WO2016073483A1 - Systems and methods for multi-dimensional geophysical data visualization - Google Patents

Systems and methods for multi-dimensional geophysical data visualization Download PDF

Info

Publication number
WO2016073483A1
WO2016073483A1 PCT/US2015/058836 US2015058836W WO2016073483A1 WO 2016073483 A1 WO2016073483 A1 WO 2016073483A1 US 2015058836 W US2015058836 W US 2015058836W WO 2016073483 A1 WO2016073483 A1 WO 2016073483A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
geophysical
attributes
blending
color space
Prior art date
Application number
PCT/US2015/058836
Other languages
French (fr)
Inventor
Donald Paul GRIFFITH
Original Assignee
Shell Oil Company
Shell Internationale Research Maatschappij B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Oil Company, Shell Internationale Research Maatschappij B.V. filed Critical Shell Oil Company
Priority to AU2015343265A priority Critical patent/AU2015343265B2/en
Priority to CN201580060210.2A priority patent/CN107077759A/en
Priority to GB1705347.1A priority patent/GB2545600B/en
Priority to CA2966612A priority patent/CA2966612C/en
Priority to US15/524,198 priority patent/US10249080B2/en
Publication of WO2016073483A1 publication Critical patent/WO2016073483A1/en
Priority to US16/191,173 priority patent/US10614618B2/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/001Texturing; Colouring; Generation of texture or colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/34Displaying seismic recordings or visualisation of seismic data or attributes
    • G01V1/345Visualisation of seismic data or attributes, e.g. in 3D cubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/70Other details related to processing
    • G01V2210/74Visualisation of seismic data

Definitions

  • the present invention relates to a method for color mapping attributes from geophysical data and a system therefor.
  • the present invention further relates to a non- transitory computer readable medium including code for performing such a method.
  • Interaction with multi-dimensional geophysical data is made available to a user through the use of visual displays.
  • three-dimensional (3D) picture quality displays of a particular or selected geophysical formation can be generated using 3D geophysical data, along with dedicated computer software and/or hardware.
  • RGB blending techniques map three geophysical attributes to the three axes of a color cube. For example, a single attribute is mapped to just one color channel. As an example, a single attribute may be mapped to red, while another is mapped to green and a third is mapped to blue.
  • SFM Stratigraphic Forward Modelling
  • SFM tools are numerical, process-based software that aim to simulate tectonic and sedimentary processes controlling stratigraphic architecture. These tools can be classified according to the processes affecting sediment production, transport and deposition that they simulate, as well as the degree of the simplifications of these processes. SFM tools have been widely used to understand and illustrate controls on stratigraphy for a variety of sedimentary environments. Currently, there are a variety of SFM tools used in the context of hydrocarbon exploration, for building basin models or to help in predicting reservoir presence and characteristics.
  • Prior methods viewed layers or properties of a 3D geophysical data image from tools, such as an SFM tool, separately.
  • prior methods displayed images of the layers or properties as a series of side-by-side images, as a sequence of images varying through time as, for example, in a video sequencing image clip, or by using cross- sections to visualize several layers simultaneously but only for a single grid cell row.
  • a user viewing these results would then need to assimilate the results from the multiple images before being able to provide an analysis of the 3D geophysical data.
  • the user must visually view and scan for subtle changes between layers and/or between related properties of the separately displayed images. Such assimilation is a difficult and time-consuming task.
  • the prior art combines two-dimensional (2D) data recorded directly for each spectral band as measurements of surface properties either using aerial or satellite imaging. Standard practice is to select three bands from the numerous bands recorded, but methods to combine all recorded images have been presented.
  • the present invention aims to provide an improved method for analyzing multi-dimensional geophysical data, which relies on using a multi-dimensional color space to display the results from geophysical attributes that share at least two common coordinate references. For example, combining geophysical attributes that share a common X and Y grid, allows a user to view the geophysical attributes over a range of Z values.
  • the invention provides a method for color mapping attributes from geophysical data, comprising the steps of:
  • the number of blending filters defined equals the number of axes in the multi-dimensional color space, and wherein the three or more blending filters are defined based, at least in part, on two or more proportions associated with the two or more multi-dimensional geophysical attributes;
  • blending filter weights corresponds to the number of multi-dimensional geophysical attributes, and wherein each of the two or more blending filter weights uniquely corresponds to one single associated multi-dimensional geophysical attribute of the number of multi-dimensional geophysical attributes;
  • blended geophysical data attributes wherein the number of blended geophysical data attributes created equals the number of axes in the multi-dimensional color space, and wherein the blended geophysical data attributes are created by combining the two or more multi-dimensional geophysical attributes using the associated two or more blending filter weights;
  • each of the blended geophysical data attributes uniquely corresponds to one of the axes in the multi-dimensional color space.
  • the invention provides a system comprising:
  • the number of blending filters defined equals the number of axes in the multi-dimensional color space, and wherein the three or more blending filters are defined based, at least in part, on two or more proportions associated with the two or more multi-dimensional geophysical attributes;
  • blending filter weights corresponds to the number of multi-dimensional geophysical attributes, and wherein each of the two or more blending filter weights uniquely corresponds to one single associated multi-dimensional geophysical attribute of the number of multi-dimensional geophysical attributes;
  • blended geophysical data attributes wherein the number of blended geophysical data attributes created equals the number of axes in the multi-dimensional color space, and wherein the blended geophysical data attributes are created by combining the two or more multi-dimensional geophysical attributes using the associated two or more blending filter weights;
  • each of the blended geophysical data attributes uniquely corresponds to one of the axes in the multi-dimensional color space.
  • the invention provides non-transitory computer readable medium including code for performing a method, the method comprising: - defining a multi-dimensional color space;
  • the number of blending filters defined equals the number of axes in the multi-dimensional color space, and wherein the three or more blending filters are defined based, at least in part, on two or more proportions associated with the two or more multi-dimensional geophysical attributes;
  • blending filter weights corresponds to the number of multi-dimensional geophysical attributes, and wherein each of the two or more blending filter weights uniquely corresponds to one single associated multi-dimensional geophysical attribute of the number of multi-dimensional geophysical attributes;
  • blended geophysical data attributes wherein the number of blended geophysical data attributes created equals the number of axes in the multi-dimensional color space, and wherein the blended geophysical data attributes are created by combining the two or more multi-dimensional geophysical attributes using the associated two or more blending filter weights;
  • each of the blended geophysical data attributes uniquely corresponds to one of the axes in the multi-dimensional color space.
  • FIG. 1 shows an example information handling system according to one or more embodiments of the present disclosure.
  • FIG. 2 flow diagram for color mapping geophysical attributes from three- dimensional geophysical data according to one or more embodiments of the present disclosure
  • FIG. 3 is a crossplot of blending proportions.
  • the present disclosure relates generally to multi-dimensional geophysical data visualization through the use of computing systems and/or information handling systems, and, more particularly, to a method for simultaneously viewing many layers or properties associated with 3D geophysical data as a single two dimensional image.
  • a user interacts with the computing system and/or information handling system via a graphical user interface (GUI). It is the user that ultimately interprets the multi-dimensional geophysical data - the GUI determines how fast and effective multi-dimensional geophysical data can be analyzed and interpreted by the user.
  • GUI graphical user interface
  • Multi-dimensional, such as 3D, geophysical data Through visual displays. Such displays must take into consideration the interpretation by the user, such as how the eye processes light and how the physical display device displays light. For example, some displays are capable of producing 24-bit color which provides for about 16.8 million color variations. It is believed that a typical user can distinguish about 10 million colors. Certain color modeling techniques, allow for the display of multi- dimensional geophysical data with photographic quality. Several geophysical attributes from the multi-dimensional geophysical data such as, for example, 3D seismic data, may be combined using color modeling techniques in a way so as to acknowledge the visual perception capabilities of a user. For example, such displays are particularly useful when interpreting seismic data.
  • a method for a novel technique for displaying geophysical data, particularly multi-dimensional geophysical data such as three-dimensional (3D) geophysical data.
  • the novel technique involves using novel techniques to display the results in a multi-dimensional color space, such as a 3D color space.
  • a multi-dimensional color space such as a 3D color space.
  • the band-limited nature of the measurements results in data that has an average value of zero, with both positive and negative values.
  • Certain attributes are defined for these types of multi-dimensional geophysical data to meaningfully blend data for display with multi- dimensional color spaces, since multi-dimensional color spaces are either additive or subtractive for combining colors, but cannot be both simultaneously.
  • This blending typically requires utilizing geophysical attributes that reduce the multi-dimensional geophysical measurements to either positive or negative numbers, rather than both simultaneously.
  • Some geophysical data such as layer thicknesses and net-to-gross ratios contain only positive numbers and do not require further modification. But these are typically estimated values, or attributes derived from the raw data, rather than measurements, themselves as with hyperspectral data.
  • Combining several geophysical attributes from multi-dimensional, such as 3D, geophysical models renders the multi- dimensional, such as 3D, geophysical data easier to understand because human visual perception is acknowledged.
  • displays of the 3D geophysical data should have dark and bright patterns of the (multi-dimensional) geophysical data augmented with colors from, or derived from, additional geophysical attributes. Displays of 3D geophysical data that look less like amplitude maps and more like aerial photographs allow the user to engage in a better analysis and/or more meaningful interpretation of the geologic features of the visually-presented 3D geophysical data.
  • the method disclosed herein is technically advantageous because a method is provided for simultaneously viewing many layers or properties within a multidimensional model, such as a stratigraphic forward model (SFM), as a single two- dimensional (2D) image.
  • a multidimensional model such as a stratigraphic forward model (SFM)
  • the method is accomplished by using, for example, an RGB color model to display the result from a SFM tool.
  • a user is then able to co-visualize layers or properties of the multi-dimensional geophysical data image in adjacent portions of a displayed multi-dimensional cube as a single image.
  • RGB visualization provides images that may assist in reconciling baffled reservoir performance where both faults and shale-filled channels are present.
  • the confidence level in recovery factor estimates may be increased by the display of technically advanced visual images where, for example, aquifer strength likely differs between commingled reservoirs.
  • aquifer strength likely differs between commingled reservoirs.
  • the color modeling rendering provides geologic detail that had not been previously observed.
  • an information handling system may be utilized to display the geophysical data. Such embodiments may be implemented on virtually any type of information handling system regardless of the platform being used.
  • an information handling system 100 includes one or more processor(s) 102, associated memory 104 (for example, random access memory (RAM), read-only memory (ROM), cache memory, flash memory, etc.), a storage device 106 (for example, a hard disk, solid state memory, an optical drive such as a compact disk drive or digital video disk (DVD) drive, a flash memory stick, etc.), and numerous other elements and functionalities typical of today's computers (not shown).
  • processor(s) 102 for example, random access memory (RAM), read-only memory (ROM), cache memory, flash memory, etc.
  • storage device 106 for example, a hard disk, solid state memory, an optical drive such as a compact disk drive or digital video disk (DVD) drive, a flash memory stick, etc.
  • numerous other elements and functionalities typical of today's computers not shown.
  • the processor 102 may function to execute program instructions from one or more modules where the program instructions are stored in a memory device such as memory 104 or storage device 106 or any other memory known to one of ordinary skill in the art.
  • the information handling system 100 may also include an I O interface 108 for sending and/or receiving inputs, such as inputs from a keyboard, a mouse, or a microphone.
  • I/O interface 108 may also receive multi-dimensional, such as 3D, geophysical data as required by any one or more embodiments of the present invention.
  • the multi-dimensional geophysical data may be seismic data.
  • the information handling system 100 may include output means, such as a display 114 (for example, a liquid crystal display (LCD), a plasma display, or cathode ray tube (CRT) monitor).
  • Display 114 comprises the necessary elements to display color renderings of multidimensional geophysical data.
  • the information handling system 100 may be connected to a network 116 (for example, a local area network (LAN), a wide area network (WAN) such as the Internet, or any other similar type of network) via a network interface connection 110 to receive multi-dimensional geophysical data, such as 3D geophysical data, for example (3D) seismic data, or any other geophysical data known to one of ordinary skill in the art as required by any one or more embodiments of the present invention.
  • a network 116 for example, a local area network (LAN), a wide area network (WAN) such as the Internet, or any other similar type of network
  • 3D geophysical data for example (3D) seismic data
  • the information handling system includes at least the minimal processing, input, and/or output devices, whether hardware, software or any combination thereof, necessary to practice embodiments of the invention.
  • one or more elements of the aforementioned information handling system 100 may be located at a remote location and connected to one or more other elements over a network. Further, embodiments of the invention may be implemented on a distributed system having a plurality of nodes, where each portion of the invention may be located on a different node within the distributed system. For example, the display 114 may be located remotely from the other components of the information handling system 100. Information handling system 100 may comprise one or more client devices, servers, or any combination thereof.
  • a multidimensional color space is defined.
  • the multi-dimensional color space has a number of axes, suitably one axis for each dimension of the multiple dimensions.
  • the color space may be any one of an RGB (including, but not limited to, Adobe RGB, sRGB, Rec. 709 and DCI P3, CIEXYZ, CIELAB , CMYK, HSL, or HSV color space or any other color space known to one of ordinary skill in the art.
  • two or more multi-dimensional geophysical data attributes are defined. These attributes may be defined in any way known to one of ordinary skill in the art. For example, these attributes may be acquired from current or previously stored measurements. In one embodiment, the measurements may be acoustic measurements. As another example, these attributes may be calculated from current or previously stored data or may be pre-defined values. In one embodiment, these attributes are defined based, at least in part, on one or more depth parameter values.
  • Such attributes may be defined by or based on, at least in part, spectral coefficients from three or more spectral sub-bands, three or more adjacent horizon slices where the slices are from above and below a mapped horizon, or three or more projections along lines with varying slope in a two-dimensional crossplot of multi-component geophysical data such as, but not limited to, compressional and shear components or near and far angle substacks.
  • blending filters are defined.
  • the blending filters may be defined in any way known to one of ordinary skill in the art.
  • any one or more of the blending filters may be asymmetric blending filters.
  • at least two blending filters are mirror images of each other.
  • the two mirror image blending filters may be asymmetric blending filters while the third blending filter is symmetric.
  • the defined blending filters may be symmetric, asymmetric, or any combination of asymmetric and symmetric blending filters.
  • the number of blending filters created equals the number of dimensions or axes in the multi-dimensional color space.
  • the filter length of the blending filters equals the number of geophysical data attributes created. In one or more embodiments, any one or more of front- loaded, middle- loaded, and back loaded filters may be created.
  • the blending filters are defined based, at least in part, by two or more proportions associated with the multi-dimensional geophysical attributes.
  • two or more blending filter weights are defined.
  • the weights may be defined in any way known to one of ordinary skill in the art.
  • the weights are derived from one or more blending filters.
  • the weights may be defined using different blending filters for each weight.
  • the weights are defined based, at least in part, on a pre-defined value or criteria.
  • the number of weights equals the number of multi-dimensional geophysical attributes defined.
  • Each weight has a one-to-one correspondence with a single unique multi-dimensional geophysical attribute. That is, each weight corresponds to exclusively one unique associated multi-dimensional geophysical attribute and each multi-dimensional geophysical attribute corresponds to exclusively one weight. For example, a first multi-dimensional geophysical attribute has a corresponding first weight, a second multi-dimensional geophysical attribute has a corresponding second weight, and so on for each multi-dimensional geophysical attribute.
  • the blended geophysical data attributes are created by combining the multi-dimensional geophysical attributes using the weights associated with each geophysical attribute.
  • Blended geophysical data attributes may for instance be created by multiplying the multi-dimensional geophysical attributes with the associated two or more blending filter weights.
  • Each of these blended geophysical data attributes may be uniquely created by using all or any combination of the geophysical attributes with the geophysical attributes blended differently for each blended geophysical data attribute.
  • the blended geophysical data attributes may be derived using a different blending filter for each such blended geophysical data attribute.
  • the number of blended geophysical data attributes created equals the number of axes in the multi-dimensional color space.
  • the blended geophysical data attributes are displayed using the defined multi-dimensional color space.
  • Each of the blended geophysical data attributes for instance each of the three or more blended geophysical data attributes, uniquely corresponds to one of the axes in the multi-dimensional color space. Moreover, each of the axes in the multi-dimensional color space uniquely corresponds to exclusively one of the blended geophysical data attributes.
  • an RGB color space is defined with each of the three blended geophysical data attributes uniquely corresponding to the three axes of the defined color space.
  • depicted generally at 300 is a crossplot depicting blending proportions.
  • the embodiment depicted generally at 300 is a defined RGB color space.
  • the blending filter for the Red axis is denoted by dashed line 330
  • the blending filter for the Blue axis is denoted by dotted line 310
  • the blending filter for the Green axis is denoted by solid line 320.
  • the x-axis is the attribute number and the y-axis is the color blending weight.
  • the example shows five multi-dimensional geophysical attributes.
  • Blending weights corresponding to each multi-dimensional geophysical attribute are denoted by a triangle for the Blue axis 310, a square for the Green axis 320 and a circle for the Red axis 330.
  • Blended geophysical data attributes are created by combining the five multi-dimensional geophysical attributes using the five associated blending filter weights.
  • the blended multi-dimensional Geophysical Attribute for the Red axis of the RGB color space in this example would be the sum of Geophysical Attribute number 1 multiplied by the weight of the blending filter for the Red axis denoted by the left-most circle above Geophysical Attribute 1 , plus Geophysical Attribute number 2 multiplied by the weight of the blending filter for the Red axis denoted by the second circle above Geophysical Attribute 2, plus Geophysical Attribute number 3 multiplied by the weight of the blending filter for the Red axis denoted by the third circle above Geophysical Attribute 3, plus Geophysical Attribute number 4 multiplied by the weight of the blending filter for the Red axis denoted by the fourth circle above Geophysical Attribute 4, plus Geophysical Attribute number 5 multiplied by the weight of the blending filter for the Red axis denoted by the fifth circle above Geophysical Attribute 5.
  • the blended multi-dimensional Geophysical Attributes for the Green and Blue axes of the RGB color space would be created in a similar manner using the weights from the blending filters for the Green axis and Blue axis of the RGB color space, respectively.
  • the blending filter 330 and the blending filter 310 are asymmetric blending filters while the blending filter 320 is a symmetric blending filter.
  • Other embodiments may use any combination of symmetric and asymmetric blending filters.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Sensing (AREA)
  • Computer Graphics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • User Interface Of Digital Computer (AREA)
  • Processing Of Color Television Signals (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Example of systems and methods are provided for visualization of multi-dimensional geophysical data visualization. Combining several attributes from multi-dimensional geophysical data or seismic data using color modeling techniques provide for the interpretation of data more efficiently by a user. A color space is defined and multi-dimensional geophysical data attributes are created along with blending filters, such as asymmetric blending filters. Blended multi-dimensional geophysical data attribute cubes are created from the blending filters and the geophysical data attributes. The blended multi-dimensional geophysical data attributes or cubes are displayed using the defined multi-dimensional color space.

Description

SYSTEM AND METHODS FOR MULTI-DIMENSIONAL GEOPHYSICAL DATA
VISUALIZATION
BACKGROUND
[0001] The present invention relates to a method for color mapping attributes from geophysical data and a system therefor. The present invention further relates to a non- transitory computer readable medium including code for performing such a method.
[0002] Interaction with multi-dimensional geophysical data is made available to a user through the use of visual displays. For example, three-dimensional (3D) picture quality displays of a particular or selected geophysical formation can be generated using 3D geophysical data, along with dedicated computer software and/or hardware.
[0003] Certain techniques allow for the co-visualized display of two or three 3D geophysical datasets using colors either from color look-up tables or using color spaces that provide photographic quality, such as RGB, CMY, HSL, or any other color spaces known to one of ordinary skill in the art. In one aspect, commercially available RGB blending techniques map three geophysical attributes to the three axes of a color cube. For example, a single attribute is mapped to just one color channel. As an example, a single attribute may be mapped to red, while another is mapped to green and a third is mapped to blue.
[0004] Many techniques exist for modeling geophysical data. For example, Stratigraphic Forward Modelling (SFM) tools are numerical, process-based software that aim to simulate tectonic and sedimentary processes controlling stratigraphic architecture. These tools can be classified according to the processes affecting sediment production, transport and deposition that they simulate, as well as the degree of the simplifications of these processes. SFM tools have been widely used to understand and illustrate controls on stratigraphy for a variety of sedimentary environments. Currently, there are a variety of SFM tools used in the context of hydrocarbon exploration, for building basin models or to help in predicting reservoir presence and characteristics.
[0005] Prior methods viewed layers or properties of a 3D geophysical data image from tools, such as an SFM tool, separately. For example, prior methods displayed images of the layers or properties as a series of side-by-side images, as a sequence of images varying through time as, for example, in a video sequencing image clip, or by using cross- sections to visualize several layers simultaneously but only for a single grid cell row. A user viewing these results would then need to assimilate the results from the multiple images before being able to provide an analysis of the 3D geophysical data. The user must visually view and scan for subtle changes between layers and/or between related properties of the separately displayed images. Such assimilation is a difficult and time-consuming task.
[0006] Prior methods exist for display of hyperspectral imagery where images for many individual spectral bands are combined for display using multi-dimensional color spaces. The prior art combines two-dimensional (2D) data recorded directly for each spectral band as measurements of surface properties either using aerial or satellite imaging. Standard practice is to select three bands from the numerous bands recorded, but methods to combine all recorded images have been presented.
[0007] The present invention aims to provide an improved method for analyzing multi-dimensional geophysical data, which relies on using a multi-dimensional color space to display the results from geophysical attributes that share at least two common coordinate references. For example, combining geophysical attributes that share a common X and Y grid, allows a user to view the geophysical attributes over a range of Z values.
SUMMARY
[0008] In one aspect, the invention provides a method for color mapping attributes from geophysical data, comprising the steps of:
- defining a multi-dimensional color space;
- defining two or more multi-dimensional geophysical attributes;
- defining three or more blending filters, wherein the number of blending filters defined equals the number of axes in the multi-dimensional color space, and wherein the three or more blending filters are defined based, at least in part, on two or more proportions associated with the two or more multi-dimensional geophysical attributes;
- defining two or more blending filter weights, wherein the number of blending filter weights corresponds to the number of multi-dimensional geophysical attributes, and wherein each of the two or more blending filter weights uniquely corresponds to one single associated multi-dimensional geophysical attribute of the number of multi-dimensional geophysical attributes;
- creating blended geophysical data attributes, wherein the number of blended geophysical data attributes created equals the number of axes in the multi-dimensional color space, and wherein the blended geophysical data attributes are created by combining the two or more multi-dimensional geophysical attributes using the associated two or more blending filter weights; and
- displaying the blended geophysical data attributes using the multi-dimensional color space, wherein each of the blended geophysical data attributes uniquely corresponds to one of the axes in the multi-dimensional color space.
[0009] In another aspect, the invention provides a system comprising:
- one or more processors for processing information;
- a memory communicatively coupled to the one or more processors; and
- one or more modules that comprise instructions stored in the memory, the instructions, when executed by the processor, operable to perform operations comprising:
- defining a multi-dimensional color space;
- defining two or more multi-dimensional geophysical attributes;
- defining three or more blending filters, wherein the number of blending filters defined equals the number of axes in the multi-dimensional color space, and wherein the three or more blending filters are defined based, at least in part, on two or more proportions associated with the two or more multi-dimensional geophysical attributes;
- defining two or more blending filter weights, wherein the number of blending filter weights corresponds to the number of multi-dimensional geophysical attributes, and wherein each of the two or more blending filter weights uniquely corresponds to one single associated multi-dimensional geophysical attribute of the number of multi-dimensional geophysical attributes;
- creating blended geophysical data attributes, wherein the number of blended geophysical data attributes created equals the number of axes in the multi-dimensional color space, and wherein the blended geophysical data attributes are created by combining the two or more multi-dimensional geophysical attributes using the associated two or more blending filter weights; and
- displaying the blended geophysical data attributes using the multi-dimensional color space, wherein each of the blended geophysical data attributes uniquely corresponds to one of the axes in the multi-dimensional color space.
[0010] In still another aspect, the invention provides non-transitory computer readable medium including code for performing a method, the method comprising: - defining a multi-dimensional color space;
- defining two or more multi-dimensional geophysical attributes;
- defining three or more blending filters, wherein the number of blending filters defined equals the number of axes in the multi-dimensional color space, and wherein the three or more blending filters are defined based, at least in part, on two or more proportions associated with the two or more multi-dimensional geophysical attributes;
- defining two or more blending filter weights, wherein the number of blending filter weights corresponds to the number of multi-dimensional geophysical attributes, and wherein each of the two or more blending filter weights uniquely corresponds to one single associated multi-dimensional geophysical attribute of the number of multi-dimensional geophysical attributes;
- creating blended geophysical data attributes, wherein the number of blended geophysical data attributes created equals the number of axes in the multi-dimensional color space, and wherein the blended geophysical data attributes are created by combining the two or more multi-dimensional geophysical attributes using the associated two or more blending filter weights; and
- displaying the blended geophysical data attributes using the multi-dimensional color space, wherein each of the blended geophysical data attributes uniquely corresponds to one of the axes in the multi-dimensional color space.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011] A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
[0012] FIG. 1 shows an example information handling system according to one or more embodiments of the present disclosure.
[0013] FIG. 2 flow diagram for color mapping geophysical attributes from three- dimensional geophysical data according to one or more embodiments of the present disclosure;
[0014] FIG. 3 is a crossplot of blending proportions.
[0015] While the present disclosure is susceptible to various modifications and alternative forms, specific example embodiments thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific example embodiments is not intended to limit the disclosure to the particular forms disclosed herein, but on the contrary, this disclosure is to cover all modifications and equivalents as defined by the appended claims.
DETAILED DESCRIPTION
[0016] The present disclosure relates generally to multi-dimensional geophysical data visualization through the use of computing systems and/or information handling systems, and, more particularly, to a method for simultaneously viewing many layers or properties associated with 3D geophysical data as a single two dimensional image. A user interacts with the computing system and/or information handling system via a graphical user interface (GUI). It is the user that ultimately interprets the multi-dimensional geophysical data - the GUI determines how fast and effective multi-dimensional geophysical data can be analyzed and interpreted by the user.
[0017] Users interact with multi-dimensional, such as 3D, geophysical data through visual displays. Such displays must take into consideration the interpretation by the user, such as how the eye processes light and how the physical display device displays light. For example, some displays are capable of producing 24-bit color which provides for about 16.8 million color variations. It is believed that a typical user can distinguish about 10 million colors. Certain color modeling techniques, allow for the display of multi- dimensional geophysical data with photographic quality. Several geophysical attributes from the multi-dimensional geophysical data such as, for example, 3D seismic data, may be combined using color modeling techniques in a way so as to acknowledge the visual perception capabilities of a user. For example, such displays are particularly useful when interpreting seismic data.
[0018] In accordance with the present disclosure, a method is herein disclosed for a novel technique for displaying geophysical data, particularly multi-dimensional geophysical data such as three-dimensional (3D) geophysical data. The novel technique involves using novel techniques to display the results in a multi-dimensional color space, such as a 3D color space. With many multi-dimensional geophysical measurements, the band-limited nature of the measurements results in data that has an average value of zero, with both positive and negative values. Certain attributes are defined for these types of multi-dimensional geophysical data to meaningfully blend data for display with multi- dimensional color spaces, since multi-dimensional color spaces are either additive or subtractive for combining colors, but cannot be both simultaneously. This blending typically requires utilizing geophysical attributes that reduce the multi-dimensional geophysical measurements to either positive or negative numbers, rather than both simultaneously. Some geophysical data such as layer thicknesses and net-to-gross ratios contain only positive numbers and do not require further modification. But these are typically estimated values, or attributes derived from the raw data, rather than measurements, themselves as with hyperspectral data. Combining several geophysical attributes from multi-dimensional, such as 3D, geophysical models renders the multi- dimensional, such as 3D, geophysical data easier to understand because human visual perception is acknowledged. Generally this means displays of the 3D geophysical data should have dark and bright patterns of the (multi-dimensional) geophysical data augmented with colors from, or derived from, additional geophysical attributes. Displays of 3D geophysical data that look less like amplitude maps and more like aerial photographs allow the user to engage in a better analysis and/or more meaningful interpretation of the geologic features of the visually-presented 3D geophysical data.
[0019] The method disclosed herein is technically advantageous because a method is provided for simultaneously viewing many layers or properties within a multidimensional model, such as a stratigraphic forward model (SFM), as a single two- dimensional (2D) image. The method is accomplished by using, for example, an RGB color model to display the result from a SFM tool. A user is then able to co-visualize layers or properties of the multi-dimensional geophysical data image in adjacent portions of a displayed multi-dimensional cube as a single image. As one example, RGB visualization provides images that may assist in reconciling baffled reservoir performance where both faults and shale-filled channels are present. The confidence level in recovery factor estimates may be increased by the display of technically advanced visual images where, for example, aquifer strength likely differs between commingled reservoirs. In another example, in deep waters with even deeper reservoirs, it is critical in planning the appraisal and development to recognize and understand if baffling or barriers are present. The color modeling rendering provides geologic detail that had not been previously observed.
[0020] Referring now to the drawings, the details of specific example embodiments are schematically illustrated. Like elements in the drawings will be represented by like numbers, and similar elements will be represented by like numbers with a different lower case letter suffix.
[0021] For one or more embodiments of the present invention, an information handling system may be utilized to display the geophysical data. Such embodiments may be implemented on virtually any type of information handling system regardless of the platform being used. For example, as shown in FIG. 1, an information handling system 100 includes one or more processor(s) 102, associated memory 104 (for example, random access memory (RAM), read-only memory (ROM), cache memory, flash memory, etc.), a storage device 106 (for example, a hard disk, solid state memory, an optical drive such as a compact disk drive or digital video disk (DVD) drive, a flash memory stick, etc.), and numerous other elements and functionalities typical of today's computers (not shown). The processor 102 may function to execute program instructions from one or more modules where the program instructions are stored in a memory device such as memory 104 or storage device 106 or any other memory known to one of ordinary skill in the art. The information handling system 100 may also include an I O interface 108 for sending and/or receiving inputs, such as inputs from a keyboard, a mouse, or a microphone. I/O interface 108 may also receive multi-dimensional, such as 3D, geophysical data as required by any one or more embodiments of the present invention. For example, in certain embodiments, the multi-dimensional geophysical data may be seismic data. Further, the information handling system 100 may include output means, such as a display 114 (for example, a liquid crystal display (LCD), a plasma display, or cathode ray tube (CRT) monitor). Display 114 comprises the necessary elements to display color renderings of multidimensional geophysical data.
[0022] The information handling system 100 may be connected to a network 116 (for example, a local area network (LAN), a wide area network (WAN) such as the Internet, or any other similar type of network) via a network interface connection 110 to receive multi-dimensional geophysical data, such as 3D geophysical data, for example (3D) seismic data, or any other geophysical data known to one of ordinary skill in the art as required by any one or more embodiments of the present invention. Those skilled in the art will appreciate that many different types of information handling systems exist, and the aforementioned input and output means may take other forms. Generally speaking, the information handling system includes at least the minimal processing, input, and/or output devices, whether hardware, software or any combination thereof, necessary to practice embodiments of the invention.
[0023] Further, those skilled in the art will appreciate that one or more elements of the aforementioned information handling system 100 may be located at a remote location and connected to one or more other elements over a network. Further, embodiments of the invention may be implemented on a distributed system having a plurality of nodes, where each portion of the invention may be located on a different node within the distributed system. For example, the display 114 may be located remotely from the other components of the information handling system 100. Information handling system 100 may comprise one or more client devices, servers, or any combination thereof.
[0024] Referring to FIG. 2, depicted generally at 200 is a flow diagram for color mapping attributes derived from three-dimensional geophysical data. At step 202 a multidimensional color space is defined. The multi-dimensional color space has a number of axes, suitably one axis for each dimension of the multiple dimensions. For example, the color space may be any one of an RGB (including, but not limited to, Adobe RGB, sRGB, Rec. 709 and DCI P3, CIEXYZ, CIELAB , CMYK, HSL, or HSV color space or any other color space known to one of ordinary skill in the art.
[0025] At step 204, two or more multi-dimensional geophysical data attributes are defined. These attributes may be defined in any way known to one of ordinary skill in the art. For example, these attributes may be acquired from current or previously stored measurements. In one embodiment, the measurements may be acoustic measurements. As another example, these attributes may be calculated from current or previously stored data or may be pre-defined values. In one embodiment, these attributes are defined based, at least in part, on one or more depth parameter values. Such attributes may be defined by or based on, at least in part, spectral coefficients from three or more spectral sub-bands, three or more adjacent horizon slices where the slices are from above and below a mapped horizon, or three or more projections along lines with varying slope in a two-dimensional crossplot of multi-component geophysical data such as, but not limited to, compressional and shear components or near and far angle substacks.
[0026] At step 206, blending filters are defined. The blending filters may be defined in any way known to one of ordinary skill in the art. In one or more embodiments, any one or more of the blending filters may be asymmetric blending filters. In one embodiment of a three-dimensional color space, at least two blending filters are mirror images of each other. In such an embodiment, the two mirror image blending filters may be asymmetric blending filters while the third blending filter is symmetric. It is contemplated by the present invention that the defined blending filters may be symmetric, asymmetric, or any combination of asymmetric and symmetric blending filters. The number of blending filters created equals the number of dimensions or axes in the multi-dimensional color space. The filter length of the blending filters equals the number of geophysical data attributes created. In one or more embodiments, any one or more of front- loaded, middle- loaded, and back loaded filters may be created. The blending filters are defined based, at least in part, by two or more proportions associated with the multi-dimensional geophysical attributes.
[0027] At step 208, two or more blending filter weights are defined. The weights may be defined in any way known to one of ordinary skill in the art. In one embodiment, the weights are derived from one or more blending filters. The weights may be defined using different blending filters for each weight. In another embodiment, the weights are defined based, at least in part, on a pre-defined value or criteria. The number of weights equals the number of multi-dimensional geophysical attributes defined. Each weight has a one-to-one correspondence with a single unique multi-dimensional geophysical attribute. That is, each weight corresponds to exclusively one unique associated multi-dimensional geophysical attribute and each multi-dimensional geophysical attribute corresponds to exclusively one weight. For example, a first multi-dimensional geophysical attribute has a corresponding first weight, a second multi-dimensional geophysical attribute has a corresponding second weight, and so on for each multi-dimensional geophysical attribute.
[0028] At step 210, the blended geophysical data attributes are created by combining the multi-dimensional geophysical attributes using the weights associated with each geophysical attribute. Blended geophysical data attributes may for instance be created by multiplying the multi-dimensional geophysical attributes with the associated two or more blending filter weights. Each of these blended geophysical data attributes may be uniquely created by using all or any combination of the geophysical attributes with the geophysical attributes blended differently for each blended geophysical data attribute. The blended geophysical data attributes may be derived using a different blending filter for each such blended geophysical data attribute. The number of blended geophysical data attributes created equals the number of axes in the multi-dimensional color space. [0029] At step 212, the blended geophysical data attributes are displayed using the defined multi-dimensional color space. Each of the blended geophysical data attributes, for instance each of the three or more blended geophysical data attributes, uniquely corresponds to one of the axes in the multi-dimensional color space. Moreover, each of the axes in the multi-dimensional color space uniquely corresponds to exclusively one of the blended geophysical data attributes. In one embodiment, an RGB color space is defined with each of the three blended geophysical data attributes uniquely corresponding to the three axes of the defined color space.
[0030] Referring to FIG. 3, depicted generally at 300 is a crossplot depicting blending proportions. The embodiment depicted generally at 300 is a defined RGB color space. The blending filter for the Red axis is denoted by dashed line 330, the blending filter for the Blue axis is denoted by dotted line 310 and the blending filter for the Green axis is denoted by solid line 320. The x-axis is the attribute number and the y-axis is the color blending weight. The example shows five multi-dimensional geophysical attributes. Blending weights corresponding to each multi-dimensional geophysical attribute are denoted by a triangle for the Blue axis 310, a square for the Green axis 320 and a circle for the Red axis 330. Blended geophysical data attributes are created by combining the five multi-dimensional geophysical attributes using the five associated blending filter weights. The blended multi-dimensional Geophysical Attribute for the Red axis of the RGB color space in this example would be the sum of Geophysical Attribute number 1 multiplied by the weight of the blending filter for the Red axis denoted by the left-most circle above Geophysical Attribute 1 , plus Geophysical Attribute number 2 multiplied by the weight of the blending filter for the Red axis denoted by the second circle above Geophysical Attribute 2, plus Geophysical Attribute number 3 multiplied by the weight of the blending filter for the Red axis denoted by the third circle above Geophysical Attribute 3, plus Geophysical Attribute number 4 multiplied by the weight of the blending filter for the Red axis denoted by the fourth circle above Geophysical Attribute 4, plus Geophysical Attribute number 5 multiplied by the weight of the blending filter for the Red axis denoted by the fifth circle above Geophysical Attribute 5. The blended multi-dimensional Geophysical Attributes for the Green and Blue axes of the RGB color space would be created in a similar manner using the weights from the blending filters for the Green axis and Blue axis of the RGB color space, respectively. In the embodiment depicted generally at 300, the blending filter 330 and the blending filter 310 are asymmetric blending filters while the blending filter 320 is a symmetric blending filter. Other embodiments may use any combination of symmetric and asymmetric blending filters.
[0031] The concepts disclosed herein should not be understood to be limited to the exemplary embodiments described, but should be understood to encompass all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Moreover, although this disclosure describes and illustrates respective embodiments herein as including particular components, elements, functions, operations, or steps, any of these embodiments may include any combination or permutation of any of the components, elements, functions, operations, or steps described or illustrated anywhere herein that a person having ordinary skill in the art would comprehend.

Claims

1. A method for color mapping attributes from geophysical data, comprising the steps of:
defining a multi-dimensional color space;
defining two or more multi-dimensional geophysical attributes;
defining three or more blending filters, wherein the number of blending filters defined equals the number of axes in the multi-dimensional color space, and wherein the three or more blending filters are defined based, at least in part, on two or more proportions associated with the two or more multi-dimensional geophysical attributes;
defining two or more blending filter weights, wherein the number of blending filter weights corresponds to the number of multi-dimensional geophysical attributes, and wherein each of the two or more blending filter weights uniquely corresponds to one single associated multi-dimensional geophysical attribute of the number of multi-dimensional geophysical attributes;
creating blended geophysical data attributes, wherein the number of blended geophysical data attributes created equals the number of axes in the multi-dimensional color space, and wherein the blended geophysical data attributes are created by combining the two or more multi-dimensional geophysical attributes using the associated two or more blending filter weights; and
displaying the blended geophysical data attributes using the multi-dimensional color space, wherein each of the blended geophysical data attributes uniquely corresponds to one of the axes in the multi-dimensional color space.
2. The method of claim 1, wherein the two or more multi-dimensional geophysical attributes include at least one of one or more spectral coefficients from three or more spectral sub-bands, one or more adjacent horizon slices from above and below a mapped horizon, and one or more projections along lines with varying slope in a two- dimensional crossplot of multi-component geophysical data.
3. The method of claim 2, wherein the one or more projections include at least one of compressional and shear components and near and far angle substacks.
4. The method of claim 1 , wherein the three or more blending filters comprise a filter length equal to the number of the two or more multi-dimensional geophysical attributes.
5. The method of claim 1, wherein the three or more blending filters comprise one or more of a front- loaded filter, a middle- loaded filter, and a back- loaded filter.
6. A method of claim 1, wherein at least one of the three or more blending filters is an asymmetric blending filter.
7. A method of claim 6, wherein each of the two or more blending filter weights is defined based, at least in part, on a unique one of the three or more blending filters.
8. A method of claim 1, wherein the mutli-dimensional color space comprises one of an RGB, CIEXYZ, CIELAB , CMYK, HSL, or HSV color space.
9. A system comprising:
one or more processors for processing information;
a memory communicatively coupled to the one or more processors; and one or more modules that comprise instructions stored in the memory, the instructions, when executed by the processor, operable to perform operations comprising: defining a multi-dimensional color space;
defining two or more multi-dimensional geophysical attributes;
defining three or more blending filters, wherein the number of blending filters defined equals the number of axes in the multi-dimensional color space, and wherein the three or more blending filters are defined based, at least in part, by two or more proportions associated with the two or more multi-dimensional geophysical attributes; defining two or more blending filter weights, wherein the number of blending filter weights corresponds to the number of multi-dimensional geophysical attributes, and wherein each of the two or more blending filter weights uniquely corresponds to one single associated multi-dimensional geophysical attribute of the number of multi-dimensional geophysical attributes;
creating blended geophysical data attributes, wherein the number of blended geophysical data attributes created equals the number of axes in the multi-dimensional color space, and wherein the blended geophysical data attributes are created by combining the two or more multi-dimensional geophysical attributes using the associated two or more blending filter weights; and
displaying the blended geophysical data attributes using the multi-dimensional color space, wherein each of the blended geophysical data attributes uniquely corresponds to one of the axes in the multi-dimensional color space.
10. The system of claim 9, wherein the two or more multi-dimensional geophysical attributes include at least one of one or more spectral coefficients from three or more spectral sub-bands, one or more adjacent horizon slices from above and below a mapped horizon, and one or more projections along lines with varying slope in a two- dimensional crossplot of multi-component geophysical data.
11. The system of claim 10, wherein the one or more projections includes at least one of compressional and shear components and near and far angle substacks.
12. The system of claim 9, wherein the three or more blending filters comprise a filter length equal to the number of the two more multi-dimensional geophysical data attributes.
13. The system of claim 9, wherein the three or more blending filters comprise one or more of a front- loaded filter, a middle- loaded filter, and a back- loaded filter.
14. A system of claim 9, wherein at least one of the three or more blending filters is an asymmetric blending filter.
15. A system of claim 9, wherein the two or more blending filter weights are defined based, at least in part, on a unique one of the three or more blending filters.
16. A system of claim 9, wherein the multi-dimensional color space comprises one of an RGB, CIEXYZ, CIELAB , CMYK, HSL, or HSV color space.
17. A non-transitory computer readable medium including code for performing a method, the method comprising: defining a multi-dimensional color space;
defining two or more multi-dimensional geophysical attributes;
defining three or more blending filters, wherein the number of blending filters defined equals the number of axes in the multi-dimensional color space, and wherein the three or more blending filters are defined based, at least in part, on two or more proportions associated with the two or more multi-dimensional geophysical attributes;
defining two or more blending filter weights, wherein the number of blending filter weights corresponds to the number of multi-dimensional geophysical attributes, and wherein each of the two or more blending filter weights uniquely corresponds to one single associated multi-dimensional geophysical attribute of the number of multi-dimensional geophysical attributes;
creating blended geophysical data attributes, wherein the number of blended geophysical data attributes created equals the number of axes in the multi-dimensional color space, and wherein the blended geophysical data attributes are created by combining the two or more multi-dimensional geophysical attributes using the associated two or more blending filter weights; and
displaying the blended geophysical data attributes using the multi-dimensional color space, wherein each of the blended geophysical data attributes uniquely corresponds to one of the axes in the multi-dimensional color space.
18. The method of claim 17, wherein the two or more multi-dimensional geophysical attributes include at least one of one or more spectral coefficients from three or more spectral sub-bands, one or more adjacent horizon slices from above and below a mapped horizon, and one or more projections along lines with varying slope in a two- dimensional crossplot of multi-component geophysical data.
19. The method of claim 17, wherein the two or more blending filter weights are defined based, at least in part, on a unique one of the three or more blending filters.
20. The method of claim 17, wherein the multi-dimensional color space comprises one of an RGB, CIEXYZ, CIELAB , CMYK, HSL, or HSV color space.
PCT/US2015/058836 2014-11-05 2015-11-03 Systems and methods for multi-dimensional geophysical data visualization WO2016073483A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2015343265A AU2015343265B2 (en) 2014-11-05 2015-11-03 Systems and methods for multi-dimensional geophysical data visualization
CN201580060210.2A CN107077759A (en) 2014-11-05 2015-11-03 System and method for multidimensional geophysical data visual display
GB1705347.1A GB2545600B (en) 2014-11-05 2015-11-03 System and methods for multi-dimensional geophysical data visualization
CA2966612A CA2966612C (en) 2014-11-05 2015-11-03 Systems and methods for multi-dimensional geophysical data visualization
US15/524,198 US10249080B2 (en) 2014-11-05 2015-11-03 Systems and methods for multi-dimensional geophysical data visualization
US16/191,173 US10614618B2 (en) 2014-11-05 2018-11-14 Method for multi-dimensional geophysical data visualization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462075645P 2014-11-05 2014-11-05
US62/075,645 2014-11-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/524,198 A-371-Of-International US10249080B2 (en) 2014-11-05 2015-11-03 Systems and methods for multi-dimensional geophysical data visualization
US16/191,173 Continuation-In-Part US10614618B2 (en) 2014-11-05 2018-11-14 Method for multi-dimensional geophysical data visualization

Publications (1)

Publication Number Publication Date
WO2016073483A1 true WO2016073483A1 (en) 2016-05-12

Family

ID=55909700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/058836 WO2016073483A1 (en) 2014-11-05 2015-11-03 Systems and methods for multi-dimensional geophysical data visualization

Country Status (6)

Country Link
US (1) US10249080B2 (en)
CN (1) CN107077759A (en)
AU (1) AU2015343265B2 (en)
CA (1) CA2966612C (en)
GB (1) GB2545600B (en)
WO (1) WO2016073483A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109143353A (en) * 2018-08-20 2019-01-04 电子科技大学 A kind of pre-stack seismic waveform classification generating confrontation network based on depth convolution
CN110441820A (en) * 2019-08-21 2019-11-12 中国矿业大学(北京) Architectonic intelligent interpretation method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10614618B2 (en) * 2014-11-05 2020-04-07 Shell Oil Company Method for multi-dimensional geophysical data visualization
CN108694245B (en) * 2018-05-15 2021-12-10 东软集团股份有限公司 Multi-dimensional data display method and device, readable storage medium and electronic equipment
WO2021092201A1 (en) 2019-11-06 2021-05-14 Shell Oil Company Method for determining a high frequency envelope attribute from seismic data
AU2021240960B2 (en) 2020-03-26 2023-08-31 Shell Internationale Research Maatschappij B.V. Method for predicting geological features from images of geologic cores using a deep learning segmentation process
US20230024459A1 (en) * 2021-07-23 2023-01-26 Vaisala Oyj Systems and methods for variable multi-channel and multi-dimensional data generation and transmission
IT202200009686A1 (en) * 2022-05-11 2023-11-11 Marposs Spa INDUCTIVE SENSOR TO CARRY OUT DIMENSIONAL AND/OR DISTANCE MEASUREMENTS
WO2024100220A1 (en) 2022-11-10 2024-05-16 Shell Internationale Research Maatschappij B.V. Method for predicting fault seal behaviour

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110254843A1 (en) * 2003-07-28 2011-10-20 Landmark Graphics Corporation System and Method for Real-Time Co-Rendering of Multiple Attributes
US20140098097A1 (en) * 2007-01-05 2014-04-10 Landmark Graphics Corporation Systems and Methods For Visualizing Multiple Volumetric Data Sets in Real Time
US20140188392A1 (en) * 2012-12-27 2014-07-03 Schlumberger Technology Corporation Normalization seismic attribute
US20140278117A1 (en) * 2013-03-14 2014-09-18 Mark Dobin Method for Region Delineation and Optimal Rendering Transform of Seismic Attributes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011005353A1 (en) * 2009-07-06 2011-01-13 Exxonmobil Upstream Research Company Method for seismic interpretation using seismic texture attributes
US8279707B2 (en) * 2010-04-23 2012-10-02 Chevron U.S.A. Inc. Fusing geophysical data representing a geophysical space
US9595129B2 (en) * 2012-05-08 2017-03-14 Exxonmobil Upstream Research Company Canvas control for 3D data volume processing
US8912569B2 (en) * 2012-07-27 2014-12-16 Freescale Semiconductor, Inc. Hybrid transistor
CN102903141B (en) * 2012-08-31 2016-07-06 电子科技大学 Many seismic properties based on opacity weighting merge texture mapping object plotting method
CN102879822B (en) * 2012-09-28 2015-09-30 电子科技大学 A kind of seismic multi-attribute fusion method based on contourlet transformation
CN103366184B (en) * 2013-07-23 2016-09-14 武汉大学 Polarization SAR data classification method based on hybrid classifer and system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110254843A1 (en) * 2003-07-28 2011-10-20 Landmark Graphics Corporation System and Method for Real-Time Co-Rendering of Multiple Attributes
US20140098097A1 (en) * 2007-01-05 2014-04-10 Landmark Graphics Corporation Systems and Methods For Visualizing Multiple Volumetric Data Sets in Real Time
US20140188392A1 (en) * 2012-12-27 2014-07-03 Schlumberger Technology Corporation Normalization seismic attribute
US20140278117A1 (en) * 2013-03-14 2014-09-18 Mark Dobin Method for Region Delineation and Optimal Rendering Transform of Seismic Attributes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAS UJJAL KR ET AL.: "Application of Multi-Attributes and Spectral Decomposition with RGB blending for understanding the strati-structural features: A Case study.", 10TH BIENNIAL INTERNATIONAL CONFERENCE & EXPOSITION, 2013, pages 1 - 8 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109143353A (en) * 2018-08-20 2019-01-04 电子科技大学 A kind of pre-stack seismic waveform classification generating confrontation network based on depth convolution
CN109143353B (en) * 2018-08-20 2019-10-01 电子科技大学 A kind of pre-stack seismic waveform classification generating confrontation network based on depth convolution
CN110441820A (en) * 2019-08-21 2019-11-12 中国矿业大学(北京) Architectonic intelligent interpretation method

Also Published As

Publication number Publication date
US10249080B2 (en) 2019-04-02
AU2015343265A1 (en) 2017-04-27
CA2966612A1 (en) 2016-05-12
AU2015343265B2 (en) 2018-11-22
GB2545600B (en) 2020-04-15
CN107077759A (en) 2017-08-18
US20170358130A1 (en) 2017-12-14
GB2545600A (en) 2017-06-21
CA2966612C (en) 2022-07-05
GB201705347D0 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
CA2966612C (en) Systems and methods for multi-dimensional geophysical data visualization
US10614618B2 (en) Method for multi-dimensional geophysical data visualization
US9964654B2 (en) Seismic attribute color model transform
WO2018164852A1 (en) Image reconstruction for virtual 3d
AU2014306476B2 (en) Identifying and extracting fault blocks in one or more bodies representing a geological structure
AU2014396222B2 (en) Integrating external algorithms into a flexible framework for imaging visualization data
WO2004008180A2 (en) Method, system, and apparatus for color representation of seismic data and associated measurements
US20210158139A1 (en) Methods and systems for geometry-aware image contrast adjustments via image-based ambient occlusion estimation
Henderson Geological Expression: data driven–interpreter guided approach to seismic interpretation
Haindl et al. A compound MRF texture model
US20180217282A1 (en) Method for estimating faults in a three-dimensional seismic image block
US9442206B2 (en) Method and device to process a three dimensional seismic image
CA2928953C (en) Systems and methods for speed-adjustable model navigation
Röhlig et al. Visibility widgets: Managing occlusion of quantitative data in 3d terrain visualization
JP4276473B2 (en) Image creating method, program, recording medium, image creating apparatus, slope vector diagram
US20150149127A1 (en) Methods and Systems to Synthesize Road Elevations
US11670045B2 (en) Method and apparatus for constructing a 3D geometry
Yano et al. Viewpoint Selection for Shape Comparison of Mode Water Regions in a VR Space
Khan et al. Immervol: An immersive volume visualization system
WO2004111944A1 (en) Colour coding of data
US20210309331A1 (en) System and method of operation for remotely operated vehicles leveraging synthetic data to train machine learning models
US10262085B2 (en) Methodology for determining curves of productivity of wells for exploiting underground gas storage and underground natural reservoir of compressible fluids
Vijeth UNCERTAINTY VISUALIZATION using High Dynamic Range Volume Rendering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201705347

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20151103

ENP Entry into the national phase

Ref document number: 2015343265

Country of ref document: AU

Date of ref document: 20151103

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2966612

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15524198

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15857989

Country of ref document: EP

Kind code of ref document: A1