WO2016072792A1 - Method and apparatus for stopping and restarting mbms service - Google Patents

Method and apparatus for stopping and restarting mbms service Download PDF

Info

Publication number
WO2016072792A1
WO2016072792A1 PCT/KR2015/011909 KR2015011909W WO2016072792A1 WO 2016072792 A1 WO2016072792 A1 WO 2016072792A1 KR 2015011909 W KR2015011909 W KR 2015011909W WO 2016072792 A1 WO2016072792 A1 WO 2016072792A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
mbms service
cell
mbms
msi
Prior art date
Application number
PCT/KR2015/011909
Other languages
French (fr)
Korean (ko)
Inventor
김상원
이영대
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/524,507 priority Critical patent/US10448218B2/en
Publication of WO2016072792A1 publication Critical patent/WO2016072792A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0247Traffic management, e.g. flow control or congestion control based on conditions of the access network or the infrastructure network

Definitions

  • the present invention relates to mobile communication, and more particularly, to a method and apparatus for stopping and resuming a multimedia broadcast / multicast service (MBMS) service.
  • MBMS multimedia broadcast / multicast service
  • MBMS Multimedia Broadcast / Multicast Service
  • CBS Cell Broadcast Service
  • MBMS is intended for high-speed multimedia data transmission.
  • CBS is not based on IP (internet protocol), but MBMS is based on IP multicast. According to the MBMS, when a certain level of users exist in the same cell, the users can receive the same multimedia data using a shared resource (or channel), thereby increasing the efficiency of radio resources and allowing users to value multimedia services. It is available cheaply.
  • the MBMS uses a shared channel to efficiently receive data from a plurality of terminals in one service. For one service data, the base station does not allocate a dedicated channel as many as the number of terminals to receive the service in one cell, but allocates only one shared channel. In addition, since a plurality of terminals simultaneously receive the shared channel, the efficiency of radio resources is increased. In relation to the MBMS, the terminal may receive the MBMS after receiving system information about the corresponding cell.
  • the present invention proposes a method and apparatus for stopping an MBMS service.
  • the present invention also proposes a method and apparatus for resuming a suspended MBMS service.
  • the UE may receive Multicast Channel Scheduling Information (MCH Scheduling Information) and check whether a special value is included in the received MSI. If the special value is included, the MBMS service can be stopped.
  • MCH Scheduling Information Multicast Channel Scheduling Information
  • the UE may release the MRB and establish a unicast bearer, in which case it does not monitor the MSI, MTCH or MCCH.
  • the UE may establish a unicast bearer without releasing the MRB. In this case, the UE continuously establishes the monitoring of the MSI or the MTCH, and if any one is monitored, the MBMS is suspended through the MRB. MBMS service can be resumed.
  • a method of suspending and resuming an MBMS service in a wireless communication system receives MSI (MCH Scheduling Information), checks whether a special value is included in the received MSI, and if the special value is included in the MSI, Determining whether to stop or suspend.
  • MSI MCH Scheduling Information
  • the interruption of the MBMS service is an interruption of the MBMS service not considering resumption of the MBMS service
  • the suspension of the MBMS service is an interruption of the MBMS service considering the restart of the MBMS service.
  • the terminal may further include releasing an MRB (radio bearer for MBMS).
  • the terminal may further include stopping the monitoring of the MSI, MTCH or MCCH.
  • the method may further include stopping prioritization of the MBMS frequency of interest.
  • the terminal may further comprise establishing a unicast bearer.
  • the terminal may further include indicating that the user is not interested in the MBMSInterestIndication message.
  • the terminal may further include maintaining an MRB (radio bearer for MBMS).
  • the terminal may further include continuing to monitor the MSI, MTCH or MCCH. If at least one of the MSI or the MTCH is monitored, the method may further include resuming the MBMS service suspended through the MRB.
  • the terminal may further comprise continuing to prioritize the MBMS frequency of interest.
  • the terminal may further comprise establishing a unicast bearer.
  • a terminal for suspending and resuming an MBMS service in a wireless communication system is provided.
  • MCH Scheduling Information Multicast Channel Scheduling Information
  • the interruption of the MBMS service is an interruption of the MBMS service not considering resumption of the MBMS service
  • the suspension of the MBMS service is an interruption of the MBMS service considering the restart of the MBMS service.
  • the processor may be configured to release an MRB (radio bearer for MBMS) if it decides to stop the MBMS service.
  • MRB radio bearer for MBMS
  • the processor may be configured to maintain an MRB (radio bearer for MBMS) if it decides to suspend the MBMS service.
  • the processor may be configured to continue monitoring the MSI, MTCH or MCCH.
  • the processor may be configured to resume the MBMS service suspended through the MRB when at least one of the MSI or the MTCH is monitored.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • FIG. 2 shows a network structure for MBMS to which the present invention is applied.
  • 3 shows a user plane structure for MBMS support.
  • FIG. 6 shows a process of establishing an RRC connection.
  • FIG. 10 shows an example of an MBSFN subframe configuration for performing an MBMS service.
  • 11 illustrates a method of notifying the terminal of the change of MCCH information when the MCCH information is changed.
  • FIG. 13 is a block diagram illustrating a case in which a special value of an MSI is considered for MBMS service stop or suspension in accordance with an embodiment of the present invention.
  • FIG. 14 is a diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented by a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented by wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA), and the like.
  • IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e.
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is part of evolved UMTS (E-UMTS) using evolved-UMTS terrestrial radio access (E-UTRA), which employs OFDMA in downlink and SC in uplink -FDMA is adopted.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes at least one base station (BS) 20 that provides a control plane and a user plane to the terminal.
  • the UE 10 may be fixed or mobile and may have other mobile stations, advanced MSs (AMS), user terminals (UTs), subscriber stations (SSs), wireless devices (Wireless Devices), and the like. It may be called a term.
  • the base station 20 generally refers to a station communicating with the terminal 10, and includes an evolved-NodeB (eNodeB), a Base Transceiver System (BTS), an Access Point, an femto-eNB, It may be called other terms such as a pico-eNB, a home eNB, and a relay.
  • the base station 20 may provide at least one cell to the terminal.
  • the cell may mean a geographic area where the base station 20 provides a communication service or may mean a specific frequency band.
  • the cell may mean a downlink frequency resource and an uplink frequency resource. Alternatively, the cell may mean a combination of a downlink frequency resource and an optional uplink frequency resource.
  • CA carrier aggregation
  • the source base station (Source BS) 21 refers to a base station in which a radio bearer is currently set up with the terminal 10
  • the target base station (Target BS, 22) means that the terminal 10 disconnects the radio bearer from the source base station 21 and renews it. It means a base station to be handed over to establish a radio bearer.
  • the base stations 20 may be connected to each other through an X2 interface, which is used to exchange messages between the base stations 20.
  • the base station 20 is connected to an evolved packet system (EPS), more specifically, a mobility management entity (MME) / serving gateway (S-GW) 30 through an S1 interface.
  • EPS evolved packet system
  • MME mobility management entity
  • S-GW serving gateway
  • the S1 interface supports a many-to-many-relation between base station 20 and MME / S-GW 30.
  • the PDN-GW 40 is used to provide packet data services to the MME / S-GW 30.
  • the PDN-GW 40 varies depending on the purpose or service of communication, and the PDN-GW 40 supporting a specific service can be found using APN information.
  • Inter-E-UTRAN handover is a basic handover mechanism used for handover between E-UTRAN access networks. It is composed of X2 based handover and S1 based handover.
  • the X2-based handover is used when the UE wants to handover from the source base station (source BS, 21) to the target base station (target BS, 22) using the X2 interface, where the MME / S-GW 30 is changed. It doesn't work.
  • S1 based handover the first bearer set between the P-GW 40, the MME / S-GW 30, the source base station 21, and the terminal 10 is released, and the P-GW 40 is released.
  • a new second bearer is established between the GW 40, the MME / S-GW 30, the target base station 22, and the terminal 10.
  • FIG. 2 shows a network structure for MBMS to which the present invention is applied.
  • a radio access network (EUTRAN) 200 includes a multi-cell coordination entity (hereinafter referred to as MCE, 210) and a base station (eNB) 220.
  • the MCE 210 is a main entity controlling the MBMS, and serves as session management, radio resource allocation, or admission control of the base station 220 in the MBSFN region. .
  • the MCE 210 may be implemented in the base station 220 or may be implemented independently of the base station 220.
  • the interface between the MCE 210 and the base station 220 is called an M2 interface.
  • the M2 interface is an internal control plane interface of the wireless access network 200, and MBMS control information is transmitted. If the MCE 210 is implemented in the base station 220, the M2 interface may only exist logically.
  • An Evolved Packet Core (EPC) 250 includes an MME 260 and an MBMS Gateway (MBMS GW) 270.
  • MME 260 is NAS signaling, roaming, authentication (authentication), PDN gateway and S-GW selection, MME selection for handover by MME change, accessibility to the idle mode terminal, AS security Performs operations such as security control.
  • the MBMS gateway 270 is an entity that transmits MBMS service data and is located between the base station 220 and the BM-SC, and performs MBMS packet transmission and broadcast to the base station 220.
  • the MBMS gateway 270 uses PDCP and IP multicast to transmit user data to the base station 220, and performs session control signaling for the radio access network 200.
  • the interface between the MME 260 and the MCE 210 is a control plane interface between the radio access network 200 and the EPC 250, which is called an M3 interface, and transmits control information related to MBMS session control.
  • the MME 260 and the MCE 210 transmit session control signaling, such as a session start / stop message for session start or session stop, to the base station 220,
  • the base station 220 may inform the terminal that the MBMS service is started or stopped through cell notification.
  • the interface between the base station 220 and the MBMS gateway 270 is an interface of a user plane, which is called an M1 interface, and transmits MBMS service data.
  • FIG. 3 shows a user plane structure for MBMS support
  • FIG. 4 shows a control plane structure for MBMS support.
  • the RRC state refers to whether or not the RRC layer of the UE is in a logical connection with the RRC layer of the E-UTRAN. If connected, the RRC connection state is called. Since the UE in the RRC connected state has an RRC connection, the E-UTRAN can grasp the existence of the corresponding UE in a cell unit, and thus can effectively control the UE. On the other hand, the UE of the RRC idle state cannot be understood by the E-UTRAN, and is managed by the CN (core network) in units of a tracking area, which is a larger area unit than the cell. That is, the UE in the RRC idle state is identified only in a large area unit, and must move to the RRC connected state in order to receive a normal mobile communication service such as voice or data.
  • CN core network
  • the terminal When the user first powers on the terminal, the terminal first searches for an appropriate cell and then stays in an RRC idle state in the cell.
  • the UE in the RRC idle state needs to establish an RRC connection, it establishes an RRC connection with the E-UTRAN through an RRC connection procedure and transitions to the RRC connected state.
  • RRC connection procedure There are several cases in which the UE in RRC idle state needs to establish an RRC connection. For example, an uplink data transmission is necessary due to a user's call attempt, or a paging message is sent from E-UTRAN. If received, a response message may be sent.
  • the non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • EMM-REGISTERED EPS Mobility Management-REGISTERED
  • EMM-DEREGISTERED EMM-DEREGISTERED
  • the initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the attach procedure is successfully performed, the UE and the MME are in the EMM-REGISTERED state.
  • an EPS Connection Management (ECM) -IDLE state In order to manage a signaling connection between the UE and the EPC, two states are defined, an EPS Connection Management (ECM) -IDLE state and an ECM-CONNECTED state, and these two states are applied to the UE and the MME.
  • ECM EPS Connection Management
  • ECM-IDLE state When the UE in the ECM-IDLE state establishes an RRC connection with the E-UTRAN, the UE is in the ECM-CONNECTED state.
  • the MME in the ECM-IDLE state becomes the ECM-CONNECTED state when it establishes an S1 connection with the E-UTRAN.
  • the E-UTRAN does not have context information of the terminal.
  • the UE in the ECM-IDLE state performs a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • the terminal when the terminal is in the ECM-CONNECTED state, the mobility of the terminal is managed by the command of the network.
  • the terminal In the ECM-IDLE state, if the position of the terminal is different from the position known by the network, the terminal informs the network of the corresponding position of the terminal through a tracking area update procedure.
  • the system information includes essential information that the terminal needs to know in order to access the base station. Therefore, the terminal must receive all system information before accessing the base station, and must always have the latest system information. In addition, since the system information is information that all terminals in a cell should know, the base station periodically transmits the system information.
  • System information is divided into a master information block (MIB) and a plurality of system information blocks (SIB).
  • the MIB may include a limited number of parameters, the most essential and most frequently transmitted, required to be obtained for other information from the cell.
  • the terminal first finds the MIB after downlink synchronization.
  • the MIB may include information such as downlink channel bandwidth, PHICH settings, SFNs that support synchronization and operate as timing criteria, and eNB transmit antenna settings.
  • the MIB may be broadcast transmitted on a broadcast channel (BCH).
  • BCH broadcast channel
  • SIB1 SystemInformationBlockType1
  • SIB2 SystemInformationBlockType2
  • SIB1 and all system information messages are sent on the DL-SCH.
  • the E-UTRAN may be dedicated signaling while the SIB1 includes a parameter set equal to a previously set value, and in this case, the SIB1 may be transmitted by being included in an RRC connection reconfiguration message.
  • SIB1 includes information related to UE cell access and defines scheduling of other SIBs.
  • SIB1 is used as PLMN identifiers of the network, tracking area code (TAC) and cell ID, cell barring status indicating whether the cell is a cell that can be camped on, and cell reselection criteria It may include information related to the lowest reception level required in the cell to be transmitted, and the transmission time and period of other SIBs.
  • TAC tracking area code
  • cell ID cell ID
  • cell barring status indicating whether the cell is a cell that can be camped on
  • cell reselection criteria It may include information related to the lowest reception level required in the cell to be transmitted, and the transmission time and period of other SIBs.
  • SIB2 may include radio resource configuration information common to all terminals.
  • SIB2 includes uplink carrier frequency and uplink channel bandwidth, RACH configuration, paging configuration, uplink power control configuration, sounding reference signal configuration, PUCCH configuration supporting ACK / NACK transmission, and It may include information related to the PUSCH configuration.
  • the UE may apply the acquisition and change detection procedure of the system information only to the primary cell (PCell).
  • PCell primary cell
  • SCell secondary cell
  • the E-UTRAN may provide all system information related to the RRC connection state operation through dedicated signaling.
  • the E-UTRAN may release the SCell under consideration and add it later, which may be performed with a single RRC connection reset message.
  • the E-UTRAN may set parameter values different from those broadcast in the SCell under consideration through dedicated signaling.
  • Essential system information can be defined as follows.
  • the UE When the UE is in the RRC idle state: The UE should ensure that it has valid versions of MIB and SIB1 as well as SIB2 to SIB8, which may be subject to the support of the considered radio access technology (RAT).
  • RAT radio access technology
  • the terminal When the terminal is in the RRC connection state: The terminal should ensure that it has a valid version of MIB, SIB1 and SIB2.
  • the system information can be guaranteed valid up to 3 hours after acquisition.
  • services provided by a network to a terminal can be classified into three types as follows.
  • the terminal also recognizes the cell type differently according to which service can be provided. The following describes the service type first, followed by the cell type.
  • Limited service This service provides Emergency Call and Tsunami Warning System (ETWS) and can be provided in an acceptable cell.
  • ETWS Emergency Call and Tsunami Warning System
  • Normal service This service means a public use for general use, and can be provided in a suitable or normal cell.
  • This service means service for network operator. This cell can be used only by network operator and not by general users.
  • the cell types may be classified as follows.
  • Acceptable cell A cell in which the terminal can receive limited service. This cell is a cell that is not barred from the viewpoint of the terminal and satisfies the cell selection criteria of the terminal.
  • Suitable cell a cell in which the terminal can receive a regular service. This cell satisfies the conditions of an acceptable cell and at the same time satisfies additional conditions. As an additional condition, this cell must belong to a Public Land Mobile Network (PLMN) to which the terminal can access, and must be a cell which is not prohibited from performing a tracking area update procedure of the terminal. If the cell is a CSG cell, the terminal should be a cell that can be connected to the cell as a CSG member.
  • PLMN Public Land Mobile Network
  • Barred cell A cell that broadcasts information that a cell is a prohibited cell through system information.
  • Reserved cell A cell that broadcasts information that a cell is a reserved cell through system information.
  • FIG. 5 shows the operation of the terminal in the RRC idle state.
  • FIG. 5 illustrates a procedure in which a terminal initially powered on registers with a network through a cell selection process and then reselects a cell if necessary.
  • the terminal selects a radio access technology (RAT) for communicating with a public land mobile network (PLMN), which is a network to be serviced (S510).
  • RAT radio access technology
  • PLMN public land mobile network
  • S510 a network to be serviced
  • Information about the PLMN and the RAT may be selected by a user of the terminal or may be stored in a universal subscriber identity module (USIM).
  • USIM universal subscriber identity module
  • the terminal selects a cell having the largest value among the cells whose measured signal strength or quality is greater than a specific value (Cell Selection) (S520). This is referred to as initial cell selection by the UE that is powered on to perform cell selection. The cell selection procedure will be described later.
  • the terminal receives system information periodically transmitted by the base station.
  • the above specific value refers to a value defined in the system in order to ensure the quality of the physical signal in data transmission / reception. Therefore, the value may vary depending on the RAT applied.
  • the terminal performs a network registration procedure (S530).
  • the terminal registers its information (eg IMSI) in order to receive a service (eg paging) from the network.
  • IMSI information
  • a service eg paging
  • the UE selects a cell
  • the UE does not register with the accessing network, and registers with the network when the network information (for example, Tracking Area Identity; TAI) received from the system information is different from the network information known to the network. Do it.
  • TAI Tracking Area Identity
  • the terminal performs cell reselection based on the service environment provided by the cell or the environment of the terminal (S540).
  • the terminal provides better signal characteristics than the cell of the base station to which the terminal is currently connected if the strength or quality of the signal measured from the base station (serving base station) currently being served is lower than the value measured from the base station of the neighboring cell.
  • Select one of the other cells. This process is called Cell Re-Selection, which is distinguished from Initial Cell Selection of Step 2.
  • a time constraint is placed. The cell reselection procedure will be described later.
  • FIG. 6 shows a process of establishing an RRC connection.
  • the terminal sends an RRC connection request message to the network requesting an RRC connection (S610), and in this case, the terminal may be in an RRC idle state.
  • the UE may start a timer, in which case the timer may be T300 of 3GPP TS 36.311.
  • the network sends an RRC connection setup message in response to the RRC connection request (S620).
  • the terminal After receiving the RRC connection configuration message, the terminal enters the RRC connection mode. In this case, the terminal may stop the timer started in step S510.
  • the terminal sends an RRC connection setup complete message used to confirm successful completion of the RRC connection establishment to the network (S630).
  • RRC connection reconfiguration is used to modify an RRC connection. It is used to establish / modify / release RBs, perform handovers, and set up / modify / release measurements.
  • the network sends an RRC connection reconfiguration message for modifying the RRC connection to the terminal (S710).
  • the terminal sends an RRC connection reconfiguration complete message used to confirm successful completion of the RRC connection reconfiguration to the network (S720).
  • PLMN public land mobile network
  • PLMN is a network deployed and operated by mobile network operators. Each mobile network operator runs one or more PLMNs. Each PLMN may be identified by a mobile country code (MCC) and a mobile network code (MCC). The PLMN information of the cell is included in the system information and broadcasted.
  • MCC mobile country code
  • MCC mobile network code
  • PLMN selection In PLMN selection, cell selection and cell reselection, various types of PLMNs may be considered by the terminal.
  • HPLMN Home PLMN
  • MCC and MNC matching MCC and MNC of UE IMSI.
  • Equivalent HPLMN A PLMN that is equivalent to an HPLMN.
  • Registered PLMN A PLMN that has successfully completed location registration.
  • ELMN Equivalent PLMN
  • Each mobile service consumer subscribes to HPLMN.
  • HPLMN When a general service is provided to a terminal by HPLMN or EHPLMN, the terminal is not in a roaming state.
  • a service is provided to a terminal by a PLMN other than HPLMN / EHPLMN, the terminal is in a roaming state, and the PLMN is called a VPLMN (Visited PLMN).
  • PLMN public land mobile network
  • PLMN is a network deployed or operated by a mobile network operator. Each mobile network operator operates one or more PLMNs. Each PLMN may be identified by a mobile country code (MCC) and a mobile network code (MCC). The PLMN information of the cell is included in the system information and broadcasted.
  • MCC mobile country code
  • MCC mobile network code
  • the terminal attempts to register the selected PLMN. If the registration is successful, the selected PLMN becomes a registered PLMN (RPLMN).
  • the network may signal the PLMN list to the UE, which may consider PLMNs included in the PLMN list as PLMNs such as RPLMNs.
  • the terminal registered in the network should be reachable by the network at all times. If the terminal is in the ECM-CONNECTED state (same as RRC connected state), the network recognizes that the terminal is receiving the service. However, when the terminal is in the ECM-IDLE state (same as the RRC idle state), the situation of the terminal is not valid in the eNB but is stored in the MME. In this case, the location of the UE in the ECM-IDLE state is known only to the MME as the granularity of the list of tracking areas (TAs).
  • TAs tracking areas
  • a single TA is identified by a tracking area identity (TAI) consisting of the PLMN identifier to which the TA belongs and a tracking area code (TAC) that uniquely represents the TA within the PLMN. Subsequently, the UE selects a cell having a signal quality and characteristics capable of receiving an appropriate service from among cells provided by the selected PLMN.
  • TAI tracking area identity
  • TAC tracking area code
  • the terminal selects / reselects a cell of an appropriate quality and performs procedures for receiving a service.
  • the UE in the RRC idle state should always select a cell of appropriate quality and prepare to receive service through this cell. For example, a terminal that has just been powered on must select a cell of appropriate quality to register with the network.
  • the terminal in the RRC connected state enters the RRC idle state, the terminal should select a cell to stay in the RRC idle state.
  • the process of selecting a cell satisfying a certain condition in order for the terminal to stay in a service standby state such as an RRC idle state is called cell selection.
  • the cell selection is performed in a state in which the UE does not currently determine a cell to stay in the RRC idle state, it is most important to select the cell as soon as possible. Therefore, if the cell provides a radio signal quality of a predetermined criterion or more, even if this cell is not the cell providing the best radio signal quality to the terminal, it may be selected during the cell selection process of the terminal.
  • an initial cell selection process in which the terminal does not have prior information on the radio channel. Accordingly, the terminal searches all radio channels to find an appropriate cell. In each channel, the terminal finds the strongest cell. Thereafter, the terminal selects a corresponding cell if it finds a suitable cell that satisfies a cell selection criterion.
  • the terminal may select the cell by using the stored information or by using the information broadcast in the cell.
  • cell selection can be faster than the initial cell selection process.
  • the UE selects a corresponding cell if it finds a cell that satisfies a cell selection criterion. If a suitable cell that satisfies the cell selection criteria is not found through this process, the UE performs an initial cell selection process.
  • the terminal After the terminal selects a cell through a cell selection process, the strength or quality of a signal between the terminal and the base station may change due to a change in mobility or a wireless environment of the terminal. Therefore, if the quality of the selected cell is degraded, the terminal may select another cell that provides better quality. When reselecting a cell in this way, a cell that generally provides better signal quality than the currently selected cell is selected. This process is called cell reselection.
  • the cell reselection process has a basic purpose in selecting a cell that generally provides the best quality to a terminal in view of the quality of a radio signal.
  • the network may determine the priority for each frequency and notify the terminal. Upon receiving this priority, the UE considers this priority prior to the radio signal quality criteria in the cell reselection process.
  • a method of selecting or reselecting a cell according to a signal characteristic of a wireless environment In selecting a cell for reselection when reselecting a cell, the following cell reselection is performed according to a cell's RAT and frequency characteristics. There may be a method of selection.
  • Intra-frequency cell reselection Reselection of a cell having the same center-frequency as the RAT, such as a cell in which the UE is camping
  • Inter-frequency cell reselection Reselects a cell having a center frequency different from that of the same RAT as the cell camping
  • Inter-RAT cell reselection The UE reselects a cell using a RAT different from the camping RAT.
  • the UE measures the quality of a serving cell and a neighboring cell for cell reselection.
  • cell reselection is performed based on cell reselection criteria.
  • the cell reselection criteria have the following characteristics with respect to serving cell and neighbor cell measurements.
  • Intra-frequency cell reselection is basically based on ranking.
  • Ranking is an operation of defining index values for cell reselection evaluation and using the index values to order the cells in the order of the index values.
  • the cell with the best indicator is often called the highest ranked cell.
  • the cell indicator value is a value obtained by applying a frequency offset or a cell offset as necessary based on the value measured by the terminal for the corresponding cell.
  • Inter-frequency cell reselection is based on the frequency priority provided by the network.
  • the terminal attempts to camp on the frequency with the highest frequency priority.
  • the network may provide the priorities to be commonly applied to the terminals in the cell or provide the frequency priority through broadcast signaling, or may provide the priority for each frequency for each terminal through dedicated signaling.
  • the cell reselection priority provided through broadcast signaling may be referred to as common priority, and the cell reselection priority set by the network for each terminal may be referred to as a dedicated priority.
  • the terminal may also receive a validity time associated with the dedicated priority.
  • the terminal starts a validity timer set to the valid time received together.
  • the terminal applies the dedicated priority in the RRC idle mode while the validity timer is running.
  • the validity timer expires, the terminal discards the dedicated priority and applies the public priority again.
  • the network may provide the UE with parameters (eg, frequency-specific offset) used for cell reselection for each frequency.
  • parameters eg, frequency-specific offset
  • the network may provide the UE with a neighboring cell list (NCL) used for cell reselection to the UE.
  • NCL neighboring cell list
  • This NCL contains cell-specific parameters (eg, cell-specific offsets) used for cell reselection.
  • the network may provide the UE with a cell reselection prohibition list (black list) used for cell reselection.
  • the UE does not perform cell reselection for a cell included in the prohibition list.
  • the ranking criterion used to prioritize the cells is defined as in Equation 1.
  • R s is a ranking indicator of the serving cell
  • R n is a ranking indicator of the neighbor cell
  • Q meas, s is a quality value measured by the UE for the serving cell
  • Q meas, n is a quality measured by the UE for the neighbor cell
  • Q hyst is a hysteresis value for ranking
  • Q offset is an offset between two cells.
  • the ranking ranking is constantly reversed so that the terminal may alternately select two cells.
  • Q hyst is a parameter for giving hysteresis in cell reselection to prevent the UE from reselecting two cells alternately.
  • the UE measures R s of the serving cell and R n of the neighbor cell according to the above equation, considers the cell having the highest ranking indicator value as the highest ranked cell, and reselects the cell.
  • the quality of the cell serves as the most important criterion in cell reselection. If the reselected cell is not a regular cell, the terminal excludes the frequency or the corresponding cell from the cell reselection target.
  • the terminal continuously measures to maintain the quality of the radio link with the serving cell receiving the service.
  • the terminal determines whether communication is impossible in the current situation due to deterioration of the quality of the radio link with the serving cell. If the quality of the serving cell is so low that communication is almost impossible, the terminal determines the current situation as a radio connection failure.
  • the UE gives up maintaining communication with the current serving cell, selects a new cell through a cell selection (or cell reselection) procedure, and reestablishes an RRC connection to the new cell (RRC connection re). -establishment).
  • cell selection or cell reselection
  • RRC connection re reestablishes an RRC connection to the new cell
  • the RLC sublayer determines that there is a problem in the uplink transmission because the uplink data transmission continuously fails.
  • the UE suspends use of all radio bearers that are set except for Signaling Radio Bearer # 0 (SRB 0) and initializes various sublayers of an access stratum (AS) (S810). In addition, each sub-layer and the physical layer is set to a default configuration. During this process, the UE maintains an RRC connection state.
  • SRB 0 Signaling Radio Bearer # 0
  • AS Access stratum
  • the UE performs a cell selection procedure for performing an RRC connection reconfiguration procedure (S820).
  • the cell selection procedure of the RRC connection reestablishment procedure may be performed in the same manner as the cell selection procedure performed by the UE in the RRC idle state, although the UE maintains the RRC connection state.
  • the UE checks the system information of the corresponding cell to determine whether the corresponding cell is a suitable cell (S830). If it is determined that the selected cell is an appropriate E-UTRAN cell, the UE transmits an RRC connection reestablishment request message to the cell (S840).
  • the RRC connection re-establishment procedure is stopped, the terminal is in the RRC idle state Enter (S850).
  • the terminal may be implemented to complete the confirmation of the appropriateness of the cell within a limited time through the cell selection procedure and the reception of system information of the selected cell.
  • the UE may drive a timer as the RRC connection reestablishment procedure is initiated.
  • the timer may be stopped when it is determined that the terminal has selected a suitable cell. If the timer expires, the UE may consider that the RRC connection reestablishment procedure has failed and may enter the RRC idle state.
  • This timer is referred to hereinafter as a radio link failure timer.
  • a timer named T311 may be used as a radio link failure timer.
  • the terminal may obtain the setting value of this timer from the system information of the serving cell.
  • the cell transmits an RRC connection reestablishment message to the terminal.
  • the UE Upon receiving the RRC connection reestablishment message from the cell, the UE reconfigures the PDCP sublayer and the RLC sublayer for SRB1. In addition, it recalculates various key values related to security setting and reconstructs the PDCP sublayer responsible for security with newly calculated security key values. Through this, SRB 1 between the UE and the cell is opened and an RRC control message can be exchanged.
  • the terminal completes the resumption of SRB1 and transmits an RRC connection reestablishment complete message indicating that the RRC connection reestablishment procedure is completed to the cell (S860).
  • the cell transmits an RRC connection reestablishment reject message to the terminal.
  • the RRC connection reestablishment procedure is successfully performed, the cell and the terminal performs the RRC connection reestablishment procedure. Through this, the UE recovers the state before performing the RRC connection reestablishment procedure and guarantees the continuity of the service to the maximum.
  • MBMS and MBSFN multicast / broadcast single frequency network
  • Transmission in MBSFN transmission or MBSFN mode refers to a simultaneous transmission scheme implemented by transmitting the same signal in a plurality of cells at the same time.
  • MBSFN transmissions from a plurality of cells within the MBSFN area appear to the UE as a single transmission.
  • the MBMS service area is a general term for the area where a particular MBMS service is provided. For example, if an area where a specific MBMS service A is performed is called an MBMS service area A, the network may be in a state of transmitting an MBMS service A in the MBMS service area A. In this case, the terminal may receive the MBMS service A according to the capability of the terminal.
  • the MBMS service area may be defined in terms of applications and services as to whether or not a particular service is provided in a certain area.
  • a logical channel multicast control channel (MCCH) or a multicast traffic channel (MTCH) may be mapped to a transport channel MCH for an MBMS.
  • MCCH transmits MBMS related RRC message
  • MTCH transmits traffic of specific MBMS service.
  • MBSFN Single Frequency Network
  • the terminal may receive a plurality of MCCHs.
  • the MCCH contains one MBSFN area setup RRC message and has a list of all MBMS services.
  • a physical downlink control channel transmits an MBMS Radio Network Temporary Identity (M-RNTI) and an indicator indicating a specific MCCH.
  • M-RNTI MBMS Radio Network Temporary Identity
  • the terminal supporting the MBMS may receive the M-RNTI and the MCCH indicator through the PDCCH, determine that the MBMS-related RRC message has been changed in the specific MCCH, and receive the specific MCCH.
  • the RRC message of the MCCH may be changed at each modification period, and is repeatedly broadcasted at every repetition period.
  • a notification mechanism is used to inform the change of the MCCH due to the presence of the MCCH session start or MBMS counting request message.
  • the UE detects a known MCCH change through the MCCH monitoring in the change cycle, not by the notification mechanism.
  • the MTCH is a logical channel carrying an MBMS service. When there are many services provided in the MBSFN area, a plurality of MTCHs may be configured.
  • the terminal may receive a dedicated service while receiving the MBMS service.
  • a user may watch a TV through an MBMS service through his own smartphone, and chat using an IM (instant messaging) service such as MSN or Skype using the smartphone.
  • IM instant messaging
  • the MBMS service is provided through MTCH received by several terminals together, and the service provided to each terminal individually, such as IM service, will be provided through a dedicated bearer such as DCCH or DTCH.
  • some base stations can use multiple frequencies at the same time.
  • the network may select one of a plurality of frequencies to provide an MBMS service only at that frequency and provide a dedicated bearer to each terminal at all frequencies.
  • the terminal when a terminal that has received a service using a dedicated bearer at a frequency where the MBMS service is not provided, if the terminal wants to receive the MBMS service, the terminal should be handed over to the frequency where the MBMS is provided. To this end, the terminal transmits an MBMS interest indication to the base station.
  • the terminal when the terminal wants to receive the MBMS service, the terminal transmits an MBMS interest indication to the base station, and when the base station receives the instruction, the terminal recognizes that the terminal wants to receive the MBMS service, and the terminal receives the MBMS service frequency. Move to.
  • the MBMS interest indicator refers to information that the terminal wants to receive the MBMS service, and additionally includes information on which frequency it wants to move to.
  • a terminal that wants to receive a specific MBMS service first grasps frequency information and broadcast time information provided with the specific service. If the MBMS service is already broadcasting or soon starts broadcasting, the terminal sets the highest priority of the frequency in which the MBMS service is provided. The UE moves to a cell providing the MBMS service and receives the MBMS service by performing a cell reselection procedure using the reset frequency priority information.
  • the reselected cell is SIB13 (System Information Block 13; System Information).
  • SIB13 System Information Block 13; System Information
  • SAIs Service Area Identities
  • SIB15 is not broadcasted in the serving cell and its frequency is included in the USD of the service.
  • the UE should be able to receive MBMS in RRC_IDLE and RRC_CONNECTED states.
  • the UE may operate as follows. 1) UE-specific DRX may be configured by a higher layer. 2) The terminal monitors the paging channel to detect a call, system information change, ETWS notification, etc., and performs neighbor cell measurement and cell selection (reselection). The terminal may acquire system information and perform possible measurements.
  • the UE transmits unicast data, and UE-specific DRX may be configured in a lower layer.
  • the terminal supporting the CA may use one or more secondary cells together with the primary cell.
  • the terminal monitors the paging channel and monitors the SIB1 contents in order to detect system information change.
  • Monitor control channels associated with the shared data channel to determine if the data is scheduled for it. It also provides channel quality and feedback information.
  • the terminal may measure the neighbor cell, report the measurement result, and obtain system information.
  • MBSFN transmission is set in subframe units.
  • a subframe configured to perform MBSFN transmission is called an MBSFN subframe.
  • MBSFN transmission is performed on the remaining OFDM symbols except for the first two OFDM symbols for PDCCH transmission.
  • the area used for MBSFN transmission is referred to as an MBSFN area for convenience. Then, in the MBSFN region, the CRS for unicast is not transmitted, and the MBMS dedicated RS common to all cells participating in the transmission is used.
  • the CRS In order to inform the UE that does not receive the MBMS, the CRS is not transmitted in the MBSFN area, and broadcasts the configuration information of the MBSFN subframe in the system information of the cell. Since most terminals perform radio resource management (RRM), radio link failure (RLF) processing, and synchronization using the CRS, it is important to inform that the CRS is not in a specific region.
  • the CRS is transmitted in the first two OFDM symbols used as the PDCCH in the MBSFN subframe, and this CRS is not for MBSFN use.
  • the CP of the CRS transmitted (that is, whether the CRS uses a normal CP or an extended CP) is a normal subframe, that is, a subframe other than the MBSFN subframe
  • the CRS according to the general CP is also used in the first two OFDM symbols 912 of the MBSFN subframe.
  • subframes that can be configured as MBSFN subframes are designated for FDD and TDD, respectively, and can indicate whether or not they are MBSFN subframes through a bitmap. That is, if a bit corresponding to a specific subframe is 1 in the bitmap, the specific subframe is set to the MBSFN subframe.
  • FIG. 10 shows an example of an MBSFN subframe configuration for performing an MBMS service.
  • the UE acquires MBSFN subframe configuration information, MBSFN notification configuration information, and MBSFN area information list to perform MBMS service.
  • the UE may know the MBSFN subframe configuration information, that is, the location of the MBSFN subframe through SIB2 and RRC dedicated signaling.
  • the MBSFN subframe configuration information may be included in an MBSFN-SubframeConfig information element (IE).
  • IE MBSFN-SubframeConfig information element
  • the UE may acquire MBSFN region information list and MBMS notification configuration information as information necessary for obtaining MBMS control information associated with one or more MBSFN regions capable of performing MBMS service through SIB13.
  • the MBSFN region information list includes MBSFN region ID for each MBSFN region, MBSFN region information in MBSFN subframe in MBSFN region, MBSFN subframe position where MCCH transmission is performed, and MBMS control information channel. May contain information.
  • the MBSFN area information list may be included in the MBSFN-AreaInfoList information element.
  • MBSFN notification configuration information is the configuration information for the subframe location in which the MBMS notification that informs that there is a change in the MBSFN region configuration information transmitted to the terminal through the MCCH.
  • the MBSFN notification configuration information may be included in the MBMS-NotificationConfig information element.
  • the MBSFN notification configuration information includes time information used for change notification of the MCCH applicable to all MBSFN regions.
  • the time information may include a notification repetition coefficient (notificationRepetitionCoeff), a notification offset (notificationOffset) and a notification subframe index (notificationSF-Index).
  • the notification repetition coefficient means a common change notification repetition period for all MCCHs.
  • the notification offset indicates an offset of a radio frame for which MCCH change notification information is scheduled.
  • the notification subframe index is a subframe index used for transmitting the MCCH change notification on the PDCCH.
  • the UE may obtain MBSFN region configuration information through the MCCH corresponding to each of the MBSFN regions obtained through SIB13.
  • the MBSFN region configuration information may be included in the MBSFNAreaconfiguration message, and includes information on physical multicast channels (PMCHs) used by the corresponding MBSFN region.
  • PMCHs physical multicast channels
  • the information on each PMCH includes the location of the MBSFN subframe in which the PMCH is located, Modulation and Coding Scheme (MCS) level information used for data transmission in the subframe, and MBMS service information transmitted by the PMCH. It may include.
  • MCS Modulation and Coding Scheme
  • MCH Scheduling Information MCH Scheduling Information
  • 11 illustrates a method of notifying the terminal of the change of MCCH information when the MCCH information is changed.
  • a change of MCCH information occurring only in a specific radio frame may occur.
  • the same MCCH information may be transmitted several times with the MCCH repetition period 1140 within the MCCH change period 1120.
  • the indication of the MBMS-specific RNTI (M-RNTI) in the PDCCH may be used to inform the UE in the RRC_IDLE state and the change of the MCCH information to the UE in the RRC_CONNECTED state.
  • the MCCH information change notification 1100 in the PDCCH may be periodically transmitted and may be transmitted in an MBSFN subframe.
  • the MBMS capable RRC_IDLE terminal or the RRC_CONNECTED terminal may acquire MCCH information.
  • the current terminal may recognize that the MBMS service is interrupted by a Temporary Mobile Group Identity (TMGI) through the MCCH. That is, if TMGI is not recognized, it can be known that MBMS service is stopped. However, the current method of recognizing the interruption of the MBMS service using TMGI may take a long time to inform the UE of the interruption of the MBMS service, which may cause the interruption of the service during the period. If the network decides to suspend and resume the MBMS service, the network transmits an MCCH change notification and updates the MCCH information, and then the UE recognizes that the MBMS service is stopped or started through the MCCH, as discussed in FIG.
  • TMGI Temporary Mobile Group Identity
  • the method of recognizing whether the MBMS service is suspended or resumed through the MCCH is useful in that it does not require additional influence on the RAN2 specification, but may cause the service to be interrupted for a period of time. Therefore, new signaling can be used to recognize whether the MBMS service is suspended or resumed.
  • the new signaling may be a special value in the MSI.
  • the UE may stop the MBMS service by recognizing that the special value is included in the MSI. That is, when the network corresponding to the MBMS bearer is interrupted, the UE can quickly request the establishment of a unicast bearer to the network, and thus, between the termination of the MBMS bearer and the start of the unicast bearer as compared to the case of using TMGI over the MCCH. The gap can be further reduced.
  • stopping the MBMS service by using the special value of MSI means Stop or Suspension. The operation of the terminal to be performed will be described in detail.
  • the stop (Stop) is defined as to stop the MBMS service and release the MRB to not consider whether to resume the MBMS service afterwards, Suspension (Suspension) to stop the MBMS service, but the MBMS service will be resumed after It is defined as not to release the MRB in consideration.
  • the terminal considers the special value only in the MBMS service interruption to the MSI and does not consider whether to resume the MBMS service afterwards.
  • the terminal may receive the MSI from the network.
  • the terminal may stop the MBMS service if the received MSI includes a special value of the MSI.
  • the UE does not need to receive the corresponding MSI / MTCH (and possibly the corresponding MCCH) and releases the corresponding MRB.
  • the terminal establishes a corresponding unicast bearer. If the MBMS service is provided by the unicast bearer, the terminal will not need to monitor the current MSI / MTCH / MCCH to stop the MBMS service.
  • the RRC_IDLE state UEs stop the MBMS service by receiving the special value of the MSI and then consider whether to resume the MBMS service. If the RRC_CONNECTED state UEs stop the MBMS service by receiving the special value of the MSI and do not consider whether to resume the MBMS service thereafter, then the UE needs to indicate that it is not interested in the MBMSInterestIndication message.
  • the proposal that the terminal stops the MBMS service using the MSI may be referred to as the operation of the new terminal as compared with the existing terminal operation that does not consider the MSI for service continuity.
  • the terminal may consider the special value of the MSI to suspend the MBMS service and then resume the MBMS service.
  • the terminal may receive the MSI from the network.
  • the terminal may suspend the MBMS service if the received MSI includes a special value of the MSI.
  • the terminal since the network can resume the MTCH transmission of the MBMS service even after receiving the special value of the MSI, the terminal needs to continue monitoring the transmission after the MSI. That is, while the corresponding unicast bearer is established, the terminal should continue to perform the MBMS procedure without releasing the MRB.
  • the terminal may continue to monitor the MSI, MTCH or MCCH, and if the MSI, MTCH or MCCH is monitored, the MBMS service may be resumed through the MRB. To this end, even though the UE establishes a unicast bearer after receiving the special value of MSI, it should be on the MBMS frequency and continue to prioritize the MBMS frequency of interest.
  • FIG. 13 is a block diagram illustrating a case in which a special value of an MSI is considered for MBMS service stop or suspension in accordance with an embodiment of the present invention.
  • the terminal may receive Multicast Channel Scheduling Information (MSI) from the network (S1310).
  • MSI Multicast Channel Scheduling Information
  • the terminal may check whether a special value is included in the received MSI (S1320). If the special value is included, the terminal may determine whether to stop or suspend the MBMS service in consideration of the MBMS service interruption (S1330).
  • the stop may be a stop not considering resumption of the MBMS service, and the suspension may be a stop considering a resume of the MBMS service.
  • the terminal may release an MRB (radio bearer for MBMS).
  • the terminal may stop monitoring the MSI, MTCH or MCCH. If the UE is in the RRC_IDLE state, it may stop prioritizing the MBMS frequency of interest, and if the UE establishes a unicast bearer and transitions to the RRC_CONNECTED state, it may indicate that there is no interest in the MBMSInterestIndication message.
  • the UE may maintain the MRB without releasing the MRB.
  • the terminal may continue to monitor the MSI, MTCH or MCCH. If at least one of the MSI, MTCH, or MCCH is monitored, the terminal may resume the MBMS service suspended through the MRB. For this purpose, the terminal may continue to prioritize the MBMS frequency of interest. Even if the UE establishes a unicast bearer, the MRB may not be released.
  • FIG. 14 is a diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the base station 1400 includes a processor 1401, a memory 1402, and a transceiver 1403.
  • the memory 1402 is connected to the processor 1401, and stores various information for driving the processor 1401.
  • the transceiver 1403 is connected to the processor 1401 and transmits and / or receives a radio signal.
  • the processor 1401 implements the proposed functions, processes, and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 1401.
  • the terminal 1410 includes a processor 1411, a memory 1412, and a transceiver 1413.
  • the memory 1412 is connected to the processor 1411 and stores various information for driving the processor 1411.
  • the transceiver 1413 is coupled to the processor 1411 to transmit and / or receive wireless signals.
  • the processor 1411 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the terminal may be implemented by the processor 1411.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the transceiver may include baseband circuitry for processing wireless signals.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Abstract

Provided are a method and an apparatus for stopping and restarting an MBMS service in a wireless communication system. A terminal receives multicast channel (MCH) scheduling information (MSI) and checks whether a special value is included in the received MSI. If the special value is included in the MSI, then whether to stop or suspend the MBMS service can be determined. That is, MSI can be considered in stopping the MBMS service. Furthermore, stopping is terminating an MBMS service without a consideration for restarting same, and suspending is terminating an MBMS service with a consideration for restarting same.

Description

MBMS 서비스를 중단 및 재개하는 방법 및 장치Method and device for suspending and resuming MBMS services
본 발명은 이동 통신에 관한 것으로, 보다 상세하게는 MBMS(Multimedia Broadcast/Multicast Service) 서비스를 중단 및 재개하는 방법 및 장치에 관한 것이다.The present invention relates to mobile communication, and more particularly, to a method and apparatus for stopping and resuming a multimedia broadcast / multicast service (MBMS) service.
MBMS(Multimedia Broadcast/Multicast Service)는 기존의 CBS(Cell Broadcast Service)와 유사하게 동일하게 데이터 패킷을 다수의 사용자들에게 동시에 전송하는 서비스이다. 그러나 CBS는 저속의 메시지 기반 서비스이지만 MBMS는 고속의 멀티미디어 데이터 전송을 목적으로 하고 있다. 또한 CBS는 IP(internet protocol) 기반이 아니지만 MBMS는 IP 멀티캐스트 기반으로 이루어진다는 차이점이 있다. MBMS에 따르면, 일정 수준의 사용자들이 동일한 셀에 존재하는 경우, 사용자들은 공유 자원(또는 채널)을 사용하여 동일한 멀티미디어 데이터를 수신할 수 있기 때문에, 무선 자원의 효율이 높아지고, 사용자들은 멀티미디어 서비스를 값싸게 이용할 수 있다. MBMS (Multimedia Broadcast / Multicast Service) is a service that transmits data packets to multiple users at the same time similarly to the existing CBS (Cell Broadcast Service). However, while CBS is a low-speed message-based service, MBMS is intended for high-speed multimedia data transmission. In addition, CBS is not based on IP (internet protocol), but MBMS is based on IP multicast. According to the MBMS, when a certain level of users exist in the same cell, the users can receive the same multimedia data using a shared resource (or channel), thereby increasing the efficiency of radio resources and allowing users to value multimedia services. It is available cheaply.
MBMS는 하나의 서비스를 복수의 단말이 효율적으로 데이터를 수신하도록 하기 위해서, 공용채널을 사용한다. 하나의 서비스 데이터에 대해서, 기지국은 한 셀에서 상기 서비스를 수신하고자 하는 단말의 수만큼 전용채널을 할당하지 않고, 하나의 공용채널만을 할당한다. 그리고 복수의 단말들은 상기 공용채널을 동시에 수신하므로, 무선 자원의 효율성이 높아진다. MBMS 관련하여 단말은 해당 셀에 대한 시스템 정보(System information) 수신 후에 MBMS를 수신할 수 있다.MBMS uses a shared channel to efficiently receive data from a plurality of terminals in one service. For one service data, the base station does not allocate a dedicated channel as many as the number of terminals to receive the service in one cell, but allocates only one shared channel. In addition, since a plurality of terminals simultaneously receive the shared channel, the efficiency of radio resources is increased. In relation to the MBMS, the terminal may receive the MBMS after receiving system information about the corresponding cell.
본 발명은 MBMS 서비스를 중단하는 방법 및 장치를 제안한다. 또한 본 발명은 중단된 MBMS 서비스를 재개하는 방법 및 장치를 제안한다.The present invention proposes a method and apparatus for stopping an MBMS service. The present invention also proposes a method and apparatus for resuming a suspended MBMS service.
단말은 MSI(Multicast Channel Scheduling Information; MCH 스케줄링 정보)를 수신하고, 수신된 상기 MSI에 특별 값(special value)이 포함되어 있는지 확인할 수 있다. 상기 특별 값이 포함되어 있으면, MBMS 서비스를 중단할 수 있다. The UE may receive Multicast Channel Scheduling Information (MCH Scheduling Information) and check whether a special value is included in the received MSI. If the special value is included, the MBMS service can be stopped.
MBMS 서비스가 중단(Stop)되면, 단말은 MRB를 해제하고 유니캐스트 베어러를 확립할 수 있으며, 이 경우 MSI, MTCH 또는 MCCH의 모니터링을 수행하지 않는다.If the MBMS service stops (Stop), the UE may release the MRB and establish a unicast bearer, in which case it does not monitor the MSI, MTCH or MCCH.
MBMS 서비스가 일시 중단(Suspension)되면, 단말은 MRB를 해제하지 않고 유니캐스트 베어러를 확립할 수 있으며, 이 경우 MSI 또는 MTCH의 모니터링을 지속 수행하여, 어느 하나가 모니터링 되면, 상기 MRB를 통해 일시 중단된 MBMS 서비스를 재개할 수 있다.When the MBMS service is suspended, the UE may establish a unicast bearer without releasing the MRB. In this case, the UE continuously establishes the monitoring of the MSI or the MTCH, and if any one is monitored, the MBMS is suspended through the MRB. MBMS service can be resumed.
일 실시 예에 있어서, 무선 통신 시스템에서 MBMS 서비스를 중단 및 재개하는 방법이 제공된다. 단말은 MSI(Multicast Channel Scheduling Information; MCH 스케줄링 정보)를 수신하고, 수신된 상기 MSI에 특별 값(special value)이 포함되어 있는지 확인하고, 상기 MSI에 상기 특별 값이 포함되어 있으면, 상기 MBMS 서비스의 중단(stop) 또는 일시 중단(suspension) 여부를 결정하는 것을 포함할 수 있다. 단, 상기 MBMS 서비스의 중단은 상기 MBMS 서비스의 재개를 고려하지 않는 MBMS 서비스의 중단이고, 상기 MBMS 서비스의 일시 중단은 상기 MBMS 서비스의 재개를 고려하는 상기 MBMS 서비스의 중단이다.In one embodiment, a method of suspending and resuming an MBMS service in a wireless communication system is provided. The UE receives MSI (MCH Scheduling Information), checks whether a special value is included in the received MSI, and if the special value is included in the MSI, Determining whether to stop or suspend. However, the interruption of the MBMS service is an interruption of the MBMS service not considering resumption of the MBMS service, and the suspension of the MBMS service is an interruption of the MBMS service considering the restart of the MBMS service.
상기 MBMS 서비스를 중단(stop) 하기로 결정하면, 상기 단말은 MRB(MBMS를 위한 무선 베어러)를 해제하는 것을 더 포함할 수 있다. 상기 단말은 상기 MSI, MTCH 또는 MCCH의 모니터링을 중단하는 것을 더 포함할 수 있다. 상기 단말이 RRC_IDLE 상태인 경우, 관심 MBMS 주파수에 대한 우선순위를 매기는 것을 중단하는 것을 더 포함할 수 있다. 상기 단말은 유니캐스트 베어러를 확립하는 것을 더 포함할 수 있다. 상기 단말은 MBMSInterestIndication 메시지에 관심이 없음을 지시하는 것을 더 포함할 수 있다.If the terminal decides to stop the MBMS service, the terminal may further include releasing an MRB (radio bearer for MBMS). The terminal may further include stopping the monitoring of the MSI, MTCH or MCCH. When the terminal is in the RRC_IDLE state, the method may further include stopping prioritization of the MBMS frequency of interest. The terminal may further comprise establishing a unicast bearer. The terminal may further include indicating that the user is not interested in the MBMSInterestIndication message.
상기 MBMS 서비스를 일시 중단(suspension) 하기로 결정하면, 상기 단말은 MRB(MBMS를 위한 무선 베어러)를 유지하는 것을 더 포함할 수 있다. 상기 단말은 상기 MSI, MTCH 또는 MCCH의 모니터링을 계속 수행하는 것을 더 포함할 수 있다. 상기 MSI 또는 상기 MTCH 중 적어도 어느 하나가 모니터링 되면, 상기 MRB를 통해 일시 중단된 상기 MBMS 서비스를 재개하는 것을 더 포함할 수 있다. 상기 단말은 관심 MBMS 주파수의 우선순위를 매기는 것을 계속 수행하는 하는 것을 더 포함할 수 있다. 상기 단말은 유니캐스트 베어러를 확립하는 것을 더 포함할 수 있다.When determining to suspend the MBMS service, the terminal may further include maintaining an MRB (radio bearer for MBMS). The terminal may further include continuing to monitor the MSI, MTCH or MCCH. If at least one of the MSI or the MTCH is monitored, the method may further include resuming the MBMS service suspended through the MRB. The terminal may further comprise continuing to prioritize the MBMS frequency of interest. The terminal may further comprise establishing a unicast bearer.
다른 실시 예에 있어서, 무선 통신 시스템에서 MBMS 서비스를 중단 및 재개하는 단말이 제공된다. 메모리; 송수신기; 및 상기 메모리와 상기 송수신기를 연결하는 프로세서를 포함하되, 상기 프로세서는 상기 송수신기가 MSI(Multicast Channel Scheduling Information; MCH 스케줄링 정보)를 수신하도록 제어하고, 수신된 상기 MSI에 특별 값(special value)이 포함되어 있는지 확인하고, 상기 MSI에 상기 특별 값이 포함되어 있으면, 상기 MBMS 서비스의 중단(stop) 또는 일시 중단(suspension) 여부를 결정하도록 구성될 수 있다. 단, 상기 MBMS 서비스의 중단은 상기 MBMS 서비스의 재개를 고려하지 않는 MBMS 서비스의 중단이고, 상기 MBMS 서비스의 일시 중단은 상기 MBMS 서비스의 재개를 고려하는 상기 MBMS 서비스의 중단이다.In another embodiment, a terminal for suspending and resuming an MBMS service in a wireless communication system is provided. Memory; Transceiver; And a processor connecting the memory and the transceiver, wherein the processor controls the transceiver to receive Multicast Channel Scheduling Information (MCH Scheduling Information) and includes a special value in the received MSI. If the MSI includes the special value, it may be configured to determine whether to stop or suspend the MBMS service. However, the interruption of the MBMS service is an interruption of the MBMS service not considering resumption of the MBMS service, and the suspension of the MBMS service is an interruption of the MBMS service considering the restart of the MBMS service.
상기 프로세서는 상기 MBMS 서비스를 중단(stop) 하기로 결정하면, MRB(MBMS를 위한 무선 베어러)를 해제하도록 구성될 수 있다.The processor may be configured to release an MRB (radio bearer for MBMS) if it decides to stop the MBMS service.
상기 프로세서는 상기 MBMS 서비스를 일시 중단(suspension) 하기로 결정하면, MRB(MBMS를 위한 무선 베어러)를 유지하도록 구성될 수 있다. 상기 프로세서는 상기 MSI, MTCH 또는 MCCH의 모니터링을 계속 수행하도록 구성될 수 있다. 상기 프로세서는 상기 MSI 또는 상기 MTCH 중 적어도 어느 하나가 모니터링 되면, 상기 MRB를 통해 중단된 상기 MBMS 서비스를 재개하도록 구성될 수 있다.The processor may be configured to maintain an MRB (radio bearer for MBMS) if it decides to suspend the MBMS service. The processor may be configured to continue monitoring the MSI, MTCH or MCCH. The processor may be configured to resume the MBMS service suspended through the MRB when at least one of the MSI or the MTCH is monitored.
본 발명을 통해, 단말이 MBMS 서비스의 중단을 인식하는 시간을 감소시킬 수 있다.According to the present invention, it is possible to reduce the time for the terminal to recognize the interruption of the MBMS service.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다.1 shows a wireless communication system to which the present invention is applied.
도 2는 본 발명이 적용되는 MBMS를 위한 망 구조를 나타낸다.2 shows a network structure for MBMS to which the present invention is applied.
도 3은 MBMS 지원을 위한 사용자 평면 구조를 나타낸다.3 shows a user plane structure for MBMS support.
도 4는 MBMS 지원을 위한 제어 평면 구조를 나타낸다.4 shows a control plane structure for MBMS support.
도 5는 RRC 아이들 상태의 단말의 동작을 나타낸다.5 shows the operation of the terminal in the RRC idle state.
도 6는 RRC 연결을 확립하는 과정을 나타낸다.6 shows a process of establishing an RRC connection.
도 7은 RRC 연결 재설정 과정을 나타낸다.7 shows an RRC connection resetting process.
도 8은 RRC 연결 재확립 절차를 나타낸다.8 shows an RRC connection reestablishment procedure.
도 9는 MBSFN 서브프레임의 구조를 나타낸다.9 shows the structure of an MBSFN subframe.
도 10은 MBMS 서비스를 수행하기 위한 MBSFN 서브프레임 구성의 일 예를 나타낸다.10 shows an example of an MBSFN subframe configuration for performing an MBMS service.
도 11은 MCCH 정보가 변경된 경우 MCCH 정보의 변경을 단말에게 통지하는 방법을 나타낸다.11 illustrates a method of notifying the terminal of the change of MCCH information when the MCCH information is changed.
도 12는 확장된 MSI를 나타낸다.12 shows the expanded MSI.
도 13은 본 발명의 실시 예에 따른 MBMS 서비스 중단(Stop) 또는 일시 중단(Suspension)에 MSI의 특별 값을 고려하는 경우를 나타내는 블록도이다.FIG. 13 is a block diagram illustrating a case in which a special value of an MSI is considered for MBMS service stop or suspension in accordance with an embodiment of the present invention.
도 14는 본 발명의 실시 예가 구현되는 무선통신 시스템을 나타내는 도면이다.14 is a diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTS terrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.The following techniques include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and the like. It can be used in various wireless communication systems. CDMA may be implemented by a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000. TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE). OFDMA may be implemented by wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA), and the like. IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e. UTRA is part of a universal mobile telecommunications system (UMTS). 3rd generation partnership project (3GPP) long term evolution (LTE) is part of evolved UMTS (E-UMTS) using evolved-UMTS terrestrial radio access (E-UTRA), which employs OFDMA in downlink and SC in uplink -FDMA is adopted. LTE-A (advanced) is the evolution of 3GPP LTE.
설명을 명확하게 하기 위해, LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.For clarity, the following description focuses on LTE-A, but the technical spirit of the present invention is not limited thereto.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.1 shows a wireless communication system to which the present invention is applied. This may also be called an Evolved-UMTS Terrestrial Radio Access Network (E-UTRAN), or Long Term Evolution (LTE) / LTE-A system.
도 1을 참조하면, E-UTRAN은 단말에 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 적어도 하나의 기지국(20; Base Station, BS)을 포함한다. 단말(10; User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), AMS(Advanced MS), UT(User Terminal), SS(Subscriber Station), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다.Referring to FIG. 1, the E-UTRAN includes at least one base station (BS) 20 that provides a control plane and a user plane to the terminal. The UE 10 may be fixed or mobile and may have other mobile stations, advanced MSs (AMS), user terminals (UTs), subscriber stations (SSs), wireless devices (Wireless Devices), and the like. It may be called a term.
기지국(20)은 일반적으로 단말(10)과 통신하는 지점(station)을 말하며, eNodeB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point), 펨토 기지국(femto-eNB), 피코 기지국(pico-eNB), 홈 기지국(Home eNB), 릴레이(relay) 등 다른 용어로 불릴 수 있다. 기지국(20)은 적어도 하나의 셀을 단말에 제공할 수 있다. 셀은 기지국(20)이 통신 서비스를 제공하는 지리적 영역을 의미할 수도 있고, 특정 주파수 대역을 의미할 수도 있다. 셀은 하향링크 주파수 자원과 상향링크 주파수 자원을 의미할 수 있다. 또는 셀은 하향링크 주파수 자원과 선택적인(optional) 상향링크 주파수 자원의 조합(combination)을 의미할 수 있다. 또한, 일반적으로 반송파 집성(carrier aggregation: CA)를 고려하지 않은 경우, 하나의 셀(cell)은 상향 및 하향링크 주파수 자원이 항상 쌍(pair)으로 존재한다.The base station 20 generally refers to a station communicating with the terminal 10, and includes an evolved-NodeB (eNodeB), a Base Transceiver System (BTS), an Access Point, an femto-eNB, It may be called other terms such as a pico-eNB, a home eNB, and a relay. The base station 20 may provide at least one cell to the terminal. The cell may mean a geographic area where the base station 20 provides a communication service or may mean a specific frequency band. The cell may mean a downlink frequency resource and an uplink frequency resource. Alternatively, the cell may mean a combination of a downlink frequency resource and an optional uplink frequency resource. In addition, in general, when carrier aggregation (CA) is not considered, one cell always has a pair of uplink and downlink frequency resources.
기지국(20)간에는 사용자 트래픽 혹은 제어 트래픽 전송을 위한 인터페이스가 사용될 수도 있다. 소스 기지국(Source BS, 21)은 현재 단말(10)과 무선 베어러가 설정된 기지국을 의미하고, 타겟 기지국(Target BS, 22)은 단말(10)이 소스 기지국(21)과의 무선 베어러를 끊고 새롭게 무선 베어러를 설정하기 위해 핸드오버를 하려는 기지국을 의미한다.An interface for transmitting user traffic or control traffic may be used between the base stations 20. The source base station (Source BS) 21 refers to a base station in which a radio bearer is currently set up with the terminal 10, and the target base station (Target BS, 22) means that the terminal 10 disconnects the radio bearer from the source base station 21 and renews it. It means a base station to be handed over to establish a radio bearer.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있는데, X2 인터페이스는 기지국(20)간의 메시지를 주고받는데 사용된다. 기지국(20)은 S1 인터페이스를 통해 EPS(Evolved Packet System), 보다 상세하게는 이동관리개체(Mobility Management Entity: 이하 MME)/S-GW(Serving Gateway, 30)와 연결된다. S1 인터페이스는 기지국(20)과 MME/S-GW(30) 간에 다수-대-다수 관계(many-to-many-relation)를 지원한다. MME/S-GW(30)로의 패킷 데이터 서비스를 제공하기 위해 PDN-GW(40)이 사용된다. PDN-GW(40)는 통신의 목적이나 서비스에 따라 달라지며, 특정 서비스를 지원하는 PDN-GW(40)는 APN(Access Point Name) 정보를 이용하여 찾을 수 있다.The base stations 20 may be connected to each other through an X2 interface, which is used to exchange messages between the base stations 20. The base station 20 is connected to an evolved packet system (EPS), more specifically, a mobility management entity (MME) / serving gateway (S-GW) 30 through an S1 interface. The S1 interface supports a many-to-many-relation between base station 20 and MME / S-GW 30. The PDN-GW 40 is used to provide packet data services to the MME / S-GW 30. The PDN-GW 40 varies depending on the purpose or service of communication, and the PDN-GW 40 supporting a specific service can be found using APN information.
E-UTRAN 내(Inter E-UTRAN) 핸드오버(handover)는 E-UTRAN 접속망간의 핸드오버 시에 사용되는 기본적인 핸드오버 메커니즘으로서, X2 기반의 핸드오버와 S1 기반의 핸드오버로 구성되어 있다. X2 기반의 핸드오버는 UE가 X2 인터페이스를 이용하여 소스 기지국(source BS, 21)에서 타겟 기지국(target BS, 22)으로 핸드오버 하고자 할 때 사용되며, 이때 MME/S-GW(30)는 변경되지 않는다. S1 기반의 핸드오버에 의해, P-GW(40), MME/S-GW(30), 소스 기지국(21) 및 단말(10)간에 설정되어 있던 제1 베어러가 해제(release)되고, P-GW(40), MME/S-GW(30), 타겟 기지국(22) 및 단말(10)간에 새로운 제2 베어러가 설정된다.Inter-E-UTRAN handover is a basic handover mechanism used for handover between E-UTRAN access networks. It is composed of X2 based handover and S1 based handover. The X2-based handover is used when the UE wants to handover from the source base station (source BS, 21) to the target base station (target BS, 22) using the X2 interface, where the MME / S-GW 30 is changed. It doesn't work. By S1 based handover, the first bearer set between the P-GW 40, the MME / S-GW 30, the source base station 21, and the terminal 10 is released, and the P-GW 40 is released. A new second bearer is established between the GW 40, the MME / S-GW 30, the target base station 22, and the terminal 10.
도 2는 본 발명이 적용되는 MBMS를 위한 망 구조를 나타낸다.2 shows a network structure for MBMS to which the present invention is applied.
도 2를 참조하면, 무선접속망(EUTRAN, 200)은 다중 셀 조정개체(Multi-cell Coordination Entity, 이하 MCE, 210)와 기지국(eNB, 220)을 포함한다. MCE(210)는 MBMS를 제어하는 주요 개체(main entity)로서, MBSFN 지역 내에서의 기지국(220)의 세션 관리, 무선자원할당(radio resource allocation)이나 허가제어(admission control)의 역할을 수행한다. MCE(210)는 기지국(220)내에 구현될 수도 있고, 기지국(220)과는 독립적으로 구현될 수도 있다. MCE(210)와 기지국(220)간의 인터페이스는 M2 인터페이스라 한다. M2 인터페이스는 무선접속망(200)의 내부 제어평면(internal control plane) 인터페이스로서 MBMS 제어정보가 전송된다. MCE(210)가 기지국(220)내에 구현되는 경우, M2 인터페이스는 논리적으로만 존재할 수 있다.Referring to FIG. 2, a radio access network (EUTRAN) 200 includes a multi-cell coordination entity (hereinafter referred to as MCE, 210) and a base station (eNB) 220. The MCE 210 is a main entity controlling the MBMS, and serves as session management, radio resource allocation, or admission control of the base station 220 in the MBSFN region. . The MCE 210 may be implemented in the base station 220 or may be implemented independently of the base station 220. The interface between the MCE 210 and the base station 220 is called an M2 interface. The M2 interface is an internal control plane interface of the wireless access network 200, and MBMS control information is transmitted. If the MCE 210 is implemented in the base station 220, the M2 interface may only exist logically.
EPC(Evolved Packet Core, 250)는 MME(260)와 MBMS 게이트웨이(MBMS GW, 270)를 포함한다. MME(260)는 NAS 시그널링, 로밍(roaming), 인증(authentication), PDN 게이트웨이와 S-GW의 선택, MME 변경에 의한 핸드오버를 위한 MME 선택, 휴지모드 단말에 대한 접근성(reachability), AS 보안제어(security control)등의 동작을 수행한다.An Evolved Packet Core (EPC) 250 includes an MME 260 and an MBMS Gateway (MBMS GW) 270. MME 260 is NAS signaling, roaming, authentication (authentication), PDN gateway and S-GW selection, MME selection for handover by MME change, accessibility to the idle mode terminal, AS security Performs operations such as security control.
MBMS 게이트웨이(270)는 MBMS 서비스 데이터를 전송하는 개체로서 기지국(220)과 BM-SC의 사이에 위치하며 기지국(220)으로의 MBMS 패킷 전송과 브로드캐스트를 수행한다. MBMS 게이트웨이(270)는 사용자 데이터를 기지국(220)으로 전송하기 위해 PDCP와 IP 멀티캐스트를 이용하고, 무선접속망(200)에 대해 세션 제어 시그널링을 수행한다.The MBMS gateway 270 is an entity that transmits MBMS service data and is located between the base station 220 and the BM-SC, and performs MBMS packet transmission and broadcast to the base station 220. The MBMS gateway 270 uses PDCP and IP multicast to transmit user data to the base station 220, and performs session control signaling for the radio access network 200.
MME(260)와 MCE(210)간의 인터페이스는 무선접속망(200)과 EPC(250)간의 제어평면 인터페이스로서, M3 인터페이스라 하며 MBMS 세션 제어와 관련된 제어정보가 전송된다. MME(260)와 MCE(210)은 세션 개시(Session start) 또는 세션 중단(session stop)을 위한 세션 개시/중단(session start/stop) 메시지와 같은 세션 제어 시그널링을 기지국(220)으로 전송하고, 기지국(220)은 셀 통지(notification)를 통하여 해당 MBMS 서비스가 개시 또는 중단되었음을 단말에 알려 줄 수 있다.The interface between the MME 260 and the MCE 210 is a control plane interface between the radio access network 200 and the EPC 250, which is called an M3 interface, and transmits control information related to MBMS session control. The MME 260 and the MCE 210 transmit session control signaling, such as a session start / stop message for session start or session stop, to the base station 220, The base station 220 may inform the terminal that the MBMS service is started or stopped through cell notification.
기지국(220)과 MBMS 게이트웨이(270)간의 인터페이스는 사용자 평면의 인터페이스로서, M1 인터페이스라 하며 MBMS 서비스 데이터가 전송된다.The interface between the base station 220 and the MBMS gateway 270 is an interface of a user plane, which is called an M1 interface, and transmits MBMS service data.
도 3은 MBMS 지원을 위한 사용자 평면 구조를 나타내고, 도 4는 MBMS 지원을 위한 제어 평면 구조를 나타낸다.3 shows a user plane structure for MBMS support, and FIG. 4 shows a control plane structure for MBMS support.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 상술한다. Hereinafter, the RRC state and the RRC connection method of the UE will be described in detail.
RRC 상태란 단말의 RRC 계층이 E-UTRAN의 RRC 계층과 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태, 연결되어 있지 않은 경우는 RRC 아이들 상태라고 부른다. RRC 연결 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC 아이들 상태의 단말은 E-UTRAN이 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 영역(Tracking Area) 단위로 CN(core network)이 관리한다. 즉, RRC 아이들 상태의 단말은 큰 지역 단위로 존재 여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 RRC 연결 상태로 이동해야 한다.The RRC state refers to whether or not the RRC layer of the UE is in a logical connection with the RRC layer of the E-UTRAN. If connected, the RRC connection state is called. Since the UE in the RRC connected state has an RRC connection, the E-UTRAN can grasp the existence of the corresponding UE in a cell unit, and thus can effectively control the UE. On the other hand, the UE of the RRC idle state cannot be understood by the E-UTRAN, and is managed by the CN (core network) in units of a tracking area, which is a larger area unit than the cell. That is, the UE in the RRC idle state is identified only in a large area unit, and must move to the RRC connected state in order to receive a normal mobile communication service such as voice or data.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 아이들 상태에 머무른다. RRC 아이들 상태의 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 E-UTRAN과 RRC 연결을 확립하고, RRC 연결 상태로 천이한다. RRC 아이들 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하다거나, 아니면 E-UTRAN으로부터 호출(paging) 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.When the user first powers on the terminal, the terminal first searches for an appropriate cell and then stays in an RRC idle state in the cell. When the UE in the RRC idle state needs to establish an RRC connection, it establishes an RRC connection with the E-UTRAN through an RRC connection procedure and transitions to the RRC connected state. There are several cases in which the UE in RRC idle state needs to establish an RRC connection. For example, an uplink data transmission is necessary due to a user's call attempt, or a paging message is sent from E-UTRAN. If received, a response message may be sent.
RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.The non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
NAS 계층에서 단말의 이동성을 관리하기 위하여 EMM-REGISTERED(EPS Mobility Management-REGISTERED) 및 EMM-DEREGISTERED 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말과 MME에게 적용된다. 초기 단말은 EMM-DEREGISTERED 상태이며, 이 단말이 네트워크에 접속하기 위해서 초기 연결(Initial Attach) 절차를 통해서 해당 네트워크에 등록하는 과정을 수행한다. 상기 연결(Attach) 절차가 성공적으로 수행되면 단말 및 MME는 EMM-REGISTERED 상태가 된다.In order to manage mobility of the UE in the NAS layer, two states of EMM-REGISTERED (EPS Mobility Management-REGISTERED) and EMM-DEREGISTERED are defined, and these two states are applied to the UE and the MME. The initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the attach procedure is successfully performed, the UE and the MME are in the EMM-REGISTERED state.
단말과 EPC간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM(EPS Connection Management)-IDLE 상태 및 ECM-CONNECTED 상태 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말 및 MME에게 적용된다. ECM-IDLE 상태의 단말이 E-UTRAN과 RRC 연결을 맺으면 해당 단말은 ECM-CONNECTED 상태가 된다. ECM-IDLE 상태에 있는 MME는 E-UTRAN과 S1 연결(S1 connection)을 맺으면 ECM-CONNECTED 상태가 된다. 단말이 ECM-IDLE 상태에 있을 때에는 E-UTRAN은 단말의 배경(context) 정보를 가지고 있지 않다. 따라서 ECM-IDLE 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택(cell selection) 또는 셀 재선택(reselection)과 같은 단말 기반의 이동성 관련 절차를 수행한다. 반면 단말이 ECM-CONNECTED 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM-IDLE 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라질 경우 단말은 트래킹 영역 갱신(Tracking Area Update) 절차를 통해 네트워크에 단말의 해당 위치를 알린다.In order to manage a signaling connection between the UE and the EPC, two states are defined, an EPS Connection Management (ECM) -IDLE state and an ECM-CONNECTED state, and these two states are applied to the UE and the MME. When the UE in the ECM-IDLE state establishes an RRC connection with the E-UTRAN, the UE is in the ECM-CONNECTED state. The MME in the ECM-IDLE state becomes the ECM-CONNECTED state when it establishes an S1 connection with the E-UTRAN. When the terminal is in the ECM-IDLE state, the E-UTRAN does not have context information of the terminal. Accordingly, the UE in the ECM-IDLE state performs a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network. On the other hand, when the terminal is in the ECM-CONNECTED state, the mobility of the terminal is managed by the command of the network. In the ECM-IDLE state, if the position of the terminal is different from the position known by the network, the terminal informs the network of the corresponding position of the terminal through a tracking area update procedure.
다음은, 시스템 정보(System Information)에 대하여 설명한다.Next, system information will be described.
시스템 정보는 단말이 기지국에 접속하기 위해서 알아야 하는 필수 정보를 포함한다. 따라서 단말은 기지국에 접속하기 전에 시스템 정보를 모두 수신하고 있어야 하고, 또한 항상 최신의 시스템 정보를 가지고 있어야 한다. 그리고 상기 시스템 정보는 한 셀 내의 모든 단말이 알고 있어야 하는 정보이므로, 기지국은 주기적으로 상기 시스템 정보를 전송한다. 시스템 정보는 MIB(Master Information Block) 및 복수의 SIB (System Information Block)로 나뉜다. The system information includes essential information that the terminal needs to know in order to access the base station. Therefore, the terminal must receive all system information before accessing the base station, and must always have the latest system information. In addition, since the system information is information that all terminals in a cell should know, the base station periodically transmits the system information. System information is divided into a master information block (MIB) and a plurality of system information blocks (SIB).
MIB는 셀로부터 다른 정보를 위해 획득될 것이 요구되는 가장 필수적이고 가장 자주 전송되는, 제한된 개수의 파라미터들을 포함할 수 있다. 단말은 하향링크 동기화 이후에 가장 먼저 MIB를 찾는다. MIB는 하향링크 채널 대역폭, PHICH 설정, 동기화를 지원하고 타이밍 기준으로서 동작하는 SFN, 및 eNB 전송 안테나 설정과 같은 정보를 포함할 수 있다. MIB는 BCH(broadcast channel) 상으로 브로드캐스트 전송될 수 있다. The MIB may include a limited number of parameters, the most essential and most frequently transmitted, required to be obtained for other information from the cell. The terminal first finds the MIB after downlink synchronization. The MIB may include information such as downlink channel bandwidth, PHICH settings, SFNs that support synchronization and operate as timing criteria, and eNB transmit antenna settings. The MIB may be broadcast transmitted on a broadcast channel (BCH).
포함된 SIB들 중 SIB1 (SystemInformationBlockType1) 은 "SystemInformationBlockType1" 메시지에 포함되어 전송되며, SIB1을 제외한 다른 SIB들은 시스템 정보 메시지에 포함되어 전송된다. SIB들을 시스템 정보 메시지에 맵핑시키는 것은 SIB1에 포함된 스케줄링 정보 리스트 파라미터에 의하여 유동적으로 설정될 수 있다. 단, 각 SIB는 단일 시스템 정보 메시지에 포함되며, 오직 동일한 스케줄링 요구치(e.g. 주기)를 가진 SIB들만이 동일한 시스템 정보 메시지에 맵핑 될 수 있다. 또한, SIB2(SystemInformationBlockType2)는 항상 스케줄링 정보 리스트의 시스템정보 메시지 리스트 내 첫 번째 엔트리에 해당하는 시스템 정보 메시지에 맵핑 된다. 동일한 주기 내에 복수의 시스템 정보 메시지가 전송될 수 있다. SIB1 및 모든 시스템 정보 메시지는 DL-SCH상으로 전송된다.Among the included SIBs, SIB1 (SystemInformationBlockType1) is included in the "SystemInformationBlockType1" message and transmitted. Other SIBs except SIB1 are included in the system information message and transmitted. The mapping of the SIBs to the system information message may be flexibly set by the scheduling information list parameter included in the SIB1. However, each SIB is included in a single system information message, and only SIBs having the same scheduling request value (e.g. period) may be mapped to the same system information message. In addition, SIB2 (SystemInformationBlockType2) is always mapped to a system information message corresponding to the first entry in the system information message list of the scheduling information list. Multiple system information messages can be sent within the same period. SIB1 and all system information messages are sent on the DL-SCH.
브로드캐스트 전송에 더하여, E-UTRAN은 SIB1은 기존에 설정된 값과 동일하게 설정된 파라미터를 포함한 채로 전용 시그널링(dedicated signaling)될 수 있으며, 이 경우 SIB1은 RRC 연결 재설정 메시지에 포함되어 전송될 수 있다.In addition to the broadcast transmission, the E-UTRAN may be dedicated signaling while the SIB1 includes a parameter set equal to a previously set value, and in this case, the SIB1 may be transmitted by being included in an RRC connection reconfiguration message.
SIB1은 단말 셀 접근과 관련된 정보를 포함하며, 다른 SIB들의 스케줄링을 정의한다. SIB1은 네트워크의 PLMN 식별자들, TAC(Tracking Area Code) 및 셀 ID, 셀이 캠프 온(camp on) 할 수 있는 셀인지 여부를 지시하는 셀 금지 상태(cell barring status), 셀 재선택 기준으로서 사용되는 셀 내 요구되는 최저 수신 레벨, 및 다른 SIB들의 전송 시간 및 주기와 관련된 정보를 포함할 수 있다.SIB1 includes information related to UE cell access and defines scheduling of other SIBs. SIB1 is used as PLMN identifiers of the network, tracking area code (TAC) and cell ID, cell barring status indicating whether the cell is a cell that can be camped on, and cell reselection criteria It may include information related to the lowest reception level required in the cell to be transmitted, and the transmission time and period of other SIBs.
SIB2는 모든 단말에 공통되는 무선 자원 설정 정보를 포함할 수 있다. SIB2는 상향링크 반송파 주파수 및 상향링크 채널 대역폭, RACH 설정, 페이지 설정(paging configuration), 상량링크 파워 제어 설정, 사운딩 기준 신호 설정(Sounding Reference Signal configuration), ACK/NACK 전송을 지원하는 PUCCH 설정 및 PUSCH 설정과 관련된 정보를 포함할 수 있다.SIB2 may include radio resource configuration information common to all terminals. SIB2 includes uplink carrier frequency and uplink channel bandwidth, RACH configuration, paging configuration, uplink power control configuration, sounding reference signal configuration, PUCCH configuration supporting ACK / NACK transmission, and It may include information related to the PUSCH configuration.
단말은 시스템 정보의 획득 및 변경 감지 절차를 프라이머리 셀(primary cell: PCell)에 대해서만 적용할 수 있다. 세컨더리 셀(secondary cell: SCell)에 있어서, E-UTRAN은 해당 SCell이 추가될 때 RRC 연결 상태 동작과 관련 있는 모든 시스템 정보를 전용 시그널링을 통해 제공해줄 수 있다. 설정된 SCell의 관련된 시스템 정보의 변경 시, E-UTRAN은 고려되는 SCell을 해제(release)하고 차후에 추가할 수 있는데, 이는 단일 RRC 연결 재설정 메시지와 함께 수행될 수 있다. E-UTRAN은 고려되는 SCell 내에서 브로드캐스트 되었던 값과 다른 파라미터 값들을 전용 시그널링을 통하여 설정해줄 수 있다.The UE may apply the acquisition and change detection procedure of the system information only to the primary cell (PCell). In a secondary cell (SCell), when the SCell is added, the E-UTRAN may provide all system information related to the RRC connection state operation through dedicated signaling. Upon changing the relevant system information of the established SCell, the E-UTRAN may release the SCell under consideration and add it later, which may be performed with a single RRC connection reset message. The E-UTRAN may set parameter values different from those broadcast in the SCell under consideration through dedicated signaling.
단말은 특정 타입의 시스템 정보에 대하여 그 유효성을 보장해야 하며, 이와 같은 시스템 정보를 필수 시스템 정보(required system information)이라 한다. 필수 시스템 정보는 아래와 같이 정의될 수 있다.The terminal should guarantee the validity of the specific type of system information, and such system information is called required system information. Essential system information can be defined as follows.
- 단말이 RRC 아이들 상태인 경우: 단말은 SIB2 내지 SIB8 뿐만 아니라 MIB 및 SIB1의 유효한 버전을 가지고 있도록 보장하여야 하며, 이는 고려되는 RAT(radio access technology)의 지원에 따를 수 있다. When the UE is in the RRC idle state: The UE should ensure that it has valid versions of MIB and SIB1 as well as SIB2 to SIB8, which may be subject to the support of the considered radio access technology (RAT).
- 단말이 RRC 연결 상태인 경우: 단말은 MIB, SIB1 및 SIB2의 유효한 버전을 가지고 있도록 보장하여야 한다. When the terminal is in the RRC connection state: The terminal should ensure that it has a valid version of MIB, SIB1 and SIB2.
일반적으로 시스템 정보는 획득 후 최대 3시간 까지 유효성이 보장될 수 있다.In general, the system information can be guaranteed valid up to 3 hours after acquisition.
일반적으로, 네트워크가 단말에게 제공하는 서비스는 아래와 같이 세가지 타입으로 구분할 수 있다. 또한, 어떤 서비스를 제공받을 수 있는지에 따라 단말은 셀의 타입 역시 다르게 인식한다. 아래에서 먼저 서비스 타입을 서술하고, 이어 셀의 타입을 서술한다.In general, services provided by a network to a terminal can be classified into three types as follows. In addition, the terminal also recognizes the cell type differently according to which service can be provided. The following describes the service type first, followed by the cell type.
1) 제한적 서비스(Limited service): 이 서비스는 응급 호출(Emergency call) 및 재해 경보 시스템(Earthquake and Tsunami Warning System; ETWS)를 제공하며, 수용가능 셀(acceptable cell)에서 제공할 수 있다.1) Limited service: This service provides Emergency Call and Tsunami Warning System (ETWS) and can be provided in an acceptable cell.
2) 정규 서비스(Normal service): 이 서비스는 일반적 용도의 범용 서비스(public use)를 의미하여, 정규 셀(suitable or normal cell)에서 제공할 수 있다.2) Normal service: This service means a public use for general use, and can be provided in a suitable or normal cell.
3) 사업자 서비스(Operator service): 이 서비스는 통신망 사업자를 위한 서비스를 의미하며, 이 셀은 통신망 사업자만 사용할 수 있고 일반 사용자는 사용할 수 없다.3) Operator service: This service means service for network operator. This cell can be used only by network operator and not by general users.
셀이 제공하는 서비스 타입과 관련하여, 셀의 타입은 아래와 같이 구분될 수 있다.In relation to the service type provided by the cell, the cell types may be classified as follows.
1) 수용가능 셀(Acceptable cell): 단말이 제한된(Limited) 서비스를 제공받을 수 있는 셀. 이 셀은 해당 단말 입장에서, 금지(barred)되어 있지 않고, 단말의 셀 선택 기준을 만족시키는 셀이다.1) Acceptable cell (Acceptable cell): A cell in which the terminal can receive limited service. This cell is a cell that is not barred from the viewpoint of the terminal and satisfies the cell selection criteria of the terminal.
2) 정규 셀(Suitable cell): 단말이 정규 서비스를 제공받을 수 있는 셀. 이 셀은 수용가능 셀의 조건을 만족시키며, 동시에 추가 조건들을 만족시킨다. 추가적인 조건으로는, 이 셀이 해당 단말이 접속할 수 있는 PLMN(Public Land Mobile Network) 소속이어야 하고, 단말의 트래킹 영역(Tracking Area) 갱신 절차의 수행이 금지되지 않은 셀이어야 한다. 해당 셀이 CSG 셀이라고 하면, 단말이 이 셀에 CSG 멤버로서 접속이 가능한 셀이어야 한다.2) Normal cell (Suitable cell): a cell in which the terminal can receive a regular service. This cell satisfies the conditions of an acceptable cell and at the same time satisfies additional conditions. As an additional condition, this cell must belong to a Public Land Mobile Network (PLMN) to which the terminal can access, and must be a cell which is not prohibited from performing a tracking area update procedure of the terminal. If the cell is a CSG cell, the terminal should be a cell that can be connected to the cell as a CSG member.
3) 금지된 (Barred cell): 셀이 시스템 정보를 통해 금지된 셀이라는 정보를 브로드캐스트하는 셀이다.3) Barred cell: A cell that broadcasts information that a cell is a prohibited cell through system information.
4) 예약된 셀(Reserved cell): 셀이 시스템 정보를 통해 예약된 셀이라는 정보를 브로드캐스트하는 셀이다.4) Reserved cell: A cell that broadcasts information that a cell is a reserved cell through system information.
도 5는 RRC 아이들 상태의 단말의 동작을 나타낸다. 도 5는 초기 전원이 켜진 단말이 셀 선택 과정을 거쳐 네트워크 망에 등록하고 이어 필요할 경우 셀 재선택을 하는 절차를 나타낸다.5 shows the operation of the terminal in the RRC idle state. FIG. 5 illustrates a procedure in which a terminal initially powered on registers with a network through a cell selection process and then reselects a cell if necessary.
도 5를 참조하면, 단말은 자신이 서비스 받고자 하는 망인 PLMN(public land mobile network)과 통신하기 위한 라디오 접속 기술(radio access technology; RAT, 무선 통신 방법)를 선택한다(S510). PLMN 및 RAT에 대한 정보는 단말의 사용자가 선택할 수도 있으며, USIM(universal subscriber identity module)에 저장되어 있는 것을 사용할 수도 있다.Referring to FIG. 5, the terminal selects a radio access technology (RAT) for communicating with a public land mobile network (PLMN), which is a network to be serviced (S510). Information about the PLMN and the RAT may be selected by a user of the terminal or may be stored in a universal subscriber identity module (USIM).
단말은 측정한 신호세기나 품질이 특정한 값보다 큰 셀 중에서, 가장 큰 값을 가지는 셀을 선택한다(Cell Selection)(S520). 이는 전원이 켜진 단말이 셀 선택을 수행하는 것으로서 초기 셀 선택(initial cell selection)이라 할 수 있다. 셀 선택 절차에 대해서 이후에 상술하기로 한다. 셀 선택 이후 단말은, 기지국이 주기적으로 보내는 시스템 정보를 수신한다. 상기 말하는 특정한 값은 데이터 송/수신에서의 물리적 신호에 대한 품질을 보장받기 위하여 시스템에서 정의된 값을 말한다. 따라서, 적용되는 RAT에 따라 그 값은 다를 수 있다. The terminal selects a cell having the largest value among the cells whose measured signal strength or quality is greater than a specific value (Cell Selection) (S520). This is referred to as initial cell selection by the UE that is powered on to perform cell selection. The cell selection procedure will be described later. After cell selection, the terminal receives system information periodically transmitted by the base station. The above specific value refers to a value defined in the system in order to ensure the quality of the physical signal in data transmission / reception. Therefore, the value may vary depending on the RAT applied.
단말은 망 등록 필요가 있는 경우 망 등록 절차를 수행한다(S530). 단말은 망으로부터 서비스(예를 들어, Paging)를 받기 위하여 자신의 정보(예를 들어, IMSI)를 등록한다. 단말은 셀을 선택할 때 마다 접속하는 망에 등록을 하는 것은 아니며, 시스템 정보로부터 받은 망의 정보(예를 들어, Tracking Area Identity; TAI)와 자신이 알고 있는 망의 정보가 다른 경우에 망에 등록을 한다.If there is a need for network registration, the terminal performs a network registration procedure (S530). The terminal registers its information (eg IMSI) in order to receive a service (eg paging) from the network. When the UE selects a cell, the UE does not register with the accessing network, and registers with the network when the network information (for example, Tracking Area Identity; TAI) received from the system information is different from the network information known to the network. Do it.
단말은 셀에서 제공되는 서비스 환경 또는 단말의 환경 등을 기반으로 셀 재선택을 수행한다(S540). 단말은 현재 서비스 받고 있는 기지국(서빙 기지국)으로부터 측정한 신호의 세기나 품질의 값이 인접한 셀의 기지국으로부터 측정한 값보다 낮다면, 단말이 현재 접속한 기지국의 셀 보다 더 좋은 신호 특성을 제공하는 다른 셀 중 하나를 선택한다. 이 과정을 2번 과정의 초기 셀 선택(Initial Cell Selection)과 구분하여 셀 재선택(Cell Re-Selection)이라 한다. 이때, 신호특성의 변화에 따라 빈번히 셀이 재 선택되는 것을 방지하기 위하여 시간적인 제약조건을 둔다. 셀 재선택 절차에 대해서는 이후에 상술하기로 한다.The terminal performs cell reselection based on the service environment provided by the cell or the environment of the terminal (S540). The terminal provides better signal characteristics than the cell of the base station to which the terminal is currently connected if the strength or quality of the signal measured from the base station (serving base station) currently being served is lower than the value measured from the base station of the neighboring cell. Select one of the other cells. This process is called Cell Re-Selection, which is distinguished from Initial Cell Selection of Step 2. At this time, in order to prevent the cell from being frequently reselected according to the change of the signal characteristic, a time constraint is placed. The cell reselection procedure will be described later.
도 6는 RRC 연결을 확립하는 과정을 나타낸다.6 shows a process of establishing an RRC connection.
단말은 RRC 연결을 요청하는 RRC 연결 요청(RRC Connection Request) 메시지를 네트워크로 보내며(S610), 이때, 단말은 RRC 아이들(RRC IDLE) 상태일 수 있다. 또한, RRC 연결 요청 메시지를 네트워크로 보낼 때, 단말은 타이머를 개시할 수 있으며, 이때의 타이머는 3GPP TS 36.311의 T300일 수 있다. 네트워크는 RRC 연결 요청에 대한 응답으로 RRC 연결 설정(RRC Connection Setup) 메시지를 보낸다(S620). RRC 연결 설정 메시지를 수신한 후, 단말은 RRC 연결 모드로 진입한다. 이때, 단말은 단계 S510에서 개시한 타이머를 중지시킬 수 있다. 단말은 RRC 연결 확립의 성공적인 완료를 확인하기 위해 사용되는 RRC 연결 설정 완료(RRC Connection Setup Complete) 메시지를 네트워크로 보낸다(S630). The terminal sends an RRC connection request message to the network requesting an RRC connection (S610), and in this case, the terminal may be in an RRC idle state. In addition, when the RRC connection request message is sent to the network, the UE may start a timer, in which case the timer may be T300 of 3GPP TS 36.311. The network sends an RRC connection setup message in response to the RRC connection request (S620). After receiving the RRC connection configuration message, the terminal enters the RRC connection mode. In this case, the terminal may stop the timer started in step S510. The terminal sends an RRC connection setup complete message used to confirm successful completion of the RRC connection establishment to the network (S630).
도 7은 RRC 연결 재설정 과정을 나타낸다.7 shows an RRC connection resetting process.
RRC 연결 재설정(reconfiguration)은 RRC 연결을 수정하는데 사용된다. 이는 RB 확립/수정(modify)/해제(release), 핸드오버 수행, 측정 셋업/수정/해제하기 위해 사용된다. 네트워크는 단말로 RRC 연결을 수정하기 위한 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지를 보낸다(S710). 단말은 RRC 연결 재설정에 대한 응답으로, RRC 연결 재설정의 성공적인 완료를 확인하기 위해 사용되는 RRC 연결 재설정 완료(RRC Connection Reconfiguration Complete) 메시지를 네트워크로 보낸다(S720).RRC connection reconfiguration is used to modify an RRC connection. It is used to establish / modify / release RBs, perform handovers, and set up / modify / release measurements. The network sends an RRC connection reconfiguration message for modifying the RRC connection to the terminal (S710). In response to the RRC connection reconfiguration, the terminal sends an RRC connection reconfiguration complete message used to confirm successful completion of the RRC connection reconfiguration to the network (S720).
이하에서 PLMN(public land mobile network)에 대하여 설명하도록 한다.Hereinafter, a public land mobile network (PLMN) will be described.
PLMN은 모바일 네트워크 운영자에 의해 배치 및 운용되는 네트워크이다. 각 모바일 네트워크 운영자는 하나 또는 그 이상의 PLMN을 운용한다. 각 PLMN은 MCC(Mobile Country Code) 및 MNC(Mobile Network Code)로 식별될 수 있다. 셀의 PLMN 정보는 시스템 정보에 포함되어 브로드캐스트 된다.PLMN is a network deployed and operated by mobile network operators. Each mobile network operator runs one or more PLMNs. Each PLMN may be identified by a mobile country code (MCC) and a mobile network code (MCC). The PLMN information of the cell is included in the system information and broadcasted.
PLMN 선택, 셀 선택 및 셀 재선택에 있어서, 다양한 타입의 PLMN들이 단말에 의해 고려될 수 있다.In PLMN selection, cell selection and cell reselection, various types of PLMNs may be considered by the terminal.
HPLMN(Home PLMN): 단말 IMSI의 MCC 및 MNC와 매칭되는 MCC 및 MNC를 가지는 PLMN.Home PLMN (HPLMN): PLMN having MCC and MNC matching MCC and MNC of UE IMSI.
EHPLMN(Equivalent HPLMN): HPLMN과 등가로 취급되는 PLMN.Equivalent HPLMN (EHPLMN): A PLMN that is equivalent to an HPLMN.
RPLMN(Registered PLMN): 위치 등록이 성공적으로 마쳐진 PLMN.Registered PLMN (RPLMN): A PLMN that has successfully completed location registration.
EPLMN(Equivalent PLMN): RPLMN과 등가로 취급되는 PLMN.Equivalent PLMN (EPLMN): A PLMN that is equivalent to an RPLMN.
각 모바일 서비스 수요자는 HPLMN에 가입한다. HPLMN 또는 EHPLMN에 의하여 단말로 일반 서비스가 제공될 때, 단말은 로밍 상태(roaming state)에 있지 않는다. 반면, HPLMN/EHPLMN 이외의 PLMN에 의하여 단말로 서비스가 제공될 때, 단말은 로밍 상태에 있으며, 그 PLMN은 VPLMN(Visited PLMN)이라고 불린다.Each mobile service consumer subscribes to HPLMN. When a general service is provided to a terminal by HPLMN or EHPLMN, the terminal is not in a roaming state. On the other hand, when a service is provided to a terminal by a PLMN other than HPLMN / EHPLMN, the terminal is in a roaming state, and the PLMN is called a VPLMN (Visited PLMN).
단말은 초기에 전원이 켜지면 사용 가능한 PLMN(public land mobile network)을 검색하고 서비스를 받을 수 있는 적절한 PLMN을 선택한다. PLMN은 모바일 네트워크 운영자(mobile network operator)에 의해 배치되거나(deploy) 운영되는 네트워크이다. 각 모바일 네트워크 운영자는 하나 또는 그 이상의 PLMN을 운영한다. 각각의 PLMN은 MCC(mobile country code) 및 MNC(mobile network code)에 의하여 식별될 수 있다. 셀의 PLMN 정보는 시스템 정보에 포함되어 브로드캐스트 된다. 단말은 선택한 PLMN을 등록하려고 시도한다. 등록이 성공한 경우, 선택된 PLMN은 RPLMN(registered PLMN)이 된다. 네트워크는 단말에게 PLMN 리스트를 시그널링 할 수 있는데, 이는 PLMN 리스트에 포함된 PLMN들을 RPLMN과 같은 PLMN이라 고려할 수 있다. 네트워크에 등록된 단말은 상시 네트워크에 의하여 접근될 수(reachable) 있어야 한다. 만약 단말이 ECM-CONNECTED 상태(동일하게는 RRC 연결 상태)에 있는 경우, 네트워크는 단말이 서비스를 받고 있음을 인지한다. 그러나, 단말이 ECM-IDLE 상태(동일하게는 RRC 아이들 상태)에 있는 경우, 단말의 상황이 eNB에서는 유효하지 않지만 MME에는 저장되어 있다. 이 경우, ECM-IDLE 상태의 단말의 위치는 TA(tracking Area)들의 리스트의 입도(granularity)로 오직 MME에게만 알려진다. 단일 TA는 TA가 소속된 PLMN 식별자로 구성된 TAI(tracking area identity)및 PLMN 내의 TA를 유일하게 표현하는 TAC(tracking area code)에 의해 식별된다. 이어, 선택한 PLMN이 제공하는 셀들 중에서 상기 단말이 적절한 서비스를 제공받을 수 있는 신호 품질과 특성을 가진 셀을 선택한다. When the terminal is initially powered on, the terminal searches for an available public land mobile network (PLMN) and selects an appropriate PLMN for receiving a service. PLMN is a network deployed or operated by a mobile network operator. Each mobile network operator operates one or more PLMNs. Each PLMN may be identified by a mobile country code (MCC) and a mobile network code (MCC). The PLMN information of the cell is included in the system information and broadcasted. The terminal attempts to register the selected PLMN. If the registration is successful, the selected PLMN becomes a registered PLMN (RPLMN). The network may signal the PLMN list to the UE, which may consider PLMNs included in the PLMN list as PLMNs such as RPLMNs. The terminal registered in the network should be reachable by the network at all times. If the terminal is in the ECM-CONNECTED state (same as RRC connected state), the network recognizes that the terminal is receiving the service. However, when the terminal is in the ECM-IDLE state (same as the RRC idle state), the situation of the terminal is not valid in the eNB but is stored in the MME. In this case, the location of the UE in the ECM-IDLE state is known only to the MME as the granularity of the list of tracking areas (TAs). A single TA is identified by a tracking area identity (TAI) consisting of the PLMN identifier to which the TA belongs and a tracking area code (TAC) that uniquely represents the TA within the PLMN. Subsequently, the UE selects a cell having a signal quality and characteristics capable of receiving an appropriate service from among cells provided by the selected PLMN.
다음은 단말이 셀을 선택하는 절차에 대해서 자세히 설명한다.Next, a procedure of selecting a cell by the terminal will be described in detail.
전원이 켜지거나 셀에 머물러 있을 때, 단말은 적절한 품질의 셀을 선택/재 선택하여 서비스를 받기 위한 절차들을 수행한다. RRC 아이들 상태의 단말은 항상 적절한 품질의 셀을 선택하여 이 셀을 통해 서비스를 제공받기 위한 준비를 하고 있어야 한다. 예를 들어, 전원이 막 켜진 단말은 네트워크에 등록을 하기 위해 적절한 품질의 셀을 선택해야 한다. RRC 연결 상태에 있던 상기 단말이 RRC 아이들 상태에 진입하면, 상기 단말은 RRC 아이들 상태에서 머무를 셀을 선택해야 한다. 이와 같이, 상기 단말이 RRC 아이들 상태와 같은 서비스 대기 상태로 머물고 있기 위해서 어떤 조건을 만족하는 셀을 고르는 과정을 셀 선택(Cell Selection)이라고 한다. 중요한 점은, 상기 셀 선택은 상기 단말이 상기 RRC 아이들 상태로 머물러 있을 셀을 현재 결정하지 못한 상태에서 수행하는 것이므로, 가능한 신속하게 셀을 선택하는 것이 무엇보다 중요하다. 따라서 일정 기준 이상의 무선 신호 품질을 제공하는 셀이라면, 비록 이 셀이 단말에게 가장 좋은 무선 신호 품질을 제공하는 셀이 아니라고 하더라도, 단말의 셀 선택 과정에서 선택될 수 있다.When the power is turned on or staying in the cell, the terminal selects / reselects a cell of an appropriate quality and performs procedures for receiving a service. The UE in the RRC idle state should always select a cell of appropriate quality and prepare to receive service through this cell. For example, a terminal that has just been powered on must select a cell of appropriate quality to register with the network. When the terminal in the RRC connected state enters the RRC idle state, the terminal should select a cell to stay in the RRC idle state. As such, the process of selecting a cell satisfying a certain condition in order for the terminal to stay in a service standby state such as an RRC idle state is called cell selection. Importantly, since the cell selection is performed in a state in which the UE does not currently determine a cell to stay in the RRC idle state, it is most important to select the cell as soon as possible. Therefore, if the cell provides a radio signal quality of a predetermined criterion or more, even if this cell is not the cell providing the best radio signal quality to the terminal, it may be selected during the cell selection process of the terminal.
이제 3GPP TS 36.304 V8.5.0 (2009-03) "User Equipment (UE) procedures in idle mode (Release 8)"을 참조하여, 3GPP LTE에서 단말이 셀을 선택하는 방법 및 절차에 대하여 상술한다.Now, referring to 3GPP TS 36.304 V8.5.0 (2009-03) "User Equipment (UE) procedures in idle mode (Release 8)", a method and procedure for selecting a cell by a UE in 3GPP LTE will be described in detail.
셀 선택 과정은 크게 두 가지로 나뉜다. There are two main cell selection processes.
먼저 초기 셀 선택 과정으로, 이 과정에서는 상기 단말이 무선 채널에 대한 사전 정보가 없다. 따라서 상기 단말은 적절한 셀을 찾기 위해 모든 무선 채널을 검색한다. 각 채널에서 상기 단말은 가장 강한 셀을 찾는다. 이후, 상기 단말이 셀 선택 기준을 만족하는 적절한(suitable) 셀을 찾기만 하면 해당 셀을 선택한다. First, an initial cell selection process, in which the terminal does not have prior information on the radio channel. Accordingly, the terminal searches all radio channels to find an appropriate cell. In each channel, the terminal finds the strongest cell. Thereafter, the terminal selects a corresponding cell if it finds a suitable cell that satisfies a cell selection criterion.
다음으로 단말은 저장된 정보를 활용하거나, 셀에서 방송하고 있는 정보를 활용하여 셀을 선택할 수 있다. 따라서, 초기 셀 선택 과정에 비해 셀 선택이 신속할 수 있다. 단말이 셀 선택 기준을 만족하는 셀을 찾기만 하면 해당 셀을 선택한다. 만약 이 과정을 통해 셀 선택 기준을 만족하는 적절한 셀을 찾지 못하면, 단말은 초기 셀 선택 과정을 수행한다.Next, the terminal may select the cell by using the stored information or by using the information broadcast in the cell. Thus, cell selection can be faster than the initial cell selection process. The UE selects a corresponding cell if it finds a cell that satisfies a cell selection criterion. If a suitable cell that satisfies the cell selection criteria is not found through this process, the UE performs an initial cell selection process.
상기 단말이 일단 셀 선택 과정을 통해 어떤 셀을 선택한 이후, 단말의 이동성 또는 무선 환경의 변화 등으로 단말과 기지국간의 신호의 세기나 품질이 바뀔 수 있다. 따라서 만약 선택한 셀의 품질이 저하되는 경우, 단말은 더 좋은 품질을 제공하는 다른 셀을 선택할 수 있다. 이렇게 셀을 다시 선택하는 경우, 일반적으로 현재 선택된 셀보다 더 좋은 신호 품질을 제공하는 셀을 선택한다. 이런 과정을 셀 재선택(Cell Reselection)이라고 한다. 상기 셀 재선택 과정은, 무선 신호의 품질 관점에서, 일반적으로 단말에게 가장 좋은 품질을 제공하는 셀을 선택하는데 기본적인 목적이 있다. After the terminal selects a cell through a cell selection process, the strength or quality of a signal between the terminal and the base station may change due to a change in mobility or a wireless environment of the terminal. Therefore, if the quality of the selected cell is degraded, the terminal may select another cell that provides better quality. When reselecting a cell in this way, a cell that generally provides better signal quality than the currently selected cell is selected. This process is called cell reselection. The cell reselection process has a basic purpose in selecting a cell that generally provides the best quality to a terminal in view of the quality of a radio signal.
무선 신호의 품질 관점 이외에, 네트워크는 주파수 별로 우선 순위를 결정하여 단말에게 알릴 수 있다. 이러한 우선 순위를 수신한 단말은, 셀 재선택 과정에서 이 우선 순위를 무선 신호 품질 기준보다 우선적으로 고려하게 된다.In addition to the quality of the wireless signal, the network may determine the priority for each frequency and notify the terminal. Upon receiving this priority, the UE considers this priority prior to the radio signal quality criteria in the cell reselection process.
위와 같이 무선 환경의 신호 특성에 따라 셀을 선택 또는 재선택하는 방법이 있으며, 셀 재선택시 재선택을 위한 셀을 선택하는데 있어서, 셀의 RAT와 주파수(frequency) 특성에 따라 다음과 같은 셀 재선택 방법이 있을 수 있다.As described above, there is a method of selecting or reselecting a cell according to a signal characteristic of a wireless environment.In selecting a cell for reselection when reselecting a cell, the following cell reselection is performed according to a cell's RAT and frequency characteristics. There may be a method of selection.
- 인트라-주파수(Intra-frequency) 셀 재선택: 단말이 캠핑(camp) 중인 셀과 같은 RAT과 같은 중심 주파수(center-frequency)를 가지는 셀을 재선택Intra-frequency cell reselection: Reselection of a cell having the same center-frequency as the RAT, such as a cell in which the UE is camping
- 인터-주파수(Inter-frequency) 셀 재선택: 단말이 캠핑 중인 셀과 같은 RAT과 다른 중심 주파수를 가지는 셀을 재선택Inter-frequency cell reselection: Reselects a cell having a center frequency different from that of the same RAT as the cell camping
- 인터-RAT(Inter-RAT) 셀 재선택: 단말이 캠핑 중인 RAT와 다른 RAT을 사용하는 셀을 재선택Inter-RAT cell reselection: The UE reselects a cell using a RAT different from the camping RAT.
셀 재선택 과정의 원칙은 다음과 같다The principle of the cell reselection process is as follows.
첫째, 단말은 셀 재선택을 위하여 서빙 셀(serving cell) 및 이웃 셀(neighboring cell)의 품질을 측정한다. First, the UE measures the quality of a serving cell and a neighboring cell for cell reselection.
둘째, 셀 재선택은 셀 재선택 기준에 기반하여 수행된다. 셀 재선택 기준은 서빙 셀 및 이웃 셀 측정에 관련하여 아래와 같은 특성을 가지고 있다.Second, cell reselection is performed based on cell reselection criteria. The cell reselection criteria have the following characteristics with respect to serving cell and neighbor cell measurements.
인트라-주파수 셀 재선택은 기본적으로 랭킹(ranking)에 기반한다. 랭킹이라는 것은, 셀 재선택 평가를 위한 지표 값을 정의하고, 이 지표 값을 이용하여 셀들을 지표 값의 크기 순으로 순서를 매기는 작업이다. 가장 좋은 지표를 가지는 셀을 흔히 최고 순위 셀(highest ranked cell)이라고 부른다. 셀 지표 값은 단말이 해당 셀에 대해 측정한 값을 기본으로, 필요에 따라 주파수 오프셋 또는 셀 오프셋을 적용한 값이다. Intra-frequency cell reselection is basically based on ranking. Ranking is an operation of defining index values for cell reselection evaluation and using the index values to order the cells in the order of the index values. The cell with the best indicator is often called the highest ranked cell. The cell indicator value is a value obtained by applying a frequency offset or a cell offset as necessary based on the value measured by the terminal for the corresponding cell.
인터-주파수 셀 재선택은 네트워크에 의해 제공된 주파수 우선순위에 기반한다. 단말은 가장 높은 주파수 우선순위를 가진 주파수에 머무를(camp on) 수 있도록 시도한다. 네트워크는 브로드캐스트 시그널링(broadcast signaling)를 통해서 셀 내 단말들이 공통적으로 적용할 또는 주파수 우선순위를 제공하거나, 단말 별 시그널링(dedicated signaling)을 통해 단말 별로 각각 주파수 별 우선순위를 제공할 수 있다. 브로드캐스트 시그널링을 통해 제공되는 셀 재선택 우선순위를 공용 우선순위(common priority)라고 할 수 있고, 단말 별로 네트워크가 설정하는 셀 재선택 우선 순위를 전용 우선순위(dedicated priority)라고 할 수 있다. 단말은 전용 우선순위를 수신하면, 전용 우선순위와 관련된 유효 시간(validity time)를 함께 수신할 수 있다. 단말은 전용 우선순위를 수신하면 함께 수신한 유효 시간으로 설정된 유효성 타이머(validity timer)를 개시한다. 단말은 유효성 타이머가 동작하는 동안 RRC 아이들 모드에서 전용 우선순위를 적용한다. 유효성 타이머가 만료되면 단말은 전용 우선순위를 폐기하고, 다시 공용 우선순위를 적용한다.Inter-frequency cell reselection is based on the frequency priority provided by the network. The terminal attempts to camp on the frequency with the highest frequency priority. The network may provide the priorities to be commonly applied to the terminals in the cell or provide the frequency priority through broadcast signaling, or may provide the priority for each frequency for each terminal through dedicated signaling. The cell reselection priority provided through broadcast signaling may be referred to as common priority, and the cell reselection priority set by the network for each terminal may be referred to as a dedicated priority. When the terminal receives the dedicated priority, the terminal may also receive a validity time associated with the dedicated priority. When the terminal receives the dedicated priority, the terminal starts a validity timer set to the valid time received together. The terminal applies the dedicated priority in the RRC idle mode while the validity timer is running. When the validity timer expires, the terminal discards the dedicated priority and applies the public priority again.
인터-주파수 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 파라미터(예를 들어, 주파수 별 오프셋; frequency-specific offset)를 주파수 별로 제공할 수 있다. For inter-frequency cell reselection, the network may provide the UE with parameters (eg, frequency-specific offset) used for cell reselection for each frequency.
인트라-주파수 셀 재선택 또는 인터-주파수 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 이웃 셀 리스트(Neighboring Cell List; NCL)를 단말에게 제공할 수 있다. 이 NCL은 셀 재선택에 사용되는 셀 별 파라미터(예를 들어, 셀 별 오프셋; cell-specific offset)를 포함한다 For intra-frequency cell reselection or inter-frequency cell reselection, the network may provide the UE with a neighboring cell list (NCL) used for cell reselection to the UE. This NCL contains cell-specific parameters (eg, cell-specific offsets) used for cell reselection.
인트라-주파수 또는 인터-주파수 셀 재선택을 위해 네트워크는 단말에게 셀 재선택에 사용되는 셀 재선택 금지 리스트(black list)를 단말에게 제공할 수 있다. 금지 리스트에 포함된 셀에 대해 단말은 셀 재선택을 수행하지 않는다. For intra-frequency or inter-frequency cell reselection, the network may provide the UE with a cell reselection prohibition list (black list) used for cell reselection. The UE does not perform cell reselection for a cell included in the prohibition list.
이어서, 셀 재선택 평가 과정에서 수행하는 랭킹에 관해 설명한다. Next, the ranking performed in the cell reselection evaluation process will be described.
셀의 우선순위를 주는데 사용되는 랭킹 지표(ranking criterion)은 수학식 1와 같이 정의된다. The ranking criterion used to prioritize the cells is defined as in Equation 1.
Figure PCTKR2015011909-appb-M000001
Figure PCTKR2015011909-appb-M000001
여기서, Rs는 서빙 셀의 랭킹 지표, Rn은 이웃 셀의 랭킹 지표, Qmeas,s는 단말이 서빙 셀에 대해 측정한 품질 값, Qmeas,n는 단말이 이웃 셀에 대해 측정한 품질 값, Qhyst는 랭킹을 위한 히스테리시스(hysteresis) 값, Qoffset은 두 셀간의 오프셋이다. Here, R s is a ranking indicator of the serving cell, R n is a ranking indicator of the neighbor cell, Q meas, s is a quality value measured by the UE for the serving cell, Q meas, n is a quality measured by the UE for the neighbor cell The value, Q hyst, is a hysteresis value for ranking, and Q offset is an offset between two cells.
인트라-주파수에서, 단말이 서빙 셀과 이웃 셀 간의 오프셋(Qoffsets,n)을 수신한 경우 Qoffset=Qoffsets,n 이고, 단말이 Qoffsets,n 을 수신하지 않은 경우에는 Qoffset = 0 이다. In the intra-frequency, Q offset = Q offsets, n when the terminal receives an offset (Q offsets, n ) between the serving cell and a neighbor cell , and Q offset = 0 when the terminal does not receive Q offsets, n . .
인터-주파수에서, 단말이 해당 셀에 대한 오프셋(Qoffsets,n)을 수신한 경우 Qoffset = Qoffsets,n + Qfrequency 이고, 단말이 Qoffsets,n 을 수신하지 않은 경우 Qoffset = Qfrequency 이다.In the inter-frequency, Q offset = Q offsets, n + Q frequency when the terminal receives the offset (Q offsets, n ) for the cell, and Q offset = Q frequency when the terminal does not receive the Q offsets, n to be.
서빙 셀의 랭킹 지표(Rs)과 이웃 셀의 랭킹 지표(Rn)이 서로 비슷한 상태에서 변동하면, 변동 결과 랭킹 순위가 자꾸 뒤바뀌어 단말이 두 셀을 번갈아 가면서 재선택을 할 수 있다. Qhyst는 셀 재선택에서 히스테리시스를 주어, 단말이 두 셀을 번갈아 가면서 재 선택하는 것을 막기 위한 파라미터이다.If the ranking index R s of the serving cell and the ranking index R n of the neighboring cell change in a similar state, the ranking ranking is constantly reversed so that the terminal may alternately select two cells. Q hyst is a parameter for giving hysteresis in cell reselection to prevent the UE from reselecting two cells alternately.
단말은 위 식에 따라 서빙 셀의 Rs 및 이웃 셀의 Rn을 측정하고, 랭킹 지표 값이 가장 큰 값을 가진 셀을 최고 순위(highest ranked) 셀로 간주하고, 이 셀을 재 선택한다.The UE measures R s of the serving cell and R n of the neighbor cell according to the above equation, considers the cell having the highest ranking indicator value as the highest ranked cell, and reselects the cell.
상기 기준에 의하면, 셀의 품질이 셀 재선택에서 가장 주요한 기준으로 작용하는 것을 확인할 수 있다. 만약 재 선택한 셀이 정규 셀(suitable cell)이 아니면 단말은 해당 주파수 또는 해당 셀을 셀 재선택 대상에서 제외한다. According to the criteria, it can be seen that the quality of the cell serves as the most important criterion in cell reselection. If the reselected cell is not a regular cell, the terminal excludes the frequency or the corresponding cell from the cell reselection target.
이제 무선 링크 실패에 대하여 설명한다.The radio link failure will now be described.
단말은 서비스를 수신하는 서빙 셀과의 무선 링크의 품질 유지를 위해 지속적으로 측정을 수행한다. 단말은 서빙 셀과의 무선 링크의 품질 악화(deterioration)로 인하여 현재 상황에서 통신이 불가능한지 여부를 결정한다. 만약, 서빙 셀의 품질이 너무 낮아서 통신이 거의 불가능한 경우, 단말은 현재 상황을 무선 연결 실패로 결정한다.The terminal continuously measures to maintain the quality of the radio link with the serving cell receiving the service. The terminal determines whether communication is impossible in the current situation due to deterioration of the quality of the radio link with the serving cell. If the quality of the serving cell is so low that communication is almost impossible, the terminal determines the current situation as a radio connection failure.
만약 무선 링크 실패가 결정되면, 단말은 현재의 서빙 셀과의 통신 유지를 포기하고, 셀 선택(또는 셀 재선택) 절차를 통해 새로운 셀을 선택하고, 새로운 셀로의 RRC 연결 재확립(RRC connection re-establishment)을 시도한다. 3GPP LTE의 스펙에서는 정상적인 통신을 할 수 없는 경우로 아래와 같은 예시를 들고 있다.If a radio link failure is determined, the UE gives up maintaining communication with the current serving cell, selects a new cell through a cell selection (or cell reselection) procedure, and reestablishes an RRC connection to the new cell (RRC connection re). -establishment). In the specification of 3GPP LTE, normal communication is not possible and the following example is given.
- 단말의 물리 계층의 무선 품질 측정 결과를 기반으로 단말이 하향 통신 링크 품질에 심각한 문제가 있다고 판단한 경우(RLM 수행 중 PCell의 품질이 낮다고 판단한 경우)-When the UE determines that there is a serious problem in the downlink communication quality based on the radio quality measurement result of the physical layer of the UE (when the PCell quality is determined to be low during the RLM)
- MAC 부 계층에서 랜덤 액세스(random access) 절차가 계속적으로 실패하여 상향링크 전송에 문제가 있다고 판단한 경우.When the random access procedure in the MAC sublayer continuously fails, it is determined that there is a problem in uplink transmission.
- RLC 부 계층에서 상향 데이터 전송이 계속적으로 실패하여 상향 링크 전송에 문제가 있다고 판단한 경우.When the RLC sublayer determines that there is a problem in the uplink transmission because the uplink data transmission continuously fails.
- 핸드오버를 실패한 것으로 판단한 경우.If it is determined that the handover has failed.
- 단말이 수신한 메시지가 무결성 검사(integrity check)를 통과하지 못한 경우.When the message received by the terminal does not pass the integrity check.
이하에서는 RRC 연결 재확립(RRC connection re-establishment) 절차에 대하여 보다 상세히 설명한다.Hereinafter, the RRC connection reestablishment procedure will be described in more detail.
도 8은 RRC 연결 재확립 절차를 나타낸다.8 shows an RRC connection reestablishment procedure.
도 8을 참조하면, 단말은 SRB 0(Signaling Radio Bearer #0)을 제외한 설정되어 있던 모든 무선 베어러(radio bearer) 사용을 중단하고, AS(Access Stratum)의 각종 부 계층을 초기화 시킨다(S810). 또한, 각 부 계층 및 물리 계층을 기본 구성(default configuration)으로 설정한다. 이와 같은 과정 중에 단말은 RRC 연결 상태를 유지한다.Referring to FIG. 8, the UE suspends use of all radio bearers that are set except for Signaling Radio Bearer # 0 (SRB 0) and initializes various sublayers of an access stratum (AS) (S810). In addition, each sub-layer and the physical layer is set to a default configuration. During this process, the UE maintains an RRC connection state.
단말은 RRC 연결 재설정 절차를 수행하기 위한 셀 선택 절차를 수행한다(S820). RRC 연결 재확립 절차 중 셀 선택 절차는 단말이 RRC 연결 상태를 유지하고 있음에도 불구하고, 단말이 RRC 아이들 상태에서 수행하는 셀 선택 절차와 동일하게 수행될 수 있다. 단말은 셀 선택 절차를 수행한 후 해당 셀의 시스템 정보를 확인하여 해당 셀이 적합한 셀인지 여부를 판단한다(S830). 만약 선택된 셀이 적절한 E-UTRAN 셀이라고 판단된 경우, 단말은 해당 셀로 RRC 연결 재확립 요청 메시지(RRC connection reestablishment request message)를 전송한다(S840). 한편, RRC 연결 재확립 절차를 수행하기 위한 셀 선택 절차를 통하여 선택된 셀이 E-UTRAN 이외의 다른 RAT을 사용하는 셀이라고 판단된 경우, RRC 연결 재확립 절차를 중단되고, 단말은 RRC 아이들 상태로 진입한다(S850).The UE performs a cell selection procedure for performing an RRC connection reconfiguration procedure (S820). The cell selection procedure of the RRC connection reestablishment procedure may be performed in the same manner as the cell selection procedure performed by the UE in the RRC idle state, although the UE maintains the RRC connection state. After performing the cell selection procedure, the UE checks the system information of the corresponding cell to determine whether the corresponding cell is a suitable cell (S830). If it is determined that the selected cell is an appropriate E-UTRAN cell, the UE transmits an RRC connection reestablishment request message to the cell (S840). On the other hand, if it is determined through the cell selection procedure for performing the RRC connection re-establishment procedure that the selected cell is a cell using a different RAT than E-UTRAN, the RRC connection re-establishment procedure is stopped, the terminal is in the RRC idle state Enter (S850).
단말은 셀 선택 절차 및 선택한 셀의 시스템 정보 수신을 통하여 셀의 적절성 확인은 제한된 시간 내에 마치도록 구현될 수 있다. 이를 위해 단말은 RRC 연결 재확립 절차를 개시함에 따라 타이머를 구동시킬 수 있다. 타이머는 단말이 적합한 셀을 선택하였다고 판단된 경우 중단될 수 있다. 타이머가 만료된 경우 단말은 RRC 연결 재확립 절차가 실패하였음을 간주하고 RRC 아이들 상태로 진입할 수 있다. 이 타이머를 이하에서 무선 링크 실패 타이머라고 언급하도록 한다. LTE 스펙 TS 36.331에서는 T311이라는 이름의 타이머가 무선 링크 실패 타이머로 활용될 수 있다. 단말은 이 타이머의 설정 값을 서빙 셀의 시스템 정보로부터 획득할 수 있다.The terminal may be implemented to complete the confirmation of the appropriateness of the cell within a limited time through the cell selection procedure and the reception of system information of the selected cell. To this end, the UE may drive a timer as the RRC connection reestablishment procedure is initiated. The timer may be stopped when it is determined that the terminal has selected a suitable cell. If the timer expires, the UE may consider that the RRC connection reestablishment procedure has failed and may enter the RRC idle state. This timer is referred to hereinafter as a radio link failure timer. In LTE specification TS 36.331, a timer named T311 may be used as a radio link failure timer. The terminal may obtain the setting value of this timer from the system information of the serving cell.
단말로부터 RRC 연결 재확립 요청 메시지를 수신하고 요청을 수락한 경우, 셀은 단말에게 RRC 연결 재확립 메시지(RRC connection reestablishment message)를 전송한다. 셀로부터 RRC 연결 재확립 메시지를 수신한 단말은 SRB1에 대한 PDCP 부 계층과 RLC 부 계층을 재 구성한다. 또한 보안 설정과 관련된 각종 키 값들을 다시 계산하고, 보안을 담당하는 PDCP 부 계층을 새로 계산한 보안키 값들로 재 구성한다. 이를 통해 단말과 셀간 SRB 1이 개방되고 RRC 제어 메시지를 주고 받을 수 있게 된다. 단말은 SRB1의 재개를 완료하고, 셀로 RRC 연결 재확립 절차가 완료되었다는 RRC 연결 재확립 완료 메시지(RRC connection reestablishment complete message)를 전송한다(S860). 반면, 단말로부터 RRC 연결 재확립 요청 메시지를 수신하고 요청을 수락하지 않은 경우, 셀은 단말에게 RRC 연결 재확립 거절 메시지(RRC connection reestablishment reject message)를 전송한다. RRC 연결 재확립 절차가 성공적으로 수행되면, 셀과 단말은 RRC 연결 재설정 절차를 수행한다. 이를 통하여 단말은 RRC 연결 재확립 절차를 수행하기 전의 상태를 회복하고, 서비스의 연속성을 최대한 보장한다.When the RRC connection reestablishment request message is received from the terminal and the request is accepted, the cell transmits an RRC connection reestablishment message to the terminal. Upon receiving the RRC connection reestablishment message from the cell, the UE reconfigures the PDCP sublayer and the RLC sublayer for SRB1. In addition, it recalculates various key values related to security setting and reconstructs the PDCP sublayer responsible for security with newly calculated security key values. Through this, SRB 1 between the UE and the cell is opened and an RRC control message can be exchanged. The terminal completes the resumption of SRB1 and transmits an RRC connection reestablishment complete message indicating that the RRC connection reestablishment procedure is completed to the cell (S860). On the contrary, if the RRC connection reestablishment request message is received from the terminal and the request is not accepted, the cell transmits an RRC connection reestablishment reject message to the terminal. If the RRC connection reestablishment procedure is successfully performed, the cell and the terminal performs the RRC connection reestablishment procedure. Through this, the UE recovers the state before performing the RRC connection reestablishment procedure and guarantees the continuity of the service to the maximum.
이제 MBMS 및 MBSFN(multicast/broadcast single frequency network)에 대해 구체적으로 설명한다.MBMS and MBSFN (multicast / broadcast single frequency network) will now be described in detail.
MBSFN 전송 또는 MBSFN 모드에서의 전송은 복수의 셀들에서 동일 시간에 동일 신호를 전송하는 것에 의하여 구현되는 동시 전송 기법을 의미한다. MBSFN 영역 내에 있는 복수의 셀들로부터의 MBSFN 전송은 단말에게 단일 전송으로 보이게 된다.Transmission in MBSFN transmission or MBSFN mode refers to a simultaneous transmission scheme implemented by transmitting the same signal in a plurality of cells at the same time. MBSFN transmissions from a plurality of cells within the MBSFN area appear to the UE as a single transmission.
MBMS 서비스는 셀 기반(cell-based) 또는 지리 기반(geography-based)으로 관리 또는 지역화(localization)될 수 있다. MBMS 서비스 지역(service area)은 특정한 MBMS 서비스가 제공되는 지역을 널리 일컫는 용어이다. 예를 들어, 특정한 MBMS 서비스 A가 진행되는 지역을 MBMS 서비스 지역 A라고 한다면, MBMS 서비스 지역 A에서 네트워크는 MBMS 서비스 A를 송신하고 있는 상태일 수 있다. 이 때, 단말은 단말의 성능(capability)에 따라서 MBMS 서비스 A를 수신할 수 있다. MBMS 서비스 영역은 특정한 서비스가 일정 지역에서 제공되는지 또는 그렇지 않은지에 대한 응용(application) 및 서비스의 관점에서 정의될 수 있다.MBMS services can be managed or localized on a cell-based or geography-based basis. The MBMS service area is a general term for the area where a particular MBMS service is provided. For example, if an area where a specific MBMS service A is performed is called an MBMS service area A, the network may be in a state of transmitting an MBMS service A in the MBMS service area A. In this case, the terminal may receive the MBMS service A according to the capability of the terminal. The MBMS service area may be defined in terms of applications and services as to whether or not a particular service is provided in a certain area.
MBMS를 위한 전송채널 MCH(Multicast Channel)에는 논리채널 MCCH(Multicast Control Channel) 또는 MTCH(Multicast Traffic Channel)이 맵핑 될 수 있다. MCCH는 MBMS 관련 RRC 메시지를 전송하고, MTCH는 특정 MBMS 서비스의 트래픽을 전송한다. 동일한 MBMS정보/트래픽을 전송하는 하나의 MBSFN(MBMS Single Frequency Network) 지역마다 하나의 MCCH가 있으며, 복수의 MBSFN 지역들이 하나의 셀에서 제공될 경우, 단말은 복수의 MCCH를 수신할 수도 있다. MCCH는 하나의 MBSFN 영역 설정 RRC 메시지를 포함하며 모든 MBMS 서비스들의 리스트를 가진다. 특정 MCCH에서 MBMS 관련 RRC 메시지가 변경될 경우, PDCCH(physical downlink control channel)는 M-RNTI(MBMS Radio Network Temporary Identity)와 특정 MCCH를 지시하는 지시자를 전송한다. MBMS를 지원하는 단말은 상기 PDCCH를 통해 M-RNTI와 MCCH 지시자를 수신하여, 특정 MCCH에서 MBMS 관련 RRC 메시지가 변경되었음을 파악하고, 상기 특정 MCCH를 수신할 수 있다. MCCH의 RRC 메시지는 변경 주기(modification period)마다 변경될 수 있으며, 반복 주기마다 반복적으로 방송된다. 알림 메커니즘(notification mechanism)은 MCCH 세션 시작 또는 MBMS 카운팅 요청 메시지의 존재에 기인한 MCCH의 변경을 알리기 위하여 사용된다. 단말은 알림 메커니즘에 의하지 아니하고 알려지는 MCCH 변경을 변경 주기에서의 MCCH 모니터링을 통해 검출한다. MTCH는 MBMS 서비스를 싣고 있는 논리 채널로서, MBSFN 구역 내에 제공되는 서비스가 많은 경우에는 복수 개의 MTCH가 설정될 수 있다.A logical channel multicast control channel (MCCH) or a multicast traffic channel (MTCH) may be mapped to a transport channel MCH for an MBMS. MCCH transmits MBMS related RRC message, and MTCH transmits traffic of specific MBMS service. There is one MCCH for each MBMS Single Frequency Network (MBSFN) region that transmits the same MBMS information / traffic. When a plurality of MBSFN regions are provided in one cell, the terminal may receive a plurality of MCCHs. The MCCH contains one MBSFN area setup RRC message and has a list of all MBMS services. When an MBMS-related RRC message is changed in a specific MCCH, a physical downlink control channel (PDCCH) transmits an MBMS Radio Network Temporary Identity (M-RNTI) and an indicator indicating a specific MCCH. The terminal supporting the MBMS may receive the M-RNTI and the MCCH indicator through the PDCCH, determine that the MBMS-related RRC message has been changed in the specific MCCH, and receive the specific MCCH. The RRC message of the MCCH may be changed at each modification period, and is repeatedly broadcasted at every repetition period. A notification mechanism is used to inform the change of the MCCH due to the presence of the MCCH session start or MBMS counting request message. The UE detects a known MCCH change through the MCCH monitoring in the change cycle, not by the notification mechanism. The MTCH is a logical channel carrying an MBMS service. When there are many services provided in the MBSFN area, a plurality of MTCHs may be configured.
단말은 MBMS 서비스를 제공받는 동안, 전용 서비스(Dedicated Service)를 받을 수도 있다. 예를 들어 어떤 사용자는, 자신이 가지고 있는 스마트폰을 통해서, MBMS 서비스를 통해서 TV를 시청하는 동시에, 상기 스마트폰을 이용하여 MSN 또는 Skype같은 IM (instant messaging) 서비스를 이용하여 채팅을 할 수 있다. 이 경우, MBMS 서비스는 여러 단말이 같이 수신하는 MTCH를 통해서 제공되고, IM 서비스처럼 각각의 단말에 개별적으로 제공되는 서비스는 DCCH 또는 DTCH같은 전용 베어러(dedicated bearer)를 통해서 제공될 것이다.The terminal may receive a dedicated service while receiving the MBMS service. For example, a user may watch a TV through an MBMS service through his own smartphone, and chat using an IM (instant messaging) service such as MSN or Skype using the smartphone. . In this case, the MBMS service is provided through MTCH received by several terminals together, and the service provided to each terminal individually, such as IM service, will be provided through a dedicated bearer such as DCCH or DTCH.
한 지역에서, 어떤 기지국은 동시에 여러 주파수를 사용할 수 있다. 이 경우, 네트워크는 무선 자원을 효율적으로 사용하기 위해서, 여러 개의 주파수 중에서 하나를 선택하여 그 주파수에서만 MBMS 서비스를 제공 하고, 그리고 모든 주파수에서 각 단말에게 전용 베어러를 제공할 수 있다. 이 경우, MBMS 서비스가 제공되지 않는 주파수에서 전용 베어러를 이용하여 서비스를 제공 받던 단말이, MBMS서비스를 제공받고 싶은 경우, 상기 단말은 MBMS가 제공되는 주파수로 핸드오버 되어야 한다. 이를 위해서, 단말은 MBMS 관심 지시자(interest Indication)를 기지국으로 전송한다. 즉 단말은 MBMS 서비스를 수신하고 싶을 경우, MBMS 관심 지시자(interest indication)를 기지국으로 전송하고, 기지국은 상기 지시를 받으면, 단말이 MBMS 서비스를 수신하고 싶다고 인식하여, 상기 단말을 MBMS가 제공되는 주파수로 이동시킨다. 여기서 MBMS 관심 지시자는 단말이 MBMS 서비스를 수신하고 싶다는 정보를 의미하며, 추가적으로 어느 주파수로 이동하고 싶은지에 관한 정보를 포함한다.In one area, some base stations can use multiple frequencies at the same time. In this case, in order to efficiently use radio resources, the network may select one of a plurality of frequencies to provide an MBMS service only at that frequency and provide a dedicated bearer to each terminal at all frequencies. In this case, when a terminal that has received a service using a dedicated bearer at a frequency where the MBMS service is not provided, if the terminal wants to receive the MBMS service, the terminal should be handed over to the frequency where the MBMS is provided. To this end, the terminal transmits an MBMS interest indication to the base station. That is, when the terminal wants to receive the MBMS service, the terminal transmits an MBMS interest indication to the base station, and when the base station receives the instruction, the terminal recognizes that the terminal wants to receive the MBMS service, and the terminal receives the MBMS service frequency. Move to. The MBMS interest indicator refers to information that the terminal wants to receive the MBMS service, and additionally includes information on which frequency it wants to move to.
특정 MBMS 서비스를 수신하고자 하는 단말은 먼저 상기 특정 서비스가 제공되는 주파수 정보와 방송 시간 정보를 파악한다. 상기 MBMS 서비스가 이미 방송 중이거나 또는 곧 방송을 시작하면, 단말은 상기 MBMS 서비스가 제공되는 주파수의 우선 순위를 가장 높게 설정한다. 단말은 재설정된 주파수 우선 순위 정보를 이용하여 셀 재선택 프로시저를 수행함으로써 MBMS 서비스를 제공하는 셀로 이동하여 MBMS 서비스를 수신한다. A terminal that wants to receive a specific MBMS service first grasps frequency information and broadcast time information provided with the specific service. If the MBMS service is already broadcasting or soon starts broadcasting, the terminal sets the highest priority of the frequency in which the MBMS service is provided. The UE moves to a cell providing the MBMS service and receives the MBMS service by performing a cell reselection procedure using the reset frequency priority information.
단말이 MBMS 서비스를 수신 중에 있거나 또는 수신하는 것이 관심이 있는 경우 및 MBMS 서비스가 제공되는 주파수에 캠프 온 되는 동안 MBMS 서비스를 수신할 수 있는 경우, 재 선택된 셀이 SIB13(System Information Block 13; 시스템 정보 블록 13)을 브로드캐스트하고 있는 상황에서 이하와 같은 상황이 지속되는 한 MBMS 세션 동안 해당 주파수에 최우선순위가 적용되었다고 고려할 수 있다. If the UE is receiving or is interested in receiving MBMS service and can receive the MBMS service while camped on the frequency at which the MBMS service is provided, the reselected cell is SIB13 (System Information Block 13; System Information). In the case of broadcasting block 13), it may be considered that the highest priority was applied to the corresponding frequency during the MBMS session as long as the following situation persists.
- 하나 또는 그 이상의 MBMS SAIs(Service Area Identities)가 해당 서비스의 USD(User Service Description)에 포함되어 있음이 서빙 셀의 SIB15에 의해 지시되는 경우.When indicated by SIB15 of the serving cell that one or more MBMS Service Area Identities (SAIs) are included in the User Service Description (USD) of the service.
- SIB15가 서빙 셀 내에서 방송되지 않고 해당 주파수는 해당 서비스의 USD내에 포함되는 경우.SIB15 is not broadcasted in the serving cell and its frequency is included in the USD of the service.
단말은 RRC_IDLE, RRC_CONNECTED 상태에서 MBMS 수신이 가능해야 한다. The UE should be able to receive MBMS in RRC_IDLE and RRC_CONNECTED states.
RRC_IDLE 상태에서 단말은 다음과 같이 동작할 수 있다. 1) 상위 계층에 의하여 단말 특정적 DRX가 설정될 수 있다. 2) 단말은 콜, 시스템 정보 변화, ETWS 알림 등을 검출하기 위하여 페이징 채널을 모니터링하고, 인접 셀 측정 및 셀 선택(재 선택)을 수행한다. 단말은 시스템 정보를 획득하고, 가능한 측정을 수행할 수 있다.In the RRC_IDLE state, the UE may operate as follows. 1) UE-specific DRX may be configured by a higher layer. 2) The terminal monitors the paging channel to detect a call, system information change, ETWS notification, etc., and performs neighbor cell measurement and cell selection (reselection). The terminal may acquire system information and perform possible measurements.
RRC_CONNECTED 상태에서 단말은 유니캐스트 데이터를 전달하고, 하위 레이어에서 단말 특정적 DRX가 설정될 수 있다. CA를 지원하는 단말은 하나 또는 그 이상의 세컨더리 셀을 프라이머리 셀과 함께 이용할 수 있다. In the RRC_CONNECTED state, the UE transmits unicast data, and UE-specific DRX may be configured in a lower layer. The terminal supporting the CA may use one or more secondary cells together with the primary cell.
단말은 페이징 채널을 모니터링하고, 시스템 정보 변경을 검출하기 위하여 SIB1 내용을 모니터링 한다. 데이터가 자신을 위하여 스케줄링 되었는지 결정하기 위하여 공유 데이터 채널에 연관된 제어 채널들을 모니터링 한다. 또한, 채널 품질 및 피드백 정보를 제공한다. 단말은 이웃 셀을 측정하고 측정 결과를 보고할 수 있으며 시스템 정보를 획득한다.The terminal monitors the paging channel and monitors the SIB1 contents in order to detect system information change. Monitor control channels associated with the shared data channel to determine if the data is scheduled for it. It also provides channel quality and feedback information. The terminal may measure the neighbor cell, report the measurement result, and obtain system information.
도 9는 MBSFN 서브프레임의 구조를 나타낸다.9 shows the structure of an MBSFN subframe.
도 9를 참조하면, MBSFN 전송은 서브프레임 단위로 설정된다. MBSFN 전송을 수행하도록 설정된 서브프레임을 MBSFN 서브프레임이라 한다. MBSFN 서브프레임으로 설정된 서브프레임에서는 PDCCH 전송을 위한 최초 2개의 OFDM 심벌을 제외한 나머지 OFDM 심벌들에서 MBSFN 전송이 수행된다. MBSFN 전송을 위하여 사용되는 영역을 편의상 MBSFN 영역이라 하자. 그러면, MBSFN 영역에서는 유니캐스트를 위한 CRS는 전송되지 않고, 전송에 참여하는 모든 셀에 공통적인 MBMS 전용 RS를 사용한다.Referring to FIG. 9, MBSFN transmission is set in subframe units. A subframe configured to perform MBSFN transmission is called an MBSFN subframe. In the subframe configured as the MBSFN subframe, MBSFN transmission is performed on the remaining OFDM symbols except for the first two OFDM symbols for PDCCH transmission. The area used for MBSFN transmission is referred to as an MBSFN area for convenience. Then, in the MBSFN region, the CRS for unicast is not transmitted, and the MBMS dedicated RS common to all cells participating in the transmission is used.
MBMS를 수신하지 않는 단말에게도 MBSFN 영역에서 CRS가 전송되지 않음을 알려주기 위해서 셀의 시스템 정보에 MBSFN 서브프레임의 설정 정보를 포함하여 방송한다. 대부분의 단말들이 CRS를 이용하여 RRM(radio resource management), RLF(radio link failure)처리, 동기화를 수행하므로, CRS가 특정 영역에 없음을 알려주는 것은 중요하다. MBSFN 서브프레임에서 PDCCH로 사용되는 최초 2개의 OFDM 심벌들에서는 CRS가 전송되며, 이 CRS는 MBSFN 용도를 위한 것이 아니다. MBSFN 서브프레임에서 PDCCH로 사용되는 최초 2개의 OFDM 심벌들에서는 전송되는 CRS의 CP는(즉, 상기 CRS가 일반 CP를 사용하는가 아니면 확장 CP를 사용하는가) 일반 서브프레임 즉, MBSFN 서브프레임이 아닌 서브프레임에서 적용되는 CP를 따른다. 예를 들어, 일반 서브프레임(911)에서 일반 CP를 사용할 경우 MBSFN 서브프레임의 최초 2개의 OFDM 심벌들(912)에서도 일반 CP에 따른 CRS가 사용된다. In order to inform the UE that does not receive the MBMS, the CRS is not transmitted in the MBSFN area, and broadcasts the configuration information of the MBSFN subframe in the system information of the cell. Since most terminals perform radio resource management (RRM), radio link failure (RLF) processing, and synchronization using the CRS, it is important to inform that the CRS is not in a specific region. The CRS is transmitted in the first two OFDM symbols used as the PDCCH in the MBSFN subframe, and this CRS is not for MBSFN use. In the first two OFDM symbols used as the PDCCH in the MBSFN subframe, the CP of the CRS transmitted (that is, whether the CRS uses a normal CP or an extended CP) is a normal subframe, that is, a subframe other than the MBSFN subframe Follow the CP applied in the frame. For example, when the general CP is used in the general subframe 911, the CRS according to the general CP is also used in the first two OFDM symbols 912 of the MBSFN subframe.
한편, MBSFN 서브프레임으로 설정될 수 있는 서브프레임은 FDD, TDD 별로 각각 지정되어 있으며, 비트맵을 통해서 MBSFN 서브프레임인지 여부를 알려줄 수 있다. 즉, 비트맵에서 특정 서브프레임에 대응되는 비트가 1이면 상기 특정 서브프레임은 MBSFN 서브프레임으로 설정됨을 나타낸다.Meanwhile, subframes that can be configured as MBSFN subframes are designated for FDD and TDD, respectively, and can indicate whether or not they are MBSFN subframes through a bitmap. That is, if a bit corresponding to a specific subframe is 1 in the bitmap, the specific subframe is set to the MBSFN subframe.
도 10은 MBMS 서비스를 수행하기 위한 MBSFN 서브프레임 구성의 일 예를 나타낸다.10 shows an example of an MBSFN subframe configuration for performing an MBMS service.
도 10을 참조하면, 단말은 MBMS 서비스를 수행하기 위하여 MBSFN 서브프레임 구성 정보, MBSFN 통지(notification) 구성 정보 및 MBSFN 지역(area) 정보 리스트를 획득한다.Referring to FIG. 10, the UE acquires MBSFN subframe configuration information, MBSFN notification configuration information, and MBSFN area information list to perform MBMS service.
단말은 SIB2와 RRC 전용 시그널링(dedicated signaling)을 통하여 MBSFN 서브프레임 구성 정보, 즉 MBSFN 서브프레임의 위치를 알 수 있다. 예를 들어 MBSFN 서브프레임 구성 정보는 MBSFN-SubframeConfig 정보 요소(IE: Information Element)에 포함될 수 있다.The UE may know the MBSFN subframe configuration information, that is, the location of the MBSFN subframe through SIB2 and RRC dedicated signaling. For example, the MBSFN subframe configuration information may be included in an MBSFN-SubframeConfig information element (IE).
또한, 단말은 SIB13을 통하여 MBMS 서비스를 수행할 수 있는 하나 또는 그 이상의 MBSFN 지역들과 연관된 MBMS 제어 정보를 획득하기 위해 필요한 정보로서, MBSFN 지역 정보 리스트 및 MBMS 통지 구성 정보를 획득할 수 있다. 여기서 MBSFN 지역 정보 리스트는 각각의 MBSFN 지역 별로 MBSFN 지역 ID, 해당 MBSFN 지역에서 MBSFN 서브프레임 내에서의 MBSFN 영역(region)에 대한 정보 및 MBMS 제어정보 채널인 MCCH 전송이 발생되는 MBSFN 서브프레임 위치 등과 같은 정보를 포함할 수 있다. 예를 들어 MBSFN 지역 정보 리스트는 MBSFN-AreaInfoList 정보 요소에 포함될 수 있다. 한편, MBSFN 통지 구성 정보는 MCCH를 통해서 단말로 전송되는 MBSFN 지역 구성 정보에 변화가 있음을 알려주는 MBMS 통지가 발생하는 서브프레임 위치에 대한 구성 정보이다. 예를 들어, MBSFN 통지 구성 정보는 MBMS-NotificationConfig 정보 요소에 포함될 수 있다. MBSFN 통지 구성 정보는 모든 MBSFN 지역에서 적용될 수 있는 MCCH의 변경 통지에 활용된 시간 정보를 포함한다. 예를 들어, 상기 시간 정보는 통지 반복 계수(notificationRepetitionCoeff), 통지 오프셋(notificationOffset) 및 통지 서브프레임 인덱스(notificationSF-Index)를 포함할 수 있다. 여기서, 통지 반복 계수는 모든 MCCH들을 위한 공통의 변경 통지 반복 주기(notification repetition period)를 의미한다. 통지 오프셋은 MCCH 변경 통지 정보가 스케줄링되는 무선 프레임의 오프셋을 지시한다. 그리고 통지 서브프레임 인덱스는 PDCCH상에서 MCCH 변경 통지를 전송하기 위해서 사용되는 서브프레임 인덱스이다.In addition, the UE may acquire MBSFN region information list and MBMS notification configuration information as information necessary for obtaining MBMS control information associated with one or more MBSFN regions capable of performing MBMS service through SIB13. The MBSFN region information list includes MBSFN region ID for each MBSFN region, MBSFN region information in MBSFN subframe in MBSFN region, MBSFN subframe position where MCCH transmission is performed, and MBMS control information channel. May contain information. For example, the MBSFN area information list may be included in the MBSFN-AreaInfoList information element. On the other hand, MBSFN notification configuration information is the configuration information for the subframe location in which the MBMS notification that informs that there is a change in the MBSFN region configuration information transmitted to the terminal through the MCCH. For example, the MBSFN notification configuration information may be included in the MBMS-NotificationConfig information element. The MBSFN notification configuration information includes time information used for change notification of the MCCH applicable to all MBSFN regions. For example, the time information may include a notification repetition coefficient (notificationRepetitionCoeff), a notification offset (notificationOffset) and a notification subframe index (notificationSF-Index). Here, the notification repetition coefficient means a common change notification repetition period for all MCCHs. The notification offset indicates an offset of a radio frame for which MCCH change notification information is scheduled. The notification subframe index is a subframe index used for transmitting the MCCH change notification on the PDCCH.
단말은 SIB13을 통해서 얻어진 MBSFN 지역들에 대해서 각각에 대응하는 MCCH를 통하여 MBSFN 지역 구성 정보를 얻을 수 있다. MBSFN 지역 구성 정보는 MBSFNAreaconfiguration 메시지에 포함될 수 있으며, 해당 MBSFN 지역이 사용하는 PMCH(physical multicast channel)들에 대한 정보를 담고 있다. 예를 들어, 각각의 PMCH에 대한 정보는 해당 PMCH가 위치한 MBSFN 서브프레임의 위치와 해당 서브프레임에서의 데이터 전송을 위해 쓰이는 MCS(Modulation and Coding Scheme) 레벨 정보, 해당 PMCH가 전송하는 MBMS 서비스 정보 등을 포함할 수 있다.The UE may obtain MBSFN region configuration information through the MCCH corresponding to each of the MBSFN regions obtained through SIB13. The MBSFN region configuration information may be included in the MBSFNAreaconfiguration message, and includes information on physical multicast channels (PMCHs) used by the corresponding MBSFN region. For example, the information on each PMCH includes the location of the MBSFN subframe in which the PMCH is located, Modulation and Coding Scheme (MCS) level information used for data transmission in the subframe, and MBMS service information transmitted by the PMCH. It may include.
단말은 PMCH를 기반으로 MTCH를 통하여 MCH 데이터를 받게 된다. 해당 MCH 데이터에 대한 시간 상에서의 스케줄링은 PMCH를 통해 내려오는 MSI(MCH Scheduling Information; MCH 스케줄링 정보)를 통해 알 수 있다. MSI는 해당 MCH 데이터 전송이 얼마의 시간 동안 지속되는지에 대한 정보를 담고 있다.UE receives MCH data through MTCH based on PMCH. Scheduling in time for the corresponding MCH data can be known through MSI (MCH Scheduling Information) coming down through PMCH. The MSI contains information about how long the MCH data transmission lasts.
도 11은 MCCH 정보가 변경된 경우 MCCH 정보의 변경을 단말에게 통지하는 방법을 나타낸다.11 illustrates a method of notifying the terminal of the change of MCCH information when the MCCH information is changed.
도 11을 참조하면, 특정한 무선 프레임에서만 발생하는 MCCH 정보의 변경이 일어날 수 있다. 동일한 MCCH 정보는 MCCH 변경 기간(1120) 내에 MCCH 반복 주기(1140)를 가지고 여러 번 전송될 수 있다. PDCCH에서 MBMS 특정 RNTI(M-RNTI)의 지시는 RRC_IDLE 상태에 있는 단말 및 RRC_CONNECTED 상태에 있는 단말에게 MCCH 정보 변화를 알려주기 위해 사용될 수 있다. PDCCH에서 MCCH 정보 변화 통지(MCCH information change notification)(1100)는 주기적으로 전송될 수 있고, MBSFN 서브프레임에서 전송될 수 있다. MBMS 가능한 RRC_IDLE 단말 또는 RRC_CONNECTED 단말이 MCCH 정보를 획득할 수 있다.Referring to FIG. 11, a change of MCCH information occurring only in a specific radio frame may occur. The same MCCH information may be transmitted several times with the MCCH repetition period 1140 within the MCCH change period 1120. The indication of the MBMS-specific RNTI (M-RNTI) in the PDCCH may be used to inform the UE in the RRC_IDLE state and the change of the MCCH information to the UE in the RRC_CONNECTED state. The MCCH information change notification 1100 in the PDCCH may be periodically transmitted and may be transmitted in an MBSFN subframe. The MBMS capable RRC_IDLE terminal or the RRC_CONNECTED terminal may acquire MCCH information.
이하 MCCH를 통해 MBMS 서비스 중단을 지시하는 방법 및 문제점에 대하여 설명한다.Hereinafter, a method and a problem of instructing to stop MBMS service through MCCH will be described.
현재 단말은 MCCH를 통한 임시 이동그룹 식별자(TMGI; Temporary Mobile Group Identity)에 의해 MBMS 서비스가 중단되었음을 인식할 수 있다. 즉, TMGI가 인식되지 않으면 MBMS 서비스가 중단되었음을 알 수 있다. 다만, TMGI를 이용하여 MBMS 서비스의 중단을 인식하는 현재의 방법은 단말에게 MBMS 서비스의 중단을 알려주는데 기간이 오래 걸릴 수 있고, 이는 상기 기간 동안 서비스의 중단을 유발할 수 있다. 네트워크가 MBMS 서비스를 중단 및 재개하기로 결정하면, 상기 네트워크는 MCCH 변경 통지를 전송하고 MCCH 정보를 업데이트하고, 이후 단말은 MCCH를 통해 MBMS 서비스가 중단 또는 시작되었음을 인식하는데, 도 11에서 검토하였듯이 MCCH 정보가 변경된 경우에 단말이 이를 업데이트 하기 위해서는 일정 주기가 경과하여야 하기 때문이다. MCCH를 통해 MBMS 서비스의 중단 및 재개 여부를 인식하는 방법은 RAN2 사양에 추가 영향을 요구하지 않는다는 점에서 유용하나, 일정 기간 동안 서비스의 중단을 유발할 수 있다. 따라서, MBMS 서비스의 중단 및 재개 여부를 인식하는데 새로운 시그널링을 사용할 수 있다. 새로운 시그널링은 MSI에 특별 값(special value)일 수 있다. The current terminal may recognize that the MBMS service is interrupted by a Temporary Mobile Group Identity (TMGI) through the MCCH. That is, if TMGI is not recognized, it can be known that MBMS service is stopped. However, the current method of recognizing the interruption of the MBMS service using TMGI may take a long time to inform the UE of the interruption of the MBMS service, which may cause the interruption of the service during the period. If the network decides to suspend and resume the MBMS service, the network transmits an MCCH change notification and updates the MCCH information, and then the UE recognizes that the MBMS service is stopped or started through the MCCH, as discussed in FIG. This is because, if the information is changed, a certain period must elapse to update the terminal. The method of recognizing whether the MBMS service is suspended or resumed through the MCCH is useful in that it does not require additional influence on the RAN2 specification, but may cause the service to be interrupted for a period of time. Therefore, new signaling can be used to recognize whether the MBMS service is suspended or resumed. The new signaling may be a special value in the MSI.
3GPP TS 36.321 V12.5.0(2015-03)을 참조하여 구체적으로 설명한다.This will be described in detail with reference to 3GPP TS 36.321 V12.5.0 (2015-03).
도 12는 확장된 MSI를 나타낸다.12 shows the expanded MSI.
도 12-(a)는 기존의 MSI(MCH Scheduling Information)를 나타내며, 도 12-(b)는 확장된 MSI(Extended MCH Scheduling Information)를 나타낸다. 도 12-(b)를 참조하면, 도 12-(a)의 MSI와 비교하여 S 필드(S1201)가 새롭게 정의된 것을 알 수 있다. 3GPP TS 36.321 V12.5.0(2015-03)에서, 상기 S 필드는 해당 MTCH의 전송이 중단될 것임을 지시하는 것으로 정의되었다. 본 발명에서 S 필드는 MSI에 특별 값이라고 불릴 수 있다.12- (a) shows an existing MSI (MCH Scheduling Information), Figure 12- (b) shows an extended MSI (MCH Scheduling Information). 12- (b), it can be seen that the S field S1201 is newly defined as compared with the MSI of FIG. 12- (a). In 3GPP TS 36.321 V12.5.0 (2015-03), the S field has been defined to indicate that transmission of the corresponding MTCH will be stopped. In the present invention, the S field may be called a special value in the MSI.
상기 새로운 시그널링인 S 필드를 고려하면, 단말이 MSI에 특별 값이 포함되어 있음을 인식하여 MBMS 서비스를 중단할 수 있다. 즉, 단말은 MBMS 베어러에 대응하는 네트워크가 중단될 때, 네트워크로 유니캐스트 베어러의 확립을 빠르게 요청할 수 있으므로, MCCH를 통한 TMGI를 이용하는 경우와 비교하여 MBMS 베어러의 중단과 유니캐스트 베어러의 시작 사이의 갭이 더 감소될 수 있다. 다만, MSI의 특별 값을 이용하여 MBMS 서비스를 중단시킨다 것이 중단(Stop)을 의미하는지 아니면 일시 중단(Suspension)을 의미하는지 명확하지 않은바, 이하 MSI의 특별 값을 이용한 MBMS 서비스의 중단 및 재개를 수행하는 단말의 동작에 대하여 구체적으로 설명한다.In consideration of the new signaling S field, the UE may stop the MBMS service by recognizing that the special value is included in the MSI. That is, when the network corresponding to the MBMS bearer is interrupted, the UE can quickly request the establishment of a unicast bearer to the network, and thus, between the termination of the MBMS bearer and the start of the unicast bearer as compared to the case of using TMGI over the MCCH. The gap can be further reduced. However, it is not clear whether stopping the MBMS service by using the special value of MSI means Stop or Suspension. The operation of the terminal to be performed will be described in detail.
이하 본 발명에서, 중단(Stop)은 MBMS 서비스를 중단하고 MRB를 해제하여 이후 MBMS 서비스를 재개할지를 고려하지 않는 것으로 정의하며, 일시 중단(Suspension)은 MBMS 서비스를 중단하되 이후 MBMS 서비스가 재개될 것을 고려하여 MRB를 해제하지 않는 것으로 정의한다.In the present invention, the stop (Stop) is defined as to stop the MBMS service and release the MRB to not consider whether to resume the MBMS service afterwards, Suspension (Suspension) to stop the MBMS service, but the MBMS service will be resumed after It is defined as not to release the MRB in consideration.
먼저, 본 발명의 일 실시 예에 따른 MSI를 이용한 MBMS 서비스 중단(Stop)을 지시하는 방법을 제안한다. 즉, 단말은 MSI에 특별 값을 MBMS 서비스 중단에만 고려하고 이후 MBMS 서비스의 재개 여부는 고려하지 않는다.First, a method of indicating MBMS service stop using MSI according to an embodiment of the present invention is proposed. That is, the terminal considers the special value only in the MBMS service interruption to the MSI and does not consider whether to resume the MBMS service afterwards.
단말은 네트워크로부터 MSI를 수신할 수 있다. 단말은 수신된 상기 MSI에 MSI의 특별 값이 포함되어 있으면 MBMS 서비스를 중단할 수 있다. 따라서 단말은 해당 MSI/MTCH(및 아마도 해당 MCCH)를 수신하는 것을 필요로 하지 않고, 해당 MRB를 해제한다. 반면 단말은 해당 유니캐스트 베어러를 확립한다. 만약 MBMS 서비스가 상기 유니캐스트 베어러에 의해 제공된다면, 단말은 MBMS 서비스 중단을 위해 현재 MSI/MTCH/MCCH를 모니터링 하는 것을 필요로 하지 않을 것이다.The terminal may receive the MSI from the network. The terminal may stop the MBMS service if the received MSI includes a special value of the MSI. Thus, the UE does not need to receive the corresponding MSI / MTCH (and possibly the corresponding MCCH) and releases the corresponding MRB. On the other hand, the terminal establishes a corresponding unicast bearer. If the MBMS service is provided by the unicast bearer, the terminal will not need to monitor the current MSI / MTCH / MCCH to stop the MBMS service.
RRC_IDLE 상태 단말들이 MSI의 특별 값을 수신하여 MBMS 서비스를 중단하고, 이후 MBMS 서비스의 재개 여부를 고려하지 않는다면, 관심 있는 MBMS 주파수에 대하여 우선 순위를 매기는 것은 필요하지 않다. RRC_CONNECTED 상태 단말들이 MSI의 특별 값을 수신하여 MBMS 서비스를 중단하고 이후 MBMS 서비스의 재개 여부를 고려하지 않는다면, 이후 단말은 MBMSInterestIndication 메시지에 관심이 없음을 지시할 필요가 있다. 상기 설명된, 단말이 MSI를 이용하여 MBMS 서비스를 중단하는 제안은 서비스 연속성을 위해 MSI를 고려하지 않은 기존 단말 동작과 비교하면 새로운 단말의 동작이라 할 수 있다.It is not necessary to prioritize the MBMS frequency of interest unless the RRC_IDLE state UEs stop the MBMS service by receiving the special value of the MSI and then consider whether to resume the MBMS service. If the RRC_CONNECTED state UEs stop the MBMS service by receiving the special value of the MSI and do not consider whether to resume the MBMS service thereafter, then the UE needs to indicate that it is not interested in the MBMSInterestIndication message. As described above, the proposal that the terminal stops the MBMS service using the MSI may be referred to as the operation of the new terminal as compared with the existing terminal operation that does not consider the MSI for service continuity.
다음으로, 본 발명의 다른 실시 예에 따른 MSI를 이용한 MBMS 서비스의 일시 중단(Suspension)을 지시하는 방법을 제안한다. 즉, 단말은 MSI의 특별 값을 MBMS 서비스의 일시 중단 및 이후 MBMS 서비스의 재개에 고려할 수 있다.Next, a method of indicating a suspension of an MBMS service using an MSI according to another embodiment of the present invention is proposed. That is, the terminal may consider the special value of the MSI to suspend the MBMS service and then resume the MBMS service.
단말은 네트워크로부터 MSI를 수신할 수 있다. 단말은 수신된 상기 MSI에 MSI의 특별 값이 포함되어 있으면 MBMS 서비스를 일시 중단할 수 있다. 이 경우, MSI의 특별 값을 수신한 이후에도 네트워크가 MBMS 서비스의 MTCH 전송을 재개할 수 있기 때문에, 단말은 MSI 이후의 전송 모니터링을 지속할 필요가 있다. 즉, 해당 유니캐스트 베어러가 확립되는 동안에도 단말은 MRB를 해제하지 않고 MBMS 절차를 계속 수행하여야 한다. 단말은 MSI, MTCH 또는 MCCH의 모니터링을 계속 수행하고, 이후 MSI, MTCH 또는 MCCH가 모니터링 되면 상기 MRB를 통해 MBMS 서비스를 재개할 수 있다. 이를 위해 단말은 MSI의 특별 값을 수신한 이후 유니캐스트 베어러를 확립하였더라도, MBMS 주파수 상에 있어야 하며, 관심 MBMS 주파수의 우선순위를 매기는 것을 계속 수행하여야 할 것이다.The terminal may receive the MSI from the network. The terminal may suspend the MBMS service if the received MSI includes a special value of the MSI. In this case, since the network can resume the MTCH transmission of the MBMS service even after receiving the special value of the MSI, the terminal needs to continue monitoring the transmission after the MSI. That is, while the corresponding unicast bearer is established, the terminal should continue to perform the MBMS procedure without releasing the MRB. The terminal may continue to monitor the MSI, MTCH or MCCH, and if the MSI, MTCH or MCCH is monitored, the MBMS service may be resumed through the MRB. To this end, even though the UE establishes a unicast bearer after receiving the special value of MSI, it should be on the MBMS frequency and continue to prioritize the MBMS frequency of interest.
도 13은 본 발명의 실시 예에 따른 MBMS 서비스 중단(Stop) 또는 일시 중단(Suspension)에 MSI의 특별 값을 고려하는 경우를 나타내는 블록도이다.FIG. 13 is a block diagram illustrating a case in which a special value of an MSI is considered for MBMS service stop or suspension in accordance with an embodiment of the present invention.
단말은 네트워크로부터 MSI(Multicast Channel Scheduling Information)를 수신할 수 있다(S1310). 단말은 수신된 상기 MSI에 특별 값(special value)이 포함되어 있는지 확인할 수 있다(S1320). 상기 특별 값이 포함되어 있으면, 단말은 이를 MBMS 서비스 중단에 고려하여 MBMS 서비스를 중단(Stop)할지 또는 일시 중단(Suspension)할지 여부를 결정할 수 있다(S1330). 상기 중단(Stop)은 MBMS 서비스의 재개를 고려하지 않는 중단이며, 상기 일시 중단(Suspension)은 MBMS 서비스의 재개를 고려하는 중단일 수 있다.The terminal may receive Multicast Channel Scheduling Information (MSI) from the network (S1310). The terminal may check whether a special value is included in the received MSI (S1320). If the special value is included, the terminal may determine whether to stop or suspend the MBMS service in consideration of the MBMS service interruption (S1330). The stop may be a stop not considering resumption of the MBMS service, and the suspension may be a stop considering a resume of the MBMS service.
상기 중단이 MBMS 서비스의 재개를 고려하지 않는 중단(Stop)이면, 단말은 MRB(MBMS를 위한 무선 베어러)를 해제할 수 있다. 단말은 MSI, MTCH 또는 MCCH의 모니터링을 중단할 수 있다. 단말이 RRC_IDLE 상태이면, 관심 MBMS 주파수에 대한 우선순위를 매기는 것을 중단할 수 있고, 단말이 유니캐스트 베어러를 확립하고 RRC_CONNECTED 상태로 천이하면, MBMSInterestIndication 메시지에 관심이 없음을 지시할 수 있다.If the interruption is a stop that does not consider resumption of the MBMS service, the terminal may release an MRB (radio bearer for MBMS). The terminal may stop monitoring the MSI, MTCH or MCCH. If the UE is in the RRC_IDLE state, it may stop prioritizing the MBMS frequency of interest, and if the UE establishes a unicast bearer and transitions to the RRC_CONNECTED state, it may indicate that there is no interest in the MBMSInterestIndication message.
상기 중단이 MBMS 서비스의 재개를 고려하는 일시 중단(Suspension)이면, 단말은 MRB를 해제하지 않고 유지할 수 있다. 단말은 MSI, MTCH 또는 MCCH의 모니터링을 계속 수행할 수 있다. 단말은 MSI, MTCH 또는 MCCH 중 적어도 어느 하나가 모니터링 되면, MRB를 통해 일시 중단된 상기 MBMS 서비스를 재개할 수 있다. 이를 위해 단말은 관심 MBMS 주파수의 우선순위를 매기는 것을 계속 수행할 수 있다. 단말이 유니캐스트 베어러를 확립하더라도 MRB는 해제되지 않을 수 있다.If the interruption is a suspension considering the resumption of the MBMS service, the UE may maintain the MRB without releasing the MRB. The terminal may continue to monitor the MSI, MTCH or MCCH. If at least one of the MSI, MTCH, or MCCH is monitored, the terminal may resume the MBMS service suspended through the MRB. For this purpose, the terminal may continue to prioritize the MBMS frequency of interest. Even if the UE establishes a unicast bearer, the MRB may not be released.
도 14는 본 발명의 실시 예가 구현되는 무선통신 시스템을 나타내는 도면이다.14 is a diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
기지국(1400)은 프로세서(processor, 1401), 메모리(memory, 1402) 및 송수신기(transceiver, 1403)를 포함한다. 메모리(1402)는 프로세서(1401)와 연결되어, 프로세서(1401)를 구동하기 위한 다양한 정보를 저장한다. 송수신기(1403)는 프로세서(1401)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(1401)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 기지국의 동작은 프로세서(1401)에 의해 구현될 수 있다.The base station 1400 includes a processor 1401, a memory 1402, and a transceiver 1403. The memory 1402 is connected to the processor 1401, and stores various information for driving the processor 1401. The transceiver 1403 is connected to the processor 1401 and transmits and / or receives a radio signal. The processor 1401 implements the proposed functions, processes, and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 1401.
단말(1410)은 프로세서(1411), 메모리(1412) 및 송수신기(1413)를 포함한다. 메모리(1412)는 프로세서(1411)와 연결되어, 프로세서(1411)를 구동하기 위한 다양한 정보를 저장한다. 송수신기(1413)는 프로세서(1411)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(1411)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 단말의 동작은 프로세서(1411)에 의해 구현될 수 있다.The terminal 1410 includes a processor 1411, a memory 1412, and a transceiver 1413. The memory 1412 is connected to the processor 1411 and stores various information for driving the processor 1411. The transceiver 1413 is coupled to the processor 1411 to transmit and / or receive wireless signals. The processor 1411 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the terminal may be implemented by the processor 1411.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래시 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 송수신기는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시 예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.The processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices. The memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device. The transceiver may include baseband circuitry for processing wireless signals. When the embodiment is implemented in software, the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function. The module may be stored in memory and executed by a processor. The memory may be internal or external to the processor and may be coupled to the processor by various well known means.
상술한 일례들에 기초하여 본 명세서에 따른 다양한 기법들이 도면과 도면 부호를 통해 설명되었다. 설명의 편의를 위해, 각 기법들은 특정한 순서에 따라 다수의 단계나 블록들을 설명하였으나, 이러한 단계나 블록의 구체적 순서는 청구항에 기재된 발명을 제한하는 것이 아니며, 각 단계나 블록은 다른 순서로 구현되거나, 또 다른 단계나 블록들과 동시에 수행되는 것이 가능하다. 또한, 통상의 기술자라면 간 단계나 블록이 한정적으로 기술된 것이나 아니며, 발명의 보호 범위에 영향을 주지 않는 범위 내에서 적어도 하나의 다른 단계들이 추가되거나 삭제되는 것이 가능하다는 것을 알 수 있을 것이다.Based on the examples described above, various techniques in accordance with the present disclosure have been described with reference to the drawings and reference numerals. For convenience of description, each technique described a number of steps or blocks in a specific order, but the specific order of these steps or blocks does not limit the invention described in the claims, and each step or block may be implemented in a different order, or In other words, it is possible to be performed simultaneously with other steps or blocks. In addition, it will be apparent to those skilled in the art that the steps or blocks have not been described in detail, and that at least one other step may be added or deleted without departing from the scope of the invention.
상술한 실시 예는 다양한 일례를 포함한다. 통상의 기술자라면 발명의 모든 가능한 일례의 조합이 설명될 수 없다는 점을 알 것이고, 또한 본 명세서의 기술로부터 다양한 조합이 파생될 수 있다는 점을 알 것이다. 따라서 발명의 보호범위는, 이하 청구항에 기재된 범위를 벗어나지 않는 범위 내에서, 상세한 설명에 기재된 다양한 일례를 조합하여 판단해야 할 것이다.The above-described embodiments include various examples. Those skilled in the art will appreciate that not all possible combinations of examples of the inventions can be described, and that various combinations can be derived from the description herein. Therefore, the protection scope of the invention should be judged by combining various examples described in the detailed description within the scope of the claims described below.

Claims (15)

  1. 무선 통신 시스템에서 단말이 MBMS 서비스를 중단 및 재개하는 방법에 있어서,In the method for the terminal to stop and resume the MBMS service in a wireless communication system,
    MSI(Multicast Channel Scheduling Information; MCH 스케줄링 정보)를 수신하고,Receive Multicast Channel Scheduling Information (MSI),
    수신된 상기 MSI에 특별 값(Special Value)이 포함되어 있는지 확인하고,Check whether the received MSI contains a special value,
    상기 MSI에 상기 특별 값이 포함되어 있으면, 상기 MBMS 서비스의 중단(Stop) 또는 일시 중단(Suspension) 여부를 결정하는 것을 포함하되,If the MSI includes the special value, including whether to stop (Stop) or Suspension (Suspension) of the MBMS service,
    상기 MBMS 서비스의 중단은 상기 MBMS 서비스의 재개를 고려하지 않는 MBMS 서비스의 중단이고,The interruption of the MBMS service is an interruption of the MBMS service that does not consider resumption of the MBMS service.
    상기 MBMS 서비스의 일시 중단은 상기 MBMS 서비스의 재개를 고려하는 상기 MBMS 서비스의 중단인 것을 특징으로 하는 방법.The suspension of the MBMS service is a suspension of the MBMS service considering the resumption of the MBMS service.
  2. 제 1항에 있어서,The method of claim 1,
    상기 MBMS 서비스를 중단(Stop) 하기로 결정하면,If it is decided to stop the MBMS service,
    상기 단말은 MRB(MBMS를 위한 무선 베어러)를 해제하는 것을 더 포함하는 것을 특징으로 하는 방법.The terminal further comprises releasing an MRB (radio bearer for MBMS).
  3. 제 2 항에 있어서,The method of claim 2,
    상기 단말은 상기 MSI, MTCH 또는 MCCH의 모니터링을 중단하는 것을 더 포함하는 것을 특징으로 하는 방법.The terminal further comprises stopping the monitoring of the MSI, MTCH or MCCH.
  4. 제 2 항에 있어서,The method of claim 2,
    상기 단말이 RRC_IDLE 상태인 경우, 관심 MBMS 주파수에 대한 우선순위를 매기는 것을 중단하는 것을 더 포함하는 것을 특징으로 하는 방법.If the terminal is in the RRC_IDLE state, further comprising prioritizing the MBMS frequency of interest.
  5. 제 2 항에 있어서,The method of claim 2,
    상기 단말은 유니캐스트 베어러를 확립하는 것을 더 포함하는 것을 특징으로 하는 방법.The terminal further comprises establishing a unicast bearer.
  6. 제 5 항에 있어서,The method of claim 5, wherein
    상기 단말은 MBMSInterestIndication 메시지에 관심이 없음을 지시하는 것을 더 포함하는 것을 특징으로 하는 방법.The terminal further comprises indicating that no interest in the MBMSInterestIndication message.
  7. 제 1항에 있어서,The method of claim 1,
    상기 MBMS 서비스를 일시 중단(Suspension) 하기로 결정하면,If the decision to suspend the MBMS service,
    상기 단말은 MRB(MBMS를 위한 무선 베어러)를 유지하는 것을 더 포함하는 것을 특징으로 하는 방법.The terminal further comprises maintaining an MRB (radio bearer for MBMS).
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 단말은 상기 MSI, MTCH 또는 MCCH의 모니터링을 계속 수행하는 것을 더 포함하는 것을 특징으로 하는 방법.The terminal further comprises continuing to monitor the MSI, MTCH or MCCH.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 MSI 또는 상기 MTCH 중 적어도 어느 하나가 모니터링 되면, 상기 MRB를 통해 일시 중단된 상기 MBMS 서비스를 재개하는 것을 더 포함하는 것을 특징으로 하는 방법.If at least one of the MSI or the MTCH is monitored, resuming the suspended MBMS service through the MRB.
  10. 제 7 항에 있어서,The method of claim 7, wherein
    상기 단말은 관심 MBMS 주파수의 우선순위를 매기는 것을 계속 수행하는 하는 것을 더 포함하는 것을 특징으로 하는 방법.The terminal further comprising continuing to prioritize the MBMS frequency of interest.
  11. 제 7 항에 있어서,The method of claim 7, wherein
    상기 단말은 유니캐스트 베어러를 확립하는 것을 더 포함하는 것을 특징으로 하는 방법.The terminal further comprises establishing a unicast bearer.
  12. 무선 통신 시스템에서 MBMS 서비스를 중단 및 재개하는 단말에 있어서,A terminal for stopping and resuming an MBMS service in a wireless communication system,
    메모리; 송수신기; 및 상기 메모리와 상기 송수신기를 연결하는 프로세서를 포함하되, 상기 프로세서는Memory; Transceiver; And a processor connecting the memory and the transceiver, wherein the processor
    상기 송수신기가 MSI(Multicast Channel Scheduling Information; MCH 스케줄링 정보)를 수신하도록 제어하고,Control the transceiver to receive Multicast Channel Scheduling Information (MSI),
    수신된 상기 MSI에 특별 값(Special Value)이 포함되어 있는지 확인하고,Check whether the received MSI contains a special value,
    상기 MSI에 상기 특별 값이 포함되어 있으면, 상기 MBMS 서비스의 중단(Stop) 또는 일시 중단(Suspension) 여부를 결정하도록 구성되되,If the MSI includes the special value, it is configured to determine whether to stop (Stop) or Suspension of the MBMS service,
    상기 MBMS 서비스의 중단은 상기 MBMS 서비스의 재개를 고려하지 않는 MBMS 서비스의 중단이고,The interruption of the MBMS service is an interruption of the MBMS service that does not consider resumption of the MBMS service.
    상기 MBMS 서비스의 일시 중단은 상기 MBMS 서비스의 재개를 고려하는 상기 MBMS 서비스의 중단인 것을 특징으로 하는 단말.The suspension of the MBMS service is characterized in that the suspension of the MBMS service considering the resumption of the MBMS service.
  13. 제 12 항에 있어서, 상기 프로세서는13. The system of claim 12, wherein the processor is
    상기 MBMS 서비스를 중단(Stop) 하기로 결정하면,If it is decided to stop the MBMS service,
    MRB(MBMS를 위한 무선 베어러)를 해제하도록 구성되는 것을 특징으로 하는 단말.And a terminal configured to release an MRB (radio bearer for MBMS).
  14. 제 12항에 있어서, 상기 프로세서는13. The system of claim 12, wherein the processor is
    상기 MBMS 서비스를 일시 중단(Suspension) 하기로 결정하면,If the decision to suspend the MBMS service,
    MRB(MBMS를 위한 무선 베어러)를 유지하도록 구성되는 것을 특징으로 하는 단말.And a terminal configured to maintain an MRB (radio bearer for MBMS).
  15. 제 14 항에 있어서, 상기 프로세서는15. The system of claim 14, wherein the processor is
    상기 MSI, MTCH 또는 MCCH의 모니터링을 계속 수행하도록 구성되는 것을 특징으로 하는 단말.The terminal, characterized in that configured to continue to monitor the MSI, MTCH or MCCH.
PCT/KR2015/011909 2014-11-07 2015-11-06 Method and apparatus for stopping and restarting mbms service WO2016072792A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/524,507 US10448218B2 (en) 2014-11-07 2015-11-06 Method and apparatus for stopping and restarting MBMS service

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462077175P 2014-11-07 2014-11-07
US62/077,175 2014-11-07

Publications (1)

Publication Number Publication Date
WO2016072792A1 true WO2016072792A1 (en) 2016-05-12

Family

ID=55909432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011909 WO2016072792A1 (en) 2014-11-07 2015-11-06 Method and apparatus for stopping and restarting mbms service

Country Status (2)

Country Link
US (1) US10448218B2 (en)
WO (1) WO2016072792A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190087614A (en) * 2017-03-09 2019-07-24 엘지전자 주식회사 Method and apparatus for receiving an MBMS service based on a beam
EP3641351A4 (en) * 2017-05-05 2020-04-22 Huawei Technologies Co., Ltd. Multicast bearer management method and terminal device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105635984B (en) * 2014-11-07 2020-06-09 中兴通讯股份有限公司 Indication information processing method and device
JP2018085545A (en) * 2015-03-25 2018-05-31 シャープ株式会社 Terminal device, base station device, communication system, communication method, and integrated circuit
CN107426776A (en) * 2016-05-24 2017-12-01 华为技术有限公司 QoS control method and equipment
CN114390604B (en) * 2020-10-21 2023-08-25 上海交通大学 User equipment, base station, communication system and data transmission method
WO2023069709A1 (en) * 2021-10-21 2023-04-27 Google Llc Managing reception of multicast and/or broadcast services after a state transition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012010028A1 (en) * 2010-07-22 2012-01-26 中兴通讯股份有限公司 Processing method and system for mbms service, ue processing method and apparatus
US20130215761A1 (en) * 2011-03-21 2013-08-22 Zte Corporation Method and Device for Determining Resumption of Suspended Multimedia Broadcast Multicast Service, and User Equipment
US20140071878A1 (en) * 2011-05-17 2014-03-13 Zte Corporation Method and Device for Indicating MBMS Service Suspension, and User Equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2454011C2 (en) * 2006-07-24 2012-06-20 Эл Джи Электроникс Инк. Point-to-point radio channels for broadcasting service
US8547892B2 (en) * 2006-10-03 2013-10-01 Telefonaktiebolaget Lm Ericsson (Publ) Method for transmission of MBMS control information in a radio access network
CN102958000A (en) * 2011-08-19 2013-03-06 中兴通讯股份有限公司 User equipment, system and method for setting MBMS (multimedia broadcast multicast service) frequency priority
US9386425B2 (en) * 2013-03-22 2016-07-05 Mediatek Inc. Group communication over LTE eMBMS
WO2015061983A1 (en) * 2013-10-30 2015-05-07 Qualcomm Incorporated Service continuity for group communications over evolved multimedia broadcast multicast service
CN105635985B (en) * 2014-11-07 2021-01-26 中兴通讯股份有限公司 Method and device for determining suspended service and method and device for processing indication information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012010028A1 (en) * 2010-07-22 2012-01-26 中兴通讯股份有限公司 Processing method and system for mbms service, ue processing method and apparatus
US20130215761A1 (en) * 2011-03-21 2013-08-22 Zte Corporation Method and Device for Determining Resumption of Suspended Multimedia Broadcast Multicast Service, and User Equipment
US20140071878A1 (en) * 2011-05-17 2014-03-13 Zte Corporation Method and Device for Indicating MBMS Service Suspension, and User Equipment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3GPP; TSG RAN; E-UTRA: MAC protocol specification (Release 12", 3GPP TS 36.321 V12.3.0, 23 September 2014 (2014-09-23) *
ALCATEL -LUCENT ET AL.: "Solution descriptions following discussions at RAN3#85b is", R3-142528, 3GPP TSG RAN WG3 MEETING #85BIS, 10 October 2014 (2014-10-10) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190087614A (en) * 2017-03-09 2019-07-24 엘지전자 주식회사 Method and apparatus for receiving an MBMS service based on a beam
CN110546967A (en) * 2017-03-09 2019-12-06 Lg电子株式会社 method and device for receiving MBMS service based on wave beam
KR102147932B1 (en) 2017-03-09 2020-08-25 엘지전자 주식회사 Method and apparatus for receiving MBMS service based on beam
CN110546967B (en) * 2017-03-09 2021-10-01 Lg电子株式会社 Method and device for receiving MBMS service based on wave beam
US11272324B2 (en) 2017-03-09 2022-03-08 Lg Electronics Inc. Method and apparatus for receiving MBMS service on basis of beam
EP3641351A4 (en) * 2017-05-05 2020-04-22 Huawei Technologies Co., Ltd. Multicast bearer management method and terminal device
RU2739290C1 (en) * 2017-05-05 2020-12-22 Хуавей Текнолоджиз Ко., Лтд. Method of multiaddress unidirectional channel control and terminal device
US11240640B2 (en) 2017-05-05 2022-02-01 Huawei Technologies Co., Ltd. Multicast bearer management method and terminal device

Also Published As

Publication number Publication date
US10448218B2 (en) 2019-10-15
US20170339531A1 (en) 2017-11-23

Similar Documents

Publication Publication Date Title
WO2016068528A1 (en) Method and apparatus for providing service continuity in mbsfn service boundary area
WO2013151360A1 (en) Method for reselecting mbms-based cells in wireless communication systems, and apparatus for supporting same
WO2016148475A1 (en) Method and device for transmitting and receiving list of cells providing scptm service
WO2016072792A1 (en) Method and apparatus for stopping and restarting mbms service
WO2011149262A2 (en) Method and apparatus for reporting a logged measurement in a wireless communication system
WO2017039211A1 (en) Method and device for performing cell reselection by terminal
WO2011136557A2 (en) Method and apparatus for reporting a cell quality measurement result for mdt by a terminal
WO2013025033A2 (en) Device and method for supporting continuity of mbms
WO2015141982A1 (en) Method and apparatus for maintaining mbms mdt configuration in wireless communication system
WO2012021003A2 (en) Apparatus and method of reporting logged measurement in wireless communication system
WO2015137730A1 (en) Method and apparatus for transmitting multimedia broadcast supplement for public warning system in wireless communication system
WO2011099799A2 (en) Method and apparatus for delivering measurement result information in mobile communication system
WO2011099725A2 (en) Apparatus and method of reporting logged measurement in wireless communication system
WO2017026836A1 (en) Sidelink ue information reporting method by ue in wireless communication system and ue using same
WO2016018012A1 (en) Method and apparatus for performing access control for wlan interworking in wireless communication system
WO2011093681A2 (en) Measurement method for generating cell coverage map and device for the same
WO2017026674A1 (en) Method and device for terminal receiving service continuity indicator
WO2016144074A1 (en) Method and apparatus for reducing paging signaling
WO2018088837A1 (en) Method for terminal performing cell reselection procedure, and device supporting same
WO2014069961A1 (en) Interested service-based cell reselection method in wireless communication system, and apparatus for supporting same
WO2012021004A2 (en) Method and apparatus for reporting a logged measurement in a wireless communication system
WO2015108215A1 (en) Communication method on basis of lowest priority information in wireless communication system and device for supporting same
WO2013112033A1 (en) Method for re-selecting cell in wireless communication system, and apparatus therefor
WO2011055958A2 (en) Method and apparatus for measuring a channel state when receiving system information on a neighboring cell in a wireless communication system
WO2016163644A1 (en) Method and apparatus for performing cell reselection procedures for load distribution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856849

Country of ref document: EP

Kind code of ref document: A1