerator WO2016076678A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0158479 2014-11-14
KR20140158479 2014-11-14
KR1020150160659A KR20160058063A (en) 2014-11-14 2015-11-16 4-way refrigerant valve for refrigerator
KR10-2015-0160659 2015-11-16

Publications (1)

Publication Number Publication Date
WO2016076678A1 true WO2016076678A1 (en) 2016-05-19

Family

ID=55954679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012303 WO2016076678A1 (en) 2014-11-14 2015-11-16 Four-way refrigerant valve for refrigerator

Country Status (1)

Country Link
WO (1) WO2016076678A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325651A (en) * 2000-05-17 2001-11-22 Saginomiya Seisakusho Inc Motor-driven change-over valve for automatic vending machine
JP2004293573A (en) * 2003-03-25 2004-10-21 Sankyo Seiki Mfg Co Ltd Valve element driving device
KR20070042018A (en) * 2005-10-17 2007-04-20 삼성전자주식회사 Refrigerator
KR20130058595A (en) * 2011-11-25 2013-06-04 제지앙 산후아 컴퍼니 리미티드 Electomotive three-way valve
JP2014181834A (en) * 2013-03-18 2014-09-29 Hitachi Appliances Inc Refrigerant selector valve and device equipped with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325651A (en) * 2000-05-17 2001-11-22 Saginomiya Seisakusho Inc Motor-driven change-over valve for automatic vending machine
JP2004293573A (en) * 2003-03-25 2004-10-21 Sankyo Seiki Mfg Co Ltd Valve element driving device
KR20070042018A (en) * 2005-10-17 2007-04-20 삼성전자주식회사 Refrigerator
KR20130058595A (en) * 2011-11-25 2013-06-04 제지앙 산후아 컴퍼니 리미티드 Electomotive three-way valve
JP2014181834A (en) * 2013-03-18 2014-09-29 Hitachi Appliances Inc Refrigerant selector valve and device equipped with the same

Similar Documents

Publication Publication Date Title
JP5707076B2 (en) Multi-way selector valve
JP2020008170A (en) Multi-channel disc valve assembly
EP0517701B1 (en) Heat recovering ventilator
JPH04248078A (en) Multifunctional multiport slide valve
JP2004293573A (en) Valve element driving device
WO2016076678A1 (en) Four-way refrigerant valve for refrigerator
JP3217584U (en) Valve structure
TW201323759A (en) Magnetic valve and fluid applied system using the same
CN114046367A (en) Integrated valve and water purifying equipment with same
KR20050001716A (en) 3-way valve for boiler
KR101560166B1 (en) Cock valve for water purifier
KR20160058063A (en) 4-way refrigerant valve for refrigerator
CN212318853U (en) Valve core
KR20170065839A (en) Refrigerant valve apparatus
CN114060569B (en) Valve and tap
CN118110818A (en) Control valve and thermal management system
KR100420589B1 (en) bib cock
CN216344081U (en) Integrated valve and water purifying equipment with same
CN212643636U (en) Four-way valve device and four-way faucet
WO2019057009A1 (en) Water path control switch, water path control shower head and water path control method
CN219712416U (en) Two-in two-out type control device
KR200350996Y1 (en) 3-way valve
CN114738518B (en) Valve group and kitchen and toilet appliance
CN217325659U (en) Toilet and control valve thereof
CN212251206U (en) Double-control flow integrated valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15858212

Country of ref document: EP

Kind code of ref document: A1