WO2016075797A1 - Battery system - Google Patents
Battery system Download PDFInfo
- Publication number
- WO2016075797A1 WO2016075797A1 PCT/JP2014/080133 JP2014080133W WO2016075797A1 WO 2016075797 A1 WO2016075797 A1 WO 2016075797A1 JP 2014080133 W JP2014080133 W JP 2014080133W WO 2016075797 A1 WO2016075797 A1 WO 2016075797A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- management device
- storage battery
- storage
- switch
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
Definitions
- the present invention relates to a chargeable / dischargeable battery system.
- FIG. 8 shows a configuration of a battery system 100 mounted on a typical hybrid electric vehicle or electric vehicle. As shown in FIG. 8, a plurality of battery cells (storage battery group 2) are connected to a battery cell management device (cell controller) 2a, and the battery cell management device (cell controller) 2a detects the states of the plurality of battery cells. .
- a plurality of battery cell management devices (cell controllers) 2a are connected to a battery management device (battery controller) 4, and the battery management devices (battery controller) 4 are connected to a plurality of battery cell management devices (cell controllers) 2a. Get battery cell status. Further, the battery management device (battery controller) 4 calculates the battery capacity (SOC: State? Of Charge) and the battery deterioration state (SOH: State? Of? Health) from the acquired states of the plurality of battery cells, and calculates them to the host controller 500 or the like. It becomes a mechanism to notify the result.
- SOC Battery capacity
- SOH Battery deterioration state
- This battery management device (battery controller) 4 requires power supply in order for the circuit to operate. In general, power is supplied from an external power source to a place different from the unit in which a plurality of battery cells (storage battery group 2) are combined. Then, it communicates with a battery cell management device (cell controller) 2a of a plurality of battery cells (storage battery group 2), and performs state detection and the like.
- Patent Document 1 discloses a configuration in which a battery cell management device (cell controller) that monitors a plurality of batteries communicates with one battery management device, and the battery management device uses a 12V lead battery as an external power source. .
- a battery module contains a plurality of battery cell groups and a battery cell management device (cell controller).
- the battery management device (battery controller) is not integrated into the module, and the battery management device (battery controller) must be activated to check the state of the battery cell group (storage battery group 2). The state of the internal SOC of the battery and the deterioration state are unknown.
- the voltage of the battery module only the voltage between the terminals of the battery cell group can be detected by connecting a voltage detector to the power line.
- the internal SOC and the deterioration state of the battery are unknown only by that. Therefore, if the battery module is removed from the system and separated from the battery management device, or if there is no external power supply to the battery management device that requires external power supply, the status cannot be detected and the battery health is confirmed. There is a problem that cannot be done.
- Patent Document 2 discloses a technology in which a power supply circuit that feeds power from the top and bottom of a storage battery is built in and used as a power source for a battery management device.
- a battery module includes a storage battery group in which a plurality of first storage batteries are connected in series, and a second storage battery connected to a high potential side of the storage battery group via a switch. And a battery management device that manages the battery state of the storage battery group are integrated with the housing, the battery management device is supplied with power from the second storage battery, and the second storage battery is supplemented by closing the switch. It is characterized by that.
- a rectifying element and a step-down circuit are connected to the second storage battery so as not to flow backward from the highest voltage of the storage battery group via a switch.
- the battery management device When the second storage battery is used as the power source for the battery management device and the voltage of the second storage battery drops, the battery management device outputs a signal to close the switch and forms a charging path to supplement the second storage battery. Charge.
- the storage battery can be easily replaced, and a highly versatile battery system applicable to various applications can be realized.
- the power consumption of the electric circuit which is an additional part during standby of the storage battery, is suppressed, and a battery system with high charge / discharge efficiency becomes possible. Even when there is no external power supply, the state of the storage battery can be detected, and wiring from the external power supply can be eliminated. As a result, the number of wires is reduced and assembly of a large-scale system is facilitated.
- FIG. 1 is a basic configuration diagram of a battery system according to an embodiment of the present invention. It is a block diagram of the battery system by one Example of this invention. It is a block diagram of the battery system by one Example of this invention. 1 is a configuration diagram when wireless communication is applied in a battery system according to an embodiment of the present invention. FIG. It is explanatory drawing of the radio
- FIG. 1 is a block diagram of the present invention.
- a storage battery group 3 in which a plurality of battery cells or storage batteries 2 are connected in series, a battery management device (battery controller) 4 for detecting and calculating the state of the storage battery group 3, and a power source for the battery management device 4.
- a second storage battery 5 is provided.
- a plurality of storage battery groups 3 are connected in parallel.
- the number of storage battery groups 3 in parallel is not limited, and a system composed of one storage battery group 3 may be used.
- the first storage battery 2 is connected to a battery cell management device (cell controller) 2a that detects and communicates the voltage, temperature, current, and other information of each storage battery 2.
- the battery cell management device (cell controller) 2a is configured to operate with the storage battery 2 monitored by each as a power source.
- the storage battery group 3 is connected to the second storage battery 5 via the switch 7 through the rectifier diode 8 and the voltage adjustment circuit 6 at the uppermost position.
- the battery management device 4 operates using the storage battery 5 as a power source.
- the storage battery 5 since the voltage of the storage battery 5 becomes a power supply of the board
- the size is about 180 mm ⁇ 35 mm ⁇ 60 mm and the weight is 2 kg. Both can be used, but a more compact battery system 100 can be realized by using a lithium ion battery.
- the switch 7 connected to the storage battery group 3 also detects the state of the second storage battery 5 in addition to the detection of the state of the storage battery group 3 from the information such as the voltage and the amount of electricity of the second storage battery 5 in the battery management device 4.
- a command to close the switch is issued and supplementary charging is performed until full charge.
- storage battery group 3 is charged or discharged by a load (for example, motor 300 in FIG. 8)
- rectifier diode 8 is inserted so that current does not flow backward from second storage battery 5 to storage battery group 3 when storage battery group 3 is discharged.
- the voltage adjustment circuit 6 adjusts the voltage as necessary.
- the voltage adjustment circuit 6 may be a DC / DC converter or simply a step-down circuit.
- the rectifier diode 8 can be omitted when the voltage adjustment circuit 6 is configured such that no reverse current flows.
- the state detection of the 2nd storage battery 5 may connect the battery cell management apparatus (equivalent to 2a of the storage battery 2) which is not illustrated, may communicate required information, and without a battery cell management apparatus (cell controller) It is also possible to calculate the remaining amount from the information on the current and voltage entering the battery management device 4.
- the battery cell management apparatus equivalent to 2a of the storage battery 2 which is not illustrated, may communicate required information, and without a battery cell management apparatus (cell controller) It is also possible to calculate the remaining amount from the information on the current and voltage entering the battery management device 4.
- the battery management device 4 uses the power of the second storage battery 5 by the control signal input from the host system or outside the battery management device, and performs each operation of startup, operation calculation, and standby.
- the power supply circuit of the battery management device 4 can be created with an element having a smaller withstand voltage than the power supply circuit. Since the required current of the 2nd storage battery 5 is small, the influence on the charging / discharging efficiency to the storage battery group 3 charged / discharged can be made small.
- the storage battery group 3 in which a plurality of storage batteries 2 are connected in series and the switch 7 and the switch 7 that are connected to the high potential side of the storage battery group 3 and connected in parallel to the storage battery group 3 are directly connected.
- the rectifier diode 8, the voltage conversion circuit 6 connected in series with the rectifier diode 8, the second storage battery 5 connected in series with the voltage conversion circuit 6, and the battery management device 4 are arranged inside one casing. With such a structure, it is easy to assemble the battery system 100 with a battery state detection function, and battery replacement and the like are simplified.
- the battery group 3, the switch 7, the rectifier diode 8, the voltage conversion circuit 6, the second storage battery 5, and the battery management device 4 can be handled as a battery module and can be handled as a battery module.
- the soundness of the battery such as the remaining amount detection and the presence or absence of battery abnormality can be confirmed by inputting an external signal to the battery management device 4.
- the charging of the second storage battery 5 is performed when the storage battery group 3 is charged during system operation.
- the battery management device 4 When the system is not operating, when the battery management device 4 is activated by the second storage battery 5 in order to detect the battery state of the battery module alone, the second storage battery 5 is being detected during the state detection. When the remaining amount of the battery has fallen and the threshold value that requires charging is reached, the switch 7 is closed and the second storage battery 5 for power supply can be charged using the energy stored in the storage battery group 3. Is possible. By doing so, even when the battery capacity of the second storage battery 5 is small, it is possible to activate the battery management device 4 and know the state of the storage battery without any external power supply. Since the operation time of the battery management device 4 is short because only the state is confirmed, the power consumption of the storage battery group 3 becomes small, so that it can be used while suppressing the influence on the capacity reduction of the storage battery group 3.
- the battery module unit housing 1 has an input port (not shown) as an external signal input unit that is input from a host system controller or the like as an external input for starting the battery management device 4.
- the activation of the battery management device 4 can be easily activated and terminated by providing a switch such as a push button for activation and termination of the battery management device 4 on the external signal input unit or the housing 1.
- the internal state of the battery may be displayed on a visible display such as a laptop computer, or preferably on a liquid crystal or LED display screen provided on the outer surface of the housing, so that information can be obtained more easily. Efficiency during work can be improved.
- the battery system 100 includes a storage battery group 3 in which a plurality of first storage batteries 2 are connected in series and / or in parallel, and a high potential side of the storage battery group 3 connected via a switch 7.
- Storage battery 5 and a battery management device 4 that manages the battery state of the storage battery group 3 are integrated with the housing.
- the battery management device 4 is fed from the second storage battery 5, and the second storage battery 5 is The supplementary charging is performed by closing the switch 7.
- the battery system 100 is characterized in that the switch 7 is controlled to be opened and closed by the battery management device 4.
- the switch 7 is controlled to be opened and closed by the battery management device 4.
- the battery system 100 is characterized by having a rectifier diode 8 and a voltage adjustment circuit 6 connected to the second storage battery 5 between the switch 7 and the second storage battery 5.
- a rectifier diode 8 and a voltage adjustment circuit 6 connected to the second storage battery 5 between the switch 7 and the second storage battery 5.
- FIG. 2 shows the battery system 100 of this embodiment.
- the battery system 100 of the present embodiment includes one large-capacity storage battery 2, a storage battery group 33 in which the battery cell management device 2a is integrated, and a rectifier diode at the upper level via the switch 7 as in the first embodiment. 8. It is configured to be connected to the storage battery 5 via the voltage adjustment circuit 6 and is housed in the housing 1 to constitute the battery system 100.
- the merit of the present embodiment is that the difference in electromotive force between the first storage battery 2 and the second storage battery 5 is reduced, so that the rectifier diode 8 and the voltage adjustment circuit 6 can be made smaller, and the size can be reduced. It is a point that contributes to. Further, the reference potential on the low potential side of the second storage battery 5 and the battery management device 4 can be shared with the low potential side of the first storage battery 2, and can be replaced or transported when the battery system 100 is configured. Handling becomes easier.
- the battery system 100 includes the first storage battery 2, the second storage battery 5 connected to the high potential side of the first storage battery 2 via the switch 7, and the first storage battery 2.
- the battery management device 4 that manages the battery state is integrated with the housing, the battery management device 4 is supplied with power from the second storage battery 5, and the second storage battery 5 is supplemented by closing the switch 7. It is characterized by that.
- the storage battery group 3 can be configured with a minimum number of storage batteries, and accordingly, the rectifier diode 8 and the voltage adjustment circuit 6 can be made smaller. Therefore, the battery system 100 as a whole can be downsized.
- the battery system 100 is characterized in that the reference potential of the first storage battery and the reference battery of the second storage battery are common. As described above, since the electromotive force is small in the first storage battery 2 alone and the electromotive force difference from the second storage battery 5 is small, the reference potential can be shared. By sharing the reference potential, handling is facilitated by replacement or transportation when the battery system 100 is configured.
- each battery cell management device 2a has an antenna 50 so that cell-related information can be exchanged by wireless communication.
- each battery cell management device 2a has an antenna 50 so that cell-related information can be exchanged by wireless communication.
- the structure similar to a 1st Example by the structure other than that, it demonstrated using the drawing number used in the 1st Example.
- FIG. 3 is a diagram showing a third embodiment, in which each battery cell management device 2a has an antenna.
- information communication regarding the cell can be performed using wireless communication.
- the merit of the present invention is that by making the battery cell management device 2a wireless, unnecessary wiring is eliminated and the battery system 100 can be reduced in size. The wireless communication will be described later with reference to FIG.
- the switch 7, the rectifier diode 8, and the voltage adjustment circuit 6 are arranged outside the housing while being integrated with the housing 1.
- the switch 7, the rectifier diode 8, and the voltage adjustment circuit 6 can be arranged outside the housing, so that the battery system 100 can be further reduced in size.
- a high voltage may be applied to the switch 7, and depending on the voltage of the battery system 100, the shape of the switch 7 becomes large.
- the switch 7, the rectifier diode 8, and the voltage adjustment circuit 6 are arranged outside the housing, so that they can be easily replaced in the event of a malfunction.
- the switch 7, the rectifier diode 8, and the voltage adjustment circuit 6 are outside the casing 1 of the battery system 100, but by being integrated, transportation and management are facilitated.
- the battery system 100 is characterized in that the storage battery group 3 includes a battery cell management device 2a corresponding to the first storage battery 2, and the battery cell management device 2a includes an antenna 50 that performs wireless communication. .
- the battery cell management device 2a can be made wireless, and unnecessary wiring is eliminated, so that the battery system 100 can be downsized.
- the battery system 100 is characterized in that the switch 7, the rectifier diode 8, and the voltage adjustment circuit 6 are integrated with the casing 1 and arranged outside the casing 1.
- the switch 7, the rectifier diode 8, and the voltage adjustment circuit 6 can be arranged outside the housing, which leads to further downsizing of the battery module.
- the switch 7, the rectifier diode 8, and the voltage adjustment circuit 6 are arranged outside the housing 1, so that they can be easily replaced in the event of a malfunction.
- Example 4 a fourth embodiment will be described. This embodiment is different from the first embodiment in that the battery cell management device 2a has an antenna 50 and the battery management device 4 has an antenna 250 so that information about the cell can be exchanged by wireless communication. This is the point. In addition, about the structure similar to a 1st Example by the structure other than that, it demonstrated using the drawing number used in the 1st Example.
- FIG. 4 is a diagram showing a fourth embodiment.
- the battery cell management device 2a and the battery management device 4 have an antenna 250, and each is configured to be able to communicate information by wireless communication. With such a configuration, it is possible to omit the signal wiring inside the casing 1 of the battery module, and it is possible to reduce the size and size of the casing by reducing the wiring. .
- the wireless communication distance can be further shortened by integrating the battery cell management device 2a and the battery management device 4 in the housing. By shortening the wireless communication distance in this way, highly reliable communication is ensured, and a design that suppresses the current consumption of the wireless transmission circuit becomes possible.
- FIG. 5 shows a configuration of a battery system 100 using the battery management device 4 and the battery cell management device 2a.
- the battery management device 4 performs radio communication with each battery cell management device 2 a via the antenna 250. By this wireless communication, the battery management device 4 can request each battery cell management device 2a for measurement information, cell balancing, and the like of each battery cell of the corresponding storage battery 2. In response to a request from the battery management device 4, each battery cell management device 2 a transmits measurement information of each battery cell of the corresponding storage battery 2 to the battery management device 4 or performs cell balancing.
- FIG. 6 is a basic configuration diagram of wireless communication of the battery system 100 according to an embodiment of the present invention.
- the battery cell management device 2a includes one or more measuring instruments (sensors) 20 that measure the state of the storage battery 2, a processing unit 30 that acquires and processes the state information of the storage battery 2, a radio circuit 40, and an antenna that inputs and outputs radio waves. 50.
- the processing unit 30 receives a power supply from a plurality of storage batteries 2 to generate an operating voltage, and a detection circuit (A / A) that detects the state of the storage battery 2 or the plurality of storage batteries 2 from information measured by the measuring instrument 20.
- the processing circuit 33 is connected to the wireless communication unit 40, and battery information is input / output via the antenna 50.
- the battery management device 4 includes a wireless circuit 210, a processing circuit (CPU) 220, a power supply circuit 230 including a battery, a storage device (memory) 240, and an antenna 250.
- the battery management device 4 communicates with one or more battery cell management devices 2a, and acquires the battery state detected by the battery cell management device 2a. In the wireless communication between the battery cell management device 2a and the battery management device 4 at this time, the battery management device 4 performs a master operation and the battery cell management device 2a performs a slave operation. The battery cell management device 2a performs an operation in accordance with a request from the battery management device 4, and then returns a result to the battery management device 4 as necessary.
- the battery cell management device 2a responds with battery information regarding one or more storage batteries 2 according to the frequency communicated from the antenna 250 of the battery management device 4.
- the battery information to be transmitted includes any one or more of information detected by a plurality of measuring instruments 20, battery identification information, history information, battery control parameters, and the like.
- Each battery cell management device 2a includes a plurality of measuring instruments 20, a processing unit 30, a wireless communication unit 40, and an antenna 50 provided for each battery cell of the corresponding storage battery 2.
- the processing unit 30 includes a power supply circuit 31, a detection circuit 32, a processing circuit 33, and a memory 34.
- Each measuring instrument 20 is a sensor for measuring the state of each battery cell of the storage battery 2, and is composed of a voltage sensor, a current sensor, a temperature sensor, and the like. The measurement result of the state of the storage battery 2 by the measuring instrument 20 is converted into a digital signal by the detection circuit 32 and output to the processing circuit 33 as measurement information.
- the measuring instrument 20 and the detection circuit 32 constitute a measurement circuit that measures the state of each battery cell of the storage battery 2.
- the power supply circuit 31 receives power supplied from the battery cells of the storage battery 2 and generates power supply voltages Vcc and Vdd based on the power.
- the power supply voltage Vcc is used as an operation power supply for the detection circuit 32 and the processing circuit 33
- the power supply voltage Vdd is used as an operation power supply for the wireless communication unit 40.
- the power supply circuit 31 can receive power from at least one of the battery cells constituting the storage battery 2.
- the processing circuit 33 executes processing for controlling the operation of the battery cell management device 2a.
- the measurement information of each battery cell output from the detection circuit 32 is stored in the storage device 34, and the measurement information stored in the storage device 34 is sent to the battery management device 4 in response to a request from the battery management device 4.
- a transmission process for wireless transmission is performed.
- the processing circuit 33 transmits the measurement information according to the state of each battery cell to the battery management device 4 by controlling the wireless communication unit 40 according to the measurement information read from the storage device 34.
- the processing circuit 33 performs a balancing process for equalizing the charge state of each battery cell of the storage battery 2 by controlling a balancing switch (not shown). .
- various processes can be executed in the processing circuit 33.
- the wireless communication unit 40 is a circuit that executes processing and control for the battery cell management device 2a to perform wireless communication with the battery management device 4.
- the radio signal transmitted from the battery management device 4 and received by the antenna 50 is demodulated by the radio communication unit 40 and output to the processing circuit 33.
- the request content from the battery management device 4 is decoded by the processing circuit 33, and processing corresponding to the request content is executed in the processing circuit 33.
- the wireless communication unit 40 modulates the obtained measurement information according to a predetermined transmission frequency using the power supply voltage Vdd supplied from the power supply circuit 31 and outputs the modulated measurement information to the antenna 50.
- the measurement information according to the state of each battery cell of the storage battery 2 is transmitted from the battery cell management device 2a to the battery management device 4.
- the battery management device 4 includes a wireless communication unit 210, a processing circuit (CPU) 220, a power supply circuit 230, a storage device (memory) 240, and an antenna 250.
- the power supply circuit 230 generates the power supply voltages Vcc and Vdd based on the power supplied from the battery built in the battery management device 4 in the same manner as the power supply circuit 31 of the battery cell management device 2a.
- the battery management device 4 does not use the built-in storage battery 5 but can use electric power supplied from the outside. However, when the battery management device 4 is transported and stored in the housing 1 unit of the battery system 100, the battery management device 4 performs supplementary charging from the storage battery 2. It is desirable to use as a power source.
- the processing circuit 220 controls operations of the wireless communication unit 210 and the storage device 240.
- the wireless communication unit 210 operates in accordance with the control of the processing circuit 220, and executes processing and control for the battery management device 4 to perform wireless communication with each battery cell management device 2a.
- the wireless communication unit 210 uses the power supply voltage Vdd supplied from the power supply circuit 230 to modulate a request for measurement information for each battery cell management device 2 a in accordance with a predetermined transmission frequency, and outputs the modulated request to the antenna 250.
- measurement information corresponding to the state of each battery cell of the storage battery 2 is transmitted from each battery cell management device 2a to the battery management device 4 by a radio signal.
- the radio signal transmitted from each battery cell management device 2 a and received by the antenna 250 is demodulated by the radio communication unit 210 and output to the processing circuit 220. Thereby, the measurement information acquired by each battery cell management device 2a is decoded by the processing circuit 220, and processing according to the content is executed as necessary.
- the battery management device 4 acquires the battery state detected by each battery cell management device 2a by performing wireless communication with each battery cell management device 2a. At this time, the battery management device 4 operates as a master that leads communication, and each battery cell management device 2a operates as a slave that performs communication according to an instruction from the master. Each battery cell management apparatus 2a transmits the result to the battery management apparatus 4 as needed, after performing the operation
- the battery control parameters include initial values, SOC-OCV curve information at the time of remaining amount estimation, constants for calculation, and the like. These pieces of information are read only at the time of start-up, and when the operation ends, the degree of deterioration in the final state is written in the battery usage history section.
- sensing information such as battery voltage, current, battery surface temperature, and battery internal temperature of one or a plurality of storage batteries 2 at the time of activation is requested from the battery management device 4 and transmitted from the battery cell management device 2a.
- the information is transmitted according to the received instruction at regular intervals of 10 ms to 60 s in accordance with the reading designated time of each information.
- individual information of the initial state of the plurality of battery cell management devices 2a is read.
- a command is transmitted to the target battery cell management device 2a, and the received battery
- the cell management device 2a starts discharging by a bypass circuit (not shown) provided therein, and discharges until one or a plurality of storage batteries 2 reach a desired voltage.
- the discharge does not have to end until the start of charging / discharging, and the voltage of one or a plurality of storage batteries 2 is balanced by the end of charging / discharging.
- information is transmitted according to a command received at a constant interval of 10 ms to 60 s according to the reading specification of each information as described above.
- the SOC, SOH (SOHR, SOCQ) calculated by the battery management device 4 is written in a storage device (not shown). .
- the microcomputer part of the battery cell management apparatus 2a is put to sleep from the end information. The dark current is minimized, and the voltage drop of one or a plurality of storage batteries 2 when no power is supplied is suppressed.
- the battery control parameter, the degree of deterioration, the protection history, etc., the current capacity, the battery temperature, etc. can be confirmed individually for each of the one or a plurality of storage batteries 2, abnormalities and deterioration are increased. Even when a plurality of storage batteries 2 need to be replaced, until now, they could only be replaced for each number of series batteries. However, it is possible to replace one or a plurality of storage batteries 2 and maintain the battery system 100. The cost of time can be reduced. Even when one or a plurality of types of storage batteries 2 are mixed, the battery cell management device 2a having the control parameters is integrated with each one or a plurality of storage batteries 2, so that the control due to the mismatch of the control parameters. It is possible to avoid the occurrence of defects.
- the battery system 100 may be realized in any configuration as long as a plurality of radio frequencies can be used in the wireless communication performed between the battery management device 4 and each battery cell management device 2a.
- the transmission information is transmitted as a reflected wave with respect to the unmodulated carrier by changing the impedance with respect to the unmodulated carrier at a predetermined timing according to the transmission information.
- the battery cell management device 2a communicates control dynamic battery information and control / management static battery information from the battery cell management device 2a to the battery management device 4 in response to a request from the battery management device 4.
- the sexual battery information for control / management here refers to battery information, LOT name, date of manufacture, history, individual identification ID and other information for identifying one individual battery cell, and nominal capacity (Ah). , Nominal voltage (V), SOC-OCV, DCR, resistance value, battery control parameters, usage history log, abnormal flag log, etc. Refers to information that can be read.
- the dynamic battery information for control is information obtained by sensing the state of the battery cell, and indicates information that changes every moment. By recording the control / management static battery information in a rewritable recording section provided in the battery cell management device 2a, information on individual batteries is recorded.
- the configuration of the present invention even when the storage battery 2 is replaced and different types of battery cells are used together, by setting appropriate control parameters for each battery cell, Control failure due to mismatch can be avoided.
- the current consumption of the battery management device 4 increases as the communication distance increases at the time of wireless transmission. Therefore, external power supply is necessary for stable communication operation, but the battery management device 4 operates. Since the power source has the second storage battery 5 and can be connected to the first storage battery group by a switch, stable operation is possible even without external power feeding.
- the battery system 100 is characterized in that the battery management device 4 includes an antenna that performs wireless communication. With such a configuration, unnecessary wiring around the battery management device 4 can be eliminated, and the battery system 100 can be downsized.
- FIG. 7 shows a diagram when the load 12 is connected to the battery module 10 of the fifth embodiment.
- the first reference potential (usually GND) 11 on the low voltage side of the storage battery group 3 including the first storage battery 2 and the second reference potential 9 on the low potential side of the second storage battery 5 are separated.
- the battery management device 4 and its peripheral switch 7, diode 8, and voltage conversion circuit 6 can be made compact.
- the third reference potential 13 may be connected from the lower voltage side of an appropriate number of first storage batteries 2 from the upper level according to the voltage of the storage battery 5.
- the battery system 100 is a battery module characterized in that the reference potential 11 of the storage battery group 3 and the reference potential 9 of the second storage battery 5 are different.
- the device 4 and its peripheral switch 7, the diode 8, and the voltage conversion circuit 6 can be reduced in size.
- FIG. 8 is a diagram illustrating a configuration of an electric system 110 including a conventional battery system 100, which is an example of a configuration of an electric system including the battery system 100.
- the electric system shown in FIG. 8 includes a battery system 100, an inverter 200, a motor 300, a relay box 400, and a host controller 500.
- the battery system 100 includes one or a plurality of storage batteries 2 each constituted by one or a plurality of battery cells, and a battery cell management device 2a is provided corresponding to each storage battery 2.
- Each battery cell management device 2a includes information necessary for detecting the state of charge (SOC) of the storage battery 2 (SOC: State of Charge) and the deterioration state (SOH: State of Health), and measurement (voltage, current, Temperature). And it communicates with the battery management apparatus 4 using the electric power supplied from the storage battery 2, and the measurement result regarding the charge state, the deterioration state, and the abnormality monitoring, the necessary information, and the battery management apparatus 4 are requested. Information is transmitted to the battery management device 4.
- SOC state of charge
- SOH State of Health
- the battery management device 4 acquires the measurement result regarding the charge state and the deterioration state of the storage battery 2 corresponding to the battery cell management device 2a from each battery cell management device 2a. Then, based on the acquired measurement result, the charging state and the deterioration state of each storage battery 2 are estimated, and the estimation result is transmitted to the host controller 500.
- the host controller 500 controls the inverter 200 and the relay box 400 based on the estimation result of the charged state and the deteriorated state of each storage battery 2 transmitted from the battery management device 4.
- the inverter 200 converts the DC power supplied from each storage battery 2 into three-phase AC power and supplies it to the motor 300 when the relay box 400 is in a conductive state, thereby rotating the motor 300 to generate driving force.
- the motor 300 is regeneratively operated, the three-phase AC regenerative power generated by the motor 300 is converted into DC power and output to each storage battery group 3 to charge the storage battery 2 of each storage battery group 3. To do.
- the operation of the inverter 200 is controlled by the host controller 500.
- the power supply of the battery management device 4 in the battery system 100 has been conventionally supplied from a 12V or 24V lead battery in a hybrid vehicle application or the like, but the power supply wiring becomes unnecessary.
- an optimal power supply may be performed depending on the case where the supply from the external power supply is left and the supply is made as usual.
- one battery management device 4 corresponds to one or a plurality of directly connected storage battery groups 3 to constitute the battery system 100, but for each one or a plurality of storage batteries 2.
- the battery system 100 may be configured with a plurality of battery management units 4 each including a battery unit housing 1 having a storage battery 5 as a power source dedicated to the battery management device 4.
- the battery control parameters, the degree of deterioration, the protection history, the current capacity, the battery temperature, etc. can be confirmed individually for each battery cell 1, so that the abnormality or deterioration increases, and the storage battery 2 can be replaced. Even when it is necessary, it has been possible to replace only the number of series batteries until now, but it is also possible to replace even the unit of the storage battery 2, and the cost during maintenance of the battery system 100 can be reduced. Even when the types of the storage batteries 2 are mixed, the battery cell management device having the control parameters is integrated with each storage battery 2, so that it is possible to avoid a control failure due to a mismatch of the control parameters. it can.
- a part of the battery cell management device 2a integrated in the cell has a storage area and records individual control parameters for each cell.
- the above-described battery system 100 of the present invention is not particularly limited in form, and includes a large-sized battery system from a portable automobile module to a railway battery box and a power storage panel for power use.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
The present invention addresses the problem of providing a battery system, wherein power consumption of an electric circuit is suppressed, said electric circuit becoming an additional component when a storage battery is in a stand-by state, and charge/discharge efficiency is high.
This battery system is characterized in that: a first storage battery group wherein a plurality of storage batteries are connected in series and/or parallel, a second storage battery connected to the high potential side of the storage battery group via a switch, and a battery management device that manages the battery state of the storage battery group are integrated with a housing; the battery management device is supplied with power from the second storage battery; and the second storage battery is supplementarily charged by closing the switch.
Description
本発明は充放電可能な電池システムに関する。
The present invention relates to a chargeable / dischargeable battery system.
現在、地球環境問題が大きくクローズアップされてきており、地球温暖化防止の為に、あらゆる場面で炭酸ガスの排出削減が求められている。炭酸ガスの大きな排出源となっているガソリンエンジンの自動車については、ハイブリッド電気自動車や電気自動車などへの代替が始まっている。
Currently, global environmental problems have been greatly highlighted, and in order to prevent global warming, reduction of carbon dioxide emissions is required in all situations. As for gasoline engine cars, which are a major source of carbon dioxide, alternatives to hybrid electric cars and electric cars have begun.
ハイブリッド電気自動車や電気自動車の動力用電源に代表される大型二次電池は、高出力、大容量であることが必要である為、それを構成する蓄電池モジュール内は、複数の電池セルを直並列接続して構成される。
Large secondary batteries represented by power sources for hybrid electric vehicles and electric vehicles need to have high output and large capacity. Therefore, a plurality of battery cells are connected in series in the storage battery module that composes them. Connected and configured.
また、昨今の原子力発電所の停止を受け、自然エネルギーによる発電や、電力会社で発電する以外の電力を利用することに注目が集まっている。自然エネルギーによる発電は、たとえば風力を例にとっても、風がコンスタントに吹き続けるものではなく発電量は変動が大きくなる。また、太陽光発電においても天候により発電量が変動するのは周知のことである。この電力が、電力系統に対し電圧変動を誘発する原因となりうる。安定した品質の電力を供給するためには電力系統の電圧の変動緩和が必要であり、その変動緩和には蓄電池システムを使用する。
In response to the recent shutdown of nuclear power plants, attention has been focused on the use of power generated by natural energy and other than that generated by power companies. For example, even with wind power as an example, the generation of electricity using natural energy does not keep the wind blowing constantly, and the amount of power generation varies greatly. Also, it is well known that the amount of power generation varies depending on the weather in solar power generation. This power can cause voltage fluctuations in the power system. In order to supply stable quality power, it is necessary to mitigate fluctuations in the voltage of the power system, and a storage battery system is used to mitigate the fluctuations.
これらの蓄電池システムに使用される二次電池であるリチウムイオン電池は、高電圧充電の防止や過放電による性能低下の防止などの適切な二次電池の使いこなしが必要となる。この為、蓄電池システムに搭載される蓄電池モジュールには、電池の状態である電圧、電流、温度などを検出する機能を持っている。図8に代表的なハイブリッド電気自動車や電気自動車に搭載される電池システム100の構成を示す。図8に示すように、複数の電池セル(蓄電池群2)は電池セル管理装置(セルコントローラー)2aと接続され、電池セル管理装置(セルコントローラー)2aは、複数の電池セルの状態を検出する。また、複数の電池セル管理装置(セルコントローラー)2aは電池管理装置(バッテリーコントローラ)4に接続され、電池管理装置(バッテリーコントローラ)4は、複数の電池セル管理装置(セルコントローラー)2aから複数の電池セルの状態を取得する。さらに電池管理装置(バッテリーコントローラ)4は、取得した複数の電池セルの状態から電池容量(SOC:State of Charge)や電池劣化状態(SOH:State of Health)を演算し、上位コントローラー500などに演算結果を通知する、仕組みとなる。
Lithium ion batteries, which are secondary batteries used in these storage battery systems, require appropriate use of secondary batteries, such as prevention of high-voltage charging and deterioration of performance due to overdischarge. For this reason, the storage battery module mounted in the storage battery system has a function of detecting voltage, current, temperature, and the like, which are battery states. FIG. 8 shows a configuration of a battery system 100 mounted on a typical hybrid electric vehicle or electric vehicle. As shown in FIG. 8, a plurality of battery cells (storage battery group 2) are connected to a battery cell management device (cell controller) 2a, and the battery cell management device (cell controller) 2a detects the states of the plurality of battery cells. . A plurality of battery cell management devices (cell controllers) 2a are connected to a battery management device (battery controller) 4, and the battery management devices (battery controller) 4 are connected to a plurality of battery cell management devices (cell controllers) 2a. Get battery cell status. Further, the battery management device (battery controller) 4 calculates the battery capacity (SOC: State? Of Charge) and the battery deterioration state (SOH: State? Of? Health) from the acquired states of the plurality of battery cells, and calculates them to the host controller 500 or the like. It becomes a mechanism to notify the result.
この電池管理装置(バッテリーコントローラ)4は、回路が動作するために、電源供給が必要であり、一般には複数の電池セル(蓄電池群2)をまとめたユニットとは別の場所に外部電源から給電をうけて複数の電池セル(蓄電池群2)の電池セル管理装置(セルコントローラー)2aと通信し,状態検知等を実施する。
This battery management device (battery controller) 4 requires power supply in order for the circuit to operate. In general, power is supplied from an external power source to a place different from the unit in which a plurality of battery cells (storage battery group 2) are combined. Then, it communicates with a battery cell management device (cell controller) 2a of a plurality of battery cells (storage battery group 2), and performs state detection and the like.
特許文献1では、複数の電池を監視する電池セル管理装置(セルコントローラー)から、1つの電池管理装置に通信される構成が開示されており、電池管理装置は12Vの鉛電池を外部電源としている。
Patent Document 1 discloses a configuration in which a battery cell management device (cell controller) that monitors a plurality of batteries communicates with one battery management device, and the battery management device uses a 12V lead battery as an external power source. .
通常、電池モジュールは複数の電池セル群と電池セル管理装置(セルコントローラー)を内蔵している。しかし、電池管理装置(バッテリーコントローラ)がモジュールに一体化されてはおらず、電池セル群(蓄電池群2)の状態を確認するためには、必ず電池管理装置(バッテリーコントローラ)が起動していないと電池の内部SOCの状態や、劣化状態は不明となる。
Usually, a battery module contains a plurality of battery cell groups and a battery cell management device (cell controller). However, the battery management device (battery controller) is not integrated into the module, and the battery management device (battery controller) must be activated to check the state of the battery cell group (storage battery group 2). The state of the internal SOC of the battery and the deterioration state are unknown.
一方で、電池モジュールの電圧に関してはパワーラインに電圧検出計を接続することにより電池セル群の端子間電圧のみが検知可能ではあるが、それだけでは電池の内部SOCや劣化状態は不明である。そのためシステムから電池モジュールがとりはずされ電池管理装置から分離された場合や、あるいは、外部から給電が必要な電池管理装置に外部給電がない場合は、状態検知ができず、電池の健全性の確認ができないという課題がある。
On the other hand, regarding the voltage of the battery module, only the voltage between the terminals of the battery cell group can be detected by connecting a voltage detector to the power line. However, the internal SOC and the deterioration state of the battery are unknown only by that. Therefore, if the battery module is removed from the system and separated from the battery management device, or if there is no external power supply to the battery management device that requires external power supply, the status cannot be detected and the battery health is confirmed. There is a problem that cannot be done.
この課題を解決するために、複数の組電池と、電池管理装置をひとつのシステム内におき、組電池から電池管理装置の電源を供給する方法が考えられる。
In order to solve this problem, a method of placing a plurality of assembled batteries and a battery management device in one system and supplying power from the assembled battery to the battery management device is conceivable.
特許文献2では、蓄電池の最上位と最下位から給電する電源回路を内蔵し、電池管理装置の電源とする技術が開示されている。
Patent Document 2 discloses a technology in which a power supply circuit that feeds power from the top and bottom of a storage battery is built in and used as a power source for a battery management device.
しかし、特許文献2に記載の電池システムでは、本来蓄電に使用されるべき電池容量が、電源管理装置の消費電力により消耗し、システム全体の効率に影響する。あるいは、システム停止時に長期間充電されない場合には、回路の待機電流によって蓄電池の内部容量を消費してしまうために、電源回路そのものの起動電圧が確保できなくなり、状態検知ができないばかりか、電池そのものも使用不可になる可能性がある。
However, in the battery system described in Patent Document 2, the battery capacity that should originally be used for power storage is consumed by the power consumption of the power management device, which affects the efficiency of the entire system. Alternatively, if the battery is not charged for a long time when the system is stopped, the internal capacity of the storage battery is consumed by the standby current of the circuit. Therefore, the starting voltage of the power supply circuit itself cannot be secured, and not only the state detection but also the battery itself May also become unusable.
また、特に大容量の電池システムでは多直列時の配線が多く,製造時の接続工数や、配線量が膨大になり、誤配線のリスクの増加の懸念がある。さらに、コントローラに外部給電が必須であれば、電池の構成も自由に変更できないという問題もある。さらに、規模が大きいために、蓄電池を部分的に交換した場合、電池管理装置の情報と蓄電池の情報が分断され、制御が不安定になる懸念がある。
Also, especially in a large-capacity battery system, there are many wirings in multi-series, and the number of man-hours for connection and the amount of wiring become enormous, which may increase the risk of incorrect wiring. Furthermore, if external power supply is essential for the controller, there is also a problem that the configuration of the battery cannot be freely changed. Furthermore, since the scale is large, when the storage battery is partially exchanged, there is a concern that the information of the battery management device and the information of the storage battery are divided and the control becomes unstable.
上記課題を解決するために、本発明に係る電池モジュールは、複数の第1の蓄電池が直列に接続された蓄電池群と、蓄電池群の高電位側とスイッチを介して接続される第2の蓄電池と、蓄電池群の電池状態を管理する電池管理装置と、が筐体と一体化され、電池管理装置は、前記第2の蓄電池から給電され、第2の蓄電池はスイッチを閉じることによって補充電されることを特徴とする。
In order to solve the above problems, a battery module according to the present invention includes a storage battery group in which a plurality of first storage batteries are connected in series, and a second storage battery connected to a high potential side of the storage battery group via a switch. And a battery management device that manages the battery state of the storage battery group are integrated with the housing, the battery management device is supplied with power from the second storage battery, and the second storage battery is supplemented by closing the switch. It is characterized by that.
さらには蓄電池群の最上位電圧からスイッチを介し、逆流しないよう整流素子、降圧回路を第2の蓄電池に接続する。第2の蓄電池を電池管理装置の電源とし、第2の蓄電池の電圧が低下した場合は、電池管理装置からスイッチを閉じる信号を出力し、充電パスを形成することで、第2の蓄電池を補充電する。
Furthermore, a rectifying element and a step-down circuit are connected to the second storage battery so as not to flow backward from the highest voltage of the storage battery group via a switch. When the second storage battery is used as the power source for the battery management device and the voltage of the second storage battery drops, the battery management device outputs a signal to close the switch and forms a charging path to supplement the second storage battery. Charge.
本発明により単数や複数の電池セルで構成される電池システムにおいて、蓄電池の交換が容易になり、さまざまな用途に適用可能な汎用性の高い電池システムを実現できる。
In the battery system composed of a single battery cell or a plurality of battery cells according to the present invention, the storage battery can be easily replaced, and a highly versatile battery system applicable to various applications can be realized.
また、蓄電池待機時の付加部品となる電気回路の消費電力を抑制し、充放電効率の高い電池システムが可能となる。外部電源がないところでも、蓄電池の状態検知が可能であり、外部電源からの配線をなくすることが可能になる。そのため、配線数が減り、大規模システムの組み立てが容易になる。
In addition, the power consumption of the electric circuit, which is an additional part during standby of the storage battery, is suppressed, and a battery system with high charge / discharge efficiency becomes possible. Even when there is no external power supply, the state of the storage battery can be detected, and wiring from the external power supply can be eliminated. As a result, the number of wires is reduced and assembly of a large-scale system is facilitated.
さらには、長期間のシステム停止時でも、全体システムに給電しなくても、蓄電モジュール単体で、状態検知が可能となり、リプレースやリユースも容易になる。
Furthermore, even when the system is stopped for a long period of time, it is possible to detect the state with a single power storage module without supplying power to the entire system, and replacement and reuse become easy.
制御一体化となっており、制御の安定性も向上し、安定した電池システムが供給可能になる
Integrating control, improving control stability and supplying a stable battery system
以下、実施例を図面を用いて説明する。
Hereinafter, examples will be described with reference to the drawings.
<実施例1>
図1は、本発明の構成図である。電池ユニット筺体1の内部に、電池セルまたは蓄電池2を複数直列にした蓄電池群3と、蓄電池群3の状態を検知演算する電池管理装置(バッテリーコントローラ)4、および電池管理装置4の電源となる第2の蓄電池5を有している。なお、本実施例では蓄電池群3が複数並列に接続されているが、当然蓄電池群3の並列数に限定はなく、1つの蓄電池群3からなる系でも良い。 <Example 1>
FIG. 1 is a block diagram of the present invention. Inside thebattery unit housing 1 is a storage battery group 3 in which a plurality of battery cells or storage batteries 2 are connected in series, a battery management device (battery controller) 4 for detecting and calculating the state of the storage battery group 3, and a power source for the battery management device 4. A second storage battery 5 is provided. In this embodiment, a plurality of storage battery groups 3 are connected in parallel. Of course, the number of storage battery groups 3 in parallel is not limited, and a system composed of one storage battery group 3 may be used.
図1は、本発明の構成図である。電池ユニット筺体1の内部に、電池セルまたは蓄電池2を複数直列にした蓄電池群3と、蓄電池群3の状態を検知演算する電池管理装置(バッテリーコントローラ)4、および電池管理装置4の電源となる第2の蓄電池5を有している。なお、本実施例では蓄電池群3が複数並列に接続されているが、当然蓄電池群3の並列数に限定はなく、1つの蓄電池群3からなる系でも良い。 <Example 1>
FIG. 1 is a block diagram of the present invention. Inside the
第一の蓄電池2には、各蓄電池2の電圧、温度、電流、その他のいずれかの情報を検知し通信する電池セル管理装置(セルコントローラー)2aが接続されている。電池セル管理装置(セルコントローラー)2aはそれぞれが監視する蓄電池2を電源として動作する構成となっている。蓄電池群3の最上位にスイッチ7を介し、整流ダイオード8、電圧調整回路6を経て第2の蓄電池5へ接続される構成となっている。蓄電池5を電源とし、電池管理装置4が動作する。
The first storage battery 2 is connected to a battery cell management device (cell controller) 2a that detects and communicates the voltage, temperature, current, and other information of each storage battery 2. The battery cell management device (cell controller) 2a is configured to operate with the storage battery 2 monitored by each as a power source. The storage battery group 3 is connected to the second storage battery 5 via the switch 7 through the rectifier diode 8 and the voltage adjustment circuit 6 at the uppermost position. The battery management device 4 operates using the storage battery 5 as a power source.
なお蓄電池5の電圧は、電池管理装置4の基板の電源となるため、3から5V程度あればよい。従って、蓄電池5は単電池の起電力が1.5Vから3V程度あれば動作可能であるから、リチウム電池であれば直列数が1または2の蓄電池で構成すればよい。電池管理装置4の消費電流が、動作時X1(A)、待機時X2(A)とすると、動作時の消費電流により、蓄電池5の容量Qn(Ah)は、動作時間t1(h)、待機時間t2(h)とすると、以下の式を満たせばよいので、
消費電流が小さい電池管理装置4では蓄電池5より小型にすることができる。
Qn ≧ X1×t1+X2×t2 ・・・・〔式1〕
In addition, since the voltage of thestorage battery 5 becomes a power supply of the board | substrate of the battery management apparatus 4, it should just be about 3 to 5V. Therefore, since the storage battery 5 can operate when the electromotive force of the unit cell is about 1.5 V to 3 V, it may be constituted by a storage battery having 1 or 2 in series if it is a lithium battery. Assuming that the current consumption of the battery management device 4 is X 1 (A) during operation and X 2 (A) during standby, the capacity Q n (Ah) of the storage battery 5 depends on the current consumption during operation. ), And waiting time t2 (h), the following equation should be satisfied,
Thebattery management device 4 with low current consumption can be made smaller than the storage battery 5.
Q n ≧ X 1 × t 1 + X 2 × t 2 (Equation 1)
消費電流が小さい電池管理装置4では蓄電池5より小型にすることができる。
Qn ≧ X1×t1+X2×t2 ・・・・〔式1〕
In addition, since the voltage of the
The
Q n ≧ X 1 × t 1 + X 2 × t 2 (Equation 1)
仮に、動作時50mA、 待機時10μAの電池管理装置の場合、稼動24時間とすると、1.2Ahの電気量があればよいことになる。待機時も1年待機するときの必要電気量は0.088Ahである。電池が常に満充電状態を維持していないと仮定し、2倍の容量の電池を積むとしても2.4Ahあれば十分であり、18650電池で2Ahから3.5Ah程度まで容量の大きいものもあり、高容量リチウムイオン電池であれば18650電池1本で動作が可能である。18650電池は直径が18mmで長さが65mmの円筒型であり、大容量の電池システム100の蓄電池群3の体積に比較すると、十分に小さい。12Vの2.3Ahの鉛電池の一例では、180mm×35mm×60mm程度の大きさで重量は2kgとなる。どちらも使用可能であるが、リチウムイオン電池を使用したほうがよりコンパクトな電池システム100が実現できる。
Temporarily, in the case of a battery management device of 50 mA at the time of operation and 10 μA at the time of standby, if it is operated for 24 hours, an electric quantity of 1.2 Ah is sufficient. The amount of electricity required for one year of standby is 0.088 Ah. Assuming that the battery is not always fully charged, 2.4 Ah is sufficient even when a battery with twice the capacity is loaded. Some 18650 batteries have a large capacity from 2 Ah to about 3.5 Ah. If it is a high-capacity lithium ion battery, it can operate with one 18650 battery. The 18650 battery has a cylindrical shape with a diameter of 18 mm and a length of 65 mm, and is sufficiently smaller than the volume of the storage battery group 3 of the large capacity battery system 100. In an example of a 12V 2.3 Ah lead battery, the size is about 180 mm × 35 mm × 60 mm and the weight is 2 kg. Both can be used, but a more compact battery system 100 can be realized by using a lithium ion battery.
蓄電池群3とつながるスイッチ7は、電池管理装置4において、第2の蓄電池5の電圧、電気量などの情報から、蓄電池群3の状態検知のほかに、第2の蓄電池5の状態検知も実施し、第2の蓄電池5の残容量が減少した場合、スイッチを閉じる命令を出し、満充電まで補充電する。蓄電池群3は、負荷(例えば図8のモータ300)により充電または放電されているので、蓄電池群3の放電時に第2の蓄電池5から蓄電池群3へ電流が逆流しないよう、整流ダイオード8を入れる。必要に応じ、電圧調整回路6で電圧調整する。電圧調整回路6はDC/DCコンバータでも、単に降圧回路でもよい。整流ダイオード8は、電圧調整回路6が電流の逆流が起こらない構成の場合、省くことができる。
The switch 7 connected to the storage battery group 3 also detects the state of the second storage battery 5 in addition to the detection of the state of the storage battery group 3 from the information such as the voltage and the amount of electricity of the second storage battery 5 in the battery management device 4. When the remaining capacity of the second storage battery 5 decreases, a command to close the switch is issued and supplementary charging is performed until full charge. Since storage battery group 3 is charged or discharged by a load (for example, motor 300 in FIG. 8), rectifier diode 8 is inserted so that current does not flow backward from second storage battery 5 to storage battery group 3 when storage battery group 3 is discharged. . The voltage adjustment circuit 6 adjusts the voltage as necessary. The voltage adjustment circuit 6 may be a DC / DC converter or simply a step-down circuit. The rectifier diode 8 can be omitted when the voltage adjustment circuit 6 is configured such that no reverse current flows.
第2の蓄電池5の状態検知は、図示していない電池セル管理装置(蓄電池2の2a相当)を接続し、必要な情報を通信してもよいし、電池セル管理装置(セルコントローラー)なしで電池管理装置4に入ってくる電流と電圧の情報から残量計算を実施することでもできる。
The state detection of the 2nd storage battery 5 may connect the battery cell management apparatus (equivalent to 2a of the storage battery 2) which is not illustrated, may communicate required information, and without a battery cell management apparatus (cell controller) It is also possible to calculate the remaining amount from the information on the current and voltage entering the battery management device 4.
上位システムあるいは、電池管理装置外部から入力される制御信号により、電池管理装置4は第2の蓄電池5の電力を使用して、起動、稼動演算、待機の各動作を実施する。
The battery management device 4 uses the power of the second storage battery 5 by the control signal input from the host system or outside the battery management device, and performs each operation of startup, operation calculation, and standby.
蓄電池群3の最上位側に接続し、第2の蓄電池5の低電位側の基準電圧と、蓄電池群3の低電位側の基準電圧を別に設けることで、特許文献2に開示されたような電源回路よりも耐圧の小さい素子で、電池管理装置4の電源回路を作成できる。第2の蓄電池5の必要電流が小さいので、充放電される蓄電池群3への充放電効率への影響は小さくすることができる。
By connecting to the uppermost side of the storage battery group 3 and separately providing a reference voltage on the low potential side of the second storage battery 5 and a reference voltage on the low potential side of the storage battery group 3, as disclosed in Patent Document 2 The power supply circuit of the battery management device 4 can be created with an element having a smaller withstand voltage than the power supply circuit. Since the required current of the 2nd storage battery 5 is small, the influence on the charging / discharging efficiency to the storage battery group 3 charged / discharged can be made small.
また、本発明では、蓄電池2を複数直列に接続した蓄電池群3と、蓄電池群3の高電位側と接続され、かつ蓄電池群3と並列に接続されるスイッチ7、スイッチ7と直接に接続される整流ダイオード8、整流ダイオード8と直列に接続される電圧変換回路6、電圧変換回路6と直列に接続される第2の蓄電池5と、電池管理装置4をひとつの筐体内部に配置する。このような構造とすることによって、電池の状態検知機能がついた状態で、電池システム100への組み立てが容易となり、電池の交換等が簡単になる。また、蓄電池群3、スイッチ7、整流ダイオード8、電圧変換回路6、第2の蓄電池5、及び電池管理装置4を一つの筐体1に組んだものを電池モジュールとして取り扱いができ、電池保管時にも電池管理装置4への外部信号入力により残量検知や、電池の異常の有無など電池の健全性も確認可能である。
Further, in the present invention, the storage battery group 3 in which a plurality of storage batteries 2 are connected in series and the switch 7 and the switch 7 that are connected to the high potential side of the storage battery group 3 and connected in parallel to the storage battery group 3 are directly connected. The rectifier diode 8, the voltage conversion circuit 6 connected in series with the rectifier diode 8, the second storage battery 5 connected in series with the voltage conversion circuit 6, and the battery management device 4 are arranged inside one casing. With such a structure, it is easy to assemble the battery system 100 with a battery state detection function, and battery replacement and the like are simplified. In addition, the battery group 3, the switch 7, the rectifier diode 8, the voltage conversion circuit 6, the second storage battery 5, and the battery management device 4 can be handled as a battery module and can be handled as a battery module. In addition, the soundness of the battery such as the remaining amount detection and the presence or absence of battery abnormality can be confirmed by inputting an external signal to the battery management device 4.
第2の蓄電池5への充電は、システム動作時は蓄電池群3が充電される状態のときに実施する。
The charging of the second storage battery 5 is performed when the storage battery group 3 is charged during system operation.
システムが動作していない場合で、上述の電池モジュール単体での電池状態検知のために、電池管理装置4の起動を第2の蓄電池5で行ったときに、状態検知中に第2の蓄電池5の残量が低下し、充電が必要な閾値に達していた場合は、スイッチ7を閉じ、蓄電池群3に蓄えられているエネルギーを使用して電源用の第2の蓄電池5を充電することも可能である。こうすることにより、第2の蓄電池5の電池容量が少ない場合にも外部電源がない状態で、電池管理装置4を起動して蓄電池の状態を知ることが可能になる。状態の確認のみであるので、電池管理装置4の動作時間は短いので、蓄電池群3の電力消費はわずかとなるので、蓄電池群3の容量低下への影響を抑制したまま使用することができる。
When the system is not operating, when the battery management device 4 is activated by the second storage battery 5 in order to detect the battery state of the battery module alone, the second storage battery 5 is being detected during the state detection. When the remaining amount of the battery has fallen and the threshold value that requires charging is reached, the switch 7 is closed and the second storage battery 5 for power supply can be charged using the energy stored in the storage battery group 3. Is possible. By doing so, even when the battery capacity of the second storage battery 5 is small, it is possible to activate the battery management device 4 and know the state of the storage battery without any external power supply. Since the operation time of the battery management device 4 is short because only the state is confirmed, the power consumption of the storage battery group 3 becomes small, so that it can be used while suppressing the influence on the capacity reduction of the storage battery group 3.
電池モジュールのユニットの筺体1には、電池管理装置4を起動する外部入力として、上位システムのコントローラ等から入る外部信号入力部として取り込み口がある(図示なし)。電池管理装置4の起動はこの外部信号入力部あるいは筐体1上に、電池管理装置4の起動、終了を行う押しボタンなどのスイッチを併設することで簡便な起動、および終了が可能となる。
The battery module unit housing 1 has an input port (not shown) as an external signal input unit that is input from a host system controller or the like as an external input for starting the battery management device 4. The activation of the battery management device 4 can be easily activated and terminated by providing a switch such as a push button for activation and termination of the battery management device 4 on the external signal input unit or the housing 1.
電池の内部状態はラップトップコンピュータなどの視認可能なディスプレイに表示させてもよいし、望ましくは筐体外部表面に設けた液晶やLEDの表示画面に表示するとより容易に情報を取得することができ作業時の効率を向上させることができる。
The internal state of the battery may be displayed on a visible display such as a laptop computer, or preferably on a liquid crystal or LED display screen provided on the outer surface of the housing, so that information can be obtained more easily. Efficiency during work can be improved.
以上、第1の実施例に係る発明について簡単にまとめる。
As above, the invention according to the first embodiment is briefly summarized.
本実施例に係る電池システム100は、複数の第1の蓄電池2が直列及び/又は並列に接続された蓄電池群3と、蓄電池群3の高電位側とスイッチ7を介して接続される第2の蓄電池5と、蓄電池群3の電池状態を管理する電池管理装置4と、が筐体と一体化され、電池管理装置4は、前記第2の蓄電池5から給電され、第2の蓄電池5はスイッチ7を閉じることによって補充電されることを特徴とする。このような構成にすることによって、本来蓄電に使用されるべき電池容量が、電源管理装置の消費電力により消耗し、システム全体の効率の低下につながることを抑制できる。また、システム停止時に長期間充電されない場合にも、回路の待機電流によって第1の蓄電池2の内部容量を消費してしまうことが無くなり、電源回路そのものの起動電圧が確保できなくなったり、状態検知ができなくなったり、電池そのものも使用不可になる可能性を排除することができる。
The battery system 100 according to the present embodiment includes a storage battery group 3 in which a plurality of first storage batteries 2 are connected in series and / or in parallel, and a high potential side of the storage battery group 3 connected via a switch 7. Storage battery 5 and a battery management device 4 that manages the battery state of the storage battery group 3 are integrated with the housing. The battery management device 4 is fed from the second storage battery 5, and the second storage battery 5 is The supplementary charging is performed by closing the switch 7. By adopting such a configuration, it is possible to suppress that the battery capacity that should originally be used for power storage is consumed due to the power consumption of the power management device, leading to a reduction in the efficiency of the entire system. Even when the system is not charged for a long time when the system is stopped, the internal capacity of the first storage battery 2 is not consumed by the standby current of the circuit, and it is impossible to secure the starting voltage of the power supply circuit itself, The possibility that the battery cannot be used or the battery itself cannot be used can be eliminated.
また、本実施例に係る電池システム100は、スイッチ7が電池管理装置4によって開閉が制御されることを特徴とする。このような構成にすることによって、第2の蓄電池5の電池容量が少ない場合にも外部電源がない状態であっても、確実に第1の蓄電池2の状態を知ることが可能になる。また、この動作は状態の確認のみであるので、電池管理装置4の動作時間は短く、蓄電池群3の電力消費はわずかとなるので、蓄電池群3の容量低下への影響を抑制したまま使用することができる。
The battery system 100 according to the present embodiment is characterized in that the switch 7 is controlled to be opened and closed by the battery management device 4. By adopting such a configuration, even when the battery capacity of the second storage battery 5 is small, it is possible to reliably know the state of the first storage battery 2 even when there is no external power supply. Moreover, since this operation is only a confirmation of the state, the operation time of the battery management device 4 is short, and the power consumption of the storage battery group 3 is small. Therefore, the battery management apparatus 4 is used while suppressing the influence on the capacity reduction of the storage battery group 3. be able to.
また、本実施例に係る電池システム100は、スイッチ7と第2の蓄電池5との間に、第2の蓄電池5と接続される整流ダイオード8及び電圧調整回路6を有することを特徴とする。このような構成にすることによって、電池の状態検知機能がついた状態で、電池システム100への組み立てが容易となり、電池の交換等が簡単になる。
In addition, the battery system 100 according to the present embodiment is characterized by having a rectifier diode 8 and a voltage adjustment circuit 6 connected to the second storage battery 5 between the switch 7 and the second storage battery 5. With such a configuration, it is easy to assemble the battery system 100 with a battery state detection function, and battery replacement and the like are simplified.
<実施例2>
続いて第2の実施例について説明する。本実施例が第1の実施例と異なる点は、蓄電池群3が最も小型の形態を取った点である。なお、それ以外の構造で第1の実施例と同様の構成については、第1の実施例で用いた図面番号を用いて説明している。 <Example 2>
Next, a second embodiment will be described. This embodiment is different from the first embodiment in that thestorage battery group 3 takes the smallest form. In addition, about the structure similar to a 1st Example by the structure other than that, it demonstrated using the drawing number used in the 1st Example.
続いて第2の実施例について説明する。本実施例が第1の実施例と異なる点は、蓄電池群3が最も小型の形態を取った点である。なお、それ以外の構造で第1の実施例と同様の構成については、第1の実施例で用いた図面番号を用いて説明している。 <Example 2>
Next, a second embodiment will be described. This embodiment is different from the first embodiment in that the
図2に本実施例の電池システム100を示す。本実施例の電池システム100は、1つの大容量蓄電池2と、電池セル管理装置2aが一体化した蓄電池群33と、その上位に実施例1と同様、最上位にスイッチ7を介し、整流ダイオード8、電圧調整回路6を経て蓄電池5へ接続される構成となっていて、筐体1に収められ、電池システム100を構成した構造となっている。本実施例のメリットは、第1の蓄電池2と、第2の蓄電池5の起電力の差が小さくなるため、整流ダイオード8、電圧調整回路6がより小さく構成することが可能になり、小型化に寄与する点である。また、第2の蓄電池5、および電池管理装置4の低電位側の基準電位を、第1の蓄電池2の低電位側と共通化することも可能となり、電池システム100構成時の交換や、運搬などの取り扱いがより容易になる。
FIG. 2 shows the battery system 100 of this embodiment. The battery system 100 of the present embodiment includes one large-capacity storage battery 2, a storage battery group 33 in which the battery cell management device 2a is integrated, and a rectifier diode at the upper level via the switch 7 as in the first embodiment. 8. It is configured to be connected to the storage battery 5 via the voltage adjustment circuit 6 and is housed in the housing 1 to constitute the battery system 100. The merit of the present embodiment is that the difference in electromotive force between the first storage battery 2 and the second storage battery 5 is reduced, so that the rectifier diode 8 and the voltage adjustment circuit 6 can be made smaller, and the size can be reduced. It is a point that contributes to. Further, the reference potential on the low potential side of the second storage battery 5 and the battery management device 4 can be shared with the low potential side of the first storage battery 2, and can be replaced or transported when the battery system 100 is configured. Handling becomes easier.
以上、第2の実施例に係る発明について簡単にまとめる。本実施例を用いることにより、第1の実施例に加えて、さらに下記のような作用効果を得ることができる。
As above, the invention according to the second embodiment is briefly summarized. By using this embodiment, the following effects can be obtained in addition to the first embodiment.
本実施例に係る電池システム100は、第1の蓄電池2を有し、第1の蓄電池2の高電位側とスイッチ7を介して接続される第2の蓄電池5と、第1の蓄電池2の電池状態を管理する電池管理装置4と、が筐体と一体化され、電池管理装置4は、第2の蓄電池5から給電され、第2の蓄電池5はスイッチ7を閉じることによって補充電されることを特徴とする。このような構成にすることによって、蓄電池群3を最小限の蓄電池数で構成することができるため、それに伴い整流ダイオード8や電圧調整回路6をより小型にすることができる。従って、電池システム100全体としても小型化することができる。
The battery system 100 according to the present embodiment includes the first storage battery 2, the second storage battery 5 connected to the high potential side of the first storage battery 2 via the switch 7, and the first storage battery 2. The battery management device 4 that manages the battery state is integrated with the housing, the battery management device 4 is supplied with power from the second storage battery 5, and the second storage battery 5 is supplemented by closing the switch 7. It is characterized by that. With this configuration, the storage battery group 3 can be configured with a minimum number of storage batteries, and accordingly, the rectifier diode 8 and the voltage adjustment circuit 6 can be made smaller. Therefore, the battery system 100 as a whole can be downsized.
また、本実施例にかかる電池システム100は、第1の蓄電池の基準電位と前記第2の蓄電池の基準電池は共通であることを特徴とする。上述したように、第1の蓄電池2単体では起電力が小さく、第2の蓄電池5との起電力差が小さくなるため、基準電位を共通化できる。基準電位を共通化することによって、電池システム100構成時の交換や運搬等で取り扱いが容易になる。
Further, the battery system 100 according to the present embodiment is characterized in that the reference potential of the first storage battery and the reference battery of the second storage battery are common. As described above, since the electromotive force is small in the first storage battery 2 alone and the electromotive force difference from the second storage battery 5 is small, the reference potential can be shared. By sharing the reference potential, handling is facilitated by replacement or transportation when the battery system 100 is configured.
<実施例3>
続いて第3の実施例について説明する。本実施例が第1の実施例と異なる点は、電池セル管理装置2aがそれぞれアンテナ50を有しており、セルに関する情報を無線通信でやり取りできるようにした点である。なお、それ以外の構造で第1の実施例と同様の構成については、第1の実施例で用いた図面番号を用いて説明している。 <Example 3>
Next, a third embodiment will be described. The difference between the present embodiment and the first embodiment is that each batterycell management device 2a has an antenna 50 so that cell-related information can be exchanged by wireless communication. In addition, about the structure similar to a 1st Example by the structure other than that, it demonstrated using the drawing number used in the 1st Example.
続いて第3の実施例について説明する。本実施例が第1の実施例と異なる点は、電池セル管理装置2aがそれぞれアンテナ50を有しており、セルに関する情報を無線通信でやり取りできるようにした点である。なお、それ以外の構造で第1の実施例と同様の構成については、第1の実施例で用いた図面番号を用いて説明している。 <Example 3>
Next, a third embodiment will be described. The difference between the present embodiment and the first embodiment is that each battery
図3は、第3の実施例を示す図であり、電池セル管理装置2aがそれぞれアンテナを持っている構成とした図である。このような構成にすることによって、セルに関する情報通信を、無線通信を利用して行えるようになっている。本発明のメリットは、電池セル管理装置2aを無線化することによって、余計な配線を無くし、電池システム100を小型にできるという点である。なお、無線通信については図4以降を用いて後述する。
FIG. 3 is a diagram showing a third embodiment, in which each battery cell management device 2a has an antenna. By adopting such a configuration, information communication regarding the cell can be performed using wireless communication. The merit of the present invention is that by making the battery cell management device 2a wireless, unnecessary wiring is eliminated and the battery system 100 can be reduced in size. The wireless communication will be described later with reference to FIG.
また、本実施例では、スイッチ7、整流ダイオード8、及び電圧調整回路6を筐体1と一体にしつつも筐体外に配置した。このような構成にすることによって、電池セル管理装置2aの無線化による小型化に加え、スイッチ7、整流ダイオード8、及び電圧調整回路6を筐体外部に配置出来るため、電池システム100のさらなる小型化につながる。特に、スイッチ7には高電圧がかかる場合があり、電池システム100の電圧によっては、スイッチ7の形状が大きくなるため筐体外に配置した方が電池システム100全体として小型化につながる。また、スイッチ7、整流ダイオード8、及び電圧調整回路6を筐体外に配置したことによって、不具合時に交換しやすい構成とした。
In this embodiment, the switch 7, the rectifier diode 8, and the voltage adjustment circuit 6 are arranged outside the housing while being integrated with the housing 1. By adopting such a configuration, in addition to downsizing the battery cell management device 2a by wireless, the switch 7, the rectifier diode 8, and the voltage adjustment circuit 6 can be arranged outside the housing, so that the battery system 100 can be further reduced in size. Leading to In particular, a high voltage may be applied to the switch 7, and depending on the voltage of the battery system 100, the shape of the switch 7 becomes large. In addition, the switch 7, the rectifier diode 8, and the voltage adjustment circuit 6 are arranged outside the housing, so that they can be easily replaced in the event of a malfunction.
なお、上述したが、スイッチ7、整流ダイオード8、及び電圧調整回路6は電池システム100の筐体1の外にはあるが、一体化することで、運搬、管理が容易になる。
Although described above, the switch 7, the rectifier diode 8, and the voltage adjustment circuit 6 are outside the casing 1 of the battery system 100, but by being integrated, transportation and management are facilitated.
以上、第3の実施例に係る発明について簡単にまとめる。本実施例を用いることにより、第1の実施例に加えて、さらに下記のような作用効果を得ることができる。
The above is a summary of the invention according to the third embodiment. By using this embodiment, the following effects can be obtained in addition to the first embodiment.
本実施例に係る電池システム100は、蓄電池群3は第1の蓄電池2と対応する電池セル管理装置2aを有し、電池セル管理装置2aは無線通信を行うアンテナ50を有することを特徴とする。このような構成にすることによって、電池セル管理装置2aを無線化することができ、余計な配線が無くなるため、電池システム100を小型化できる。
The battery system 100 according to the present embodiment is characterized in that the storage battery group 3 includes a battery cell management device 2a corresponding to the first storage battery 2, and the battery cell management device 2a includes an antenna 50 that performs wireless communication. . With such a configuration, the battery cell management device 2a can be made wireless, and unnecessary wiring is eliminated, so that the battery system 100 can be downsized.
また、本実施例に係る電池システム100は、スイッチ7、整流ダイオード8及び電圧調整回路6は筐体1と一体化され、かつ筐体1の外部に配置されていることを特徴とする。このような構造にすることによって、スイッチ7、整流ダイオード8、及び電圧調整回路6を筐体外部に配置出来るため、電池モジュールのさらなる小型化につながる。さらに、スイッチ7、整流ダイオード8、及び電圧調整回路6を筐体1外に配置したことによって、不具合時に交換しやすくなる。
In addition, the battery system 100 according to the present embodiment is characterized in that the switch 7, the rectifier diode 8, and the voltage adjustment circuit 6 are integrated with the casing 1 and arranged outside the casing 1. By adopting such a structure, the switch 7, the rectifier diode 8, and the voltage adjustment circuit 6 can be arranged outside the housing, which leads to further downsizing of the battery module. Furthermore, the switch 7, the rectifier diode 8, and the voltage adjustment circuit 6 are arranged outside the housing 1, so that they can be easily replaced in the event of a malfunction.
<実施例4>
続いて第4の実施例について説明する。本実施例が第1の実施例と異なる点は、電池セル管理装置2aがそれぞれアンテナ50を有し、かつ電池管理装置4がアンテナ250を有し、セルに関する情報を無線通信でやり取りできるようにした点である。なお、それ以外の構造で第1の実施例と同様の構成については、第1の実施例で用いた図面番号を用いて説明している。 <Example 4>
Next, a fourth embodiment will be described. This embodiment is different from the first embodiment in that the batterycell management device 2a has an antenna 50 and the battery management device 4 has an antenna 250 so that information about the cell can be exchanged by wireless communication. This is the point. In addition, about the structure similar to a 1st Example by the structure other than that, it demonstrated using the drawing number used in the 1st Example.
続いて第4の実施例について説明する。本実施例が第1の実施例と異なる点は、電池セル管理装置2aがそれぞれアンテナ50を有し、かつ電池管理装置4がアンテナ250を有し、セルに関する情報を無線通信でやり取りできるようにした点である。なお、それ以外の構造で第1の実施例と同様の構成については、第1の実施例で用いた図面番号を用いて説明している。 <Example 4>
Next, a fourth embodiment will be described. This embodiment is different from the first embodiment in that the battery
図4は、第4の実施例を示す図である。本実施例では、電池セル管理装置2aと電池管理装置4がアンテナ250を有し、それぞれが無線通信により情報を通信することが可能な構成になっている。このような構成にすることによって、電池モジュールの筐体1内部の信号配線を省くことが可能になり、配線が減ったことにより、筐体のサイズを小さくし、小型化することが可能となる。
FIG. 4 is a diagram showing a fourth embodiment. In the present embodiment, the battery cell management device 2a and the battery management device 4 have an antenna 250, and each is configured to be able to communicate information by wireless communication. With such a configuration, it is possible to omit the signal wiring inside the casing 1 of the battery module, and it is possible to reduce the size and size of the casing by reducing the wiring. .
また、図4では示していないが、筐体内に電池セル管理装置2aと電池管理装置4を一体化することで無線通信距離をより短くすることが可能となる。このように無線通信距離を短くすることにより信頼性の高い通信が確保され、無線の送信回路の消費電流を押さえた設計が可能になる。
Although not shown in FIG. 4, the wireless communication distance can be further shortened by integrating the battery cell management device 2a and the battery management device 4 in the housing. By shortening the wireless communication distance in this way, highly reliable communication is ensured, and a design that suppresses the current consumption of the wireless transmission circuit becomes possible.
図5は、電池管理装置4と電池セル管理装置2aを使用する電池システム100の構成を示している。
FIG. 5 shows a configuration of a battery system 100 using the battery management device 4 and the battery cell management device 2a.
図5において、電池管理装置4は、各電池セル管理装置2aとの間でアンテナ250を介して無線通信を行う。この無線通信により、電池管理装置4は、各電池セル管理装置2aに対して、対応する蓄電池2の各電池セルの測定情報やセルバランシング等を要求することができる。電池管理装置4からの要求に応答して、各電池セル管理装置2aは、対応する蓄電池2の各電池セルの測定情報を電池管理装置4へ送信したり、セルバランシングを実行したりする。
図6は、本発明の一実施形態による電池システム100の無線通信の基本構成図である。 In FIG. 5, thebattery management device 4 performs radio communication with each battery cell management device 2 a via the antenna 250. By this wireless communication, the battery management device 4 can request each battery cell management device 2a for measurement information, cell balancing, and the like of each battery cell of the corresponding storage battery 2. In response to a request from the battery management device 4, each battery cell management device 2 a transmits measurement information of each battery cell of the corresponding storage battery 2 to the battery management device 4 or performs cell balancing.
FIG. 6 is a basic configuration diagram of wireless communication of thebattery system 100 according to an embodiment of the present invention.
図6は、本発明の一実施形態による電池システム100の無線通信の基本構成図である。 In FIG. 5, the
FIG. 6 is a basic configuration diagram of wireless communication of the
電池セル管理装置2aは、蓄電池2の状態を計測する1つまたは複数の計測器(センサー)20、蓄電池2の状態情報を取得し処理する処理部30、無線回路40および電波を入出力するアンテナ50から構成される。
The battery cell management device 2a includes one or more measuring instruments (sensors) 20 that measure the state of the storage battery 2, a processing unit 30 that acquires and processes the state information of the storage battery 2, a radio circuit 40, and an antenna that inputs and outputs radio waves. 50.
処理部30は、複数の蓄電池2から電源をもらって動作電圧を生成する電源回路31と、計測器20によって計測された情報から、蓄電池2或いは複数の蓄電池2の状態を検出する検出回路(A/D変換器)32と、検出回路32によって検出された検出情報に基づいて、蓄電池2或いは複数の蓄電池2の状態を診断する処理回路(CPU)33と、個体識別情報及び検出情報或いは診断情報若しくはその両方を記憶する記憶装置(メモリ)34から構成される。さらに、処理回路33は無線通信部40と接続され、アンテナ50を介して電池情報の入出力が行われる。
The processing unit 30 receives a power supply from a plurality of storage batteries 2 to generate an operating voltage, and a detection circuit (A / A) that detects the state of the storage battery 2 or the plurality of storage batteries 2 from information measured by the measuring instrument 20. D converter) 32, a processing circuit (CPU) 33 for diagnosing the state of the storage battery 2 or the plurality of storage batteries 2 based on the detection information detected by the detection circuit 32, and individual identification information and detection information or diagnosis information or It is comprised from the memory | storage device (memory) 34 which memorize | stores both. Further, the processing circuit 33 is connected to the wireless communication unit 40, and battery information is input / output via the antenna 50.
電池管理装置4は、無線回路210、処理回路(CPU)220、電池を含む電源回路230、記憶装置(メモリ)240およびアンテナ250から構成される。
The battery management device 4 includes a wireless circuit 210, a processing circuit (CPU) 220, a power supply circuit 230 including a battery, a storage device (memory) 240, and an antenna 250.
電池管理装置4は、一つ以上の電池セル管理装置2aとの通信を行い、電池セル管理装置2aが検出する電池状態などを取得する。この時の電池セル管理装置2aと電池管理装置4の間の無線通信は、電池管理装置4がマスター、電池セル管理装置2aがスレーブ的な動作を行う。電池セル管理装置2aは、電池管理装置4の要求に従い、動作を実施後、必要に応じて電池管理装置4へ結果を応答する。
The battery management device 4 communicates with one or more battery cell management devices 2a, and acquires the battery state detected by the battery cell management device 2a. In the wireless communication between the battery cell management device 2a and the battery management device 4 at this time, the battery management device 4 performs a master operation and the battery cell management device 2a performs a slave operation. The battery cell management device 2a performs an operation in accordance with a request from the battery management device 4, and then returns a result to the battery management device 4 as necessary.
このとき、電池セル管理装置2aは、電池管理装置4のアンテナ250から通信された周波数に従い、1つまたは複数の蓄電池2に関する電池情報を応答する。
At this time, the battery cell management device 2a responds with battery information regarding one or more storage batteries 2 according to the frequency communicated from the antenna 250 of the battery management device 4.
送信する電池情報は、複数の計測器20によって検出された情報または、電池の識別情報、履歴情報、電池制御用パラメータ等のいずれか一つ以上を含む。
The battery information to be transmitted includes any one or more of information detected by a plurality of measuring instruments 20, battery identification information, history information, battery control parameters, and the like.
以下詳細動作を説明する。
Detailed operation is explained below.
各電池セル管理装置2aは、対応する蓄電池2の各電池セルに対してそれぞれ設けられた複数の計測器20と、処理部30と、無線通信部40と、アンテナ50とを有している。処理部30は、電源回路31と、検出回路32と、処理回路33と、メモリ34により構成される。各計測器20は、蓄電池2の各電池セルの状態を測定するためのセンサであり、電圧センサ、電流センサ、温度センサ等によって構成される。計測器20による蓄電池2の状態の測定結果は、検出回路32によりデジタル信号に変換され、測定情報として処理回路33へ出力される。この計測器20および検出回路32により、蓄電池2の各電池セルの状態を測定する測定回路が構成される。
Each battery cell management device 2a includes a plurality of measuring instruments 20, a processing unit 30, a wireless communication unit 40, and an antenna 50 provided for each battery cell of the corresponding storage battery 2. The processing unit 30 includes a power supply circuit 31, a detection circuit 32, a processing circuit 33, and a memory 34. Each measuring instrument 20 is a sensor for measuring the state of each battery cell of the storage battery 2, and is composed of a voltage sensor, a current sensor, a temperature sensor, and the like. The measurement result of the state of the storage battery 2 by the measuring instrument 20 is converted into a digital signal by the detection circuit 32 and output to the processing circuit 33 as measurement information. The measuring instrument 20 and the detection circuit 32 constitute a measurement circuit that measures the state of each battery cell of the storage battery 2.
電源回路31は、蓄電池2の電池セルから供給される電力を受け、これに基づいて、電源電圧VccおよびVddを発生する。電源電圧Vccは、検出回路32や処理回路33の動作電源として用いられ、電源電圧Vddは、無線通信部40の動作電源として用いられる。なお、電源回路31は、蓄電池2を構成する各電池セルのうち、少なくともいずれか1つの電池セルから電力供給を受けることができる。
The power supply circuit 31 receives power supplied from the battery cells of the storage battery 2 and generates power supply voltages Vcc and Vdd based on the power. The power supply voltage Vcc is used as an operation power supply for the detection circuit 32 and the processing circuit 33, and the power supply voltage Vdd is used as an operation power supply for the wireless communication unit 40. The power supply circuit 31 can receive power from at least one of the battery cells constituting the storage battery 2.
処理回路33は、電池セル管理装置2aの動作を制御するための処理を実行する。たとえば、検出回路32から出力された各電池セルの測定情報を記憶装置34に記憶させると共に、電池管理装置4からの要求に応じて、記憶装置34に記憶された測定情報を電池管理装置4へ無線送信するための送信処理を行う。この送信処理において、処理回路33は、記憶装置34から読み出した測定情報に応じて無線通信部40を制御することにより、各電池セルの状態に応じた測定情報を電池管理装置4へ送信する。また、電池管理装置4からバランシング要求が送信されると、処理回路33は、不図示のバランシングスイッチを制御することにより、蓄電池2の各電池セルの充電状態を均一化するためのバランシング処理を行う。これ以外にも、様々な処理を処理回路33において実行することができる。
The processing circuit 33 executes processing for controlling the operation of the battery cell management device 2a. For example, the measurement information of each battery cell output from the detection circuit 32 is stored in the storage device 34, and the measurement information stored in the storage device 34 is sent to the battery management device 4 in response to a request from the battery management device 4. A transmission process for wireless transmission is performed. In this transmission process, the processing circuit 33 transmits the measurement information according to the state of each battery cell to the battery management device 4 by controlling the wireless communication unit 40 according to the measurement information read from the storage device 34. When a balancing request is transmitted from the battery management device 4, the processing circuit 33 performs a balancing process for equalizing the charge state of each battery cell of the storage battery 2 by controlling a balancing switch (not shown). . In addition to this, various processes can be executed in the processing circuit 33.
無線通信部40は、電池セル管理装置2aが電池管理装置4との間で無線通信を行うための処理や制御を実行する回路である。電池管理装置4から送信されてアンテナ50により受信された無線信号は、無線通信部40により復調されて処理回路33へ出力される。これにより、電池管理装置4からの要求内容が処理回路33により解読され、その要求内容に応じた処理が処理回路33において実行される。また、無線通信部40は、電源回路31から供給される電源電圧Vddを用いて、得られた測定情報を所定の送信周波数に合わせて変調し、アンテナ50に出力する。これにより、蓄電池2の各電池セルの状態に応じた測定情報が電池セル管理装置2aから電池管理装置4へ送信される。
The wireless communication unit 40 is a circuit that executes processing and control for the battery cell management device 2a to perform wireless communication with the battery management device 4. The radio signal transmitted from the battery management device 4 and received by the antenna 50 is demodulated by the radio communication unit 40 and output to the processing circuit 33. Thereby, the request content from the battery management device 4 is decoded by the processing circuit 33, and processing corresponding to the request content is executed in the processing circuit 33. In addition, the wireless communication unit 40 modulates the obtained measurement information according to a predetermined transmission frequency using the power supply voltage Vdd supplied from the power supply circuit 31 and outputs the modulated measurement information to the antenna 50. Thereby, the measurement information according to the state of each battery cell of the storage battery 2 is transmitted from the battery cell management device 2a to the battery management device 4.
電池管理装置4は、無線通信部210、処理回路(CPU)220、電源回路230、記憶装置(メモリ)240およびアンテナ250を備える。電源回路230は、電池管理装置4に内蔵された電池から供給される電力に基づいて、電池セル管理装置2aの電源回路31と同様に、電源電圧VccおよびVddを発生する。なお、電池管理装置4は内蔵した蓄電池5を使用せず、外部から供給される電力を用いることもできるが、電池システム100の筐体1単位で運搬、保管をする場合は蓄電池2から補充電して電源とすることが望ましい。
The battery management device 4 includes a wireless communication unit 210, a processing circuit (CPU) 220, a power supply circuit 230, a storage device (memory) 240, and an antenna 250. The power supply circuit 230 generates the power supply voltages Vcc and Vdd based on the power supplied from the battery built in the battery management device 4 in the same manner as the power supply circuit 31 of the battery cell management device 2a. The battery management device 4 does not use the built-in storage battery 5 but can use electric power supplied from the outside. However, when the battery management device 4 is transported and stored in the housing 1 unit of the battery system 100, the battery management device 4 performs supplementary charging from the storage battery 2. It is desirable to use as a power source.
処理回路220は、無線通信部210および記憶装置240の動作を制御する。無線通信部210は、処理回路220の制御に応じて動作し、電池管理装置4が各電池セル管理装置2aとの間で無線通信を行うための処理や制御を実行する。無線通信部210は、電源回路230から供給される電源電圧Vddを用いて、各電池セル管理装置2aに対する測定情報の要求を所定の送信周波数に合わせて変調し、アンテナ250に出力する。この要求に応答して、蓄電池2の各電池セルの状態に応じた測定情報が、無線信号により各電池セル管理装置2aから電池管理装置4へ送信される。各電池セル管理装置2aから送信されてアンテナ250により受信された無線信号は、無線通信部210により復調されて処理回路220へ出力される。これにより、各電池セル管理装置2aで取得された測定情報が処理回路220により解読され、その内容に応じた処理が必要に応じて実行される。
The processing circuit 220 controls operations of the wireless communication unit 210 and the storage device 240. The wireless communication unit 210 operates in accordance with the control of the processing circuit 220, and executes processing and control for the battery management device 4 to perform wireless communication with each battery cell management device 2a. The wireless communication unit 210 uses the power supply voltage Vdd supplied from the power supply circuit 230 to modulate a request for measurement information for each battery cell management device 2 a in accordance with a predetermined transmission frequency, and outputs the modulated request to the antenna 250. In response to this request, measurement information corresponding to the state of each battery cell of the storage battery 2 is transmitted from each battery cell management device 2a to the battery management device 4 by a radio signal. The radio signal transmitted from each battery cell management device 2 a and received by the antenna 250 is demodulated by the radio communication unit 210 and output to the processing circuit 220. Thereby, the measurement information acquired by each battery cell management device 2a is decoded by the processing circuit 220, and processing according to the content is executed as necessary.
以上説明したように、電池管理装置4は、各電池セル管理装置2aと無線通信を行うことで、各電池セル管理装置2aが検出した電池状態を取得する。この時、電池管理装置4は、通信を主導するマスターとして動作し、各電池セル管理装置2aは、マスターの指示によって通信を行うスレーブとして動作する。各電池セル管理装置2aは、電池管理装置4の要求に従った動作を実施した後に、必要に応じてその結果を電池管理装置4に送信する。
As described above, the battery management device 4 acquires the battery state detected by each battery cell management device 2a by performing wireless communication with each battery cell management device 2a. At this time, the battery management device 4 operates as a master that leads communication, and each battery cell management device 2a operates as a slave that performs communication according to an instruction from the master. Each battery cell management apparatus 2a transmits the result to the battery management apparatus 4 as needed, after performing the operation | movement according to the request | requirement of the battery management apparatus 4. FIG.
一例として、電池管理装置4と複数の電池セル管理装置2aから構成される電池システム100における通信動作の例を以下に示す。電池管理装置4の電源が投入され、制御回路起動時に、電池管理装置4からの命令により、電池の種類を確認、電池制御用パラメータ,電池使用履歴部分から、最終充放電時に書き込んだ劣化度(SOHR,SOHQ)、異常フラグの有無等を読みこむ。電池制御用パラメータには初期値や残量推定時のSOC-OCV曲線の情報や計算用の定数等が含まれる。これらの情報は起動時のみに読み込み,稼動終了時には最終状態の劣化度を電池使用履歴部に書き込む。
As an example, an example of communication operation in the battery system 100 including the battery management device 4 and the plurality of battery cell management devices 2a is shown below. When the power of the battery management device 4 is turned on and the control circuit is activated, the battery type is confirmed by the command from the battery management device 4, the battery control parameters, the battery usage history part, and the deterioration degree written at the last charge / discharge ( SOHR, SOHQ), presence / absence of abnormality flag, etc. are read. The battery control parameters include initial values, SOC-OCV curve information at the time of remaining amount estimation, constants for calculation, and the like. These pieces of information are read only at the time of start-up, and when the operation ends, the degree of deterioration in the final state is written in the battery usage history section.
同時に起動時の1または複数の蓄電池2の電池電圧、電流、電池表面温度、電池内部温度等のセンシング情報を電池管理装置4から要求し、電池セル管理装置2aから送信する。センシング情報については、各情報の読み込み指定時間に従い、10ms~60sの一定間隔で受信した命令に従い情報を送信する。充放電開始前は,複数の電池セル管理装置2aの初期状態の個別情報を読み込み、電池全体にSOCのアンバランスがある場合は,対象の電池セル管理装置2aに命令を送信し、受信した電池セル管理装置2aは内部に有したバイパス回路(図示せず)により、放電を開始し、1または複数の蓄電池2が所望の電圧になるまで放電する。
Simultaneously, sensing information such as battery voltage, current, battery surface temperature, and battery internal temperature of one or a plurality of storage batteries 2 at the time of activation is requested from the battery management device 4 and transmitted from the battery cell management device 2a. As for the sensing information, the information is transmitted according to the received instruction at regular intervals of 10 ms to 60 s in accordance with the reading designated time of each information. Before the start of charging / discharging, individual information of the initial state of the plurality of battery cell management devices 2a is read. If there is SOC imbalance in the entire battery, a command is transmitted to the target battery cell management device 2a, and the received battery The cell management device 2a starts discharging by a bypass circuit (not shown) provided therein, and discharges until one or a plurality of storage batteries 2 reach a desired voltage.
このとき放電は、充放電開始まで終了せずともよく、充放電終了時までに、1または複数の蓄電池2の電圧がバランスされる。充放電時は前述したように各情報の読み込み指定に従い、10ms~60sの一定間隔で受信した命令に従い情報を送信する。充放電が終了し、通電が終了したと組み電池管理装置200が判断したときに、電池管理装置4で演算していた、SOC,SOH(SOHR,SOCQ)を記憶装置(図示せず)に書き込む。また、終了情報から、電池セル管理装置2aのマイコン部分をスリープする。暗電流を最小にして、無通電時の1または複数の蓄電池2の電圧低下を抑制する。
At this time, the discharge does not have to end until the start of charging / discharging, and the voltage of one or a plurality of storage batteries 2 is balanced by the end of charging / discharging. At the time of charging / discharging, information is transmitted according to a command received at a constant interval of 10 ms to 60 s according to the reading specification of each information as described above. When the assembled battery management device 200 determines that the charging / discharging is completed and the energization is completed, the SOC, SOH (SOHR, SOCQ) calculated by the battery management device 4 is written in a storage device (not shown). . Moreover, the microcomputer part of the battery cell management apparatus 2a is put to sleep from the end information. The dark current is minimized, and the voltage drop of one or a plurality of storage batteries 2 when no power is supplied is suppressed.
このようにすることで、電池制御用パラメータ、劣化度、保護履歴等、現在容量、電池温度等が1または複数の蓄電池2ごとに個別に確認できるため、異常や、劣化が大きくなり、1または複数の蓄電池2の交換が必要になった場合でも、これまでは直列電池数毎にしか交換できなかったが,1または複数の蓄電池2の単位で交換することが可能となり、電池システム100の保守時のコストの低減が可能になる。また、1または複数の蓄電池2の種類が混在した場合においても、各1または複数の蓄電池2に制御用パラメータをもった電池セル管理装置2aが一体化しているため,制御パラメータの不一致による、制御不良がおきることを回避することができる。
By doing in this way, since the battery control parameter, the degree of deterioration, the protection history, etc., the current capacity, the battery temperature, etc. can be confirmed individually for each of the one or a plurality of storage batteries 2, abnormalities and deterioration are increased. Even when a plurality of storage batteries 2 need to be replaced, until now, they could only be replaced for each number of series batteries. However, it is possible to replace one or a plurality of storage batteries 2 and maintain the battery system 100. The cost of time can be reduced. Even when one or a plurality of types of storage batteries 2 are mixed, the battery cell management device 2a having the control parameters is integrated with each one or a plurality of storage batteries 2, so that the control due to the mismatch of the control parameters. It is possible to avoid the occurrence of defects.
なお、電池管理装置4と各電池セル管理装置2aとの間の無線通信は、複数の周波数を用いて行うことができる場合にはさらに汎用性が向上する。
In addition, when the wireless communication between the battery management device 4 and each battery cell management device 2a can be performed using a plurality of frequencies, versatility is further improved.
電池管理装置4と各電池セル管理装置2aとの間で行われる無線通信において複数の無線周波数を使用可能であれば、電池システム100をどのような構成で実現してもよい。
The battery system 100 may be realized in any configuration as long as a plurality of radio frequencies can be used in the wireless communication performed between the battery management device 4 and each battery cell management device 2a.
無変調搬送波に対するインピーダンスを送信情報に応じて所定のタイミングで変化させることにより、無変調搬送波に対する反射波として送信情報の送信を行う。この方式を使用するとより低消費電力なシステムが実現できる。
The transmission information is transmitted as a reflected wave with respect to the unmodulated carrier by changing the impedance with respect to the unmodulated carrier at a predetermined timing according to the transmission information. When this method is used, a system with lower power consumption can be realized.
さらに、電池セル管理装置2aは、制御用動的電池情報と制御・管理用静的電池情報を電池セル管理装置2aから電池管理装置4に、電池管理装置4からの要求に応じて通信する。
Furthermore, the battery cell management device 2a communicates control dynamic battery information and control / management static battery information from the battery cell management device 2a to the battery management device 4 in response to a request from the battery management device 4.
ここで言う制御・管理用性的電池情報とは、電池情報、LOT名、製造年月日、履歴、個別識別IDやその他、電池セル1個体を識別するための情報と、公称容量(Ah) 、公称電圧(V)、SOC-OCV、 DCR、抵抗値、電池制御用パラメータ、使用履歴ログ、異常フラグのログなどに代表される電池が動作していないときにも内部記録されていて固定で読み出せる情報を指す。制御用動的電池情報とは、電池セルの状態をセンシングして得られる情報であり、刻々と変化する情報を指す。制御・管理用静的電池情報を電池セル管理装置2aに設けた書き換え可能な記録部に記録することで、個別の電池の情報が記録される。
The sexual battery information for control / management here refers to battery information, LOT name, date of manufacture, history, individual identification ID and other information for identifying one individual battery cell, and nominal capacity (Ah). , Nominal voltage (V), SOC-OCV, DCR, resistance value, battery control parameters, usage history log, abnormal flag log, etc. Refers to information that can be read. The dynamic battery information for control is information obtained by sensing the state of the battery cell, and indicates information that changes every moment. By recording the control / management static battery information in a rewritable recording section provided in the battery cell management device 2a, information on individual batteries is recorded.
以上説明したような通信動作により、電池管理装置4において、蓄電池2の各電池セルに関する情報を個別に確認することができる。そのため、いずれかの電池セルにおいて異常が発生したり、劣化が進んだりした場合でも、その蓄電池を容易に特定して交換することができる。すなわち、従来は蓄電池2全体を交換する必要があったが、本発明を適用することで、電池セル単位での交換が可能となり、従って保守時のコスト低減を図ることができる。
Information regarding each battery cell of the storage battery 2 can be individually confirmed in the battery management device 4 by the communication operation as described above. Therefore, even if an abnormality occurs in any of the battery cells or the deterioration progresses, the storage battery can be easily specified and replaced. That is, conventionally, it was necessary to replace the entire storage battery 2, but by applying the present invention, replacement can be performed in units of battery cells, and thus the cost during maintenance can be reduced.
さらに、本発明の構成によれば、蓄電池2を交換し、異なる種類の電池セルが混在して用いられた場合でも、各電池セルに対して適切な制御パラメータを設定することで、制御パラメータの不一致による制御不良を回避することができる。また、一般的には無線の発信時に電池管理装置4の消費電流は通信距離が長いほど増加するため、安定な通信動作をするためには外部給電が必要であるが、電池管理装置4は動作電源が第2の蓄電池5をもち、第1の蓄電池群とスイッチにより接続できるため、外部給電なしでも安定動作が可能になる。
Furthermore, according to the configuration of the present invention, even when the storage battery 2 is replaced and different types of battery cells are used together, by setting appropriate control parameters for each battery cell, Control failure due to mismatch can be avoided. In general, the current consumption of the battery management device 4 increases as the communication distance increases at the time of wireless transmission. Therefore, external power supply is necessary for stable communication operation, but the battery management device 4 operates. Since the power source has the second storage battery 5 and can be connected to the first storage battery group by a switch, stable operation is possible even without external power feeding.
以上、第4の実施例に係る発明について簡単にまとめる。本実施例を用いることにより、第1の実施例に加えて、さらに下記のような作用効果を得ることができる。
The above is a summary of the invention according to the fourth embodiment. By using this embodiment, the following effects can be obtained in addition to the first embodiment.
本実施例に係る電池システム100は、電池管理装置4は無線通信を行うアンテナを有することを特徴とする。このような構成にすることによって、電池管理装置4周辺の余計な配線を無くすことができ、電池システム100を小型化することが可能となる。
The battery system 100 according to the present embodiment is characterized in that the battery management device 4 includes an antenna that performs wireless communication. With such a configuration, unnecessary wiring around the battery management device 4 can be eliminated, and the battery system 100 can be downsized.
<実施例5>
続いて第5の実施例について説明する。本実施例が第4の実施例と異なる点は、蓄電池群3の低電位側に設けた第一の基準電位11の他に、第2の蓄電池5の低電位側に第二の基準電位9を設けた点である。なお、それ以外の構造で第4の実施例と同様の構成については、第4の実施例で用いた図面番号を用いて説明している。 <Example 5>
Next, a fifth embodiment will be described. This embodiment differs from the fourth embodiment in that, in addition to thefirst reference potential 11 provided on the low potential side of the storage battery group 3, the second reference potential 9 is provided on the low potential side of the second storage battery 5. This is the point. In the other respects, the same structure as that of the fourth embodiment is described using the drawing numbers used in the fourth embodiment.
続いて第5の実施例について説明する。本実施例が第4の実施例と異なる点は、蓄電池群3の低電位側に設けた第一の基準電位11の他に、第2の蓄電池5の低電位側に第二の基準電位9を設けた点である。なお、それ以外の構造で第4の実施例と同様の構成については、第4の実施例で用いた図面番号を用いて説明している。 <Example 5>
Next, a fifth embodiment will be described. This embodiment differs from the fourth embodiment in that, in addition to the
図7に、実施例5の電池モジュール10に負荷12を接続した場合の図を示す。第一の蓄電池2から成る蓄電池群3の低電圧側の第一基準電位(通常GND)11と第2の蓄電池5の低電位側の第二の基準電位9を別にする。こうすることで、電池管理装置4やその周辺のスイッチ7、ダイオード8、電圧変換回路6を小型にできる。さらに、蓄電池群3の 最上位の蓄電池2と蓄電池5の動作可能電圧範囲が等しい、あるいはほぼ同等である場合は、最上位の蓄電池2の低電圧側を第三の基準電位13に接続し、これを第二の基準電位9と共通化することでより安定な動作が可能になる。なお、第三の基準電位は蓄電池5の電圧に応じ、上位から適切な個数の第一の蓄電池2の低電圧側から接続してもよい。
FIG. 7 shows a diagram when the load 12 is connected to the battery module 10 of the fifth embodiment. The first reference potential (usually GND) 11 on the low voltage side of the storage battery group 3 including the first storage battery 2 and the second reference potential 9 on the low potential side of the second storage battery 5 are separated. By doing so, the battery management device 4 and its peripheral switch 7, diode 8, and voltage conversion circuit 6 can be made compact. Furthermore, when the operable voltage ranges of the uppermost storage battery 2 and the storage battery 5 of the storage battery group 3 are the same or substantially the same, the low voltage side of the uppermost storage battery 2 is connected to the third reference potential 13, By making this common with the second reference potential 9, a more stable operation becomes possible. Note that the third reference potential may be connected from the lower voltage side of an appropriate number of first storage batteries 2 from the upper level according to the voltage of the storage battery 5.
以上、第5の実施例に係る発明について簡単にまとめる。本実施例を用いることにより、第4の実施例に加えて、さらに下記のような作用効果を得ることができる。
As above, the invention according to the fifth embodiment is briefly summarized. By using this embodiment, the following operational effects can be obtained in addition to the fourth embodiment.
本実施例に係る電池システム100は、蓄電池群3の基準電位11と、第2の蓄電池5の基準電位9が異なることを特徴とする電池モジュールでありこのような構成にすることによって、電池管理装置4やその周辺のスイッチ7、ダイオード8、電圧変換回路6を小型にできる。
The battery system 100 according to the present embodiment is a battery module characterized in that the reference potential 11 of the storage battery group 3 and the reference potential 9 of the second storage battery 5 are different. The device 4 and its peripheral switch 7, the diode 8, and the voltage conversion circuit 6 can be reduced in size.
最後に上述した各実施例を適用した電池システム100の構成について説明する。図8は、電池システム100を含む電動システムの構成の一例を示す図である従来の電池システム100を含む電動システム110の構成を示す図である。図8に示す電動システムは、電池システム100、インバータ200、モータ300、リレーボックス400および上位コントローラ500を備える。
Finally, the configuration of the battery system 100 to which the above-described embodiments are applied will be described. FIG. 8 is a diagram illustrating a configuration of an electric system 110 including a conventional battery system 100, which is an example of a configuration of an electric system including the battery system 100. The electric system shown in FIG. 8 includes a battery system 100, an inverter 200, a motor 300, a relay box 400, and a host controller 500.
本発明を適用した例を以下に述べる。電池システム100には、1つまたは複数の電池セルによってそれぞれ構成される1つまたは複数の蓄電池2が備えられており、各蓄電池2に対応して、電池セル管理装置2aがそれぞれ設けられている。各電池セル管理装置2aは、蓄電池2の充電状態(SOC:State of Charge)や劣化状態(SOH:State of Health)を検知するために必要な情報、および異常の検知に関する測定(電圧、電流、温度等)を行う。そして、蓄電池2から供給される電力を用いて、電池管理装置4との間で通信を行い、充電状態や劣化状態および異常監視に関する測定結果や必要な情報や、電池管理装置4から要求された情報を電池管理装置4へ送信する。
An example to which the present invention is applied will be described below. The battery system 100 includes one or a plurality of storage batteries 2 each constituted by one or a plurality of battery cells, and a battery cell management device 2a is provided corresponding to each storage battery 2. . Each battery cell management device 2a includes information necessary for detecting the state of charge (SOC) of the storage battery 2 (SOC: State of Charge) and the deterioration state (SOH: State of Health), and measurement (voltage, current, Temperature). And it communicates with the battery management apparatus 4 using the electric power supplied from the storage battery 2, and the measurement result regarding the charge state, the deterioration state, and the abnormality monitoring, the necessary information, and the battery management apparatus 4 are requested. Information is transmitted to the battery management device 4.
電池管理装置4は、各電池セル管理装置2aから、当該電池セル管理装置2aに対応する蓄電池2の充電状態や劣化状態に関する測定結果を取得する。そして、取得した測定結果に基づいて、各蓄電池2の充電状態や劣化状態を推定し、その推定結果を上位コントローラ500へ送信する。
The battery management device 4 acquires the measurement result regarding the charge state and the deterioration state of the storage battery 2 corresponding to the battery cell management device 2a from each battery cell management device 2a. Then, based on the acquired measurement result, the charging state and the deterioration state of each storage battery 2 are estimated, and the estimation result is transmitted to the host controller 500.
上位コントローラ500は、電池管理装置4から送信された各蓄電池2の充電状態や劣化状態の推定結果に基づいて、インバータ200やリレーボックス400を制御する。インバータ200は、リレーボックス400が導通状態のときに各蓄電池2から供給される直流電力を三相交流電力に変換してモータ300へ供給することにより、モータ300を回転駆動させて駆動力を発生させる。また、モータ300を回生動作させた場合には、モータ300により発生された三相交流回生電力を直流電力に変換して各蓄電池群3へ出力することにより、各蓄電池群3の蓄電池2を充電する。こうしたインバータ200の動作は、上位コントローラ500によって制御される。
The host controller 500 controls the inverter 200 and the relay box 400 based on the estimation result of the charged state and the deteriorated state of each storage battery 2 transmitted from the battery management device 4. The inverter 200 converts the DC power supplied from each storage battery 2 into three-phase AC power and supplies it to the motor 300 when the relay box 400 is in a conductive state, thereby rotating the motor 300 to generate driving force. Let Further, when the motor 300 is regeneratively operated, the three-phase AC regenerative power generated by the motor 300 is converted into DC power and output to each storage battery group 3 to charge the storage battery 2 of each storage battery group 3. To do. The operation of the inverter 200 is controlled by the host controller 500.
本発明を電池システム100に適用すると、電池システム100における電池管理装置4の電源はハイブリッド自動車用途等では従来、12Vあるいは24Vの鉛電池から供給されていたが、その電源配線が不要になる。もちろん、電源バックアップのために、外部電源からの配線を残し、従来どおり供給を受け場合に応じて、最適な電源供給を実施してもよい。
When the present invention is applied to the battery system 100, the power supply of the battery management device 4 in the battery system 100 has been conventionally supplied from a 12V or 24V lead battery in a hybrid vehicle application or the like, but the power supply wiring becomes unnecessary. Of course, for power backup, an optimal power supply may be performed depending on the case where the supply from the external power supply is left and the supply is made as usual.
電池システム100ごと交換が可能である。電池管理装置4は図8では、複数の直接に接続された1または複数の蓄電池群3に対して1個が対応して電池システム100を構成しているが、1または複数の蓄電池2ごとに電池管理装置4を電池管理装置4専用の電源である蓄電池5を有した電池ユニット筐体1を単位として複数個で電池システム100を構成してもよい。
The entire battery system 100 can be replaced. In FIG. 8, one battery management device 4 corresponds to one or a plurality of directly connected storage battery groups 3 to constitute the battery system 100, but for each one or a plurality of storage batteries 2. The battery system 100 may be configured with a plurality of battery management units 4 each including a battery unit housing 1 having a storage battery 5 as a power source dedicated to the battery management device 4.
このようにすることで、電池制御用パラメータ、劣化度、保護履歴等、現在容量、電池温度等が電池セル1ごとに個別に確認できるため、異常や、劣化が大きくなり、蓄電池2の交換が必要になった場合でも、これまでは直列電池数毎にしか交換できなかったが、蓄電池2の単位でも交換することが可能となり、電池システム100の保守時のコストの低減が可能になる。また、蓄電池2の種類が混在した場合においても、各蓄電池2に制御用パラメータをもった電池セル管理装置が一体化しているため,制御パラメータの不一致による、制御不良がおきることを回避することができる。
By doing so, the battery control parameters, the degree of deterioration, the protection history, the current capacity, the battery temperature, etc. can be confirmed individually for each battery cell 1, so that the abnormality or deterioration increases, and the storage battery 2 can be replaced. Even when it is necessary, it has been possible to replace only the number of series batteries until now, but it is also possible to replace even the unit of the storage battery 2, and the cost during maintenance of the battery system 100 can be reduced. Even when the types of the storage batteries 2 are mixed, the battery cell management device having the control parameters is integrated with each storage battery 2, so that it is possible to avoid a control failure due to a mismatch of the control parameters. it can.
最も効果的には、セルに一体化された電池セル管理装置2aの一部に記憶領域を持ちセル毎に個別の制御用パラメータを記録しておく。
Most effectively, a part of the battery cell management device 2a integrated in the cell has a storage area and records individual control parameters for each cell.
なお、上述した本発明の電池システム100は形態については特に限られることなく、可搬性自動車用モジュールから、鉄道用電池箱、電力用途用の蓄電盤までの大型電池システムを含むものである。
The above-described battery system 100 of the present invention is not particularly limited in form, and includes a large-sized battery system from a portable automobile module to a railway battery box and a power storage panel for power use.
以上、本発明の実施例について詳述したが、本発明は、前記の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施例の構成を加えることも可能である。さらに、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. A part of the configuration of a certain example can be replaced with the configuration of another example, and the configuration of another example can be added to the configuration of a certain embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
1・・・・筺体
2・・・・第一の蓄電池
2a・・・・電池セル管理装置
3・・・・蓄電池群
4・・・・電池管理装置
5・・・・第二の蓄電池
6・・・・電圧調整回路
7・・・・スイッチ
8・・・・整流ダイオード DESCRIPTION OFSYMBOLS 1 ...... Housing 2 ... 1st storage battery 2a ... Battery cell management device 3 ... Storage battery group 4 ... Battery management device 5 ... 2nd storage battery 6 ... ... Voltage adjustment circuit 7 ... Switch 8 ... Rectifier diode
2・・・・第一の蓄電池
2a・・・・電池セル管理装置
3・・・・蓄電池群
4・・・・電池管理装置
5・・・・第二の蓄電池
6・・・・電圧調整回路
7・・・・スイッチ
8・・・・整流ダイオード DESCRIPTION OF
Claims (9)
- 複数の蓄電池が直列および/または並列に接続された第1の蓄電池群と、
当該蓄電池群の高電位側とスイッチを介して接続される第2の蓄電池と、
前記蓄電池群の電池状態を管理する電池管理装置と、が筐体と一体化された電池システムにおいて、
前記電池管理装置は、前記第2の蓄電池から給電され、
前記第2の蓄電池は前記スイッチを閉じることによって補充電されることを特徴とする電池システム。 A first storage battery group in which a plurality of storage batteries are connected in series and / or in parallel;
A second storage battery connected to the high potential side of the storage battery group via a switch;
In the battery system in which the battery management device that manages the battery state of the storage battery group is integrated with the housing,
The battery management device is powered by the second storage battery,
The battery system is characterized in that the second storage battery is supplementarily charged by closing the switch. - 請求項1に記載の電池システムにおいて、
前記スイッチは、前記電池管理装置によって開閉が制御されることを特徴とする電池システム。 The battery system according to claim 1,
The battery system is characterized in that the switch is controlled to be opened and closed by the battery management device. - 請求項2に記載の電池システムにおいて、
前記蓄電池群は第1の蓄電池と対応する電池セル管理装置を有し、
前記電池セル管理装置は無線通信を行うアンテナを有することを特徴とする電池システム。 The battery system according to claim 2,
The storage battery group has a battery cell management device corresponding to the first storage battery,
The battery cell management device includes an antenna that performs wireless communication. - 請求項3に記載の電池システムにおいて、
前記スイッチと前記第2の蓄電池との間には、当該第2の蓄電池と接続されるダイオード及び電圧調整回路を有することを特徴とする電池システム。 The battery system according to claim 3,
A battery system comprising a diode connected to the second storage battery and a voltage adjustment circuit between the switch and the second storage battery. - 請求項4に記載の電池システムにおいて、
前記スイッチ、前記ダイオード及び前記電圧調整回路は前記筐体と一体化され、かつ前記筐体の外部に配置されていることを特徴とする電池システム。 The battery system according to claim 4,
The battery system, wherein the switch, the diode, and the voltage adjustment circuit are integrated with the casing and disposed outside the casing. - 請求項2乃至5のいずれかに記載の電池システムにおいて、
前記電池管理装置は無線通信を行うアンテナを有することを特徴とする電池システム。 The battery system according to any one of claims 2 to 5,
The battery management apparatus includes an antenna that performs wireless communication. - 請求項6に記載の電池システムにおいて、
前記蓄電池群の基準電位と、前記第2の蓄電池の基準電位は異なることを特徴とする電池システム。 The battery system according to claim 6,
A battery system, wherein a reference potential of the storage battery group and a reference potential of the second storage battery are different. - 第一の蓄電池を有し、
当該第1の蓄電池の高電位側とスイッチを介して接続される第2の蓄電池と、
前記第1の蓄電池の電池状態を管理する電池管理装置と、が筐体と一体化された電池システムにおいて、
前記電池管理装置は、前記第2の蓄電池から給電され、
前記第2の蓄電池は前記スイッチを閉じることによって補充電されることを特徴とする電池システム。 Having a first storage battery,
A second storage battery connected to the high potential side of the first storage battery via a switch;
In the battery system in which the battery management device that manages the battery state of the first storage battery is integrated with the housing,
The battery management device is powered by the second storage battery,
The battery system is characterized in that the second storage battery is supplementarily charged by closing the switch. - 請求項8に記載の電池システムにおいて、
前記第1の蓄電池の基準電位と前記第2の蓄電池の基準電位は共通であることを特徴とする電池システム。 The battery system according to claim 8, wherein
The battery system, wherein a reference potential of the first storage battery and a reference potential of the second storage battery are common.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/080133 WO2016075797A1 (en) | 2014-11-14 | 2014-11-14 | Battery system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/080133 WO2016075797A1 (en) | 2014-11-14 | 2014-11-14 | Battery system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016075797A1 true WO2016075797A1 (en) | 2016-05-19 |
Family
ID=55953910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/080133 WO2016075797A1 (en) | 2014-11-14 | 2014-11-14 | Battery system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016075797A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020504422A (en) * | 2017-07-25 | 2020-02-06 | エルジー・ケム・リミテッド | Master battery management unit and battery pack including the same |
WO2022024885A1 (en) * | 2020-07-30 | 2022-02-03 | 株式会社日立ハイテク | Battery pack diagnosing method, cell diagnosing method, battery pack diagnosing device, and cell diagnosing device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008302852A (en) * | 2007-06-08 | 2008-12-18 | Daihatsu Motor Co Ltd | Controller for hybrid car |
JP2014110709A (en) * | 2012-12-03 | 2014-06-12 | Sanyo Electric Co Ltd | Vehicular power supply device |
-
2014
- 2014-11-14 WO PCT/JP2014/080133 patent/WO2016075797A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008302852A (en) * | 2007-06-08 | 2008-12-18 | Daihatsu Motor Co Ltd | Controller for hybrid car |
JP2014110709A (en) * | 2012-12-03 | 2014-06-12 | Sanyo Electric Co Ltd | Vehicular power supply device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020504422A (en) * | 2017-07-25 | 2020-02-06 | エルジー・ケム・リミテッド | Master battery management unit and battery pack including the same |
US11125824B2 (en) | 2017-07-25 | 2021-09-21 | Lg Chem, Ltd. | Master battery management unit using power from battery module |
WO2022024885A1 (en) * | 2020-07-30 | 2022-02-03 | 株式会社日立ハイテク | Battery pack diagnosing method, cell diagnosing method, battery pack diagnosing device, and cell diagnosing device |
JP7538227B2 (en) | 2020-07-30 | 2024-08-21 | 株式会社日立ハイテク | BATTERY PACK DIAGNOSIS METHOD, CELL DIAGNOSIS METHOD, BATTERY PACK DIAGNOSIS DEVICE, AND CELL DIAGNOSIS DEVICE |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5798887B2 (en) | Power storage system | |
KR102173777B1 (en) | Master battery management unit and a battery pack including the same | |
US10572325B2 (en) | Power storage management system | |
US8587257B2 (en) | Secondary battery device and vehicle | |
JP4987581B2 (en) | Battery control device | |
KR101856663B1 (en) | Secondary battery sub Unit, Secondary battery management system and Method for exchanging information in multi-pack parallel structure using the same | |
US8154299B2 (en) | Deterioration determination circuit, power supply apparatus, and deterioration determination method of secondary battery | |
US8655535B2 (en) | Electric vehicle and method for controlling same | |
JP5637339B1 (en) | Electric power supply device using electric vehicle | |
JP5355224B2 (en) | Voltage monitoring device for multiple batteries | |
JP5373120B2 (en) | Abnormality diagnosis method and apparatus for battery pack current measuring unit | |
JP5747900B2 (en) | Battery monitoring device | |
JP4825733B2 (en) | Battery life measurement system for assembled batteries | |
CN104283297A (en) | Autonomous power supply system | |
JP2006208377A (en) | Apparatus and method for monitoring battery pack | |
JP2007057434A (en) | Degradation estimation system for electricity accumulation device | |
KR20160135794A (en) | Battery management device | |
EP3290936B1 (en) | Battery pack status parallel monitoring device | |
CN104600822A (en) | Battery Charger Module and Method for Determining a State of an AC Power Supply at a Battery Charger Module | |
WO2016075797A1 (en) | Battery system | |
US20220209308A1 (en) | Module battery system | |
US8030896B2 (en) | Multi-output voltage battery module and electronic device using the same | |
JP5230789B2 (en) | Battery system | |
JP2015139292A (en) | Cell unit and cell system | |
JP2008131785A (en) | Device for selecting power supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14906028 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14906028 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |