WO2016075877A1 - Heat insulating performance estimation device and program - Google Patents

Heat insulating performance estimation device and program Download PDF

Info

Publication number
WO2016075877A1
WO2016075877A1 PCT/JP2015/005360 JP2015005360W WO2016075877A1 WO 2016075877 A1 WO2016075877 A1 WO 2016075877A1 JP 2015005360 W JP2015005360 W JP 2015005360W WO 2016075877 A1 WO2016075877 A1 WO 2016075877A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
insulation performance
information
temperature
heat insulation
Prior art date
Application number
PCT/JP2015/005360
Other languages
French (fr)
Japanese (ja)
Inventor
祐司 尾崎
小林 晋
雅和 足立
室 直樹
薮ノ内 伸晃
遥 仲宗根
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016075877A1 publication Critical patent/WO2016075877A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only

Definitions

  • the present invention relates to an adiabatic performance estimation device for estimating the thermal insulation performance of a building, and a program for causing a computer to function as the adiabatic performance estimation device.
  • Patent Document 1 describes the effects of the operation of air conditioners such as heating and cooling, heat generation by people, opening and closing of windows and doors, the operation of electric devices such as lighting devices, televisions, and refrigerators, and the operation of heating devices. It has been described that the heat insulation performance is measured by selecting a small period of time. In addition, Patent Document 1 exemplifies such a time when it is late in the spring or autumn and there are no residents. In Patent Document 1, there is no need to use an air conditioner at such a time, heat generation by human activity is small, windows and doors are not opened, and switches such as lighting devices and televisions are turned off. It is explained that it is time.
  • Patent Document 1 when the heat generating device is operated and the room temperature reaches a certain temperature, the temperature inside the house and the temperature outside are measured, and the power consumption of the heat generating device is converted to the heat generation amount. Have been described. Further, it is described that the heat loss coefficient is determined for the evaluation of the heat insulation performance from the relationship between the temperature difference between the inside and outside of the house and the calorific value. In Patent Document 1, the fact that the room temperature has reached a constant temperature is determined from the measurement value of the temperature and humidity sensor.
  • Patent Document 1 describes a technology for evaluating the heat insulation performance of a building by selecting a time, and a technology for evaluating the heat insulation performance of the building in a state where the heat generating apparatus is operated.
  • Patent Document 1 a specific time is selected, or a room temperature is allowed to reach a constant temperature by a heating device.
  • Patent Document 1 it is possible to accurately measure the amount of heat in the room even when attention is paid to the time of acquiring information used for calculation of heat insulation performance or the environment when acquiring the information. Not exclusively. That is, with the technology described in Patent Document 1, it can not be said that high reliability is obtained for the calculation result of the heat insulation performance.
  • An object of the present invention is to provide an adiabatic performance estimation device capable of improving the reliability of calculation results with respect to adiabatic performance, and a program for causing a computer to function as the adiabatic performance estimation device.
  • the heat insulation performance estimation apparatus includes a first acquisition unit that acquires temperature information on indoor and outdoor temperatures in a building, and heat quantity information on the amount of energy consumed by a cooling device or heating device that changes the indoor temperature.
  • the temperature information determined to satisfy the determination condition, and a predetermination unit determining whether the temperature information and the heat amount information satisfy a predetermined determination condition; And the heat quantity information to calculate the heat insulation performance of the building.
  • a program according to the present invention is for causing a computer to function as a thermal insulation performance estimation device.
  • the pre-determination unit determines whether the determination condition is satisfied with respect to temperature information and heat amount information used by the calculation unit for calculation. Therefore, by setting appropriate determination conditions, it becomes possible to sort out temperature information and heat amount information that are not suitable for calculation. As a result, it has the advantage of being able to improve the reliability of the calculation result of the calculation unit.
  • FIG. 1 is a block diagram showing the entire configuration including the heat insulation performance estimation device according to the embodiment.
  • FIG. 2 is a view showing an arrangement example of the device in the embodiment.
  • Drawing 3 is a figure showing an example of indoor temperature change at the time of heating operation of an air-conditioning system concerning an embodiment.
  • FIG. 4 is a diagram showing an operation example in the case of intermittently operating the air conditioner according to the embodiment.
  • FIG. 5 is a flowchart of the operation of the heat insulation performance estimation apparatus according to the embodiment.
  • the heat insulation performance estimation device described below is a device that estimates an evaluation value representing the heat insulation performance of a building by evaluating the amount of heat entering and leaving the indoor space through a ceiling and a wall surrounding the indoor space.
  • the evaluation value of the heat insulation performance is a heat loss coefficient obtained by dividing the total amount of heat loss by the indoor total floor area.
  • the evaluation value of the thermal insulation performance is not limited to the heat loss coefficient.
  • the evaluation value of the thermal insulation performance may be an average skin heat transfer coefficient, thermal resistance, and the like.
  • the heat insulation performance estimation device 10 includes a first acquisition unit 11 and a second acquisition unit 12.
  • the first acquisition unit 11 acquires temperature information on the temperatures of the indoor 21 and the outdoor 22 (see FIG. 2).
  • the second acquisition unit 12 acquires heat amount information regarding the amount of energy consumed by the cooling device or the heating device that changes the temperature of the indoor space 21.
  • the indoor space 21 represents the interior space of the building 20, and the outdoor space 22 represents the outside of the building 20.
  • the internal space of the building 20 treated as the indoor 21 may be the entire internal space of the building 20 or a part of the internal space of the building 20.
  • all the walls (including the ceiling and the floor) surrounding the interior space do not have to be the boundaries with the exterior of the building 20, and some walls surrounding the interior space are the boundaries with the exterior of the building 20 It is also good.
  • the heat insulation performance of the building 20 instead of the heat insulation performance of the building 20, the heat insulation performance of the room of interest is required.
  • both the indoor 21 and the outdoor 22 may be the interior space of the building 20. That is, both the space handled as the indoor 21 and the space handled as the outdoor 22 may be included in the internal space of the building 20.
  • the temperature of the space treated as the outdoor 22 be uniform, but in reality it is often nonuniform. Therefore, as the temperature of the outdoor 22, either a representative value selected from an average value, a median value, a maximum value, and a minimum value of temperatures measured at a plurality of places, or a temperature measured at a specific place Used. Alternatively, the temperature of the outdoor 22 may be the temperature of the area where the building 20 exists, which is announced as weather information.
  • the temperature of the indoor 21 and the temperature of the outdoor 22 mean the temperature.
  • the temperature of the indoor 21 is the temperature of the surface of the indoor 21 in the wall (including the ceiling and the floor) that is the boundary between the indoor 21 and the outdoor 22.
  • the temperature of the outdoor 22 is the temperature of the surface of the outdoor 22 in the wall It may be a temperature.
  • positioned indoor 21 measures the temperature of indoor 21
  • positioned outdoors 22 demonstrates using the example of a structure which measures the temperature of the outdoors 22.
  • Both the indoor 21 and the outdoor 22 have a temperature distribution. Therefore, it is desirable that a plurality of temperature sensors 31 and a plurality of temperature sensors 32 be provided.
  • a representative value of values measured by the plurality of temperature sensors 31 is used as the temperature of the indoor space 21, and a representative value of values measured by the plurality of temperature sensors 32 is used as the temperature of the outdoor 22.
  • the representative value is selected from an average value, a weighted average value, and a mode value.
  • K is a heat transmission coefficient, which changes according to the heat insulation performance.
  • the heating device is operated indoors 21 to heat in winter, and the cooling device indoors 21 to cool in summer.
  • a heating device or a cooling device hereinafter referred to as a "heat source”
  • the heat quantity Q2 generated by the heat source is determined from the amount of energy consumed by the heat source and the energy from the heat source It is obtained from the heat conversion efficiency.
  • a conversion efficiency for example, a coefficient of performance (COP: Coefficient Of Performance) is used.
  • COP Coefficient Of Performance
  • the air conditioner 41 that consumes electric power, and the air conditioner 41 disposed in the indoor 21 is a heat source, and a configuration in which the measuring device 33 measures the size of the power consumption of the air conditioner 41 will be described as an example.
  • the measuring device 33 measures the power consumption for each unit time.
  • the heat insulation performance estimation device 10 acquires the power consumption E measured by the measurement device 33 by the second acquisition unit 12 as the heat amount information.
  • the unit time is selected, for example, in the range of 1 second to 30 minutes.
  • the unit time should be short, but as the unit time is short, the amount of data handled by the adiabatic performance estimation apparatus 10 increases and the processing load increases.
  • the small-sized air conditioner 41 for houses etc. is continuously operated until the temperature of the indoor 21 reaches the set temperature, it is configured to be intermittently operated when the thermal equilibrium state is reached. Often In consideration of such an operation of the air conditioner 41, it is desirable to select a unit time for measuring the power consumption from a range of about 30 seconds to 5 minutes.
  • the unit time may be appropriately selected, and the above-mentioned numerical values are an example.
  • the unit time for acquiring temperature information and the unit time for acquiring heat quantity information may be different.
  • the heat quantity information is power consumption and may fluctuate in a short time. However, since the temperature information changes relatively slowly, when making the unit time different, the unit time of the heat quantity information may be set short.
  • the heat quantity Q2 generated by the air conditioner 41 can be obtained as ⁇ ⁇ E if the power consumption E measured by the measuring device 33 is used.
  • the heat insulation performance estimation device 10 includes the first acquisition unit 11 that acquires temperature information, and the second acquisition unit 12 that acquires heat amount information.
  • the heat insulation performance of the building 20 is calculated by the calculation unit 13 according to the above-described relational expression using temperature information and heat amount information.
  • the adiabatic performance estimation apparatus 10 needs to have a configuration to determine whether or not it is in a thermal equilibrium state.
  • the heat insulation performance estimation device 10 determines whether or not the thermal equilibrium state is used using the storage unit 14 storing temperature information and heat amount information as time series information, and the temperature information and heat amount information stored in the storage unit 14 And a pre-determination unit 15.
  • the calculation unit 13 uses the temperature information and the heat amount information acquired during the period when the pre-determination unit 15 determines that the heat equilibrium state is stored among the temperature information and the heat amount information stored in the storage unit 14.
  • the storage unit 14 stores a storage area such as a coefficient of performance ⁇ that stores a constant value necessary for the calculation of adiabatic performance, and a state of a factor (disturbance) that affects the heat quantity of the indoor 21 besides the air conditioner 41. And an area.
  • the constant value is registered in the storage unit 14 as an additional condition using the input device 42.
  • the input device 42 may be a dedicated device attached to the heat insulation performance estimation device 10 or a terminal device selected from a smartphone, a tablet terminal, a personal computer, and the like. The disturbance will be described later.
  • the pre-determination unit 15 evaluates whether the time series of the temperature information and the heat amount information stored in the storage unit 14 is suitable for the calculation of the adiabatic performance.
  • FIG. 3 it is assumed that the air conditioner 41 starts operation at time t1 and ends operation at time t3.
  • the temperature To of the outdoor 22 does not fluctuate significantly.
  • the temperature Ti of the indoor 21 gradually increases from time t1, and the temperature Ti gradually decreases from time t3. Also, if the time from time t1 to time t3 is sufficiently long (for example, if it is 10 minutes or more), the temperature Ti is the operation of the air conditioner 41 in the period from time t2 to time t3 after time t1. Is maintained almost constant. Furthermore, at time t4 after time t3, the temperature Ti of the indoor 21 becomes the temperature in the state where the air conditioner 41 is not operating.
  • the temperature Ti hardly changes during the period from time t2 to time t3. That is, it can be said that this period is in a thermal equilibrium state between the indoor 21 and the outdoor 22.
  • the fact that the temperature Ti hardly changes means that the fluctuation range of the temperature Ti is, for example, ⁇ 1 ° C. or less.
  • the air conditioner 41 of recent years there is also a product that controls the temperature Ti of the indoor 21 within a fluctuation range of 1 ° C. or less with respect to the set temperature.
  • the adiabatic performance estimation device 10 acquires temperature information and heat amount information for each unit time, if it is determined to determine whether or not the thermal equilibrium state, temperature information in a period about several times unit time and Thermal energy information is required. That is, when the predetermination unit 15 uses the temperature information and the heat amount information stored in the storage unit 14 and the variation range of the temperature information and the heat amount information satisfies the determination condition in a period about several times unit time. Then, the period is determined as a period of thermal equilibrium. The calculation unit 13 calculates the adiabatic performance using the temperature information and the heat amount information determined by the pre-determination unit 15 to be the period of the thermal equilibrium state.
  • the judgment conditions used by the pre-judgment unit 15 to judge the fluctuation range are, for example, the fluctuation range of the temperature Ti of the indoor 21 and the fluctuation range of the temperature To of the outdoor 22 are respectively ⁇ 1 ° C. or less and the air conditioner The fluctuation range of the power consumption of 41 is set to ⁇ 5% or less.
  • these numerical values are an example, and the fluctuation range of the temperature Ti of the indoor 21, the fluctuation range of the temperature To of the outdoor 22, and the fluctuation range of the power consumption of the air conditioner 41 are not particularly limited. These fluctuation ranges are appropriately changed according to the performance of the air conditioner 41 and the like.
  • the air conditioner 41 In order to maintain the temperature Ti of the indoors 21 at the set temperature, the air conditioner 41 employs a configuration that operates intermittently, a configuration that changes the air flow rate, and the like. Therefore, in the period from time t2 to time t3 described above, the power consumption of the air conditioner 41 per unit time fluctuates. Therefore, whether or not the amount of power consumption as the heat quantity information is within the fluctuation range is not essential in order to determine the thermal equilibrium state. Furthermore, since the thermal equilibrium state is equivalent to the state in which the temperature Ti of the indoor 21 is maintained substantially constant during a period in which the temperature To of the outdoor 22 is substantially constant, the predetermination unit 15 determines the temperature of the indoor 21 The thermal equilibrium may be determined only by the variation of Ti.
  • the calculation unit 13 uses an integrated value of the power consumption during a period in which the thermal equilibrium state is determined as the power consumption used when calculating the heat insulation performance. For example, if temperature information for 30 minutes is used to determine whether the thermal equilibrium state or not, the calculation unit 13 uses the integrated value of the power consumption for the 30 minutes when calculating the adiabatic performance. .
  • the air conditioner 41 when the air conditioner 41 is configured to operate intermittently in a period in which the temperature Ti of the indoor 21 is maintained at the set temperature, the cycle P1 of operation and stop becomes substantially constant, as shown in FIG.
  • the period P1 reflects the heat insulation performance of the building 20. Therefore, if the temperature To of the outdoor 22 is substantially constant, the pre-determination unit 15 determines whether or not the thermal equilibrium state is based on the temperature Ti of the indoor 21, and the calculation unit 13 operates the air conditioner 41.
  • the adiabatic performance may be calculated based on the period P1 of and the stop. It is possible to obtain
  • the purpose of the pre-determination unit 15 to determine whether the indoors 21 and the outdoor 22 are in a thermal equilibrium state is whether temperature information and heat quantity information used by the calculation unit 13 can be used for calculation of adiabatic performance To evaluate. Therefore, the pre-determination unit 15 may determine whether the information amount of the temperature information and the heat amount information is satisfied as well as the evaluation of the thermal equilibrium state.
  • the pre-determination unit 15 determines whether or not the thermal equilibrium state is determined, the temperature information acquired by the first acquisition unit 11 for each unit time, and the unit acquired by the second acquisition unit 12 If the heat quantity information acquired for each time is missing, it may be determined that the amount of information is insufficient. At this time, if it is determined that there is a drop in temperature information and heat quantity information that should be acquired for each unit time in a period in which the thermal equilibrium state is determined, calculation unit 13 performs heat insulation performance on temperature information and heat quantity information in this period. Discard without using for calculation of.
  • the amount of heat generated by the air conditioner 41 based on the amount of power consumption, if the indoor 21 has a heat source other than the air conditioner 41, the amount of heat generated in the indoor 21 should be accurately estimated. May not be able to
  • the calculation unit 13 can not accurately obtain the heat insulation performance of the building 20. In other words, if there is the influence of the disturbance that causes the heat quantity generated in the room 21 to fluctuate, the reliability of the heat insulation performance of the building 20 obtained in the calculation unit 13 may be impaired.
  • the heat insulation performance estimation device 10 of the present embodiment is a technique for evaluating the reliability of the obtained heat insulation performance in order to enhance the reliability of the heat insulation performance of the building 20 calculated by the calculation unit 13 and disturbance for the calculation of the heat insulation performance. And technology to reduce the impact of In other words, the heat insulation performance estimation device 10 adopts the process of confirming the reliability of the heat insulation performance calculated by the calculation unit 13 and the process of preventing disturbance from being included in the information used for the calculation by the calculation unit 13. There is. If these processes are not adopted, the error of the adiabatic performance sought will increase, but if it is adopted either, the error of the adiabatic performance will be reduced.
  • the heat insulation performance estimation device 10 includes a result evaluation unit 16.
  • the result evaluation unit 16 is based on the assumption that the calculation unit 13 repeatedly calculates heat insulation performance. If the period from the operation of the air conditioner 41 to the stop is relatively long, the calculation unit 13 can calculate the heat insulation performance a plurality of times in the period, and the calculation unit 13 can also calculate the air conditioner 41. It is possible to calculate the adiabatic performance for each run of The result evaluation unit 16 stores the calculated adiabatic performance value each time the calculation unit 13 calculates the adiabatic performance of the building 20, and statistically processes the calculation results for a plurality of times to obtain the accuracy of the calculation result. Improve and evaluate the reliability of the calculation results.
  • the result evaluation unit 16 obtains the frequency distribution regarding the calculated value of the adiabatic performance for each of the calculations of the calculation unit 13, and adopts the calculated value having the maximum frequency. If this process is performed, more reliable results will be obtained as the number of calculations increases.
  • the result evaluation unit 16 may obtain the average value and the variance each time a fixed number of calculated values are obtained. For example, when the variance is within a predetermined range, the result evaluation unit 16 adopts an average value as the value of the heat insulation performance, and discards the calculated value when the variance is beyond the predetermined range.
  • the result evaluation unit 16 may obtain a frequency distribution for the calculated values of the adiabatic performance, and adopt the calculated value having the maximum frequency as the value of the adiabatic performance. In this case, the result evaluation unit 16 can evaluate the secular change of the heat insulation performance of the building 20 by evaluating the time change of the adopted value.
  • the heat insulation performance estimation device 10 may affect the heat quantity of the indoor 21 besides the air conditioner 41 in the indoor 21. Extract the conditions. For example, the state of solar radiation incident on the indoor 21, the number of persons staying in the indoor 21, the state of operation of the device 44 disposed in the indoor 21, and the like are extracted.
  • the device 44 includes a television receiver and a cooking device, as well as a lighting device, a ventilating device, a device serving as a heat source or a device for transferring heat between the indoor 21 and the outdoor 22. . Therefore, while the device 44 of this type is in operation, the heat quantity of the indoor 21 changes.
  • the effect of the disturbance can be incorporated into the calculation of the adiabatic performance
  • incorporating the effect of the disturbance into the calculation increases the number of elements used in the calculation and complicates the calculation. It also causes an error in the calculation result. Therefore, it is desirable that the calculation of the adiabatic performance does not include the influence of disturbance. In other words, it is desirable that the calculation unit 13 not use the temperature information and the heat amount information obtained during the period in which the disturbance occurs in the calculation of the adiabatic performance.
  • the calculation unit 13 may take into consideration the disturbance caused by the device 44 operating in a part of the time zone of the day. Further, even if the calculation unit 13 is, for example, the device 44 serving as a heat source, the device 44 that is always in operation, such as a refrigerator, may be incorporated into the calculation as a constant amount of heat.
  • the heat insulation performance estimation apparatus 10 acquires information from the solar radiation sensor 34 that measures solar radiation and the human sensor 35 that monitors the presence of a person in the indoor space 21 and acquires information related to the operation of the device 44.
  • the third acquisition unit 18 is provided.
  • the third acquisition unit 18 acquires information on a factor that disturbs the heat amount of the indoor space 21.
  • the third acquisition unit 18 acquires information on the amount of solar radiation measured by the solar radiation sensor 34 and information on the presence of a person in the indoor space 21 acquired by the person sensor 35.
  • the third acquisition unit 18 acquires information as to whether the device 44 disposed in the room 21 is in operation or not.
  • the determination condition of the pre-determination unit 15 a condition for determining whether or not disturbance is occurring is determined, and the determination condition is determined with respect to at least one of the amount of solar radiation, the presence of a person, and the operation of the device 44. Is desirable.
  • Information on the device 44 can be obtained by monitoring the amount of power consumption obtained from the measuring device 33. Moreover, since it is possible to use the power consumption of the apparatus 44 arrange
  • the information acquired by the third acquisition unit 18 is stored in the storage unit 14.
  • the pre-determination unit 15 calculates temperature information and heat amount information of the corresponding period. Hand over. Therefore, the calculation unit 13 can calculate the adiabatic performance using the temperature information and the heat amount information which are obtained during a period in which the indoor 21 and the outdoor 22 are in a thermal equilibrium state and do not include a disturbance.
  • the heat loss coefficient is a value obtained by dividing the total amount of heat loss by the total floor area, it is necessary to obtain the total floor area of the indoor room 21.
  • the total floor area it is possible to use a value represented in a design drawing of the building 20 or an actual measurement value obtained by measuring the dimensions of the indoor space 21.
  • the value of the standard based on the performance of the air conditioner 41 may be used.
  • the value of the standard based on the performance of the air conditioner 41 is associated with the output of the air conditioner 41, and is set according to the material (for example, reinforced concrete, wooden) that constitutes the building 20 or the like. That is, since the numerical value of the standard of the total floor area related to the space where the air conditioner 41 is installed is shown as the standard of the capacity of the air conditioner 41, this value is used as the general value of the total floor area.
  • the heat insulation performance is determined on the same basis as the other buildings 20. Therefore, it is possible to quantify the heat insulation performance calculated
  • the heat insulation performance estimation apparatus 10 of this embodiment is provided with the selection part 19 which selects which of two types of total floor area is used.
  • Selection unit 19 adopts a configuration for selecting one of two types of floor areas according to the user's input operation.
  • a predetermined selection condition is set in the selection unit 19, and it is possible to select one of the two types of total floor area that satisfies the selection condition.
  • the selection condition is appropriately set such as a condition that the user uses the total floor area selected by the input operation or a condition that the larger one of the two types of total floor area is used.
  • the adiabatic performance estimation apparatus 10 is configured mainly by hardware elements of a device including a processor that operates according to a program and a device that exchanges signals with an external device.
  • the device provided with the processor may be a micro processing unit (MPU) provided separately with a memory in addition to a microcomputer (Micro controller) provided integrally with the processor and the memory.
  • the program is provided in a state of being written in a ROM (Read Only Memory), and can be provided using a computer readable recording medium.
  • the program can also be provided through a telecommunication line such as the Internet.
  • the heat insulation performance estimation device 10 can be incorporated into a controller of a home energy management system (HEMS) that performs monitoring and control of the device 44 used in the building 20 by communication.
  • HEMS home energy management system
  • the first acquisition unit 11, the second acquisition unit 12, the presentation unit 17, the third acquisition unit 18, the presentation device 43, and the like are realized by a terminal device, and the remaining functions of the heat insulation performance estimation device 10 are , And may be realized by a server that communicates with a terminal device through a telecommunication line.
  • the terminal device is selected from a smartphone, a tablet terminal, a personal computer, and the like.
  • the telecommunication line is selected from the Internet, a mobile communication network or the like.
  • the server is not limited to the configuration realized by one computer, and may be a configuration realized by a plurality of computers, and may be a cloud computing system.
  • the heat insulation performance estimation device 10 When the configuration described above is adopted, it becomes possible to realize the heat insulation performance estimation device 10 by the terminal device and the server by executing an application program (so-called “application”) in the terminal device.
  • application an application program
  • the server since the server is made to perform a process with a large load that the calculation unit 13, the predetermination unit 15, the result evaluation unit 16 and the like execute, a lot of hardware resources are not required of the terminal device. This facilitates the realization of the terminal device.
  • the first acquisition unit 11, the second acquisition unit 12, and the third acquisition unit 18 are realized by the controller of the HEMS, and the terminal device relays communication between the controller and the server. And the role as the presentation device 43 may be given.
  • the heat insulation performance estimation device 10 described above can be configured to perform processing for automatically calculating the heat insulation performance of the building 20 each time the air conditioner 41 is operated. Moreover, the heat insulation performance estimation apparatus 10 can also be configured to indicate the timing of performing the calculation by a switch or the like. However, since the result evaluation unit 16 evaluates the calculated value obtained by the calculation unit 13 by statistical processing, when the result evaluation unit 16 is provided, a configuration for automatically calculating the heat insulation performance is adopted. Is desirable.
  • FIG. 5 is a flowchart of the operation of the heat insulation performance estimation apparatus 10.
  • the heat insulation performance estimation device 10 includes a first acquisition unit 11, a second acquisition unit 12, a front determination unit 15, and a calculation unit 13.
  • the first acquisition unit 11 acquires temperature information on the temperatures of the indoor 21 and the outdoor 22 in the building 20 (S11).
  • the second acquisition unit 12 acquires heat amount information on the amount of energy consumed by the cooling device or the heating device that changes the temperature of the indoor 21 (S12).
  • the pre-determination unit 15 determines whether the temperature information and the heat quantity information satisfy a predetermined determination condition (S13).
  • the calculation unit 13 calculates the heat insulation performance of the building 20 using the temperature information and the heat amount information that are determined to satisfy the predetermined determination condition (S14).
  • the pre-determination unit 15 determines whether the determination condition is satisfied with respect to the temperature information and the heat amount information used by the calculation unit 13 for calculation, by setting the appropriate determination condition It becomes possible to sort out temperature information and heat quantity information which are not suitable for calculation. As a result, it is possible to improve the reliability of the calculation result of the calculation unit 13.
  • the heat insulation performance estimation device 10 includes the result evaluation unit 16. That is, the calculation unit 13 calculates the heat insulation performance of the building 20 multiple times, and the result evaluation unit 16 evaluates the calculation results of the heat insulation performance of the multiple buildings 20 calculated by the calculation unit 13 by statistical processing.
  • the calculation results of the heat insulation performance of the building 20 calculated by the calculation unit 13 are statistically processed a plurality of calculation results, it is possible to extract highly reliable values from the calculation results of the plurality of times. The accuracy of the calculation result can be improved. In addition, it is possible to calculate the degree of reliability or error of the extracted value by statistical processing of the calculation result.
  • the predetermined determination condition is set so as to determine that the temperature information and the heat amount information are not missing in the acquired time zone.
  • the pre-determination unit 15 may determine, as the predetermined determination condition, whether the temperature information and the heat amount information satisfy the condition that no dropout occurs in the acquired time zone.
  • the predetermined determination condition relates to the variation range of the temperature information and the heat amount information so as to determine that the temperature information and the heat amount information are acquired during the period in which the indoor 21 and the outdoor 22 are in a thermal equilibrium state. It is desirable that it is set.
  • the pre-determination unit 15 determines whether the temperature information and the heat quantity information satisfy the condition of being acquired during the thermal equilibrium state between the indoor 21 and the outdoor 22 as the predetermined determination condition. You may judge.
  • the predetermined determination condition is a condition for determining whether or not the disturbance with respect to the heat amount of the indoor 21 is generated, and the pre-determination unit 15 determines the temperature information and the heat amount information obtained in the period in which the disturbance is generated. It is desirable to discard In other words, the pre-determination unit 15 determines, as the predetermined determination condition, whether or not the condition that the disturbance to the heat quantity of the indoor 21 is not satisfied is satisfied, and the temperature information obtained in the period in which the disturbance is generated The heat quantity information may be discarded.
  • the reliability of the calculation result can be improved by selecting the temperature information and the heat amount information suitable for the calculation by the pre-determination unit 15 using such a determination condition.
  • the pre-determination unit 15 determines that the temperature information and the heat amount information used for the calculation are missing, if the information is missing due to a communication error or the like, the information necessary for the calculation is not used for the calculation. You can secure the quantity.
  • the heat insulation performance can be easily calculated by determining the period of thermal equilibrium based on the range of fluctuation of temperature information and heat quantity information and using the temperature information and heat quantity information of the period of thermal equilibrium state for calculation. There is a possibility that the variation of the calculation result can be suppressed. Alternatively, by discarding the temperature information and the heat quantity information of the period in which the disturbance occurs, it is possible to suppress the dispersion of the calculation result due to the disturbance.
  • the predetermined determination condition is set to determine that the temperature information and the heat amount information are acquired in a nighttime zone where solar radiation does not occur.
  • the pre-determination unit 15 may determine, as the predetermined determination condition, whether the temperature information and the heat amount information satisfy the condition of being acquired in the night time zone in which no solar radiation occurs.
  • the predetermined determination condition is set so as to determine that the temperature information and the heat quantity information are acquired in the time zone in which the person is absent in the indoor room 21 Is desirable.
  • the pre-determination unit 15 may determine, as the predetermined determination condition, whether or not the temperature information and the heat amount information satisfy the condition that the person is not present in the indoor 21 and acquired during the time zone .
  • the predetermined determination condition determines that the temperature information and the heat amount information are acquired in the time zone in which the device 44 is stopped. It is desirable that it is set.
  • the pre-determination unit 15 may determine, as the predetermined determination condition, whether the temperature information and the heat amount information satisfy the condition that the device 44 is acquired in the stopped time zone.
  • the device 44 is at least one of a device serving as a heat source during operation and a ventilation device.
  • the devices that generate heat are, for example, lighting devices, cooking devices, and the like.
  • the heat insulation performance of the building 20 can be accurately determined by using the temperature information and the heat amount information of the period when the device 44 of this type is not in operation. It becomes possible to calculate.
  • the predetermined judgment condition is that the temperature information and the heat amount information are in the time zone in which the ventilator is operating. It is set to determine that it has been acquired.
  • the pre-determination unit 15 may determine, as the predetermined determination condition, whether the temperature information and the heat amount information satisfy the condition that the temperature information and the heat amount information are acquired during the operating time of the ventilator.
  • the determination condition in this case needs to be set so as to determine that the ventilator is operating.
  • the heat insulation performance estimation device 10 includes the selection unit 19.
  • the selection unit 19 selects, as the total floor area, a value that satisfies a predetermined selection condition among a value determined as an index of the performance of the cooling device or the heating device and a value based on the actual measurement value of the building 20.
  • the heat loss coefficient when used to evaluate the heat insulation performance, it is possible to use one of an index of the performance of the cooling device or the heating device and an actual measurement value as the total floor area. Therefore, it is necessary to use numerical values to evaluate the thermal insulation performance, as in the case of evaluating the aging of the thermal insulation performance, but if the numerical values themselves are not a problem, the index of the performance of the cooling equipment or heating equipment It can be used.
  • the actual measurement value of the building 20 can be used.
  • the present invention may be realized as a heat insulation performance estimation method executed by a computer such as a heat insulation performance estimation apparatus.
  • the present invention may be realized as a program for causing a computer to function as a thermal insulation performance estimation device.
  • the present invention may be realized as a program for causing a computer to execute the heat insulation performance estimation method.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This heat insulating performance estimation device (10) is provided with a first acquiring unit (11), a second acquiring unit (12), a pre-determination unit (15), and a calculation unit (13). The first acquiring unit (11) acquires temperature information on the temperature at the inside (21) and the outside (22) of a building (20). The second acquiring unit (12) acquires caloric information on an energy amount consumed by a cooling apparatus or a heating apparatus which changes the inside (21) temperature. The pre-determination unit (15) determines whether or not the temperature information and the caloric information satisfy predetermined determination conditions. The calculation unit (13) calculates the heat insulating performance of the building (20) by using the temperature information and the caloric information when the predetermined determination conditions are satisfied.

Description

断熱性能推定装置、および、プログラムThermal insulation performance estimation device and program
 本発明は、建物の断熱性能を推定する断熱性能推定装置、およびコンピュータを断熱性能推定装置として機能させるためのプログラムに関する。 The present invention relates to an adiabatic performance estimation device for estimating the thermal insulation performance of a building, and a program for causing a computer to function as the adiabatic performance estimation device.
 従来、住宅のような建物の断熱性能を測定するために、建物の内部の温度と、建物の外部の温度と、設備機器のエネルギーの消費量とを計測し、計測したデータの履歴を用いて断熱性能を解析する技術が提案されている(たとえば、特許文献1参照)。 Conventionally, in order to measure the insulation performance of a building such as a house, the temperature of the inside of the building, the temperature outside the building, and the energy consumption of equipment and equipment are measured, and the history of the measured data is used A technique for analyzing thermal insulation performance has been proposed (see, for example, Patent Document 1).
 特許文献1には、暖房や冷房などの空調装置の稼働、人の発熱、窓及びドアの開閉、照明機器、テレビ、及び冷蔵庫などの電気機器の稼働、並びに、発熱装置の稼働などの影響の少ない時期を選んで、断熱性能を測定することが記載されている。また、特許文献1には、このような時期として、春または秋の深夜であって住人が不在のときが例示されている。特許文献1では、このような時期は、空調装置を使う必要がなく、人の活動による発熱量が少なく、窓及びドアが開閉されることがなく、照明機器及びテレビなどのスイッチがオフになる時期であることが説明されている。 Patent Document 1 describes the effects of the operation of air conditioners such as heating and cooling, heat generation by people, opening and closing of windows and doors, the operation of electric devices such as lighting devices, televisions, and refrigerators, and the operation of heating devices. It has been described that the heat insulation performance is measured by selecting a small period of time. In addition, Patent Document 1 exemplifies such a time when it is late in the spring or autumn and there are no residents. In Patent Document 1, there is no need to use an air conditioner at such a time, heat generation by human activity is small, windows and doors are not opened, and switches such as lighting devices and televisions are turned off. It is explained that it is time.
 さらに、特許文献1には、発熱装置を稼働させ、室温が一定温度に到達すると、住宅の内部の温度と外部の温度とを測定し、発熱装置の消費電力量を発熱量に換算することが記載されている。また、住宅の内部と外部との温度差と発熱量との関係から、断熱性能の評価のために熱損失係数を求めることが記載されている。特許文献1では、室温が一定温度に到達したことは、温湿度センサの計測値から判断される。 Furthermore, according to Patent Document 1, when the heat generating device is operated and the room temperature reaches a certain temperature, the temperature inside the house and the temperature outside are measured, and the power consumption of the heat generating device is converted to the heat generation amount. Have been described. Further, it is described that the heat loss coefficient is determined for the evaluation of the heat insulation performance from the relationship between the temperature difference between the inside and outside of the house and the calorific value. In Patent Document 1, the fact that the room temperature has reached a constant temperature is determined from the measurement value of the temperature and humidity sensor.
特開2010-242487号公報JP, 2010-242487, A
 上述したように、特許文献1には、時期を選択することによって建物の断熱性能を評価する技術と、発熱装置を稼働させた状態で建物の断熱性能を評価する技術とが記載されている。 As described above, Patent Document 1 describes a technology for evaluating the heat insulation performance of a building by selecting a time, and a technology for evaluating the heat insulation performance of the building in a state where the heat generating apparatus is operated.
 ところで、断熱性能を求める際に、屋内の熱量を考慮する必要があるが、屋内の熱量は様々な要素によって変動するため、正確に測定することが難しい。そのため、特許文献1では、特定の時期を選択するか、発熱装置によって室温を一定温度に到達させている。 By the way, although it is necessary to consider the amount of heat in the room when determining the heat insulation performance, the amount of heat in the room fluctuates due to various factors, so it is difficult to measure it accurately. Therefore, in Patent Document 1, a specific time is selected, or a room temperature is allowed to reach a constant temperature by a heating device.
 しかしながら、特許文献1に記載された技術のように、断熱性能の計算に用いる情報を取得する時期、あるいは情報を取得したときの環境に着目したとしても、屋内の熱量を精度よく計測できるとは限らない。つまり、特許文献1に記載された技術では、断熱性能の計算結果について高い信頼性が得られているとは言えない。 However, as in the technique described in Patent Document 1, it is possible to accurately measure the amount of heat in the room even when attention is paid to the time of acquiring information used for calculation of heat insulation performance or the environment when acquiring the information. Not exclusively. That is, with the technology described in Patent Document 1, it can not be said that high reliability is obtained for the calculation result of the heat insulation performance.
 本発明は、断熱性能について計算結果の信頼性を向上させることを可能にした断熱性能推定装置、およびコンピュータを断熱性能推定装置として機能させるためのプログラムを提供することを目的とする。 An object of the present invention is to provide an adiabatic performance estimation device capable of improving the reliability of calculation results with respect to adiabatic performance, and a program for causing a computer to function as the adiabatic performance estimation device.
 本発明に係る断熱性能推定装置は、建物における屋内および屋外の温度に関する温度情報を取得する第1の取得部と、前記屋内の温度を変化させる冷房機器または暖房機器が消費するエネルギー量に関する熱量情報を取得する第2の取得部と、前記温度情報と前記熱量情報とが所定の判定条件を満たすか否かを判定する前置判定部と、前記判定条件を満たすと判定された、前記温度情報と前記熱量情報とを用いて前記建物の断熱性能を計算する計算部とを備えることを特徴とする。 The heat insulation performance estimation apparatus according to the present invention includes a first acquisition unit that acquires temperature information on indoor and outdoor temperatures in a building, and heat quantity information on the amount of energy consumed by a cooling device or heating device that changes the indoor temperature. The temperature information determined to satisfy the determination condition, and a predetermination unit determining whether the temperature information and the heat amount information satisfy a predetermined determination condition; And the heat quantity information to calculate the heat insulation performance of the building.
 本発明に係るプログラムは、コンピュータを、断熱性能推定装置として機能させるためのものである。 A program according to the present invention is for causing a computer to function as a thermal insulation performance estimation device.
 本発明の構成では、計算部が計算に用いる温度情報および熱量情報に関して、判定条件を満足するか否かを前置判定部が判定する。このため、適切な判定条件が設定されることにより、計算に適さない温度情報および熱量情報を選別することが可能になる。その結果、計算部の計算結果の信頼性を向上させることが可能になるという利点を有する。 In the configuration of the present invention, the pre-determination unit determines whether the determination condition is satisfied with respect to temperature information and heat amount information used by the calculation unit for calculation. Therefore, by setting appropriate determination conditions, it becomes possible to sort out temperature information and heat amount information that are not suitable for calculation. As a result, it has the advantage of being able to improve the reliability of the calculation result of the calculation unit.
図1は、実施形態に係る断熱性能推定装置を含む全体構成を示すブロック図である。FIG. 1 is a block diagram showing the entire configuration including the heat insulation performance estimation device according to the embodiment. 図2は、実施形態における、装置の配置例を示す図である。FIG. 2 is a view showing an arrangement example of the device in the embodiment. 図3は、実施形態に係る空調装置を暖房動作させた場合の屋内の温度変化の例を示す図である。Drawing 3 is a figure showing an example of indoor temperature change at the time of heating operation of an air-conditioning system concerning an embodiment. 図4は、実施形態に係る空調装置を断続運転する場合の動作例を示す図である。FIG. 4 is a diagram showing an operation example in the case of intermittently operating the air conditioner according to the embodiment. 図5は、実施形態に係る断熱性能推定装置の動作のフローチャートである。FIG. 5 is a flowchart of the operation of the heat insulation performance estimation apparatus according to the embodiment.
 (実施形態)
 以下、実施形態について、図面を参照しながら説明する。なお、以下で説明する実施形態は、いずれも包括的または具体的な例を示すものである。以下の実施形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
(Embodiment)
Hereinafter, embodiments will be described with reference to the drawings. The embodiments described below are all inclusive or specific examples. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Moreover, among the components in the following embodiments, components not described in the independent claim showing the highest level concept are described as optional components.
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付し、重複する説明は省略または簡略化される場合がある。 Each figure is a schematic view, and is not necessarily illustrated strictly. Further, in the drawings, substantially the same configuration will be denoted by the same reference numeral, and overlapping description may be omitted or simplified.
 以下に説明する断熱性能推定装置は、屋内空間を囲む天井や壁を通して当該屋内空間に出入りする熱量を評価することによって、建物の断熱性能を表す評価値を推定する装置である。本実施形態では、断熱性能の評価値は、総熱損失量を屋内の延床面積で除した熱損失係数とする。断熱性能の評価値は、熱損失係数に限らない。たとえば、断熱性能の評価値は、外皮平均熱貫流率、熱抵抗などであってもよい。 The heat insulation performance estimation device described below is a device that estimates an evaluation value representing the heat insulation performance of a building by evaluating the amount of heat entering and leaving the indoor space through a ceiling and a wall surrounding the indoor space. In the present embodiment, the evaluation value of the heat insulation performance is a heat loss coefficient obtained by dividing the total amount of heat loss by the indoor total floor area. The evaluation value of the thermal insulation performance is not limited to the heat loss coefficient. For example, the evaluation value of the thermal insulation performance may be an average skin heat transfer coefficient, thermal resistance, and the like.
 図1のように、断熱性能推定装置10は、第1の取得部11と第2の取得部12とを備える。第1の取得部11は、屋内21および屋外22(図2参照)の温度に関する温度情報を取得する。第2の取得部12は、屋内21の温度を変化させる冷房機器または暖房機器が消費するエネルギー量に関する熱量情報を取得する。本実施形態において、屋内21は建物20の内部空間を表し、屋外22は建物20の外部を表す。 As shown in FIG. 1, the heat insulation performance estimation device 10 includes a first acquisition unit 11 and a second acquisition unit 12. The first acquisition unit 11 acquires temperature information on the temperatures of the indoor 21 and the outdoor 22 (see FIG. 2). The second acquisition unit 12 acquires heat amount information regarding the amount of energy consumed by the cooling device or the heating device that changes the temperature of the indoor space 21. In the present embodiment, the indoor space 21 represents the interior space of the building 20, and the outdoor space 22 represents the outside of the building 20.
 ただし、屋内21として扱う建物20の内部空間は、建物20の内部空間の全体であってもよいし、建物20の内部空間の一部であってもよい。言い換えると、内部空間を囲むすべての壁(天井、床を含む)が建物20の外部との境界である必要はなく、内部空間を囲む一部の壁が建物20の外部との境界であってもよい。この場合、建物20の断熱性能に代えて、着目する部屋の断熱性能が求められることになる。なお、屋内21と屋外22との両方が建物20の内部空間であってもよい。つまり、建物20の内部空間に、屋内21として扱う空間と、屋外22として扱う空間との両方が含まれていてもよい。 However, the internal space of the building 20 treated as the indoor 21 may be the entire internal space of the building 20 or a part of the internal space of the building 20. In other words, all the walls (including the ceiling and the floor) surrounding the interior space do not have to be the boundaries with the exterior of the building 20, and some walls surrounding the interior space are the boundaries with the exterior of the building 20 It is also good. In this case, instead of the heat insulation performance of the building 20, the heat insulation performance of the room of interest is required. Note that both the indoor 21 and the outdoor 22 may be the interior space of the building 20. That is, both the space handled as the indoor 21 and the space handled as the outdoor 22 may be included in the internal space of the building 20.
 屋外22として扱う空間の温度は、均一であることが望ましいが、現実には不均一であることが多い。そのため、屋外22の温度としては、複数箇所で計測した温度の平均値、中央値、最大値、及び、最小値などから選択される代表値と、特定の場所で計測した温度とのいずれかが用いられる。あるいはまた、屋外22の温度は、気象情報として発表されている、建物20が存在する地域の気温であってもよい。 It is desirable that the temperature of the space treated as the outdoor 22 be uniform, but in reality it is often nonuniform. Therefore, as the temperature of the outdoor 22, either a representative value selected from an average value, a median value, a maximum value, and a minimum value of temperatures measured at a plurality of places, or a temperature measured at a specific place Used. Alternatively, the temperature of the outdoor 22 may be the temperature of the area where the building 20 exists, which is announced as weather information.
 屋内21の温度と屋外22の温度とは、ここでは、気温を意味している。ただし、屋内21の温度は、屋内21と屋外22との境界となる壁(天井、床を含む)における屋内21の面の温度であり、屋外22の温度は、当該壁における屋外22の面の温度であってもよい。 Here, the temperature of the indoor 21 and the temperature of the outdoor 22 mean the temperature. However, the temperature of the indoor 21 is the temperature of the surface of the indoor 21 in the wall (including the ceiling and the floor) that is the boundary between the indoor 21 and the outdoor 22. The temperature of the outdoor 22 is the temperature of the surface of the outdoor 22 in the wall It may be a temperature.
 以下では、屋内21に配置された温度センサ31が屋内21の温度を計測し、屋外22に配置された温度センサ32が屋外22の温度を計測する構成例を用いて説明する。すなわち、第1の取得部11は、温度センサ31が計測した屋内21の気温と、温度センサ32が計測した屋外22の気温とを温度情報として取得する。 Below, the temperature sensor 31 arrange | positioned indoor 21 measures the temperature of indoor 21, and the temperature sensor 32 arrange | positioned outdoors 22 demonstrates using the example of a structure which measures the temperature of the outdoors 22. FIG. That is, the first acquisition unit 11 acquires the temperature of the indoor space 21 measured by the temperature sensor 31 and the temperature of the outdoor space 22 measured by the temperature sensor 32 as temperature information.
 屋内21及び屋外22は、どちらも温度分布を有する。このため、温度センサ31と温度センサ32とは複数個ずつ設けられることが望ましい。この場合、屋内21の温度としては、複数の温度センサ31が計測した値の代表値が用いられ、屋外22の温度としては、複数の温度センサ32が計測した値の代表値が用いられる。代表値は、平均値、加重平均値、及び最頻値などから選択される。 Both the indoor 21 and the outdoor 22 have a temperature distribution. Therefore, it is desirable that a plurality of temperature sensors 31 and a plurality of temperature sensors 32 be provided. In this case, a representative value of values measured by the plurality of temperature sensors 31 is used as the temperature of the indoor space 21, and a representative value of values measured by the plurality of temperature sensors 32 is used as the temperature of the outdoor 22. The representative value is selected from an average value, a weighted average value, and a mode value.
 いま、屋内21と屋外22とが熱平衡状態であれば、屋内21と屋外22との温度差は、屋内21と屋外22との境界である壁を通して移動する熱量に比例する。すなわち、屋内21の温度をTi、屋外22の温度をToとすれば、壁を通して移動する熱量Q1は、Q1=K|Ti-To|で表される。ここで、Kは熱貫流率であり、断熱性能に応じて変化する。 Now, if the indoor 21 and the outdoor 22 are in thermal equilibrium, the temperature difference between the indoor 21 and the outdoor 22 is proportional to the amount of heat moving through the wall that is the boundary between the indoor 21 and the outdoor 22. That is, assuming that the temperature of the indoor 21 is Ti and the temperature of the outdoor 22 is To, the heat quantity Q1 moving through the wall is represented by Q1 = K | Ti−To |. Here, K is a heat transmission coefficient, which changes according to the heat insulation performance.
 なお、Ti>Toであれば屋内21から屋外22に熱が移動し、Ti<Toであれば屋外22から屋内21に熱が移動する。また、本実施形態では、断熱性能の評価値として熱損失係数を用いているが、熱損失係数は熱貫流率を用いて求められる。つまり、熱損失係数を求める場合も同様の関係が成立する。 If Ti> To, heat is transferred from the indoor 21 to the outdoor 22. If Ti <To, heat is transferred from the outdoor 22 to the indoor 21. Moreover, in this embodiment, although a heat loss coefficient is used as an evaluation value of heat insulation performance, a heat loss coefficient is calculated | required using a heat transmission coefficient. That is, the same relationship is established when obtaining the heat loss coefficient.
 ところで、冬季には暖房を行うために屋内21で暖房装置を運転し、夏季には冷房を行うために屋内21で冷房装置を運転することが多い。暖房装置あるいは冷房装置(以下、「熱源」という)が運転されていると、屋内21と屋外22とに明確な温度差が生じる。したがって、熱源が運転中であって、かつ、屋内21と屋外22とが熱平衡状態であれば、壁を通して移動した熱量Q1は、熱源から発生した熱量Q2と等しくなる。つまり、熱平衡状態では、Q2=Q1=K|Ti-To|である。 In many cases, the heating device is operated indoors 21 to heat in winter, and the cooling device indoors 21 to cool in summer. When a heating device or a cooling device (hereinafter referred to as a "heat source") is operated, a clear temperature difference occurs between the indoor 21 and the outdoor 22. Therefore, if the heat source is in operation and the indoor 21 and the outdoor 22 are in thermal equilibrium, the heat quantity Q1 moved through the wall is equal to the heat quantity Q2 generated from the heat source. That is, in the thermal equilibrium state, Q2 = Q1 = K | Ti-To |.
 熱源は、電力、ガス、燃料(灯油、ガソリン)などから選択されるエネルギーを消費して発熱あるいは吸熱を行うから、熱源が生成する熱量Q2は、熱源が消費したエネルギー量と、熱源によるエネルギーから熱への変換効率とから求められる。変換効率としては、たとえば、成績係数(COP:Coefficient Of Performance)が用いられる。いま、熱平衡状態において熱源が消費するエネルギー量(たとえば、消費電力量)をEとし、変換効率をηとすれば、Q2=η・Eと表される。変換効率ηの特性は、熱源の仕様でほぼ決まり、諸条件による変動があるが、熱平衡状態においては一定値として扱ってもよい。なお、熱量Q2は、温熱量ではなく、冷熱量であってもよい。 Since the heat source consumes energy selected from electric power, gas, fuel (kerosene, gasoline), etc. to generate heat or absorb heat, the heat quantity Q2 generated by the heat source is determined from the amount of energy consumed by the heat source and the energy from the heat source It is obtained from the heat conversion efficiency. As a conversion efficiency, for example, a coefficient of performance (COP: Coefficient Of Performance) is used. Now, assuming that the amount of energy consumed by the heat source in the thermal equilibrium state (for example, the amount of power consumption) is E and the conversion efficiency is η, Q2 == · E. The characteristics of the conversion efficiency η are substantially determined by the specification of the heat source, and there are fluctuations due to various conditions, but may be treated as constant values in the thermal equilibrium state. The heat quantity Q2 may be a cold heat quantity instead of a warm heat quantity.
 以下では、電力を消費する空調装置41であって、屋内21に配置された空調装置41が熱源であり、空調装置41の消費電力の大きさを計測装置33が計測する構成を例として説明する。計測装置33は、単位時間ごとの消費電力量を計測する。断熱性能推定装置10は、計測装置33が計測した消費電力量Eを、熱量情報として第2の取得部12によって取得する。 In the following, the air conditioner 41 that consumes electric power, and the air conditioner 41 disposed in the indoor 21 is a heat source, and a configuration in which the measuring device 33 measures the size of the power consumption of the air conditioner 41 will be described as an example. . The measuring device 33 measures the power consumption for each unit time. The heat insulation performance estimation device 10 acquires the power consumption E measured by the measurement device 33 by the second acquisition unit 12 as the heat amount information.
 単位時間は、たとえば1秒から30分の範囲から選択される。単位時間は短いほうがよいが、単位時間が短いほど、断熱性能推定装置10で扱うデータ量が増加し、処理負荷が増加する。一方、住宅用などの小型の空調装置41は、屋内21の温度が設定された温度になるまでは連続的に運転されるが、熱平衡状態に到達すると、断続的に運転されるように構成されていることが多い。このような空調装置41の動作を考慮すれば、消費電力量を計測する単位時間は、30秒から5分程度の範囲から選択することが望ましい。 The unit time is selected, for example, in the range of 1 second to 30 minutes. The unit time should be short, but as the unit time is short, the amount of data handled by the adiabatic performance estimation apparatus 10 increases and the processing load increases. On the other hand, although the small-sized air conditioner 41 for houses etc. is continuously operated until the temperature of the indoor 21 reaches the set temperature, it is configured to be intermittently operated when the thermal equilibrium state is reached. Often In consideration of such an operation of the air conditioner 41, it is desirable to select a unit time for measuring the power consumption from a range of about 30 seconds to 5 minutes.
 もちろん、単位時間は適宜に選択すればよく、上述した数値は一例である。また、温度情報を取得する単位時間と熱量情報を取得する単位時間とは異なっていてもよい。熱量情報は、消費電力量であって短時間に変動することがあるが、温度情報は比較的緩やかに変化するから、単位時間を異ならせる場合、熱量情報の単位時間を短く設定すればよい。 Of course, the unit time may be appropriately selected, and the above-mentioned numerical values are an example. Also, the unit time for acquiring temperature information and the unit time for acquiring heat quantity information may be different. The heat quantity information is power consumption and may fluctuate in a short time. However, since the temperature information changes relatively slowly, when making the unit time different, the unit time of the heat quantity information may be set short.
 空調装置41の成績係数ηは既知であるから、計測装置33が計測した消費電力量Eを用いると、空調装置41が生成する熱量Q2は、η・Eとして求められる。 Since the coefficient of performance η of the air conditioner 41 is known, the heat quantity Q2 generated by the air conditioner 41 can be obtained as η · E if the power consumption E measured by the measuring device 33 is used.
 屋内21と屋外22とが熱平衡状態である場合、η・E=K|Ti-To|が成立する。したがって、消費電力量Eから未知数である熱貫流率Kが求められる。すなわち、空調装置41の消費電力量Eと、屋内21の温度Tiおよび屋外22の温度Toとがわかると、建物20の断熱性能が求められる。 When the indoors 21 and the outdoor 22 are in thermal equilibrium, η · E = K | Ti−To | holds. Therefore, the heat transmission coefficient K, which is an unknown quantity, can be obtained from the power consumption E. That is, when the power consumption E of the air conditioner 41 and the temperature Ti of the indoor 21 and the temperature To of the outdoor 22 are known, the heat insulating performance of the building 20 is required.
 上述したように、断熱性能推定装置10は、温度情報を取得する第1の取得部11と、熱量情報を取得する第2の取得部12とを備えている。建物20の断熱性能は、温度情報と熱量情報とを用いて、上述した関係式により計算部13によって算出される。 As described above, the heat insulation performance estimation device 10 includes the first acquisition unit 11 that acquires temperature information, and the second acquisition unit 12 that acquires heat amount information. The heat insulation performance of the building 20 is calculated by the calculation unit 13 according to the above-described relational expression using temperature information and heat amount information.
 ところで、上述した動作例では、計算部13は、熱平衡状態において得られた温度情報および熱量情報を用いることを前提条件にしている。したがって、断熱性能推定装置10は、熱平衡状態か否かを判定する構成を備えている必要がある。 By the way, in the operation example mentioned above, it is presupposed that the calculation unit 13 uses the temperature information and the heat quantity information obtained in the thermal equilibrium state. Therefore, the adiabatic performance estimation apparatus 10 needs to have a configuration to determine whether or not it is in a thermal equilibrium state.
 そのため、断熱性能推定装置10は、温度情報および熱量情報を時系列の情報で記憶する記憶部14と、記憶部14が記憶している温度情報および熱量情報を用いて熱平衡状態か否かを判定する前置判定部15とを備える。計算部13は、記憶部14が記憶している温度情報および熱量情報のうち、前置判定部15が熱平衡状態と判定した期間に取得された温度情報および熱量情報を用いて建物20の断熱性能を計算する。 Therefore, the heat insulation performance estimation device 10 determines whether or not the thermal equilibrium state is used using the storage unit 14 storing temperature information and heat amount information as time series information, and the temperature information and heat amount information stored in the storage unit 14 And a pre-determination unit 15. The calculation unit 13 uses the temperature information and the heat amount information acquired during the period when the pre-determination unit 15 determines that the heat equilibrium state is stored among the temperature information and the heat amount information stored in the storage unit 14. Calculate
 記憶部14は、成績係数ηのように断熱性能の計算に必要な定数値を記憶する記憶領域と、空調装置41のほかに屋内21の熱量に影響する因子(外乱)の状態を記憶する記憶領域とを備える。定数値は、入力装置42を用いて付加条件として記憶部14に登録される。入力装置42は、断熱性能推定装置10に付設される専用装置のほか、スマートフォン、タブレット端末、及び、パーソナルコンピュータなどから選択される端末装置であってもよい。外乱については後述する。 The storage unit 14 stores a storage area such as a coefficient of performance η that stores a constant value necessary for the calculation of adiabatic performance, and a state of a factor (disturbance) that affects the heat quantity of the indoor 21 besides the air conditioner 41. And an area. The constant value is registered in the storage unit 14 as an additional condition using the input device 42. The input device 42 may be a dedicated device attached to the heat insulation performance estimation device 10 or a terminal device selected from a smartphone, a tablet terminal, a personal computer, and the like. The disturbance will be described later.
 前置判定部15は、記憶部14が記憶している温度情報および熱量情報の時系列について、断熱性能の計算に適しているか否かを評価する。ここで、空調装置41で暖房を行う例を用いて説明する。いま、図3に示すように、空調装置41が、時刻t1で運転を開始し、時刻t3で運転を終了したとする。なお、図3に示す例では、屋外22の温度Toは大きく変動しないと仮定している。 The pre-determination unit 15 evaluates whether the time series of the temperature information and the heat amount information stored in the storage unit 14 is suitable for the calculation of the adiabatic performance. Here, it demonstrates using the example which heats with the air conditioner 41. FIG. Now, as shown in FIG. 3, it is assumed that the air conditioner 41 starts operation at time t1 and ends operation at time t3. In the example shown in FIG. 3, it is assumed that the temperature To of the outdoor 22 does not fluctuate significantly.
 この場合、時刻t1から屋内21の温度Tiは次第に上昇し、時刻t3から温度Tiは次第に低下する。また、時刻t1から時刻t3までの時間が十分に長ければ(たとえば、10分以上であれば)、時刻t1の後の時刻t2から時刻t3までの期間に、温度Tiは、空調装置41の動作によりほぼ一定に維持される。さらに、時刻t3の後の時刻t4において、屋内21の温度Tiは空調装置41を運転していない状態の温度になる。 In this case, the temperature Ti of the indoor 21 gradually increases from time t1, and the temperature Ti gradually decreases from time t3. Also, if the time from time t1 to time t3 is sufficiently long (for example, if it is 10 minutes or more), the temperature Ti is the operation of the air conditioner 41 in the period from time t2 to time t3 after time t1. Is maintained almost constant. Furthermore, at time t4 after time t3, the temperature Ti of the indoor 21 becomes the temperature in the state where the air conditioner 41 is not operating.
 図3の例では、時刻t2から時刻t3までの期間に、温度Tiはほとんど変化しない。すなわち、この期間は、屋内21と屋外22との間で熱平衡状態であると言える。なお、温度Tiがほとんど変化しないとは、温度Tiの変動範囲が、たとえば±1℃以下であることを意味する。近年の空調装置41では、屋内21の温度Tiを設定温度に対して1℃以下の変動範囲で制御する製品もある。 In the example of FIG. 3, the temperature Ti hardly changes during the period from time t2 to time t3. That is, it can be said that this period is in a thermal equilibrium state between the indoor 21 and the outdoor 22. The fact that the temperature Ti hardly changes means that the fluctuation range of the temperature Ti is, for example, ± 1 ° C. or less. In the air conditioner 41 of recent years, there is also a product that controls the temperature Ti of the indoor 21 within a fluctuation range of 1 ° C. or less with respect to the set temperature.
 断熱性能推定装置10は、上述したように、温度情報および熱量情報を単位時間ごとに取得するから、熱平衡状態か否かを判定しようとすれば、単位時間の数倍程度の期間における温度情報および熱量情報が必要である。すなわち、前置判定部15は、記憶部14に格納されている温度情報および熱量情報を用い、単位時間の数倍程度の期間において温度情報および熱量情報の変動範囲が判定条件を満たしているときに、当該期間を熱平衡状態の期間と判定する。計算部13は、前置判定部15が熱平衡状態の期間と判定した温度情報および熱量情報を用いて断熱性能を算出する。 As described above, since the adiabatic performance estimation device 10 acquires temperature information and heat amount information for each unit time, if it is determined to determine whether or not the thermal equilibrium state, temperature information in a period about several times unit time and Thermal energy information is required. That is, when the predetermination unit 15 uses the temperature information and the heat amount information stored in the storage unit 14 and the variation range of the temperature information and the heat amount information satisfies the determination condition in a period about several times unit time. Then, the period is determined as a period of thermal equilibrium. The calculation unit 13 calculates the adiabatic performance using the temperature information and the heat amount information determined by the pre-determination unit 15 to be the period of the thermal equilibrium state.
 ここで、前置判定部15が変動範囲の判定に用いる判定条件は、たとえば、屋内21の温度Tiの変動範囲と屋外22の温度Toの変動範囲とが、それぞれ±1℃以下、かつ空調装置41の消費電力量の変動範囲が±5%以下などに設定される。なお、これらの数値は、一例であり、屋内21の温度Tiの変動範囲、屋外22の温度Toの変動範囲、及び空調装置41の消費電力量の変動範囲については特に限定されない。これらの変動範囲は、空調装置41の性能などに応じて適宜に変更される。 Here, the judgment conditions used by the pre-judgment unit 15 to judge the fluctuation range are, for example, the fluctuation range of the temperature Ti of the indoor 21 and the fluctuation range of the temperature To of the outdoor 22 are respectively ± 1 ° C. or less and the air conditioner The fluctuation range of the power consumption of 41 is set to ± 5% or less. In addition, these numerical values are an example, and the fluctuation range of the temperature Ti of the indoor 21, the fluctuation range of the temperature To of the outdoor 22, and the fluctuation range of the power consumption of the air conditioner 41 are not particularly limited. These fluctuation ranges are appropriately changed according to the performance of the air conditioner 41 and the like.
 ところで、空調装置41は、屋内21の温度Tiを設定温度に維持するために、断続的に運転する構成、送風量を変化させる構成などが採用されている。そのため、上述した時刻t2から時刻t3までの期間において、空調装置41の単位時間ごとの消費電力量は変動する。したがって、熱量情報としての消費電力量が変動範囲内であるか否かは、熱平衡状態と判断するために必須ではない。さらに、屋外22の温度Toがほぼ一定である期間には、熱平衡状態は屋内21の温度Tiがほぼ一定に維持されている状態と等価であるから、前置判定部15は、屋内21の温度Tiの変動のみによって熱平衡状態を判定してもよい。 By the way, in order to maintain the temperature Ti of the indoors 21 at the set temperature, the air conditioner 41 employs a configuration that operates intermittently, a configuration that changes the air flow rate, and the like. Therefore, in the period from time t2 to time t3 described above, the power consumption of the air conditioner 41 per unit time fluctuates. Therefore, whether or not the amount of power consumption as the heat quantity information is within the fluctuation range is not essential in order to determine the thermal equilibrium state. Furthermore, since the thermal equilibrium state is equivalent to the state in which the temperature Ti of the indoor 21 is maintained substantially constant during a period in which the temperature To of the outdoor 22 is substantially constant, the predetermination unit 15 determines the temperature of the indoor 21 The thermal equilibrium may be determined only by the variation of Ti.
 また、計算部13は、断熱性能を計算する際に用いる消費電力量として、熱平衡状態の判定を行う期間の消費電力量の積算値を用いる。たとえば、熱平衡状態か否かを判定するために、30分間の温度情報が用いられるとすれば、計算部13は、断熱性能を計算する際に、当該30分間における消費電力量の積算値を用いる。 In addition, the calculation unit 13 uses an integrated value of the power consumption during a period in which the thermal equilibrium state is determined as the power consumption used when calculating the heat insulation performance. For example, if temperature information for 30 minutes is used to determine whether the thermal equilibrium state or not, the calculation unit 13 uses the integrated value of the power consumption for the 30 minutes when calculating the adiabatic performance. .
 また、空調装置41が、屋内21の温度Tiを設定温度に維持する期間において断続的に運転する構成である場合、図4に示すように、運転と停止との周期P1がほぼ一定になり、この周期P1は、建物20の断熱性能を反映している。したがって、屋外22の温度Toがほぼ一定であれば、前置判定部15は、屋内21の温度Tiに基づいて熱平衡状態であるか否かを判定し、計算部13は、空調装置41の運転と停止との周期P1を基にして断熱性能を計算してもよい。空調装置41の運転と停止との周期P1は、計測装置33が計測した消費電力量の時間変化から求めることが可能である。 In addition, when the air conditioner 41 is configured to operate intermittently in a period in which the temperature Ti of the indoor 21 is maintained at the set temperature, the cycle P1 of operation and stop becomes substantially constant, as shown in FIG. The period P1 reflects the heat insulation performance of the building 20. Therefore, if the temperature To of the outdoor 22 is substantially constant, the pre-determination unit 15 determines whether or not the thermal equilibrium state is based on the temperature Ti of the indoor 21, and the calculation unit 13 operates the air conditioner 41. The adiabatic performance may be calculated based on the period P1 of and the stop. It is possible to obtain | require the period P1 of the driving | operation of the air conditioner 41, and a stop from the time change of the power consumption which the measuring device 33 measured.
 前置判定部15が屋内21と屋外22とが熱平衡状態であるか否かを判定する目的は、計算部13が用いる温度情報および熱量情報が、断熱性能の計算に用いることができるか否かを評価することである。そこで、前置判定部15は、熱平衡状態の評価だけではなく、温度情報および熱量情報の情報量についても充足しているか否かを判定してもよい。 The purpose of the pre-determination unit 15 to determine whether the indoors 21 and the outdoor 22 are in a thermal equilibrium state is whether temperature information and heat quantity information used by the calculation unit 13 can be used for calculation of adiabatic performance To evaluate. Therefore, the pre-determination unit 15 may determine whether the information amount of the temperature information and the heat amount information is satisfied as well as the evaluation of the thermal equilibrium state.
 具体的には、前置判定部15は、熱平衡状態であるか否かを判定する期間において、第1の取得部11が単位時間ごとに取得する温度情報、および第2の取得部12が単位時間ごとに取得する熱量情報に欠落があると、情報量が不足していると判定してもよい。このとき、計算部13は、熱平衡状態を判定する期間において単位時間ごとに取得されるはずの温度情報および熱量情報に欠落があると判定されると、この期間における温度情報および熱量情報を断熱性能の計算に用いずに破棄する。 Specifically, in a period in which the pre-determination unit 15 determines whether or not the thermal equilibrium state is determined, the temperature information acquired by the first acquisition unit 11 for each unit time, and the unit acquired by the second acquisition unit 12 If the heat quantity information acquired for each time is missing, it may be determined that the amount of information is insufficient. At this time, if it is determined that there is a drop in temperature information and heat quantity information that should be acquired for each unit time in a period in which the thermal equilibrium state is determined, calculation unit 13 performs heat insulation performance on temperature information and heat quantity information in this period. Discard without using for calculation of.
 ところで、空調装置41が生成する熱量は、消費電力量に基づいて求めることが可能であるが、屋内21に空調装置41ではない熱源が存在すると、屋内21で生成される熱量を精度よく見積もることができなくなる可能性がある。 By the way, although it is possible to obtain the amount of heat generated by the air conditioner 41 based on the amount of power consumption, if the indoor 21 has a heat source other than the air conditioner 41, the amount of heat generated in the indoor 21 should be accurately estimated. May not be able to
 特に、空調装置41ではない熱源が生成する熱量を計測することができなければ、この熱量を断熱性能の計算に組み入れることはできない。したがって、計算部13は、建物20の断熱性能を精度よく求めることができなくなる。言い換えると、屋内21で生成される熱量を変動させる外乱の影響があると、計算部13において求めた建物20の断熱性能の信頼性が損なわれる可能性がある。 In particular, if the amount of heat generated by a heat source other than the air conditioner 41 can not be measured, this amount of heat can not be incorporated into the calculation of the adiabatic performance. Therefore, the calculation unit 13 can not accurately obtain the heat insulation performance of the building 20. In other words, if there is the influence of the disturbance that causes the heat quantity generated in the room 21 to fluctuate, the reliability of the heat insulation performance of the building 20 obtained in the calculation unit 13 may be impaired.
 本実施形態の断熱性能推定装置10は、計算部13が求めた建物20の断熱性能に対する信頼性を高めるために、得られた断熱性能の信頼性を評価する技術と、断熱性能の計算に対する外乱の影響を軽減する技術とを採用している。言い換えると、断熱性能推定装置10は、計算部13が計算した断熱性能の信頼性を確認する処理と、計算部13が計算に用いる情報に外乱が含まれないようにする処理とを採用している。これらの処理は、採用されなければ、求めた断熱性能の誤差が大きくなるが、一方でも採用されれば、断熱性能の誤差が軽減される。 The heat insulation performance estimation device 10 of the present embodiment is a technique for evaluating the reliability of the obtained heat insulation performance in order to enhance the reliability of the heat insulation performance of the building 20 calculated by the calculation unit 13 and disturbance for the calculation of the heat insulation performance. And technology to reduce the impact of In other words, the heat insulation performance estimation device 10 adopts the process of confirming the reliability of the heat insulation performance calculated by the calculation unit 13 and the process of preventing disturbance from being included in the information used for the calculation by the calculation unit 13. There is. If these processes are not adopted, the error of the adiabatic performance sought will increase, but if it is adopted either, the error of the adiabatic performance will be reduced.
 また、計算部13が計算した断熱性能の信頼性を確認するために、断熱性能推定装置10は、結果評価部16を備えている。結果評価部16は、計算部13が断熱性能を繰り返して計算することを前提にしている。空調装置41を運転してから停止するまでの期間が比較的長ければ、計算部13は、当該期間に断熱性能を複数回計算することが可能であり、また、計算部13は、空調装置41の運転毎に断熱性能を計算することが可能である。結果評価部16は、計算部13が建物20の断熱性能を計算するたびに、計算された断熱性能の値を記憶し、複数回分の計算結果を統計的に処理することにより、計算結果の精度を向上させ、かつ計算結果の信頼性を評価する。 Further, in order to confirm the reliability of the heat insulation performance calculated by the calculation unit 13, the heat insulation performance estimation device 10 includes a result evaluation unit 16. The result evaluation unit 16 is based on the assumption that the calculation unit 13 repeatedly calculates heat insulation performance. If the period from the operation of the air conditioner 41 to the stop is relatively long, the calculation unit 13 can calculate the heat insulation performance a plurality of times in the period, and the calculation unit 13 can also calculate the air conditioner 41. It is possible to calculate the adiabatic performance for each run of The result evaluation unit 16 stores the calculated adiabatic performance value each time the calculation unit 13 calculates the adiabatic performance of the building 20, and statistically processes the calculation results for a plurality of times to obtain the accuracy of the calculation result. Improve and evaluate the reliability of the calculation results.
 たとえば、結果評価部16は、計算部13の計算毎に、断熱性能の計算値に関する度数分布を求め、度数が最大である計算値を採用する。この処理を行えば、計算回数が増加するほど信頼性の高い結果が得られることになる。 For example, the result evaluation unit 16 obtains the frequency distribution regarding the calculated value of the adiabatic performance for each of the calculations of the calculation unit 13, and adopts the calculated value having the maximum frequency. If this process is performed, more reliable results will be obtained as the number of calculations increases.
 また、結果評価部16は、一定個数の計算値が得られるたびに平均値と分散とを求めてもよい。結果評価部16は、例えば、分散が所定範囲内であれば、断熱性能の値として平均値を採用し、分散が所定範囲を超えていると計算値を破棄する。 Further, the result evaluation unit 16 may obtain the average value and the variance each time a fixed number of calculated values are obtained. For example, when the variance is within a predetermined range, the result evaluation unit 16 adopts an average value as the value of the heat insulation performance, and discards the calculated value when the variance is beyond the predetermined range.
 あるいは、結果評価部16は、一定個数の計算値が得られるたびに、断熱性能の計算値に対する度数分布を求めて、度数が最大である計算値を断熱性能の値として採用してもよい。この場合、結果評価部16は、採用した値の時間変化を評価することによって、建物20の断熱性能の経年変化を評価することが可能である。 Alternatively, every time a fixed number of calculated values are obtained, the result evaluation unit 16 may obtain a frequency distribution for the calculated values of the adiabatic performance, and adopt the calculated value having the maximum frequency as the value of the adiabatic performance. In this case, the result evaluation unit 16 can evaluate the secular change of the heat insulation performance of the building 20 by evaluating the time change of the adopted value.
 上述のように、結果評価部16において、計算部13での計算値を統計的に処理することにより、計算部13が計算した断熱性能の値に関する信頼性を高めることが可能になる。結果評価部16において採用された計算値は、提示部17を通して提示装置43に提示される。 As described above, by statistically processing the values calculated by the calculation unit 13 in the result evaluation unit 16, it is possible to improve the reliability of the value of the heat insulation performance calculated by the calculation unit 13. The calculated value adopted in the result evaluation unit 16 is presented to the presentation device 43 through the presentation unit 17.
 一方、計算部13が計算に用いる情報に外乱が含まれないようにするために、断熱性能推定装置10は、屋内21に空調装置41のほかに屋内21の熱量に影響を与える可能性がある条件を抽出する。例えば、屋内21に入射する日射の状態、屋内21に滞在する人数、屋内21に配置された機器44の動作の状態などが抽出される。機器44には、テレビジョン受像機、及び、調理機器などのほか、照明機器、及び、換気機器など、熱源となる機器あるいは屋内21と屋外22との間で熱を移動させる機器などが含まれる。したがって、この種の機器44の稼働中には屋内21の熱量が変化する。 On the other hand, in order to ensure that the information used by the calculation unit 13 for calculation does not include disturbance, the heat insulation performance estimation device 10 may affect the heat quantity of the indoor 21 besides the air conditioner 41 in the indoor 21. Extract the conditions. For example, the state of solar radiation incident on the indoor 21, the number of persons staying in the indoor 21, the state of operation of the device 44 disposed in the indoor 21, and the like are extracted. The device 44 includes a television receiver and a cooking device, as well as a lighting device, a ventilating device, a device serving as a heat source or a device for transferring heat between the indoor 21 and the outdoor 22. . Therefore, while the device 44 of this type is in operation, the heat quantity of the indoor 21 changes.
 外乱の影響は断熱性能の計算に組み入れることが可能であるが、外乱の影響を計算に組み入れると、計算に用いる要素が増加して計算が複雑になる。また、計算結果に誤差が生じる要因になる。そのため、断熱性能の計算には外乱の影響が含まれないようにすることが望ましい。言い換えると、計算部13は、外乱が生じている期間に得られた温度情報および熱量情報を、断熱性能の計算に用いないことが望ましい。 Although the effect of the disturbance can be incorporated into the calculation of the adiabatic performance, incorporating the effect of the disturbance into the calculation increases the number of elements used in the calculation and complicates the calculation. It also causes an error in the calculation result. Therefore, it is desirable that the calculation of the adiabatic performance does not include the influence of disturbance. In other words, it is desirable that the calculation unit 13 not use the temperature information and the heat amount information obtained during the period in which the disturbance occurs in the calculation of the adiabatic performance.
 計算部13は、機器44については、1日のうちの一部の時間帯に稼働する機器44による外乱を考慮すればよい。また、計算部13は、たとえば、熱源となる機器44であっても、冷蔵庫のように常時稼働している機器44は、一定の熱量として計算に組み込めばよい。 For the device 44, the calculation unit 13 may take into consideration the disturbance caused by the device 44 operating in a part of the time zone of the day. Further, even if the calculation unit 13 is, for example, the device 44 serving as a heat source, the device 44 that is always in operation, such as a refrigerator, may be incorporated into the calculation as a constant amount of heat.
 そのため、断熱性能推定装置10は、日射を計測する日射センサ34、および屋内21における人の存在を監視する人センサ35から情報を取得し、かつ機器44の動作に関する情報を取得するために、第3の取得部18を備える。要するに、第3の取得部18は、屋内21の熱量に外乱を与える因子に関する情報を取得する。具体的には、第3の取得部18は、日射センサ34が計測する日射量の情報と、人センサ35が取得する屋内21における人の存在の情報とを取得する。また、第3の取得部18は、屋内21に配置された機器44に関して、稼働中か停止中かの情報を取得する。言い換えると、前置判定部15の判定条件として、外乱が生じているか否かを判定する条件が定められ、判定条件は、日射量、人の存在、機器44の稼働の少なくとも1種類に関して定められていることが望ましい。 Therefore, the heat insulation performance estimation apparatus 10 acquires information from the solar radiation sensor 34 that measures solar radiation and the human sensor 35 that monitors the presence of a person in the indoor space 21 and acquires information related to the operation of the device 44. The third acquisition unit 18 is provided. In short, the third acquisition unit 18 acquires information on a factor that disturbs the heat amount of the indoor space 21. Specifically, the third acquisition unit 18 acquires information on the amount of solar radiation measured by the solar radiation sensor 34 and information on the presence of a person in the indoor space 21 acquired by the person sensor 35. In addition, the third acquisition unit 18 acquires information as to whether the device 44 disposed in the room 21 is in operation or not. In other words, as the determination condition of the pre-determination unit 15, a condition for determining whether or not disturbance is occurring is determined, and the determination condition is determined with respect to at least one of the amount of solar radiation, the presence of a person, and the operation of the device 44. Is desirable.
 機器44に関する情報は、計測装置33から得られる消費電力量を監視することによって得ることが可能である。また、屋内21における人の存在を検出するために、建物20に配置された機器44の消費電力量を用いることが可能であるから、人センサ35は省略可能である。さらに、屋内21の温度が日射の影響を受けるのは日中であって、日の出と日の入りとの時刻が分かっていれば、日射は時間帯に基づいて判断することが可能である。したがって、日射センサ34も省略可能である。 Information on the device 44 can be obtained by monitoring the amount of power consumption obtained from the measuring device 33. Moreover, since it is possible to use the power consumption of the apparatus 44 arrange | positioned at the building 20 in order to detect the presence of the person in the indoor 21, the human sensor 35 is omissible. Furthermore, if the temperature of the indoor 21 is affected by solar radiation during the daytime, and if the time of sunrise and sunset is known, it is possible to judge the solar radiation based on the time zone. Therefore, the solar radiation sensor 34 can also be omitted.
 第3の取得部18が取得した情報は記憶部14に格納される。前置判定部15は、第3の取得部18が取得した情報により外乱が含まれていないことが判定条件に照らして確認できた場合に、該当する期間の温度情報および熱量情報を計算部13に引き渡す。したがって、計算部13は、屋内21と屋外22との間が熱平衡状態である期間に得られ、かつ外乱を含んでいない温度情報および熱量情報を用いて断熱性能を計算することが可能になる。 The information acquired by the third acquisition unit 18 is stored in the storage unit 14. When it can be confirmed in the light of the determination condition that no disturbance is included from the information acquired by the third acquisition unit 18, the pre-determination unit 15 calculates temperature information and heat amount information of the corresponding period. Hand over. Therefore, the calculation unit 13 can calculate the adiabatic performance using the temperature information and the heat amount information which are obtained during a period in which the indoor 21 and the outdoor 22 are in a thermal equilibrium state and do not include a disturbance.
 ところで、建物20の断熱性能を評価する指標として、熱損失係数、熱貫流率などが知られている。熱損失係数は、総熱損失量を延床面積で除した値であるから、屋内21の延床面積を求める必要がある。延床面積は、建物20の設計図面に表された値、あるいは屋内21の寸法を計測して求めた実測値を用いることが可能である。また、屋内21に家具などが配置されているために実測が困難な場合、あるいは、建物20における断熱性能の経年変化を評価するだけであって数値それ自体がわからなくてもよい場合には、空調装置41の性能に基づく目安の値を用いてもよい。 By the way, as an index which evaluates the heat insulation performance of the building 20, a heat loss coefficient, a heat transmission coefficient, etc. are known. Since the heat loss coefficient is a value obtained by dividing the total amount of heat loss by the total floor area, it is necessary to obtain the total floor area of the indoor room 21. As the total floor area, it is possible to use a value represented in a design drawing of the building 20 or an actual measurement value obtained by measuring the dimensions of the indoor space 21. Moreover, when furniture etc. are arrange | positioned indoors 21 and measurement is difficult, or it is only evaluating the secular change of the heat insulation performance in the building 20, and it is not necessary to know numerical value itself, The value of the standard based on the performance of the air conditioner 41 may be used.
 空調装置41の性能に基づく目安の値は、空調装置41の出力に対応付けられており、建物20を構成する材料(たとえば、鉄筋コンクリート造、木造)などに応じて設定されている。つまり、空調装置41の能力の目安として、空調装置41を設置する空間に関する延床面積の目安の数値が示されているから、この値が延床面積の概略値として用いられる。 The value of the standard based on the performance of the air conditioner 41 is associated with the output of the air conditioner 41, and is set according to the material (for example, reinforced concrete, wooden) that constitutes the building 20 or the like. That is, since the numerical value of the standard of the total floor area related to the space where the air conditioner 41 is installed is shown as the standard of the capacity of the air conditioner 41, this value is used as the general value of the total floor area.
 延床面積の実測値を用いる場合には、断熱性能が他の建物20と同じ基準で求められる。よって、延べ床面積の実測値を用いて求められた断熱性能は、熱損失係数などに定量化して客観的に他の建物20と比較することが可能である。一方、延床面積の概略値を用いて求められた断熱性能は、同一の建物20において、断熱性能の経年変化などを評価するために用いることが可能である。 In the case of using the actual value of the total floor area, the heat insulation performance is determined on the same basis as the other buildings 20. Therefore, it is possible to quantify the heat insulation performance calculated | required using the total floor area actual value by a heat loss coefficient etc., and to compare with another building 20 objectively. On the other hand, the heat insulation performance calculated | required using the rough value of the total floor area can be used in the same building 20 in order to evaluate the secular change of heat insulation performance etc.
 上述のように、延床面積は2種類の値を用いることが可能であるが、どちらの値を用いるかに応じて、計算部13が求めた断熱性能に相違が生じる可能性がある。そのため、計算部13の計算結果として得られる断熱性能の数値が、どちらの延床面積を用いて求められた値であるかを区別することが必要である。そこで、本実施形態の断熱性能推定装置10は、2種類の延床面積のうちのどちらを用いるかを選択する選択部19を備える。 As described above, although it is possible to use two types of values for the total floor area, there may be a difference in the heat insulation performance obtained by the calculation unit 13 depending on which value is used. Therefore, it is necessary to distinguish which numerical value of the heat insulation performance obtained as the calculation result of the calculation unit 13 is the value obtained using which total floor area. Then, the heat insulation performance estimation apparatus 10 of this embodiment is provided with the selection part 19 which selects which of two types of total floor area is used.
 選択部19は、ユーザの入力操作に応じて2種類の延床面積の一方を選択する構成を採用する。また、選択部19には所定の選択条件が設定されており、2種類の延床面積のうち、選択条件を満足するほうを選択することも可能である。選択条件は、ユーザが入力操作で選択した延床面積を用いるという条件、あるいは2種類の延床面積のうち大きいほうを用いるという条件など適宜に設定される。 Selection unit 19 adopts a configuration for selecting one of two types of floor areas according to the user's input operation. In addition, a predetermined selection condition is set in the selection unit 19, and it is possible to select one of the two types of total floor area that satisfies the selection condition. The selection condition is appropriately set such as a condition that the user uses the total floor area selected by the input operation or a condition that the larger one of the two types of total floor area is used.
 断熱性能推定装置10は、プログラムに従って動作するプロセッサを備えたデバイスと、外部装置との間で信号を授受するデバイスとを主なハードウェア要素として構成される。プロセッサを備えるデバイスは、プロセッサとメモリとを一体に備えるマイコン(Microcontroller)のほか、メモリを別に備えるMPU(Micro Processing Unit)でもよい。また、プログラムは、ROM(Read Only Memory)に書き込まれた状態で提供されるほか、コンピュータで読取可能な記録媒体を用いて提供可能である。また、プログラムは、インターネットのような電気通信回線を通して提供されることも可能である。 The adiabatic performance estimation apparatus 10 is configured mainly by hardware elements of a device including a processor that operates according to a program and a device that exchanges signals with an external device. The device provided with the processor may be a micro processing unit (MPU) provided separately with a memory in addition to a microcomputer (Micro controller) provided integrally with the processor and the memory. Further, the program is provided in a state of being written in a ROM (Read Only Memory), and can be provided using a computer readable recording medium. The program can also be provided through a telecommunication line such as the Internet.
 なお、断熱性能推定装置10は、建物20で使用される機器44の監視および制御を通信により行うHEMS(Home Energy Management System)のコントローラに組み込むことが可能である。また、第1の取得部11、第2の取得部12、提示部17、第3の取得部18、及び、提示装置43などを端末装置により実現し、断熱性能推定装置10の残りの機能は、端末装置と電気通信回線を通して通信するサーバにより実現してもよい。端末装置は、スマートフォン、タブレット端末、及び、パーソナルコンピュータなどから選択される。また、電気通信回線は、インターネットあるいは移動体通信網などから選択される。サーバは、1台のコンピュータで実現される構成に限らず、複数台のコンピュータで実現される構成であってもよく、さらにはクラウドコンピューティングシステムでもよい。 The heat insulation performance estimation device 10 can be incorporated into a controller of a home energy management system (HEMS) that performs monitoring and control of the device 44 used in the building 20 by communication. In addition, the first acquisition unit 11, the second acquisition unit 12, the presentation unit 17, the third acquisition unit 18, the presentation device 43, and the like are realized by a terminal device, and the remaining functions of the heat insulation performance estimation device 10 are , And may be realized by a server that communicates with a terminal device through a telecommunication line. The terminal device is selected from a smartphone, a tablet terminal, a personal computer, and the like. Also, the telecommunication line is selected from the Internet, a mobile communication network or the like. The server is not limited to the configuration realized by one computer, and may be a configuration realized by a plurality of computers, and may be a cloud computing system.
 上述した構成を採用すると、端末装置においてアプリケーションプログラム(いわゆる「アプリ」)を実行することによって、端末装置とサーバとによって断熱性能推定装置10を実現することが可能になる。また、計算部13、前置判定部15、及び、結果評価部16などが実行する負荷の大きい処理をサーバに行わせるから、端末装置に多くのハードウェア資源が要求されない。このため、端末装置の実現が容易になる。なお、第1の取得部11、第2の取得部12、及び、第3の取得部18は、HEMSのコントローラによって実現され、端末装置には、コントローラとサーバとの間の通信を中継する役割と、提示装置43としての役割とを持たせるようにしてもよい。 When the configuration described above is adopted, it becomes possible to realize the heat insulation performance estimation device 10 by the terminal device and the server by executing an application program (so-called “application”) in the terminal device. In addition, since the server is made to perform a process with a large load that the calculation unit 13, the predetermination unit 15, the result evaluation unit 16 and the like execute, a lot of hardware resources are not required of the terminal device. This facilitates the realization of the terminal device. The first acquisition unit 11, the second acquisition unit 12, and the third acquisition unit 18 are realized by the controller of the HEMS, and the terminal device relays communication between the controller and the server. And the role as the presentation device 43 may be given.
 上述した断熱性能推定装置10は、空調装置41を運転するたびに、建物20の断熱性能を自動的に計算する処理を行うように構成することが可能である。また、断熱性能推定装置10は、計算を行うタイミングをスイッチなどによって指示するように構成することも可能である。ただし、結果評価部16は、計算部13が求めた計算値を統計的な処理によって評価しているから、結果評価部16を設ける場合には、断熱性能を自動的に計算する構成を採用することが望ましい。 The heat insulation performance estimation device 10 described above can be configured to perform processing for automatically calculating the heat insulation performance of the building 20 each time the air conditioner 41 is operated. Moreover, the heat insulation performance estimation apparatus 10 can also be configured to indicate the timing of performing the calculation by a switch or the like. However, since the result evaluation unit 16 evaluates the calculated value obtained by the calculation unit 13 by statistical processing, when the result evaluation unit 16 is provided, a configuration for automatically calculating the heat insulation performance is adopted. Is desirable.
 (まとめ)
 以下、本実施形態で説明した断熱性能推定装置10について、フローチャートを参照しながら簡潔に説明する。図5は、断熱性能推定装置10の動作のフローチャートである。   
(Summary)
Hereinafter, the heat insulation performance estimation device 10 described in the present embodiment will be briefly described with reference to a flowchart. FIG. 5 is a flowchart of the operation of the heat insulation performance estimation apparatus 10.
 断熱性能推定装置10は、第1の取得部11と第2の取得部12と前置判定部15と計算部13とを備える。第1の取得部11は、建物20における屋内21および屋外22の温度に関する温度情報を取得する(S11)。第2の取得部12は、屋内21の温度を変化させる冷房機器または暖房機器が消費するエネルギー量に関する熱量情報を取得する(S12)。前置判定部15は、温度情報と前記熱量情報とが所定の判定条件を満たすか否かを判定する(S13)。計算部13は、所定の判定条件を満たすと判定された、温度情報と熱量情報とを用いて建物20の断熱性能を計算する(S14)。 The heat insulation performance estimation device 10 includes a first acquisition unit 11, a second acquisition unit 12, a front determination unit 15, and a calculation unit 13. The first acquisition unit 11 acquires temperature information on the temperatures of the indoor 21 and the outdoor 22 in the building 20 (S11). The second acquisition unit 12 acquires heat amount information on the amount of energy consumed by the cooling device or the heating device that changes the temperature of the indoor 21 (S12). The pre-determination unit 15 determines whether the temperature information and the heat quantity information satisfy a predetermined determination condition (S13). The calculation unit 13 calculates the heat insulation performance of the building 20 using the temperature information and the heat amount information that are determined to satisfy the predetermined determination condition (S14).
 この構成によれば、計算部13が計算に用いる温度情報および熱量情報に関して、判定条件を満足するか否かを前置判定部15が判定しているから、適切な判定条件を設定することにより、計算に適さない温度情報および熱量情報を選別することが可能になる。その結果、計算部13の計算結果の信頼性を向上させることが可能になる。 According to this configuration, since the pre-determination unit 15 determines whether the determination condition is satisfied with respect to the temperature information and the heat amount information used by the calculation unit 13 for calculation, by setting the appropriate determination condition It becomes possible to sort out temperature information and heat quantity information which are not suitable for calculation. As a result, it is possible to improve the reliability of the calculation result of the calculation unit 13.
 また、断熱性能推定装置10は、結果評価部16を備えることが望ましい。すなわち、計算部13は、建物20の断熱性能を複数回計算し、結果評価部16は、計算部13が計算した複数回分の建物20の断熱性能の計算結果を統計処理により評価する。 In addition, it is desirable that the heat insulation performance estimation device 10 includes the result evaluation unit 16. That is, the calculation unit 13 calculates the heat insulation performance of the building 20 multiple times, and the result evaluation unit 16 evaluates the calculation results of the heat insulation performance of the multiple buildings 20 calculated by the calculation unit 13 by statistical processing.
 この構成によれば、計算部13が求めた建物20の断熱性能について複数回の計算結果を統計的に処理するから、複数回の計算結果から信頼性の高い値を抽出することが可能であり、計算結果の精度を向上させることができる。また、計算結果の統計的な処理によって、抽出した値の信頼度、あるいは誤差の程度を求めることが可能できる。 According to this configuration, since the calculation results of the heat insulation performance of the building 20 calculated by the calculation unit 13 are statistically processed a plurality of calculation results, it is possible to extract highly reliable values from the calculation results of the plurality of times. The accuracy of the calculation result can be improved. In addition, it is possible to calculate the degree of reliability or error of the extracted value by statistical processing of the calculation result.
 所定の判定条件は、温度情報と熱量情報とが、取得された時間帯において欠落していないことを判定するように設定されていることが望ましい。言い換えれば、前置判定部15は、所定の判定条件として、温度情報と熱量情報とが、取得された時間帯において欠落していないという条件を満たすか否かを判定してもよい。 It is desirable that the predetermined determination condition is set so as to determine that the temperature information and the heat amount information are not missing in the acquired time zone. In other words, the pre-determination unit 15 may determine, as the predetermined determination condition, whether the temperature information and the heat amount information satisfy the condition that no dropout occurs in the acquired time zone.
 また、所定の判定条件は、温度情報と熱量情報とが、屋内21と屋外22との間で熱平衡状態である期間に取得されたことを判定するように、温度情報および熱量情報の変動範囲に関して設定されていることが望ましい。言い換えれば、前置判定部15は、所定の判定条件として、温度情報と熱量情報とが、屋内21と屋外22との間で熱平衡状態である期間に取得されたという条件を満たすか否かを判定してもよい。 In addition, the predetermined determination condition relates to the variation range of the temperature information and the heat amount information so as to determine that the temperature information and the heat amount information are acquired during the period in which the indoor 21 and the outdoor 22 are in a thermal equilibrium state. It is desirable that it is set. In other words, the pre-determination unit 15 determines whether the temperature information and the heat quantity information satisfy the condition of being acquired during the thermal equilibrium state between the indoor 21 and the outdoor 22 as the predetermined determination condition. You may judge.
 あるいは、所定の判定条件は、屋内21の熱量に対する外乱が生じているか否かを判定する条件であって、前置判定部15は、外乱が生じている期間に得られた温度情報および熱量情報は破棄することが望ましい。言い換えれば、前置判定部15は、所定の判定条件として、屋内21の熱量に対する外乱が生じていないという条件を満たすか否かを判定し、外乱が生じている期間に得られた温度情報および熱量情報を破棄してもよい。 Alternatively, the predetermined determination condition is a condition for determining whether or not the disturbance with respect to the heat amount of the indoor 21 is generated, and the pre-determination unit 15 determines the temperature information and the heat amount information obtained in the period in which the disturbance is generated. It is desirable to discard In other words, the pre-determination unit 15 determines, as the predetermined determination condition, whether or not the condition that the disturbance to the heat quantity of the indoor 21 is not satisfied is satisfied, and the temperature information obtained in the period in which the disturbance is generated The heat quantity information may be discarded.
 このような判定条件を用いて前置判定部15が計算に適した温度情報および熱量情報を選択することにより、計算結果の信頼性を向上させることが可能になる。とくに、前置判定部15が計算に用いる温度情報および熱量情報の欠落を判定する場合には、通信エラーなどによる情報の欠落があった場合に、計算に用いないことによって、計算に必要な情報量を確保することができる。また、温度情報および熱量情報の変動範囲に基づいて熱平衡状態である期間を判断し、熱平衡状態である期間の温度情報および熱量情報を計算に用いることにより、断熱性能の計算が容易になり、また計算結果のばらつきを抑制できる可能性がある。あるいは、外乱が生じている期間の温度情報および熱量情報は破棄することで、外乱による計算結果のばらつきを抑制できる。 The reliability of the calculation result can be improved by selecting the temperature information and the heat amount information suitable for the calculation by the pre-determination unit 15 using such a determination condition. In particular, when the pre-determination unit 15 determines that the temperature information and the heat amount information used for the calculation are missing, if the information is missing due to a communication error or the like, the information necessary for the calculation is not used for the calculation. You can secure the quantity. In addition, the heat insulation performance can be easily calculated by determining the period of thermal equilibrium based on the range of fluctuation of temperature information and heat quantity information and using the temperature information and heat quantity information of the period of thermal equilibrium state for calculation. There is a possibility that the variation of the calculation result can be suppressed. Alternatively, by discarding the temperature information and the heat quantity information of the period in which the disturbance occurs, it is possible to suppress the dispersion of the calculation result due to the disturbance.
 ここで、外乱が日射である場合、所定の判定条件は、温度情報および熱量情報が、日射の生じない夜間の時間帯に取得されたことを判定するように設定されていることが望ましい。言い換えれば、前置判定部15は、所定の判定条件として、温度情報および熱量情報が、日射の生じない夜間の時間帯に取得されたという条件を満たすか否かを判定してもよい。 Here, when the disturbance is solar radiation, it is preferable that the predetermined determination condition is set to determine that the temperature information and the heat amount information are acquired in a nighttime zone where solar radiation does not occur. In other words, the pre-determination unit 15 may determine, as the predetermined determination condition, whether the temperature information and the heat amount information satisfy the condition of being acquired in the night time zone in which no solar radiation occurs.
 また、外乱が屋内21における人の存在である場合、所定の判定条件は、温度情報および熱量情報が、屋内21に人が不在である時間帯に取得されたことを判定するように設定されていることが望ましい。言い換えれば、前置判定部15は、所定の判定条件として、温度情報および熱量情報が、屋内21に人が不在である時間帯に取得されたという条件を満たすか否かを判定してもよい。 Further, when the disturbance is the presence of a person in the indoor room 21, the predetermined determination condition is set so as to determine that the temperature information and the heat quantity information are acquired in the time zone in which the person is absent in the indoor room 21 Is desirable. In other words, the pre-determination unit 15 may determine, as the predetermined determination condition, whether or not the temperature information and the heat amount information satisfy the condition that the person is not present in the indoor 21 and acquired during the time zone .
 日射および人は、屋内21の熱量に大きい影響を与えるから、この種の外乱が存在しない期間の温度情報および熱量情報を用いることによって、建物20の断熱性能を精度よく計算することが可能になる。 Since solar radiation and people greatly affect the amount of heat in the room 21, it is possible to accurately calculate the adiabatic performance of the building 20 by using the temperature information and the amount of heat information during periods in which no such disturbance exists. .
 外乱が屋内における冷房機器および暖房機器を除いた機器44の稼働である場合、所定の判定条件は、温度情報および熱量情報が、機器44の停止している時間帯に取得されたことを判定するように設定されていることが望ましい。言い換えれば、前置判定部15は、所定の判定条件として、温度情報および熱量情報が、機器44の停止している時間帯に取得されたという条件を満たすか否かを判定してもよい。ここで、機器44は、稼働時に熱源となる機器と、換気機器との少なくとも一方である。熱を発生する機器は、たとえば、照明機器、調理機器などである。 When the disturbance is the operation of the device 44 excluding the cooling device and the heating device indoors, the predetermined determination condition determines that the temperature information and the heat amount information are acquired in the time zone in which the device 44 is stopped. It is desirable that it is set. In other words, the pre-determination unit 15 may determine, as the predetermined determination condition, whether the temperature information and the heat amount information satisfy the condition that the device 44 is acquired in the stopped time zone. Here, the device 44 is at least one of a device serving as a heat source during operation and a ventilation device. The devices that generate heat are, for example, lighting devices, cooking devices, and the like.
 照明機器、調理機器などの稼働時には、屋内で発生する熱が増加し、また、換気機器の稼働時には屋内と屋外との間で換気されることによって、屋内の熱量に変化が生じる。したがって、これらの機器44の稼働は、屋内21の熱量に影響を与えるから、この種の機器44が稼働していない期間の温度情報および熱量情報を用いることによって、建物20の断熱性能を精度よく計算することが可能になる。 When the lighting equipment and cooking equipment are in operation, the heat generated indoors increases, and when the ventilation equipment is in operation, the heat quantity in the room is changed by being ventilated between the indoor and the outdoor. Therefore, since the operation of these devices 44 affects the amount of heat in the room 21, the heat insulation performance of the building 20 can be accurately determined by using the temperature information and the heat amount information of the period when the device 44 of this type is not in operation. It becomes possible to calculate.
 ところで、断熱性能が、総熱損失量を延床面積で除した熱損失係数で表される場合に、所定の判定条件は、温度情報および熱量情報が、換気機器が稼働している時間帯に取得されたことを判定するように設定される。言い換えれば、前置判定部15は、所定の判定条件として、温度情報および熱量情報が、換気機器が稼働している時間帯に取得されたという条件を満たすか否かを判定してもよい。 By the way, when the heat insulation performance is expressed by the heat loss coefficient obtained by dividing the total heat loss amount by the total floor area, the predetermined judgment condition is that the temperature information and the heat amount information are in the time zone in which the ventilator is operating. It is set to determine that it has been acquired. In other words, the pre-determination unit 15 may determine, as the predetermined determination condition, whether the temperature information and the heat amount information satisfy the condition that the temperature information and the heat amount information are acquired during the operating time of the ventilator.
 すなわち、断熱性能を評価するために熱損失係数を用いる場合は、換気機器による室の換気に伴う熱の流入および流出を考慮する必要がある。したがって、この場合の判定条件は、換気機器が運転していることを判定するように設定する必要がある。 That is, when using a heat loss coefficient to evaluate the insulation performance, it is necessary to consider the heat inflow and outflow associated with the ventilation of the room by the ventilator. Therefore, the determination condition in this case needs to be set so as to determine that the ventilator is operating.
 また、断熱性能が、総熱損失量を延床面積で除した熱損失係数で表される場合に、断熱性能推定装置10は、選択部19を備えることが望ましい。選択部19は、延床面積として、冷房機器または暖房機器の性能の指標として定められた値と、建物20の実測値に基づく値とのうち、所定の選択条件を満足する値を選択する。 Further, when the heat insulation performance is represented by a heat loss coefficient obtained by dividing the total amount of heat loss by the total floor area, it is desirable that the heat insulation performance estimation device 10 includes the selection unit 19. The selection unit 19 selects, as the total floor area, a value that satisfies a predetermined selection condition among a value determined as an index of the performance of the cooling device or the heating device and a value based on the actual measurement value of the building 20.
 この構成によれば、断熱性能を評価するために熱損失係数を用いる場合に、延床面積として、冷房機器または暖房機器の性能の指標と、実測値との一方を用いることが可能である。そのため、断熱性能の経年変化を評価する場合のように、断熱性能を評価する数値が必要であるが、数値それ自体を問題にしないような場合には、冷房機器または暖房機器の性能の指標を用いることができる。また、他家との断熱性能の比較を行う場合のように、同じ基準に基づく断熱性能の客観的な数値が必要である場合には、建物20の実測値を用いることができる。 According to this configuration, when the heat loss coefficient is used to evaluate the heat insulation performance, it is possible to use one of an index of the performance of the cooling device or the heating device and an actual measurement value as the total floor area. Therefore, it is necessary to use numerical values to evaluate the thermal insulation performance, as in the case of evaluating the aging of the thermal insulation performance, but if the numerical values themselves are not a problem, the index of the performance of the cooling equipment or heating equipment It can be used. When an objective numerical value of the thermal insulation performance based on the same standard is required, as in the case of comparing the thermal insulation performance with another house, the actual measurement value of the building 20 can be used.
 なお、上述した実施形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。 The embodiment described above is an example of the present invention. For this reason, the present invention is not limited to the above-described embodiment, and even if it is a range other than this embodiment, various modifications may be made according to design etc. as long as the technical idea of the present invention is not deviated. Changes are possible.
 例えば、本発明は、断熱性能推定装置などのコンピュータが実行する断熱性能推定方法として実現されてもよい。また、本発明は、コンピュータを、断熱性能推定装置として機能させるためのプログラムとして実現されてもよい。言い換えれば、本発明は、断熱性能推定方法をコンピュータに実行させるためのプログラムとして実現されてもよい。 For example, the present invention may be realized as a heat insulation performance estimation method executed by a computer such as a heat insulation performance estimation apparatus. Furthermore, the present invention may be realized as a program for causing a computer to function as a thermal insulation performance estimation device. In other words, the present invention may be realized as a program for causing a computer to execute the heat insulation performance estimation method.
 10 断熱性能推定装置
 11 第1の取得部
 12 第2の取得部
 13 計算部
 15 前置判定部
 16 結果評価部
 19 選択部
 20 建物
 21 屋内
 22 屋外
DESCRIPTION OF SYMBOLS 10 Thermal insulation performance estimation apparatus 11 1st acquisition part 12 2nd acquisition part 13 Calculation part 15 Predetermination part 16 Result evaluation part 19 Selection part 20 Building 21 Indoor 22 Outdoor

Claims (11)

  1.  建物における屋内および屋外の温度に関する温度情報を取得する第1の取得部と、
     前記屋内の温度を変化させる冷房機器または暖房機器が消費するエネルギー量に関する熱量情報を取得する第2の取得部と、
     前記温度情報と前記熱量情報とが所定の判定条件を満たすか否かを判定する前置判定部と、
     前記所定の判定条件を満たすと判定された、前記温度情報と前記熱量情報とを用いて前記建物の断熱性能を計算する計算部とを備える
     断熱性能推定装置。
    A first acquisition unit for acquiring temperature information on indoor and outdoor temperatures in the building;
    A second acquisition unit that acquires heat quantity information on an amount of energy consumed by a cooling device or a heating device that changes the temperature of the room;
    A predetermination unit that determines whether the temperature information and the heat amount information satisfy a predetermined determination condition;
    A heat insulation performance estimation device, comprising: a calculation unit that calculates the heat insulation performance of the building using the temperature information and the heat quantity information that are determined to satisfy the predetermined determination condition.
  2.  前記計算部は、前記建物の断熱性能を複数回計算し、
     前記計算部が計算した複数回分の前記建物の断熱性能の計算結果を統計処理により評価する結果評価部をさらに備える
     請求項1記載の断熱性能推定装置。
    The calculation unit calculates the heat insulation performance of the building a plurality of times,
    The heat insulation performance estimation device according to claim 1, further comprising: a result evaluation unit that evaluates the calculation result of the heat insulation performance of the building for a plurality of times calculated by the calculation unit by statistical processing.
  3.  前記前置判定部は、前記所定の判定条件として、前記温度情報と前記熱量情報とが、取得された時間帯において欠落していないという条件を満たすか否かを判定する
     請求項1又は2記載の断熱性能推定装置。
    The said pre-determination part determines whether it satisfy | fills the conditions that the said temperature information and the said thermal energy information are not missing in the acquired time zone as said predetermined | prescribed determination conditions. Thermal insulation performance estimation device.
  4.  前記前置判定部は、前記所定の判定条件として、前記温度情報と前記熱量情報とが、前記屋内と前記屋外との間で熱平衡状態である期間に取得されたという条件を満たすか否かを判定する
     請求項1又は2記載の断熱性能推定装置。
    The pre-determination unit determines, as the predetermined determination condition, whether the condition that the temperature information and the heat amount information are acquired during a period of thermal equilibrium between the indoor and the outdoor is satisfied. The heat insulation performance estimation apparatus of Claim 1 or 2 to determine.
  5.  前記前置判定部は、
     前記所定の判定条件として、前記屋内の熱量に対する外乱が生じていないという条件を満たすか否かを判定し、
     前記外乱が生じている期間に得られた前記温度情報および前記熱量情報を破棄する
     請求項1又は2記載の断熱性能推定装置。
    The pre-determination unit
    As the predetermined determination condition, it is determined whether or not a condition that disturbance to the heat quantity in the room is not generated is satisfied,
    The heat insulation performance estimation device according to claim 1, wherein the temperature information and the heat amount information obtained during a period in which the disturbance occurs are discarded.
  6.  前記外乱は日射であり、
     前記前置判定部は、前記所定の判定条件として、前記温度情報および前記熱量情報が、日射の生じない夜間の時間帯に取得されたという条件を満たすか否かを判定する
     請求項5記載の断熱性能推定装置。
    The disturbance is solar radiation,
    The pre-determination unit is configured to determine, as the predetermined determination condition, whether or not the temperature information and the heat amount information satisfy the condition that the temperature information and the heat amount information are acquired in a night time zone in which solar radiation does not occur. Thermal insulation performance estimation device.
  7.  前記外乱は前記屋内における人の存在であり、
     前記前置判定部は、前記所定の判定条件として、前記温度情報および前記熱量情報が、前記屋内に人が不在である時間帯に取得されたという条件を満たすか否かを判定する
     請求項5記載の断熱性能推定装置。
    The disturbance is the presence of a person indoors,
    The pre-determination unit determines, as the predetermined determination condition, whether or not the temperature information and the heat amount information satisfy the condition that the temperature information and the heat amount information are acquired in a time zone in which a person is absent indoors. Thermal insulation performance estimation device as described.
  8.  前記外乱は前記屋内における前記冷房機器および前記暖房機器を除いた機器の稼働であり、
     前記機器は、稼働時に熱源となる機器と、換気機器との少なくとも一方であり、
     前記前置判定部は、前記所定の判定条件として、前記温度情報および前記熱量情報が、前記機器の停止している時間帯に取得されたという条件を満たすか否かを判定する
     請求項5記載の断熱性能推定装置。
    The disturbance is the operation of the indoor device excluding the cooling device and the heating device indoors,
    The device is at least one of a device serving as a heat source during operation and a ventilator.
    The pre-determination unit determines, as the predetermined determination condition, whether or not the condition that the temperature information and the heat amount information are acquired in a stopped time zone of the device is satisfied. Thermal insulation performance estimation device.
  9.  前記断熱性能は、総熱損失量を延床面積で除した熱損失係数で表され、
     前記前置判定部は、前記所定の判定条件として、前記温度情報および前記熱量情報が、前記換気機器が稼働している時間帯に取得されたという条件を満たすか否かを判定する
     請求項8記載の断熱性能推定装置。
    The heat insulation performance is represented by a heat loss coefficient obtained by dividing the total amount of heat loss by the total floor area,
    The pre-determination unit determines, as the predetermined determination condition, whether or not the condition that the temperature information and the heat amount information are acquired in a time zone in which the ventilator is in operation is satisfied. Thermal insulation performance estimation device as described.
  10.  前記断熱性能は、総熱損失量を延床面積で除した熱損失係数で表され、
     前記延床面積として、前記冷房機器または前記暖房機器の性能の指標として定められた値と、前記建物の実測値に基づく値とのうち、所定の選択条件を満足する値を選択する選択部をさらに備える
     請求項1又は2記載の断熱性能推定装置。
    The heat insulation performance is represented by a heat loss coefficient obtained by dividing the total amount of heat loss by the total floor area,
    A selector configured to select, as the total floor area, a value satisfying a predetermined selection condition among a value determined as an index of the performance of the cooling device or the heating device and a value based on an actual measurement value of the building The heat insulation performance estimation device according to claim 1 or 2, further comprising:
  11.  コンピュータを、請求項1~10のいずれか1項に記載の断熱性能推定装置として機能させるためのプログラム。 A program for causing a computer to function as the heat insulation performance estimation device according to any one of claims 1 to 10.
PCT/JP2015/005360 2014-11-13 2015-10-26 Heat insulating performance estimation device and program WO2016075877A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014230264A JP6384791B2 (en) 2014-11-13 2014-11-13 Thermal insulation performance estimation device, program
JP2014-230264 2014-11-13

Publications (1)

Publication Number Publication Date
WO2016075877A1 true WO2016075877A1 (en) 2016-05-19

Family

ID=55953983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005360 WO2016075877A1 (en) 2014-11-13 2015-10-26 Heat insulating performance estimation device and program

Country Status (2)

Country Link
JP (1) JP6384791B2 (en)
WO (1) WO2016075877A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017215704A (en) * 2016-05-31 2017-12-07 凰建設株式会社 Construction support system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039575A (en) * 2017-08-22 2019-03-14 シャープ株式会社 Air conditioning system
WO2019146067A1 (en) * 2018-01-26 2019-08-01 三菱電機株式会社 Control system, air conditioner, and server
US20230207114A1 (en) * 2020-05-21 2023-06-29 Nippon Telegraph And Telephone Corporation Biological information analysis system, non-transitory computer readable medium and biological information analysis method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242487A (en) * 2009-03-16 2010-10-28 Sekisui Chem Co Ltd Thermal-insulation-performance measuring system
JP2014009498A (en) * 2012-06-29 2014-01-20 Panasonic Corp Heat insulation property estimation device
JP2014167369A (en) * 2013-02-28 2014-09-11 Panahome Corp Building structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242487A (en) * 2009-03-16 2010-10-28 Sekisui Chem Co Ltd Thermal-insulation-performance measuring system
JP2014009498A (en) * 2012-06-29 2014-01-20 Panasonic Corp Heat insulation property estimation device
JP2014167369A (en) * 2013-02-28 2014-09-11 Panahome Corp Building structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017215704A (en) * 2016-05-31 2017-12-07 凰建設株式会社 Construction support system

Also Published As

Publication number Publication date
JP2016094715A (en) 2016-05-26
JP6384791B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP6807556B2 (en) Air conditioning control method, air conditioning control device and air conditioning control program
US10344996B2 (en) Method and apparatus for controlling energy in HVAC system
Hart et al. Weather sensitivity in household appliance energy end-use
US10678279B2 (en) Optimization of energy use through model-based simulations
JP6125104B2 (en) Air conditioning control device, air conditioning control method, and program
WO2014125805A1 (en) Instruction device, and air conditioning system
JP5570847B2 (en) Insulation performance measurement system
JP6004328B2 (en) Thermal insulation performance estimation device
Larsen et al. Comparison of measured and calculated values for the indoor environment in one of the first Danish passive houses
JP6160945B2 (en) Room temperature estimation device, program
WO2016075877A1 (en) Heat insulating performance estimation device and program
Kindaichi et al. Analysis of energy consumption of room air conditioners: An approach using individual operation data from field measurements
Firth et al. Decision support systems for domestic retrofit provision using smart home data streams
US10330330B2 (en) System and method for climate control in a building
Li et al. The smart thermostat of HVAC systems based on PMV-PPD model for energy efficiency and demand response
Dhillon et al. Laboratory load-based testing and performance rating of residential heat pumps in heating mode
JP5988217B2 (en) Room thermal characteristics estimation device, program
JP5705348B1 (en) Air conditioning system advice device
JP6679672B2 (en) Index calculation system
JP6292515B2 (en) Demand forecasting device, program
Asaad Elmoudi et al. Energy consumption control of an air conditioner using web services
JP2015187790A (en) Energy saving management device and program
JP4917866B2 (en) Season judgment method
JP6325994B2 (en) Air conditioning system advice device
Tabatabaei A data analysis approach for diagnosing malfunctioning in domestic space heating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15858811

Country of ref document: EP

Kind code of ref document: A1