WO2016074162A1 - 一种实现光逻辑的装置和方法 - Google Patents

一种实现光逻辑的装置和方法 Download PDF

Info

Publication number
WO2016074162A1
WO2016074162A1 PCT/CN2014/090866 CN2014090866W WO2016074162A1 WO 2016074162 A1 WO2016074162 A1 WO 2016074162A1 CN 2014090866 W CN2014090866 W CN 2014090866W WO 2016074162 A1 WO2016074162 A1 WO 2016074162A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical signal
optical signals
modulated
group
Prior art date
Application number
PCT/CN2014/090866
Other languages
English (en)
French (fr)
Inventor
王健
桂成程
贺继方
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480081511.9A priority Critical patent/CN106797254B/zh
Priority to PCT/CN2014/090866 priority patent/WO2016074162A1/zh
Publication of WO2016074162A1 publication Critical patent/WO2016074162A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation

Definitions

  • the present invention relates to the field of optical communications, and in particular to an apparatus and method for implementing optical logic.
  • Optical logic refers to the logical operation of optical signals as signal carriers.
  • Optical logic plays an important role in optical communication systems. Since optical signals of the same frequency can only be transmitted simultaneously in an optical communication system, they are the same for multiple channels. When the optical signal of the frequency is transmitted, the optical signals of the same frequency are optically operated by the device implementing the optical logic, respectively, and the idle frequency light with the idle frequency is obtained, and the multiple idle frequency lights are transmitted to realize the multi-channel. Transmission of optical signals of the same frequency.
  • a device for implementing optical logic comprising: a first polarization controller, a second polarization controller, a third polarization controller, a first coupler, a second coupler, a nonlinear optical fiber, filter.
  • the output end of the first polarization controller and the output end of the second polarization controller are respectively connected to the input end of the first coupler; the output end of the first coupler and the output end of the third polarization controller are respectively connected to the second coupler
  • the input end; the output of the second coupler is connected to one end of the nonlinear fiber, and the other end of the nonlinear fiber is connected to the input end of the filter.
  • the first polarization controller receives the first optical signal outputted by the optical output end, polarizes the first optical signal to obtain the first polarized light, and inputs the first polarized light to the first coupler, and the second polarization controller receives the light output.
  • a second optical signal outputted by the terminal the second optical signal is polarized to obtain a second polarized light, and the second polarized light is output to the first coupler;
  • the first coupler couples the first polarized light and the second polarized light And outputting to the second coupler together;
  • the third polarization controller receives the third optical signal outputted by the optical output terminal, polarizes the third optical signal to obtain the third polarized light, and outputs the third polarized light to the second coupler .
  • the second coupler couples the first polarized light, the second polarized light, and the third polarized light together and outputs the same to the nonlinear optical fiber, and the nonlinear optical fiber performs four waves of the first polarized light, the second polarized light, and the third polarized light.
  • the mixing effect obtains the first idler light, the second idler light, and the third idler light, and inputs the first idler light, the second idler light, and the third idler light into the filter.
  • the filter filters the first idler light, the second idler light, and the third idler light to obtain the filtered first idler light, the second idler light, and the third idler light.
  • embodiments of the present invention provide an apparatus and method for implementing optical logic.
  • the technical solution is as follows:
  • the present invention provides an apparatus for implementing optical logic, the apparatus comprising:
  • a modulation module and a first non-linear module; an output end of the modulation module is connected to an input end of the first non-linear module;
  • the modulation module is configured to receive a first group of optical signals, a second group of optical signals, and a third group of optical signals, wherein the first group of optical signals, the second group of optical signals, and the third group of optical signals each include a continuous wave a CW signal and at least one binary on-off keying OOK optical signal, and wherein the first group of optical signals, the second group of optical signals, and the third group of optical signals comprise the same number of paths of the OOK optical signal and the first group of lights
  • the frequencies of the CW signals included in the signal, the second group of optical signals, and the third group of optical signals are different, and the sum of the frequencies of any two CW signals is greater than the frequency of the third CW signal, respectively for the first group Performing cross-phase modulation XPM processing on the optical signal, modulating at least one OOK optical signal of the first set of optical signals onto one CW signal to obtain a first modulated optical signal, and performing XPM processing on the second set of optical signals, At least one of the second set of optical
  • the first non-linear module is configured to perform four-wave mixing FWM processing on the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal to obtain first idler light, second idler light, and The three idler lights, the frequencies of the first idler light, the second idler light, and the third idler light are different, and are all related to the first group of optical signals, the second group of optical signals, and the third group The frequency of the optical signals in the optical signal is not the same.
  • the modulating module includes:
  • An asymmetric coupling module and a second nonlinear module an output of the asymmetric coupling module is coupled to an input of the second nonlinear module; an output of the second nonlinear module is coupled to the first nonlinear The input of the sex module is connected;
  • the asymmetric coupling module is configured to receive a first group of optical signals, a second group of optical signals, and a third group of optical signals, respectively, a power ratio between the optical signals included in the first group of optical signals, and a second
  • the power ratio between each of the optical signals included in the group optical signal and the power ratio between the optical signals included in the third group of optical signals are adjusted to a preset ratio, and the adjusted first group of optical signals, Two sets of optical signals and a third set of optical signals are output to the second non-linear module;
  • the second non-linear module is configured to perform XPM processing on the adjusted first group of optical signals, the second group of optical signals, and the third group of optical signals to obtain first modulated optical signals, second modulated optical signals, and
  • the three modulated optical signals output the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal to the first nonlinear module.
  • the asymmetric coupling module includes:
  • a first asymmetric coupling unit a second asymmetric coupling unit, and a third asymmetric coupling unit; an output of the first asymmetric coupling unit, an output of the second asymmetric coupling unit, and the third non
  • An output end of the symmetric coupling unit is connected to an input end of the second nonlinear module;
  • the first asymmetric coupling unit is configured to receive a first group of optical signals, and adjust a power ratio between the OOK optical signals included in the first group of optical signals to a preset ratio, and the first group of lights
  • the first CW signal included in the signal and the adjusted OOK optical signal are coupled into a first mixed signal, and the first mixed signal is output to the second nonlinear module;
  • the second asymmetric coupling unit is configured to receive a second group of optical signals, and adjust a power ratio between the OOK optical signals included in the second group of optical signals to a preset ratio, and the second group of lights
  • the signal includes a second CW signal and the adjusted OOK optical signals are coupled into a second mixed signal, and the second mixed signal is output to the second nonlinear module;
  • the third asymmetric coupling unit is configured to receive a third group of optical signals, and adjust a power ratio between the OOK optical signals included in the third group of optical signals to a preset ratio, and the third group of lights
  • the signal includes a third CW signal and the adjusted OOK optical signals coupled into a third mixed signal, and the third mixed signal is output to the second nonlinear module.
  • the second non-linear module includes:
  • a first nonlinear device a second nonlinear device, and a third nonlinear device
  • an input end of the first nonlinear device is coupled to an output of the first asymmetric coupling unit
  • the second nonlinear device An input end is connected to an output end of the second asymmetric coupling unit, an input end of the third nonlinear device is connected to an output end of the third asymmetric coupling unit; an output end of the first nonlinear device And an output end of the second nonlinear device and an output end of the third nonlinear device are connected to an input end of the first nonlinear module;
  • the first non-linear device is configured to receive the first mixed signal, and perform XMP processing on the first mixed signal to obtain a first modulated optical signal;
  • the second non-linear device is configured to receive the second mixed signal, and perform XPM processing on the second mixed signal to obtain a second modulated optical signal;
  • the third non-linear device is configured to receive the third mixed signal, and perform XPM processing on the third mixed signal to obtain a third modulated optical signal.
  • the device further includes:
  • a first filtering module an input end of the first filtering module is connected to an output end of the modulation module, and an output end of the first filtering module is connected to an input end of the first non-linear module;
  • the first filtering module is configured to receive the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal, respectively, to the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal Filtering is performed to output the filtered first modulated optical signal, the second modulated optical signal, and the third modulated optical signal to the first nonlinear module.
  • the first filtering module includes:
  • a first filter, a second filter, and a third filter an input of the first filter is coupled to an output of the first nonlinear device included in the modulation module, and an input of the second filter Connected to an output of the second non-linear device included in the modulation module, the input end of the third filter being connected to an output end of the third non-linear device included in the modulation module, the first filter An output, an output of the second filter, and an output of the third filter are coupled to an input of the first non-linear module;
  • the first filter is configured to receive a first modulated optical signal output by the first nonlinear device, The respective OOK optical signals in the first modulated optical signal are filtered out, and the first modulated light that filters the respective OOK optical signals is output to the first nonlinear module;
  • the second filter is configured to receive a second modulated optical signal output by the second non-linear device, filter the respective OOK optical signals in the second modulated optical signal, and filter the The second modulated light of each OOK optical signal is output to the second nonlinear module;
  • the third filter is configured to receive a third modulated optical signal output by the third non-linear device, filter the respective OOK optical signals in the third modulated optical signal, and filter the The third modulated light of each of the OOK optical signals is output to the third non-linear module.
  • the device further includes:
  • the second filtering module is configured to receive the first idler light, the second idler light, and the third idler light output by the first nonlinear module, and filter out the first idler light and the second idle
  • the modulated light signal in the frequency light and the third idler light obtains the filtered first idler light, the second idler light, and the third idler light.
  • the device further includes:
  • an input end of the coupling module is connected to an output end of the modulation module, and an input end of the coupling module is connected to an input end of the first non-linear module;
  • the coupling module is configured to receive the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal, and the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal are coupled together and output to The first non-linear module.
  • the present invention provides a method of implementing optical logic, the method comprising:
  • first group of optical signals, a second group of optical signals, and a third group of optical signals wherein the first group of optical signals, the second group of optical signals, and the third group of optical signals each include a continuous wave CW signal and at least one binary Opening and closing a keyed OOK optical signal, and the first set of optical signals, the second set of optical signals, and the third set of optical signals include the same number of paths of the OOK optical signal, and the first set of optical signals and the second set of optical signals
  • the frequency of the CW signal included in the signal and the third group of optical signals are different, and the sum of the frequencies of any two CW signals is greater than the frequency of the third CW signal;
  • the modulating the first group of optical signals, the second group of optical signals, and the third group of optical signals respectively to obtain a first modulated optical signal And a second modulated optical signal and a third modulated optical signal including:
  • a power ratio between the optical signals included in the first group of optical signals, a power ratio between the optical signals included in the second group of optical signals, and each of the optical signals included in the third group of optical signals is adjusted to a preset ratio
  • the power ratio between the optical signals included in the first group of optical signals, and the second group of light are adjusted to a preset ratio, including:
  • a power ratio between the OOK optical signals included in the first group of optical signals, a power ratio between the OOK optical signals included in the second group of optical signals, and each OOK light included in the third group of optical signals is adjusted to a preset ratio.
  • the performing the adjusted first group of optical signals, the second group of optical signals, and the third group of optical signals Cross-phase modulation XPM processing to obtain a first modulated optical signal, a second modulated optical signal, and a third modulated optical signal include:
  • the method further includes:
  • Each of the OOK optical signals in the first modulated optical signal, each of the OOK optical signals in the second modulated optical signal, and each OOK optical signal in the third modulated optical signal are filtered out.
  • the method further includes:
  • the technical solution provided by the embodiment of the present invention has the beneficial effects that the modulation module receives the first group of optical signals, the second group of optical signals, and the third group of optical signals, respectively, for the first group of optical signals, the second group of optical signals, and the third
  • the group optical signal is subjected to XPM processing to obtain a first modulated optical signal, a second modulated optical signal, and a third modulated optical signal; and the first nonlinear module performs the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal.
  • the FWM process obtains the first idler light, the second idler light, and the third idler light, and the present invention is capable of including the plurality of optical signals in the first group of optical signals, the second group of optical signals, and the third group of optical signals. Implement at least three input optical logic operations.
  • FIG. 1 is a schematic structural diagram of an apparatus for implementing optical logic according to Embodiment 1 of the present invention
  • FIG. 2-1 is a schematic structural diagram of an apparatus for implementing optical logic according to Embodiment 2 of the present invention.
  • FIG. 2-2 is a schematic structural diagram of an apparatus for implementing optical logic according to Embodiment 2 of the present invention.
  • FIG. 2-3 is a schematic structural diagram of an apparatus for implementing optical logic according to Embodiment 2 of the present invention.
  • FIG. 2-4 is a schematic structural diagram of an apparatus for implementing optical logic according to Embodiment 2 of the present invention.
  • FIGS. 2-5 are schematic structural diagrams of an apparatus for implementing optical logic according to Embodiment 2 of the present invention.
  • FIGS. 2-6 are schematic structural diagrams of an apparatus for implementing optical logic according to Embodiment 2 of the present invention.
  • FIGS. 2-7 are schematic structural diagrams of an apparatus for implementing optical logic according to Embodiment 2 of the present invention.
  • FIG. 3 is a flowchart of a method for implementing optical logic according to Embodiment 3 of the present invention.
  • FIG. 4 is a flow chart of a method for implementing optical logic according to Embodiment 4 of the present invention.
  • Embodiment 1 of the present invention provides a device for implementing optical logic.
  • the device includes:
  • the modulation module 101 is configured to receive a first group of optical signals, a second group of optical signals, and a third group of optical signals.
  • the first group of optical signals, the second group of optical signals, and the third group of optical signals each include a CW (Continuous Waves, a continuous wave) signal and at least one OOK (On-Off Keying) optical signal, and the number of paths including the OOK optical signal in the first group of optical signals, the second group of optical signals, and the third group of optical signals is the same
  • the frequencies of the CW signals included in the first group of optical signals, the second group of optical signals, and the third group of optical signals are different, and a sum of frequencies of any two CW signals is greater than a frequency of the third CW signal,
  • Performing XPM (Cross-Phase Modulation) processing on the first group of optical signals respectively modulating at least one OOK optical signal of the first group of optical signals to one CW signal to obtain a first modulated optical signal, and second to The group of optical signals is
  • the first nonlinear module 102 is configured to receive the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal, and performs FWM (Four) on the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal.
  • Wave Mixing, four-wave mixing processes the first idler light, the second idler light, and the third idler light.
  • the frequencies of the first idler light, the second idler light, and the third idler light are different. And both are different from the frequencies of the optical signals of the first group of optical signals, the second group of optical signals, and the third group of optical signals.
  • the modulation module 101 receives the first group of optical signals, the second group of optical signals, and the third group of optical signals, and performs XPM on the first group of optical signals, the second group of optical signals, and the third group of optical signals, respectively.
  • the first nonlinear module 102 performs FWM processing on the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal to obtain a first The idle frequency light, the second idle frequency light, and the third idle frequency light, wherein the first group of optical signals, the second group of optical signals, and the third group of optical signals include multiple optical signals, thereby enabling at least three inputs of the present invention Optical logic operation.
  • An embodiment of the present invention provides an apparatus for implementing optical logic.
  • the apparatus includes: a modulation module 101 and a first nonlinear module 102; an output of the modulation module 101 and an input of the first nonlinear module 102. End connection.
  • the modulation module 101 is configured to receive a first group of optical signals, a second group of optical signals, and a third group of optical signals, wherein the first group of optical signals, the second group of optical signals, and the third group of optical signals each include a CW signal and at least one channel An OOK optical signal, and wherein the first group of optical signals, the second group of optical signals, and the third group of optical signals comprise the same number of paths of the OOK optical signal, and the first group of optical signals, the second group of optical signals, and the third group of optical signals.
  • the frequency of the CW signal included in the signal is different, and the sum of the frequencies of any two CW signals is greater than the frequency of the third CW signal, and the first group of optical signals are respectively subjected to XPM processing, and the first group of optical signals are At least one OOK optical signal is modulated onto one CW signal to obtain a first modulated optical signal, and the second set of optical signals is subjected to XPM processing, and at least one OOK optical signal of the second
  • the first nonlinear module 102 is configured to receive the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal, and performs FWM processing on the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal.
  • the first idler light, the second idler light, and the third idler light, the frequencies of the first idler light, the second idler light, and the third idler light are different, and both are combined with the first set of optical signals, The frequencies of the second set of optical signals and the third set of optical signals are different.
  • the first group of optical signals includes a preset numerical path OOK optical signal and a first CW signal; the second group of optical signals includes a preset numerical path OOK optical signal and a second CW signal; and the third group of optical signals
  • the preset value road OOK optical signal and one third CW signal are included, and the frequency of the first CW signal, the frequency of the second CW signal, and the frequency of the third CW signal are different, and the first CW signal and the second CW signal And the sum of the frequencies of any two of the CW signals in the third CW signal is greater than the frequency of the third CW signal.
  • the sum of the frequency of the first CW signal and the frequency of the second CW signal is greater than the frequency of the third CW signal
  • the sum of the frequency of the first CW signal and the frequency of the third CW signal is greater than the frequency of the second CW signal
  • second The sum of the frequency of the CW signal and the frequency of the third CW signal is greater than the frequency of the first CW signal.
  • the preset value is an integer greater than or equal to 1.
  • the preset values are 1, 2, 3, or 4, and so on.
  • the first group of optical signals is modulated into a first modulated optical signal by the modulation module 101, and the second set of optical signals is modulated into a second modulated optical signal.
  • the third set of optical signals is modulated into a third modulated optical signal to effect at least three input optical logic operations.
  • the first non-linear module 102 performs FWM processing on the first modulated light, the second modulated light, and the third modulated light to obtain the first idler light, the second idler light, and the third idler light, and the following steps (1) ) to (3) implementation, including:
  • the first nonlinear module 102 performs FWM processing on the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal to obtain the first idler light;
  • the first non-linear module 102 modulates the information carried by the first modulated optical signal, the information carried by the second modulated optical signal, and the information carried by the third modulated optical signal into the idler light in an added or subtractive manner, that is, The sum of the information carried by the modulated optical signal and the information carried by the second modulated optical signal minus the information carried by the third modulated optical signal, to obtain the first idler light.
  • the first nonlinear module 102 performs FWM processing on the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal to obtain second idler light;
  • the first non-linear module 102 modulates the information carried by the first modulated optical signal, the information carried by the second modulated optical signal, and the information carried by the third modulated optical signal into the idler light in an added or subtractive manner, that is, The sum of the information carried by the modulated optical signal and the information carried by the third modulated optical signal minus the information carried by the second modulated optical signal, to obtain the second idler light.
  • the first nonlinear module 102 performs FWM processing on the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal to obtain a third idler light.
  • the first non-linear module 102 modulates the information carried by the first modulated optical signal, the information carried by the second modulated optical signal, and the information carried by the third modulated optical signal into the idler light in an added or subtractive manner, that is, The sum of the information carried by the second modulated optical signal and the information carried by the third modulated optical signal minus the information carried by the first modulated optical signal, to obtain a third idler light.
  • the modulation module 101 includes an asymmetric coupling module 1011 and a second nonlinear module 1012.
  • the output of the asymmetric coupling module 1011 is coupled to the input of the second nonlinear module 1012; the output of the second nonlinear module 1012 is coupled to the input of the first nonlinear module 102.
  • the asymmetric coupling module 1011 is configured to receive a first group of optical signals, a second group of optical signals, and a third group of optical signals, respectively, a power ratio between the optical signals of the first group of optical signals, and a second group of optical signals.
  • the power ratio between the included optical signals and the optical signals included in the third optical signals are adjusted to a preset ratio, and the adjusted first group of optical signals, the second group of optical signals, and
  • the third set of optical signals is output to the second non-linear module 1012.
  • the asymmetric coupling module 1011 receives the first group of optical signals outputted by the optical output, and adjusts the power ratio between the optical signals included in the first optical signal to a preset ratio; the asymmetric coupling module 1011 receives the optical output output.
  • the second group of optical signals adjusts a power ratio between the optical signals of the second group of optical signals to a preset ratio; the asymmetric coupling module 1011 receives the third group of optical signals output by the optical output, and the third The power ratio between the optical signals included in the group optical signal is adjusted to a preset ratio.
  • the asymmetric coupling module 1011 outputs the adjusted first group of optical signals, the second group of optical signals, and the third group of optical signals to the second nonlinear module 1012.
  • the asymmetric coupling module 1011 may be composed of an attenuator for modulating the power of different optical signals, and a coupler for coupling the adjusted multiple optical signals.
  • the asymmetric coupling module 1011 can also be an asymmetric coupler, which can simultaneously realize the power allocation and coupling of different optical signals, thereby reducing the complexity of the system structure.
  • the asymmetric coupling module 1011 may be an asymmetric multimode interference coupler or an asymmetric photonic crystal coupler or the like.
  • the asymmetric coupling module 1011 can be an asymmetric multimode interference coupler; since the asymmetric multimode interference coupler is easy to implement on the chip, selecting an asymmetric multimode interference coupler can improve the integration.
  • the second nonlinear module 1012 is configured to perform XPM processing on the adjusted first group of optical signals, the second group of optical signals, and the third group of optical signals to obtain first modulated optical signals, second modulated optical signals, and third modulated optical signals, respectively. And outputting the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal to the first nonlinear module 102.
  • the second non-linear module 1012 receives the adjusted first group of optical signals, the second group of optical signals, and the third group of optical signals output by the asymmetric coupling module 1011, and performs XPM processing on the adjusted first group of optical signals to obtain the first Modulating the optical signal; performing XPM processing on the adjusted second group of optical signals to obtain a second modulated optical signal; and performing XPM processing on the adjusted third set of optical signals to obtain a third modulated optical signal.
  • the second nonlinear module 1012 outputs the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal to the first nonlinear module 102.
  • the second non-linear module 1012 is a device having an XPM function.
  • the second non-linear module 1012 is a silicon-based nonlinear device having an XPM function, such as a ridge waveguide, a slit waveguide, a slab waveguide, or a photonic crystal waveguide.
  • the second non-linear module 1012 is a ridge waveguide. Since the ridge waveguide is easy to obtain cross-phase modulation, the modulation speed is fast and the structure and process steps are simple and easy to implement. Moreover, the second non-linear module 1012 has a lower power consumption requirement.
  • the first non-linear module 102 is a device having an FWM function, for example, the first non-linear module 102 is a silicon-based nonlinear device such as a ridge waveguide, a slit waveguide, a slab waveguide, or a photonic crystal waveguide.
  • the first nonlinear module 102 is a ridge waveguide. Since the ridge waveguide is easy to obtain a four-wave mixing effect, the mixing speed is fast, the structure and the process steps are simple, and the implementation is easy. Moreover, the first non-linear module 102 has a lower power consumption requirement.
  • the asymmetric coupling module 1011 includes:
  • the output of the coupling unit 10113 is coupled to the input of the second non-linear module 1012.
  • the first asymmetric coupling unit 10111 is configured to receive the first group of optical signals, and adjust a power ratio between the OOK optical signals included in the first group of optical signals to a preset ratio, and include a first group of optical signals.
  • the first CW signal and the adjusted OOK optical signals are coupled into a first mixed signal, and the first mixed signal is output to the second nonlinear module 1012.
  • the second asymmetric coupling unit 10112 is configured to receive the second group of optical signals, adjust a power ratio between the OOK optical signals included in the second group of optical signals to a preset ratio, and include a second group of optical signals.
  • the two CW signals and the adjusted OOK optical signals are coupled into a second mixed signal, and the second mixed signal is output to the second nonlinear module 1012;
  • the third asymmetric coupling unit 10113 is configured to receive the third group of optical signals, adjust a power ratio between the OOK optical signals included in the third group of optical signals to a preset ratio, and include a third group of optical signals.
  • the three CW signals and the adjusted OOK optical signals are coupled into a third mixed signal, and the third mixed signal is output to the second nonlinear module 1012.
  • the OOK optical signal is a special case of the amplitude keyed modulated optical signal.
  • One amplitude of the OOK optical signal is taken as 0, and the other amplitude is taken as 0.
  • the amplitude of the OOK optical signal is 0; when the OOK optical signal is located at the peak, that is, the OOK optical signal is high energy, the amplitude of the OOK optical signal is non-zero.
  • the amplitude of the OOK optical signal is proportional to the power of the OOK optical signal.
  • the first asymmetric coupling unit 10111, the second asymmetric coupling unit 10112, and the third asymmetric coupling unit 10113 may each be composed of an attenuator and a coupler, or a first asymmetric coupling unit 10111, a second asymmetric coupling unit 10112, and
  • the third asymmetric coupling unit 10113 is an asymmetric coupler, which can simultaneously implement the matching and coupling of different optical signal powers.
  • the first asymmetric coupling unit 10111, the second asymmetric coupling unit 10112, and the third asymmetric coupling unit 10113 are an asymmetric multimode interference coupler or an asymmetric photonic crystal coupler or the like.
  • the first asymmetric coupling unit 10111, the second asymmetric coupling unit 10112 and the third asymmetric coupling unit 10113 are simultaneously asymmetric multimode interference couplers; since the asymmetric multimode interference coupler is easy to implement on a chip, the selection An asymmetric multimode interference coupler can increase integration.
  • the preset ratio can be set and changed according to the preset value. For example, when the preset value is 1, the power adjustment is not performed; when the preset value is 2, the preset ratio is 1:2 or 2:1; the preset value is At 3 o'clock, the preset ratio is 1:2:4 or 4:2:1; when the preset value is 4, the preset ratio is 1:2:4:8 or 8:4:2:1.
  • the first group of optical signals includes an OOK1 optical signal and a CW1 signal
  • the second group of optical signals includes an OOK2 optical signal and a CW2 signal
  • the third group of optical signals includes an OOK3 optical signal and a CW3 signal.
  • the OOK1 optical signal and the CW1 signal are simultaneously input into the first asymmetric coupling unit 10111,
  • An asymmetric coupling unit 10111 couples the OOK1 optical signal and the CW1 signal into a first mixed signal, and outputs the first mixed signal to the second nonlinear module 1012.
  • the OOK2 optical signal and the CW2 signal are simultaneously input into the second asymmetric coupling unit 10112, and the second asymmetric coupling unit 10112 couples the OOK2 optical signal and the CW2 signal into a second mixed signal, and outputs the second mixed signal to the second nonlinearity.
  • the OOK3 optical signal and the CW3 signal are simultaneously input into the third asymmetric coupling unit 10113, and the third asymmetric coupling unit 10113 couples the OOK3 optical signal and the CW3 signal into a third mixed signal, and outputs the third mixed signal to the second nonlinearity.
  • Module 1012 thereby implementing a three-input optical logic operation.
  • the first group of optical signals includes an OOK1 optical signal, an OOK2 optical signal, and a CW1 signal; and the second group of optical signals includes an OOK3 optical signal, an OOK4 optical signal, and a CW2 signal; and the third group of optical signals;
  • the signal includes an OOK5 optical signal, an OOK6 optical signal, and a CW3 signal.
  • the OOK1 optical signal, the OOK2 optical signal, and the CW1 signal are simultaneously input into the first asymmetric coupling unit 10111, and the first asymmetric coupling unit 10111 adjusts the power ratio between the OOK1 optical signal and the OOK2 optical signal to 1:2 or 2: 1; coupling the adjusted OOK1 optical signal, the OOK2 optical signal, and the CW1 signal into a first mixed signal, and outputting the first mixed signal to the second nonlinear module 1012.
  • the OOK3 optical signal, the OOK4 optical signal, and the CW2 signal are simultaneously input into the second asymmetric coupling unit 10112, and the second asymmetric coupling unit 10112 adjusts the power ratio between the OOK3 optical signal and the OOK4 optical signal to 1:2 or 2:1; the adjusted OOK3 optical signal, the OOK4 optical signal and the CW2 signal are coupled into a second mixed signal, and the second mixed signal is output to the second nonlinear module 1012.
  • the OOK5 optical signal, the OOK6 optical signal, and the CW3 signal are simultaneously input into the third asymmetric coupling unit 10113, and the third asymmetric coupling unit 10113 adjusts the power ratio between the OOK5 optical signal and the OOK6 optical signal to 1:2 or 2:1;
  • the adjusted OOK5 optical signal, the OOK6 optical signal and the CW3 signal are coupled into a third mixed signal, and the third mixed signal is output to the second nonlinear module 1012, thereby implementing a six-input optical logic operation.
  • the first group of optical signals includes an OOK1 optical signal, an OOK2 optical signal, an OOK3 optical signal, and a CW1 signal; and the second group of optical signals includes an OOK4 optical signal, an OOK5 optical signal, and an OOK6
  • the optical signal and the CW2 signal; the third group of optical signals include an OOK7 optical signal, an OOK8 optical signal, an OOK9 optical signal, and a CW3 signal.
  • the OOK1 optical signal, the OOK2 optical signal, the OOK3 optical signal, and the CW1 signal are simultaneously input into the first asymmetric coupling unit 10111, and the first asymmetric coupling unit 10111 transmits the OOK1 optical signal,
  • the power ratio between the OOK2 optical signal and the OOK3 optical signal is adjusted to 1:2:4 or 4:2:1; the adjusted OOK1 optical signal, the OOK2 optical signal, the OOK3 optical signal, and the CW1 signal are coupled into the first mixed signal.
  • the first mixed signal is output to the second nonlinear module 1012.
  • the OOK4 optical signal, the OOK5 optical signal, the OOK6 optical signal, and the CW2 signal are simultaneously input into the second asymmetric coupling unit 10112, and the second asymmetric coupling unit 10112 combines the OOK4 optical signal, the OOK5 optical signal, and the OOK6 optical signal.
  • the power ratio is adjusted to 1:2:4 or 4:2:1; the adjusted OOK4 optical signal, OOK5 optical signal, OOK6 optical signal and CW2 signal are coupled into a second mixed signal, and the second mixed signal is output to the second Nonlinear module 1012.
  • the OOK7 optical signal, the OOK8 optical signal, the OOK9 optical signal, and the CW3 signal are simultaneously input into the third asymmetric coupling unit 10113, and the third asymmetric coupling unit 10113 connects the OOK7 optical signal, the OOK8 optical signal, and the OOK9 optical signal.
  • the power ratio is adjusted to 1:2:4 or 4:2:1; the adjusted OOK7 optical signal, OOK8 optical signal, OOK9 optical signal and CW3 signal are coupled into a third mixed signal, and the third mixed signal is output to the second The non-linear module 1012, thereby implementing nine-input optical logic operations.
  • the first group of optical signals includes an OOK1 optical signal, an OOK2 optical signal, an OOK3 optical signal, an OOK4 optical signal, and a CW1 signal; and the second group of optical signals includes an OOK5 optical signal and an OOK6.
  • the third group of optical signals includes an OOK9 optical signal, an OOK10 optical signal, an OOK11 optical signal, an OOK12 optical signal, and a CW3 signal.
  • the OOK1 optical signal, the OOK2 optical signal, the OOK3 optical signal, the OOK4 optical signal, and the CW1 signal are simultaneously input into the first asymmetric coupling unit 10111, and the first asymmetric coupling unit 10111 combines the OOK1 optical signal, the OOK2 optical signal, and the OOK3 optical signal.
  • the power ratio between the OOK4 optical signals is adjusted to 1:2:4:8 or 8:4:2:1; the adjusted OOK1 optical signal, OOK2 optical signal, OOK3 optical signal, OOK4 optical signal and CW1 signal are coupled into The first mixed signal outputs the first mixed signal to the second nonlinear module 1012.
  • the OOK5 optical signal, the OOK6 optical signal, the OOK7 optical signal, the OOK8 optical signal, and the CW2 signal are simultaneously input into the second asymmetric coupling unit 10112, and the second asymmetric coupling unit 10112 combines the OOK5 optical signal, the OOK6 optical signal, and the OOK7 light.
  • the power ratio between the signal and the OOK8 optical signal is adjusted to 1:2:4:8 or 8:4:2:1; the adjusted OOK5 optical signal, OOK6 optical signal, OOK7 optical signal, OOK8 optical signal and CW2 signal
  • the second mixed signal is coupled to the second mixed signal 1012.
  • the OOK9 optical signal, the OOK10 optical signal, the OOK11 optical signal, the OOK12 optical signal, and the CW1 signal are simultaneously input into the third asymmetric coupling unit 10113, and the third asymmetric coupling unit 10113 transmits the OOK9 optical signal, the OOK10 optical signal, and the OOK11 light.
  • the power ratio between the signal and the OOK12 optical signal is adjusted to 1:2:4:8 or 8:4:2:1; the adjusted OOK9 optical signal, OOK10 optical signal, OOK11 optical signal, OOK12 optical signal and CW3 signal Coupled into a third mixed signal, the third mixed signal is output to the second non-linear module 1012, thereby implementing a twelve-input optical logic operation.
  • the second non-linear module 1012 includes:
  • the first nonlinear device 10121 is configured to receive the first mixed signal, and perform XPM processing on the first mixed signal to obtain a first modulated optical signal;
  • the second nonlinear device 10122 is configured to receive the second mixed signal, and perform XPM processing on the second mixed signal to obtain the second modulated optical signal;
  • the third nonlinear device 10123 is configured to receive the third mixed signal, and perform XPM processing on the third mixed signal to obtain a third modulated optical signal.
  • the first nonlinear device 10121 receives the first mixed signal, acquires the adjusted OOK optical signals and the first CW signals included in the first mixed signal, and modulates the adjusted information of the OOK optical signals to the first On the CW signal, the modulated first CW signal, that is, the first modulated optical signal, is obtained.
  • the second nonlinear device 10122 receives the second mixed signal, acquires the adjusted OOK optical signals and the second CW signals included in the second mixed signal, and modulates the adjusted information of the OOK optical signals to the second On the CW signal, the modulated second CW signal, that is, the second modulated optical signal, is obtained.
  • the third nonlinear device 10123 receives the third mixed signal, acquires the adjusted OOK optical signals and the third CW signals included in the third mixed signal, and modulates the adjusted information of the OOK optical signals to the third On the CW signal, a modulated third CW signal, that is, a third modulated optical signal is obtained.
  • the first nonlinear device 10121, the second nonlinear device 10122, and the third nonlinear device 10123 are devices having an XPM function, for example, the first nonlinear device 10121, the second nonlinear device 10122, and the third nonlinear device 10123 are Silicon-based nonlinear devices with XPM functionality, such as ridge waveguides, slot waveguides, slab waveguides, or photonic crystal waveguides.
  • the first nonlinear device 10121, the second nonlinear device 10122 and the third nonlinear device 10123 can all be ridge waveguides. Since the ridge waveguide is easy to obtain cross-phase modulation, the modulation speed is fast and the structure and process steps are simple and easy to implement. .
  • the first nonlinear device 10121 receives the first mixed signal, and performs XPM processing on the OOK1 optical signal and the CW1 signal in the first mixed signal to obtain the first BPSK format.
  • the optical signal is modulated to output a first modulated optical signal in BPSK format to the first nonlinear module 102.
  • the first non-linear device 10121 performs XPM processing on the OOK1 optical signal and the CW1 signal in the first mixed signal, and the process of obtaining the first modulated optical signal in the BPSK format may be:
  • processing the OOK1 optical signal and CW1 is to generate a ⁇ phase modulation for CW1;
  • the second mixed signal is an OOK2 optical signal and a CW2 signal
  • the second nonlinear device 10122 receives the second mixed signal, and performs XPM processing on the OOK2 optical signal and the CW2 signal in the second mixed signal to obtain a second BPSK format.
  • the optical signal is modulated to output a second modulated optical signal in BPSK format to the first nonlinear module 102.
  • the third mixed signal is an OOK3 optical signal and a CW3 signal
  • the third nonlinear device 10123 receives the third mixed signal, and performs XPM processing on the OOK3 optical signal and the CW3 signal in the third mixed signal to obtain a third BPSK format.
  • the optical signal is modulated to output a third modulated optical signal in BPSK format to the first nonlinear module 102.
  • the first mixed signal is the adjusted OOK1 optical signal and the OOK2 optical signal and the CW1 signal
  • the first nonlinear device 10121 receives the first mixed signal, and the adjusted OOK1 optical signal and the OOK2 in the first mixed signal.
  • the optical signal and the CW1 signal are subjected to XPM processing to obtain a first modulated optical signal in the QPSK format, and the first modulated optical signal in the QPSK format is output to the first nonlinear module 102.
  • the first nonlinear device 10121 performs XPM processing on the adjusted OOK1 optical signal and the OOK2 optical signal and the CW1 signal in the first mixed signal to obtain a first modulated optical signal in the QPSK format.
  • the process is:
  • phase modulation is not performed on CW1 by XPM processing, and the phase change is 0.
  • the second mixed signal is the adjusted OOK3 optical signal and the OOK4 optical signal and the CW2 signal, and the second nonlinear device 10122 receives the second mixed signal, and the adjusted OOK3 optical signal and the OOK4 optical signal in the second mixed signal.
  • the CW2 signal is subjected to XPM processing to obtain a second modulated optical signal in the QPSK format, and the second modulated optical signal in the QPSK format is output to the first nonlinear module 102.
  • the third mixed signal is the adjusted OOK5 optical signal and the OOK6 optical signal and the CW3 signal, and the third nonlinear device 10123 receives the third mixed signal, and the adjusted OOK5 optical signal and the OOK6 optical signal in the third mixed signal.
  • the CW3 signal is subjected to XPM processing to obtain a third modulated optical signal in the QPSK format, and the third modulated optical signal in the QPSK format is output to the first nonlinear module 102.
  • the first nonlinear device 10121 receives the first mixed signal, and the adjusted OOK1 in the first mixed signal.
  • the optical signal, the OOK2 optical signal, the OOK3 optical signal, and the CW1 signal are subjected to XPM processing to obtain a first modulated optical signal in an 8PSK format, and the first modulated optical signal in an 8PSK format is output to the first nonlinear module 102.
  • the first non-linear device 10121 performs XPM processing on the adjusted OOK1 optical signal, the OOK2 optical signal, and the OOK3 optical signal and the CW1 signal in the first mixed signal to obtain the first modulated optical signal in the 8PSK format:
  • phase change is 1/4 ⁇ ;
  • phase change is 2/4 ⁇ ;
  • phase change is 4/4 ⁇ ;
  • phase change is 5/4 ⁇ ;
  • phase change is 6/4 ⁇ ;
  • phase change is 7/4 ⁇ ;
  • the OOK1 optical signal is low energy, that is, "0”
  • the OOK2 optical signal is low energy, that is, “0”
  • the OOK3 optical signal is low energy, that is, when it is "0”
  • CW1 is processed by XPM without phase modulation.
  • the phase change is zero.
  • the second mixed signal is the adjusted OOK4 optical signal, the OOK5 optical signal, and the OOK6 optical signal, and the CW2 signal
  • the first nonlinear device 10121 receives the second mixed signal, and the adjusted OOK4 optical signal in the second mixed signal
  • the OOK5 optical signal and the OOK6 optical signal and the CW2 signal are subjected to XPM processing to obtain a second modulated optical signal in the 8PSK format
  • the second modulated optical signal in the 8PSK format is output to the first nonlinear module 102.
  • the third mixed signal is the adjusted OOK7 optical signal, the OOK8 optical signal, and the OOK9 optical signal, and the CW3 signal, then the first nonlinear device 10121 receives the third mixed signal, and the adjusted OOK7 optical signal in the third mixed signal,
  • the OOK8 optical signal and the OOK9 optical signal and the CW3 signal are subjected to XPM processing to obtain a third modulated optical signal in the 8PSK format, and the third modulated optical signal in the 8PSK format is output to the first nonlinear module 102.
  • the first nonlinear device 10121 receives the first mixed signal, and is in the first mixed signal.
  • Adjusted OOK1 optical signal, OOK2 optical signal OOK3 optical signal The number and the OOK4 optical signal and the CW1 signal are subjected to XPM processing to obtain a first modulated optical signal in the 16PSK format, and the first modulated optical signal in the 16PSK format is output to the first nonlinear module 102.
  • the first non-linear device 10121 performs XPM processing on the adjusted OOK1 optical signal, the OOK2 optical signal OOK3 optical signal, and the OOK4 optical signal and the CW1 signal in the first mixed signal to obtain the first modulated optical signal in the 16PSK format:
  • the OOK1 optical signal When the OOK1 optical signal is high energy, it is "1”, the OOK2 optical signal is low energy, that is, “0”, the OOK3 optical signal is low energy, that is, “0”, and the OOK4 optical signal is low energy, that is, " 0", a phase modulation of CW1 occurs by XPM processing, and the phase change is 1/8 ⁇ ;
  • the OOK1 optical signal When the OOK1 optical signal is low energy, that is, "0”, the OOK2 optical signal is high energy, that is, “2”, the OOK3 optical signal is low energy, that is, “0”, and the OOK4 optical signal is low energy, that is, " 0", a phase modulation of CW1 occurs by XPM processing, and the phase change is 2/8 ⁇ ;
  • the OOK1 optical signal When the OOK1 optical signal is high energy, it is "1”, the OOK2 optical signal is high energy, that is, “2”, the OOK3 optical signal is low energy, that is, “0”, and the OOK4 optical signal is low energy, that is, " 0", a phase modulation of CW1 occurs through XPM processing, the phase change is 3/8 ⁇ ;
  • the OOK1 optical signal is low energy, that is, "0”
  • the OOK2 optical signal is low energy, that is, “0”
  • the OOK3 optical signal is high energy, that is, “4"
  • the OOK4 optical signal is low energy, that is, " 0”
  • a phase modulation of CW1 occurs by XPM processing, the phase change is 4/8 ⁇ ;
  • the OOK1 optical signal When the OOK1 optical signal is high energy, it is "1”, the OOK2 optical signal is low energy, that is, “0”, the OOK3 optical signal is high energy, that is, “4", and the OOK4 optical signal is low energy, that is, " 0", a phase modulation of CW1 occurs through XPM processing, the phase change is 5/8 ⁇ ;
  • the OOK1 optical signal When the OOK1 optical signal is low energy, that is, "0”, the OOK2 optical signal is high energy, that is, “2”, the OOK3 optical signal is high energy, that is, “4", and the OOK4 optical signal is low energy, that is, " 0", a phase modulation of CW1 occurs by XPM processing, and the phase change is 6/8 ⁇ ;
  • the OOK1 optical signal When the OOK1 optical signal is high energy, it is "1”, the OOK2 optical signal is high energy, that is, “2”, the OOK3 optical signal is high energy, that is, “4", and the OOK4 optical signal is low energy, that is, " 0”, a phase modulation of CW1 occurs by XPM processing, the phase change is 7/8 ⁇ ;
  • the OOK1 optical signal is low energy, that is, "0”
  • the OOK2 optical signal is low energy, that is, “0”
  • the OOK3 optical signal is low energy, that is, “0”
  • the OOK4 optical signal is high energy, that is, " 8”
  • a phase modulation of CW1 occurs by XPM processing, the phase change is 8/8 ⁇ ;
  • the OOK1 optical signal When the OOK1 optical signal is high energy, it is "1”, the OOK2 optical signal is high energy, that is, “2”, the OOK3 optical signal is low energy, that is, “0”, and the OOK4 optical signal is high energy, that is, " 8", a phase modulation of CW1 occurs through XPM processing, the phase change is 11/8 ⁇ ;
  • the OOK1 optical signal When the OOK1 optical signal is high energy, it is "1”, the OOK2 optical signal is low energy, that is, “0”, the OOK3 optical signal is high energy, that is, "4", and the OOK4 optical signal is high energy, that is, " 8", a phase modulation of CW1 occurs through XPM processing, the phase change is 13/8 ⁇ ;
  • the OOK1 optical signal is low energy, that is, "0”
  • the OOK2 optical signal is high energy, that is, “2”
  • the OOK3 optical signal is high energy, that is, "4"
  • the OOK4 optical signal is high energy, that is, " 8”
  • a phase modulation of CW1 occurs by XPM processing, the phase change is 14/8 ⁇ ;
  • the OOK1 optical signal When the OOK1 optical signal is high energy, it is "1”, the OOK2 optical signal is high energy, that is, “2”, the OOK3 optical signal is high energy, that is, “4", and the OOK4 optical signal is high energy, that is, “ 8", a phase modulation of CW1 occurs through XPM processing, the phase change is 15/8 ⁇ ;
  • the OOK1 optical signal is low energy, that is, "0”
  • the OOK2 optical signal is low energy, that is, “0”
  • the OOK3 optical signal is low energy, that is, “0”
  • the OOK4 optical signal is low energy, that is, " When 0", phase modulation is not performed on CW1 by XPM processing, that is, the phase change is 0.
  • the second mixed signal is the adjusted OOK5 optical signal, the OOK6 optical signal, the OOK7 optical signal, and the OOK8 optical signal, and the CW2 signal, and the second nonlinear device 10122 receives the second mixed signal for the adjusted second mixed signal.
  • the OOK5 optical signal, the OOK6 optical signal OOK7 optical signal, and the OOK8 optical signal and the CW2 signal are subjected to XPM processing to obtain a second modulated optical signal in the 16PSK format, and the second modulated optical signal in the 16PSK format is output to the first nonlinear module 102.
  • the third mixed signal is the adjusted OOK9 optical signal, the OOK10 optical signal, the OOK11 optical signal, and the OOK12 optical signal, and the CW3 signal
  • the third nonlinear device 10123 receives the third mixed signal
  • the adjusted signal in the third mixed signal OOK9 optical signal, OOK10 optical signal OOK11 optical signal and OOK12 optical signal and CW3 signal are subjected to XPM processing to obtain a third modulated optical signal in 16PSK format.
  • the third modulated optical signal of the 16PSK format is output to the first nonlinear module 102.
  • the apparatus further includes:
  • a first filtering module 103 an input end of the first filtering module 103 is connected to an output end of the modulation module 101, and an output end of the first filtering module 103 is connected to an input end of the first nonlinear module 102;
  • the first filtering module 103 is configured to receive the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal, and respectively filters the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal, and filters The subsequent first modulated optical signal, second modulated optical signal, and third modulated optical signal are output to the first nonlinear module 102.
  • the first filtering module 103 receives the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal output by the modulation module 101, and filters each OOK optical signal in the first modulated optical signal to obtain a modulated a first CW signal, the modulated first CW signal is determined as the filtered first modulated optical signal; and each of the OOK optical signals in the second modulated optical signal is filtered to obtain a modulated second CW signal, The modulated second CW signal is determined as the filtered second modulated optical signal; each of the OOK optical signals in the third modulated optical signal is filtered to obtain a modulated third CW signal, and the modulated third CW is obtained.
  • the signal is determined to be a filtered third modulated optical signal.
  • the first filtering module 103 outputs the filtered first modulated light, the filtered second modulated light, and the filtered third modulated light to the first nonlinear module 102.
  • the first nonlinear module 102 is configured to receive the filtered first modulated optical signal, the second modulated optical signal, and the third modulated optical signal, and the filtered first modulated optical signal, the second modulated optical signal, and The third modulated optical signal is subjected to FWM processing to obtain first idler light, second idler light, and third idler light.
  • the first filtering module 103 is configured to filter the signal light, and the first filtering module 103 may be a silicon-based filter, such as an arrayed waveguide grating, a micro-ring filter, or a micro-disc filter. Preferably, the first filtering module 103 can be a micro-ring filter. Since the micro-ring filter technology is mature and easy to implement, the integration degree can be further improved.
  • the first filtering module 103 includes:
  • a first filter 1031, a second filter 1032, and a third filter 1033 an input of the first filter 1031 is connected to an output of the first nonlinear device 10121 included in the modulation module 101, and an input of the second filter 1032
  • the terminal is connected to the output end of the second nonlinear device 10122 included in the modulation module 101, and the input terminal of the third filter 1033 is connected to the output terminal of the third nonlinear device 10123 included in the modulation module 101, and the output of the first filter 1031 is output.
  • second filter 1032 output and third An output of the filter 1033 is coupled to an input of the first nonlinear module 102;
  • the first filter 1031 is configured to receive the first modulated optical signal output by the first nonlinear device 10121, and filter each OOK optical signal in the first modulated optical signal to obtain a modulated first CW signal, which is modulated.
  • the first CW signal is determined as the filtered first modulated optical signal and output to the first nonlinear module 102;
  • the second filter 1032 is configured to receive the second modulated optical signal output by the second nonlinear device 10122, and filter each OOK optical signal in the second modulated optical signal to obtain a modulated second CW signal, which is modulated.
  • the second CW signal is determined as the filtered second modulated optical signal and output to the first nonlinear module 102;
  • the third filter 1033 is configured to receive the third modulated optical signal output by the third nonlinear device 10123, and filter each OOK optical signal in the third modulated optical signal to obtain a modulated third CW signal, which is modulated.
  • the third CW signal is determined as the filtered third modulated optical signal and output to the first nonlinear module 102.
  • the first filter 1031, the second filter 1032, and the third filter 1033 are used to filter the signal light, and the first filter 1031, the second filter 1032, and the third filter 1033 may be silicon-based filters.
  • the first filter 1031, the second filter 1032, and the third filter 1033 may all be micro-ring filters. Since the micro-ring filter technology is mature and easy to implement, the integration degree can be further improved.
  • the apparatus further includes:
  • a second filtering module 104 the input end of the second filtering module 104 is connected to the output end of the first nonlinear module 102;
  • the second filtering module 104 is configured to receive the first idler light, the second idler light, and the third idler light output by the first nonlinear module 102, and filter out the first idler light, the second idler light, and the first
  • the modulated optical signal in the three idler lights obtains the filtered first idler light, the second idler light, and the third idler light.
  • the first non-linear module 101 performs FWM processing on the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal to obtain the first idler light, the second idler light, and the third idler light, and then outputs the signal.
  • the light includes a first modulated optical signal, a second modulated optical signal, a third modulated optical signal, a first idler light, a second idler light, and a third idler light, and the output is filtered by the second filtering module 104.
  • the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal after the FWM processing is performed in the optical signal. That is, the modulated first CW signal, the second CW signal, and the third CW signal in the output optical signal are filtered by the second filtering module 104 to obtain the filtered first idler light, the second idler light, and the first Three idle frequencies Light.
  • the first nonlinear module 102 receives the first modulated optical signal in the BPSK format output by the first nonlinear device 10121, receives the second modulated optical signal in the BPSK format output by the second nonlinear device 10122, and receives the third nonlinearity.
  • the third modulated optical signal in the BPSK format output by the device 10123 performs FWM processing on the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal in the BPSK format to obtain the first idler light and the second idle in the BPSK format.
  • the frequency light and the third idler light output the first idler light, the second idler light and the third idler light of the BPSK format to the second filtering module 104.
  • the second filtering module 104 receives the first idler light, the second idler light, and the third idler light in the BPSK format output by the first nonlinear module 102, and filters out the first idler light and the second idle in the BPSK format.
  • the modulated first CW signal, the second CW signal and the third CW signal in the frequency and third idler light obtain the first idler light, the second idler light and the third idle in the filtered BPSK format Frequency light.
  • the first nonlinear module 102 receives the first modulated optical signal in the QPSK format output by the first nonlinear device 10121, receives the second modulated optical signal in the QPSK format output by the second nonlinear device 10122, and receives the third non-linear signal.
  • the third modulated optical signal in the QPSK format output by the linear device 10123 performs FWM processing on the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal in the QPSK format to obtain the first idler light in the QPSK format, and the second The idler light and the third idler light output the first idler light, the second idler light, and the third idler light of the QPSK format to the second filtering module 104.
  • the second filtering module 104 receives the first idler light, the second idler light, and the third idler light in the QPSK format output by the first nonlinear module 102, and filters out the first idler light and the second idle in the QPSK format.
  • the modulated first CW signal, the second CW signal and the third CW signal in the frequency and third idler light obtain the first idler light, the second idler light and the third idle in the filtered QPSK format Frequency light.
  • the first nonlinear module 102 receives the first modulated optical signal in the 8PSK format output by the first nonlinear device 10121, receives the second modulated optical signal in the 8PSK format output by the second nonlinear device 10122, and receives the third non-linear signal.
  • the third modulated optical signal of the 8PSK format outputted by the linear device 10123 is subjected to FWM processing of the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal of the 8PSK format to obtain the first idler light in the 8PSK format, and the second The idler light and the third idler light output the first idler light, the second idler light, and the third idler light of the 8PSK format to the second filtering module 104.
  • the second filtering module 104 receives the first idler light, the second idler light, and the third idler light in the 8PSK format output by the first nonlinear module 102, and filters out the first idler light and the second idle in the 8PSK format.
  • the modulated first CW signal, the second CW signal and the third CW signal in the frequency and third idler light obtain the first idler light, the second idler light and the third idle in the filtered 8PSK format Frequency light.
  • the first nonlinear module 102 receives the first modulated optical signal in the 16PSK format output by the first nonlinear device 10121, receives the second modulated optical signal in the 16PSK format output by the second nonlinear device 10122, and receives the third non-linear signal.
  • the third modulated optical signal of the 16PSK format outputted by the linear device 10123 performs FWM processing on the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal in the 16PSK format to obtain the first idler light in the 16PSK format, and the second The idler light and the third idler light output the first idler light, the second idler light, and the third idler light of the 16PSK format to the second filtering module 104.
  • the second filtering module 104 receives the first idler light, the second idler light, and the third idler light in the 16PSK format output by the first nonlinear module 102, and filters out the first idler light and the second idle in the 16PSK format.
  • the modulated first CW signal, the second CW signal and the third CW signal in the frequency light and the third idler light obtain the first idler light, the second idler light and the third idle in the filtered 16PSK format Frequency light.
  • the second filtering module 104 is configured to filter the idler light, and the second filtering module 104 may be a silicon based filter, such as an arrayed waveguide grating, a microring filter, or a microdisk filter.
  • the second filtering module 104 can be a micro-ring filter. Since the micro-ring filter technology is mature and easy to implement, the integration degree can be further improved.
  • the apparatus further includes:
  • a coupling module 105 an input end of the coupling module 105 is connected to an output end of the modulation module 101, and an input end of the coupling module 105 is connected to an input end of the first nonlinear module 102;
  • the coupling module 105 is configured to receive the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal, and couples the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal to the first non- Linear module 102.
  • the device further includes a coupling module 105 that couples the first modulated light, the second modulated light, and the third modulated light to the first nonlinear module 102. .
  • the coupling module 105 can be a silicon based coupler, such as a multimode interference coupler, a directional coupler, or an electronic crystal coupler.
  • the coupling module 105 can be a multi-mode interference coupler. Since the multi-mode interference coupler technology is mature, it is easy to implement on the chip, and the integration degree is improved.
  • the modulation module 101 receives the first group of optical signals, the second group of optical signals, and the third group of optical signals, and performs XPM on the first group of optical signals, the second group of optical signals, and the third group of optical signals, respectively.
  • the first nonlinear module 102 performs FWM on the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal.
  • the first idler light, the second idler light, and the third idler light are obtained, and the present invention can be implemented because the first set of optical signals, the second set of optical signals, and the third set of optical signals include multiple optical signals At least three input optical logic operations.
  • the embodiment of the present invention provides a method for implementing optical logic, and an execution body of the method may be a device for implementing optical logic in the embodiment.
  • the method includes:
  • Step 301 Receive a first group of optical signals, a second group of optical signals, and a third group of optical signals.
  • the first group of optical signals, the second group of optical signals, and the third group of optical signals each include a CW signal and at least one OOK light.
  • a signal, and the number of paths including the OOK optical signal in the first group of optical signals, the second group of optical signals, and the third group of optical signals is the same and included in the first group of optical signals, the second group of optical signals, and the third group of optical signals
  • the frequencies of the CW signals are different, and the sum of the frequencies of any two CW signals is greater than the frequency of the third CW signals;
  • Step 302 Perform XPM processing on the first group of optical signals, and modulate at least one OOK optical signal in the first group of optical signals onto one CW signal to obtain a first modulated optical signal, and perform XPM processing on the second optical signal. Modulating at least one OOK optical signal of the second set of optical signals onto one CW signal to obtain a second modulated optical signal and performing XPM processing on the third set of optical signals, and modulating at least one OOK optical signal of the third set of optical signals Obtaining a third modulated optical signal on a CW signal;
  • Step 303 Perform FWM processing on the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal to obtain first idler light, second idler light, and third idler light, and the first idler light,
  • the frequencies of the second idler light and the third idler light are different, and are different from the frequencies of the optical signals of the first group of optical signals, the second group of optical signals, and the third group of optical signals.
  • the first group of optical signals, the second group of optical signals, and the third group of optical signals are received, and the first group of optical signals, the second group of optical signals, and the third group of optical signals are respectively subjected to XPM processing.
  • a first modulated optical signal, a second modulated optical signal, and a third modulated optical signal performing FWM processing on the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal to obtain a first idler light and a second idle frequency
  • the light and the third idler light, since the first set of optical signals, the second set of optical signals, and the third set of optical signals comprise multiple optical signals, thereby enabling the optical logic operation of at least three inputs.
  • the embodiment of the present invention provides a method for implementing optical logic, and an execution body of the method may be a device for implementing optical logic in the embodiment.
  • the method includes:
  • Step 401 Receive a first group of optical signals, a second group of optical signals, and a third group of optical signals.
  • the first group of optical signals, the second group of optical signals, and the third group of optical signals each include a CW signal and at least one OOK light.
  • a signal, and the number of paths including the OOK optical signal in the first group of optical signals, the second group of optical signals, and the third group of optical signals is the same and included in the first group of optical signals, the second group of optical signals, and the third group of optical signals
  • the frequencies of the CW signals are different, and the sum of the frequencies of any two CW signals is greater than the frequency of the third CW signals;
  • the first group of optical signals includes a preset value path OOK optical signal and a first CW signal; the second group of optical signals includes a preset value path OOK optical signal and a second CW signal; and the third group of optical signals includes a pre- a numerical path OOK optical signal and a third CW signal are provided, and the frequency of the first CW signal, the frequency of the second CW signal, and the frequency of the third CW signal are different, and the first CW signal, the second CW signal, and the first The sum of the frequencies of any two CW signals in the three CW signals is greater than the frequency of the third CW signals.
  • the sum of the frequency of the first CW signal and the frequency of the second CW signal is greater than the frequency of the third CW signal
  • the sum of the frequency of the first CW signal and the frequency of the third CW signal is greater than the frequency of the second CW signal
  • second The sum of the frequency of the CW signal and the frequency of the third CW signal is greater than the frequency of the first CW signal.
  • the OOK optical signal is a special case of the amplitude keyed modulated optical signal.
  • One amplitude of the OOK optical signal is taken as 0, and the other amplitude is taken as 0.
  • the amplitude of the OOK optical signal is 0; when the OOK optical signal is located at the peak, that is, the OOK optical signal is high energy, the amplitude of the OOK optical signal is non-zero.
  • the amplitude of the OOK optical signal is proportional to the power of the OOK optical signal.
  • the preset value is an integer greater than or equal to 1.
  • the preset values are 1, 2, 3, or 4, and so on.
  • a first set of optical signals may be received by the first asymmetric coupling unit 10111, a second set of optical signals may be received by the second asymmetric coupling unit 10112, and a third set of optical signals may be received by the third asymmetric coupling unit 10113.
  • Step 402 The power ratio between the optical signals included in the first group of optical signals, the power ratio between the optical signals included in the second group of optical signals, and the optical signals included in the third group of optical signals.
  • the power ratio between the two is adjusted to a preset ratio;
  • the power ratio between the respective OOK optical signals included in the first group of optical signals is adjusted to be Setting a ratio, adjusting a power ratio between each OOK optical signal included in the second group of optical signals to a preset ratio, and adjusting a power ratio between the OOK optical signals included in the third group of optical signals to a preset proportion.
  • the first asymmetric coupling unit 10111 can receive the power ratio between the OOK optical signals included in the first group of optical signals to a preset ratio, and the first group of optical signals includes the first path.
  • the CW signal and the adjusted OOK optical signals are coupled into a first mixed signal.
  • Receiving, by the second asymmetric coupling unit 10112, a power ratio between the respective OOK optical signals included in the second group of optical signals to a preset ratio, a second CW signal included in the second group of optical signals, and the adjusted Each OOK optical signal is coupled into a second mixed signal.
  • the third asymmetric coupling unit 10113 Receiving, by the third asymmetric coupling unit 10113, a power ratio between the respective OOK optical signals included in the first group of optical signals to a preset ratio, a third CW signal included in the third group of optical signals, and the adjusted Each OOK optical signal is coupled into a third mixed signal.
  • the preset ratio can be set and changed according to the preset value. For example, when the preset value is 1, the power adjustment is not performed; when the preset value is 2, the preset ratio is 1:2 or 2:1; the preset value is At 3 o'clock, the preset ratio is 1:2:4 or 4:2:1; when the preset value is 4, the preset ratio is 1:2:4:8 or 8:4:2:1.
  • the first group of optical signals includes an OOK1 optical signal and a CW1 signal
  • the second group of optical signals includes an OOK2 optical signal and a CW2 signal
  • the third group of optical signals includes an OOK3 optical signal and a CW3 signal.
  • the OOK1 optical signal and the CW1 signal are simultaneously input into the first asymmetric coupling unit 10111, and the first asymmetric coupling unit 10111 couples the OOK1 optical signal and the CW1 signal into a first mixed signal, and outputs the first mixed signal to the second nonlinearity.
  • the OOK2 optical signal and the CW2 signal are simultaneously input into the second asymmetric coupling unit 10112, and the second asymmetric coupling unit 10112 couples the OOK2 optical signal and the CW2 signal into a second mixed signal, and outputs the second mixed signal to the second nonlinearity.
  • the OOK3 optical signal and the CW3 signal are simultaneously input into the third asymmetric coupling unit 10113, and the third asymmetric coupling unit 10113 couples the OOK3 optical signal and the CW3 signal into a third mixed signal, and outputs the third mixed signal to the second nonlinearity.
  • Module 1012 thereby implementing a three-input optical logic operation.
  • the first group of optical signals includes an OOK1 optical signal, an OOK2 optical signal, and a CW1 signal; and the second group of optical signals includes an OOK3 optical signal, an OOK4 optical signal, and a CW2 signal; and the third group of optical signals;
  • the signal includes an OOK5 optical signal, an OOK6 optical signal, and a CW3 signal.
  • the OOK1 optical signal, the OOK2 optical signal, and the CW1 signal are simultaneously input into the first asymmetric coupling unit 10111, and the first asymmetric coupling unit 10111 connects the OOK1 optical signal and the OOK2 optical signal.
  • the power ratio is adjusted to 1:2 or 2:1; the adjusted OOK1 optical signal, the OOK2 optical signal, and the CW1 signal are coupled into a first mixed signal, and the first mixed signal is output to the second nonlinear module 1012.
  • the OOK3 optical signal, the OOK4 optical signal, and the CW2 signal are simultaneously input into the second asymmetric coupling unit 10112, and the second asymmetric coupling unit 10112 adjusts the power ratio between the OOK3 optical signal and the OOK4 optical signal to 1:2 or 2:1; the adjusted OOK3 optical signal, the OOK4 optical signal and the CW2 signal are coupled into a second mixed signal, and the second mixed signal is output to the second nonlinear module 1012.
  • the OOK5 optical signal, the OOK6 optical signal, and the CW3 signal are simultaneously input into the third asymmetric coupling unit 10113, and the third asymmetric coupling unit 10113 adjusts the power ratio between the OOK5 optical signal and the OOK6 optical signal to 1:2 or 2:1;
  • the adjusted OOK5 optical signal, the OOK6 optical signal and the CW3 signal are coupled into a third mixed signal, and the third mixed signal is output to the second nonlinear module 1012, thereby implementing a six-input optical logic operation.
  • the first group of optical signals includes an OOK1 optical signal, an OOK2 optical signal, an OOK3 optical signal, and a CW1 signal; and the second group of optical signals includes an OOK4 optical signal, an OOK5 optical signal, and an OOK6
  • the optical signal and the CW2 signal; the third group of optical signals include an OOK7 optical signal, an OOK8 optical signal, an OOK9 optical signal, and a CW3 signal.
  • the OOK1 optical signal, the OOK2 optical signal, the OOK3 optical signal, and the CW1 signal are simultaneously input into the first asymmetric coupling unit 10111, and the first asymmetric coupling unit 10111 compares the power ratio between the OOK1 optical signal, the OOK2 optical signal, and the OOK3 optical signal. Adjusted to 1:2:4 or 4:2:1; couple the adjusted OOK1 optical signal, OOK2 optical signal, OOK3 optical signal and CW1 signal into a first mixed signal, and output the first mixed signal to the second nonlinearity Module 1012.
  • the OOK4 optical signal, the OOK5 optical signal, the OOK6 optical signal, and the CW2 signal are simultaneously input into the second asymmetric coupling unit 10112, and the second asymmetric coupling unit 10112 combines the OOK4 optical signal, the OOK5 optical signal, and the OOK6 optical signal.
  • the power ratio is adjusted to 1:2:4 or 4:2:1; the adjusted OOK4 optical signal, OOK5 optical signal, OOK6 optical signal and CW2 signal are coupled into a second mixed signal, and the second mixed signal is output to the second Nonlinear module 1012.
  • the OOK7 optical signal, the OOK8 optical signal, the OOK9 optical signal, and the CW3 signal are simultaneously input into the third asymmetric coupling unit 10113, and the third asymmetric coupling unit 10113 connects the OOK7 optical signal, the OOK8 optical signal, and the OOK9 optical signal.
  • the power ratio is adjusted to 1:2:4 or 4:2:1; the adjusted OOK7 optical signal, OOK8 optical signal, OOK9 optical signal and CW3 signal are coupled into a third mixed signal, and the third mixed signal is output to the second Non-linear module 1012 to achieve nine input light Logical operation.
  • the first group of optical signals includes an OOK1 optical signal, an OOK2 optical signal, an OOK3 optical signal, an OOK4 optical signal, and a CW1 signal; and the second group of optical signals includes an OOK5 optical signal and an OOK6.
  • the third group of optical signals includes an OOK9 optical signal, an OOK10 optical signal, an OOK11 optical signal, an OOK12 optical signal, and a CW3 signal.
  • the OOK1 optical signal, the OOK2 optical signal, the OOK3 optical signal, the OOK4 optical signal, and the CW1 signal are simultaneously input into the first asymmetric coupling unit 10111, and the first asymmetric coupling unit 10111 combines the OOK1 optical signal, the OOK2 optical signal, and the OOK3 optical signal.
  • the power ratio between the OOK4 optical signals is adjusted to 1:2:4:8 or 8:4:2:1; the adjusted OOK1 optical signal, OOK2 optical signal, OOK3 optical signal, OOK4 optical signal and CW1 signal are coupled into The first mixed signal outputs the first mixed signal to the second nonlinear module 1012.
  • the OOK5 optical signal, the OOK6 optical signal, the OOK7 optical signal, the OOK8 optical signal, and the CW2 signal are simultaneously input into the second asymmetric coupling unit 10112, and the second asymmetric coupling unit 10112 combines the OOK5 optical signal, the OOK6 optical signal, and the OOK7 light.
  • the power ratio between the signal and the OOK8 optical signal is adjusted to 1:2:4:8 or 8:4:2:1; the adjusted OOK5 optical signal, OOK6 optical signal, OOK7 optical signal, OOK8 optical signal and CW2 signal
  • the second mixed signal is coupled to the second mixed signal 1012.
  • the OOK9 optical signal, the OOK10 optical signal, the OOK11 optical signal, the OOK12 optical signal, and the CW1 signal are simultaneously input into the third asymmetric coupling unit 10113, and the third asymmetric coupling unit 10113 transmits the OOK9 optical signal, the OOK10 optical signal, and the OOK11 light.
  • the power ratio between the signal and the OOK12 optical signal is adjusted to 1:2:4:8 or 8:4:2:1; the adjusted OOK9 optical signal, OOK10 optical signal, OOK11 optical signal, OOK12 optical signal and CW3 signal Coupled into a third mixed signal, the third mixed signal is output to the second non-linear module 1012, thereby implementing a twelve-input optical logic operation.
  • Step 403 Perform cross-phase modulation XPM processing on the adjusted first group of optical signals, the second group of optical signals, and the third group of optical signals to obtain first modulated optical signals, second modulated optical signals, and third modulated optical signals.
  • the first nonlinear device 10121 receives the first mixed signal, and performs XPM processing on the OOK1 optical signal and the CW1 signal in the first mixed signal to obtain the first BPSK format.
  • the optical signal is modulated, and the first modulated optical signal of the BPSK format is output to the first filter 1031.
  • the first non-linear device 10121 performs XPM processing on the OOK1 optical signal and the CW1 signal in the first mixed signal, and the process of obtaining the first modulated optical signal in the BPSK format may be:
  • processing the OOK1 optical signal and CW1 is to generate a ⁇ phase modulation for CW1;
  • the first mixed signal is the adjusted OOK1 optical signal and the OOK2 optical signal and the CW1 signal
  • the first nonlinear device 10121 receives the first mixed signal, and the adjusted OOK1 optical signal and the OOK2 in the first mixed signal.
  • the optical signal and the CW1 signal are subjected to XPM processing to obtain a first modulated optical signal in the QPSK format, and the first modulated optical signal in the QPSK format is output to the first filter 1031.
  • the first non-linear device 10121 performs XPM processing on the adjusted OOK1 optical signal and the OOK2 optical signal and the CW1 signal in the first mixed signal to obtain the first modulated optical signal in the QPSK format:
  • phase modulation is not performed on CW1 by XPM processing, and the phase change is 0.
  • the first mixed signal is the adjusted OOK1 optical signal, OOK2 optical signal, and OOK3.
  • the optical signal and the CW1 signal, the first nonlinear device 10121 receives the first mixed signal, and performs XPM processing on the adjusted OOK1 optical signal, the OOK2 optical signal, the OOK3 optical signal, and the CW1 signal in the first mixed signal to obtain an 8PSK format.
  • the first modulated optical signal outputs the first modulated optical signal in the 8PSK format to the first filter 1031.
  • the first non-linear device 10121 performs XPM processing on the adjusted OOK1 optical signal, the OOK2 optical signal, and the OOK3 optical signal and the CW1 signal in the first mixed signal to obtain the first modulated optical signal in the 8PSK format:
  • phase change is 1/4 ⁇ ;
  • phase change is 2/4 ⁇ ;
  • phase change is 4/4 ⁇ ;
  • phase change is 5/4 ⁇ ;
  • phase change is 6/4 ⁇ ;
  • phase change is 7/4 ⁇ ;
  • the OOK1 optical signal is low energy, that is, "0”
  • the OOK2 optical signal is low energy, that is, “0”
  • the OOK3 optical signal is low energy, that is, when it is "0”
  • CW1 is processed by XPM without phase modulation.
  • the phase change is zero.
  • the first nonlinear device 10121 receives the first mixed signal, and is in the first mixed signal.
  • the adjusted OOK1 optical signal, the OOK2 optical signal OOK3 optical signal, and the OOK4 optical signal and the CW1 signal are subjected to XPM processing to obtain a first modulated optical signal in a 16PSK format, and the first modulated optical signal in a 16PSK format is output to the first filter 1031.
  • the first non-linear device 10121 performs XPM processing on the adjusted OOK1 optical signal, the OOK2 optical signal OOK3 optical signal, and the OOK4 optical signal and the CW1 signal in the first mixed signal to obtain the first modulated optical signal in the 16PSK format:
  • the OOK1 optical signal When the OOK1 optical signal is high energy, it is "1”, the OOK2 optical signal is low energy, that is, “0”, the OOK3 optical signal is low energy, that is, “0”, and the OOK4 optical signal is low energy, that is, " 0", a phase modulation of CW1 occurs by XPM processing, and the phase change is 1/8 ⁇ ;
  • the OOK1 optical signal When the OOK1 optical signal is low energy, that is, "0”, the OOK2 optical signal is high energy, that is, “2”, the OOK3 optical signal is low energy, that is, “0”, and the OOK4 optical signal is low energy, that is, " 0", a phase modulation of CW1 occurs by XPM processing, and the phase change is 2/8 ⁇ ;
  • the OOK1 optical signal When the OOK1 optical signal is high energy, it is "1”, the OOK2 optical signal is high energy, that is, “2”, the OOK3 optical signal is low energy, that is, “0”, and the OOK4 optical signal is low energy, that is, " 0", a phase modulation of CW1 occurs through XPM processing, the phase change is 3/8 ⁇ ;
  • the OOK1 optical signal is low energy, that is, "0”
  • the OOK2 optical signal is low energy, that is, “0”
  • the OOK3 optical signal is high energy, that is, “4"
  • the OOK4 optical signal is low energy, that is, " 0”
  • a phase modulation of CW1 occurs by XPM processing, the phase change is 4/8 ⁇ ;
  • the OOK1 optical signal When the OOK1 optical signal is high energy, it is "1”, the OOK2 optical signal is low energy, that is, “0”, the OOK3 optical signal is high energy, that is, “4", and the OOK4 optical signal is low energy, that is, " 0", a phase modulation of CW1 occurs through XPM processing, the phase change is 5/8 ⁇ ;
  • the OOK1 optical signal When the OOK1 optical signal is low energy, that is, "0”, the OOK2 optical signal is high energy, that is, “2”, the OOK3 optical signal is high energy, that is, “4", and the OOK4 optical signal is low energy, that is, " 0", a phase modulation of CW1 occurs by XPM processing, and the phase change is 6/8 ⁇ ;
  • the OOK1 optical signal When the OOK1 optical signal is high energy, it is "1”, the OOK2 optical signal is high energy, that is, “2”, the OOK3 optical signal is high energy, that is, “4", and the OOK4 optical signal is low energy, that is, " 0”, a phase modulation of CW1 occurs by XPM processing, the phase change is 7/8 ⁇ ;
  • the OOK1 optical signal When the OOK1 optical signal is high energy, it is "1”, the OOK2 optical signal is high energy, that is, “2”, the OOK3 optical signal is low energy, that is, “0”, and the OOK4 optical signal is high energy, that is, " 8", a phase modulation of CW1 occurs through XPM processing, the phase change is 11/8 ⁇ ;
  • the OOK1 optical signal When the OOK1 optical signal is high energy, it is "1”, the OOK2 optical signal is low energy, that is, “0”, the OOK3 optical signal is high energy, that is, "4", and the OOK4 optical signal is high energy, that is, " 8", a phase modulation of CW1 occurs through XPM processing, the phase change is 13/8 ⁇ ;
  • the OOK1 optical signal is low energy, that is, "0”
  • the OOK2 optical signal is high energy, that is, “2”
  • the OOK3 optical signal is high energy, that is, "4"
  • the OOK4 optical signal is high energy, that is, " 8”
  • a phase modulation of CW1 occurs by XPM processing, the phase change is 14/8 ⁇ ;
  • the OOK1 optical signal When the OOK1 optical signal is high energy, it is "1”, the OOK2 optical signal is high energy, that is, “2”, the OOK3 optical signal is high energy, that is, “4", and the OOK4 optical signal is high energy, that is, “ 8", a phase modulation of CW1 occurs through XPM processing, the phase change is 15/8 ⁇ ;
  • the OOK1 optical signal is low energy, that is, "0”
  • the OOK2 optical signal is low energy, that is, “0”
  • the OOK3 optical signal is low energy, that is, “0”
  • the OOK4 optical signal is low energy, that is, " When 0", phase modulation is not performed on CW1 by XPM processing, that is, the phase change is 0.
  • the second nonlinear device 10122 receives the second mixed signal, and performs XPM processing on the OOK2 optical signal and the CW2 signal in the second mixed signal to obtain a second BPSK format. Modulating the optical signal, the second modulation in BPSK format The optical signal is output to the second filter 1032.
  • the second nonlinear device 10122 receives the second mixed signal, and the adjusted OOK3 optical signal in the second mixed signal, OOK4
  • the optical signal and the CW2 signal are subjected to XPM processing to obtain a second modulated optical signal in the QPSK format, and the second modulated optical signal in the QPSK format is output to the second filter 1032.
  • the first nonlinear device 10121 receives the second mixed signal, and the adjusted OOK4 in the second mixed signal.
  • the optical signal, the OOK5 optical signal, and the OOK6 optical signal and the CW2 signal are subjected to XPM processing to obtain a second modulated optical signal in the 8PSK format, and the second modulated optical signal in the 8PSK format is output to the second filter 1032.
  • the second nonlinear device 10122 receives the second mixed signal, and the second mixed signal
  • the adjusted OOK5 optical signal, the OOK6 optical signal OOK7 optical signal, and the OOK8 optical signal and the CW2 signal are subjected to XPM processing to obtain a second modulated optical signal in the 16PSK format, and the second modulated optical signal in the 16PSK format is output to the second filter 1032.
  • the third nonlinear device 10123 receives the third mixed signal, and performs XPM processing on the OOK3 optical signal and the CW3 signal in the third mixed signal to obtain a third BPSK format.
  • the optical signal is modulated, and the third modulated optical signal of the BPSK format is output to the third filter 1033.
  • the third nonlinear device 10123 receives the third mixed signal, and the adjusted OOK5 optical signal in the third mixed signal, OOK6
  • the optical signal and the CW3 signal are subjected to XPM processing to obtain a third modulated optical signal in the QPSK format, and the third modulated optical signal in the QPSK format is output to the third filter 1033.
  • the first nonlinear device 10121 receives the third mixed signal, and the adjusted OOK7 in the third mixed signal.
  • Optical signal, OOK8 optical signal and OOK9 optical signal and CW3 The signal is subjected to XPM processing to obtain a third modulated optical signal in the 8PSK format, and the third modulated optical signal in the 8PSK format is output to the third filter 1033.
  • the third nonlinear device 10123 receives the third mixed signal, and the third mixed signal
  • the adjusted OOK9 optical signal, the OOK10 optical signal OOK11 optical signal, the OOK12 optical signal, and the CW3 signal are subjected to XPM processing to obtain a third modulated optical signal in the 16PSK format, and the third modulated optical signal in the 16PSK format is output to the third filter 1033.
  • Step 404 Filter each OOK optical signal in the first modulated optical signal, each OOK optical signal in the second modulated optical signal, and each OOK optical signal in the third modulated optical signal.
  • the first OW optical signal in the first modulated optical signal is filtered by the first filter 1031 to obtain a modulated first CW signal, and the modulated first CW signal is determined as the filtered first modulated optical signal; Filtering each of the OOK optical signals in the second modulated optical signal by the second filter 1032 to obtain a modulated second CW signal, and determining the modulated second CW signal as the filtered second modulated optical signal; Each of the OOK optical signals in the third modulated optical signal is filtered by the third filter 1033 to obtain a modulated third CW signal, and the modulated third CW signal is determined as the filtered third modulated optical signal.
  • the first filter 1031 converts the first modulated optical signal in the BPSK format, the first modulated optical signal in the QPSK format, the first modulated optical signal in the 8PSK format, or the OOK optical signal in the first modulated optical signal in the 16PSK format.
  • Second filter 1032 will BPSK
  • the formatted second modulated optical signal, the QPSK format second modulated optical signal, the 8PSK format second modulated optical signal, or the 16PSK format second modulated optical signal is filtered out to obtain a filtered BPSK format.
  • third filter 1033 uses a third modulated optical signal in BPSK format, QPSK
  • the third modulated optical signal in the format, the third modulated optical signal in the 8PSK format, or the OOK optical signal in the third modulated optical signal in the 16PSK format is filtered out to obtain the filtered BPSK format.
  • the first group of optical signals is modulated into a first modulated optical signal by the modulation module 101, and the second set of optical signals is modulated into a second adjusted
  • the light-making signal modulates the third set of optical signals into a third modulated optical signal to achieve at least three-input optical logic operations.
  • Step 405 Perform four-wave mixing FWM processing on the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal to obtain the first idler light, the second idler light, and the third idler light.
  • the frequencies of the frequency light, the second idler light, and the third idler light are different, and are different from the frequencies of the optical signals of the first group of optical signals, the second group of optical signals, and the third group of optical signals;
  • Performing FWM processing on the filtered first modulated light, the second modulated light, and the third modulated light to obtain the first idler light, the second idler light, and the third idler light may be performed by the following steps (1) to (3) Implementation, including:
  • the information carried by the filtered first modulated optical signal, the information carried by the filtered second modulated optical signal, and the information carried by the filtered third modulated optical signal are modulated onto the idler light in an added or subtracted manner.
  • the information carried by the filtered first modulated optical signal and the information carried by the filtered second modulated optical signal are subtracted from the information carried by the filtered third modulated optical signal to obtain the first idler light.
  • the first nonlinear module 101 performs FWM processing on the first modulated optical signal in the filtered BPSK format, the second modulated optical signal in the BPSK format, and the third modulated optical signal in the BPSK format to obtain the first idler light in the BPSK format.
  • the first modulated optical signal, the second modulated optical signal in the 8PSK format, and the third modulated optical signal in the 8PSK format are FWM processed to obtain the first idler light in the 8PSK format;
  • the second modulated optical signal of the 16PSK format and the third modulated optical signal of the 16PSK format are subjected to FWM processing to obtain the first idler light of the 16PSK format.
  • the information carried by the filtered first modulated optical signal, the information carried by the filtered second modulated optical signal, and the information carried by the filtered third modulated optical signal are modulated onto the idler light in an added or subtracted manner.
  • the information carried by the filtered first modulated optical signal and the information carried by the filtered third modulated optical signal are subtracted from the information carried by the filtered second modulated optical signal to obtain a second idler light.
  • the first non-linear module 101 will filter the first modulated optical signal in BPSK format,
  • the second modulated optical signal of the BPSK format and the third modulated optical signal of the BPSK format are subjected to FWM processing to obtain the second idler light of the BPSK format;
  • the first modulated optical signal of the filtered QPSK format and the second modulated light of the QPSK format are used.
  • the signal and the third modulated optical signal of the QPSK format are subjected to FWM processing to obtain the second idler light of the QPSK format; the first modulated optical signal of the filtered 8PSK format, the second modulated optical signal of the 8PSK format, and the third of the 8PSK format.
  • the modulated optical signal is subjected to FWM processing to obtain the second idler light in the 8PSK format; the first modulated optical signal in the filtered 16PSK format, the second modulated optical signal in the 16PSK format, and the third modulated optical signal in the 16PSK format are subjected to FWM processing.
  • the second idler light of the 16PSK format is subjected to FWM processing to obtain the second idler light in the 8PSK format; the first modulated optical signal in the filtered 16PSK format, the second modulated optical signal in the 16PSK format, and the third modulated optical signal in the 16PSK format are subjected to FWM processing.
  • the second idler light of the 16PSK format is subjected to FWM processing to obtain the second idler light in the 8PSK format; the first modulated optical signal in the filtered 16PSK format, the second modulated optical signal in the 16PSK format, and the third modulated optical signal in the 16PSK format are subjected to FWM processing.
  • the information carried by the filtered first modulated optical signal, the information carried by the filtered second modulated optical signal, and the information carried by the filtered third modulated optical signal are modulated onto the idler light in an added or subtracted manner. And the information carried by the filtered second modulated optical signal and the information carried by the filtered third modulated optical signal are subtracted from the information carried by the filtered first modulated optical signal to obtain a third idler light.
  • the first nonlinear module 101 performs FWM processing on the first modulated optical signal in the filtered BPSK format, the second modulated optical signal in the BPSK format, and the third modulated optical signal in the BPSK format to obtain a third idler light in the BPSK format.
  • the first modulated optical signal, the second modulated optical signal in the 8PSK format, and the third modulated optical signal in the 8PSK format are FWM processed to obtain a third idler light in the 8PSK format;
  • the second modulated optical signal of the 16PSK format and the third modulated optical signal of the 16PSK format are subjected to FWM processing to obtain a third idler light of the 16PSK format.
  • Step 406 Filter out the modulated optical signals in the first idler light, the second idler light, and the third idler light, respectively, to obtain the filtered first idler light, the second idler light, and the third idler light. ;
  • the first non-linear module 101 performs FWM processing on the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal to obtain the first idler light, the second idler light, and the third idler light, and then outputs the signal.
  • the light includes a first modulated optical signal, a second modulated optical signal, a third modulated optical signal, a first idler light, a second idler light, and a third idler light, and the output is filtered by the second filtering module 104.
  • the first modulated optical signal, the second modulated optical signal, and the third modulated optical signal after the FWM processing is performed in the optical signal. That is, the second CW signal in the output optical signal is filtered out by the second filtering module 104, and the second The CW signal and the third CW signal obtain the filtered first idler light, the second idler light, and the third idler light.
  • the second filtering module 104 receives the first idler light of the BPSK format output by the first nonlinear module 102, the first idler light of the QPSK format, the first idler light of the 8PSK format, or the first idler of the 16PSK format.
  • the first idler light of the BPSK format, the first idler light of the QPSK format, the first idler light of the 8PSK format, or the modulated first CW signal of the first idler light of the 16PSK format, the second The CW signal and the third CW signal are filtered to obtain a first idler light of the filtered BPSK format, a first idler light of the QPSK format, a first idler light of the 8PSK format, or a first idler light of the 16PSK format.
  • the second filtering module 104 receives the second idler light of the BPSK format output by the first nonlinear module 102, the second idler light of the QPSK format, the second idler light of the 8PSK format, or the second idle of the 16PSK format.
  • Frequency light the second idler light of the BPSK format, the second idler light of the QPSK format, the second idler light of the 8PSK format, or the first CW signal of the second idler light of the 16PSK format, the first The second CW signal and the third CW signal are filtered to obtain a second idler light of the filtered BPSK format, a second idler light of the QPSK format, a second idler light of the 8PSK format, or a second idler light of the 16PSK format.
  • the second filtering module 104 receives the third idler light in the BPSK format output by the first nonlinear module 102, the third idler light in the QPSK format, the third idler light in the 8PSK format, or the third idler in the 16PSK format.
  • Step 407 Transmit the filtered first idler light, the second idler light, and the third idler light.
  • the hardware may be used to complete the related hardware execution by a program, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned above may be a read only memory, a magnetic disk or an optical disk.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种实现光逻辑的装置和方法,该装置包括:调制模块(101)和第一非线性模块(102);调制模块(101)的输出端与第一非线性模块(102)的输入端连接;调制模块(101)接收第一组光信号、第二组光信号和第三组光信号,第一组光信号、第二组光信号和第三组光信号中都包括一路CW信号和至少一路OOK光信号;分别对第一组光信号、第二组光信号和第三组光信号进行XPM处理得到第一调制光信号、第二调制光信号和第三调制光信号;对第一调制光信号、第二调制光信号和第三调制光信号进行FWM处理得到第一闲频光、第二闲频光和第三闲频光。由于第一组光信号、第二组光信号和第三组光信号中包括多路光信号,从而能实现至少三输入的光逻辑操作。

Description

一种实现光逻辑的装置和方法 技术领域
本发明涉及光通信领域,特别涉及一种实现光逻辑的装置和方法。
背景技术
光逻辑是指以光信号为信号载体的逻辑运算,光逻辑在光通信系统中发挥着重要作用,由于在光通信系统中只能同时传输一个相同频率的光信号,因此,在对多路相同频率的光信号进行传输时,通过实现光逻辑的装置将多路相同频率的光信号进行光逻辑操作,分别得到多路频率为空闲频率的闲频光,传输多路闲频光从而实现多路相同频率的光信号的传输。
现有技术中提供了一种实现光逻辑的装置,该装置包括:第一偏振控制器、第二偏振控制器,第三偏振控制器,第一耦合器,第二耦合器、非线性光纤,滤波器。第一偏振控制器的输出端和第二偏振控制器的输出端分别连接第一耦合器的输入端;第一耦合器的输出端和第三偏振控制器的输出端分别连接第二耦合器的输入端;第二耦合器的输出端连接非线性光纤的一端,非线性光纤的另一端连接滤波器的输入端。第一偏振控制器接收光输出端输出的第一光信号,将第一光信号进行偏振得到第一偏振光,并将第一偏振光输入给第一耦合器,第二偏振控制器接收光输出端输出的第二光信号,将第二光信号进行偏振得到第二偏振光,并将第二偏振光输出给第一耦合器;第一耦合器将第一偏振光和第二偏振光耦合在一起并输出给第二耦合器;第三偏振控制器接收光输出端输出的第三光信号,将第三光信号进行偏振得到第三偏振光,并将第三偏振光输出给第二耦合器。第二耦合器将第一偏振光、第二偏振光和第三偏振光耦合在一起并输出给非线性光纤,非线性光纤将第一偏振光、第二偏振光和第三偏振光进行四波混频效应得到第一闲频光、第二闲频光和第三闲频光,并将第一闲频光、第二闲频光和第三闲频光输入滤波器。滤波器将第一闲频光、第二闲频光和第三闲频光进行滤波得到滤波后的第一闲频光、第二闲频光和第三闲频光。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
现有技术中只能实现三输入的光逻辑操作,而现在信息量日益剧增,三输入的光逻辑操作并不能满足用户的需求。
发明内容
为了克服现有技术中的问题,本发明实施例提供了一种实现光逻辑的装置和方法。所述技术方案如下:
第一方面,本发明提供了一种实现光逻辑的装置,所述装置包括:
调制模块和第一非线性模块;所述调制模块的输出端与所述第一非线性模块的输入端连接;
所述调制模块用于接收第一组光信号、第二组光信号和第三组光信号,所述第一组光信号、第二组光信号和第三组光信号中都包括一路连续波CW信号和至少一路二进制启闭键控OOK光信号,且所述第一组光信号、第二组光信号和第三组光信号中包括OOK光信号的路数相同以及所述第一组光信号、第二组光信号和第三组光信号中包括的CW信号的频率各不相同,且任意两路CW信号的频率之和大于第三路CW信号的频率,分别对所述第一组光信号进行交叉相位调制XPM处理,将所述第一组光信号中的至少一路OOK光信号调制到一路CW信号上得到第一调制光信号、对所述第二组光信号进行XPM处理,将所述第二组光信号中的至少一路OOK光信号调制到一路CW信号上得到第二调制光信号以及对所述第三组光信号进行XPM处理,将所述第三组光信号中的至少一路OOK光信号调制到一路CW信号上得到第三调制光信号,将所述第一调制光信号、第二调制光信号和第三调制光信号输出给所述第一非线性模块;
所述第一非线性模块用于对所述第一调制光信号、第二调制光信号和第三调制光信号进行四波混频FWM处理得到第一闲频光、第二闲频光和第三闲频光,所述第一闲频光、第二闲频光和第三闲频光的频率各不相同,且都与所述第一组光信号、第二组光信号和第三组光信号中的光信号的频率不相同。
结合第一方面,在第一方面的第一种可能的实现方式中,所述调制模块包括:
非对称耦合模块和第二非线性模块;所述非对称耦合模块的输出端与所述第二非线性模块的输入端连接;所述第二非线性模块的输出端与所述第一非线 性模块的输入端连接;
所述非对称耦合模块用于接收第一组光信号、第二组光信号和第三组光信号,分别将所述第一组光信号包括的各路光信号之间的功率比、第二组光信号包括的各路光信号之间的功率比和第三组光信号包括的各路光信号之间的功率比调节为预设比例,将所述调节后的第一组光信号、第二组光信号和第三组光信号输出给所述第二非线性模块;
所述第二非线性模块用于分别对所述调节后的第一组光信号、第二组光信号和第三组光信号进行XPM处理得到第一调制光信号、第二调制光信号和第三调制光信号,将所述第一调制光信号、第二调制光信号和第三调制光信号输出给所述第一非线性模块。
结合第一方面的第一种可能,在第一方面的第二种可能的实现方式中,所述非对称耦合模块包括:
第一非对称耦合单元、第二非对称耦合单元和第三非对称耦合单元;所述第一非对称耦合单元的输出端、所述第二非对称耦合单元的输出端和所述第三非对称耦合单元的输出端与所述第二非线性模块的输入端连接;
所述第一非对称耦合单元用于接收第一组光信号,将所述第一组光信号包括的各路OOK光信号之间的功率比调节为预设比例,将所述第一组光信号包括的一路第一CW信号和调节后的各路OOK光信号耦合成第一混合信号,将所述第一混合信号输出给所述第二非线性模块;
所述第二非对称耦合单元用于接收第二组光信号,将所述第二组光信号包括的各路OOK光信号之间的功率比调节为预设比例,将所述第二组光信号包括的一路第二CW信号和调节后的各路OOK光信号耦合成第二混合信号,将所述第二混合信号输出给所述第二非线性模块;
所述第三非对称耦合单元用于接收第三组光信号,将所述第三组光信号包括的各路OOK光信号之间的功率比调节为预设比例,将所述第三组光信号包括的一路第三CW信号和调节后的各路OOK光信号耦合成第三混合信号,将所述第三混合信号输出给所述第二非线性模块。
结合第一方面的第二种可能,在第一方面的第三种可能的实现方式中,所述第二非线性模块包括:
第一非线性器件、第二非线性器件和第三非线性器件;所述第一非线性器件的输入端与所述第一非对称耦合单元的输出端连接,所述第二非线性器件的输入端与所述第二非对称耦合单元的输出端连接,所述第三非线性器件的输入端与所述第三非对称耦合单元的输出端连接;所述第一非线性器件的输出端、所述第二非线性器件的输出端和所述第三非线性器件的输出端与所述第一非线性模块的输入端连接;
所述第一非线性器件用于接收所述第一混合信号,对所述第一混合信号进行XMP处理得到第一调制光信号;
所述第二非线性器件用于接收所述第二混合信号,对所述第二混合信号进行XPM处理得到第二调制光信号;
所述第三非线性器件用于接收所述第三混合信号,对所述第三混合信号进行XPM处理得到第三调制光信号。
结合第一方面至第一方面的第三种可能中的任一一种可能,在第一方面的第四种可能的实现方式中,所述装置还包括:
第一滤波模块,所述第一滤波模块的输入端与所述调制模块的输出端连接,所述第一滤波模块的输出端与所述第一非线性模块的输入端连接;
所述第一滤波模块用于接收所述第一调制光信号、第二调制光信号和第三调制光信号,分别对所述第一调制光信号、第二调制光信号和第三调制光信号进行滤波,将所述滤波后的第一调制光信号、第二调制光信号和第三调制光信号输出给所述第一非线性模块。
结合第一方面的第四种可能,在第一方面的第五种可能的实现方式中,所述第一滤波模块包括:
第一滤波器、第二滤波器和第三滤波器;所述第一滤波器的输入端与所述调制模块包括的第一非线性器件的输出端连接,所述第二滤波器的输入端与所述调制模块包括的第二非线性器件的输出端连接,所述第三滤波器的输入端与所述调制模块包括的第三非线性器件的输出端连接,所述第一滤波器的输出端、所述第二滤波器的输出端和所述第三滤波器的输出端与所述第一非线性模块的输入端连接;
所述第一滤波器用于接收所述第一非线性器件输出的第一调制光信号,将 所述第一调制光信号中的所述各路OOK光信号滤除,将所述滤除所述各路OOK光信号的第一调制光输出给所述第一非线性模块;
所述第二滤波器用于接收所述第二非线性器件输出的第二调制光信号,将所述第二调制光信号中的所述各路OOK光信号滤除,将所述滤除所述各路OOK光信号的第二调制光输出给所述第二非线性模块;
所述第三滤波器用于接收所述第三非线性器件输出的第三调制光信号,将所述第三调制光信号中的所述各路OOK光信号滤除,将所述滤除所述各路OOK光信号的第三调制光输出给所述第三非线性模块。
结合第一方面至第一方面的第三种可能中的任一一种可能,在第一方面的第六种可能的实现方式中,所述装置还包括:
第二滤波模块,所述第二滤波模块的输入端与所述第一非线性模块的输出端连接;
所述第二滤波模块用于接收所述第一非线性模块输出的第一闲频光、第二闲频光和第三闲频光,分别过滤掉所述第一闲频光、第二闲频光和第三闲频光中的调制光信号,得到滤波后的第一闲频光、第二闲频光和第三闲频光。
结合第一方面,在第一方面的第七种可能的实现方式中,所述装置还包括:
耦合模块,所述耦合模块的输入端与所述调制模块的输出端连接,所述耦合模块的输入端与所述第一非线性模块的输入端连接;
所述耦合模块用于接收第一调制光信号、第二调制光信号和第三调制光信号,将所述第一调制光信号、第二调制光信号和第三调制光信号耦合在一起输出给所述第一非线性模块。
第二方面,本发明提供了一种实现光逻辑的方法,所述方法包括:
接收第一组光信号、第二组光信号和第三组光信号,所述第一组光信号、第二组光信号和第三组光信号中都包括一路连续波CW信号和至少一路二进制启闭键控OOK光信号,且所述第一组光信号、第二组光信号和第三组光信号中包括OOK光信号的路数相同以及所述第一组光信号、第二组光信号和第三组光信号中包括的CW信号的频率各不相同,且任意两路CW信号的频率之和大于第三路CW信号的频率;
分别对所述第一组光信号进行交叉相位调制XPM处理,将所述第一组光信号中的至少一路OOK光信号调制到一路CW信号上得到第一调制光信号、对所述第二组光信号进行XPM处理,将所述第二组光信号中的至少一路OOK光信号调制到一路CW信号上得到第二调制光信号以及对所述第三组光信号进行XPM处理,将所述第三组光信号中的至少一路OOK光信号调制到一路CW信号上得到第三调制光信号;
对所述第一调制光信号、第二调制光信号和第三调制光信号进行四波混频FWM处理得到第一闲频光、第二闲频光和第三闲频光,所述第一闲频光、第二闲频光和第三闲频光的频率各不相同,且都与所述第一组光信号、第二组光信号和第三组光信号中的光信号的频率不相同。
结合第二方面,在第二方面的第一种可能的实现方式中,所述分别对所述第一组光信号、第二组光信号和第三组光信号进行调制得到第一调制光信号、第二调制光信号和第三调制光信号,包括:
将所述第一组光信号包括的各路光信号之间的功率比、第二组光信号包括的各路光信号之间的功率比和第三组光信号包括的各路光信号之间的功率比调节为预设比例;
对所述调节后的第一组光信号、第二组光信号和第三组光信号进行XPM处理得到第一调制光信号、第二调制光信号和第三调制光信号。
结合第二方面的第一种可能,在第二方面的第二种可能的实现方式中,所述将所述第一组光信号包括的各路光信号之间的功率比、第二组光信号包括的各路光信号之间的功率比和第三组光信号包括的各路光信号之间的功率比调节为预设比例,包括:
将所述第一组光信号包括的各路OOK光信号之间的功率比、第二组光信号包括的各路OOK光信号之间的功率比和第三组光信号包括的各路OOK光信号之间的功率比调节为预设比例。
结合第二方面的第二种可能,在第二方面的第三种可能的实现方式中,所述对所述调节后的第一组光信号、第二组光信号和第三组光信号进行交叉相位调制XPM处理得到第一调制光信号、第二调制光信号和第三调制光信号,包 括:
对所述调节后的第一组光信号包括的各路OOK光信号与所述第一组光信号包括的一路第一CW信号进行交叉相位调制XPM处理得到第一调制光信号;
对所述调节后的第二组光信号包括的各路OOK光信号与所述第二组光信号包括的一路第二CW信号进行XPM处理得到第二调制光;
对所述调节后的第三组光信号包括的各路OOK光信号与所述第三组光信号包括的一路第三CW信号进行XPM处理得到第三调制光。
结合第二方面,在第二方面的第四种可能的实现方式中,所述对所述第一调制光信号、第二调制光信号和第三调制光信号进行四波混频FWM处理得到第一闲频光、第二闲频光和第三闲频光之前,还包括:
分别将所述第一调制光信号中的各路OOK光信号,所述第二调制光信号中的各路OOK光信号和所述第三调制光信号中的各路OOK光信号过滤掉。
结合第二方面,在第二方面的第五种可能的实现方式中,所述对所述第一调制光信号、第二调制光信号和第三调制光信号进行四波混频FWM处理得到第一闲频光、第二闲频光和第三闲频光之后,还包括:
分别滤掉所述第一闲频光、第二闲频光和第三闲频光中的调制光信号,得到滤波后的第一闲频光、第二闲频光和第三闲频光;
传输所述滤波后的第一闲频光、第二闲频光和第三闲频光。
本发明实施例提供的技术方案的有益效果是:调制模块接收第一组光信号、第二组光信号和第三组光信号,分别对第一组光信号、第二组光信号和第三组光信号进行XPM处理,得到第一调制光信号、第二调制光信号和第三调制光信号;第一非线性模块对第一调制光信号、第二调制光信号和第三调制光信号进行FWM处理得到第一闲频光、第二闲频光和第三闲频光,由于第一组光信号、第二组光信号和第三组光信号中包括多路光信号,从而本发明能够实现至少三输入的光逻辑操作。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例1提供的一种实现光逻辑的装置结构示意图;
图2-1是本发明实施例2提供的一种实现光逻辑的装置结构示意图;
图2-2是本发明实施例2提供的一种实现光逻辑的装置结构示意图;
图2-3是本发明实施例2提供的一种实现光逻辑的装置结构示意图;
图2-4是本发明实施例2提供的一种实现光逻辑的装置结构示意图;
图2-5是本发明实施例2提供的一种实现光逻辑的装置结构示意图;
图2-6是本发明实施例2提供的一种实现光逻辑的装置结构示意图;
图2-7是本发明实施例2提供的一种实现光逻辑的装置结构示意图;
图3是本发明实施例3提供的一种实现光逻辑的方法流程图;
图4是本发明实施例4提供的一种实现光逻辑的方法流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例1
本发明实施例1提供了一种实现光逻辑的装置,参见图1,其中,该装置包括:
调制模块101和第一非线性模块102;调制模块101的输出端与第一非线性模块102的输入端连接。
调制模块101用于接收第一组光信号、第二组光信号和第三组光信号,第一组光信号、第二组光信号和第三组光信号中都包括一路CW(Continuous Waves,连续波)信号和至少一路OOK(On-Off Keying,二进制启闭键控)光信号,且第一组光信号、第二组光信号和第三组光信号中包括OOK光信号的路数相同以及所述第一组光信号、第二组光信号和第三组光信号中包括的CW信号的频率各不相同,且任意两路CW信号的频率之和大于第三路CW信号的频率,分别对第一组光信号进行XPM(Cross-Phase Modulation,交叉相位调制)处理,将第一组光信号中的至少一路OOK光信号调制到一路CW信号上得到第一调制光信号、对第二组光信号进行XPM处理,将第二组光信号中的至少 一路OOK光信号调制到一路CW信号上得到第二调制光信号以及对第三组光信号进行XPM处理,将第三组光信号中的至少一路OOK光信号调制到一路CW信号上得到第三调制光信号,将第一调制光信号、第二调制光信号和第三调制光信号输出给第一非线性模块102;
第一非线性模块102用于接收第一调制光信号、第二调制光信号和第三调制光信号,并对第一调制光信号、第二调制光信号和第三调制光信号进行FWM(Four Wave Mixing,四波混频)处理得到第一闲频光、第二闲频光和第三闲频光,第一闲频光、第二闲频光和第三闲频光的频率各不相同,且都与第一组光信号、第二组光信号和第三组光信号中的光信号的频率不相同。
在本发明实施例中,调制模块101接收第一组光信号、第二组光信号和第三组光信号,分别对第一组光信号、第二组光信号和第三组光信号进行XPM处理,得到第一调制光信号、第二调制光信号和第三调制光信号;第一非线性模块102对第一调制光信号、第二调制光信号和第三调制光信号进行FWM处理得到第一闲频光、第二闲频光和第三闲频光,由于第一组光信号、第二组光信号和第三组光信号中包括多路光信号,从而本发明能够实现至少三输入的光逻辑操作。
实施例2
本发明实施例提供了一种实现光逻辑的装置,参见图2-1,该装置包括:调制模块101和第一非线性模块102;调制模块101的输出端与第一非线性模块102的输入端连接。
调制模块101用于接收第一组光信号、第二组光信号和第三组光信号,第一组光信号、第二组光信号和第三组光信号中都包括一路CW信号和至少一路OOK光信号,且第一组光信号、第二组光信号和第三组光信号中包括OOK光信号的路数相同以及所述第一组光信号、第二组光信号和第三组光信号中包括的CW信号的频率各不相同,且任意两路CW信号的频率之和大于第三路CW信号的频率,分别对第一组光信号进行XPM处理,将第一组光信号中的至少一路OOK光信号调制到一路CW信号上得到第一调制光信号、对第二组光信号进行XPM处理,将第二组光信号中的至少一路OOK光信号调制到一路CW信号上得到第二调制光信号以及对第三组光信号进行XPM处理,将第三组光信号中的至少一路OOK光信号调制到一路CW信号上得到第三调制光信号, 将第一调制光信号、第二调制光信号和第三调制光信号输出给第一非线性模块102;
第一非线性模块102用于接收第一调制光信号、第二调制光信号和第三调制光信号,并对第一调制光信号、第二调制光信号和第三调制光信号进行FWM处理得到第一闲频光、第二闲频光和第三闲频光,第一闲频光、第二闲频光和第三闲频光的频率各不相同,且都与第一组光信号、第二组光信号和第三组光信号中的光信号的频率不相同。
其中,第一组光信号中包括预设数值路OOK光信号和一路第一CW信号;第二组光信号中包括预设数值路OOK光信号和一路第二CW信号;第三组光信号中包括预设数值路OOK光信号和一路第三CW信号,且第一CW信号的频率、第二CW信号的频率和第三CW信号的频率各不相同,以及第一CW信号、第二CW信号和第三CW信号中的任意两路CW信号的频率之和大于第三路CW信号的频率。也即第一CW信号的频率和第二CW信号的频率之和大于第三CW信号的频率,第一CW信号的频率和第三CW信号的频率之和大于第二CW信号的频率,第二CW信号的频率和第三CW信号的频率之和大于第一CW信号的频率。
预设数值为大于或者等于1的整数。例如,预设数值为1、2、3或者4等等。
需要说明的是,由于只有三个光才能进行FWM处理,因此,通过调制模块101将第一组光信号调制为第一调制光信号,将第二组光信号调制为第二调制光信号,将第三组光信号调制为第三调制光信号,从而实现至少三输入的光逻辑操作。
其中,第一非线性模块102对第一调制光、第二调制光和第三调制光进行FWM处理得到第一闲频光、第二闲频光和第三闲频光可以通过以下步骤(1)至(3)实现,包括:
(1):第一非线性模块102将第一调制光信号,第二调制光信号与第三调制光信号发生FWM处理得到第一闲频光;
具体地,第一非线性模块102将第一调制光信号携带的信息,第二调制光信号携带的信息和第三调制光信号携带的信息以加减的形式调制到闲频光上,即将第一调制光信号携带的信息与第二调制光信号携带的信息之和减去第三调制光信号携带的信息,得到第一闲频光。
(2):第一非线性模块102将第一调制光信号,第二调制光信号与第三调制光信号发生FWM处理得到第二闲频光;
具体地,第一非线性模块102将第一调制光信号携带的信息,第二调制光信号携带的信息和第三调制光信号携带的信息以加减的形式调制到闲频光上,即将第一调制光信号携带的信息与第三调制光信号携带的信息之和减去第二调制光信号携带的信息,得到第二闲频光。
(3):第一非线性模块102将第一调制光信号,第二调制光信号与第三调制光信号发生FWM处理得到第三闲频光。
具体地,第一非线性模块102将第一调制光信号携带的信息,第二调制光信号携带的信息和第三调制光信号携带的信息以加减的形式调制到闲频光上,即将第二调制光信号携带的信息与第三调制光信号携带的信息之和减去第一调制光信号携带的信息,得到第三闲频光。
其中,调制模块101包括:非对称耦合模块1011和第二非线性模块1012。
非对称耦合模块1011的输出端与第二非线性模块1012的输入端连接;第二非线性模块1012的输出端与第一非线性模块102的输入端连接。
非对称耦合模块1011用于接收第一组光信号、第二组光信号和第三组光信号,分别将第一组光信号包括的各路光信号之间的功率比、第二组光信号包括的各路光信号之间的功率比和第三组光信号包括的各路光信号之间的功率比调节为预设比例,将调节后的第一组光信号、第二组光信号和第三组光信号输出给第二非线性模块1012。
非对称耦合模块1011接收光输出端输出的第一组光信号,将第一组光信号包括的各路光信号之间的功率比调节为预设比例;非对称耦合模块1011接收光输出端输出的第二组光信号,将第二组光信号包括的各路光信号之间的功率比调节为预设比例;非对称耦合模块1011接收光输出端输出的第三组光信号,将第三组光信号包括的各路光信号之间的功率比调节为预设比例。非对称耦合模块1011将调节后的第一组光信号、第二组光信号和第三组光信号输出给第二非线性模块1012。
非对称耦合模块1011可以由衰减器和耦合器组成,衰减器用来对不同路光信号功率的调配,耦合器用来对调节后的多路光信号进行耦合。非对称耦合模块1011也可以是一个非对称耦合器,该非对称耦合器可以同时实现不同路光信号功率的调配以及耦合,减少了系统结构的复杂度。
例如,非对称耦合模块1011可以为非对称多模干涉耦合器或者非对称光子晶体耦合器等。优选的,非对称耦合模块1011可以为非对称多模干涉耦合器;由于非对称多模干涉耦合器易于在片上实现,选择非对称多模干涉耦合器能够提高集成度。
第二非线性模块1012用于分别对调节后的第一组光信号、第二组光信号和第三组光信号进行XPM处理得到第一调制光信号、第二调制光信号和第三调制光信号,将第一调制光信号、第二调制光信号和第三调制光信号输出给第一非线性模块102。
第二非线性模块1012接收非对称耦合模块1011输出的调节后的第一组光信号、第二组光信号和第三组光信号,对调节后的第一组光信号进行XPM处理得到第一调制光信号;对调节后的第二组光信号进行XPM处理得到第二调制光信号;将调节后的第三组光信号进行XPM处理得到第三调制光信号。第二非线性模块1012将第一调制光信号、第二调制光信号和第三调制光信号输出给第一非线性模块102。
第二非线性模块1012为具有XPM功能的器件,例如,第二非线性模块1012为具有XPM功能的硅基非线性器件,如脊波导、缝波导、平板波导或者光子晶体波导。优选的,第二非线性模块1012为脊波导,由于脊波导易于得到交叉相位调制,调制速度快且结构与工艺步骤简单,易于实现。并且,第二非线性模块1012对功耗要求较低。
同样,第一非线性模块102为具有FWM功能的器件,例如第一非线性模块102为硅基非线性器件,如脊波导、缝波导、平板波导或者光子晶体波导。优选的,第一非线性模块102为脊波导,由于脊波导易于得到四波混频效应,混频速度快且结构与工艺步骤简单,易于实现。并且,第一非线性模块102对功耗要求较低。
参见图2-2,非对称耦合模块1011包括:
第一非对称耦合单元10111、第二非对称耦合单元10112和第三非对称耦合单元10113;第一非对称耦合单元10111的输出端、第二非对称耦合单元10112的输出端和第三非对称耦合单元10113的输出端与第二非线性模块1012的输入端连接。
第一非对称耦合单元10111用于接收第一组光信号,将第一组光信号包括的各路OOK光信号之间的功率比调节为预设比例,将第一组光信号包括的一 路第一CW信号和调节后的各路OOK光信号耦合成第一混合信号,将第一混合信号输出给第二非线性模块1012。
第二非对称耦合单元10112用于接收第二组光信号,将第二组光信号包括的各路OOK光信号之间的功率比调节为预设比例,将第二组光信号包括的一路第二CW信号和调节后的各路OOK光信号耦合成第二混合信号,将第二混合信号输出给第二非线性模块1012;
第三非对称耦合单元10113用于接收第三组光信号,将第三组光信号包括的各路OOK光信号之间的功率比调节为预设比例,将第三组光信号包括的一路第三CW信号和调节后的各路OOK光信号耦合成第三混合信号,将第三混合信号输出给第二非线性模块1012。
需要说明的是,OOK光信号是振幅键控调制光信号的一个特例,OOK光信号的一个幅度取为0,另一个幅度取为非0。并且,当OOK光信号位于波谷即OOK光信号为低能量时,OOK光信号的幅度为0;当OOK光信号位于波峰即OOK光信号为高能量时,OOK光信号的幅度为非0。并且,OOK光信号为高能量时,OOK光信号的幅度与OOK光信号的功率成正比。
第一非对称耦合单元10111、第二非对称耦合单元10112和第三非对称耦合单元10113都可以由衰减器和耦合器组成,或者第一非对称耦合单元10111、第二非对称耦合单元10112和第三非对称耦合单元10113为一个非对称耦合器,该非对称耦合器可以同时实现不同路光信号功率的调配以及耦合。
例如,第一非对称耦合单元10111、第二非对称耦合单元10112和第三非对称耦合单元10113为非对称多模干涉耦合器或者非对称光子晶体耦合器等。优选的,第一非对称耦合单元10111、第二非对称耦合单元10112和第三非对称耦合单元10113同时为非对称多模干涉耦合器;由于非对称多模干涉耦合器易于在片上实现,选择非对称多模干涉耦合器能够提高集成度。
预设比例可以根据预设数值进行设置并更改,例如,预设数值为1时,不进行功率调节;预设数值为2时,预设比例为1:2或者2:1;预设数值为3时,预设比例为1:2:4或者4:2:1;预设数值为4时,预设比例为1:2:4:8或者8:4:2:1。
例如预设数值为1,则第一组光信号中包括OOK1光信号和CW1信号,第二组光信号中包括OOK2光信号和CW2信号,第三组光信号中包括OOK3光信号和CW3信号。
OOK1光信号和CW1信号同时输入到第一非对称耦合单元10111中,第 一非对称耦合单元10111将OOK1光信号和CW1信号耦合成第一混合信号,将第一混合信号输出给第二非线性模块1012。
OOK2光信号和CW2信号同时输入到第二非对称耦合单元10112中,第二非对称耦合单元10112将OOK2光信号和CW2信号耦合成第二混合信号,将第二混合信号输出给第二非线性模块1012。
OOK3光信号和CW3信号同时输入到第三非对称耦合单元10113中,第三非对称耦合单元10113将OOK3光信号和CW3信号耦合成第三混合信号,将第三混合信号输出给第二非线性模块1012,从而实现三输入的光逻辑操作。
再如,预设数值为2,则第一组光信号中包括OOK1光信号、OOK2光信号和CW1信号;第二组光信号中包括OOK3光信号、OOK4光信号和CW2信号;第三组光信号中包括OOK5光信号、OOK6光信号和CW3信号。
OOK1光信号、OOK2光信号和CW1信号同时输入到第一非对称耦合单元10111中,第一非对称耦合单元10111将OOK1光信号和OOK2光信号之间的功率比调节为1:2或者2:1;将调节后的OOK1光信号、OOK2光信号和CW1信号耦合成第一混合信号,将第一混合信号输出给第二非线性模块1012。
同样,OOK3光信号、OOK4光信号和CW2信号同时输入到第二非对称耦合单元10112中,第二非对称耦合单元10112将OOK3光信号和OOK4光信号之间的功率比调节为1:2或者2:1;将调节后的OOK3光信号、OOK4光信号和CW2信号耦合成第二混合信号,将第二混合信号输出给第二非线性模块1012。
同样,OOK5光信号、OOK6光信号和CW3信号同时输入到第三非对称耦合单元10113中,第三非对称耦合单元10113将OOK5光信号和OOK6光信号之间的功率比调节为1:2或者2:1;将调节后的OOK5光信号、OOK6光信号和CW3信号耦合成第三混合信号,将第三混合信号输出给第二非线性模块1012,从而实现六输入的光逻辑操作。
再如,第二预设数值为3,则第一组光信号中包括OOK1光信号、OOK2光信号、OOK3光信号和CW1信号;第二组光信号中包括OOK4光信号、OOK5光信号、OOK6光信号和CW2信号;第三组光信号中包括OOK7光信号、OOK8光信号、OOK9光信号和CW3信号。
OOK1光信号、OOK2光信号、OOK3光信号和CW1信号同时输入到第一非对称耦合单元10111中,第一非对称耦合单元10111将OOK1光信号、 OOK2光信号和OOK3光信号之间的功率比调节为1:2:4或者4:2:1;将调节后的OOK1光信号、OOK2光信号、OOK3光信号和CW1信号耦合成第一混合信号,将第一混合信号输出给第二非线性模块1012。
同样,OOK4光信号、OOK5光信号、OOK6光信号和CW2信号同时输入到第二非对称耦合单元10112中,第二非对称耦合单元10112将OOK4光信号、OOK5光信号和OOK6光信号之间的功率比调节为1:2:4或者4:2:1;将调节后的OOK4光信号、OOK5光信号、OOK6光信号和CW2信号耦合成第二混合信号,将第二混合信号输出给第二非线性模块1012。
同样,OOK7光信号、OOK8光信号、OOK9光信号和CW3信号同时输入到第三非对称耦合单元10113中,第三非对称耦合单元10113将OOK7光信号、OOK8光信号和OOK9光信号之间的功率比调节为1:2:4或者4:2:1;将调节后的OOK7光信号、OOK8光信号、OOK9光信号和CW3信号耦合成第三混合信号,将第三混合信号输出给第二非线性模块1012,从而实现九输入的光逻辑操作。
再如,第二预设数值为4,则第一组光信号中包括OOK1光信号、OOK2光信号、OOK3光信号、OOK4光信号和CW1信号;第二组光信号中包括OOK5光信号、OOK6光信号、OOK7光信号、OOK8光信号和CW2信号;第三组光信号中包括OOK9光信号、OOK10光信号、OOK11光信号、OOK12光信号和CW3信号。
OOK1光信号、OOK2光信号、OOK3光信号、OOK4光信号和CW1信号同时输入到第一非对称耦合单元10111中,第一非对称耦合单元10111将OOK1光信号、OOK2光信号、OOK3光信号和OOK4光信号之间的功率比调节为1:2:4:8或者8:4:2:1;将调节后的OOK1光信号、OOK2光信号、OOK3光信号、OOK4光信号和CW1信号耦合成第一混合信号,将第一混合信号输出给第二非线性模块1012。
同样,OOK5光信号、OOK6光信号、OOK7光信号、OOK8光信号和CW2信号同时输入到第二非对称耦合单元10112中,第二非对称耦合单元10112将OOK5光信号、OOK6光信号、OOK7光信号和OOK8光信号之间的功率比调节为1:2:4:8或者8:4:2:1;将调节后的OOK5光信号、OOK6光信号、OOK7光信号、OOK8光信号和CW2信号耦合成第二混合信号,将第二混合信号输出给第二非线性模块1012。
同样,OOK9光信号、OOK10光信号、OOK11光信号、OOK12光信号和CW1信号同时输入到第三非对称耦合单元10113中,第三非对称耦合单元10113将OOK9光信号、OOK10光信号、OOK11光信号和OOK12光信号之间的功率比调节为1:2:4:8或者8:4:2:1;将调节后的OOK9光信号、OOK10光信号、OOK11光信号、OOK12光信号和CW3信号耦合成第三混合信号,将第三混合信号输出给第二非线性模块1012,从而实现十二输入的光逻辑操作。
参见图2-3,第二非线性模块1012包括:
第一非线性器件10121、第二非线性器件10122和第三非线性器件10123;第一非线性器件10121的输入端与第一非对称耦合单元10111的输出端连接,第二非线性器件10122的输入端与第二非对称耦合单元10112的输出端连接,第三非线性器件10123的输入端与第三非对称耦合单元10113的输出端连接;第一非线性器件10121的输出端、第二非线性器件10122的输出端和第三非线性器件10123的输出端与第一非线性模块102的输入端连接;
第一非线性器件10121用于接收第一混合信号,对第一混合信号进行XPM处理得到第一调制光信号;
第二非线性器件10122用于接收第二混合信号,对第二混合信号进行XPM处理得到第二调制光信号;
第三非线性器件10123用于接收第三混合信号,对第三混合信号进行XPM处理得到第三调制光信号。
第一非线性器件10121接收第一混合信号,获取第一混合信号中包括的调节后的各路OOK光信号与一路第一CW信号,将调节后的各路OOK光信号的信息调制到第一CW信号上,得到调制后的第一CW信号也即第一调制光信号。
第二非线性器件10122接收第二混合信号,获取第二混合信号中包括的调节后的各路OOK光信号与一路第二CW信号,将调节后的各路OOK光信号的信息调制到第二CW信号上,得到调制后的第二CW信号也即第二调制光信号。
第三非线性器件10123接收第三混合信号,获取第三混合信号中包括的调节后的各路OOK光信号与一路第三CW信号,将调节后的各路OOK光信号的信息调制到第三CW信号上,得到调制后的第三CW信号也即第三调制光信号。
第一非线性器件10121、第二非线性器件10122和第三非线性器件10123为具有XPM功能的器件,例如,第一非线性器件10121、第二非线性器件10122和第三非线性器件10123为具有XPM功能的硅基非线性器件,如脊波导、缝波导、平板波导或者光子晶体波导。优选的,第一非线性器件10121、第二非线性器件10122和第三非线性器件10123都可以为脊波导,由于脊波导易于得到交叉相位调制,调制速度快且结构与工艺步骤简单,易于实现。
例如,第一混合信号为OOK1光信号和CW1信号,则第一非线性器件10121接收第一混合信号,对第一混合信号中的OOK1光信号和CW1信号进行XPM处理,得到BPSK格式的第一调制光信号,将BPSK格式的第一调制光信号输出给第一非线性模块102。
第一非线性器件10121对第一混合信号中的OOK1光信号和CW1信号进行XPM处理,得到BPSK格式的第一调制光信号的过程可以为:
当OOK1光信号为高能量,即为“1”时,对OOK1光信号和CW1进行处理就是对CW1发生一个π相位的调制;
当OOK1光信号为低能量,即为“0”时,对OOK1光信号和CW1进行XPM处理就是不对CW1发生相位变化。
同样,第二混合信号为OOK2光信号和CW2信号,则第二非线性器件10122接收第二混合信号,对第二混合信号中的OOK2光信号和CW2信号进行XPM处理,得到BPSK格式的第二调制光信号,将BPSK格式的第二调制光信号输出给第一非线性模块102。
同样,第三混合信号为OOK3光信号和CW3信号,则第三非线性器件10123接收第三混合信号,对第三混合信号中的OOK3光信号和CW3信号进行XPM处理,得到BPSK格式的第三调制光信号,将BPSK格式的第三调制光信号输出给第一非线性模块102。
再如,第一混合信号为调节后的OOK1光信号和OOK2光信号以及CW1信号,则第一非线性器件10121接收第一混合信号,对第一混合信号中的调节后的OOK1光信号和OOK2光信号以及CW1信号进行XPM处理得到QPSK格式的第一调制光信号,将QPSK格式的第一调制光信号输出给第一非线性模块102。
第一非线性器件10121对第一混合信号中的调节后的OOK1光信号和OOK2光信号以及CW1信号进行XPM处理得到QPSK格式的第一调制光信号 的过程为:
当OOK1光信号为高能量,即为“1”,OOK2光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为1/2π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为高能量,即为“2”时,通过XPM处理对CW1发生一个相位的调制,相位变化为π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为高能量,即为“2”时,通过XPM处理对CW1发生一个相位的调制,相位变化为3/2π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为低能量,即为“0”时,通过XPM处理对CW1不发生相位调制,相位变化为0。
第二混合信号为调节后的OOK3光信号和OOK4光信号以及CW2信号,则第二非线性器件10122接收第二混合信号,对第二混合信号中的调节后的OOK3光信号、OOK4光信号和CW2信号进行XPM处理得到QPSK格式的第二调制光信号,将QPSK格式的第二调制光信号输出给第一非线性模块102。
第三混合信号为调节后的OOK5光信号和OOK6光信号以及CW3信号,则第三非线性器件10123接收第三混合信号,对第三混合信号中的调节后的OOK5光信号、OOK6光信号和CW3信号进行XPM处理得到QPSK格式的第三调制光信号,将QPSK格式的第三调制光信号输出给第一非线性模块102。
再如,第一混合信号为调节后的OOK1光信号、OOK2光信号和OOK3光信号以及CW1信号,则第一非线性器件10121接收第一混合信号,对第一混合信号中的调节后的OOK1光信号、OOK2光信号和OOK3光信号以及CW1信号进行XPM处理得到8PSK格式的第一调制光信号,将8PSK格式的第一调制光信号输出给第一非线性模块102。
第一非线性器件10121对第一混合信号中的调节后的OOK1光信号、OOK2光信号和OOK3光信号以及CW1信号进行XPM处理得到8PSK格式的第一调制光信号的过程为:
当OOK1光信号为高能量,即为“1”,OOK2光信号为低能量,即为“0”,OOK3光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为1/4π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为高能量,即为“1”,OOK3光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为2/4π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为高能量,即为“2”,OOK3光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为3/4π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为低能量,即为“0”,OOK3光信号为高能量,即为“4”时,通过XPM处理对CW1发生一个相位的调制,相位变化为4/4π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为低能量,即为“0”,OOK3光信号为高能量,即为“4”时,通过XPM处理对CW1发生一个相位的调制,相位变化为5/4π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为高能量,即为“2”,OOK3光信号为高能量,即为“4”时,通过XPM处理对CW1发生一个相位的调制,相位变化为6/4π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为高能量,即为“2”,OOK3光信号为高能量,即为“4”时,通过XPM处理对CW1发生一个相位的调制,相位变化为7/4π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为低能量,即为“0”,OOK3光信号为低能量,即为“0”时,通过XPM处理CW1不发生相位调制,相位变化为0。
第二混合信号为调节后的OOK4光信号、OOK5光信号和OOK6光信号以及CW2信号,则第一非线性器件10121接收第二混合信号,对第二混合信号中的调节后的OOK4光信号、OOK5光信号和OOK6光信号以及CW2信号进行XPM处理得到8PSK格式的第二调制光信号,将8PSK格式的第二调制光信号输出给第一非线性模块102。
第三混合信号为调节后的OOK7光信号、OOK8光信号和OOK9光信号以及CW3信号,则第一非线性器件10121接收第三混合信号,对第三混合信号中的调节后的OOK7光信号、OOK8光信号和OOK9光信号以及CW3信号进行XPM处理得到8PSK格式的第三调制光信号,将8PSK格式的第三调制光信号输出给第一非线性模块102。
再如,第一混合信号为调节后的OOK1光信号、OOK2光信号、OOK3光信号和OOK4光信号以及CW1信号,则第一非线性器件10121接收第一混合信号,对第一混合信号中的调节后的OOK1光信号、OOK2光信号OOK3光信 号和OOK4光信号以及CW1信号进行XPM处理得到16PSK格式的第一调制光信号,将16PSK格式的第一调制光信号输出给第一非线性模块102。
第一非线性器件10121对第一混合信号中的调节后的OOK1光信号、OOK2光信号OOK3光信号和OOK4光信号以及CW1信号进行XPM处理得到16PSK格式的第一调制光信号的过程为:
当OOK1光信号为高能量,即为“1”,OOK2光信号为低能量,即为“0”,OOK3光信号为低能量,即为“0”,OOK4光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为1/8π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为高能量,即为“2”,OOK3光信号为低能量,即为“0”,OOK4光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为2/8π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为高能量,即为“2”,OOK3光信号为低能量,即为“0”,OOK4光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为3/8π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为低能量,即为“0”,OOK3光信号为高能量,即为“4”,OOK4光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为4/8π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为低能量,即为“0”,OOK3光信号为高能量,即为“4”,OOK4光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为5/8π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为高能量,即为“2”,OOK3光信号为高能量,即为“4”,OOK4光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为6/8π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为高能量,即为“2”,OOK3光信号为高能量,即为“4”,OOK4光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为7/8π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为低能量,即为“0”,OOK3光信号为低能量,即为“0”,OOK4光信号为高能量,即为“8”时,通过XPM处理对CW1发生一个相位的调制,相位变化为8/8π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为低能量,即为“0”,OOK3光信号为低能量,即为“0”,OOK4光信号为高能量,即为“8”时, 通过XPM处理对CW1发生一个相位的调制,相位变化为9/8π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为高能量,即为“2”,OOK3光信号为低能量,即为“0”,OOK4光信号为高能量,即为“8”时,通过XPM处理对CW1发生一个相位的调制,相位变化为10/8π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为高能量,即为“2”,OOK3光信号为低能量,即为“0”,OOK4光信号为高能量,即为“8”时,通过XPM处理对CW1发生一个相位的调制,相位变化为11/8π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为低能量,即为“0”,OOK3光信号为高能量,即为“4”,OOK4光信号为高能量,即为“8”时,通过XPM处理对CW1发生一个相位的调制,相位变化为12/8π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为低能量,即为“0”,OOK3光信号为高能量,即为“4”,OOK4光信号为高能量,即为“8”时,通过XPM处理对CW1发生一个相位的调制,相位变化为13/8π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为高能量,即为“2”,OOK3光信号为高能量,即为“4”,OOK4光信号为高能量,即为“8”时,通过XPM处理对CW1发生一个相位的调制,相位变化为14/8π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为高能量,即为“2”,OOK3光信号为高能量,即为“4”,OOK4光信号为高能量,即为“8”时,通过XPM处理对CW1发生一个相位的调制,相位变化为15/8π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为低能量,即为“0”,OOK3光信号为低能量,即为“0”,OOK4光信号为低能量,即为“0”时,通过XPM处理对CW1不发生相位调制,即相位变化为0。
第二混合信号为调节后的OOK5光信号、OOK6光信号、OOK7光信号和OOK8光信号以及CW2信号,则第二非线性器件10122接收第二混合信号,对第二混合信号中的调节后的OOK5光信号、OOK6光信号OOK7光信号和OOK8光信号以及CW2信号进行XPM处理得到16PSK格式的第二调制光信号,将16PSK格式的第二调制光信号输出给第一非线性模块102。
第三混合信号为调节后的OOK9光信号、OOK10光信号、OOK11光信号和OOK12光信号以及CW3信号,则第三非线性器件10123接收第三混合信号,对第三混合信号中的调节后的OOK9光信号、OOK10光信号OOK11光信号和OOK12光信号以及CW3信号进行XPM处理得到16PSK格式的第三调制光信 号,将16PSK格式的第三调制光信号输出给第一非线性模块102。
参见图2-4,该装置还包括:
第一滤波模块103,第一滤波模块103的输入端与调制模块101的输出端连接,第一滤波模块103的输出端与第一非线性模块102的输入端连接;
第一滤波模块103用于接收第一调制光信号、第二调制光信号和第三调制光信号,分别对第一调制光信号、第二调制光信号和第三调制光信号进行滤波,将滤波后的第一调制光信号、第二调制光信号和第三调制光信号输出给第一非线性模块102。
第一滤波模块103接收调制模块101输出的第一调制光信号、第二调制光信号和第三调制光信号,分别将第一调制光信号中的各路OOK光信号滤除,得到调制后的第一CW信号,将调制后的第一CW信号确定为滤波后的第一调制光信号;将第二调制光信号中的各路OOK光信号滤除,得到调制后的第二CW信号,将调制后的第二CW信号确定为滤波后的第二调制光信号;将第三调制光信号中的各路OOK光信号滤除,得到调制后的第三CW信号,将调制后的第三CW信号确定为滤波后的第三调制光信号。
第一滤波模块103将滤波后的第一调制光、滤波后的第二调制光和滤波后的第三调制光输出给第一非线性模块102。
进一步地,第一非线性模块102用于接收滤波后的第一调制光信号、第二调制光信号和第三调制光信号,并对滤波后的第一调制光信号、第二调制光信号和第三调制光信号进行FWM处理得到第一闲频光、第二闲频光和第三闲频光。
第一滤波模块103用于对信号光进行滤波,该第一滤波模块103可以为硅基滤波器,例如,阵列波导光栅、微环滤波器或者微盘滤波器等。优选的,第一滤波模块103可以为微环滤波器,由于微环滤波器技术较为成熟,易于实现,可进一步提高集成度。
参见图2-5,第一滤波模块103包括:
第一滤波器1031、第二滤波器1032和第三滤波器1033;第一滤波器1031的输入端与调制模块101包括的第一非线性器件10121的输出端连接,第二滤波器1032的输入端与调制模块101包括的第二非线性器件10122的输出端连接,第三滤波器1033的输入端与调制模块101包括的第三非线性器件10123的输出端连接,第一滤波器1031的输出端、第二滤波器1032的输出端和第三 滤波器1033的输出端与第一非线性模块102的输入端连接;
第一滤波器1031用于接收第一非线性器件10121输出的第一调制光信号,将第一调制光信号中的各路OOK光信号滤除,得到调制后的第一CW信号,将调制后的第一CW信号确定为滤波后的第一调制光信号并输出给第一非线性模块102;
第二滤波器1032用于接收第二非线性器件10122输出的第二调制光信号,将第二调制光信号中的各路OOK光信号滤除,得到调制后的第二CW信号,将调制后的第二CW信号确定为滤波后的第二调制光信号并输出给第一非线性模块102;
第三滤波器1033用于接收第三非线性器件10123输出的第三调制光信号,将第三调制光信号中的各路OOK光信号滤除,得到调制后的第三CW信号,将调制后的第三CW信号确定为滤波后的第三调制光信号并输出给第一非线性模块102。
第一滤波器1031、第二滤波器1032和第三滤波器1033用于对信号光进行滤波,该第一滤波器1031、第二滤波器1032和第三滤波器1033可以为硅基滤波器,例如,阵列波导光栅、微环滤波器或者微盘滤波器等。优选的,第一滤波器1031、第二滤波器1032和第三滤波器1033都可以为微环滤波器,由于微环滤波器技术较为成熟,易于实现,可进一步提高集成度。
参见图2-6,该装置还包括:
第二滤波模块104,第二滤波模块104的输入端与第一非线性模块102的输出端连接;
第二滤波模块104用于接收第一非线性模块102输出的第一闲频光、第二闲频光和第三闲频光,分别过滤掉第一闲频光、第二闲频光和第三闲频光中的调制光信号,得到滤波后的第一闲频光、第二闲频光和第三闲频光。
第一非线性模块101对第一调制光信号、第二调制光信号和第三调制光信号进行FWM处理得到第一闲频光、第二闲频光和第三闲频光之后,输出的信号光中包括第一调制光信号、第二调制光信号、第三调制光信号、第一闲频光、第二闲频光和第三闲频光,此时通过第二滤波模块104滤掉输出光信号中的进行完FWM处理之后的第一调制光信号、第二调制光信号和第三调制光信号。也即通过第二滤波模块104滤掉输出光信号中的调制后的第一CW信号、第二CW信号和第三CW信号,得到滤波后的第一闲频光、第二闲频光和第三闲频 光。
例如,第一非线性模块102接收第一非线性器件10121输出的BPSK格式的第一调制光信号,接收第二非线性器件10122输出的BPSK格式的第二调制光信号,以及接收第三非线性器件10123输出的BPSK格式的第三调制光信号,将BPSK格式的第一调制光信号、第二调制光信号和第三调制光信号进行FWM处理得到BPSK格式的第一闲频光、第二闲频光和第三闲频光,并将BPSK格式的第一闲频光、第二闲频光和第三闲频光输出给第二滤波模块104。
第二滤波模块104接收第一非线性模块102输出的BPSK格式的第一闲频光、第二闲频光和第三闲频光,并滤掉BPSK格式的第一闲频光、第二闲频光和第三闲频光中的调制后的第一CW信号、第二CW信号和第三CW信号,得到滤波后的BPSK格式的第一闲频光、第二闲频光和第三闲频光。
再如,第一非线性模块102接收第一非线性器件10121输出的QPSK格式的第一调制光信号,接收第二非线性器件10122输出的QPSK格式的第二调制光信号,以及接收第三非线性器件10123输出的QPSK格式的第三调制光信号,将QPSK格式的第一调制光信号、第二调制光信号和第三调制光信号进行FWM处理得到QPSK格式的第一闲频光、第二闲频光和第三闲频光,并将QPSK格式的第一闲频光、第二闲频光和第三闲频光输出给第二滤波模块104。
第二滤波模块104接收第一非线性模块102输出的QPSK格式的第一闲频光、第二闲频光和第三闲频光,并滤掉QPSK格式的第一闲频光、第二闲频光和第三闲频光中的调制后的第一CW信号、第二CW信号和第三CW信号,得到滤波后的QPSK格式的第一闲频光、第二闲频光和第三闲频光。
再如,第一非线性模块102接收第一非线性器件10121输出的8PSK格式的第一调制光信号,接收第二非线性器件10122输出的8PSK格式的第二调制光信号,以及接收第三非线性器件10123输出的8PSK格式的第三调制光信号,将8PSK格式的第一调制光信号、第二调制光信号和第三调制光信号进行FWM处理得到8PSK格式的第一闲频光、第二闲频光和第三闲频光,并将8PSK格式的第一闲频光、第二闲频光和第三闲频光输出给第二滤波模块104。
第二滤波模块104接收第一非线性模块102输出的8PSK格式的第一闲频光、第二闲频光和第三闲频光,并滤掉8PSK格式的第一闲频光、第二闲频光和第三闲频光中的调制后的第一CW信号、第二CW信号和第三CW信号,得到滤波后的8PSK格式的第一闲频光、第二闲频光和第三闲频光。
再如,第一非线性模块102接收第一非线性器件10121输出的16PSK格式的第一调制光信号,接收第二非线性器件10122输出的16PSK格式的第二调制光信号,以及接收第三非线性器件10123输出的16PSK格式的第三调制光信号,将16PSK格式的第一调制光信号、第二调制光信号和第三调制光信号进行FWM处理得到16PSK格式的第一闲频光、第二闲频光和第三闲频光,并将16PSK格式的第一闲频光、第二闲频光和第三闲频光输出给第二滤波模块104。
第二滤波模块104接收第一非线性模块102输出的16PSK格式的第一闲频光、第二闲频光和第三闲频光,并滤掉16PSK格式的第一闲频光、第二闲频光和第三闲频光中的调制后的第一CW信号、第二CW信号和第三CW信号,得到滤波后的16PSK格式的第一闲频光、第二闲频光和第三闲频光。
第二滤波模块104用于对闲频光进行滤波,该第二滤波模块104可以为硅基滤波器,例如,阵列波导光栅、微环滤波器或者微盘滤波器等。优选的,第二滤波模块104可以为微环滤波器,由于微环滤波器技术较为成熟,易于实现,可进一步提高集成度。
参见图2-7,该装置还包括:
耦合模块105,耦合模块105的输入端与调制模块101的输出端连接,耦合模块105的输入端与第一非线性模块102的输入端连接;
耦合模块105用于接收第一调制光信号、第二调制光信号和第三调制光信号,将第一调制光信号、第二调制光信号和第三调制光信号耦合在一起输出给第一非线性模块102。
由于第一非线性模块102只有一个输入端,因此该装置还包括耦合模块105,耦合模块105将第一调制光、第二调制光和第三调制光耦合在一起输出给第一非线性模块102。
耦合模块105可以为硅基耦合器,例如,多模干涉耦合器、定向耦合器或者电子晶体耦合器等。优选的,耦合模块105可以为多模干涉耦合器,由于多模干涉耦合器技术较为成熟,易于在片上实现,提高了集成度。
在本发明实施例中,调制模块101接收第一组光信号、第二组光信号和第三组光信号,分别对第一组光信号、第二组光信号和第三组光信号进行XPM处理,得到第一调制光信号、第二调制光信号和第三调制光信号;第一非线性模块102对第一调制光信号、第二调制光信号和第三调制光信号进行FWM处 理得到第一闲频光、第二闲频光和第三闲频光,由于第一组光信号、第二组光信号和第三组光信号中包括多路光信号,从而本发明能够实现至少三输入的光逻辑操作。
实施例3
本发明实施例提供了一种实现光逻辑的方法,该方法的执行主体可以为实施例中的实现光逻辑的装置。参见图3,其中,该方法包括:
步骤301:接收第一组光信号、第二组光信号和第三组光信号,第一组光信号、第二组光信号和第三组光信号中都包括一路CW信号和至少一路OOK光信号,且第一组光信号、第二组光信号和第三组光信号中包括OOK光信号的路数相同以及第一组光信号、第二组光信号和第三组光信号中包括的CW信号的频率各不相同,且任意两路CW信号的频率之和大于第三路CW信号的频率;
步骤302:分别对第一组光信号进行XPM处理,将第一组光信号中的至少一路OOK光信号调制到一路CW信号上得到第一调制光信号、对第二组光信号进行XPM处理,将第二组光信号中的至少一路OOK光信号调制到一路CW信号上得到第二调制光信号以及对第三组光信号进行XPM处理,将第三组光信号中的至少一路OOK光信号调制到一路CW信号上得到第三调制光信号;
步骤303:对第一调制光信号、第二调制光信号和第三调制光信号进行FWM处理得到第一闲频光、第二闲频光和第三闲频光,第一闲频光、第二闲频光和第三闲频光的频率各不相同,且都与第一组光信号、第二组光信号和第三组光信号中的光信号的频率不相同。
在本发明实施例中,接收第一组光信号、第二组光信号和第三组光信号,分别对第一组光信号、第二组光信号和第三组光信号进行XPM处理,得到第一调制光信号、第二调制光信号和第三调制光信号;对第一调制光信号、第二调制光信号和第三调制光信号进行FWM处理得到第一闲频光、第二闲频光和第三闲频光,由于第一组光信号、第二组光信号和第三组光信号中包括多路光信号,从而本发明能够实现至少三输入的光逻辑操作。
实施例4
本发明实施例提供了一种实现光逻辑的方法,该方法的执行主体可以为实施例中的实现光逻辑的装置。参见图4,其中,该方法包括:
步骤401:接收第一组光信号、第二组光信号和第三组光信号,第一组光信号、第二组光信号和第三组光信号中都包括一路CW信号和至少一路OOK光信号,且第一组光信号、第二组光信号和第三组光信号中包括OOK光信号的路数相同以及第一组光信号、第二组光信号和第三组光信号中包括的CW信号的频率各不相同,且任意两路CW信号的频率之和大于第三路CW信号的频率;
第一组光信号中包括预设数值路OOK光信号和一路第一CW信号;第二组光信号中包括预设数值路OOK光信号和一路第二CW信号;第三组光信号中包括预设数值路OOK光信号和一路第三CW信号,且第一CW信号的频率、第二CW信号的频率和第三CW信号的频率各不相同,以及第一CW信号、第二CW信号和第三CW信号中的任意两路CW信号的频率之和大于第三路CW信号的频率。也即第一CW信号的频率和第二CW信号的频率之和大于第三CW信号的频率,第一CW信号的频率和第三CW信号的频率之和大于第二CW信号的频率,第二CW信号的频率和第三CW信号的频率之和大于第一CW信号的频率。
需要说明的是,OOK光信号是振幅键控调制光信号的一个特例,OOK光信号的一个幅度取为0,另一个幅度取为非0。并且,当OOK光信号位于波谷即OOK光信号为低能量时,OOK光信号的幅度为0;当OOK光信号位于波峰即OOK光信号为高能量时,OOK光信号的幅度为非0。并且,OOK光信号为高能量时,OOK光信号的幅度与OOK光信号的功率成正比。
预设数值为大于或者等于1的整数。例如,预设数值为1、2、3或者4等等。
步骤401中可以由第一非对称耦合单元10111接收第一组光信号,由第二非对称耦合单元10112接收第二组光信号,由第三非对称耦合单元10113接收第三组光信号。
步骤402:将第一组光信号包括的各路光信号之间的功率比、第二组光信号包括的各路光信号之间的功率比和第三组光信号包括的各路光信号之间的功率比调节为预设比例;
具体地,将第一组光信号包括的各路OOK光信号之间的功率比调节为预 设比例,将第二组光信号包括的各路OOK光信号之间的功率比和调节为预设比例,将第三组光信号包括的各路OOK光信号之间的功率比调节为预设比例。
其中,步骤402中可以由第一非对称耦合单元10111接收将第一组光信号包括的各路OOK光信号之间的功率比调节为预设比例,将第一组光信号包括的一路第一CW信号和调节后的各路OOK光信号耦合成第一混合信号。由第二非对称耦合单元10112接收将第二组光信号包括的各路OOK光信号之间的功率比调节为预设比例,将第二组光信号包括的一路第二CW信号和调节后的各路OOK光信号耦合成第二混合信号。由第三非对称耦合单元10113接收将第一组光信号包括的各路OOK光信号之间的功率比调节为预设比例,将第三组光信号包括的一路第三CW信号和调节后的各路OOK光信号耦合成第三混合信号。
预设比例可以根据预设数值进行设置并更改,例如,预设数值为1时,不进行功率调节;预设数值为2时,预设比例为1:2或者2:1;预设数值为3时,预设比例为1:2:4或者4:2:1;预设数值为4时,预设比例为1:2:4:8或者8:4:2:1。
例如,预设数值为1,则第一组光信号中包括OOK1光信号和CW1信号,第二组光信号中包括OOK2光信号和CW2信号,第三组光信号中包括OOK3光信号和CW3信号。
OOK1光信号和CW1信号同时输入到第一非对称耦合单元10111中,第一非对称耦合单元10111将OOK1光信号和CW1信号耦合成第一混合信号,将第一混合信号输出给第二非线性模块1012。
OOK2光信号和CW2信号同时输入到第二非对称耦合单元10112中,第二非对称耦合单元10112将OOK2光信号和CW2信号耦合成第二混合信号,将第二混合信号输出给第二非线性模块1012。
OOK3光信号和CW3信号同时输入到第三非对称耦合单元10113中,第三非对称耦合单元10113将OOK3光信号和CW3信号耦合成第三混合信号,将第三混合信号输出给第二非线性模块1012,从而实现三输入的光逻辑操作。
再如,预设数值为2,则第一组光信号中包括OOK1光信号、OOK2光信号和CW1信号;第二组光信号中包括OOK3光信号、OOK4光信号和CW2信号;第三组光信号中包括OOK5光信号、OOK6光信号和CW3信号。
OOK1光信号、OOK2光信号和CW1信号同时输入到第一非对称耦合单元10111中,第一非对称耦合单元10111将OOK1光信号和OOK2光信号之间 的功率比调节为1:2或者2:1;将调节后的OOK1光信号、OOK2光信号和CW1信号耦合成第一混合信号,将第一混合信号输出给第二非线性模块1012。
同样,OOK3光信号、OOK4光信号和CW2信号同时输入到第二非对称耦合单元10112中,第二非对称耦合单元10112将OOK3光信号和OOK4光信号之间的功率比调节为1:2或者2:1;将调节后的OOK3光信号、OOK4光信号和CW2信号耦合成第二混合信号,将第二混合信号输出给第二非线性模块1012。
同样,OOK5光信号、OOK6光信号和CW3信号同时输入到第三非对称耦合单元10113中,第三非对称耦合单元10113将OOK5光信号和OOK6光信号之间的功率比调节为1:2或者2:1;将调节后的OOK5光信号、OOK6光信号和CW3信号耦合成第三混合信号,将第三混合信号输出给第二非线性模块1012,从而实现六输入的光逻辑操作。
再如,第二预设数值为3,则第一组光信号中包括OOK1光信号、OOK2光信号、OOK3光信号和CW1信号;第二组光信号中包括OOK4光信号、OOK5光信号、OOK6光信号和CW2信号;第三组光信号中包括OOK7光信号、OOK8光信号、OOK9光信号和CW3信号。
OOK1光信号、OOK2光信号、OOK3光信号和CW1信号同时输入到第一非对称耦合单元10111中,第一非对称耦合单元10111将OOK1光信号、OOK2光信号和OOK3光信号之间的功率比调节为1:2:4或者4:2:1;将调节后的OOK1光信号、OOK2光信号、OOK3光信号和CW1信号耦合成第一混合信号,将第一混合信号输出给第二非线性模块1012。
同样,OOK4光信号、OOK5光信号、OOK6光信号和CW2信号同时输入到第二非对称耦合单元10112中,第二非对称耦合单元10112将OOK4光信号、OOK5光信号和OOK6光信号之间的功率比调节为1:2:4或者4:2:1;将调节后的OOK4光信号、OOK5光信号、OOK6光信号和CW2信号耦合成第二混合信号,将第二混合信号输出给第二非线性模块1012。
同样,OOK7光信号、OOK8光信号、OOK9光信号和CW3信号同时输入到第三非对称耦合单元10113中,第三非对称耦合单元10113将OOK7光信号、OOK8光信号和OOK9光信号之间的功率比调节为1:2:4或者4:2:1;将调节后的OOK7光信号、OOK8光信号、OOK9光信号和CW3信号耦合成第三混合信号,将第三混合信号输出给第二非线性模块1012,从而实现九输入的光 逻辑操作。
再如,第二预设数值为4,则第一组光信号中包括OOK1光信号、OOK2光信号、OOK3光信号、OOK4光信号和CW1信号;第二组光信号中包括OOK5光信号、OOK6光信号、OOK7光信号、OOK8光信号和CW2信号;第三组光信号中包括OOK9光信号、OOK10光信号、OOK11光信号、OOK12光信号和CW3信号。
OOK1光信号、OOK2光信号、OOK3光信号、OOK4光信号和CW1信号同时输入到第一非对称耦合单元10111中,第一非对称耦合单元10111将OOK1光信号、OOK2光信号、OOK3光信号和OOK4光信号之间的功率比调节为1:2:4:8或者8:4:2:1;将调节后的OOK1光信号、OOK2光信号、OOK3光信号、OOK4光信号和CW1信号耦合成第一混合信号,将第一混合信号输出给第二非线性模块1012。
同样,OOK5光信号、OOK6光信号、OOK7光信号、OOK8光信号和CW2信号同时输入到第二非对称耦合单元10112中,第二非对称耦合单元10112将OOK5光信号、OOK6光信号、OOK7光信号和OOK8光信号之间的功率比调节为1:2:4:8或者8:4:2:1;将调节后的OOK5光信号、OOK6光信号、OOK7光信号、OOK8光信号和CW2信号耦合成第二混合信号,将第二混合信号输出给第二非线性模块1012。
同样,OOK9光信号、OOK10光信号、OOK11光信号、OOK12光信号和CW1信号同时输入到第三非对称耦合单元10113中,第三非对称耦合单元10113将OOK9光信号、OOK10光信号、OOK11光信号和OOK12光信号之间的功率比调节为1:2:4:8或者8:4:2:1;将调节后的OOK9光信号、OOK10光信号、OOK11光信号、OOK12光信号和CW3信号耦合成第三混合信号,将第三混合信号输出给第二非线性模块1012,从而实现十二输入的光逻辑操作。
步骤403:对调节后的第一组光信号、第二组光信号和第三组光信号进行交叉相位调制XPM处理得到第一调制光信号、第二调制光信号和第三调制光信号;
从第一混合信号中获取调节后的第一组光信号,从第二组混合信号中获取调节后的第二组光信号,从第三组混合信号中获取调节后的第三组光信号,并通过以下步骤(1)至(3)对调节后的第一组光信号、第二组光信号和第三组光信号进行XPM处理得到第一调制光信号、第二调制光信号和第三调制光信 号,包括:
(1):对调节后的第一组光信号进行XPM处理,将第一组光信号中包括的各路OOK光信号调制到第一组光信号包括的一路第一CW信号上得到第一调制光信号;
例如,第一混合信号为OOK1光信号和CW1信号,则第一非线性器件10121接收第一混合信号,对第一混合信号中的OOK1光信号和CW1信号进行XPM处理,得到BPSK格式的第一调制光信号,将BPSK格式的第一调制光信号输出给第一过滤器1031。
第一非线性器件10121对第一混合信号中的OOK1光信号和CW1信号进行XPM处理,得到BPSK格式的第一调制光信号的过程可以为:
当OOK1光信号为高能量,即为“1”时,对OOK1光信号和CW1进行处理就是对CW1发生一个π相位的调制;
当OOK1光信号为低能量,即为“0”时,对OOK1光信号和CW1进行XPM处理就是不对CW1发生相位变化。
再如,第一混合信号为调节后的OOK1光信号和OOK2光信号以及CW1信号,则第一非线性器件10121接收第一混合信号,对第一混合信号中的调节后的OOK1光信号和OOK2光信号以及CW1信号进行XPM处理得到QPSK格式的第一调制光信号,将QPSK格式的第一调制光信号输出给第一过滤器1031。
第一非线性器件10121对第一混合信号中的调节后的OOK1光信号和OOK2光信号以及CW1信号进行XPM处理得到QPSK格式的第一调制光信号的过程为:
当OOK1光信号为高能量,即为“1”,OOK2光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为1/2π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为高能量,即为“2”时,通过XPM处理对CW1发生一个相位的调制,相位变化为π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为高能量,即为“2”时,通过XPM处理对CW1发生一个相位的调制,相位变化为3/2π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为低能量,即为“0”时,通过XPM处理对CW1不发生相位调制,相位变化为0。
再如,第一混合信号为调节后的OOK1光信号、OOK2光信号和OOK3 光信号以及CW1信号,则第一非线性器件10121接收第一混合信号,对第一混合信号中的调节后的OOK1光信号、OOK2光信号和OOK3光信号以及CW1信号进行XPM处理得到8PSK格式的第一调制光信号,将8PSK格式的第一调制光信号输出给第一过滤器1031。
第一非线性器件10121对第一混合信号中的调节后的OOK1光信号、OOK2光信号和OOK3光信号以及CW1信号进行XPM处理得到8PSK格式的第一调制光信号的过程为:
当OOK1光信号为高能量,即为“1”,OOK2光信号为低能量,即为“0”,OOK3光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为1/4π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为高能量,即为“1”,OOK3光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为2/4π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为高能量,即为“2”,OOK3光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为3/4π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为低能量,即为“0”,OOK3光信号为高能量,即为“4”时,通过XPM处理对CW1发生一个相位的调制,相位变化为4/4π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为低能量,即为“0”,OOK3光信号为高能量,即为“4”时,通过XPM处理对CW1发生一个相位的调制,相位变化为5/4π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为高能量,即为“2”,OOK3光信号为高能量,即为“4”时,通过XPM处理对CW1发生一个相位的调制,相位变化为6/4π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为高能量,即为“2”,OOK3光信号为高能量,即为“4”时,通过XPM处理对CW1发生一个相位的调制,相位变化为7/4π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为低能量,即为“0”,OOK3光信号为低能量,即为“0”时,通过XPM处理CW1不发生相位调制,相位变化为0。
再如,第一混合信号为调节后的OOK1光信号、OOK2光信号、OOK3光信号和OOK4光信号以及CW1信号,则第一非线性器件10121接收第一混合信号,对第一混合信号中的调节后的OOK1光信号、OOK2光信号OOK3光信号和OOK4光信号以及CW1信号进行XPM处理得到16PSK格式的第一调制光信号,将16PSK格式的第一调制光信号输出给第一过滤器1031。
第一非线性器件10121对第一混合信号中的调节后的OOK1光信号、OOK2光信号OOK3光信号和OOK4光信号以及CW1信号进行XPM处理得到16PSK格式的第一调制光信号的过程为:
当OOK1光信号为高能量,即为“1”,OOK2光信号为低能量,即为“0”,OOK3光信号为低能量,即为“0”,OOK4光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为1/8π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为高能量,即为“2”,OOK3光信号为低能量,即为“0”,OOK4光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为2/8π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为高能量,即为“2”,OOK3光信号为低能量,即为“0”,OOK4光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为3/8π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为低能量,即为“0”,OOK3光信号为高能量,即为“4”,OOK4光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为4/8π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为低能量,即为“0”,OOK3光信号为高能量,即为“4”,OOK4光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为5/8π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为高能量,即为“2”,OOK3光信号为高能量,即为“4”,OOK4光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为6/8π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为高能量,即为“2”,OOK3光信号为高能量,即为“4”,OOK4光信号为低能量,即为“0”时,通过XPM处理对CW1发生一个相位的调制,相位变化为7/8π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为低能量,即为“0”,OOK3光信号为低能量,即为“0”,OOK4光信号为高能量,即为“8”时, 通过XPM处理对CW1发生一个相位的调制,相位变化为8/8π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为低能量,即为“0”,OOK3光信号为低能量,即为“0”,OOK4光信号为高能量,即为“8”时,通过XPM处理对CW1发生一个相位的调制,相位变化为9/8π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为高能量,即为“2”,OOK3光信号为低能量,即为“0”,OOK4光信号为高能量,即为“8”时,通过XPM处理对CW1发生一个相位的调制,相位变化为10/8π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为高能量,即为“2”,OOK3光信号为低能量,即为“0”,OOK4光信号为高能量,即为“8”时,通过XPM处理对CW1发生一个相位的调制,相位变化为11/8π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为低能量,即为“0”,OOK3光信号为高能量,即为“4”,OOK4光信号为高能量,即为“8”时,通过XPM处理对CW1发生一个相位的调制,相位变化为12/8π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为低能量,即为“0”,OOK3光信号为高能量,即为“4”,OOK4光信号为高能量,即为“8”时,通过XPM处理对CW1发生一个相位的调制,相位变化为13/8π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为高能量,即为“2”,OOK3光信号为高能量,即为“4”,OOK4光信号为高能量,即为“8”时,通过XPM处理对CW1发生一个相位的调制,相位变化为14/8π;
当OOK1光信号为高能量,即为“1”,OOK2光信号为高能量,即为“2”,OOK3光信号为高能量,即为“4”,OOK4光信号为高能量,即为“8”时,通过XPM处理对CW1发生一个相位的调制,相位变化为15/8π;
当OOK1光信号为低能量,即为“0”,OOK2光信号为低能量,即为“0”,OOK3光信号为低能量,即为“0”,OOK4光信号为低能量,即为“0”时,通过XPM处理对CW1不发生相位调制,即相位变化为0。
(2):对调节后的第二组光信号进行XPM处理,将第二组光信号包括的各路OOK光信号调制到第二组光信号包括的一路第二CW信号上得到第二调制光;
例如,第二混合信号为OOK2光信号和CW2信号,则第二非线性器件10122接收第二混合信号,对第二混合信号中的OOK2光信号和CW2信号进行XPM处理,得到BPSK格式的第二调制光信号,将BPSK格式的第二调制 光信号输出给第二过滤器1032。
再如,第二混合信号为调节后的OOK3光信号和OOK4光信号以及CW2信号,则第二非线性器件10122接收第二混合信号,对第二混合信号中的调节后的OOK3光信号、OOK4光信号和CW2信号进行XPM处理得到QPSK格式的第二调制光信号,将QPSK格式的第二调制光信号输出给第二过滤器1032。
再如,第二混合信号为调节后的OOK4光信号、OOK5光信号和OOK6光信号以及CW2信号,则第一非线性器件10121接收第二混合信号,对第二混合信号中的调节后的OOK4光信号、OOK5光信号和OOK6光信号以及CW2信号进行XPM处理得到8PSK格式的第二调制光信号,将8PSK格式的第二调制光信号输出给第二过滤器1032。
再如,第二混合信号为调节后的OOK5光信号、OOK6光信号、OOK7光信号和OOK8光信号以及CW2信号,则第二非线性器件10122接收第二混合信号,对第二混合信号中的调节后的OOK5光信号、OOK6光信号OOK7光信号和OOK8光信号以及CW2信号进行XPM处理得到16PSK格式的第二调制光信号,将16PSK格式的第二调制光信号输出给第二过滤器1032。
(3):对调节后的第三组光信号进行XPM处理,将第三组光信号中包括的各路OOK光信号调制到第三组光信号包括的一路第三CW信号上得到第三调制光。
例如,第三混合信号为OOK3光信号和CW3信号,则第三非线性器件10123接收第三混合信号,对第三混合信号中的OOK3光信号和CW3信号进行XPM处理,得到BPSK格式的第三调制光信号,将BPSK格式的第三调制光信号输出给第三过滤器1033。
再如,第三混合信号为调节后的OOK5光信号和OOK6光信号以及CW3信号,则第三非线性器件10123接收第三混合信号,对第三混合信号中的调节后的OOK5光信号、OOK6光信号和CW3信号进行XPM处理得到QPSK格式的第三调制光信号,将QPSK格式的第三调制光信号输出给第三过滤器1033。
再如,第三混合信号为调节后的OOK7光信号、OOK8光信号和OOK9光信号以及CW3信号,则第一非线性器件10121接收第三混合信号,对第三混合信号中的调节后的OOK7光信号、OOK8光信号和OOK9光信号以及CW3 信号进行XPM处理得到8PSK格式的第三调制光信号,将8PSK格式的第三调制光信号输出给第三过滤器1033。
再如,第三混合信号为调节后的OOK9光信号、OOK10光信号、OOK11光信号和OOK12光信号以及CW3信号,则第三非线性器件10123接收第三混合信号,对第三混合信号中的调节后的OOK9光信号、OOK10光信号OOK11光信号和OOK12光信号以及CW3信号进行XPM处理得到16PSK格式的第三调制光信号,将16PSK格式的第三调制光信号输出给第三过滤器1033。
步骤404:分别将第一调制光信号中的各路OOK光信号,第二调制光信号中的各路OOK光信号和第三调制光信号中的各路OOK光信号过滤掉;
通过第一滤波器1031将第一调制光信号中的各路OOK光信号过滤掉,得到调制后的第一CW信号,将调制后的第一CW信号确定为滤波后的第一调制光信号;通过第二滤波器1032将第二调制光信号中的各路OOK光信号过滤掉,得到调制后的第二CW信号,将调制后的第二CW信号确定为滤波后的第二调制光信号;通过第三滤波器1033将第三调制光信号中的各路OOK光信号过滤掉,得到调制后的第三CW信号,将调制后的第三CW信号确定为滤波后的第三调制光信号。
例如,第一滤波器1031将BPSK格式的第一调制光信号、QPSK格式的第一调制光信号、8PSK格式的第一调制光信号或者16PSK格式的第一调制光信号中的各路OOK光信号过滤掉,得到滤波后的BPSK格式的第一调制光信号、QPSK格式的第一调制光信号、8PSK格式的第一调制光信号或者16PSK格式的第一调制光信号;第二滤波器1032将BPSK格式的第二调制光信号、QPSK格式的第二调制光信号、8PSK格式的第二调制光信号或者16PSK格式的第二调制光信号中的各路OOK光信号过滤掉,得到滤波后的BPSK格式的第二调制光信号、QPSK格式的第二调制光信号、8PSK格式的第二调制光信号或者16PSK格式的第二调制光信号;第三滤波器1033将BPSK格式的第三调制光信号、QPSK格式的第三调制光信号、8PSK格式的第三调制光信号或者16PSK格式的第三调制光信号中的各路OOK光信号过滤掉,得到滤波后的BPSK格式的第三调制光信号、QPSK格式的第三调制光信号、8PSK格式的第三调制光信号或者16PSK格式的第三调制光信号。
需要说明的是,由于只有三个光才能进行FWM处理,因此,通过调制模块101将第一组光信号调制为第一调制光信号,将第二组光信号调制为第二调 制光信号,将第三组光信号调制为第三调制光信号,从而实现至少三输入的光逻辑操作。
步骤405:对第一调制光信号、第二调制光信号和第三调制光信号进行四波混频FWM处理得到第一闲频光、第二闲频光和第三闲频光,第一闲频光、第二闲频光和第三闲频光的频率各不相同,且都与第一组光信号、第二组光信号和第三组光信号中的光信号的频率不相同;
对过滤后的第一调制光、第二调制光和第三调制光进行FWM处理得到第一闲频光、第二闲频光和第三闲频光可以通过以下步骤(1)至(3)实现,包括:
(1):将滤波后的第一调制光信号,滤波后的第二调制光信号与滤波后的第三调制光信号发生FWM处理得到第一闲频光;
具体地,将滤波后的第一调制光信号携带的信息,滤波后的第二调制光信号携带的信息和滤波后的第三调制光信号携带的信息以加减的形式调制到闲频光上,即将滤波后的第一调制光信号携带的信息与滤波后的第二调制光信号携带的信息之和减去滤波后的第三调制光信号携带的信息,得到第一闲频光。
例如,第一非线性模块101将滤波后的BPSK格式的第一调制光信号、BPSK格式的第二调制光信号和BPSK格式的第三调制光信号发生FWM处理得到BPSK格式的第一闲频光;将滤波后的QPSK格式的第一调制光信号、QPSK格式的第二调制光信号和QPSK格式的第三调制光信号发生FWM处理得到QPSK格式的第一闲频光;将滤波后的8PSK格式的第一调制光信号、8PSK格式的第二调制光信号和8PSK格式的第三调制光信号发生FWM处理得到8PSK格式的第一闲频光;将滤波后的16PSK格式的第一调制光信号、16PSK格式的第二调制光信号和16PSK格式的第三调制光信号发生FWM处理得到16PSK格式的第一闲频光。
(2):将滤波后的第一调制光信号,滤波后的第二调制光信号与滤波后的第三调制光信号发生FWM处理得到第二闲频光;
具体地,将滤波后的第一调制光信号携带的信息,滤波后的第二调制光信号携带的信息和滤波后的第三调制光信号携带的信息以加减的形式调制到闲频光上,即将滤波后的第一调制光信号携带的信息与滤波后的第三调制光信号携带的信息之和减去滤波后的第二调制光信号携带的信息,得到第二闲频光。
例如,第一非线性模块101将滤波后的BPSK格式的第一调制光信号、 BPSK格式的第二调制光信号和BPSK格式的第三调制光信号发生FWM处理得到BPSK格式的第二闲频光;将滤波后的QPSK格式的第一调制光信号、QPSK格式的第二调制光信号和QPSK格式的第三调制光信号发生FWM处理得到QPSK格式的第二闲频光;将滤波后的8PSK格式的第一调制光信号、8PSK格式的第二调制光信号和8PSK格式的第三调制光信号发生FWM处理得到8PSK格式的第二闲频光;将滤波后的16PSK格式的第一调制光信号、16PSK格式的第二调制光信号和16PSK格式的第三调制光信号发生FWM处理得到16PSK格式的第二闲频光。
(3):将滤波后的第一调制光信号,滤波后的第二调制光信号与滤波后的第三调制光信号发生FWM处理得到第三闲频光。
具体地,将滤波后的第一调制光信号携带的信息,滤波后的第二调制光信号携带的信息和滤波后的第三调制光信号携带的信息以加减的形式调制到闲频光上,即将滤波后的第二调制光信号携带的信息与滤波后的第三调制光信号的携带信息之和减去滤波后的第一调制光信号携带的信息,得到第三闲频光。
例如,第一非线性模块101将滤波后的BPSK格式的第一调制光信号、BPSK格式的第二调制光信号和BPSK格式的第三调制光信号发生FWM处理得到BPSK格式的第三闲频光;将滤波后的QPSK格式的第一调制光信号、QPSK格式的第二调制光信号和QPSK格式的第三调制光信号发生FWM处理得到QPSK格式的第三闲频光;将滤波后的8PSK格式的第一调制光信号、8PSK格式的第二调制光信号和8PSK格式的第三调制光信号发生FWM处理得到8PSK格式的第三闲频光;将滤波后的16PSK格式的第一调制光信号、16PSK格式的第二调制光信号和16PSK格式的第三调制光信号发生FWM处理得到16PSK格式的第三闲频光。
步骤406:分别滤掉第一闲频光、第二闲频光和第三闲频光中的调制光信号,得到滤波后的第一闲频光、第二闲频光和第三闲频光;
第一非线性模块101对第一调制光信号、第二调制光信号和第三调制光信号进行FWM处理得到第一闲频光、第二闲频光和第三闲频光之后,输出的信号光中包括第一调制光信号、第二调制光信号、第三调制光信号、第一闲频光、第二闲频光和第三闲频光,此时通过第二滤波模块104滤掉输出光信号中的进行完FWM处理之后的第一调制光信号、第二调制光信号和第三调制光信号。也即通过第二滤波模块104滤掉输出光信号中的调制后的第一CW信号、第二 CW信号和第三CW信号,得到滤波后的第一闲频光、第二闲频光和第三闲频光。
例如,第二滤波模块104接收第一非线性模块102输出的BPSK格式的第一闲频光、QPSK格式的第一闲频光、8PSK格式的第一闲频光或者16PSK格式的第一闲频光,将BPSK格式的第一闲频光、QPSK格式的第一闲频光、8PSK格式的第一闲频光或者16PSK格式的第一闲频光中的调制后的第一CW信号、第二CW信号和第三CW信号滤除,得到滤波后的BPSK格式的第一闲频光、QPSK格式的第一闲频光、8PSK格式的第一闲频光或者16PSK格式的第一闲频光。
再如,第二滤波模块104接收第一非线性模块102输出的BPSK格式的第二闲频光、QPSK格式的第二闲频光、8PSK格式的第二闲频光或者16PSK格式的第二闲频光,将BPSK格式的第二闲频光、QPSK格式的第二闲频光、8PSK格式的第二闲频光或者16PSK格式的第二闲频光中的调制后的第一CW信号、第二CW信号和第三CW信号滤除,得到滤波后的BPSK格式的第二闲频光、QPSK格式的第二闲频光、8PSK格式的第二闲频光或者16PSK格式的第二闲频光。
再如,第二滤波模块104接收第一非线性模块102输出的BPSK格式的第三闲频光、QPSK格式的第三闲频光、8PSK格式的第三闲频光或者16PSK格式的第三闲频光,将BPSK格式的第三闲频光、QPSK格式的第三闲频光、8PSK格式的第三闲频光或者16PSK格式的第三闲频中的第一CW信号、第二CW信号和第三CW信号滤除,得到滤波后的BPSK格式的第三闲频光、QPSK格式的第三闲频光、8PSK格式的第三闲频光或者16PSK格式的第三闲频。
步骤407:传输滤波后的第一闲频光、第二闲频光和第三闲频光。
在本发明实施例中,接收第一组光信号、第二组光信号和第三组光信号,分别对第一组光信号、第二组光信号和第三组光信号进行XPM处理,得到第一调制光信号、第二调制光信号和第三调制光信号;对第一调制光信号、第二调制光信号和第三调制光信号进行四波混频处理得到第一闲频光、第二闲频光和第三闲频光,由于第一组光信号、第二组光信号和第三组光信号中包括多路光信号,从而本发明能够实现至少三输入的光逻辑操作。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通 过硬件来完成,也可以通过程序来指令相关的硬件完成,的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 一种实现光逻辑的装置,其特征在于,所述装置包括:
    调制模块和第一非线性模块;所述调制模块的输出端与所述第一非线性模块的输入端连接;
    所述调制模块用于接收第一组光信号、第二组光信号和第三组光信号,所述第一组光信号、第二组光信号和第三组光信号中都包括一路连续波CW信号和至少一路二进制启闭键控OOK光信号,且所述第一组光信号、第二组光信号和第三组光信号中包括OOK光信号的路数相同以及所述第一组光信号、第二组光信号和第三组光信号中包括的CW信号的频率各不相同,且任意两路CW信号的频率之和大于第三路CW信号的频率,分别对所述第一组光信号进行交叉相位调制XPM处理,将所述第一组光信号中的至少一路OOK光信号调制到一路CW信号上得到第一调制光信号、对所述第二组光信号进行XPM处理,将所述第二组光信号中的至少一路OOK光信号调制到一路CW信号上得到第二调制光信号以及对所述第三组光信号进行XPM处理,将所述第三组光信号中的至少一路OOK光信号调制到一路CW信号上得到第三调制光信号,将所述第一调制光信号、第二调制光信号和第三调制光信号输出给所述第一非线性模块;
    所述第一非线性模块用于对所述第一调制光信号、第二调制光信号和第三调制光信号进行四波混频FWM处理得到第一闲频光、第二闲频光和第三闲频光,所述第一闲频光、第二闲频光和第三闲频光的频率各不相同,且都与所述第一组光信号、第二组光信号和第三组光信号中的光信号的频率不相同。
  2. 如权利要求1所述的装置,其特征在于,所述调制模块包括:
    非对称耦合模块和第二非线性模块;所述非对称耦合模块的输出端与所述第二非线性模块的输入端连接;所述第二非线性模块的输出端与所述第一非线性模块的输入端连接;
    所述非对称耦合模块用于接收第一组光信号、第二组光信号和第三组光信号,分别将所述第一组光信号包括的各路光信号之间的功率比、第二组光信号包括的各路光信号之间的功率比和第三组光信号包括的各路光信号之间的功率比调节为预设比例,将所述调节后的第一组光信号、第二组光信号和第三组光信号输出给所述第二非线性模块;
    所述第二非线性模块用于分别对所述调节后的第一组光信号、第二组光信号和第三组光信号进行XPM处理得到第一调制光信号、第二调制光信号和第三调制光信号,将所述第一调制光信号、第二调制光信号和第三调制光信号输出给所述第一非线性模块。
  3. 如权利要求2所述的装置,其特征在于,所述非对称耦合模块包括:
    第一非对称耦合单元、第二非对称耦合单元和第三非对称耦合单元;所述第一非对称耦合单元的输出端、所述第二非对称耦合单元的输出端和所述第三非对称耦合单元的输出端与所述第二非线性模块的输入端连接;
    所述第一非对称耦合单元用于接收第一组光信号,将所述第一组光信号包括的各路OOK光信号之间的功率比调节为预设比例,将所述第一组光信号包括的一路第一CW信号和调节后的各路OOK光信号耦合成第一混合信号,将所述第一混合信号输出给所述第二非线性模块;
    所述第二非对称耦合单元用于接收第二组光信号,将所述第二组光信号包括的各路OOK光信号之间的功率比调节为预设比例,将所述第二组光信号包括的一路第二CW信号和调节后的各路OOK光信号耦合成第二混合信号,将所述第二混合信号输出给所述第二非线性模块;
    所述第三非对称耦合单元用于接收第三组光信号,将所述第三组光信号包括的各路OOK光信号之间的功率比调节为预设比例,将所述第三组光信号包括的一路第三CW信号和调节后的各路OOK光信号耦合成第三混合信号,将所述第三混合信号输出给所述第二非线性模块。
  4. 如权利要求3所述的装置,其特征在于,所述第二非线性模块包括:
    第一非线性器件、第二非线性器件和第三非线性器件;所述第一非线性器件的输入端与所述第一非对称耦合单元的输出端连接,所述第二非线性器件的输入端与所述第二非对称耦合单元的输出端连接,所述第三非线性器件的输入端与所述第三非对称耦合单元的输出端连接;所述第一非线性器件的输出端、所述第二非线性器件的输出端和所述第三非线性器件的输出端与所述第一非线性模块的输入端连接;
    所述第一非线性器件用于接收所述第一混合信号,对所述第一混合信号进行XPM处理得到第一调制光信号;
    所述第二非线性器件用于接收所述第二混合信号,对所述第二混合信号进行XPM处理得到第二调制光信号;
    所述第三非线性器件用于接收所述第三混合信号,对所述第三混合信号进行XPM处理得到第三调制光信号。
  5. 如权利要求1至4任一权利要求所述的装置,其特征在于,所述装置还包括:
    第一滤波模块,所述第一滤波模块的输入端与所述调制模块的输出端连接,所述第一滤波模块的输出端与所述第一非线性模块的输入端连接;
    所述第一滤波模块用于接收所述第一调制光信号、第二调制光信号和第三调制光信号,分别对所述第一调制光信号、第二调制光信号和第三调制光信号进行滤波,将所述滤波后的第一调制光信号、第二调制光信号和第三调制光信号输出给所述第一非线性模块。
  6. 如权利要求5所述的装置,其特征在于,所述第一滤波模块包括:
    第一滤波器、第二滤波器和第三滤波器;所述第一滤波器的输入端与所述调制模块包括的第一非线性器件的输出端连接,所述第二滤波器的输入端与所述调制模块包括的第二非线性器件的输出端连接,所述第三滤波器的输入端与所述调制模块包括的第三非线性器件的输出端连接,所述第一滤波器的输出端、所述第二滤波器的输出端和所述第三滤波器的输出端与所述第一非线性模块的输入端连接;
    所述第一滤波器用于接收所述第一非线性器件输出的第一调制光信号,将所述第一调制光信号中的所述各路OOK光信号滤除,将所述滤除所述各路OOK光信号的第一调制光输出给所述第一非线性模块;
    所述第二滤波器用于接收所述第二非线性器件输出的第二调制光信号,将所述第二调制光信号中的所述各路OOK光信号滤除,将所述滤除所述各路OOK光信号的第二调制光输出给所述第二非线性模块;
    所述第三滤波器用于接收所述第三非线性器件输出的第三调制光信号,将所述第三调制光信号中的所述各路OOK光信号滤除,将所述滤除所述各路OOK光信号的第三调制光输出给所述第三非线性模块。
  7. 如权利要求1至4任一权利要求所述的装置,其特征在于,所述装置还包括:
    第二滤波模块,所述第二滤波模块的输入端与所述第一非线性模块的输出端连接;
    所述第二滤波模块用于接收所述第一非线性模块输出的第一闲频光、第二闲频光和第三闲频光,分别过滤掉所述第一闲频光、第二闲频光和第三闲频光中的调制光信号,得到滤波后的第一闲频光、第二闲频光和第三闲频光。
  8. 如权利要求1所述的装置,其特征在于,所述装置还包括:
    耦合模块,所述耦合模块的输入端与所述调制模块的输出端连接,所述耦合模块的输入端与所述第一非线性模块的输入端连接;
    所述耦合模块用于接收第一调制光信号、第二调制光信号和第三调制光信号,将所述第一调制光信号、第二调制光信号和第三调制光信号耦合在一起输出给所述第一非线性模块。
  9. 一种实现光逻辑的方法,其特征在于,所述方法包括:
    接收第一组光信号、第二组光信号和第三组光信号,所述第一组光信号、第二组光信号和第三组光信号中都包括一路连续波CW信号和至少一路二进制启闭键控OOK光信号,且所述第一组光信号、第二组光信号和第三组光信号中包括OOK光信号的路数相同以及所述第一组光信号、第二组光信号和第三组光信号中包括的CW信号的频率各不相同,且任意两路CW信号的频率之和大于第三路CW信号的频率;
    分别对所述第一组光信号进行交叉相位调制XPM处理,将所述第一组光信号中的至少一路OOK光信号调制到一路CW信号上得到第一调制光信号、对所述第二组光信号进行XPM处理,将所述第二组光信号中的至少一路OOK光信号调制到一路CW信号上得到第二调制光信号以及对所述第三组光信号进行XPM处理,将所述第三组光信号中的至少一路OOK光信号调制到一路CW信号上得到第三调制光信号;
    对所述第一调制光信号、第二调制光信号和第三调制光信号进行四波混频FWM处理得到第一闲频光、第二闲频光和第三闲频光,所述第一闲频光、第二闲频光和第三闲频光的频率各不相同,且都与所述第一组光信号、第二组光信 号和第三组光信号中的光信号的频率不相同。
  10. 如权利要求9所述的方法,其特征在于,所述分别对所述第一组光信号、第二组光信号和第三组光信号进行调制得到第一调制光信号、第二调制光信号和第三调制光信号,包括:
    将所述第一组光信号包括的各路光信号之间的功率比、第二组光信号包括的各路光信号之间的功率比和第三组光信号包括的各路光信号之间的功率比调节为预设比例;
    对所述调节后的第一组光信号、第二组光信号和第三组光信号进行XPM处理得到第一调制光信号、第二调制光信号和第三调制光信号。
  11. 如权利要10所述的方法,其特征在于,所述将所述第一组光信号包括的各路光信号之间的功率比、第二组光信号包括的各路光信号之间的功率比和第三组光信号包括的各路光信号之间的功率比调节为预设比例,包括:
    将所述第一组光信号包括的各路OOK光信号之间的功率比、第二组光信号包括的各路OOK光信号之间的功率比和第三组光信号包括的各路OOK光信号之间的功率比调节为预设比例。
  12. 如权利要求11所述的方法,其特征在于,所述对所述调节后的第一组光信号、第二组光信号和第三组光信号进行交叉相位调制XPM处理得到第一调制光信号、第二调制光信号和第三调制光信号,包括:
    对所述调节后的第一组光信号包括的各路OOK光信号与所述第一组光信号包括的一路第一CW信号进行交叉相位调制XPM处理得到第一调制光信号;
    对所述调节后的第二组光信号包括的各路OOK光信号与所述第二组光信号包括的一路第二CW信号进行XPM处理得到第二调制光;
    对所述调节后的第三组光信号包括的各路OOK光信号与所述第三组光信号包括的一路第三CW信号进行XPM处理得到第三调制光。
  13. 如权利要求9所述的方法,其特征在于,所述对所述第一调制光信号、第二调制光信号和第三调制光信号进行四波混频FWM处理得到第一闲频光、第二闲频光和第三闲频光之前,还包括:
    分别将所述第一调制光信号中的各路OOK光信号,所述第二调制光信号中的各路OOK光信号和所述第三调制光信号中的各路OOK光信号过滤掉。
  14. 如权利要求9所述的方法,其特征在于,所述对所述第一调制光信号、第二调制光信号和第三调制光信号进行四波混频FWM处理得到第一闲频光、第二闲频光和第三闲频光之后,还包括:
    分别滤掉所述第一闲频光、第二闲频光和第三闲频光中的调制光信号,得到滤波后的第一闲频光、第二闲频光和第三闲频光;
    传输所述滤波后的第一闲频光、第二闲频光和第三闲频光。
PCT/CN2014/090866 2014-11-12 2014-11-12 一种实现光逻辑的装置和方法 WO2016074162A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480081511.9A CN106797254B (zh) 2014-11-12 2014-11-12 一种实现光逻辑的装置和方法
PCT/CN2014/090866 WO2016074162A1 (zh) 2014-11-12 2014-11-12 一种实现光逻辑的装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/090866 WO2016074162A1 (zh) 2014-11-12 2014-11-12 一种实现光逻辑的装置和方法

Publications (1)

Publication Number Publication Date
WO2016074162A1 true WO2016074162A1 (zh) 2016-05-19

Family

ID=55953568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090866 WO2016074162A1 (zh) 2014-11-12 2014-11-12 一种实现光逻辑的装置和方法

Country Status (2)

Country Link
CN (1) CN106797254B (zh)
WO (1) WO2016074162A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6522462B2 (en) * 2001-06-29 2003-02-18 Super Light Wave Corp. All optical logic using cross-phase modulation amplifiers and mach-zehnder interferometers with phase-shift devices
CN201017151Y (zh) * 2006-11-24 2008-02-06 华中科技大学 瞬态交叉相位调制型全光半加器
US20110110667A1 (en) * 2009-11-10 2011-05-12 Industrial Technology Research Institute Optical network and optical signal modulation method thereof
CN102158284A (zh) * 2011-03-17 2011-08-17 电子科技大学 一种光信号偏振方向确定及功率均衡系统
CN104052550A (zh) * 2014-06-19 2014-09-17 北京邮电大学 一种同时实现三路dpsk信号1-2信号组播的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004693A2 (en) * 1999-07-08 2001-01-18 Prucnal Paul R Method and apparatus for implementing digital optical logic using terahertz optical asymmetric demultiplexers
EP2312387A3 (en) * 2006-02-14 2011-07-13 Coveytech, LLC Method of manufacturing all-optical logic gates using nonlinear elements
WO2009072693A1 (en) * 2007-12-06 2009-06-11 Inha-Industry Partnership Institute Delayed optical logic gates
CN102053450A (zh) * 2009-11-04 2011-05-11 中国科学院半导体研究所 基于四波混频效应的微环谐振腔结构全光逻辑与门
CN104102066B (zh) * 2014-06-26 2017-01-04 杭州电子科技大学 基于光纤耦合器双泵浦光调制方式的全光逻辑器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6522462B2 (en) * 2001-06-29 2003-02-18 Super Light Wave Corp. All optical logic using cross-phase modulation amplifiers and mach-zehnder interferometers with phase-shift devices
CN201017151Y (zh) * 2006-11-24 2008-02-06 华中科技大学 瞬态交叉相位调制型全光半加器
US20110110667A1 (en) * 2009-11-10 2011-05-12 Industrial Technology Research Institute Optical network and optical signal modulation method thereof
CN102158284A (zh) * 2011-03-17 2011-08-17 电子科技大学 一种光信号偏振方向确定及功率均衡系统
CN104052550A (zh) * 2014-06-19 2014-09-17 北京邮电大学 一种同时实现三路dpsk信号1-2信号组播的方法

Also Published As

Publication number Publication date
CN106797254A (zh) 2017-05-31
CN106797254B (zh) 2019-05-10

Similar Documents

Publication Publication Date Title
JP3458613B2 (ja) 波長変換装置及び光演算装置
CN104216196B (zh) 一种无外部电本振可调谐的全光微波光子变频装置
CN106972890B (zh) 一种光控光pam信号再生装置
CN101800606B (zh) 光单边带调制装置
CN107340666B (zh) 一种基于光电振荡器的矢量信号上变频装置
CN206673978U (zh) 载波抑制的单边带电光调制装置
CN104977733A (zh) 一种硅基非互易器件结构与电控非互易实现方法
CN101483483A (zh) 一种产生多频率高频微波信号源的方法及装置
CN206759461U (zh) 单边带电光调制装置
CN102262328B (zh) 全光波长/码型转换装置
Popović Resonant optical modulators beyond conventional energy-efficiency and modulation frequency limitations
CN102929072B (zh) 无偏振串扰的偏振复用系统全光波长变换简化装置及方法
CN108631877A (zh) 单边带电光调制装置
WO2016074162A1 (zh) 一种实现光逻辑的装置和方法
Xu et al. Optical Nyquist filters based on silicon coupled resonator optical waveguides
CN108696318A (zh) 载波抑制的单边带电光调制装置
CN104639258A (zh) 一种参量多播光子信道化射频接收机
US20200366977A1 (en) Optical device and optical signal processing method
CN204156285U (zh) 一种基于声光调制器的多频激光时分复用放大器
CN101963735A (zh) 一种偏振复用系统中的全光信息处理方案
CN205920306U (zh) 全光无栅格频谱整合器
CN104391418A (zh) 基于掺铒光纤耦合器的Sagnac干涉仪全光逻辑器
CN104283110A (zh) 基于声光调制器的多频激光时分复用放大器
US20130230320A1 (en) Flexible optical modulator for advanced modulation formats featuring asymmetric power splitting
US20230353245A1 (en) Ic-trosa optical network system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14906108

Country of ref document: EP

Kind code of ref document: A1