WO2016074599A1 - Dynamic spectrum configuration - Google Patents

Dynamic spectrum configuration Download PDF

Info

Publication number
WO2016074599A1
WO2016074599A1 PCT/CN2015/094136 CN2015094136W WO2016074599A1 WO 2016074599 A1 WO2016074599 A1 WO 2016074599A1 CN 2015094136 W CN2015094136 W CN 2015094136W WO 2016074599 A1 WO2016074599 A1 WO 2016074599A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration
communication station
frequency band
information
spectrum
Prior art date
Application number
PCT/CN2015/094136
Other languages
French (fr)
Inventor
Xing Liu
Yan Li
Ting MIAO
Ruimei LI
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Publication of WO2016074599A1 publication Critical patent/WO2016074599A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present document relates to mobile communication, and more particularly, to dynamic configuration of spectrum use.
  • the spectrum may alsobeallottedto a region or country or sector (geographic allocation) .
  • the spectrum may also be assignedto specific communications stations.
  • spectrum resources are restricted by such an a priori, fixed distribution, the total utilization of spectrum may be low at times. In a sense, it is the spectrum allocation mechanism which fixedly allocatesto an authorized system could cause an imbalance in spectral availability for different uses.
  • a flexible technology called cognitive radio technology, works differently from the conventional fixed spectrum allocation system, and dynamically allocatesspectrumamong systems, thus potentially improving utilization efficiency of spectrum. For various reasons, e.g., complexity of coordination needed among various systems, cognitive radio has yet to make a commercial impact on wireless communication services.
  • the present document discloses methods, devices, and systems for dynamic spectrum configuration.
  • the disclosed techniques can be used to mitigate operational challenges such as increased signaling overhead and processing delays caused by incorrect configuration decisions.
  • a method of dynamic spectrum configuration includes obtaining, by a configuration management node, resource state information of a specified frequency band, wherein, the resource state information is used to determine configuration parameters for a communication station on the specified frequency band.
  • the method also includes sending, by the configuration management node, a configuration response message to the communication station, the configuration parameters being carried in the configuration response message.
  • the specified frequency band comprises unused spectrum resources, also known as White Space (WS) , of other system available to the location at which the communication station resides, or WS that has been used by the communication station, wherein usage information of a system to which the spectrum resource belongs is changed.
  • WS White Space
  • the resource state information comprises any one or more of the following information: communication station, terminal capability information, communication station demand information, adjacent frequency system information, primarysystem protection requirement information, and network operator policy information.
  • the communication station and/or the terminal capability information indicates a duplex mode that the communication station and/or terminal supports on the specified frequency band, wherein the communication station and/or terminal capability information is transmitted by the communication station to the configuration management node.
  • the communication station demand information indicates the need of the communication station for the spectrum resources, and is transmitted by the communication station to the configuration management node, wherein the communication station demand information includes any one or more of following: bandwidth requirements, interference tolerance requirements, SNR requirements, and configuration requirements.
  • the configuration requirements refer to the purpose for pre-configuring the spectrum by the communication station, and the configuration requirements include at least one or more of the following: offload, supplementary coverage, enhanced capacity, interference avoidance, matching uplink and downlink traffic, and matching loads for various radio access technology.
  • the adjacent frequency system information includes configuration information for a system that works on adjacent frequency of the specified frequency band
  • the adjacent frequency system information is provided by a database that stores system configuration information on the adjacent frequency of the frequency band, or provided by a communication station that works on the adjacent frequency of the specified frequency band, or provided by configuration management node to which the communication station that works on the adjacent frequency of the specified frequency band specified belongs.
  • the adjacent frequency system information includes any one or more of the following information: duplex mode, operation mode, specific configuration parameters, and protection criteria information used by a system that works on an adjacent frequency band.
  • the specific configuration parameters may comprise one or more of the following parameters: working frequency, bandwidth, transmit power, applied radio access technology, uplink and downlink time slot ratio under time division duplex, and time-domain resources occupied by uplink and downlink.
  • the primary system protection requirement information indicates protection requirements for the primary system on the specified frequency band and/or the adjacent frequency, and is provided by database that stores the primary system spectrum usage information.
  • the primary system protection requirement information includes any one or more of the following information: working frequency of the primary system, bandwidth of the primary system, interference tolerance threshold of primary system receiver, interference tolerance margin of primary system receiver, coordinates for reference point position, receiver adjacent channel selectivity, and interference protection ratio.
  • the policy information includes duplex mode authorized on the specified frequency band regulated by a regulatory domain or an operator.
  • the method further comprises performing configuration decisions, by the configuration management node, and determining, for the communication station, configuration parameters that satisfy the requirements of the resource state information according to the resource state information of the specified frequency band.
  • generating and sending configuration response message to the communication station by the configuration management node includes performing configuration decisions, by the configuration management node, and determining the configuration parameters that satisfy the requirements of the resource state information for the communication station, according to the resource state information of the specified frequency band, generating configuration response message, the configuration response message carrying the configuration parameters.
  • the configuration response message carries determined configuration parameters
  • the configuration parameters comprise any one or more of the information: frequency point, bandwidth, transmit power, radio access technology used, duplex mode used, comprising: time division duplex and frequency division duplex, operation mode, uplink and downlink time slot ratio under time division duplex mode, and spectrum emission mask.
  • the operation mode comprises any one or more of the following: modes supplementary uplink, which configures the specified frequency band as an uplink carrier so as to share uplink load; supplementary downlink (SDL) , which configures the specified frequency band as a downlink carrier so as to share downlink load; carrier aggregation (CA) , which configures the specified frequency band as a time division duplex secondary carrier in carrier aggregation; andstand-alone, which configures the specified frequency band as a time division duplex carriers that operates independently.
  • modes supplementary uplink which configures the specified frequency band as an uplink carrier so as to share uplink load
  • SDL supplementary downlink
  • CA carrier aggregation
  • stand-alone which configures the specified frequency band as a time division duplex carriers that operates independently.
  • the spectrum emission mask includes in-band transmit power limitation for the communication station transmitter and out-band leakage limitation.
  • a method of dynamic spectrum configuration includes receiving, by a communication station, configuration response message sent by a configuration management node, the configuration response message carrying configuration parameters for the communication station on a specified frequency band, and performing, by the communications station, specified resource configuration according to the configuration response message.
  • the configuration parameter comprises any one or more of the information: frequency point, bandwidth, transmit power, radio access technology used, duplex mode used, comprising: time division duplex and frequency division duplex, operation mode, time slot ratio under time division duplex mode, and spectrum emission mask.
  • the operation mode comprises any one or more of the following modes: a supplementary uplink, which configures the specified frequency band as an uplink carrier so as to share uplink load; supplementary downlink (SDL) , which configures the specified frequency band as a downlink carrier so as to share downlink load; carrier aggregation (CA) , which configures the specified frequency band as a time division duplex secondary carrier in carrier aggregation; andstand-alone, which configures the specified frequency band as a time division duplex carriers that operates independently.
  • a supplementary uplink which configures the specified frequency band as an uplink carrier so as to share uplink load
  • SDL supplementary downlink
  • CA carrier aggregation
  • stand-alone which configures the specified frequency band as a time division duplex carriers that operates independently.
  • a device for dynamic spectrum configuration includes an obtainingmodule that obtains resource state information of a specified frequency band, wherein the resource state information is used to determine configuration parameters for a communication station on the specified frequency band, and a transmitter that sends a configuration response message to the communication station, wherein the configuration parameters are carried in the configuration response message.
  • the device includes a deciding module to perform configuration decisions and determine the configuration parameters that satisfy the requirements of the resource state information for the communication station, according to the resource state information of the specified frequency band.
  • the device includes a message generating module to generate configuration response message.
  • the configuration parameters from the deciding module are then carried in the configuration response message.
  • a device for dynamic spectrum configuration includes: a receiving module to receive configuration response message sent by a configuration management node, with the configuration response message carrying configuration parameters for the communication station on a specified frequency band; and a performing module, configured to perform specified resource configuration according to the configuration response message.
  • a system for dynamic spectrum configuration which includes a communication station that is integrated with the above dynamic spectrum configuration device, is disclosed.
  • a management node obtains resource state information for a specified frequency band.
  • the resource state information is used to determine configuration parameters of a communication station on the specified frequency band.
  • the management node sends configuration response message to the communication station.
  • the configuration response message carries the configuration parameters.
  • the communications station receives configuration response message sent by the configuration management node, and then performs the specified resources configuration according to configuration respond message.
  • embodiments may guarantee an improved policy configuration for network performance, and solve the problem of increased signaling overhead and processing latency caused by invalid configuration decision.
  • FIG. 1 is a schematic view of the contents of the technical solution provided by embodiments.
  • FIG. 2 is a schematic view of a system architecture in which a communication stationoperatesto seek to useWSof the primary system.
  • FIG. 3 shows an example of a network architecture diagram forLicensed Shared Access (LSA) technology.
  • LSA Licensed Shared Access
  • FIG. 4 is a schematic view of a system architecture in which communication stations run in a multi-system shared spectrum mode.
  • FIG. 5 is a flow chart of a first embodiment.
  • FIG. 6 is a flow chart of a second embodiment.
  • FIG. 7 is a flow chart of a third embodiment.
  • FIG. 8 is a flow chart of a fourth embodiment.
  • FIG. 9 is a diagram of a decision solution corresponding to the fourth embodiment.
  • FIG. 10 is a flow chart of a fifth embodiment.
  • FIG. 11 is a diagram of a decision solution corresponding to the fifth embodiment.
  • FIG. 12 is a flow chart of a sixth embodiment.
  • FIG. 13 is a diagram of a decision solution corresponding to the sixth embodiment.
  • FIG. 14 is a diagram of a decision solution corresponding to s seventh embodiment.
  • FIG. 15 is a flow chart of the seventh embodiment.
  • FIG. 16 is a diagram of time slot configuration of the seventh embodiment.
  • FIG. 17 is a diagram of a device for dynamic spectrum configuration provided by an eighth embodiment.
  • FIG. 18 is a diagram of another device for dynamic spectrum configuration provided by an eighth embodiment.
  • a communication station may use spectrum resources that are not originally assigned to it in compliance with the guidelines for certain protection constraints.
  • spectrum resources may include spectrum originally allocated to other sites under the same radio access technology.
  • spectrum resources may include spectrum allocated to a different radio access technology, or to a different type of service.
  • the frequency band originally used for uplink may be re-allocated andused for downlink transmission.
  • an LTE base station may use the spectrum originally belonging to GSM system.
  • an LTE base station belonging to terrestrial radio communication services may use the spectrum originally reserved for radio astronomy service, and so on.
  • embodiments disclosed herein provide techniques for dynamic spectrum configuration. Unless otherwise specified, embodiments and features in embodiments described herein are understood to be combinable with each other.
  • FIG. 1 A flow chart example of message exchanged for dynamic spectrum configuration is shown in FIG. 1:
  • a configuration management node obtains resource state information of a specified frequency band.
  • the resource state information is used to determine configuration parameters for a communication station on the specified frequency band
  • the resource state information comprises any one or more of the following information: communication station and/or terminal capability information, communication station demand information, adjacent frequency system information, primary system protection requirement information, and policy information.
  • the communication station and/or terminal capability information indicates a duplex mode that the communication station and/or terminal support on the specified frequency band, wherein the communication station and/or terminal capability information is transmitted by the communication station to the configuration management node.
  • the communication station demand information indicates the need of the communication station for the spectrum resources, and is transmitted by the communication station to the configuration management node, wherein the communication station demand information includes any one or more of following: bandwidth requirements, interference tolerance requirements, SNR requirements, and configuration requirements.
  • the configuration requirements may refer to the purpose for pre-configuring the spectrum by the communication station, and the configuration requirements include at least one or more of the following: offload, supplementary coverage, enhanced capacity, interference avoidance, matching uplink and downlink traffic, and matching loads for various radio access technology.
  • the specified frequency band comprises WS of other system available to the location at which the communication station resides, or WS that has been used by the communication station, wherein usage information of a system to which the spectrum resource belongs is changed.
  • the adjacent frequency system information includes configuration information for a system that works on adjacent frequency of the specified frequency band.
  • the adjacent frequency system information is provided by a database that stores system configuration information on the adjacent frequency of the frequency band, or by a communication station that works on the adjacent frequency of the specified frequency band, or by configuration management node to which the communication station that works on the adjacent frequency of the specified frequency band specified belongs.
  • the adjacent frequency system information includes any one or more of the following information: duplex mode, operation mode, specific configuration parameters, and protection criteria information used by a system that works on an adjacent frequency band.
  • the specific configuration parameters may include one or more of the following parameters: working frequency, bandwidth, transmit power, applied radio access technology, uplink and downlink time slot ratio under time division duplex, and time-domain resources occupied by uplink and downlink.
  • the primary system protection requirement information indicates protection requirements for the primary system on the specified frequency band and/or the adjacent frequency, and is provided by database that stores the primary system spectrum usage information.
  • the primary system protection requirement information includes any one or more of the following information: working frequency and bandwidth of the primary system, interference tolerance threshold of primary system receiver, interference tolerance margin of primary system receiver, coordinates for reference point position, and receiver adjacent channel selectivity.
  • the policy information includes duplex mode authorized on the specifiedfrequency band regulated by a regulatory domain or an operator.
  • the configuration management node performs configuration decisions, determines, for the communication station, configuration parameters that satisfy the requirements of the resource state information according to the resource state information of the specified frequency band, and generates configuration response message that carries the configuration parameters.
  • the configuration parameters may include any one or more of the information: frequency point, bandwidth, transmit power, radio access technology used, duplex mode used, comprising: time division duplex and frequency division duplex, operation mode, uplink and downlink time slot ratio under time division duplex mode, and spectrum emission mask.
  • the spectrum emission mask includes in-band transmit power limitation for the communication station transmitter and out-band leakage limitation.
  • the related operation mode may include any one or more of the following modes: supplementary uplink, which configures the specified frequency band as an uplink carrier so as to share uplink load; supplementary downlink (SDL) , which configures the specified frequency band as a downlink carrier so as to share downlink load; carrier aggregation (CA) , which configures the specified frequency band as a time division duplex secondary carrier in carrier aggregation; and stand-alone, which configures the specified frequency band as a time division duplex carriers that operates independently.
  • supplementary uplink which configures the specified frequency band as an uplink carrier so as to share uplink load
  • SDL supplementary downlink
  • CA carrier aggregation
  • stand-alone which configures the specified frequency band as a time division duplex carriers that operates independently.
  • the configuration management node sends a configuration response message to the communication station, wherein the configuration response message carries the configuration parameters.
  • Embodiments are applicable to the following three kinds of sharing technology.
  • FIG. 2 shows an example schematic view of a system architecture in which a communication station operates to seek to use WS of the primary systemcommunication station. Functional entities of the architecture are explained in detailed below:
  • Configuration management node is a functional entity that is responsible for the secondary system spectral resource configuration and management, which can be any of the following functional entities: a Spectrum Coordinator (SC) , a Central Control Point (CCP) , a Reconfiguration Management module, a Reconfiguration Function module, a Reconfiguration Entity, an advanced location entity, an advanced location function, and a coexisting function.
  • SC Spectrum Coordinator
  • CCP Central Control Point
  • Reconfiguration Management module a Reconfiguration Management module
  • Reconfiguration Function module a Reconfiguration Entity
  • an advanced location entity an advanced location function
  • a coexisting function coexisting function
  • a typical primary systemWS such as TVWS spectrum
  • TVWS spectrum is spectrum within the range of 470MHz-790MHz which the primary system does not use.
  • the present embodiment may use television white spectrum TVWS spectrum as an example.
  • the main user protection management node will take geographic location information database (GLDB, Geo-Location Database) as an example; configuration and management node for the secondary inter-system interference coexistencewill take SC as an example.
  • GLDB geographic location information database
  • SC configuration and management node for the secondary inter-system interference coexistencewill take SC as an example.
  • Architecture for the CR technology in TVWS band is shown in FIG. 2, which is described below.
  • GLDB is responsible for the primary system protection, and provides the primary system spectrum usage condition for the communication station or secondary system management nodeto avoid interference to the primary systemcaused by the secondary system. Specifically, it providestheWS where the communication station is located to the communication station, and calculates the maximum allowed transmit power for the communication station according to the main user protection criteria.
  • SC is a reconfiguration management node for spectrum resource for the secondary system, and is responsible for coexistence management, priority management, and measurement management among secondary user equipment.
  • BS is a communication station, which may be represented as abase station, an access point, etc. under cellular systems such as LTE, 3G systems or 2G systems, or the access point under IEEE802 systemsuch as WLAN, WRAN, WiMAX etc.
  • cellular systems such as LTE, 3G systems or 2G systems
  • IEEE802 system such as WLAN, WRAN, WiMAX etc.
  • LSA spectrum resource that is, the spectrum resource shared by licensed system and the LSA system
  • licensed system refers to the original licensed user of the LSA spectrum resources
  • LSA system refers to the users licensed by regulatory bodies and the users can share LSA spectrum resource with the licensed system.
  • LSA Controller is responsible for licensing system protection and providesspectrum usage condition of a primary systemfor the configuration management node, so as to avoid interference to the licensed system by the secondary system. Specifically, it provides the configuration management node withspectrum usage information of the licensed system in a certain area and provides protection criterionfor the licensed users in the region.
  • Configuration management node is responsible for licensed shared resource configuration for each licensed access system, that is, determines that the LSA system-subordinated communication stations can be licensed to share access spectrum (the licensed shared access spectrum and WS of the primary system are both called configurable spectrum in embodiments) according to spectrum use information of the licensed system on the relevant regions provided by the LSA Controller, and then determines the transmission parameter restriction of the related communication stations according to protection criteria of licensed system.
  • BS includes the communication station, which may represent a base station, the access point (AP, Access Point) , such as relay, pico, femto, etc., undercellular systems, such as LTE, 3G systems, 2G systems, or the access point under the IEEE802 system , such as WLAN, WRAN, WiMAX etc.
  • the access point AP, Access Point
  • the access point such as relay, pico, femto, etc.
  • undercellular systems such as LTE, 3G systems, 2G systems
  • IEEE802 system such as WLAN, WRAN, WiMAX etc.
  • FIG. 4 shows a schematic view of a system architecture in which a communication station runs in a multi-system shared spectrum mode.
  • the functional entities in the architecture are detailed below:
  • the multi-system shared spectrum comprises two or more of the inter-systemsharing spectrum resources in the following system: system under GSM, UMTS, TD-SCDMA, CDMA2000, LTE/LTE-A, IEEE series protocols, wherein the configuration management node is a logical entity.
  • the node can reside in the management entity at the access network side in the system, such as GSM network Base Station Controller (BSC) , 3G network Radio Network Controller (RNC) , and LTE/LTE-Anetwork evolved Node B (eNB) ; or be located within an entity at the core network side, such as LTE/LTE-A network MME, SGW, PGW, UMTS SGSN, GGSN, GSM MSC, GMSC and the like. It can also reside in network elements at the network management side, such as EMS, NMS and the like.
  • BS includes an communication station, which may represent a base station, an access point (AP) or a relay of a cellular, e.g., a pico, femto, etc. configuration under cellular systems such as LTE, 3G systems, 2G systems, an access point under the IEEE802 system , such as WLAN, WRAN, WiMAX etc..
  • AP access point
  • a relay of a cellular e.g., a pico, femto, etc. configuration under cellular systems such as LTE, 3G systems, 2G systems
  • an access point under the IEEE802 system such as WLAN, WRAN, WiMAX etc.
  • FIG. 5 A flowchart of the exampleembodiment to configure the spectrum as a supplementary downlink carrier according to the needs of BSand the adjacent frequency system information is illustrated in FIG. 5. The detaileddescription is as follows:
  • BS sends resource configuration request message to SC;
  • the resource configuration request message is used to request WS configuration from SC.
  • the message further includes the information of BS demand for resources, specifically:
  • SC After SC receives resource configuration request message transmitted by the BS, it obtains WS state information.
  • SC obtains the device parameters and location information of the BS that initiated the resource request to GLDB from the database that stores the spectrum usage informationof primary system (such as a TV system) .
  • GLDB searches spectrum usage conditions for the current TV system users, and feeds back to SC a list of available spectrum for the BS and the maximum allowed transmit power on eachavailable spectrum in the list.
  • SC performs spectrum resource configuration decisions based on the BS resource request obtained in operation 501, and the current WS state information obtained in operation 502.
  • BS requests WS for downlink offload, and can choose to configure the resources as supplementary downlink SDL mode or configure the WSas a downlink carrier only.
  • f3 is preferably taken as the spectrum allocated to BS because an adjacent frequency system of f3 is a FDD downlink.
  • SC further considers usage condition of f3 by other secondary user equipment to calculate the maximum transmit power on f3 allowed by BS of30dBm when other secondary user equipment’s quality of service requirements are met, meeting the transmit power requirement for BS.
  • SC sends configuration response message to BS
  • the message includes free spectral information allocated to BS: center frequency f3, the bandwidth 8MHz, configuration asa downlink carrier, and the maximum allowed transmit power of 30dBm.
  • FIG. 6 shows a flowchart of an embodiment in which the spectrum is configured as independently operated TDD carrier, based on BS capabilities, operator policy. The flowchart is described in detail as follows:
  • the BS sends a measurement report message to SC;
  • the measurement report message indicates the current network state to SC, so thatSC can determine, according to the network state, whether to initiate a network resource reconfiguration for BS.
  • the SC After the SC receives the measurement report message transmitted by BS, it determines whether it needs to initiate resource reconfiguration forBS to improve interference state of the TDD cell at the frequency point f1 and to obtain the current WSstate information;
  • SC obtains the device parameters and location information of the BS that initiated the resource requestto GLDBfrom the database that stores the spectrum usage information of primary system (such as a TV system) .
  • GLDB searches spectrum usage conditions for the current TV system users, and feeds back to the SC a list of available spectrum for the BS and the maximum allowed transmit power on each available spectrum in the list.
  • the SC by the above process, obtains the current WS state information as shown in the following table, wherein the operator policy information means the duplex mode that theoperator predetermined designate to specified frequency band according to operator’s spectrum usage plan.
  • the SC performs spectrum resource configuration decisions based on the BS measurement report obtained in 601 and the current WS state information obtained in operation 602.
  • the BS is currently configured at frequency f1 and the duplex mode is TDD.
  • the SC selects f2, WS that is planned by the operator as TDD, as a carrier configured to BS.
  • the SC further may consider usage of f2 by other secondary user equipment and calculate the maximum transmit power on f3 allowed by BS of 30dBm when other secondary user equipment’s’ quality of service requirements are met.
  • SC sends configuration response message to the BS.
  • the message includes free spectral information reconfigured for BS: center frequency of f2, the bandwidth of 8MHz, configuration as aTDD carrier, and the maximum allowed transmit power of 30dBm.
  • the SC determines that the BS has the capability to support TDD configuration according to current duplex mode of the BS. Thus, in order to meet the capacity need for the BS, SCconfigures TDD carrier for BS. The SC may further determine, based on the capability information reported by BS to SC, whether the BS supports both TDD and FDD configurations, and the frequency range it supports. The SC can then configure duplex mode and spectrum or specific configuration parameters that are supported bythe capability of BS for BS, based on the capability information.
  • the specific configuration parameter set may includeany one or more of the following parameters: workingfrequency, bandwidth, transmit power, usedradio access technology, uplink and downlink time slot ratio under the time division duplex, and time-domain resources occupied by uplink and downlink.
  • the operator policy may also be conveyed, namely the duplex mode configuration corresponding to the bands pre-planned by the operator.
  • the related policies can also be pre-planned by the regulatory domain.
  • FIG. 7 shows a flowchart of an embodiment in which specified spectrum is configured as time division duplex secondary carrier in carrier aggregation according to the current WS informationfor adjacent frequency system.
  • the flowchart is specifically described as follows:
  • BS sends resource configuration request message to SC.
  • the resource configuration request message is used to WS configuration from the SC.
  • the message further includes the information of BS demand for resources, specifically: purpose for WS configuration: the load is too heavy to satisfy subordinating terminal’s service requirement; bandwidth requirements: 5MHz; frequency point: 470-790MHz; and transmit power requirements: 30dBm.
  • SC After SC receives resource configuration request message transmitted by the BS, it obtains WS state information.
  • SC obtains the device parameters and location information of the BS that initiated the resource request to GLDB from the database that stores the spectrum usage information of primary system (such as a TV system) .
  • GLDB searches spectrum usage conditions for the current TV system users, and feeds back to SC a list of available spectrum for the BS and the maximum allowed transmit power on each available spectrum in the list.
  • the SC performs spectrum resource configuration decisions based on the BS resource request obtained in operation 701 and the current WS state information obtained in operation 702.
  • the BS requests WS to share the load, and can choose to configure it as a TDD carrier and serve as a secondary cell for the original cell in a carrier aggregation manner;
  • f1 is a spectrum that is preferably allocated to the BSsincean adjacent frequency system of f1 is a TDD system.
  • the SC further considers usage condition of f1 by other secondary user equipment, and calculates the maximum transmit power on f1 allowed by the BS of 30dBm, when other secondary user equipment’s quality of service requirements are met.
  • the SC sends a configuration response message to the BS.
  • the BS When the BS configures cell according to configuration response message, to reduce adjacent frequency interference, the BS may be synchronized with TDD secondary cell of adjacent frequency and may configure the same time slot ratio.
  • the SC determines configuration parameters for subordinating BS according to the configuration information of the adjacent frequency system, as described above in the first and second embodiment.
  • Events that can impact the SC todetermine configuration parameter for the BS further comprise: capability information for a communication station and/or a terminal, communication station requirement, adjacent frequency system information, operator/regulatory domain policy information, andprimary system protection information.
  • the above events may take any form of combinationsfor SC to determine the configuration parameters of BS.
  • the FDD uplink and downlink carriers are reconfigured to two TDD carriers and aggregated to solve the problem of waste of resources caused by asymmetric traffic between uplink and downlink.
  • FIG. 8 shows the corresponding message flows, described in detail as follows:
  • the BS sends to the SC the network state report message
  • the network status report message is used to indicate to the SC the current network status, in order for SC to determine whether to initiate reconfiguration of resources and configuration parameters for BSaccording to the network state.
  • the SC determines to initiate reconfiguration of the BS's resources to improve FDD cell waste of resources problem caused by the uplink and downlink traffic asymmetry. It then performs spectrum resource configuration decisions.
  • carrier frequencies f1, f2 are respectively configured as TDD cells and aggregated.
  • this scheme can support flexible configuring uplink and downlink time slot ratio based on a ratio of uplink and downlink traffic amount to meet the uplink and downlink traffic transport needs.
  • the SC sends configuration response message to the BS.
  • the configuration response message includes duplex mode reconfigured to BS: center frequencies of f1 and f2, bandwidth of 8MHz, configurationasa TDD carrier, and aggregation.
  • FDD uplink and downlink carriers are reconfigured to two TDD carriers and operate by carrier aggregation. Theymay be reconfigured as two separate TDD carriersunder BS and operate in the form of multi-carriers.
  • the original two carriers configuredas TDD mode can be two separate cells, or two aggregated cells
  • the former FDD cell has uplink the downlink center frequencies set at f1, f2 respectively. Due to measurement of adjacent frequency interference, a reconfiguration process to interchange uplink and downlink points istriggered and shown in FIG. 10, which is described as follows:
  • the BS sends to the SC a resource configuration request message.
  • Theresource configuration request message is used to request WS configuration from the SC.
  • the message further includes the reason why BS initiates resource reconfiguration, specifically: f1 uplink is severely interfered by the adjacent frequency and cannot meet the performance requirements.
  • the SC After the SC receives resource configuration request message transmitted by the BS, it performs spectrum reconfiguration preliminary decisions.
  • FIG. 11 depicts an example scenario in which an FDD downlink cell deployed on the adjacent frequency bands of f1 causes serious interference tothe BS’s uplink cell on f1.
  • FIG. 11 further illustrates the reconfiguration scheme decided by the SC. Specifically, the BS is asked to swap the original uplink and downlink cell frequency configuration, so that BS onfrequency f1 is configured with the same mode of operation as the adjacent frequency system, which will be greatly reduce the interference.
  • the SC accesses GLDB and obtainsmaximum allowed uplink and downlink transmit power for BS at f1, which may for example be 30dBm.
  • the SC further determines the configuration parameters according todecision results at 1002 and transmit parameter limits obtained in 1003.
  • the SC further considers usage condition of f1 and f2 by other secondary user equipment, and calculates the maximum transmit powers on f1, f2 allowed by theBS of30dBm when other secondary user equipment’s quality of service requirements are met.
  • the SC sends configuration response message to BS.
  • the SC includes the reconfigured uplink and downlink frequency point for BS: center frequency, respectively uplink f2 and downlink f1, bandwidth of 5MHz, and the maximum allowed transmit power of 30dBm.
  • the BS is currently configured to operate in theFDD mode, withits uplink and downlink center frequency points at f1 and f2.
  • the main user on f2 returns, e.g., when the BS has to cede the spectrum at f2 to another BS, the process for spectrum resource reconfiguration is shown in FIG. 12, which is described as follows:
  • the GLDB sends aprimary system protection requirement change notification to the SC.
  • the primary system protection useschange notification, namely, indicationto the SC the changes of the main user spectrum usage, such as the main user, or a BS that was previously using the spectrum returns, resumingto work on a certain spectrum.
  • the SC adjusts the operating parameter of its subordinating BS which operates on the specified spectrum (such as operation spectrum, transmit power, antenna parameters, etc. ) in order to assure not causing interference to the returnedmain user.
  • the main user of the original WSf2 resumes to work, and the GLDB sends to the SC this information in the form of main user spectrum usage change notification message.
  • the message further includes: coverage of the main user; and interference protection criteria, etc., in order for the SC to accurately determine which subordinatingcellsare to adjust operating parameters.
  • the SC performs configuration decision.
  • FIG. 13 shows an example decisionscheme.
  • the SC determines that the current BSshould stop using the spectrum f2, and reconfigures the originalf1 resource which is configured as FDD uplink to TDD for use bythe BS.
  • the SC sends configuration response message to the BS.
  • the SC includes the reconfiguredduplex mode of BS asa TDD, working frequency of f1, the bandwidth of 5MHz, the maximum allowed transmit power of 30dBm.
  • the SC reconfigures configuration parameters for the subordinating BS based on the main user protection requirements change information, as described above in first to fifth embodiments.
  • Events that trigger SC to reconfigure configuration parameters for the BS may also include: change in capability information for a communication station and a terminal, change in communication station requirement, change in adjacent frequency system information, and change in operator/regulatory domain policy information. The above events may take any form of combinations to trigger reconfiguration of configuration parameters.
  • FIG. 14 An example spectral diagram of aspectrum reconfiguration for a cell configured as a TDD based on the adjacent frequency system information in an embodiment is shown in FIG. 14.
  • the flowchart is shown in FIG. 15, which are specifically described as follows:
  • a resource manager node SC under TDLTE system determines to configure other WS for the subordinating eNB based on the current network load state.
  • the SCseeks WS from a TDSCDMA system In this embodiment, the SCseeks WS from a TDSCDMA system.
  • SC obtainsWS state information.
  • SC sends WSstate request information to the radio network controller RNC of TDSCDMA system.
  • the RNC when network statisticsindicates that current cell load is relatively light and hasWSto borrow to TDLTE system, determines to borrow 5MHz resources (f2) originally belonged to TDSCDMA system, and configure it to the station eNB.
  • the RNC repliesWSstate information response.
  • the response further an interference protection information on f2, such as the maximum allowed transmit power limit, or the interference tolerance threshold, oradjacent frequency leakage limits, etc.
  • the maximum transmit power limit will be taken as an example.
  • the response contains the TDSCDMA system configuration information on adjacent frequency of f2.
  • the current freer spectrum state information obtained by SC by the above process is shown in the following table:
  • the uplink and downlink timeslots ratio for adjacentfrequency TDSCDMA system is 4: 2.
  • the subframe is configured as: DSUUDDDD; wherein D is a downlink subframe, S is a special subframe, and U is an uplink subframe.
  • Time startcan be represented using GPS time system or other time systems.
  • the SC determines configuration parameters for eNB according toWS state informationobtained in 1502.
  • the parameters may be: running frequency of f2, bandwidth of 5MHz, transmit power of 40dBm, duplex mode of TDD, time slots ratio of 4: 2, and synchronizing uplink and downlink conversion with TDSCDMA system on the adjacent frequency f1.
  • Subframe length equals to 1ms, and it keeps0.7ms of offset ahead ofthe adjacent TDSCDMA. Both system’s uplink and downlink time slot configurationsare shown in FIG. 16.
  • the SC generates configuration response message from configuration parameters and sends tothe eNB.
  • the eNB performs configuration in accordance with the specified configuration parameters.
  • the SC is a configurationmanagement node that is superordinate ofthe eNB, alternatively.
  • the SC may also be located internal of the eNB.
  • the eNB directly interacts withRNC of TDSCDMA system and obtains the resource state information.
  • the spectrum reconfiguration management node for TDSCDMA is RNC.
  • the spectrum reconfiguration management node may be located in the network element that is on the other side of the TDSCDMA system, such as network management systems (EMS, NMS, etc. ) , or the core network side network element (SGSN, GGSN, etc. ) from which corresponding resource state information is obtained.
  • EMS network management systems
  • NMS network management systems
  • SGSN core network side network element
  • GGSN GGSN, etc.
  • FIG. 17 depicts an example of an apparatus 1700 for controlling spectrum resource allocations.
  • the apparatus 1700 includes an obtaining module 1701, configured to obtain resource state information of a specified frequency band.
  • the resource state information may be used to determine configuration parameters for a communication station on the specified frequency band.
  • the apparatus 1700 includes a transmitting module 1702, configured to send a configuration response message to the communication station.
  • the configuration response message carries the configuration parameters.
  • the apparatus 1700 includes a deciding module 1703, configured to perform configuration decisions and determine the configuration parameters that satisfy the requirements of the resource state information for the communication station, according to the resource state information of the specified frequency band.
  • the apparatus 1700 includes a message generating module 1704, configured to generate configuration response message, wherein the configuration parameters is carried in the configuration response message.
  • the apparatus 1700 for dynamic spectrum configuration as shown in FIG. 17 may be integrated in a configuration management node. The corresponding functions are completed by the configuration management node.
  • FIG. 18 depicts an example of a device 1800 for dynamic spectrum configuration. The structure of the device is shown in FIG. 18.
  • the apparatus 1800 includes a receiving module 1801, configured to receive configuration response message sent by a configuration management node.
  • the configuration response message carryconfiguration parameters for the communication station on a specified frequency band.
  • the apparatus 1800 includes a performing module 1802, configured to perform specified resource configuration according to the configuration response message.
  • the apparatus 1800 for dynamic spectrum configuration as shown in FIG. 18 may be integrated in a communication station, and the corresponding functions are completed by the communication station.
  • Some embodiments also provide a configuration management node integrated with a dynamic spectrum configuration device shown in FIG. 17 and a communication station integrated with dynamic spectrum configuration device shown in FIG 18. This system can be combined with methods of dynamic spectrum configuration provided by other embodiments described herein to complete decision-making and delivery of the configuration policy.
  • a management node for performing dynamic spectrum configuration, obtains resource state information for a specified frequency band.
  • the resource state information is used to determine configuration parameters of a communication station on the specified frequency band.
  • the management nodes endsa configuration response message to the communication station.
  • the configuration response message carries the configuration parameters, as described herein.
  • the communication station receives configurationresponse message sent by the configuration management node, and then performs the specified resources configuration according toconfiguration respond message.
  • the technique may achieve to guarantee an optimum policy configuration for network performance, and solvethe problem of increased signaling overhead and processing latency caused by invalid configuration decision.
  • a method obtains resource state information through aconfiguration management nodeand, according to the resource state information, determines a duplex mode (e.g., frequency or time) , an operating mode, and specific configuration parameters of a communication station at the specified frequency.
  • the resource configuration decisions would meet regulatory domain or operator policy requirements, the primary system protection requirements, and the adjacent frequency system interference coexist requirementsto achieve an optimal overall network performance. Further, the resource configurationdecision may considercapacity of communication stations and various demands for resource configuration, which avoids invalid configuration and reduces signaling overhead and processing latency caused by invalid configuration decision.
  • the disclosed and other embodiments, modules, and the functional operations described in this document can be implemented in digital electronic circuitry or in computer software, firmware, or hardware, including the structures disclosed in this document and their structural equivalents, or in combinations of one or more of them.
  • the disclosed and other embodiments can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, data processing apparatus.
  • the computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more them.
  • data processing apparatus encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers.
  • the apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them.
  • a propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal that is generated to encode information for transmission to suitable receiver apparatus.
  • a computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
  • a computer program does not necessarily correspond to a file in a file system.
  • a program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document) , in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code) .
  • a computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
  • the processes and logic flows described in this document can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output.
  • the processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit) .
  • processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer.
  • a processor will receive instructions and data from a read only memory or a random access memory or both.
  • the essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data.
  • a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
  • mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
  • a computer need not have such devices.
  • Computer readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks.
  • semiconductor memory devices e.g., EPROM, EEPROM, and flash memory devices
  • magnetic disks e.g., internal hard disks or removable disks
  • magneto optical disks e.g., CD ROM and DVD-ROM disks.
  • the processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Dynamic spectrum configuration techniques are described. The techniques reduce signaling overhead and processing latency caused by invalid configuration decisions. A described method includes obtaining, by a configuration management node, resource state information of a specified frequency band. The resource state information is used to determine configuration parameters for a communication station on the specified frequency band. The method also includes sending configuration response message to a communication station. The described techniques are suitable for international mobile telephone systems and can achieve a policy configuration which guarantees optimal network performance.

Description

DYNAMIC SPECTRUMCONFIGURATION TECHNICAL FIELD
The present document relates to mobile communication, and more particularly, to dynamic configuration of spectrum use.
BACKGROUND
With the continued increase in daily communication needs, users are no longer satisfied with simple voice and data communication services, and bandwidth-hungry applications such as video streaming services, which require more bandwidth than data and voice, are playing an increasing important role in user’s daily lives. Recently, a report by the International Mobile Telecom (IMT) system has shown an unprecedented tension in spectrum demands by various services and network operators. However, the available spectrum for use by the radio services is limited. With increased demand on bandwidth, efficient use of available spectrum has become important. In conventionalwireless systems, spectrum allocation is typically controlled by local government rules, which typically use a fixed spectrum allocation mode. Spectrum may be allocated based on service types, e.g., frequency bands allocated to Amplitude Modulation/frequency modulation (AM/FM) radio, television transmission, emergency communication, etc. The spectrum may alsobeallottedto a region or country or sector (geographic allocation) . The spectrum may also be assignedto specific communications stations. When spectrum resources are restricted bysuch an a priori, fixed distribution, the total utilization of spectrum may be low at times. In a sense, it is the spectrum allocation mechanism which fixedly allocatesto an authorized system could cause an imbalance in spectral availability for different uses.
A flexible technology, called cognitive radio technology, works differently from the conventional fixed spectrum allocation system, and dynamically allocatesspectrumamong systems, thus potentially improving utilization efficiency of spectrum. For various reasons, e.g., complexity of coordination needed among various systems, cognitive radio has yet to make a commercial impact on wireless communication services.
SUMMARY
The present document discloses methods, devices, and systems for dynamic spectrum configuration. In one aspect, the disclosed techniques can be used to mitigate operational challenges such as increased signaling overhead and processing delays caused by incorrect configuration decisions.
In one example aspect, a method of dynamic spectrum configuration is disclosed. The method includes obtaining, by a configuration management node, resource state information of a specified frequency band, wherein, the resource state information is used to determine configuration parameters for a communication station on the specified frequency band. The method also includes sending, by the configuration management node, a configuration response message to the communication station, the configuration parameters being carried in the configuration response message.
In some embodiments, the specified frequency band comprises unused spectrum resources, also known as White Space (WS) , of other system available to the location at which the communication station resides, or WS that has been used by the communication station, wherein usage information of a system to which the spectrum resource belongs is changed.
In some embodiments, the resource state information comprises any one or more of the following information: communication station, terminal capability information, communication station demand information, adjacent frequency system information, primarysystem protection requirement information, and network operator policy information.
In some embodiments, the communication station and/or the terminal capability information indicates a duplex mode that the communication station and/or terminal supports on the specified frequency band, wherein the communication station and/or terminal capability information is transmitted by the communication station to the configuration management node.
In some embodiments, the communication station demand information indicates the need of the communication station for the spectrum resources, and is transmitted by the communication station to the configuration management node, wherein the communication station demand information includes any one or more of following: bandwidth requirements, interference tolerance requirements, SNR requirements, and configuration requirements. The configuration  requirements refer to the purpose for pre-configuring the spectrum by the communication station, and the configuration requirements include at least one or more of the following: offload, supplementary coverage, enhanced capacity, interference avoidance, matching uplink and downlink traffic, and matching loads for various radio access technology.
In some embodiments, the adjacent frequency system information includes configuration information for a system that works on adjacent frequency of the specified frequency band, and the adjacent frequency system information is provided by a database that stores system configuration information on the adjacent frequency of the frequency band, or provided by a communication station that works on the adjacent frequency of the specified frequency band, or provided by configuration management node to which the communication station that works on the adjacent frequency of the specified frequency band specified belongs. The adjacent frequency system information includes any one or more of the following information: duplex mode, operation mode, specific configuration parameters, and protection criteria information used by a system that works on an adjacent frequency band. The specific configuration parameters may comprise one or more of the following parameters: working frequency, bandwidth, transmit power, applied radio access technology, uplink and downlink time slot ratio under time division duplex, and time-domain resources occupied by uplink and downlink.
In some embodiments, the primary system protection requirement information indicates protection requirements for the primary system on the specified frequency band and/or the adjacent frequency, and is provided by database that stores the primary system spectrum usage information. The primary system protection requirement information includes any one or more of the following information: working frequency of the primary system, bandwidth of the primary system, interference tolerance threshold of primary system receiver, interference tolerance margin of primary system receiver, coordinates for reference point position, receiver adjacent channel selectivity, and interference protection ratio.
In some embodiments, the policy information includes duplex mode authorized on the specified frequency band regulated by a regulatory domain or an operator.
In some embodiments, after obtaining, by the configuration management node resource, the state information of the specified frequency band, the method further comprises performing  configuration decisions, by the configuration management node, and determining, for the communication station, configuration parameters that satisfy the requirements of the resource state information according to the resource state information of the specified frequency band.
In some embodiments, generating and sending configuration response message to the communication station by the configuration management node includes performing configuration decisions, by the configuration management node, and determining the configuration parameters that satisfy the requirements of the resource state information for the communication station, according to the resource state information of the specified frequency band, generating configuration response message, the configuration response message carrying the configuration parameters.
In some embodiments, the configuration response message carries determined configuration parameters, and the configuration parameters comprise any one or more of the information: frequency point, bandwidth, transmit power, radio access technology used, duplex mode used, comprising: time division duplex and frequency division duplex, operation mode, uplink and downlink time slot ratio under time division duplex mode, and spectrum emission mask.
In some embodiments, the operation mode comprises any one or more of the following: modes supplementary uplink, which configures the specified frequency band as an uplink carrier so as to share uplink load; supplementary downlink (SDL) , which configures the specified frequency band as a downlink carrier so as to share downlink load; carrier aggregation (CA) , which configures the specified frequency band as a time division duplex secondary carrier in carrier aggregation; andstand-alone, which configures the specified frequency band as a time division duplex carriers that operates independently.
In some embodiments, the spectrum emission mask includes in-band transmit power limitation for the communication station transmitter and out-band leakage limitation.
In another aspect, a method of dynamic spectrum configuration is disclosed. The method includes receiving, by a communication station, configuration response message sent by a configuration management node, the configuration response message carrying configuration parameters for the communication station on a specified frequency band, and performing, by the  communications station, specified resource configuration according to the configuration response message.
In some embodiments, the configuration parameter comprises any one or more of the information: frequency point, bandwidth, transmit power, radio access technology used, duplex mode used, comprising: time division duplex and frequency division duplex, operation mode, time slot ratio under time division duplex mode, and spectrum emission mask.
In some embodiments, the operation mode comprises any one or more of the following modes: a supplementary uplink, which configures the specified frequency band as an uplink carrier so as to share uplink load; supplementary downlink (SDL) , which configures the specified frequency band as a downlink carrier so as to share downlink load; carrier aggregation (CA) , which configures the specified frequency band as a time division duplex secondary carrier in carrier aggregation; andstand-alone, which configures the specified frequency band as a time division duplex carriers that operates independently.
In yet another aspect, a device for dynamic spectrum configuration is disclosed. The device includes an obtainingmodule that obtains resource state information of a specified frequency band, wherein the resource state information is used to determine configuration parameters for a communication station on the specified frequency band, and a transmitter that sends a configuration response message to the communication station, wherein the configuration parameters are carried in the configuration response message.
In some embodiments, the device includes a deciding module to perform configuration decisions and determine the configuration parameters that satisfy the requirements of the resource state information for the communication station, according to the resource state information of the specified frequency band.
In some embodiments, the device includes a message generating module to generate configuration response message. The configuration parameters from the deciding module are then carried in the configuration response message.
In yet another aspect a device for dynamic spectrum configuration is disclosed. The device includes: a receiving module to receive configuration response message sent by a configuration management node, with the configuration response message carrying configuration  parameters for the communication station on a specified frequency band; and a performing module, configured to perform specified resource configuration according to the configuration response message.
In yet another aspect, a system for dynamic spectrum configuration, which includes a communication station that is integrated with the above dynamic spectrum configuration device, is disclosed.
In some embodiments, a management node obtains resource state information for a specified frequency band. The resource state information is used to determine configuration parameters of a communication station on the specified frequency band. The management node sends configuration response message to the communication station. The configuration response message carries the configuration parameters. The communications station receives configuration response message sent by the configuration management node, and then performs the specified resources configuration according to configuration respond message. In one aspects, embodiments may guarantee an improved policy configuration for network performance, and solve the problem of increased signaling overhead and processing latency caused by invalid configuration decision.
DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic view of the contents of the technical solution provided by embodiments.
FIG. 2 is a schematic view of a system architecture in which a communication stationoperatesto seek to useWSof the primary system.
FIG. 3 shows an example of a network architecture diagram forLicensed Shared Access (LSA) technology.
FIG. 4 is a schematic view of a system architecture in which communication stations run in a multi-system shared spectrum mode.
FIG. 5 is a flow chart of a first embodiment.
FIG. 6 is a flow chart of a second embodiment.
FIG. 7 is a flow chart of a third embodiment.
FIG. 8 is a flow chart of a fourth embodiment.
FIG. 9 is a diagram of a decision solution corresponding to the fourth embodiment.
FIG. 10 is a flow chart of a fifth embodiment.
FIG. 11 is a diagram of a decision solution corresponding to the fifth embodiment.
FIG. 12 is a flow chart of a sixth embodiment.
FIG. 13 is a diagram of a decision solution corresponding to the sixth embodiment.
FIG. 14 is a diagram of a decision solution corresponding to s seventh embodiment.
FIG. 15 is a flow chart of the seventh embodiment.
FIG. 16 is a diagram of time slot configuration of the seventh embodiment.
FIG. 17 is a diagram of a device for dynamic spectrum configuration provided by an eighth embodiment.
FIG. 18 is a diagram of another device for dynamic spectrum configuration provided by an eighth embodiment.
DETAILED DESCRIPTION
To address the above-discussed issues related to availability and efficient utilization of spectrum three potentially viable options are proposed by the industry. These include:
(1) dynamically planning IMT and GSM spectrum; 2. borrowing from primary systemWS solution; 3. Licensed Shared Access (LSA) . Under these three technical schemes, a communication station may use spectrum resources that are not originally assigned to it in compliance with the guidelines for certain protection constraints. Such spectrum resources may include spectrum originally allocated to other sites under the same radio access technology. Such spectrum resources may include spectrum allocated to a different radio access technology, or to a different type of service. For example, under the original FDD mode, the frequency band originally used for uplink may be re-allocated andused for downlink transmission. As another example, an LTE base station may use the spectrum originally belonging to GSM system. As another example, an LTE base station belonging to terrestrial radio communication services may use the spectrum originally reserved for radio astronomy service, and so on.
In such a dynamic spectrum configuration scheme, improvement in resource configuration flexibility raises more complex interference issues, as well as the efficiency of the  network configuration. For example, if two adjacent frequency bands are configured with different duplex modes, the interference between them will affect the overall network capacity and quality of communication. Such spectrum assignment may lead to a cell resource configuration that may not achieve the desired objective of improving spectrum usage efficiency, and in fact, may actually a waste of spectrum resources, in contradiction to the goal of spectrum resource dynamic configuration for improving the spectrum resource utilization.
Current dynamic spectrum configuration schemes do not give a method to determine what duplex mode and specific configuration parameters a certain frequency band will use, and further, the spectrum configuration management node does not include the relevant configuration information such as duplex mode and work mode in the resource configuration message sent to a communication station, which makes the communication station unable to configure resources in the most efficient way.
To solve the above problems, some embodiments disclosed herein provide techniques for dynamic spectrum configuration. Unless otherwise specified, embodiments and features in embodiments described herein are understood to be combinable with each other.
A flow chart example of message exchanged for dynamic spectrum configuration is shown in FIG. 1:
At 101, a configuration management node obtains resource state information of a specified frequency band.
In some embodiments, the resource state information is used to determine configuration parameters for a communication station on the specified frequency band;
In some embodiments, the resource state information comprises any one or more of the following information: communication station and/or terminal capability information, communication station demand information, adjacent frequency system information, primary system protection requirement information, and policy information.
The communication station and/or terminal capability information indicates a duplex mode that the communication station and/or terminal support on the specified frequency band, wherein the communication station and/or terminal capability information is transmitted by the communication station to the configuration management node.
The communication station demand information indicates the need of the communication station for the spectrum resources, and is transmitted by the communication station to the configuration management node, wherein the communication station demand information includes any one or more of following: bandwidth requirements, interference tolerance requirements, SNR requirements, and configuration requirements.
The configuration requirements may refer to the purpose for pre-configuring the spectrum by the communication station, and the configuration requirements include at least one or more of the following: offload, supplementary coverage, enhanced capacity, interference avoidance, matching uplink and downlink traffic, and matching loads for various radio access technology.
The specified frequency band comprises WS of other system available to the location at which the communication station resides, or WS that has been used by the communication station, wherein usage information of a system to which the spectrum resource belongs is changed.
The adjacent frequency system information includes configuration information for a system that works on adjacent frequency of the specified frequency band. The adjacent frequency system information is provided by a database that stores system configuration information on the adjacent frequency of the frequency band, or by a communication station that works on the adjacent frequency of the specified frequency band, or by configuration management node to which the communication station that works on the adjacent frequency of the specified frequency band specified belongs. The adjacent frequency system information includes any one or more of the following information: duplex mode, operation mode, specific configuration parameters, and protection criteria information used by a system that works on an adjacent frequency band.
The specific configuration parameters may include one or more of the following parameters: working frequency, bandwidth, transmit power, applied radio access technology, uplink and downlink time slot ratio under time division duplex, and time-domain resources occupied by uplink and downlink.
The primary system protection requirement information indicates protection requirements for the primary system on the specified frequency band and/or the adjacent frequency, and is provided by database that stores the primary system spectrum usage information. The primary system protection requirement information includes any one or more of the following  information: working frequency and bandwidth of the primary system, interference tolerance threshold of primary system receiver, interference tolerance margin of primary system receiver, coordinates for reference point position, and receiver adjacent channel selectivity.
The policy information includes duplex mode authorized on the specifiedfrequency band regulated by a regulatory domain or an operator.
At 102, the configuration management node performs configuration decisions, determines, for the communication station, configuration parameters that satisfy the requirements of the resource state information according to the resource state information of the specified frequency band, and generates configuration response message that carries the configuration parameters.
The configuration parameters may include any one or more of the information: frequency point, bandwidth, transmit power, radio access technology used, duplex mode used, comprising: time division duplex and frequency division duplex, operation mode, uplink and downlink time slot ratio under time division duplex mode, and spectrum emission mask.
The spectrum emission mask includes in-band transmit power limitation for the communication station transmitter and out-band leakage limitation.
In some embodiments, the related operation mode may include any one or more of the following modes: supplementary uplink, which configures the specified frequency band as an uplink carrier so as to share uplink load; supplementary downlink (SDL) , which configures the specified frequency band as a downlink carrier so as to share downlink load; carrier aggregation (CA) , which configures the specified frequency band as a time division duplex secondary carrier in carrier aggregation; and stand-alone, which configures the specified frequency band as a time division duplex carriers that operates independently.
At 103, the configuration management node sends a configuration response message to the communication station, wherein the configuration response message carries the configuration parameters.
Three kinds of spectrum sharing techniques are described as follows, and the present embodiments will be described in detail in conjunction with the accompanying drawings and the specific embodiments.
Embodiments are applicable to the following three kinds of sharing technology.
FIG. 2 shows an example schematic view of a system architecture in which a communication station operates to seek to use WS of the primary systemcommunication station. Functional entities of the architecture are explained in detailed below:
Configuration management node is a functional entity that is responsible for the secondary system spectral resource configuration and management, which can be any of the following functional entities: a Spectrum Coordinator (SC) , a Central Control Point (CCP) , a Reconfiguration Management module, a Reconfiguration Function module, a Reconfiguration Entity, an advanced location entity, an advanced location function, and a coexisting function.
A typical primary systemWS, such as TVWS spectrum, is spectrum within the range of 470MHz-790MHz which the primary system does not use. The present embodiment may use television white spectrum TVWS spectrum as an example. The main user protection management node will take geographic location information database (GLDB, Geo-Location Database) as an example; configuration and management node for the secondary inter-system interference coexistencewill take SC as an example. Architecture for the CR technology in TVWS band is shown in FIG. 2, which is described below.
GLDB is responsible for the primary system protection, and provides the primary system spectrum usage condition for the communication station or secondary system management nodeto avoid interference to the primary systemcaused by the secondary system. Specifically, it providestheWS where the communication station is located to the communication station, and calculates the maximum allowed transmit power for the communication station according to the main user protection criteria.
SC is a reconfiguration management node for spectrum resource for the secondary system, and is responsible for coexistence management, priority management, and measurement management among secondary user equipment.
BS is a communication station, which may be represented as abase station, an access point, etc. under cellular systems such as LTE, 3G systems or 2G systems, or the access point under IEEE802 systemsuch as WLAN, WRAN, WiMAX etc.
Network architecture for Licensed Shared Access (LSA) technology is shown in FIG. 3. In the regulatory framework, a method that LSAprimary system and LSA secondary system share  the same frequency spectrum resources is shown. The same spectrum resource is called LSA spectrum resource, that is, the spectrum resource shared by licensed system and the LSA system; licensed system refers to the original licensed user of the LSA spectrum resources; and LSA system refers to the users licensed by regulatory bodies and the users can share LSA spectrum resource with the licensed system. The described are as below.
LSA Controller is responsible for licensing system protection and providesspectrum usage condition of a primary systemfor the configuration management node, so as to avoid interference to the licensed system by the secondary system. Specifically, it provides the configuration management node withspectrum usage information of the licensed system in a certain area and provides protection criterionfor the licensed users in the region.
Configuration management node is responsible for licensed shared resource configuration for each licensed access system, that is, determines that the LSA system-subordinated communication stations can be licensed to share access spectrum (the licensed shared access spectrum and WS of the primary system are both called configurable spectrum in embodiments) according to spectrum use information of the licensed system on the relevant regions provided by the LSA Controller, and then determines the transmission parameter restriction of the related communication stations according to protection criteria of licensed system.
BS includes the communication station, which may represent a base station, the access point (AP, Access Point) , such as relay, pico, femto, etc., undercellular systems, such as LTE, 3G systems, 2G systems, or the access point under the IEEE802 system , such as WLAN, WRAN, WiMAX etc.
FIG. 4 shows a schematic view of a system architecture in which a communication station runs in a multi-system shared spectrum mode. The functional entities in the architecture are detailed below:
The multi-system shared spectrum comprises two or more of the inter-systemsharing spectrum resources in the following system: system under GSM, UMTS, TD-SCDMA, CDMA2000, LTE/LTE-A, IEEE series protocols, wherein the configuration management node is a logical entity. The node can reside in the management entity at the access network side in the system, such as GSM network Base Station Controller (BSC) , 3G network Radio Network Controller (RNC) , and  LTE/LTE-Anetwork evolved Node B (eNB) ; or be located within an entity at the core network side, such as LTE/LTE-A network MME, SGW, PGW, UMTS SGSN, GGSN, GSM MSC, GMSC and the like. It can also reside in network elements at the network management side, such as EMS, NMS and the like.
BS includes an communication station, which may represent a base station, an access point (AP) or a relay of a cellular, e.g., a pico, femto, etc. configuration under cellular systems such as LTE, 3G systems, 2G systems, an access point under the IEEE802 system , such as WLAN, WRAN, WiMAX etc..
First example embodiment
A flowchart of the exampleembodiment to configure the spectrum as a supplementary downlink carrier according to the needs of BSand the adjacent frequency system information is illustrated in FIG. 5. The detaileddescription is as follows:
At 501: BS sends resource configuration request message to SC;
The resource configuration request message is used to request WS configuration from SC. In addition to the basic information of the resource configuration request message (including BS device parameters, position information, etc. ) , the message further includes the information of BS demand for resources, specifically:
purpose for WS configuration: supplement downlink carrier for sharing downlink load;
bandwidth requirements: 5MHz;
frequency point: 470-790MHz; and
transmit power requirements: 30dBm.
At 502: After SC receives resource configuration request message transmitted by the BS, it obtains WS state information.
SC obtains the device parameters and location information of the BS that initiated the resource request to GLDB from the database that stores the spectrum usage informationof primary system (such as a TV system) . GLDB searches spectrum usage conditions for the current TV system users, and feeds back to SC a list of available spectrum for the BS and the maximum allowed transmit power on eachavailable spectrum in the list.
SC obtains the current WS state information as shown in the following table, by the above process:
Table 1
Figure PCTCN2015094136-appb-000001
At 503, SC performs spectrum resource configuration decisions based on the BS resource request obtained in operation 501, and the current WS state information obtained in operation 502.
BS requests WS for downlink offload, and can choose to configure the resources as supplementary downlink SDL mode or configure the WSas a downlink carrier only. Based on the current WS state information in Table 1, f3 is preferably taken as the spectrum allocated to BS because an adjacent frequency system of f3 is a FDD downlink.
SC further considers usage condition of f3 by other secondary user equipment to calculate the maximum transmit power on f3 allowed by BS of30dBm when other secondary user equipment’s quality of service requirements are met, meeting the transmit power requirement for BS.
At 504, SC sends configuration response message to BS;
The messageincludes free spectral information allocated to BS: center frequency f3, the bandwidth 8MHz, configuration asa downlink carrier, and the maximum allowed transmit power of 30dBm.
Second example embodiment
FIG. 6 shows a flowchart of an embodiment in which the spectrum is configured as independently operated TDD carrier, based on BS capabilities, operator policy. The flowchart is described in detail as follows:
At601, the BS sends a measurement report message to SC;
The measurement report messageindicates the current network state to SC, so thatSC can determine, according to the network state, whether to initiate a network resource reconfiguration for BS.
The measurement report message shows that the current BS’s subordinatecell is configuredasa TDD cell of f1 = 520MHzand bandwidth of 5MHz. This indicates that the use is subject to greater interference and suboptimal SINR value, thereforecannot meet the system performance requirements.
At 602, after the SC receives the measurement report message transmitted by BS, it determines whether it needs to initiate resource reconfiguration forBS to improve interference state of the TDD cell at the frequency point f1 and to obtain the current WSstate information;
SC obtains the device parameters and location information of the BS that initiated the resource requestto GLDBfrom the database that stores the spectrum usage information of primary system (such as a TV system) . GLDB searches spectrum usage conditions for the current TV system users, and feeds back to the SC a list of available spectrum for the BS and the maximum allowed transmit power on each available spectrum in the list.
In some embodiments, the SC, by the above process, obtains the current WS state information as shown in the following table, wherein the operator policy information means the duplex mode that theoperator predetermined designate to specified frequency band according to operator’s spectrum usage plan.
Table 2
Figure PCTCN2015094136-appb-000002
Figure PCTCN2015094136-appb-000003
At 603, the SC performs spectrum resource configuration decisions based on the BS measurement report obtained in 601 and the current WS state information obtained in operation 602.
In this example, the BS is currently configured at frequency f1 and the duplex mode is TDD. The SC selects f2, WS that is planned by the operator as TDD, as a carrier configured to BS.
The SC further may consider usage of f2 by other secondary user equipment and calculate the maximum transmit power on f3 allowed by BS of 30dBm when other secondary user equipment’s’ quality of service requirements are met.
At 604, SC sends configuration response message to the BS. The message includes free spectral information reconfigured for BS: center frequency of f2, the bandwidth of 8MHz, configuration as aTDD carrier, and the maximum allowed transmit power of 30dBm.
In some embodiments, the SC determines that the BS has the capability to support TDD configuration according to current duplex mode of the BS. Thus, in order to meet the capacity need for the BS, SCconfigures TDD carrier for BS. The SC may further determine, based on the capability information reported by BS to SC, whether the BS supports both TDD and FDD configurations, and the frequency range it supports. The SC can then configure duplex mode and spectrum or specific configuration parameters that are supported bythe capability of BS for BS, based on the capability information.
The specific configuration parameter set may includeany one or more of the following parameters: workingfrequency, bandwidth, transmit power, usedradio access technology, uplink and downlink time slot ratio under the time division duplex, and time-domain resources occupied by uplink and downlink.
Further, in some embodiments, the operator policy may also be conveyed, namely the duplex mode configuration corresponding to the bands pre-planned by the operator. The related policies can also be pre-planned by the regulatory domain.
Third example embodiment
FIG. 7 shows a flowchart of an embodiment in which specified spectrum is configured as time division duplex secondary carrier in carrier aggregation according to the current WS informationfor adjacent frequency system. The flowchart is specifically described as follows:
At 701, BS sends resource configuration request message to SC.
The resource configuration request message is used to WS configuration from the SC. In addition to the basic information of the resource configuration request message (including BS device parameters, position information, etc. ) , the message further includes the information of BS demand for resources, specifically: purpose for WS configuration: the load is too heavy to satisfy subordinating terminal’s service requirement; bandwidth requirements: 5MHz; frequency point: 470-790MHz; and transmit power requirements: 30dBm.
At 702, after SC receives resource configuration request message transmitted by the BS, it obtains WS state information.
In some embodiments, SC obtains the device parameters and location information of the BS that initiated the resource request to GLDB from the database that stores the spectrum usage information of primary system (such as a TV system) . GLDB searches spectrum usage conditions for the current TV system users, and feeds back to SC a list of available spectrum for the BS and the maximum allowed transmit power on each available spectrum in the list.
SC obtains the current WS state information as shown in the following table, by the above process:
Table 3
Figure PCTCN2015094136-appb-000004
At 703, the SC performs spectrum resource configuration decisions based on the BS resource request obtained in operation 701 and the current WS state information obtained in operation 702.
The BS requests WS to share the load, and can choose to configure it as a TDD carrier and serve as a secondary cell for the original cell in a carrier aggregation manner; By consideringcurrent WS state information in Table 3, f1 is a spectrum that is preferably allocated to the BSsincean adjacent frequency system of f1 is a TDD system. Further, TDD system of the adjacent frequency for f1 adopts time slot ratio of uplink: downlink = 2: 3. Therefore, in order to reduce adjacent frequency interference, the systemmay be configured as TDD secondary cell and the time slot ratioof uplink: downlink = 2: 3when BS uses f1.
The SC further considers usage condition of f1 by other secondary user equipment, and calculates the maximum transmit power on f1 allowed by the BS of 30dBm, when other secondary user equipment’s quality of service requirements are met.
At 704, the SC sends a configuration response message to the BS. The configuration response message includes free spectral information allocated to BS: center frequency of f1, bandwidth of 8MHz, configuration as a TDD secondary cell, time slot ratio of uplink: downlink = 2: 3, and the maximum allowed transmit power of 30dBm.
Whenthe BS configures cell according to configuration response message, to reduce adjacent frequency interference, the BS may be synchronized with TDD secondary cell of adjacent frequency and may configure the same time slot ratio.
In some embodiments, the SC determines configuration parameters for subordinating BS according to the configuration information of the adjacent frequency system, as described above in the first and second embodiment. Events that can impact the SC todetermine configuration parameter for the BS further comprise: capability information for a communication station and/or a terminal, communication station requirement, adjacent frequency system information, operator/regulatory domain policy information, andprimary system protection information. The above events may take any form of combinationsfor SC to determine the configuration parameters of BS.
Fourthexample embodiment
In some embodiments, the FDD uplink and downlink carriers are reconfigured to two TDD carriers and aggregated to solve the problem of waste of resources caused by asymmetric traffic between uplink and downlink. FIG. 8 shows the corresponding message flows, described in detail as follows:
At 801, the BS sends to the SC the network state report message;
The network status report message is used to indicate to the SC the current network status, in order for SC to determine whether to initiate reconfiguration of resources and configuration parameters for BSaccording to the network state.
The network state report message shows that the current subordinate FDD cell of BS has uplink and downlink frequencies respectively at f1 = 520MHz, f2 = 640MHz and both bandwidths are 5MHz. It is shown by resource configuration, the 5MHz uplink bandwidth having a large margin while the 5MHz downlink not able meet the needs of downlink transmission, that currently the uplink traffic is significantly less than the downlink traffic.
At 802, afterreceiving the network state report message transmitted by the BS, the SCdetermines to initiate reconfiguration of the BS's resources to improve FDD cell waste of resources problem caused by the uplink and downlink traffic asymmetry. It then performs spectrum resource configuration decisions.
An example of the decision scheme is shown in FIG. 9. In particular, carrier frequencies f1, f2 are respectively configured as TDD cells and aggregated. Compared with FDD uplink and downlink resources symmetric configuration, this scheme can support flexible configuring uplink and downlink time slot ratio based on a ratio of uplink and downlink traffic amount to meet the uplink and downlink traffic transport needs. Other configuration parameters, such as transmit power, maintain constant.
At 803, the SC sends configuration response message to the BS. The configuration response message includes duplex mode reconfigured to BS: center frequencies of f1 and f2, bandwidth of 8MHz, configurationasa TDD carrier, and aggregation.
The specific configuration process for the TDD cell and the aggregation process of the two TDD cells belong to the prior art, and are not explained further.
Further, in the example depicted in FIG. 8, FDD uplink and downlink carriers are reconfigured to two TDD carriers and operate by carrier aggregation. Theymay be reconfigured as two separate TDD carriersunder BS and operate in the form of multi-carriers.
Similar to the above-described embodiments, the original two carriers configuredas TDD mode (can be two separate cells, or two aggregated cells) can be respectively reconfigured to uplink and downlink carriers in FDD mode.
The Fifth Embodiment
In this embodiment, the former FDD cell has uplink the downlink center frequencies set at f1, f2 respectively. Due to measurement of adjacent frequency interference, a reconfiguration process to interchange uplink and downlink points istriggered and shown in FIG. 10, which is described as follows:
At 1001, the BS sends to the SC a resource configuration request message. Theresource configuration request message is used to request WS configuration from the SC. In addition to the basic information of the resource configuration request message (e.g., the BS device parameters, position information, etc. ) , the message further includes the reason why BS initiates resource reconfiguration, specifically: f1 uplink is severely interfered by the adjacent frequency and cannot meet the performance requirements.
At 1002, after the SC receives resource configuration request message transmitted by the BS, it performs spectrum reconfiguration preliminary decisions.
FIG. 11 depicts an example scenario in which an FDD downlink cell deployed on the adjacent frequency bands of f1 causes serious interference tothe BS’s uplink cell on f1. FIG. 11 further illustrates the reconfiguration scheme decided by the SC. Specifically, the BS is asked to swap the original uplink and downlink cell frequency configuration, so that BS onfrequency f1 is configured with the same mode of operation as the adjacent frequency system, which will be greatly reduce the interference.
At 1003, the SC accesses GLDB and obtainsmaximum allowed uplink and downlink transmit power for BS at f1, which may for example be 30dBm.
At 1004, the SC further determines the configuration parameters according todecision results at 1002 and transmit parameter limits obtained in 1003.
Specifically, the SC further considers usage condition of f1 and f2 by other secondary user equipment, and calculates the maximum transmit powers on f1, f2 allowed by theBS of30dBm when other secondary user equipment’s quality of service requirements are met.
At 1005, the SC sends configuration response message to BS. In the response, the SC includes the reconfigured uplink and downlink frequency point for BS: center frequency, respectively uplink f2 and downlink f1, bandwidth of 5MHz, and the maximum allowed transmit power of 30dBm.
The Sixth Embodiment
In this embodiment, the BS is currently configured to operate in theFDD mode, withits uplink and downlink center frequency points at f1 and f2. When the main user on f2 returns, e.g., when the BS has to cede the spectrum at f2 to another BS, the process for spectrum resource reconfiguration is shown in FIG. 12, which is described as follows:
At 1201, the GLDB sends aprimary system protection requirement change notification to the SC.
The primary system protection useschange notification, namely, indicationto the SC the changes of the main user spectrum usage, such as the main user, or a BS that was previously using the spectrum returns, resumingto work on a certain spectrum. The SC adjusts the operating parameter of its subordinating BS which operates on the specified spectrum (such as operation spectrum, transmit power, antenna parameters, etc. ) in order to assure not causing interference to the returnedmain user.
In this embodiment, the main user of the original WSf2 resumes to work, and the GLDB sends to the SC this information in the form of main user spectrum usage change notification message. The message further includes: coverage of the main user; and interference protection criteria, etc., in order for the SC to accurately determine which subordinatingcellsare to adjust operating parameters.
At 1202, the SC performs configuration decision.
FIG. 13 shows an example decisionscheme. For example, the SC determines that the current BSshould stop using the spectrum f2, and reconfigures the originalf1 resource which is configured as FDD uplink to TDD for use bythe BS.
At 1203, the SC sends configuration response message to the BS. The SC includes the reconfiguredduplex mode of BS asa TDD, working frequency of f1, the bandwidth of 5MHz, the maximum allowed transmit power of 30dBm.
In this embodiment, the SC reconfigures configuration parameters for the subordinating BS based on the main user protection requirements change information, as described above in first to fifth embodiments. Events that trigger SC to reconfigure configuration parameters for the BS may also include: change in capability information for a communication station and a terminal, change in communication station requirement, change in adjacent frequency system information, and change in operator/regulatory domain policy information. The above events may take any form of combinations to trigger reconfiguration of configuration parameters.
Seventh example embodiment
In the scenario that LTE system borrows spectrum resource from a TDSCDMA system, an example spectral diagram of aspectrum reconfiguration for a cell configured as a TDD based on the adjacent frequency system information in an embodiment is shown in FIG. 14. The flowchart is shown in FIG. 15, which are specifically described as follows:
At 1501, a resource manager node SC under TDLTE system determines to configure other WS for the subordinating eNB based on the current network load state.
In this embodiment, the SCseeks WS from a TDSCDMA system.
At 1502, SC obtainsWS state information. Preferably, SC sends WSstate request information to the radio network controller RNC of TDSCDMA system.
The RNC, when network statisticsindicates that current cell load is relatively light and hasWSto borrow to TDLTE system, determines to borrow 5MHz resources (f2) originally belonged to TDSCDMA system, and configure it to the station eNB. The RNC repliesWSstate information response. Specifically, the response further an interference protection information on f2, such as the maximum allowed transmit power limit, or the interference tolerance threshold, oradjacent frequency leakage limits, etc. In this embodiment, the maximum transmit power limit will be taken as an example. In addition, the response contains the TDSCDMA system configuration information on adjacent frequency of f2. The current freer spectrum state information obtained by SC by the above process is shown in the following table:
Table 4
Figure PCTCN2015094136-appb-000005
Wherein the uplink and downlink timeslots ratio for adjacentfrequency TDSCDMA system is 4: 2. Specifically, the subframe is configured as: DSUUDDDD; wherein D is a downlink subframe, S is a special subframe, and U is an uplink subframe. Time startcan be represented using GPS time system or other time systems.
At 1503, the SC determines configuration parameters for eNB according toWS state informationobtained in 1502.
The parameters may be: running frequency of f2, bandwidth of 5MHz, transmit power of 40dBm, duplex mode of TDD, time slots ratio of 4: 2, and synchronizing uplink and downlink conversion with TDSCDMA system on the adjacent frequency f1. Then, eNB has a timeslot ratio of 3: 1 and the special subframe ratio of D: GP: U = 3: 9: 2. Subframe length equals to 1ms, and it keeps0.7ms of offset ahead ofthe adjacent TDSCDMA. Both system’s uplink and downlink time slot configurationsare shown in FIG. 16.
At 1504, the SC generates configuration response message from configuration parameters and sends tothe eNB. The eNB performs configuration in accordance with the specified configuration parameters.
In this embodiment, the SC is a configurationmanagement node that is superordinate ofthe eNB, alternatively. The SCmay also be located internal of the eNB. Thus, the eNB directly interacts withRNC of TDSCDMA system and obtains the resource state information.
Further, in this embodiment, the spectrum reconfiguration management node for TDSCDMA is RNC. Alternatively, the spectrum reconfiguration management node may be located in the network element that is on the other side of the TDSCDMA system, such as network management systems (EMS, NMS, etc. ) , or the core network side network element (SGSN, GGSN, etc. ) from which corresponding resource state information is obtained.
Eighth example embodiment
FIG. 17 depicts an example of an apparatus 1700 for controlling spectrum resource allocations.
The apparatus 1700 includes an obtaining module 1701, configured to obtain resource state information of a specified frequency band. The resource state information may be used to determine configuration parameters for a communication station on the specified frequency band.
The apparatus 1700 includesa transmitting module 1702, configured to send a configuration response message to the communication station. The configuration response message carries the configuration parameters.
The apparatus 1700 includesa deciding module 1703, configured to perform configuration decisions and determine the configuration parameters that satisfy the requirements of the resource state information for the communication station, according to the resource state information of the specified frequency band.
The apparatus 1700 includesa message generating module 1704, configured to generate configuration response message, wherein the configuration parameters is carried in the configuration response message.
The apparatus 1700 for dynamic spectrum configuration as shown in FIG. 17 may be integrated in a configuration management node. The corresponding functions are completed by the configuration management node.
FIG. 18 depicts an example of a device 1800 for dynamic spectrum configuration. The structure of the device is shown in FIG. 18.
The apparatus 1800 includesa receiving module 1801, configured to receive configuration response message sent by a configuration management node. The configuration response message carryconfiguration parameters for the communication station on a specified frequency band.
The apparatus 1800 includesa performing module 1802, configured to perform specified resource configuration according to the configuration response message.
The apparatus 1800 for dynamic spectrum configuration as shown in FIG. 18 may be integrated in a communication station, and the corresponding functions are completed by the communication station.
Some embodiments also provide a configuration management node integrated with a dynamic spectrum configuration device shown in FIG. 17 and a communication station integrated with dynamic spectrum configuration device shown in FIG 18. This system can be combined with methods of dynamic spectrum configuration provided by other embodiments described herein to complete decision-making and delivery of the configuration policy.
In some embodiments, for performing dynamic spectrum configuration, a management node obtains resource state information for a specified frequency band. The resource state information is used to determine configuration parameters of a communication station on the specified frequency band. The management nodesendsa configuration response message to the communication station. The configuration response message carries the configuration parameters, as described herein. The communication station receives configurationresponse message sent by the configuration management node, and then performs the specified resources configuration according toconfiguration respond message. The technique may achieve to guarantee an optimum policy configuration for network performance, and solvethe problem of increased signaling overhead and processing latency caused by invalid configuration decision.
A method, according to some embodiments, obtains resource state information through aconfiguration management nodeand, according to the resource state information, determines a duplex mode (e.g., frequency or time) , an operating mode, and specific configuration parameters of a communication station at the specified frequency. The resource configuration decisions would meet regulatory domain or operator policy requirements, the primary system protection  requirements, and the adjacent frequency system interference coexist requirementsto achieve an optimal overall network performance. Further, the resource configurationdecision may considercapacity of communication stations and various demands for resource configuration, which avoids invalid configuration and reduces signaling overhead and processing latency caused by invalid configuration decision.
The disclosed and other embodiments, modules, and the functional operations described in this document can be implemented in digital electronic circuitry or in computer software, firmware, or hardware, including the structures disclosed in this document and their structural equivalents, or in combinations of one or more of them. The disclosed and other embodiments can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a computer readable medium for execution by, or to control the operation of, data processing apparatus. The computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more them. The term “data processing apparatus” encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers. The apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them. A propagated signal is an artificially generated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal that is generated to encode information for transmission to suitable receiver apparatus.
A computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program does not necessarily correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document) , in a single file dedicated to the program in question, or in multiple coordinated  files (e.g., files that store one or more modules, sub programs, or portions of code) . A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
The processes and logic flows described in this document can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit) .
Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read only memory or a random access memory or both. The essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks. However, a computer need not have such devices. Computer readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
While this patent document contains many specifics, these should not be construed as limitations on the scope of an invention that is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination  can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results.
Only a few examples and implementations are disclosed. Variations, modifications, and enhancements to the described examples and implementations and other implementations can be made based on what is disclosed.

Claims (22)

  1. A method of dynamic spectrum configuration implemented in a wireless communication system, comprising:
    obtaining, by a configuration management node, resource state information of a specified frequency band, wherein, the resource state information is used to determine configuration parameters for a communication station on the specified frequency band;
    sending, by the configuration management node, a configuration response message to the communication station, wherein the configuration response message includes the configuration parameters.
  2. The method of claim 1, wherein theobtaining the resource state information includes:
    determining to configure spectrum resources for the communication station, or change resource configuration parameters for the communication station;
    obtaining the resource state information of the specified frequency band in response to the determining.
  3. The method of claim 1, wherein the specified frequency band comprises at least one of:
    an unused portion of frequency spectrum allocated to another wireless communication system co-operating at a location of the communication station; and
    a portion of frequency spectrum previously used by the communication station, wherein usage information of a system to which the portion of frequency spectrum belongs has changed.
  4. The method of claim 1, wherein the resource state information comprises one or more of the following information:
    communication station capability information;
    terminal capability information;
    communication station demand information;
    adjacent frequency system information;
    primarysystem protection requirement information, and
    network policy information.
  5. The method of claim 4, wherein the communication station or the terminal capability information indicates a duplex mode that the communication station or the terminal supports on the specified frequency band, wherein the communication station or the terminal capability information is transmitted by the communication station to the configuration management node.
  6. The method of claim 4, wherein the communication station demand information indicates a demand by the communication station for the spectrum resources, and is transmitted by the communication station to the configuration management node, wherein the communication station demand information includes any one or more ofthe following: bandwidth requirements, interference tolerance requirements, SNR requirements, and configuration requirements;
    wherein the configuration demand indicate an expected purpose for pre-configuring the spectrum by the communication station, and the configuration demands include at least one or more of the following: offload, supplementary coverage, enhanced capacity, interference avoidance, matching uplink and downlink traffic, and matching loads for various radioaccess technology.
  7. The method of claim 4, wherein the adjacent frequency system information includes configuration information for a system that is operating on an adjacent frequency of the specified frequency band, and the adjacent frequency system information is provided by one of (a) a database that stores system configuration information about the adjacent frequency of the frequency band, (b) a communication station that works on the adjacent frequency of the specified frequency band, and (c) a configuration management node to which the communication station that works on the adjacent frequency of the specified frequency band specified belongs, and the adjacent frequency system information includes any one or more of the following information:
    duplex mode, operation mode, specific configuration parameters, and protection criteria information used by a system that works on an adjacent frequency band;
    wherein the specific configuration parameters comprise one or more of the following parameters:
    working frequency, bandwidth, transmit power, applied radio access technology, uplink and downlink time slot ratio under time division duplex, and time-domain resources occupied by uplink and downlink transmissions.
  8. The method of claim 4, wherein the primarysystem protection requirement information indicates protection requirements for the primarysystem on the specified frequency band and/or the adjacent frequency, and is provided by a database that stores the primarysystem spectrum usage information, and the main system protection requirement information includes any one or more of the following information:
    working frequency of the primary system,
    bandwidth of the primarysystem,
    interference tolerance threshold of primarysystem receiver,
    interference tolerance margin of primarysystem receiver,
    coordinates for reference point position,
    receiver adjacent channel selectivity, and
    interference protection ratio.
  9. The method of claim 4, wherein the policy information includes duplex mode authorization on the specified frequency band regulated by a regulatory domain or an operator.
  10. The method of claim 1, wherein, after obtaining, by the configuration management node resource, the state information of the specified frequency band, the method further comprises:
    performing configuration decisions, by the configuration management node, and
    determining, for the communication station, configuration parameters that satisfy the requirements of the resource state information according to the resource state information of the specified frequency band.
  11. The method of claim 10, wherein generating and sending configuration response message to the communication station by the configuration management node comprises:
    performing configuration decisions, by the configuration management node, and determining the configuration parameters that satisfy the requirements of the resource state information for the communication station, according to the resource state information of the specified frequency band;
    generating configuration response message carrying the configuration parameters.
  12. The method of claim 11, wherein the configuration response message carries determined configuration parameters, and the configuration parameters comprise any one or more of the information:
    frequency point,
    bandwidth,
    transmit power,
    radio access technology used,
    duplex mode used, comprising: time division duplex and frequency division duplex,
    operation mode,
    uplink and downlink time slot ratio under time division duplex mode, and
    spectrum emission mask.
  13. The method of claim 12, wherein the operation mode comprises any one or more of the following modes:
    a supplementary uplink mode, which configures the specified frequency band as an uplink carrier so as to share uplink load;
    a supplementary downlink (SDL) mode, which configures the specified frequency band as a downlink carrier so as to share downlink load;
    a carrier aggregation (CA) mode, which configures the specified frequency band as a time division duplex secondary carrier in carrier aggregation; and
    a stand-alone mode, which configures the specified frequency band as a time division duplex carriers that operates independently.
  14. The method of claim 12, wherein the spectrum emission mask includes in-band transmit power limitation and out-band leakage limitationfor the communication station transmitter.
  15. A method of dynamic spectrum configuration, comprising:
    receiving, by a communication station, configuration response message sent by a configuration management  node, withthe configuration response message carrying configuration parameters for the communication station on a specified frequency band;
    performing, by the communications station, specified resource configurations according to the configuration response message.
  16. The method of claim 15, wherein the configuration parameter comprises any one or more of the information:
    frequency information;
    bandwidth, transmit power;
    radio access technology used;
    duplex mode used from a time division duplex mode and a frequency division duplex mode;
    operation mode;
    time slot ratio under time division duplex mode;
    and spectrum emission mask .
  17. The method of claim 16, characterized in that the operation mode comprises any one or more of the following modes:
    a supplementary uplink mode, which configures the specified frequency band as an uplink carrier so as to share uplink load;
    a supplementary downlink (SDL) mode, which configures the specified frequency band as a downlink carrier so as to share downlink load;
    a carrier aggregation (CA) mode, which configures the specified frequency band as a time division duplex secondary carrier in carrier aggregation; and
    a stand-alone mode, which configures the specified frequency band as a time division duplex carriers that operates independently.
  18. A device for dynamic spectrum configuration, comprising:
    an obtaining module to obtain resource state information of a specified frequency band, wherein the resource state information is used to determine configuration parameters for a communication station on the specified frequency band; and
    a transmitting moduleto send a configuration response message to the communication station, wherein the configuration parameters are carried in the configuration response message.
  19. The device of claim 18, further comprising:
    a deciding module to perform configuration decisions and determine the configuration parameters that satisfy the requirements of the resource state information for the communication station, according to the resource state information of the specified frequency band;
    a message generating module to generate configuration response message carrying the configuration parameters.
  20. A device for dynamic spectrum configuration, comprising:
    a receiving module to receive configuration response message sent by a configuration management node, with the configuration response message carrying configuration parameters for the communication station on a specified frequency band; and
    a performing module to perform specified resource configuration according to the configuration response message.
  21. A system for dynamic spectrum configuration, comprising:
    a configuration management node integrated with a device for dynamic spectrum configuration according to claim 18 or 19, and a communication station integrated with a device for dynamic spectrum configuration according to claim 20.
  22. An apparatus for wireless communication, comprising:
    a memory storing instructions; and
    a processor for reading the instructions from the memory and implementing a method of dynamic spectrum allocation as recited in any of claims 1 to 17.
PCT/CN2015/094136 2014-11-10 2015-11-09 Dynamic spectrum configuration WO2016074599A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410629178.2 2014-11-10
CN201410629178.2A CN105611539B (en) 2014-11-10 2014-11-10 Dynamic spectrum configuration method, device and system

Publications (1)

Publication Number Publication Date
WO2016074599A1 true WO2016074599A1 (en) 2016-05-19

Family

ID=55953740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094136 WO2016074599A1 (en) 2014-11-10 2015-11-09 Dynamic spectrum configuration

Country Status (2)

Country Link
CN (1) CN105611539B (en)
WO (1) WO2016074599A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3493579A4 (en) * 2016-07-27 2019-07-10 Sony Corporation Communication control device, radio communication device, method and program
US10952213B2 (en) * 2015-02-28 2021-03-16 Huawei Technologies Co., Ltd. Frequency allocation method, control device, and system in microwave network

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102337624B1 (en) * 2017-03-22 2021-12-09 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 Wireless communication method and device
CN109788552A (en) * 2017-11-10 2019-05-21 维沃移动通信有限公司 A kind of carrier wave collocation, user terminal and network side equipment
CN109803332B (en) * 2017-11-16 2021-02-05 华为技术有限公司 Communication method, communication device and system
CN110278608B (en) * 2018-03-15 2022-06-03 成都鼎桥通信技术有限公司 Uplink transmission method in multi-carrier aggregation system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120230299A1 (en) * 2009-11-27 2012-09-13 Huawei Device Co., Ltd. Method for Reconfiguring Micro Base Station and Corresponding Micro Base Station
US20130165134A1 (en) * 2011-12-22 2013-06-27 Interdigital Patent Holdings, Inc. Methods, apparatus, and systems for dynamic spectrum allocation
CN103379498A (en) * 2012-04-20 2013-10-30 华为技术有限公司 Method and device for sharing dynamic spectrums

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012171200A1 (en) * 2011-06-16 2012-12-20 华为技术有限公司 Dynamic spectrum allocation method, central control unit, base station and spectrum allocation system
CN103297974B (en) * 2012-02-27 2018-09-25 中兴通讯股份有限公司 A kind of method for allocating dynamic frequency spectrums and device based on channel management
US9148792B2 (en) * 2013-03-11 2015-09-29 Intel Corporation Dynamic certification system for wireless spectrum sharing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120230299A1 (en) * 2009-11-27 2012-09-13 Huawei Device Co., Ltd. Method for Reconfiguring Micro Base Station and Corresponding Micro Base Station
US20130165134A1 (en) * 2011-12-22 2013-06-27 Interdigital Patent Holdings, Inc. Methods, apparatus, and systems for dynamic spectrum allocation
CN103379498A (en) * 2012-04-20 2013-10-30 华为技术有限公司 Method and device for sharing dynamic spectrums

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10952213B2 (en) * 2015-02-28 2021-03-16 Huawei Technologies Co., Ltd. Frequency allocation method, control device, and system in microwave network
EP3493579A4 (en) * 2016-07-27 2019-07-10 Sony Corporation Communication control device, radio communication device, method and program
US20190260561A1 (en) * 2016-07-27 2019-08-22 Sony Corporation Communication control device, wireless communication device, method and program
TWI755410B (en) * 2016-07-27 2022-02-21 日商索尼股份有限公司 Communication control device, wireless communication device, communication method and program product

Also Published As

Publication number Publication date
CN105611539B (en) 2020-03-31
CN105611539A (en) 2016-05-25

Similar Documents

Publication Publication Date Title
US11968650B2 (en) Methods and apparatus for opportunistic radio resource allocation in multi-carrier communication systems
WO2016074599A1 (en) Dynamic spectrum configuration
US10637728B2 (en) Configuration method and apparatus
US8768373B2 (en) Adaptive flexible bandwidth wireless systems
US9253786B2 (en) First network node and a second network node and methods therein
US9924367B2 (en) Method and apparatus for maximizing network capacity of cell sites in a wireless network
US9491662B2 (en) Method in a radio network node for controlling usage of rat and frequency bandwidth in a radio communication system
US20200178334A1 (en) Dynamic spectrum sharing in 4g and 5g
US20140355567A1 (en) Radio Access Network Sharing
US9100978B2 (en) Method and apparatus for allocating resources of a frequency band in a wireless system supporting at least two radio access technologies
US10178664B1 (en) Interference mitigation in heterogeneous networks
CN112399568A (en) Method for controlling wireless relay device and corresponding device
CN103687012A (en) Method and device for managing spectrum resources in cognitive radio system
WO2016115936A1 (en) Adjacent-channel different-system interference coordination method and device
WO2018137444A1 (en) Method and device for eliminating interference, and storage medium
US10555315B1 (en) Interference mitigation in heterogeneous networks
US10009946B2 (en) System and method for wireless user equipment access
CA2931856C (en) System and method for wireless user equipment access
US20240155361A1 (en) Private network
US20230254702A1 (en) Shared spectrum resource allocation in open radio access networks
McMenamy et al. RRH and small cells—The implications for spectrum sharing
Parikh et al. Carrier aggregation for enhancement of bandwidth in 4G systems
GB2506094A (en) Sharing Radio Access Network resources

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15858165

Country of ref document: EP

Kind code of ref document: A1