WO2016075402A1 - Method for making a gas-diffusion layer. - Google Patents

Method for making a gas-diffusion layer. Download PDF

Info

Publication number
WO2016075402A1
WO2016075402A1 PCT/FR2015/053031 FR2015053031W WO2016075402A1 WO 2016075402 A1 WO2016075402 A1 WO 2016075402A1 FR 2015053031 W FR2015053031 W FR 2015053031W WO 2016075402 A1 WO2016075402 A1 WO 2016075402A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
film
carbon
carbon fibers
diffusion layer
Prior art date
Application number
PCT/FR2015/053031
Other languages
French (fr)
Inventor
Lara JABBOUR
Maxime SCHRODER
Rémi VINCENT
Original Assignee
Commissariat à l'Energie Atomique et aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'Energie Atomique et aux Energies Alternatives filed Critical Commissariat à l'Energie Atomique et aux Energies Alternatives
Publication of WO2016075402A1 publication Critical patent/WO2016075402A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for producing a gas diffusion layer.
  • Fuel cells typically comprise an electrolyte cation exchange membrane, each side of the membrane being covered with a catalyst layer. Each catalyst layer is in contact with a gas diffusion layer, also called diffusion layer. The diffusion layers are finally surrounded by the bipolar plates.
  • Each set of a catalyst layer and a diffusion layer form an electrode.
  • the catalyst layers may be, for example, deposited on the gas diffusion layers by printing techniques, such as screen printing, or stencil printing (US 2004/0023105).
  • microporous layers printed on the gas diffusion layers have, conventionally, a thickness of the order of 40 ⁇ .
  • Gas diffusion layers play a vital role in the operation of the fuel cell. They allow the transport and evacuation of the products and / or reagents within the cell, promote the passage of current and also serve as mechanical support to the assembly. The structure of the diffusion layers therefore significantly influences the electrochemical performance of the cells.
  • a gas diffusion layer is between ⁇ ⁇ and 500 ⁇ thick and must be very conductive.
  • the most promising candidates for producing the gas diffusion layers, to obtain such properties, are carbon fiber materials, and especially carbon papers or fabrics.
  • the gas diffusion layers are generally formed by weaving, wet or dry ("Handbook of Fuel Cells - Fundamentals, Technology and Applications, Volume 3, Chapter 46"). Each of these routes requires heat treatment at temperatures of at least 1000 ° C under vacuum or in the presence of inert gas.
  • this document describes a process comprising, at first, the formation of a dispersion containing carbon fibers and a binder such as PVA.
  • the dispersion contains at least 0.01% by weight of carbon fibers. Then the dispersion is inserted into an injection head which makes it possible to deposit said dispersion on a substrate.
  • the film thus formed is then covered with a thermosetting resin.
  • the assembly is then compression molded and then cured at 175 ° C. under pressures of the order of 500 kPa. After molding, the paper is finally annealed at temperatures of at least 1000 ° C.
  • the object of the invention is to overcome the drawbacks of the prior art and, in particular, to propose a method for producing gas diffusion layers that is easy to implement, industrializable and inexpensive.
  • FIG. 1 represents a photograph obtained by light microscopy of a gas diffusion layer, obtained according to one embodiment of the method of the invention
  • FIG. 2 represents a photograph obtained by light microscopy of a gas diffusion layer, obtained according to a method of the prior art
  • FIG. 3 represents the current-voltage curves of the gas diffusion layers of FIGS. 1 and 2.
  • the method for producing a gas diffusion layer comprises the following successive steps:
  • this process is carried out at temperatures below 1000 ° C and even more particularly at temperatures below 500 ° C.
  • the method makes it possible to dispense with carbonization / graphitization steps, which not only simplifies the process, but also reduces production costs.
  • the sintering step is carried out at temperatures of between 300 ° C. and 400 ° C. These temperatures make it possible to sinter the composite material forming the film and to obtain a mechanically stable diffusion layer.
  • a composite material is meant a material formed of at least two different materials.
  • One of these materials plays the role of reinforcement, it is solid elements based on carbon, and another material plays the role of matrix, it is the film-forming agent.
  • the sintering step is carried out at ambient pressure.
  • ambient pressure is meant a pressure of the order of 100 kPa.
  • the carbon-based elements make it possible to confer on the final gas diffusion layer, and in particular its electrical conductivity properties. They also make it possible to determine its structure (porosity, density, etc.).
  • the production process uses carbon-based elements having dimensions less than one millimeter.
  • the final film obtained will thus have a relatively small thickness. By relatively low, means a thickness less than 1 mm.
  • the carbon-based elements are chosen from carbon particles, carbon nanotubes, carbon fibers or a mixture thereof.
  • the carbon-based elements may be formed, for example, of a mixture of carbon particles and carbon fibers.
  • the ink may additionally contain metal fibers, making it possible, at a lower cost, to modify the structure and / or the physicochemical properties of the material.
  • the ink contains at least carbon fibers.
  • the incorporation of carbon fibers in the gas diffusion layer makes it possible to obtain a highly conductive gas diffusion layer.
  • the carbon fibers may be vapor phase (or VGCF for "Vapor Grown Carbon Fiber") or they may be made from polyacrylonitrile precursor (PAN).
  • VGCF type carbon fibers are smaller (from 1 ⁇ to 20 ⁇ ) and finer than PAN-based carbon fibers.
  • the ink contains at least crushed carbon fibers.
  • the crushed carbon fibers come, advantageously, recycled carbon fibers, which makes it possible to value fibers that have already served at least a first time and to reduce all the more the costs of preparation.
  • crushed fiber means a fiber with a length of less than 500 ⁇ m.
  • the crushed carbon fibers have a length of between ⁇ and 500 ⁇ while uncrushed carbon fibers have a length greater than 1 mm, generally between 3mm and 12mm.
  • the crushed fibers have an average length of the order of ⁇ ⁇ .
  • These fibers make it possible to form a homogeneous ink, contrary to standard carbon fibers.
  • the presence of standard carbon fibers in the ink tends to form flocks.
  • the mass percentage of crushed carbon fibers is between 5% and 75%, and even more preferably between 50% and 60%.
  • the total mass percentage is calculated from all the elements contained in the ink, apart from the solvent, ie the total mass percentage corresponds to the sum of the mass percentages of the various compounds forming the ink, the solvent not being taken into account in this calculation.
  • the carbon-based elements are formed by a mixture of crushed carbon fibers and Vapor Grown Carbon Fiber (VGCF).
  • VGCF Vapor Grown Carbon Fiber
  • the mass percentage of carbon fibers developed in the vapor phase is between 0% and 75% by mass.
  • the ink contains only crushed carbon fibers.
  • the carbon-based elements are formed by a mixture of milled fibers and carbon fibers developed in the vapor phase.
  • the ink comprises at least one solvent. It advantageously makes it possible to dissolve the binder in the ink and thus to obtain a homogeneous composition.
  • the solvent may be water or an organic solvent.
  • the solvent is water.
  • the film-forming agent acts as a binder between the different elements.
  • the film-forming agent is a polymeric element, natural or synthetic,
  • the film-forming agent is chosen from polytetrafluoroethylene (PTFE), polyethylene (PE), polyvinylfluoride (PVF) and polyvinylidene fluoride (PVDF).
  • PTFE polytetrafluoroethylene
  • PE polyethylene
  • PVF polyvinylfluoride
  • PVDF polyvinylidene fluoride
  • the film-forming agent makes it possible to guarantee the mechanical strength of the final film and its hydrophobicity. By increasing the amount of film-forming agent, holding final film mechanics, ie the mechanical strength of the gas diffusion layer, as well as its hydrophobicity are increased.
  • the mass percentage of the film-forming agent contained in the ink is between 5% and 30%. This makes it possible to form a diffusion layer having good conductivity and good mechanical strength.
  • the ink contains a viscosity regulating agent.
  • This agent makes it possible to regulate the viscosity of the ink.
  • the viscosity of the ink is advantageously between 300cP and 800cP at 20 ° C.
  • the viscosity regulating agent is chosen from celluloses, cellulose derivatives and polyvinyl alcohol.
  • the viscosity regulating agent is chosen from methylcellulose (MC), carboxymethylcellulose (CMC) or polyvinyl alcohol (PVA).
  • MC methylcellulose
  • CMC carboxymethylcellulose
  • PVA polyvinyl alcohol
  • the weight percentage of the viscosity control agent contained in the ink is between 5% and 15% by weight.
  • the ink has a viscosity sufficient to form a homogeneous deposit, and the injection heads of the depositing devices will not be clogged.
  • the ink contains a dispersing agent, also called surfactant.
  • the dispersing agent facilitates the dispersion of the carbon-based elements.
  • the dispersing agent is a nonionic surfactant or anionic or cationic surfactant.
  • the surfactant is nonionic.
  • the dispersing agent is, preferably, polyethylene glycol p- (1,1,3,3-tetramethylbutyl) -phenyl ether, of empirical formula (C14H22O (C2H4O) n ), also known under the name Triton® X-100.
  • the mass percentage of the dispersing agent contained in the ink is between 0.01% and 2%.
  • the ink is advantageously dispersed using a mixer.
  • the deposition of the ink on the substrate is performed by a printing technique.
  • a printing technique and, more particularly, a high-speed printing technique makes it possible to increase productivity.
  • the deposit can be made by coating, by a deposit method called “roller to roll” ("roll to roll” in English) or by screen printing.
  • this method using a technique of deposition by printing, to produce multilayers integrating in the same film, for example, the gas diffusion layer and the active layer. It suffices to add to the suspension the catalytic elements.
  • the film obtained is advantageously dried in the open air, in order to eliminate any residual trace of solvent. Annealing at a temperature below 100 ° C may be considered to facilitate removal of the solvent.
  • the method comprises a step of separating the obtained film and the substrate.
  • the separation is carried out mechanically.
  • the substrate is a so-called temporary substrate.
  • the substrate could be a definitive substrate.
  • the ink was elaborated by mixing the compounds of the following table: Compound Dry weight (g)% by mass
  • Methyl Cellulose (TM) 1 .15% 0.46 9.8
  • Nonionic surfactant (Triton X-100) 0.01 0.2
  • PTFE Polytetrafluoroethylene
  • Triton X-100 is used pure, i.e. it is not diluted before being added to the ink.
  • the percentages given for MC and PTFE are dry extracts of MC and PTFE.
  • the ink was dispersed in a blender for 30 minutes at 6000 rpm.
  • the ink was deposited on a temporary substrate with a knife.
  • the thickness of the deposited film is 700 ⁇ m.
  • the film was dried at 80 ° C.
  • the film is annealed at 350 ° C for 2 hours to form the final gas diffusion layer.
  • the gas diffusion layer obtained was observed under a scanning electron microscope (FIG. 1).
  • the diffusion layer has a homogeneous structure.
  • FIG. 2 represents a photograph obtained, also, by scanning electron microscope of a gas diffusion layer obtained by a conventional method requiring annealing at 1100 ° C.
  • FIG. 3 represents current-voltage curves for these two layers.
  • the diffusion layer obtained according to the method (curve A) has better electrochemical performances than the diffusion layer obtained according to the conventional method (curve B).
  • the method used makes it possible to obtain structurally homogeneous diffusion layers with good electrochemical performances. The process is applicable on a large scale.
  • the process is a high speed production process by printing or coating, which increases productivity and reduces costs.
  • the complete device can be realized by printing.

Abstract

The invention relates to a gas-diffusion layer comprising the following series of steps: supplying an ink containing at least solid carbon-based elements, a solvent and a film-forming agent; depositing the ink onto a substrate using a printing technique, so as to form a film; and fritting the film at a temperature between 200°C and 500°C so as to form the gas-diffusion layer. The ink contains at least ground carbon fibers, wherein the weight percent of the ground carbon fibers is between 5% and 75%, and the total weight percent is calculated from all the elements contained in the ink, except for the solvent.

Description

Procédé de réalisation d'une couche de diffusion de gaz.  Process for producing a gas diffusion layer
Domaine technique de l'invention Technical field of the invention
L'invention est relative à un procédé de réalisation d'une couche de diffusion de gaz. The invention relates to a method for producing a gas diffusion layer.
État de la technique State of the art
Les piles à combustible comprennent, classiquement, une membrane électrolytique échangeuse de cations, chaque face de la membrane étant recouverte d'une couche de catalyseur. Chaque couche de catalyseur est en contact avec une couche de diffusion de gaz, aussi appelée couche de diffusion. Les couches de diffusion sont, finalement, entourées par les plaques bipolaires. Fuel cells typically comprise an electrolyte cation exchange membrane, each side of the membrane being covered with a catalyst layer. Each catalyst layer is in contact with a gas diffusion layer, also called diffusion layer. The diffusion layers are finally surrounded by the bipolar plates.
Chaque ensemble composé d'une couche de catalyseur et d'une couche de diffusion forme une électrode. Les couches de catalyseur peuvent être, par exemple, déposées sur les couches de diffusion de gaz par des techniques d'impression, du type sérigraphie, ou encore impression au pochoir (US 2004/0023105).  Each set of a catalyst layer and a diffusion layer form an electrode. The catalyst layers may be, for example, deposited on the gas diffusion layers by printing techniques, such as screen printing, or stencil printing (US 2004/0023105).
Les couches microporeuses imprimées sur les couches de diffusion de gaz ont, classiquement, une épaisseur de l'ordre de 40μιη.  The microporous layers printed on the gas diffusion layers have, conventionally, a thickness of the order of 40μιη.
Les couches de diffusion de gaz (ou GDL pour « gas diffusion layer ») jouent un rôle essentiel quant au fonctionnement de la pile à combustible. Elles permettent le transport et l'évacuation des produits et/ou réactifs au sein de la pile, favorisent le passage du courant et également servent de support mécanique à l'ensemble. La structure des couches de diffusion influence donc significativement les performances électrochimiques des piles. Une couche de diffusion de gaz fait entre Ι ΟΟμιτι et 500μιτι d'épaisseur et doit être très conductrice. Gas diffusion layers (or GDLs) play a vital role in the operation of the fuel cell. They allow the transport and evacuation of the products and / or reagents within the cell, promote the passage of current and also serve as mechanical support to the assembly. The structure of the diffusion layers therefore significantly influences the electrochemical performance of the cells. A gas diffusion layer is between Ι ΟΟμιτι and 500μιτι thick and must be very conductive.
Les candidats les plus prometteurs pour réaliser les couches de diffusion de gaz, pour obtenir de telles propriétés, sont les matériaux à base de fibres de carbone, et notamment les papiers ou tissus de carbone.  The most promising candidates for producing the gas diffusion layers, to obtain such properties, are carbon fiber materials, and especially carbon papers or fabrics.
Les couches de diffusion de gaz sont généralement formées par tissage, par voie humide ou encore par voie sèche (« Handbook of Fuel Cells - Fundamentals, Technology and Applications, volume 3, Chap. 46). Chacune de ces voies nécessite un traitement thermique à des températures d'au moins 1000°C sous vide ou en présence de gaz inerte. The gas diffusion layers are generally formed by weaving, wet or dry ("Handbook of Fuel Cells - Fundamentals, Technology and Applications, Volume 3, Chapter 46"). Each of these routes requires heat treatment at temperatures of at least 1000 ° C under vacuum or in the presence of inert gas.
Il est recommandé de travailler à des températures supérieures à 1200°C et à 2000°C pour, respectivement, carboniser et réaliser une graphitisation du matériau, pour permettre la carbonisation et/ou la graphitisation et ainsi conférer au papier de carbone ses propriétés finales (densité, résistivité électrique, résistance à la traction).  It is recommended to work at temperatures above 1200 ° C and 2000 ° C to respectively carbonize and graphitize the material, to allow carbonization and / or graphitization and thus give the carbon paper its final properties ( density, electrical resistivity, tensile strength).
Par exemple, pour réaliser une couche de diffusion sous la forme d'un papier de carbone, ce document décrit un procédé comprenant, dans un premier temps, la formation d'une dispersion contenant des fibres de carbone et un liant tel que le PVA. La dispersion contient au moins 0,01 % massique de fibres de carbone. Puis la dispersion est insérée dans une tête d'injection qui permet de déposer ladite dispersion sur un substrat.  For example, to make a diffusion layer in the form of a carbon paper, this document describes a process comprising, at first, the formation of a dispersion containing carbon fibers and a binder such as PVA. The dispersion contains at least 0.01% by weight of carbon fibers. Then the dispersion is inserted into an injection head which makes it possible to deposit said dispersion on a substrate.
Le film ainsi formé est ensuite recouvert d'une résine thermodurcissable. L'ensemble est ensuite moulé par compression puis durci à 175°C sous des pressions de l'ordre de 500kPa. Après moulage, le papier est, finalement, recuit à des températures d'au moins 1000°C  The film thus formed is then covered with a thermosetting resin. The assembly is then compression molded and then cured at 175 ° C. under pressures of the order of 500 kPa. After molding, the paper is finally annealed at temperatures of at least 1000 ° C.
Cependant, ces étapes de recuit à haute température nécessitent des équipements spéciaux et entraîne des coûts de production élevés. Objet de l'invention However, these high temperature annealing steps require special equipment and high production costs. Object of the invention
L'invention a pour but de remédier aux inconvénients de l'art antérieur et, en particulier, de proposer un procédé de réalisation de couches de diffusion de gaz, facile à mettre en œuvre, industrialisable et peu coûteux. The object of the invention is to overcome the drawbacks of the prior art and, in particular, to propose a method for producing gas diffusion layers that is easy to implement, industrializable and inexpensive.
Cet objet est atteint par les revendications annexées. This object is achieved by the appended claims.
Description sommaire des dessins Brief description of the drawings
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels : Other advantages and features will emerge more clearly from the following description of particular embodiments of the invention given by way of non-limiting example and represented in the accompanying drawings, in which:
- la figure 1 représente un cliché obtenu par microscopie optique d'une couche de diffusion de gaz, obtenue selon un mode de réalisation du procédé de l'invention,  FIG. 1 represents a photograph obtained by light microscopy of a gas diffusion layer, obtained according to one embodiment of the method of the invention,
- la figure 2 représente un cliché obtenu par microscopie optique d'une couche de diffusion de gaz, obtenue selon un procédé de l'art antérieur,  FIG. 2 represents a photograph obtained by light microscopy of a gas diffusion layer, obtained according to a method of the prior art,
- la figure 3 représente les courbes courant-tension des couches de diffusion de gaz des figures 1 et 2.  FIG. 3 represents the current-voltage curves of the gas diffusion layers of FIGS. 1 and 2.
Description d'un mode de réalisation préférentiel de l'invention Description of a preferred embodiment of the invention
Le procédé de réalisation d'une couche de diffusion de gaz, comprend les étapes successives suivantes : The method for producing a gas diffusion layer comprises the following successive steps:
- fournir une encre contenant au moins des éléments solides à base de carbone, un solvant et un agent filmogène, - déposer l'encre sur un substrat par une technique d'impression, de manière à former un film, supplying an ink containing at least carbon-based solid elements, a solvent and a film-forming agent, depositing the ink on a substrate by a printing technique, so as to form a film,
- fritter le film à une température comprise entre 200°C et 500°C, de manière à former la couche de diffusion de gaz.  sintering the film at a temperature between 200 ° C. and 500 ° C., so as to form the gas diffusion layer.
Contrairement aux procédés de l'art antérieur, ce procédé est réalisé à des températures inférieures à 1000°C et, encore plus particulièrement, à des températures inférieures à 500°C. Unlike the processes of the prior art, this process is carried out at temperatures below 1000 ° C and even more particularly at temperatures below 500 ° C.
Le procédé permet de s'affranchir des étapes de carbonisation/graphitisation, ce qui permet, non seulement, de simplifier le procédé, mais également, de réduire les coûts de production.  The method makes it possible to dispense with carbonization / graphitization steps, which not only simplifies the process, but also reduces production costs.
Encore plus préférentiellement, l'étape de frittage est réalisée à des températures comprises entre 300°C et 400°C. Ces températures permettent de fritter le matériau composite formant le film et d'obtenir une couche de diffusion mécaniquement stable.  Even more preferably, the sintering step is carried out at temperatures of between 300 ° C. and 400 ° C. These temperatures make it possible to sinter the composite material forming the film and to obtain a mechanically stable diffusion layer.
Par un matériau composite, on entend un matériau formé d'au moins deux matériaux différents. Un de ces matériaux joue le rôle de renfort, il s'agit des éléments solides à bases de carbone, et un autre matériau joue le rôle de matrice, il s'agit de l'agent filmogène.  By a composite material is meant a material formed of at least two different materials. One of these materials plays the role of reinforcement, it is solid elements based on carbon, and another material plays the role of matrix, it is the film-forming agent.
Préférentiellement, l'étape de frittage est réalisée à pression ambiante. Par pression ambiante, on entend une pression de l'ordre de 100kPa. Preferably, the sintering step is carried out at ambient pressure. By ambient pressure is meant a pressure of the order of 100 kPa.
Le frittage est, avantageusement, réalisé sous air. Le procédé ne nécessite pas d'équipements spéciaux. Les éléments à base de carbone permettent de conférer, à la couche de diffusion de gaz finale, et notamment ses propriétés de conductivité électrique. Ils permettent également de déterminer sa structure (porosité, densité, etc). Avantageusement, le procédé d'élaboration utilise des éléments à base de carbone présentant des dimensions inférieures au millimètre. Le film final obtenu présentera ainsi une épaisseur relativement faible. Par relativement faible, on entend une épaisseur inférieure à 1 mm. Préférentiellement, les éléments à base de carbone sont choisis parmi les particules de carbone, les nanotubes de carbone, les fibres de carbone ou un mélange de ceux-ci. Les éléments à base de carbone peuvent être formés, par exemple, d'un mélange de particules de carbone et de fibres de carbone. Sintering is advantageously carried out under air. The process does not require special equipment. The carbon-based elements make it possible to confer on the final gas diffusion layer, and in particular its electrical conductivity properties. They also make it possible to determine its structure (porosity, density, etc.). Advantageously, the production process uses carbon-based elements having dimensions less than one millimeter. The final film obtained will thus have a relatively small thickness. By relatively low, means a thickness less than 1 mm. Preferably, the carbon-based elements are chosen from carbon particles, carbon nanotubes, carbon fibers or a mixture thereof. The carbon-based elements may be formed, for example, of a mixture of carbon particles and carbon fibers.
Selon un mode de réalisation particulier, l'encre peut contenir en plus des fibres métalliques, permettant à moindre coût de modifier la structure et/ou les propriétés physico-chimiques du matériau. According to a particular embodiment, the ink may additionally contain metal fibers, making it possible, at a lower cost, to modify the structure and / or the physicochemical properties of the material.
Préférentiellement, l'encre contient au moins des fibres de carbone. L'incorporation de fibres de carbone dans la couche de diffusion de gaz permet d'obtenir une couche de diffusion de gaz très conductrice. Preferably, the ink contains at least carbon fibers. The incorporation of carbon fibers in the gas diffusion layer makes it possible to obtain a highly conductive gas diffusion layer.
Les fibres de carbone peuvent être élaborées en phase vapeur (ou VGCF pour « Vapor Grown Carbon Fiber ») ou encore elles peuvent être réalisées à partir de précurseur à base de polyacrylonitrile (PAN). Avantageusement, les fibres de carbone de type VGCF sont plus petites (de 1μιη à 20μιη) et plus fines que les fibres de carbone à base de PAN. The carbon fibers may be vapor phase (or VGCF for "Vapor Grown Carbon Fiber") or they may be made from polyacrylonitrile precursor (PAN). Advantageously, VGCF type carbon fibers are smaller (from 1μιη to 20μιη) and finer than PAN-based carbon fibers.
Encore plus préférentiellement, l'encre contient au moins des fibres de carbone broyées. Les fibres de carbone broyées proviennent, avantageusement, de fibres de carbone recyclées, ce qui permet de valoriser des fibres ayant déjà servies au moins une première fois et de réduire d'autant plus les coûts d'élaboration.  Even more preferably, the ink contains at least crushed carbon fibers. The crushed carbon fibers come, advantageously, recycled carbon fibers, which makes it possible to value fibers that have already served at least a first time and to reduce all the more the costs of preparation.
Par fibre broyée, on entend une fibre d'une longueur inférieure à 500μιτι. Les fibres de carbone broyées ont une longueur comprise entre ΙΟΟμιτι et 500μιτι alors que les fibres de carbone non broyées ont une longueur supérieure à 1 mm, généralement entre 3mm et 12mm.  "Crushed fiber" means a fiber with a length of less than 500 μm. The crushed carbon fibers have a length of between ΙΟΟμιτι and 500μιτι while uncrushed carbon fibers have a length greater than 1 mm, generally between 3mm and 12mm.
Préférentiellement, les fibres broyées ont une longueur moyenne de l'ordre de Ι ΟΟμιη. Ces fibres permettent de former une encre homogène, contrairement, aux fibres de carbone standards. La présence de fibres de carbone standard, dans l'encre, tend à former des flocs.  Preferably, the crushed fibers have an average length of the order of Ι ΟΟμιη. These fibers make it possible to form a homogeneous ink, contrary to standard carbon fibers. The presence of standard carbon fibers in the ink tends to form flocks.
Préférentiellement, le pourcentage massique de fibres de carbone broyées est compris entre 5% et 75%, et, encore plus préférentiellement, entre 50% et 60%. Le pourcentage massique total est calculé à partir de l'ensemble des éléments contenus dans l'encre, hormis le solvant, i.e. le pourcentage massique total correspond à la somme des pourcentages massiques des différents composés formant l'encre, le solvant n'étant pas pris en compte dans ce calcul. Preferably, the mass percentage of crushed carbon fibers is between 5% and 75%, and even more preferably between 50% and 60%. The total mass percentage is calculated from all the elements contained in the ink, apart from the solvent, ie the total mass percentage corresponds to the sum of the mass percentages of the various compounds forming the ink, the solvent not being taken into account in this calculation.
Selon un mode de réalisation préférentiel, les éléments à base de carbone sont formés par un mélange de fibres de carbone broyées et de fibres de carbone élaborées en phase vapeur (ou VGCF pour « Vapor Grown Carbon Fiber »). Préférentiellement, le pourcentage massique de fibres de carbone élaborées en phase vapeur est compris entre 0% et 75% massique. According to a preferred embodiment, the carbon-based elements are formed by a mixture of crushed carbon fibers and Vapor Grown Carbon Fiber (VGCF). Preferably, the mass percentage of carbon fibers developed in the vapor phase is between 0% and 75% by mass.
Dans le cas où le pourcentage massique de fibres de carbone élaborées en phase vapeur est de 0%, l'encre contient uniquement des fibres de carbone broyées.  In the case where the mass percentage of carbon fibers made in the vapor phase is 0%, the ink contains only crushed carbon fibers.
Dans le cas où ce pourcentage massique est strictement supérieur à 0%, les éléments à base de carbone sont formés par un mélange de fibres broyées et de fibres de carbone élaborées en phase vapeur.  In the case where this mass percentage is strictly greater than 0%, the carbon-based elements are formed by a mixture of milled fibers and carbon fibers developed in the vapor phase.
Ces gammes de pourcentage permettent de former des couches de diffusion de gaz présentant une faible résistivité. L'encre comprend au moins un solvant. Il permet, avantageusement, de dissoudre le liant dans l'encre et d'obtenir ainsi une composition homogène. Le solvant peut être de l'eau ou un solvant organique.  These ranges of percentage make it possible to form gas diffusion layers having a low resistivity. The ink comprises at least one solvent. It advantageously makes it possible to dissolve the binder in the ink and thus to obtain a homogeneous composition. The solvent may be water or an organic solvent.
Préférentiellement, le solvant est de l'eau. L'agent filmogène joue le rôle de liant entre les différents éléments. L'agent filmogène est un élément polymère, naturel ou synthétique, Preferably, the solvent is water. The film-forming agent acts as a binder between the different elements. The film-forming agent is a polymeric element, natural or synthetic,
Préférentiellement, l'agent filmogène est choisi parmi le polytétrafluoroéthylène (PTFE), le polyéthylène (PE), le polyfluorure de vinyle (PVF), le polyfluorure de vinylidène (PVDF). Preferably, the film-forming agent is chosen from polytetrafluoroethylene (PTFE), polyethylene (PE), polyvinylfluoride (PVF) and polyvinylidene fluoride (PVDF).
L'agent filmogène permet de garantir la tenue mécanique du film final et son hydrophobicité. En augmentant la quantité d'agent filmogène, la tenue mécanique du film final, i.e. la tenue mécanique de la couche de diffusion de gaz, ainsi que son hydrophobicité sont augmentées. The film-forming agent makes it possible to guarantee the mechanical strength of the final film and its hydrophobicity. By increasing the amount of film-forming agent, holding final film mechanics, ie the mechanical strength of the gas diffusion layer, as well as its hydrophobicity are increased.
Préférentiellement, le pourcentage massique de l'agent filmogène contenu dans l'encre est compris entre 5% et 30%. Ceci permet de former une couche de diffusion présentant une bonne conductivité et une bonne résistance mécanique.  Preferably, the mass percentage of the film-forming agent contained in the ink is between 5% and 30%. This makes it possible to form a diffusion layer having good conductivity and good mechanical strength.
Préférentiellement, l'encre contient un agent régulateur de viscosité. Cet agent permet de réguler la viscosité de l'encre. La viscosité de l'encre est, avantageusement, comprise entre 300cP et 800cP à 20°C. Preferably, the ink contains a viscosity regulating agent. This agent makes it possible to regulate the viscosity of the ink. The viscosity of the ink is advantageously between 300cP and 800cP at 20 ° C.
L'agent régulateur de viscosité est choisi parmi les celluloses, les dérivés de cellulose et l'alcool polyvinylique.  The viscosity regulating agent is chosen from celluloses, cellulose derivatives and polyvinyl alcohol.
Préférentiellement, l'agent régulateur de viscosité est choisi parmi la méthylcellulose (MC), la carboxyméthylcellulose (CMC) ou l'alcool polyvinylique (PVA).  Preferably, the viscosity regulating agent is chosen from methylcellulose (MC), carboxymethylcellulose (CMC) or polyvinyl alcohol (PVA).
Préférentiellement, le pourcentage massique de l'agent régulateur de viscosité contenu dans l'encre est compris entre 5% et 15% massique. L'encre présente une viscosité suffisante pour former un dépôt homogène, et les têtes d'injection des dispositifs de dépôt ne seront pas bouchées.  Preferably, the weight percentage of the viscosity control agent contained in the ink is between 5% and 15% by weight. The ink has a viscosity sufficient to form a homogeneous deposit, and the injection heads of the depositing devices will not be clogged.
Préférentiellement, l'encre contient un agent dispersant, aussi appelé surfactant. L'agent dispersant permet de faciliter la dispersion des éléments à base de carbone. L'agent dispersant est un tensio-actif non-ionique ou un tensio-actif anionique ou cationique. Préférentiellement, le tensio-actif est non- ionique. Preferably, the ink contains a dispersing agent, also called surfactant. The dispersing agent facilitates the dispersion of the carbon-based elements. The dispersing agent is a nonionic surfactant or anionic or cationic surfactant. Preferably, the surfactant is nonionic.
L'agent dispersant est, préférentiellement, du polyéthylène glycol p-(1 , 1 ,3,3- tetramethylbutyl)-phényl éther, de formule brute (Ci4H22O(C2H4O)n), aussi connu sous le nom Triton® X-100. The dispersing agent is, preferably, polyethylene glycol p- (1,1,3,3-tetramethylbutyl) -phenyl ether, of empirical formula (C14H22O (C2H4O) n ), also known under the name Triton® X-100.
Préférentiellement, le pourcentage massique de l'agent dispersant contenu dans l'encre est compris entre 0,01 % et 2%. Avant d'être déposée sur le substrat, l'encre est, avantageusement, dispersée à l'aide d'un mélangeur. Preferably, the mass percentage of the dispersing agent contained in the ink is between 0.01% and 2%. Before being deposited on the substrate, the ink is advantageously dispersed using a mixer.
Le dépôt de l'encre, sur le substrat, est réalisé par une technique d'impression. L'utilisation d'une technique d'impression et, plus particulièrement, d'une technique d'impression haute vitesse permet d'augmenter la productivité. The deposition of the ink on the substrate is performed by a printing technique. The use of a printing technique and, more particularly, a high-speed printing technique makes it possible to increase productivity.
Le dépôt peut être réalisé par couchage, par un procédé de dépôt dit « rouleau à rouleau » (« roll to roll » en anglais) ou encore par sérigraphie. De plus, il est possible, avec ce procédé mettant en oeuvre une technique de dépôt par impression, de réaliser des multicouches intégrant dans un même film, par exemple, la couche de diffusion de gaz et la couche active. Il suffit d'ajouter à la suspension les éléments catalytiques. Après dépôt, le film obtenu est, avantageusement, séché à l'air libre, afin d'éliminer toute trace résiduelle de solvant. Un recuit à une température inférieure à 100°C peut être envisagé pour faciliter l'élimination du solvant. The deposit can be made by coating, by a deposit method called "roller to roll" ("roll to roll" in English) or by screen printing. In addition, it is possible, with this method using a technique of deposition by printing, to produce multilayers integrating in the same film, for example, the gas diffusion layer and the active layer. It suffices to add to the suspension the catalytic elements. After deposition, the film obtained is advantageously dried in the open air, in order to eliminate any residual trace of solvent. Annealing at a temperature below 100 ° C may be considered to facilitate removal of the solvent.
Après le dépôt de l'encre sur un support, et avant l'étape de frittage, le procédé comprend une étape de séparation du film obtenu et du substrat. Avantageusement, la séparation est réalisée par voie mécanique. After the deposition of the ink on a support, and before the sintering step, the method comprises a step of separating the obtained film and the substrate. Advantageously, the separation is carried out mechanically.
Selon ce mode de réalisation, le substrat est un substrat dit temporaire. According to this embodiment, the substrate is a so-called temporary substrate.
Selon un autre mode de réalisation, le substrat pourrait être un substrat définitif. According to another embodiment, the substrate could be a definitive substrate.
Le procédé va maintenant être décrit au moyen de l'exemple donné ci-dessous à titre illustratif seulement et non limitatif. The process will now be described by means of the example given below for illustrative purposes only and not limiting.
L'encre a été élaborée en mélangeant les composés du tableau suivant : Composé Poids sec (g) % massiqueThe ink was elaborated by mixing the compounds of the following table: Compound Dry weight (g)% by mass
Méthyle Cellulose (MC) 1 .15% 0,46 9,8Methyl Cellulose (TM) 1 .15% 0.46 9.8
Fibres de carbone élaborées en phase Carbon fibers developed in phase
2,42 51 ,9 vapeur  2.42 51.9 steam
Fibres de carbone recyclées et broyées 1 ,04 22,3 Recycled and milled carbon fiber 1, 04 22.3
Surfactant non ionique (Triton X-100) 0,01 0,2Nonionic surfactant (Triton X-100) 0.01 0.2
Polytétrafluoroéthylène (PTFE) 60% 0,74 15,8 Polytetrafluoroethylene (PTFE) 60% 0.74 15.8
Le Triton X-100 est utilisé pur, i.e. il n'est pas dilué avant d'être ajouté dans l'encre. Les pourcentages indiqués pour la MC et le PTFE correspondent aux extraits secs de MC et de PTFE. Triton X-100 is used pure, i.e. it is not diluted before being added to the ink. The percentages given for MC and PTFE are dry extracts of MC and PTFE.
L'encre a été dispersée dans un mélangeur pendant 30 minutes à 6000 tour/min. The ink was dispersed in a blender for 30 minutes at 6000 rpm.
Puis l'encre a été déposée sur un substrat temporaire à l'aide d'un couteau. L'épaisseur du film déposé est de 700 ym. Le film a été séché à 80°C.  Then the ink was deposited on a temporary substrate with a knife. The thickness of the deposited film is 700 μm. The film was dried at 80 ° C.
Après séparation du film avec le substrat, le film est recuit à 350°C pendant 2h afin de former la couche de diffusion de gaz finale. After separation of the film with the substrate, the film is annealed at 350 ° C for 2 hours to form the final gas diffusion layer.
Ces traitements thermiques ont été réalisés à pression ambiante, c'est-à-dire à une pression de l'ordre de 1 bar.  These heat treatments were carried out at ambient pressure, that is to say at a pressure of the order of 1 bar.
La couche de diffusion de gaz obtenue a été observée au microscope électronique en balayage (figure 1 ). La couche de diffusion présente une structure homogène. The gas diffusion layer obtained was observed under a scanning electron microscope (FIG. 1). The diffusion layer has a homogeneous structure.
La figure 2 représente un cliché obtenu, également, au microscope électronique en balayage d'une couche de diffusion de gaz obtenue par un procédé conventionnel nécessitant un recuit à 1 100°C.  FIG. 2 represents a photograph obtained, also, by scanning electron microscope of a gas diffusion layer obtained by a conventional method requiring annealing at 1100 ° C.
La figure 3 représente des courbes dites courant-tension pour ces deux couches. La couche de diffusion obtenue selon le procédé (courbe A) présente de meilleures performances électrochimiques que la couche de diffusion obtenue selon le procédé classique (courbe B). Le procédé utilisé permet d'obtenir des couches de diffusion homogène structurellement et présentant de bonnes performances électrochimiques. Le procédé est applicable à grande échelle. FIG. 3 represents current-voltage curves for these two layers. The diffusion layer obtained according to the method (curve A) has better electrochemical performances than the diffusion layer obtained according to the conventional method (curve B). The method used makes it possible to obtain structurally homogeneous diffusion layers with good electrochemical performances. The process is applicable on a large scale.
Le procédé est un procédé de production haute vitesse par impression ou par enduction, ce qui permet une augmentation de la productivité et une réduction des coûts. Le dispositif complet peut être réalisé par impression.  The process is a high speed production process by printing or coating, which increases productivity and reduces costs. The complete device can be realized by printing.
Il n'y a pas d'étape de carbonisation, ce qui simplifie, avantageusement, la mise en œuvre du procédé. There is no carbonization step, which simplifies, advantageously, the implementation of the method.
L'utilisation de fibres de carbone recyclées réduit significativement les coûts d'élaboration.  The use of recycled carbon fibers significantly reduces the cost of production.

Claims

Revendications claims
1. Procédé de réalisation d'une couche de diffusion de gaz, comprenant les étapes successives suivantes : A method of producing a gas diffusion layer, comprising the following successive steps:
- fournir une encre contenant au moins des éléments solides à base de carbone, un solvant et un agent filmogène,  supplying an ink containing at least carbon-based solid elements, a solvent and a film-forming agent,
les éléments solides à base de carbone étant choisis parmi les particules de carbone, les nanotubes de carbone, les fibres de carbone ou un mélange de ceux-ci,  the carbon-based solid elements being selected from carbon particles, carbon nanotubes, carbon fibers or a mixture thereof,
l'encre contenant au moins des fibres de carbone broyées, le pourcentage massique de fibres de carbone broyées étant compris entre 5% et 75%, le pourcentage massique total étant calculé à partir de l'ensemble des éléments contenus dans l'encre, hormis le solvant, the ink containing at least crushed carbon fibers, the mass percentage of crushed carbon fibers being between 5% and 75%, the total mass percentage being calculated from all the elements contained in the ink, except the solvent,
- déposer l'encre sur un substrat par une technique d'impression, de manière à former un film, depositing the ink on a substrate by a printing technique, so as to form a film,
- fritter le film à une température comprise entre 200°C et 500°C, de manière à former la couche de diffusion de gaz.  sintering the film at a temperature between 200 ° C. and 500 ° C., so as to form the gas diffusion layer.
2. Procédé selon la revendication 1 , caractérisé en ce que les éléments solides à base de carbone sont formés par un mélange de fibres de carbone broyées et de fibres de carbone élaborées en phase vapeur. 2. Method according to claim 1, characterized in that the solid elements based on carbon are formed by a mixture of crushed carbon fibers and carbon fibers developed in the vapor phase.
3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que l'agent filmogène est choisi parmi le PTFE, le PE, PVF, le PVDF. 3. Method according to one of claims 1 and 2, characterized in that the film-forming agent is selected from PTFE, PE, PVF, PVDF.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'encre contient un agent régulateur de viscosité. 4. Method according to any one of claims 1 to 3, characterized in that the ink contains a viscosity regulator.
5. Procédé selon la revendication 4, caractérisé en ce que l'agent régulateur de viscosité est choisi parmi les celluloses, les dérivés de cellulose et l'alcool polyvinylique. 5. Method according to claim 4, characterized in that the viscosity regulating agent is chosen from celluloses, cellulose derivatives and polyvinyl alcohol.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'encre contient un agent dispersant. 6. Method according to any one of claims 1 to 5, characterized in that the ink contains a dispersing agent.
7. Procédé selon la revendication 6, caractérisé en ce que l'agent dispersant est du polyéthylène glycol p-(1 ,1 ,3,3-tetramethylbutyl)-phényl éther. 7. Process according to claim 6, characterized in that the dispersing agent is polyethylene glycol p- (1,1,3,3-tetramethylbutyl) -phenyl ether.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le procédé comprend une étape de séparation du film et du substrat, avant l'étape de frittage. 8. Method according to any one of claims 1 to 7, characterized in that the method comprises a step of separating the film and the substrate, before the sintering step.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'étape de frittage est réalisée à une température comprise entre 300°C et 400°C. 9. Process according to any one of claims 1 to 8, characterized in that the sintering step is carried out at a temperature between 300 ° C and 400 ° C.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que l'étape de frittage est réalisée sous air. 10. Process according to any one of claims 1 to 9, characterized in that the sintering step is carried out under air.
11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que l'étape de frittage est réalisée à une pression de l'ordre de 100kPa. 11. Method according to any one of claims 1 to 10, characterized in that the sintering step is carried out at a pressure of the order of 100kPa.
PCT/FR2015/053031 2014-11-12 2015-11-09 Method for making a gas-diffusion layer. WO2016075402A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1460878 2014-11-12
FR1460878A FR3028352A1 (en) 2014-11-12 2014-11-12 METHOD FOR PRODUCING A GAS DIFFUSION LAYER

Publications (1)

Publication Number Publication Date
WO2016075402A1 true WO2016075402A1 (en) 2016-05-19

Family

ID=52130480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/053031 WO2016075402A1 (en) 2014-11-12 2015-11-09 Method for making a gas-diffusion layer.

Country Status (2)

Country Link
FR (1) FR3028352A1 (en)
WO (1) WO2016075402A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416557A (en) * 2019-07-12 2019-11-05 成都新柯力化工科技有限公司 A kind of method that roll-to-roll printing low cost prepares fuel battery gas diffusion layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3097689B1 (en) 2019-06-19 2021-06-25 Commissariat Energie Atomique Method of forming an electroconductive hydrophobic microporous layer useful as a gas diffusion layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1365464A2 (en) * 2002-05-17 2003-11-26 Umicore AG & Co. KG Continuous process for manufacture of gas diffusion layers for fuel cells
US20090011308A1 (en) * 2006-02-02 2009-01-08 Eun-Sook Lee Preparation of Gas Diffusion Layer for Fuel Cell
US20090098440A1 (en) * 2006-02-01 2009-04-16 Johnson Matthey Public Limited Company Microporous layer
US20100003400A1 (en) * 2007-02-02 2010-01-07 Asahi Glass Company Limited Process for producing membrane/electrode assembly for polymer electrolyte fuel cell and process for producing polymer electrolyte fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1365464A2 (en) * 2002-05-17 2003-11-26 Umicore AG & Co. KG Continuous process for manufacture of gas diffusion layers for fuel cells
US20090098440A1 (en) * 2006-02-01 2009-04-16 Johnson Matthey Public Limited Company Microporous layer
US20090011308A1 (en) * 2006-02-02 2009-01-08 Eun-Sook Lee Preparation of Gas Diffusion Layer for Fuel Cell
US20100003400A1 (en) * 2007-02-02 2010-01-07 Asahi Glass Company Limited Process for producing membrane/electrode assembly for polymer electrolyte fuel cell and process for producing polymer electrolyte fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416557A (en) * 2019-07-12 2019-11-05 成都新柯力化工科技有限公司 A kind of method that roll-to-roll printing low cost prepares fuel battery gas diffusion layer

Also Published As

Publication number Publication date
FR3028352A1 (en) 2016-05-13

Similar Documents

Publication Publication Date Title
US10790516B2 (en) Gas diffusion electrode and method for manufacturing same
CA2939193C (en) Gas diffusion electrode substrate, and membrane electrode assembly and fuel cell equipped with same
EP3624241B1 (en) Method of manufacturing an electrochemical reactor flow guide
JP6086164B2 (en) Porous electrode substrate, membrane-electrode assembly using the same, and polymer electrolyte fuel cell using the same
US20190027761A1 (en) Gas diffusion electrode
TWI692144B (en) Gas diffusion electrode
Schweiss et al. SIGRACET gas diffusion layers for PEM fuel cells, electrolyzers and batteries
US10804542B2 (en) Gas diffusion electrode base, laminate and fuel cell
WO2017110693A1 (en) Gas diffusion electrode and fuel cell
EP3474356A1 (en) Multilayer structure incorporating a carbon nanotube mat as the scattering layer in a pemfc
WO2016075402A1 (en) Method for making a gas-diffusion layer.
WO2017064443A1 (en) Low-weight needled fabric, method for the production thereof and use of same in a diffusion layer for a fuel cell
EP3754770B1 (en) Method for forming a hydrophobic electrically conductive microporous layer for use as a gas-diffusion layer
US10637069B2 (en) Carbon sheet, gas diffusion electrode substrate, wound body, and fuel cell
FR3083547A1 (en) CARBON FIBER AND PROCESS FOR PRODUCING SUCH CARBON FIBER FROM CELLULOSE
FR3018956A1 (en) MEMBRANE-ELECTRODES ASSEMBLY FOR PEMFC AND PROCESS FOR PRODUCING THE SAME
FR3136895A1 (en) Formation of a microporous MPL layer on the surface of an active layer for an electrochemical converter
EP3133681A1 (en) Fuel cell with built-in water management layer and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15801914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15801914

Country of ref document: EP

Kind code of ref document: A1