WO2016074409A1 - 微藻全组分利用制备车用生物燃油、生物气及肥料的方法 - Google Patents

微藻全组分利用制备车用生物燃油、生物气及肥料的方法 Download PDF

Info

Publication number
WO2016074409A1
WO2016074409A1 PCT/CN2015/074904 CN2015074904W WO2016074409A1 WO 2016074409 A1 WO2016074409 A1 WO 2016074409A1 CN 2015074904 W CN2015074904 W CN 2015074904W WO 2016074409 A1 WO2016074409 A1 WO 2016074409A1
Authority
WO
WIPO (PCT)
Prior art keywords
algae
microalgae
oil
biogas
fertilizer
Prior art date
Application number
PCT/CN2015/074904
Other languages
English (en)
French (fr)
Inventor
陈冠益
齐云
赵刘
刘静
胡毡
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2016074409A1 publication Critical patent/WO2016074409A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/089Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C12N11/093Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6463Glycerides obtained from glyceride producing microorganisms, e.g. single cell oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/02Pretreatment
    • C11B1/04Pretreatment of vegetable raw material
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/10Production of fats or fatty oils from raw materials by extracting
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • C12N1/125Unicellular algae isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/38Pseudomonas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/89Algae ; Processes using algae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the invention belongs to the field of preparing biofuels and resource utilization for algae, and particularly relates to a method for preparing vehicle biofuel, biogas and fertilizer by using all components of microalgae.
  • biodiesel has the characteristics of good lubricity, fuelability, safety and start-up, and has the advantages of non-toxic, harmless, biodegradable and environmentally friendly. It is the best choice to replace traditional fuel.
  • microalgae is considered to be the only raw material for biodiesel that can completely replace fossil fuels.
  • microalgae species the screening and cultivation of microalgae species.
  • the work on the production of biodiesel from microalgae is mainly focused on the screening of algae species, but because of the wide range of laboratory conditions and outdoor conditions, there are difficulties in temperature, nutrition, ventilation and pest control. Therefore, natural microalgae needs to be further optimized to adapt to wide temperature changes and better resistance to stress, and to maintain high oil content and short growth cycle characteristics, so as to reduce the cultivation cost of microalgae.
  • microalgae are small and the concentration in the culture solution is very low, it is difficult to harvest.
  • the recovery of microalgae from algae has been a bottleneck.
  • the cost of microalgae harvesting accounts for 20% to 30% of its breeding costs (including cultivation and harvesting). Therefore, the search for a high-efficiency, low-cost harvesting method is an urgent problem to be solved.
  • inorganic and organic polymer flocculants such as iron salts and aluminum salts, are added in the traditional harvesting process. Although the flocculation effect can be achieved, the introduction of new ions has a serious impact on the water body and increases the water treatment. cost.
  • liquid acid-base or solid acid-base catalysts are often used in the process of transesterification to produce biodiesel.
  • these catalysts have complicated processes, high equipment requirements, large alcohol consumption, difficult product recovery and large environmental pollution. .
  • the phenomenon that glycerol is no longer used as a by-product of transesterification not only increases environmental risks, but also causes waste of resources.
  • microalgae especially oil-containing microalgae
  • the current utilization of microalgae is mostly limited to the use of fatty acids in algae, such as unsaturated fatty acids as health products, or biodiesel by transesterification, and utilization.
  • the protein in the algae is used as a food, a pigment, or the like, or an algal powder/algae solution is used as a feed or a fertilizer.
  • there are few techniques in the utilization of all components of algae which causes problems such as a large amount of waste and environmental pollution.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide a method for preparing a bio-fuel, a biogas and a fertilizer for a vehicle using all the components of the microalgae.
  • the method for preparing a vehicle bio-fuel, biogas and fertilizer by using the whole component of the microalgae comprises the following steps:
  • Culture of algae Inoculate the microalgae into the culture solution so that the mass concentration of the microalgae is 8-12 mg/L, culture at a temperature of 20-35 ° C, light for 12-17 h; when the oil content exceeds the dry weight 30 When % is stopped, the culture is stopped to obtain a microalgae culture solution;
  • the algae obtained in the step (3) is precipitated, dried, and passed through a biomass pyrolysis oil-making apparatus, and subjected to pyrolysis at 400 to 600 ° C, pressure control at 0.1-0.2 MPa, and feed rate of 0.4 to 0.7 kg/h.
  • Biofuel 2 biogas used as a gas
  • algae used as a fertilizer The algae obtained in the step (3) is precipitated, dried, and passed through a biomass pyrolysis oil-making apparatus, and subjected to pyrolysis at 400 to 600 ° C, pressure control at 0.1-0.2 MPa, and feed rate of 0.4 to 0.7 kg/h.
  • Biofuel 2 biogas used as a gas
  • algae used as a fertilizer used as a fertilizer.
  • the microalgae is preferably at least one of diatom, Scenedesmus, Chlorella, Goldweed, Silkweed, Panicula, Anabaena, Spirulina and Chlamydomonas.
  • the culture solution is preferably a f/2 culture solution, an E3 culture solution or a BG11 culture solution.
  • the method of the present invention can use all marine microalgae and freshwater microalgae and other raw materials, and is highly adaptable.
  • the method for collecting algae used in the present invention uses a natural polymer flocculant to reduce the pollution of the environment and products by the inorganic flocculant plus the metal salt.
  • the by-products of the reaction of the present invention are gas products and algae residues, wherein the gas products are rich in CO, H 2 and CH 4 and can be directly used as natural gas; the algae residue can be used as a fertilizer or processed into an ecological slow release fertilizer to achieve The purpose of utilizing all components of algae.
  • the algal oil transesterification catalyst used in the invention is an immobilized whole cell lipase producing bacteria, which has the advantages of high efficiency, stability, high reproducibility and no pollution to the environment, and is a novel environmental protection catalyst.
  • the method of the present invention can be applied to the production of large industrial plants.
  • the method of the invention has the advantages of simple process, high efficiency, low cost, high product quality, efficient use of all raw materials and products, and environmental friendliness.
  • Figure 1 shows the effect of immobilized whole-cell catalyst on the conversion of fats and oils.
  • microalgae were purchased from the freshwater algae species library of the Chinese Academy of Sciences.
  • the Pseudomonas mendocs used in various embodiments of the present invention are deposited in the Common Microbiology Center (CGMCC) of the China Microbial Culture Collection Management Committee, and the address is Microbiology Research, Chinese Academy of Sciences, No. 3, Beichen West Road, Chaoyang District, Beijing.
  • the deposit number is CGMCC No.7644, and the deposit date is May 27, 2013.
  • the proposed classification is Pseudomonas mendocina.
  • the method for preparing a vehicle bio-fuel, biogas and fertilizer by using the whole component of the microalgae comprises the following steps:
  • Culture of algae Inoculate the microalgae into the f/2 culture solution so that the mass concentration of the microalgae is 8 mg/L, and the culture is carried out at a temperature of 20 ° C for 17 hours; when the oil content exceeds 32% of the dry weight, Stop the culture and obtain a microalgae culture solution;
  • the immobilized whole-cell catalyst was added in an amount of 0%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, and 8%, and added with the translipase Novozym435.
  • the yields of the methyl esters obtained are 0%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, and 8%, as shown in Figure 1.
  • the algae obtained in the step (3) is precipitated, dried, and passed through a biomass pyrolysis oil production device (Chinese Patent Application No. 201320672968.X), at 400, the pressure is controlled at 0.2 MPa, and the feed rate is 0.4 kg/h for pyrolysis. Obtained biofuel for vehicles 2, biogas used as gas, and algae used as fertilizer.
  • the microalgae used in this example is Scenedesmus Scenedesmus spFACHB-1229.
  • the yield of biofuel 1 for vehicles was 37.45%.
  • the vehicle biofuel 2 yield is 35.60%.
  • the yield of biogas was 16.53%.
  • the algal residue yield was 10.42%.
  • biofuels for vehicles are mainly hydrocarbons, acids, aldehydes, ketones, etc.
  • the components of biogas are mainly CO, H 2 and CH 4 , C 2 H 4 , C 2 H 6 , C 3 H 6 and the like.
  • the specific elements of biofuel and algae for vehicles are analyzed as follows:
  • the method for preparing a vehicle bio-fuel, biogas and fertilizer by using the whole component of the microalgae comprises the following steps:
  • Culture of algae Inoculate the microalgae into the E3 culture solution, so that the mass concentration of the microalgae is 12 mg/L, and culture at a temperature of 30 ° C for 15 hours; when the oil content exceeds 45% of the dry weight, the culture is stopped. , obtaining a microalgae culture solution;
  • the algae obtained in the step (3) is precipitated, dried, and passed through a biomass pyrolysis oil production device (same as in the first embodiment), and the mixture is subjected to pyrolysis at 600 ° C, the pressure is controlled at 0.1 MPa, and the feed rate is 0.5 kg/h.
  • Biofuel 2 biogas used as a gas
  • algae used as a fertilizer The microalgae used in this example was Anabaena sp. 1105 FACHB-179.
  • the yield of biofuel 1 for vehicles was 36.77%.
  • Vehicle biofuel 2 yield 34.86%.
  • the yield of biogas was 16.19%.
  • the algal residue yield was 12.18%.
  • the Anabaena sinensis in the present embodiment was replaced by Pediastrum Pediastrum sp. FACHB-520, and the yield of the biofuel 1 for vehicle was 36.77%. Vehicle biofuel 2 yield, 34.86%. The yield of biogas was 16.19%. The algal residue yield was 12.18%.
  • the method for preparing a vehicle bio-fuel, biogas and fertilizer by using the whole component of the microalgae comprises the following steps:
  • Culture of algae Inoculate the microalgae into the f/2 culture solution so that the mass concentration of the microalgae is 10 mg/L, and the culture is carried out at a temperature of 35 ° C for 12 hours; when the oil content exceeds 30% of the dry weight, Stop the culture and obtain a microalgae culture solution;
  • the algae obtained in the step (3) is precipitated, dried, and passed through a biomass pyrolysis oil production device (same as in Example 1), and subjected to pyrolysis at 500 ° C, pressure control at 0.1 MPa, and feed rate of 0.7 kg/h.
  • Biofuel 2 biogas used as a gas
  • algae used as a fertilizer The microalgae used in this example are mixed algae of green algae and silk algae having a mass ratio of 1:1.
  • the method for preparing a vehicle bio-fuel, biogas and fertilizer by using the whole component of the microalgae comprises the following steps:
  • Culture of algae Inoculate algae algae into BG11 culture medium, so that the mass concentration of microalgae is 10 mg/L, culture at a temperature of 32 ° C and light for 17 h; when the oil content exceeds 30% of dry weight, stop Culture to obtain a microalgae culture solution;
  • the algae obtained in the step (3) is precipitated, dried, and passed through a biomass pyrolysis oil production device (same as in the first embodiment), and the mixture is subjected to pyrolysis at 600 ° C, the pressure is controlled at 0.1 MPa, and the feed rate is 0.5 kg/h.
  • Biofuel 2 biogas used as a gas, and algae used as a fertilizer.
  • microalgae used in this embodiment are diatoms, gold algae and diatoms having a mass ratio of 1:1:1;
  • Algal residue can also be used to prepare ecological slow release fertilizer by conventional techniques.
  • microalgae used in the above examples are merely illustrative of the present invention, but are not intended to limit the present invention. Experiments have shown that all microalgae capable of producing oil can be used in the present invention.

Abstract

提供了一种微藻全组分利用制备车用生物燃油、生物气及肥料的方法,其包括以下步骤:藻体的培养;藻体絮凝;藻油的提取;固定化全细胞催化剂的制备;油脂转化制备车用生物燃油;藻沉淀热解及气液固组分利用。

Description

微藻全组分利用制备车用生物燃油、生物气及肥料的方法 技术领域
本发明属于藻类制取生物燃油及资源化应用领域,具体涉及一种微藻全组分利用制备车用生物燃油、生物气及肥料的方法。
背景技术
传统能源的大量消耗使得石油替代品的需求不断加大,开发可替代石油资源的液体燃料已经成为亟需解决的能源问题。生物柴油作为一种新型燃料,具有良好的润滑性、燃料性、安全性和启动性等特点,并且具有无毒、无害、可生物降解环保优点,是替代传统燃料的最佳选择。生产生物燃油的原料中,微藻被认为是唯一可以完全替代化石燃料的生物柴油的原料。但是在实现微藻产油产业化的过程中,存在诸多问题。
首先微藻藻种的筛选及培育。目前,对微藻制取生物柴油方面的工作主要集中在藻种的筛选方面,但是由于实验室的条件与户外的条件差异很大,在温度、营养、通气以及有害生物防治方面都会存在困难。因此需要对天然的微藻进行进一步的优化,使其能适应较宽的温度变化以及较好的抗逆性,并保持高油脂含量、短生长周期特点,以降低微藻培养成本。
其次,由于微藻个体微小,且在培养液中的浓度很低,决定了其采收难度很大。对于工业规模的微藻养殖,从藻液中采收微藻一直是个瓶颈。有资料表明,微藻采收的成本占其养殖成本(包括培养和采收)的20%~30%。因此,寻求一种高效率、低成本的采收方法是当前亟需解决的问题。目前,采用传统的采收过程中加入无机及有机高分子絮凝剂,如铁盐、铝盐等,虽然可以达到絮凝效果,但是由于引入了新的离子,对水体造成严重影响,增加了水体处理费用。
此外,在油脂转酯化制备生物柴油过程中,常常采用液体酸碱或者固体酸碱催化剂,但是这些催化剂对存在工艺复杂,设备要求高,醇消耗量大,产物不易回收以及环境污染大等问题。而甘油作为转酯化的副产物而不再利用等现象不仅增加了环境风险,而且造成了资源的浪费。
藻类经油脂提取后的藻粉的常规处理是作为废弃物丢弃,但是由于藻类的体内还含有大量的含碳化合物等营养物质,仍具有再利用的价值。
虽然微藻尤其是含油微藻具有很多利用价值,但是目前对微藻的利用大部分局限于利用藻体内的脂肪酸,如不饱和脂肪酸作为保健品,或者通过转酯化制备生物柴油等,以及利用藻体内的蛋白质作为食品或者色素等,或者利用藻粉/藻液作为饲料及肥料等。但是在藻类的全组分利用方面技术很少,因此造成大量的浪费以及环境的污染等问题。
发明内容
本发明的目的是克服现有技术的不足,提供一种微藻全组分利用制备车用生物燃油、生物气及肥料的方法。
本发明的技术方案概述如下:
微藻全组分利用制备车用生物燃油、生物气及肥料的方法,包括如下步骤:
(1)藻体的培养:将微藻接种到培养液中,使微藻的质量浓度为8-12mg/L,在温度20-35℃,光照12-17h培养;当油脂含量超过干重30%时,停止培养,得微藻培养液;
(2)藻体絮凝:将胍基壳聚糖加入到微藻培养液中使浓度为2-100mg/L,在200-400r/min搅拌5-10分钟,静置沉淀10-120分钟,弃去上清液,采收微藻;
(3)藻油的提取:将微藻干燥,破碎,按照1g:1-5mL的比例,向破碎的微藻细胞中加入提取混合溶剂,在200-400r/min转速下搅拌20-40min,离心,得到含藻油的液体和藻沉淀,含藻油的液体经过蒸馏得到藻油;所述提取混合溶剂为体积比为2:1的氯仿和甲醇;
(4)固定化全细胞催化剂的制备:
①按重量百分比称取:0.5%-1.5%的干重门多萨假单胞菌、88.5%-93.5%的LB液体培养基和5%-10%的聚氨酯泡沫颗粒;
②将门多萨假单胞菌作为脂肪酶产生菌接种到LB液体培养基上,加入聚氨酯泡沫颗粒,在30℃-35℃,100-200r/min恒温摇床中培养2-5天;过滤,得到固定有门多萨假单胞菌菌株的聚氨酯泡沫颗粒,水洗,干燥,加入到0.1-0.3wt%戊二醛水溶液中使浓度为50-100mg/L混合均匀,过滤,滤渣放入pH=6.5的磷酸缓冲液中,100-200r/min振荡5-10min,过滤、水洗,干燥,得到固定化全细胞催化剂;
(5)油脂转化制备车用生物燃油:将摩尔比为1:1-1.5的藻油和甲醇混合得混合液,向混合液中加入固定化全细胞催化剂使加入量为1-10wt%,25℃-35℃,100-200r/min震荡进行催化转酯化反应,每隔20h-30h加入与混合液中同体积的甲醇,共加入3-5次,继续以100-200r/min震荡20h-30h得到车用生物燃油1;
(6)藻沉淀热解及气液固组分利用:
将步骤(3)获得的藻沉淀,干燥,通过生物质热裂解制油装置,在400~600℃,压力控制在0.1-0.2MPa,进料率为0.4~0.7kg/h进行热解,得到车用生物燃油2、作为燃气使用的生物气及可用作肥料的藻渣。
微藻优选为硅藻,栅藻,绿藻,金藻,丝藻,盘星藻、鱼腥藻、扁藻和衣藻至少一种。
培养液优选f/2培养液、E3培养液或BG11培养液。
本发明的优点:
1.本发明的方法可使用所有海洋微藻及淡水微藻等原料,适应性极强。
2.本发明所用藻体收集方法采用天然高分子絮凝剂,减少了无机絮凝剂外加金属盐对环境及产物的污染。
3.本发明反应的副产物为气体产物和藻渣,其中气体产物富含CO、H2和CH4,可作为天然气直接使用;藻渣可以作为肥料或通过加工制成生态缓释肥,达到藻类全组分利用之目的。
4.本发明所用藻油转酯化催化剂为固定化全细胞脂肪酶产生菌,具有高效、稳定、重复性高、对环境无污染优势,为新型环保催化剂。
5.本发明的方法可应用于工业化大装置的生产。
6.本发明的方法流程简单、效率高、成本低、产品质量高、所有原料及产品均有效利用、环境友好。
附图说明
图1为固定化全细胞催化剂用量对油脂转化率的影响。
具体实施方式
下面结合具体实施例对本发明作进一步的说明。
下述微藻购于中国科学院淡水藻种库。
硅藻(菱形藻)Nitzschia Nitzschia sp.FACHB-206;
绿藻(小球藻)Chlorella Chlorella sp.FACHB-231;
金藻(小定鞭金藻)Prymnesium Prymnesium parvum FACHB-923;
丝藻Ulothrix Ulothrix sp.FACHB-494;
盘星藻Pediastrum Pediastrum sp.FACHB-520;
扁藻Platymonas Platymonas sp.FACHB-557;
衣藻Chlamydomonas Chlamydomonas sp.FACHB-715;
栅藻Scenedesmus Scenedesmus sp FACHB-1229;
斜生栅藻Scenedesmus obliquus FACHB-416;
普通小球藻Chlorella vulgaris FACHB-30;
鱼腥藻Anabaena sp.1105FACHB-179。
本发明各实施例所采用的门多萨假单胞菌,保藏于中国微生物菌种保藏管理委员会普通微生物中心(CGMCC),地址为北京市朝阳区北辰西路1号院3号中国科学院微生物研究所,保藏号为CGMCC No.7644,保藏日期为2013年5月27日,建议分类命名为门多萨假单胞菌Pseudomonas mendocina。
实施例1
微藻全组分利用制备车用生物燃油、生物气及肥料的方法,包括如下步骤:
(1)藻体的培养:将微藻接种到f/2培养液中,使微藻的质量浓度为8mg/L,在温度20℃,光照17h培养;当油脂含量超过干重32%时,停止培养,得微藻培养液;
(2)藻体絮凝:将胍基壳聚糖加入到微藻培养液中使浓度为10mg/L,在200r/min搅拌10分钟,静置沉淀40分钟,弃去上清液,采收微藻;
(3)藻油的提取:将微藻干燥,破碎,按照1g:2mL的比例,向破碎的微藻细胞中加入提取混合溶剂,在200r/min转速下搅拌40min,离心,得到含藻油的液体和藻沉淀,含藻油的液体经过蒸馏得到藻油;所述提取混合溶剂为体积比为2:1的氯仿和甲醇;
(4)固定化全细胞催化剂的制备:
①按重量百分比称取:0.5%的干重门多萨假单胞菌、89.5%的LB液体培养基和10%的聚氨酯泡沫颗粒;
②将门多萨假单胞菌作为脂肪酶产生菌接种到LB液体培养基上,加入聚氨酯泡沫颗粒,在30℃,100r/min恒温摇床中培养5天;过滤,得到固定有门多萨假单胞菌菌株的聚氨酯泡沫颗粒,水洗,干燥,加入到0.1wt%戊二醛水溶液中使浓度为50mg/L混合均匀,过滤,滤渣放入pH=6.5的磷酸缓冲液中,100r/min振荡10min,过滤、水洗,干燥,得到固定化全细胞催化剂;
(5)油脂转化制备车用生物燃油:将摩尔比为1:1的藻油和甲醇混合得混合液,向混合液中加入固定化全细胞催化剂使加入量为4wt%,25℃,100r/min震荡进行催化转酯化反应,每隔24h加入与混合液中同体积的甲醇,共加入3次,继续以100r/min震荡24h得到车用生物燃油1;
利用本步骤的方法,用固定化全细胞催化剂加入量为0%,1%,2%,3%,4%,5%,6%,7%,和8%,和用转脂酶Novozym435加入量为0%,1%,2%,3%,4%,5%,6%,7%,和8%,所获得的甲酯的产率见图1。
(6)藻粉热解及气液固组分利用:
将步骤(3)获得的藻沉淀,干燥,通过生物质热裂解制油装置(中国专利申请号201320672968.X),在400,压力控制在0.2MPa,进料率为0.4kg/h进行热解,得到车用生物燃油2、作为燃气使用的生物气及可用作肥料的藻渣。本实施例所用的微藻为栅藻Scenedesmus Scenedesmus spFACHB-1229。
车用生物燃油1的收率37.45%。车用生物燃油2收率35.60%。生物气的产率16.53%。藻渣收率为10.42%。
车用生物燃油的成分,主要是烃类物质,酸类,醛类,酮类等。生物气的成分,主要是CO、H2和CH4、C2H4、C2H6、C3H6等。车用生物燃油和藻渣具体元素分析如下:
Figure PCTCN2015074904-appb-000001
实施例2
微藻全组分利用制备车用生物燃油、生物气及肥料的方法,包括如下步骤:
(1)藻体的培养:将微藻接种到E3培养液中,使微藻的质量浓度为12mg/L,在温度30℃,光照15h培养;当油脂含量超过干重45%时,停止培养,得微藻培养液;
(2)藻体絮凝:将胍基壳聚糖加入到微藻培养液中使浓度为80mg/L,在400r/min搅拌5分钟,静置沉淀80分钟,弃去上清液,采收微藻;
(3)藻油的提取:将微藻干燥,破碎,按照1g:5mL的比例,向破碎的微藻细胞中加入提取混合溶剂,在400r/min转速下搅拌20min,离心,得到含藻油的液体和藻沉淀,含藻油的液体经过蒸馏得到藻油;所述提取混合溶剂为体积比为2:1的氯仿和甲醇;
(4)固定化全细胞催化剂的制备:
①按重量百分比称取:1.5%的干重门多萨假单胞菌、93.5%的LB液体培养基和5%的聚氨酯泡沫颗粒;
②将门多萨假单胞菌作为脂肪酶产生菌接种到LB液体培养基上,加入聚氨酯泡沫颗粒,在35℃,200r/min恒温摇床中培养3天;过滤,得到固定有门多萨假单胞菌菌株的聚氨酯泡 沫颗粒,水洗,干燥,加入到0.3wt%戊二醛水溶液中使浓度为100mg/L混合均匀,过滤,滤渣放入pH=6.5的磷酸缓冲液中,200r/min振荡5min,过滤、水洗,干燥,得到固定化全细胞催化剂;
(5)油脂转化制备车用生物燃油:将摩尔比为1:1.5的藻油和甲醇混合得混合液,向混合液中加入固定化全细胞催化剂使加入量为10wt%,35℃,200r/min震荡进行催化转酯化反应,每隔26h加入与混合液中同体积的甲醇,共加入5次,继续以200r/min震荡20h得到车用生物燃油1;
(6)藻粉热解及气液固组分利用:
将步骤(3)获得的藻沉淀,干燥,通过生物质热裂解制油装置(同实施例1),在600℃,压力控制在0.1MPa,进料率为0.5kg/h进行热解,得到车用生物燃油2、作为燃气使用的生物气及可用作肥料的藻渣。本实施例所用的微藻为鱼腥藻Anabaena sp.1105FACHB-179。
车用生物燃油1的收率36.77%。车用生物燃油2收率,34.86%。生物气的产率16.19%。藻渣收率为12.18%。
用盘星藻Pediastrum Pediastrum sp.FACHB-520替代本实施例中的鱼腥藻,其它同本实施例,其车用生物燃油1的收率36.77%。车用生物燃油2收率,34.86%。生物气的产率16.19%。藻渣收率为12.18%。
实施例3
微藻全组分利用制备车用生物燃油、生物气及肥料的方法,包括如下步骤:
(1)藻体的培养:将微藻接种到f/2培养液中,使微藻的质量浓度为10mg/L,在温度35℃,光照12h培养;当油脂含量超过干重30%时,停止培养,得微藻培养液;
(2)藻体絮凝:将胍基壳聚糖加入到微藻培养液中使浓度为2mg/L,在200r/min搅拌10分钟,静置沉淀120分钟,弃去上清液,采收微藻;
(3)藻油的提取:将微藻干燥,破碎,按照1g:1mL的比例,向破碎的微藻细胞中加入提取混合溶剂,在300r/min转速下搅拌30min,离心,得到含藻油的液体和藻沉淀,含藻油的液体经过蒸馏得到藻油;所述提取混合溶剂为体积比为2:1的氯仿和甲醇;
(4)固定化全细胞催化剂的制备:
①按重量百分比称取:1.5%的干重门多萨假单胞菌、88.5%的LB液体培养基和10%的聚氨酯泡沫颗粒;
②将门多萨假单胞菌作为脂肪酶产生菌接种到LB液体培养基上,加入聚氨酯泡沫颗粒,在32℃,200r/min恒温摇床中培养2天;过滤,得到固定有门多萨假单胞菌菌株的聚氨酯泡沫颗粒,水洗,干燥,加入到0.2wt%戊二醛水溶液中使浓度为80mg/L混合均匀,过滤,滤渣放入pH=6.5的磷酸缓冲液中,200r/min振荡8min,过滤、水洗,干燥,得到固定化全细胞催化剂;
(5)油脂转化制备车用生物燃油:将摩尔比为1:1.2的藻油和甲醇混合得混合液,向混合液中加入固定化全细胞催化剂使加入量为1wt%,30℃,200r/min震荡进行催化转酯化反应,每隔20h加入与混合液中同体积的甲醇,共加入4次,继续以200r/min震荡25h得到车用生 物燃油1;
(6)藻粉热解及气液固组分利用:
将步骤(3)获得的藻沉淀,干燥,通过生物质热裂解制油装置(同实施例1),在500℃,压力控制在0.1MPa,进料率为0.7kg/h进行热解,得到车用生物燃油2、作为燃气使用的生物气及可用作肥料的藻渣。本实施例所用的微藻是质量比为1:1的绿藻和丝藻的混合藻。
绿藻(小球藻)Chlorella Chlorella sp.FACHB-231;
丝藻Ulothrix Ulothrix sp.FACHB-494。
车用生物燃油1的收率35.67%。车用生物燃油2收率,34.52%。生物气的产率16.48%。藻渣收率13.33%
实施例4
微藻全组分利用制备车用生物燃油、生物气及肥料的方法,包括如下步骤:
(1)藻体的培养:将鱼腥藻接种到BG11培养液中,使微藻的质量浓度为10mg/L,在温度32℃,光照17h培养;当油脂含量超过干重30%时,停止培养,得微藻培养液;
(2)藻体絮凝:将胍基壳聚糖加入到微藻培养液中使浓度为100mg/L,在300r/min搅拌5分钟,静置沉淀10分钟,弃去上清液,采收微藻;
(3)藻油的提取:将微藻干燥,破碎,按照1g:3mL的比例,向破碎的微藻细胞中加入提取混合溶剂,在300r/min转速下搅拌30min,离心,得到含藻油的液体和藻沉淀,含藻油的液体经过蒸馏得到藻油;所述提取混合溶剂为体积比为2:1的氯仿和甲醇;
(4)固定化全细胞催化剂的制备:
①按重量百分比称取:1.5%的干重门多萨假单胞菌、90%的LB液体培养基和8.5%的聚氨酯泡沫颗粒;
②将门多萨假单胞菌作为脂肪酶产生菌接种到LB液体培养基上,加入聚氨酯泡沫颗粒,在32℃,200r/min恒温摇床中培养2天;过滤,得到固定有门多萨假单胞菌菌株的聚氨酯泡沫颗粒,水洗,干燥,加入到0.2wt%戊二醛水溶液中使浓度为80mg/L混合均匀,过滤,滤渣放入pH=6.5的磷酸缓冲液中,200r/min振荡8min,过滤、水洗,干燥,得到固定化全细胞催化剂;
(5)油脂转化制备车用生物燃油:将摩尔比为1:1.3的藻油和甲醇混合得混合液,向混合液中加入固定化全细胞催化剂使加入量为5wt%,30℃,200r/min震荡进行催化转酯化反应,每隔30h加入与混合液中同体积的甲醇,共加入4次,继续以200r/min震荡30h得到车用生物燃油1;
(6)藻粉热解及气液固组分利用:
将步骤(3)获得的藻沉淀,干燥,通过生物质热裂解制油装置(同实施例1),在600℃,压力控制在0.1MPa,进料率为0.5kg/h进行热解,得到车用生物燃油2、作为燃气使用的生物气及可用作肥料的藻渣。
本实施例所用微藻是质量比为1:1:1的硅藻,金藻和扁藻;
其中:硅藻(菱形藻)Nitzschia Nitzschia sp.FACHB-206;
金藻(小定鞭金藻)Prymnesium Prymnesium parvum FACHB-923;
扁藻Platymonas Platymonas sp.FACHB-557。
车用生物燃油1的收率36.42%。车用生物燃油2收率,34.93%。生物气的产率17.07%。藻渣收率为11.58%
藻渣还可以用常规技术制备生态缓释肥。
实验证明,用1:1:1:1的盘星藻、衣藻、斜生栅藻、普通小球藻的混合藻替代本实施例的混合藻,其它同本实施例,可以获得与本实施例相似的效果。
上面的实施例所采用的微藻仅是为了说明本发明,但并不对本发明作任何限制,实验证明,凡是能产油的微藻都可以用于本发明。

Claims (3)

  1. 微藻全组分利用制备车用生物燃油、生物气及肥料的方法,其特征是包括如下步骤:
    (1)藻体的培养:将微藻接种到培养液中,使微藻的质量浓度为8-12mg/L,在温度20-35℃,光照12-17h培养;当油脂含量超过干重30%时,停止培养,得微藻培养液;
    (2)藻体絮凝:将胍基壳聚糖加入到微藻培养液中使浓度为2-100mg/L,在200-400r/min搅拌5-10分钟,静置沉淀10-120分钟,弃去上清液,采收微藻;
    (3)藻油的提取:将微藻干燥,破碎,按照1g:1-5mL的比例,向破碎的微藻细胞中加入提取混合溶剂,在200-400r/min转速下搅拌20-40min,离心,得到含藻油的液体和藻沉淀,含藻油的液体经过蒸馏得到藻油;所述提取混合溶剂为体积比为2:1的氯仿和甲醇;
    (4)固定化全细胞催化剂的制备:
    ①按重量百分比称取:0.5%-1.5%的干重门多萨假单胞菌、88.5%-93.5%的LB液体培养基和5%-10%的聚氨酯泡沫颗粒;
    ②将门多萨假单胞菌作为脂肪酶产生菌接种到LB液体培养基上,加入聚氨酯泡沫颗粒,在30℃-35℃,100-200r/min恒温摇床中培养2-5天;过滤,得到固定有门多萨假单胞菌菌株的聚氨酯泡沫颗粒,水洗,干燥,加入到0.1-0.3wt%戊二醛水溶液中使浓度为50-100mg/L混合均匀,过滤,滤渣放入pH=6.5的磷酸缓冲液中,100-200r/min振荡5-10min,过滤、水洗,干燥,得到固定化全细胞催化剂;
    (5)油脂转化制备车用生物燃油:将摩尔比为1:1-1.5的藻油和甲醇混合得混合液,向混合液中加入固定化全细胞催化剂使加入量为1-10wt%,25℃-35℃,100-200r/min震荡进行催化转酯化反应,每隔20h-30h加入与混合液中同体积的甲醇,共加入3-5次,继续以100-200r/min震荡20h-30h得到车用生物燃油1;
    (6)藻沉淀热解及气液固组分利用:将步骤(3)获得的藻沉淀,干燥,通过生物质热裂解制油装置,在400~600℃,压力控制在0.1-0.2MPa,进料率为0.4~0.7kg/h进行热解,得到车用生物燃油2、作为燃气使用的生物气及可用作肥料的藻渣。
  2. 根据权利要求1所述的微藻全组分利用制备车用生物燃油、生物气及肥料的方法,其特征是所述的微藻为硅藻,栅藻,绿藻,金藻,丝藻,盘星藻、鱼腥藻、扁藻和衣藻至少一种。
  3. 根据权利要求1所述的微藻全组分利用制备车用生物燃油、生物气及肥料的方法,其特征是所述的培养液为f/2培养液、E3培养液或BG11培养液。
PCT/CN2015/074904 2014-11-14 2015-03-23 微藻全组分利用制备车用生物燃油、生物气及肥料的方法 WO2016074409A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410649119.1 2014-11-14
CN201410649119.1A CN104372044A (zh) 2014-11-14 2014-11-14 微藻全组分利用制备车用生物燃油、生物气及肥料的方法

Publications (1)

Publication Number Publication Date
WO2016074409A1 true WO2016074409A1 (zh) 2016-05-19

Family

ID=52551238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074904 WO2016074409A1 (zh) 2014-11-14 2015-03-23 微藻全组分利用制备车用生物燃油、生物气及肥料的方法

Country Status (2)

Country Link
CN (1) CN104372044A (zh)
WO (1) WO2016074409A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104372044A (zh) * 2014-11-14 2015-02-25 天津大学 微藻全组分利用制备车用生物燃油、生物气及肥料的方法
CN105483044A (zh) * 2015-12-31 2016-04-13 中国石油天然气股份有限公司 一种鱼腥藻培养基
CN108244019A (zh) * 2017-12-29 2018-07-06 中国水产科学研究院渔业机械仪器研究所 一种硅藻-对虾复合养殖系统与工艺
CN108911856B (zh) * 2018-08-07 2021-06-01 湖南省耕天下生物科技有限公司 一种微藻藻体或藻渣包裹的缓释肥料及其制备方法
CN109504472A (zh) * 2018-11-02 2019-03-22 石首市博锐德生物科技有限公司 微藻基生物质炼制方法以及实施其的系统
CN114105701A (zh) * 2021-11-17 2022-03-01 日照职业技术学院 一种用于藻类养殖的营养抑菌缓释球

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421716A (zh) * 2013-08-05 2013-12-04 天津大学 产脂肪酶菌及其在制备生物柴油中的应用
CN103642579A (zh) * 2013-11-25 2014-03-19 济南开发区星火科学技术研究院 一种用微藻制备生物柴油的方法
CN103756907A (zh) * 2014-01-10 2014-04-30 天津大学 一种以改性壳聚糖为絮凝剂的藻类采收方法
CN103849410A (zh) * 2014-03-05 2014-06-11 天津大学 生物质热解制油的方法
CN104372044A (zh) * 2014-11-14 2015-02-25 天津大学 微藻全组分利用制备车用生物燃油、生物气及肥料的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101307342A (zh) * 2008-06-23 2008-11-19 清华大学 用廉价底物培养微生物细胞催化油脂原料生产生物柴油的方法
CN203530235U (zh) * 2013-10-29 2014-04-09 天津大学 一种新型生物质热裂解制油装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421716A (zh) * 2013-08-05 2013-12-04 天津大学 产脂肪酶菌及其在制备生物柴油中的应用
CN103642579A (zh) * 2013-11-25 2014-03-19 济南开发区星火科学技术研究院 一种用微藻制备生物柴油的方法
CN103756907A (zh) * 2014-01-10 2014-04-30 天津大学 一种以改性壳聚糖为絮凝剂的藻类采收方法
CN103849410A (zh) * 2014-03-05 2014-06-11 天津大学 生物质热解制油的方法
CN104372044A (zh) * 2014-11-14 2015-02-25 天津大学 微藻全组分利用制备车用生物燃油、生物气及肥料的方法

Also Published As

Publication number Publication date
CN104372044A (zh) 2015-02-25

Similar Documents

Publication Publication Date Title
Esmaeili A critical review on the economic aspects and life cycle assessment of biodiesel production using heterogeneous nanocatalysts
WO2016074409A1 (zh) 微藻全组分利用制备车用生物燃油、生物气及肥料的方法
Muradov et al. Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production
Lam et al. Microalgae biofuels: a critical review of issues, problems and the way forward
Zhang et al. Current status and outlook in the application of microalgae in biodiesel production and environmental protection
Chen et al. Using ammonia for algae harvesting and as nutrient in subsequent cultures
Jeyakumar et al. Experimental investigation on simultaneous production of bioethanol and biodiesel from macro-algae
CN104611228A (zh) 一种富含油脂的单针藻及其培养应用
CN101619329A (zh) 一种生物催化“一锅法”制备生物柴油的工艺方法
KR20110077723A (ko) 바이오 디젤 및 그 제조방법
Brar et al. Algae: A cohesive tool for biodiesel production alongwith wastewater treatment
EP2718453B1 (en) Engine worthy fatty acid methyl ester (biodiesel) from naturally occurring marine microalgal mats and marine microalgae cultured in open salt pans together with value addition of co-products
KR101372298B1 (ko) 미세조류로부터 바이오디젤을 제조하는 방법
AU2011306356B2 (en) Integrated process for the production of oil bearing Chlorella variabilis for lipid extraction utilizing by-products of Jatropha methyl ester (JME) production
Sharmiladevi et al. Processing of Gracilaria edulis and Ulva lactuca for bioethanol and bio-oil production: an integrated approach via fermentation and hydrothermal liquefaction
CN114656650A (zh) 一种基于天然生物质生产腐植酸的方法
Amanullah et al. Effective production of ethanol-from-cellulose (EFC) from cheap sources sawdust and seaweed Gracilaria edulis
CN101708462A (zh) 一种利用黄豆秸秆制备高性能生物质环境吸附材料的方法
Yadav et al. Approach to microalgal biodiesel production: Insight review on recent advancements and future outlook
Das et al. Microalgal lipid augmentation of Chlorella sp. and algal biodiesel production using CaO as catalyst-A green outlook
Hasan et al. Production of biodiesel from freshwater algae
CN105542954A (zh) 一种以油渣果为原料制备生物柴油的方法
CN105542969A (zh) 一种由黄连木制备生物柴油的方法
Singha et al. Algae materials for advanced biofuel production through the cost-effective process and integration of nanocatalysts
Esakkimuthu et al. Catalyst in Action

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15858902

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15858902

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/01/2018)