WO2016072564A1 - Transmission section allocation device and allocation method using distributed multi-coloring algorithm of wireless body area network - Google Patents

Transmission section allocation device and allocation method using distributed multi-coloring algorithm of wireless body area network Download PDF

Info

Publication number
WO2016072564A1
WO2016072564A1 PCT/KR2015/001594 KR2015001594W WO2016072564A1 WO 2016072564 A1 WO2016072564 A1 WO 2016072564A1 KR 2015001594 W KR2015001594 W KR 2015001594W WO 2016072564 A1 WO2016072564 A1 WO 2016072564A1
Authority
WO
WIPO (PCT)
Prior art keywords
body area
wireless body
color
wban
priority
Prior art date
Application number
PCT/KR2015/001594
Other languages
French (fr)
Korean (ko)
Inventor
조진성
이지은
유재현
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Publication of WO2016072564A1 publication Critical patent/WO2016072564A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control

Definitions

  • the present invention relates to a wireless body area network (WBAN), and more particularly, to a technique for allocating a transmission section of a WBAN.
  • WBAN wireless body area network
  • a wireless body area network refers to a communication technology in which various wireless devices implanted in or attached to a human body or which are attached to the human body are performed in an area of 3M or less around the human body.
  • WBAN is used to transmit information about a user's body or information collected from the user's body, and the field of application is being expanded to various entertainments.
  • transmission intervals between user-specific WBANs may overlap and collisions may occur. If a collision occurs due to overlapping transmission intervals between WBANs for each user, data transmission of a device configuring the WBAN may fail or an error may occur.
  • Republic of Korea Patent Publication No. 10-2014-0037683 discloses a method for solving the problem of overlapping the transmission interval between the WBAN.
  • the Republic of Korea Patent Publication No. 10-2014-0037683 includes the content of allocating the transmission interval of the WBAN using the Cournot competition, but where the overlap occurs due to high WBAN density, equally to a number of WBAN It is difficult to assign a transmission interval.
  • An object of the present invention is to provide a transmission interval allocation apparatus and an allocation method for reducing delay and loss of data transmitted by a WBAN by avoiding mutual interference in a space where a plurality of WBANs are concentrated.
  • the transmission section allocation apparatus using the distributed multi-coloring algorithm collects overlapping information between two or more Wireless Body Area Networks (WBANs), and determines an overlapping state between two or more Wireless Body Area Networks.
  • the superposition information collector a priority calculator that calculates priorities of two or more wireless body area networks based on a preset traffic type priority level and a traffic volume priority level, and a color corresponding to the time slot based on the superimposed state. It includes a transmission section allocator for repeatedly mapping and assigning overlapping wireless body area network to have different colors.
  • the overlapping information collecting unit collects 2-hop overlapping information through 2-hop message exchange between two or more wireless body area networks, and simultaneously exists at 1-hop and 2-hop distances according to the collected overlapping information.
  • the network is determined to be in an overlapping state.
  • the traffic type priority level may be set through weights assigned according to the type of data transmitted from the wireless body area network.
  • the priority calculator calculates a priority by averaging traffic type priority levels and traffic volume priority levels of one or more sensors included in each of the two or more wireless body area networks. Priority is Can be calculated by
  • the transmission section allocator generates a distributed multi-coloring algorithm table by mapping a wireless body area network with a color sequence according to randomly allocated color and overlapping information, and generates a distributed multi-coloring algorithm table based on the generated distributed multi-coloring algorithm table. If a color is assigned and the same color is assigned to the 1-hop wireless body area network, then one of the wireless body area networks can be placed at rest based on priority.
  • the transmission section allocator may perform an initial coloring process such that the wireless body area network overlapping the colors corresponding to the time slots have different colors before performing the mapping process.
  • WBANs Wireless Body Area Networks
  • a preset traffic type priority level a traffic volume priority
  • An apparatus and method for allocating a transmission interval using a distributed multi-coloring algorithm of a wireless body area network can prevent interference between WBANs in a densely populated region of WBANs, and allocate an optimal transmission interval to each WBAN so that the WBAN Can reduce data loss and transmission delay.
  • FIG. 1 is a block diagram showing an embodiment of a transmission interval allocation apparatus using a distributed multi-coloring algorithm of a human body wireless network according to the present invention.
  • FIG. 2A is a block diagram illustrating an example of an overlapping state of a transmission interval allocation apparatus using a distributed multi-coloring algorithm of a human body wireless network according to an embodiment of the present invention.
  • FIG. 2B is a diagram for explaining a process of applying a distributed multi-coloring algorithm of a human body wireless network according to an embodiment of the present invention to the example of FIG. 2A.
  • FIG. 3 is a diagram for comparing a distributed multi-coloring algorithm and a conventional coloring algorithm of an apparatus for allocating a transmission interval using a distributed multi-coloring algorithm of a human body wireless network according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a transmission section allocation method using a distributed multi-coloring algorithm of a human body wireless network according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing an embodiment of a transmission interval allocation apparatus using a distributed multi-coloring algorithm of a human body wireless network according to the present invention.
  • the apparatus for allocating a transmission interval 100 using a distributed multi-coloring algorithm of a human body wireless network includes an overlapping information collecting unit 110, a priority calculating unit 120, and a transmission interval allocating unit 130. ).
  • the Graph Coloring algorithm is a problem in which each part of the graph is colored, such as vertices or sides, and there are various restrictions on the method of coloring.
  • the graph coloring algorithm if each node has information of neighboring nodes, this information can be collected to define the coexistence situation as a graph.
  • the Distributed Multi-Coloring Algorithm algorithm constructs a set of WBANs with low interference because they are not adjacent through a graph coloring algorithm in a plurality of WBAN situations. In the standard, a set of WBANs alternates between an active section and an inactive section in accordance with an active time synchronization.
  • the overlapping N WBANs operate based on a timeline.
  • the coordinator of each WBAN exchanges messages between 1-hop and 2-hop during synchronization, and all colors are mapped to integers starting with 1.
  • the overlapping information calculating unit 110 collects overlapping information between two or more WBANs. Overlapping information between two or more WBANs can be collected from 2-hop information between WBANs. Assuming each WBAN is one node, one WBAN broadcasts its information to a neighboring node (another WBAN). Then, the WBAN receiving the information transfers the received information again. Through this, each node gets two-hop overlap information.
  • the overlapping information calculating unit 110 collects overlapping information between two hops through information exchange between two or more WBANs.
  • the overlapping information calculator 110 may check the overlapping state (interference) between two or more WBANs through the collected overlapping information.
  • the overlap state means the number of completely overlapping forms.
  • the overlapping information calculator 110 may generate an overlapping diagram according to the overlapping state identified through the overlapping information. The process of setting the overlapping state through the overlapping information calculating unit 110 through the overlapping information will be described later in FIGS. 2A and 2B.
  • the priority calculator 120 calculates a priority between two or more WBANs based on the traffic type priority level and the traffic volume priority level.
  • Table 1 shows an example of traffic type priority levels of nodes constituting the WBAN.
  • One WBAN may consist of one or more nodes.
  • the user may reflect the process of setting the priority level of the traffic type according to the type of the WBAN and the type of the current place.
  • the traffic type priority may be set through weights given according to the type of data delivered by the WBAN. For example, a WBAN that delivers an emergency or medical event, or delivers medical data or network control data can be given a high priority. On the other hand, low priority may be given to background data or best effort data.
  • the traffic type priority level shown in Table 1 is one example that is not limited to the present invention, and may be set to another priority according to the type and environment of the WBAN.
  • Table 2 shows an example of traffic volume priority levels.
  • the traffic volume priority level shown in Table 2 is a priority level set based on the amount of data transmitted from each node constituting the WBAN.
  • the traffic volume priority levels of Table 2 are set as one embodiment and may be set differently according to the type and environment of the WBAN.
  • Each WBAN priority may be calculated by Equation 1.
  • Wn represents a priority
  • m represents the number of sensors (nodes) constituting the WBAN
  • p1 i represents a traffic type priority level of an individual node
  • p2 i represents a traffic volume priority level of an individual node.
  • the priority calculator 120 calculates a priority of the WBAN based on an average of the sum of the traffic type priority level p1 i of each node and the traffic volume priority level p2 i of each node.
  • the transmission section allocator 130 Before allocating the transmission interval to the two or more WBANs using the graph coloring algorithm, the transmission section allocator 130 first allocates the colors included in the color palette to each of the two or more WBANs without information exchange. Perform the coloring process.
  • the color palette represents each transmission section available in the system in one color, and different colors included in the color palette represent each transmission section available.
  • the color palette indicating the available transmission interval may be represented by an abbreviation indicating color for convenience.
  • the size of a color palette which is a collection of colors, is fixed at k, the number of colors given.
  • the color palette may be represented by mapping the color to an integer starting from 1.
  • the number k of a given color means the total time for the entire network to transmit data once, i.e. the number of timeslots.
  • Each color included in the color palette means one timeslot.
  • each color e.g., R / G / B / Y
  • R is time1
  • G Indicates that they do not overlap with each other using time2.
  • the transmission section allocator 130 compares the priority calculated by Equation 1 to have a color assigned with a WBAN having a high priority, Randomly assigns colors back to unassigned WBANs.
  • the transmission section allocator 130 assigns the same color to 1-hop neighbors and has the same priority, randomly assigns numbers 1 to 100 to the WBANs to which the same color is assigned, respectively, so that the number is low. You can assign a new color to the WBAN. If the same integer is assigned, it can be repeated again within twice the previous range.
  • the transmission section allocator 130 repeats the above process and allocates initial colors to all WBANs by allocating different colors to overlapping WBANs.
  • the transmission section allocator 130 performs a multi-coloring process of dynamically allocating a transmission section to two or more WBANs to which an initial color is allocated using a distributed multi-coloring algorithm.
  • the transmission section allocator 130 defines the number of intersections of 1-hop information and 2-hop information collected from two or more WBANs in an overlapping degree.
  • the transmission section allocator 130 generates the color sequence of each WBAN based on this, sets the color order in the order of the generated sequence, and assigns the color sequence to the WBAN.
  • the color sequence means that the colors representing the time slots are repeatedly listed in the same order. In the process of assigning colors according to the color sequence, if the same color is allocated between 1-hop WBANs, priority is compared to occupy an advantage.
  • the transmission section allocator 130 uses the color assigned in the high priority WBAN, and the low priority WBAN does not receive the color in the sequence and pauses data transmission. Exceptionally, if the initial color of the 1-hop WBAN is the same as the overlap to which it belongs, it may be randomly assigned colors again.
  • Table 3 shows a distributed multi-coloring algorithm of the transmission section allocator 130.
  • a more detailed distributed multi-coloring algorithm and a transmission interval allocation process using the same will be described later in FIGS. 2A and 2B.
  • the transmission section allocating apparatus 100 allocates different colors to the overlapping WBANs through the above-described process. Each color represents one different time slot.
  • the transmission interval allocation apparatus 100 according to the present invention allows different transmission intervals to be always allocated between overlapping WBANs through the above-described distributed coloring algorithm. Thus, each WBAN can forward packets without interfering with each other.
  • FIG. 2A is a block diagram illustrating an example of an overlapping state of a transmission interval allocation apparatus using a distributed multi-coloring algorithm of a human body wireless network according to an embodiment of the present invention.
  • FIG. 2B is a diagram for explaining a process of applying a distributed multi-coloring algorithm of a human body wireless network according to an embodiment of the present invention to the example of FIG. 2A.
  • the example of FIG. 2A includes a total of 11 WBANs, with each circle representing the network range of each WBAN.
  • the overlapping information collecting unit 110 collects overlapping information through two-hop message exchange of the WBAN, and checks the overlapping state between 11 WBANs.
  • Table 4 shows overlapping information and a degree of overlap calculated by the overlapping information calculating unit 110.
  • WBAN No. 1 in Table 4 WBAN Nos. 2, 3, and 4 exist at 1 hop distance of WBAN No. 1, and WBANs 2, 3, 4, and 5 exist at 2 hop distances.
  • WBANs 1, 2, and 3 exist simultaneously at 1 hop distance and 2 hop distance from WBAN 1. In order to be in both WBAN 1 and 1 hop / 2 hop distances, they must overlap each other. Therefore, it can be seen that WBAN No. 1 and WBAN Nos. 2, 3, and 4 are overlapping states (overlapping relationships).
  • Table 2b is a diagram showing the degree of overlap between the 11 WBAN in the form of diagram based on the degree of overlap according to Table 4.
  • a connection line between WBANs indicates that two WBANs overlap each other.
  • the transmission section allocator 130 assigns initial colors to each of the WBANs 1 to 11 through an initial coloring process.
  • the number k of colors included in the color palette is assumed to be 4, and the colors included in the color palette are assumed to be red (R), green (G), blue (B), and yellow (Y).
  • Table 5 shows a distributed multi-coloring algorithm table indicating colors assigned to WBANs 1 to 11 by applying the distributed multi-coloring algorithm. For convenience of description, it is divided into the first group of 1/2/3/4 WBAN, the second group of 5/6/7 WBAN and the third group of 8/9/10/11 WBAN according to the overlapping degree. It was.
  • the transmission section allocator 130 generates a color sequence of each WBAN in the group, and allocates the order of colors in the order of the generated color sequences.
  • the transmission section allocator 130 repeatedly allocates a color corresponding to the time slot for each group.
  • the transmission section allocator 130 first performs an initial coloring process through random selection.
  • the transmission section allocating unit 130 arbitrarily assigns colors to all WBANs in a color palette made within a given number of colors k. After having the color, each WBAN may broadcast its color to the transmission section allocator 130. And, if the same color is allocated to the 1-hop neighboring WBAN of the WBAN, the transmission section allocator 130 compares the priorities of the WBANs calculated by the priority calculator 120 to assign a new color to the WBAN having a lower priority. Can be assigned. By repeating the same process, the transmission section allocator 130 may assign initial colors to all WBANs so that the same colors are not allocated to the overlapping WBANs.
  • the first to fourth WBANs included in the first group group are assigned initial colors in the order of B, G, Y, and R.
  • WBANs 5 to 7 included in the second group are assigned initial colors in the order of B, R, and G.
  • BBs 8 to 11 included in the third group group are G, B, Initial colors are assigned in the order of Y and R.
  • the transmission section allocator 130 generates a distributed multi-coloring algorithm table as shown in Table 5 by matching WBAN for each group with a table that sequentially repeats the colors included in the color palette based on the overlapping degree.
  • the colors included in the color palette are repeatedly arranged in the order of R, G, B, and Y to generate a color table.
  • four colors are repeatedly assigned by forming one color period in the order of R, G, B, and Y.
  • the order of colors is arbitrarily assumed for convenience of description, and the order of colors can be freely set.
  • the transmission section allocator 130 waits for the overlapping degree of the corresponding WBAN according to the color sequence (color order), and then continuously assigns colors.
  • the first color WBAN to the fourth WBAN are assigned initial colors in the order of B, G, Y, and R, respectively.
  • WBAN Nos. 5 to 7 are respectively assigned to B, R, and G.
  • the initial colors are assigned in the order of.
  • the colors did not match the WBAN of the second group in the 10th and 12th of the second group.
  • the 10th position of the second group should be assigned color G to WBAN No. 6, but WBAN No. 8, which is in a 1-hop relationship with WBAN No. 6, is continuously assigned G. Therefore, only one WBAN among WBAN # 6 and # 8 WBAN located in the 1-hop relationship may be assigned the color G. if. Assuming that the priority of WBAN No. 6 is lower than the priority of WBAN No. 8, the transmission section allocator 130 assigns color G to WBAN having a high priority. In addition, the transmission section allocator 130 does not assign color to the WBAN No. 6 so that the WBAN No.
  • the transmission section allocator 130 allocates Y to # 3 WBAN having a higher priority by comparing the priorities.
  • WBAN # 5 makes no data at rest.
  • the transmission interval allocation apparatus 100 may allocate a limited transmission interval through a distributed multi-coloring algorithm to prevent overlap between a plurality of WBANs and to minimize a rest state of the WBANs. .
  • Table 6 shows an example of the color sequence generated in the transmission section allocator 130 when the color number k of the color palette is 4 and 5 in the embodiment of FIG.
  • the color number k of the color palette is 4, colors are assigned to the same color sequence as described above.
  • the color 1/2/3/4 WBAN belonging to the first group and the 8/9/10/11 WBAN belonging to the third group have the same number as the color number, The same color can be fixedly assigned without changing.
  • WBANs 5/6/7 belonging to the second group may be assigned with the color continuously changed.
  • the number of colors (k) of the color palette is 5, the colors are assigned to the WBANs according to the color sequence of Table 5.
  • 3 is a diagram illustrating a comparison between a distributed multi-coloring algorithm and a conventional coloring algorithm of a transmission section allocation apparatus using a distributed multi-coloring algorithm of a human body wireless network according to an embodiment of the present invention.
  • a transmission interval allocation apparatus using a distributed multi-coloring algorithm of a human body wireless network according to the present invention can increase spatial utilization ratio by allocating colors (transmission intervals) to two or more WBANs using a distributed multi-coloring algorithm. have.
  • the 10th position of the second group should be assigned color G to WBAN No. 6, but WBAN No. 6 and 1- WBAN No. 8 in a hop relationship is continuously assigned G. Therefore, only one WBAN among WBAN # 6 and # 8 WBAN located in the 1-hop relationship may be assigned the color G. if. Assuming that the WBAN included in the second group has a lower priority than the WBAN included in the first group and the third group, the transmission section allocator has a lower priority than that of the WBAN 6 in comparison with the 8 WBAN. Assign color G to WBAN # 8. And, the transmission section allocator does not assign color to WBAN No.
  • WBAN No. 6 so that WBAN No. 6 during a sequence does not transmit data.
  • the transmission section allocator 130 allocates Y to WBAN No. 3 by comparing the priorities and corresponding sequence. 5 times, WBAN puts the data in a restless state. That is, the 10th WBAN of the second group and the 5th WBAN of the 12th group have the same color as the WBANs in the 1-hop relationship, and therefore, colors are not assigned according to priority and do not transmit data in the sequence. .
  • the color table 302 to which Complete Coloring is applied is repeated in the same group as the first group and the third group, thereby repeating the second group in the WBAN included in the second group in the fourth sequence of every period. No color is assigned and no data is sent.
  • complete coloring results in unallocated colors (idle resources in the transmission section) within the same sequence.
  • unallocated colors are generated like Complete Coloring.
  • the number of colors k is the same as the minimum number of colors required by the network, the same result as the complete coloring is obtained.
  • the color table 302 with complete coloring and the color table with incomplete coloring ( 303) is the first assigned color is fixedly assigned. Therefore, in the second group where the degree of overlap is smaller than the number of colors, since only three WBANs exist, one color remains and an idle resource of a transmission section is generated.
  • the predetermined color is not fixed but progressed by a color sequence. Therefore, in the case of the second group in which the degree of overlap is smaller than the number of colors, R and Y colors may be allocated to WBAN No. 6.
  • the transmission section allocating apparatus 100 can increase the space utilization rate of the WBAN transmission section by minimizing idle resources in the transmission section by using a distributed multi-coloring algorithm.
  • 4 is a flowchart illustrating a transmission section allocation method using a distributed multi-coloring algorithm of a human body wireless network according to an example.
  • the transmission section allocation apparatus first collects overlapping information between two or more WBANs (401). Overlapping information between two or more WBANs can be collected from 2-hop information between WBANs. Assuming each WBAN is one node, one WBAN broadcasts its information to a neighboring node (another WBAN). Then, the WBAN receiving the information transfers the received information again. Through this, each node gets two-hop overlap information.
  • the transmission section allocation apparatus collects two-hop overlapping information through information exchange between two or more WBANs.
  • the apparatus for allocating transmission intervals calculates an overlapping degree between two or more WBANs through the collected overlapping information (402).
  • the transmission section allocation apparatus calculates a priority between two or more WBANs based on a preset traffic type priority level and a traffic volume priority level (403).
  • Traffic type priority levels and traffic volume priority levels are described in Table 1 and Table 2 above.
  • the user may reflect the process of setting the priority level of the traffic type according to the type of the WBAN and the type of the current place.
  • the traffic type priority may be set through weights given according to the type of data delivered by the WBAN.
  • the traffic volume priority level shown in Table 2 is a priority level set based on the amount of data transmitted from each node constituting the WBAN.
  • the transmission section allocation apparatus may calculate the priority based on Equation 1 described above.
  • the transmission section allocation apparatus calculates the priority of each WBAN based on an average of the sum of the traffic type priority levels of the individual nodes and the traffic volume priority level of the individual nodes.
  • the transmission section allocating apparatus performs an initial coloring process of randomly allocating colors included in a color palette to each of two or more WBANs based on the degree of overlap (404).
  • the color palette represents each transmission section available in the system in one color, and different colors included in the color palette represent each transmission section available.
  • the color palette indicating the available transmission interval may be represented by an abbreviation indicating color for convenience.
  • the size of a color palette, which is a collection of colors, is fixed at k, the number of colors given.
  • the color palette may be represented by mapping the color to an integer starting from 1.
  • the transmission section allocating apparatus has a color assigned with a WBAN having a high priority by comparing the priority calculated by Equation 1 when the same color is allocated among one-hop neighbors based on the overlapping degree. In addition, randomly assigns colors back to WBANs that have not been assigned a color. As an example, the transmission section allocation apparatus randomly assigns a number from 1 to 100 to each WBAN assigned the same color when the same color is assigned among the 1-hop neighbors and has the same priority, so that a new WBAN is assigned to the lower number. You can assign colors. If the same integer is assigned, it can be repeated again within twice the previous range. The transmission section allocating apparatus repeats this process and allocates initial colors to all WBANs by allocating different colors to overlapping WBANs.
  • the transmission section allocation apparatus performs a multi-coloring process of dynamically allocating a transmission section to two or more WBANs to which an initial color is allocated using a distributed multi-coloring algorithm (405).
  • the transmission section allocation apparatus defines a case where the 1-hop information and 2-hop information collected from two or more WBANs intersect.
  • the transmission section allocation apparatus generates a color sequence of each WBAN based on this, and assigns the color sequence to the WBAN by setting the color order in the order of the generated sequence. In the process of assigning colors according to a sequence, if the same color is allocated between 1-hop WBANs, the priority is compared to occupy an advantage.
  • the transmission section allocator uses the color assigned in the high priority WBAN, and the low priority WBAN does not receive the color in the sequence and pauses data transmission. Exceptionally, if the initial color of the 1-hop WBAN is the same as the overlap to which it belongs, it may be randomly assigned colors again.
  • the more detailed distributed multi-coloring algorithm and the transmission interval allocation process using the same are applied to the techniques described in FIGS. 2A and 2B.
  • the WBAN to which color is assigned transmits and receives data through a transmission section corresponding to the assigned color according to the color sequence. In the present invention, different colors mean different timeslots.
  • the transmission interval allocation method according to the present invention allows different transmission intervals to be always allocated between overlapping WBANs through the above-described distributed coloring algorithm. Thus, each WBAN can forward packets without interfering with each other.
  • the present invention including the above-described contents can be produced by a computer program. And code and code segments constituting the program can be easily inferred by a computer programmer in the art.
  • the written program may be stored in a computer-readable recording medium or information storage medium, and read and executed by a computer to implement the method of the present invention.
  • the recording medium may include any type of computer readable recording medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A transmission section allocation device using a distributed multi-coloring algorithm, according to the present invention, comprises: an overlapping information collection unit collecting overlapping information between two or more wireless body area networks (WBANs) so as to detect an overlapping state between the two or more WBANs; a priority calculation unit for calculating priorities of the two or more WBANs on the basis of a preset traffic type priority level and traffic volume priority level; and a transmission section allocation unit for repetitively mapping and allocating a color corresponding to a time slot on the basis of the overlapping state such that overlapped WBANs have different colors.

Description

무선 신체 영역 네트워크의 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 장치 및 할당 방법Transmission Segmentation Allocation Device and Allocation Method Using Distributed Multi-Coloring Algorithm of Wireless Body Area Network
본 발명은 무선 신체 영역 네트워크(Wireless Body Area Network, WBAN)에 관한 것으로, 보다 상세하게는 WBAN의 전송구간 할당에 관한 기술이다.The present invention relates to a wireless body area network (WBAN), and more particularly, to a technique for allocating a transmission section of a WBAN.
무선 신체 영역 네트워크(WBAN)는 인체 내부에 이식되거나, 의류 및 인체에 부착된 여러 무선 장치를 인체를 중심으로 3M이내의 영역에서 이루어지는 통신 기술을 나타낸다. WBAN은 사용자의 신체에 대한 정보 또는 사용자의 신체로부터 수집되는 정보를 전송하는데 이용되고 있으며, 다양한 엔터테인먼트로 활용 분야가 넓어지고 있다. 하지만, WBAN을 구비한 사용자의 밀집도가 높은 지역에서는 사용자 별 WBAN 사이의 전송 구간이 중첩되어, 충돌이 발생할 수 있다. 사용자 별 WBAN 사이의 전송 구간이 중첩되어 충돌이 발생하는 경우, WBAN을 구성하는 장치의 데이터 전송이 실패하거나 오류가 발생할 수 있다. 이와 같은 WBAN의 중첩 문제를 해결하기 위해 종래의 경우 개별 WBAN 사이의 우선순위를 부여하거나, 트래픽을 줄이는 방법을 이용하여 왔다. 하지만, 이와 같은 해결 방안은 우선순위가 높은 WBAN이 전송구간을 점유하기 때문에, 우선순위가 낮은 WBAN은 전송구간을 정상적으로 할당 받지 못하는 문제가 발생할 수 있다.A wireless body area network (WBAN) refers to a communication technology in which various wireless devices implanted in or attached to a human body or which are attached to the human body are performed in an area of 3M or less around the human body. WBAN is used to transmit information about a user's body or information collected from the user's body, and the field of application is being expanded to various entertainments. However, in an area with high density of users with WBANs, transmission intervals between user-specific WBANs may overlap and collisions may occur. If a collision occurs due to overlapping transmission intervals between WBANs for each user, data transmission of a device configuring the WBAN may fail or an error may occur. In order to solve the overlapping problem of the WBAN, a conventional method has been used to give priority to individual WBANs or reduce traffic. However, in this solution, since the high priority WBAN occupies the transmission section, the WBAN having a low priority may not be properly allocated the transmission section.
대한민국 공개특허 제10-2014-0037683호는 WBAN 사이의 전송 구간 중첩 문제를 해결하기 위한 방안을 개시하고 있다. 하지만, 대한민국 공개특허 제10-2014-0037683호는 쿠르노 경쟁을 이용하여 WBAN의 전송 구간을 할당하는 내용을 포함하고 있으나, 높은 WBAN 밀집도로 인해 중첩이 발생하는 곳에서, 다수의 WBAN에게 공평하게 전송 구간을 할당하기 어렵다.Republic of Korea Patent Publication No. 10-2014-0037683 discloses a method for solving the problem of overlapping the transmission interval between the WBAN. However, the Republic of Korea Patent Publication No. 10-2014-0037683 includes the content of allocating the transmission interval of the WBAN using the Cournot competition, but where the overlap occurs due to high WBAN density, equally to a number of WBAN It is difficult to assign a transmission interval.
본 발명이 해결하고자 하는 과제는 다수의 WBAN이 밀집된 공간에서 상호간의 간섭을 회피하여 WBAN이 전송하는 데이터의 지연 및 손실을 줄이기 위한 전송구간 할당 장치 및 할당 방법을 제공하는 것이다.An object of the present invention is to provide a transmission interval allocation apparatus and an allocation method for reducing delay and loss of data transmitted by a WBAN by avoiding mutual interference in a space where a plurality of WBANs are concentrated.
본 발명에 따른 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 장치는 둘 이상의 무선 신체 영역 네트워크(Wireless Body Area Network, WBAN) 사이의 중첩정보를 수집하여, 둘 이상의 무선 신체 영역 네트워크 사이의 중첩 상태를 파악하는 중첩정보 수집부, 기 설정된 트래픽 유형 우선순위 레벨 및 트래픽 볼륨 우선순위 레벨에 기초하여 둘 이상의 무선 신체 영역 네트워크의 우선순위를 산출하는 우선순위 산출부 및 중첩 상태에 기초하여 타임 슬롯에 대응하는 컬러를 중첩된 무선 신체 영역 네트워크가 서로 다른 컬러를 가지도록 반복적으로 매핑하여 할당하는 전송구간 할당부를 포함한다.The transmission section allocation apparatus using the distributed multi-coloring algorithm according to the present invention collects overlapping information between two or more Wireless Body Area Networks (WBANs), and determines an overlapping state between two or more Wireless Body Area Networks. The superposition information collector, a priority calculator that calculates priorities of two or more wireless body area networks based on a preset traffic type priority level and a traffic volume priority level, and a color corresponding to the time slot based on the superimposed state. It includes a transmission section allocator for repeatedly mapping and assigning overlapping wireless body area network to have different colors.
중첩정보 수집부는 둘 이상의 무선 신체 영역 네트워크 사이의 2-홉간 메시지 교환을 통해, 2-홉간 중첩정보를 수집하고, 수집된 중첩정보에 따라 1-홉 및 2-홉 거리에 동시에 존재하는 무선 신체 영역 네트워크는 중첩 상태인 것으로 판단한다. 그리고, 트래픽 유형 우선 순위 레벨은 무선 신체 영역 네트워크에서 전달하는 데이터의 종류에 따라 부여된 가중치를 통해 설정될 수 있다. The overlapping information collecting unit collects 2-hop overlapping information through 2-hop message exchange between two or more wireless body area networks, and simultaneously exists at 1-hop and 2-hop distances according to the collected overlapping information. The network is determined to be in an overlapping state. In addition, the traffic type priority level may be set through weights assigned according to the type of data transmitted from the wireless body area network.
우선순위 산출부는 둘 이상의 무선 신체 영역 네트워크 각각에 포함된 하나 이상의 센서의 트래픽 유형 우선순위 레벨 및 트래픽 볼륨 우선순위 레벨을 평균하여 우선순위를 산출한다. 우선순위는
Figure PCTKR2015001594-appb-I000001
에 의해 산출될 수 있다.
The priority calculator calculates a priority by averaging traffic type priority levels and traffic volume priority levels of one or more sensors included in each of the two or more wireless body area networks. Priority is
Figure PCTKR2015001594-appb-I000001
Can be calculated by
전송구간 할당부는 무작위로 할당된 컬러 및 중첩정보에 따라 무선 신체 영역 네트워크를 컬러 시퀀스와 매핑하여 분산 멀티 컬러링 알고리즘 테이블을 생성하고, 생성된 분산 멀티 컬러링 알고리즘 테이블에 기초하여 둘 이상의 무선 신체 영역 네트워크에 컬러를 할당하며, 1-홉 사이의 무선 신체 영역 네트워크에 동일한 컬러가 할당되면, 우선순위에 기초하여 어느 하나의 무선 신체 영역 네트워크를 휴식 상태로 만들 수 있다.The transmission section allocator generates a distributed multi-coloring algorithm table by mapping a wireless body area network with a color sequence according to randomly allocated color and overlapping information, and generates a distributed multi-coloring algorithm table based on the generated distributed multi-coloring algorithm table. If a color is assigned and the same color is assigned to the 1-hop wireless body area network, then one of the wireless body area networks can be placed at rest based on priority.
그리고, 전송구간 할당부는 매핑 과정을 수행하기 이전에 중첩 상태에 기초하여 상기 타임 슬롯에 대응하는 컬러를 중첩된 무선 신체 영역 네트워크가 서로 다른 컬러를 가지도록 초기 컬러링 과정을 수행할 수 있다.The transmission section allocator may perform an initial coloring process such that the wireless body area network overlapping the colors corresponding to the time slots have different colors before performing the mapping process.
본 발명에 따른 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 방법은 둘 이상의 무선 신체 영역 네트워크(Wireless Body Area Network, WBAN) 사이의 중첩정보를 수집하는 단계, 기 설정된 트래픽 유형 우선순위 레벨 및 트래픽 볼륨 우선순위 레벨에 기초하여 둘 이상의 무선 신체 영역 네트워크의 우선순위를 산출하는 단계, 둘 이상의 무선 신체 영역 네트워크 각각에 타임 슬롯에 대응하는 컬러를 1-홉 사이의 무선 신체 영역 네트워크가 서로 다른 컬러를 가지도록 무작위로 할당하는 단계 및 중첩된 무선 신체 영역 네트워크가 서로 다른 컬러를 가지도록 타임 슬롯에 대응하는 컬러를 반복적으로 매핑하여 무선 신체 영역 네트워크에 할당하는 단계를 포함할 수 있다.In the transmission interval allocation method using the distributed multi-coloring algorithm according to the present invention, the step of collecting overlapping information between two or more Wireless Body Area Networks (WBANs), a preset traffic type priority level, and a traffic volume priority Calculating priorities of the at least two wireless body area networks based on the level, randomizing the colors corresponding to the time slots in each of the at least two wireless body area networks such that the one-hop wireless body area network has different colors; And repeatedly assigning a color corresponding to the time slot so that the overlapped wireless body area networks have different colors and assigning the same to the wireless body area network.
본 발명에 따른 무선 신체 영역 네트워크의 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 장치 및 할당 방법은 WBAN이 밀집된 영역에서, WBAN 상호간의 간섭을 막을 수 있으며, 각각의 WBAN에 최적의 전송구간을 할당하여 WBAN의 데이터 손실 및 전송 지연을 줄일 수 있다.An apparatus and method for allocating a transmission interval using a distributed multi-coloring algorithm of a wireless body area network according to the present invention can prevent interference between WBANs in a densely populated region of WBANs, and allocate an optimal transmission interval to each WBAN so that the WBAN Can reduce data loss and transmission delay.
도 1은 본 발명에 따른 인체 무선 네트워크의 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 장치의 일 실시예를 나타내는 구성도이다.1 is a block diagram showing an embodiment of a transmission interval allocation apparatus using a distributed multi-coloring algorithm of a human body wireless network according to the present invention.
도 2a는 본 발명의 일 실시예에 따른 인체 무선 네트워크의 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 장치의 중첩 상태의 일례를 나타내는 구성도이다.2A is a block diagram illustrating an example of an overlapping state of a transmission interval allocation apparatus using a distributed multi-coloring algorithm of a human body wireless network according to an embodiment of the present invention.
도 2b는 본 발명의 일 실시예에 따른 인체 무선 네트워크의 분산 멀티 컬러링 알고리즘을 도 2a의 일례에 적용하는 과정을 설명하기 위한 도면이다. FIG. 2B is a diagram for explaining a process of applying a distributed multi-coloring algorithm of a human body wireless network according to an embodiment of the present invention to the example of FIG. 2A.
도 3은 본 발명의 일 실시예에 따른 인체 무선 네트워크의 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 장치의 분산 멀티 컬러링 알고리즘과 종래의 컬러링 알고리즘을 비교하기 위한 도면이다.FIG. 3 is a diagram for comparing a distributed multi-coloring algorithm and a conventional coloring algorithm of an apparatus for allocating a transmission interval using a distributed multi-coloring algorithm of a human body wireless network according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 인체 무선 네트워크의 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 방법을 나타내는 흐름도이다.4 is a flowchart illustrating a transmission section allocation method using a distributed multi-coloring algorithm of a human body wireless network according to an embodiment of the present invention.
이하, 본 발명의 실시예를 첨부된 도면들을 참조하여 상세하게 설명한다. 본 명세서에서 사용되는 용어 및 단어들은 실시예에서의 기능을 고려하여 선택된 용어들로서, 그 용어의 의미는 발명의 의도 또는 관례 등에 따라 달라질 수 있다. 따라서 후술하는 실시예에서 사용된 용어는, 본 명세서에 구체적으로 정의된 경우에는 그 정의에 따르며, 구체적인 정의가 없는 경우는 당업자들이 일반적으로 인식하는 의미로 해석되어야 할 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Terms and words used herein are terms selected in consideration of functions in the embodiments, and the meaning of the terms may vary according to the intention or custom of the invention. Therefore, the terminology used in the embodiments to be described later, according to the definition when specifically defined in the present specification, if there is no specific definition should be interpreted as meaning generally recognized by those skilled in the art.
도 1은 본 발명에 따른 인체 무선 네트워크의 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 장치의 일 실시예를 나타내는 구성도이다.1 is a block diagram showing an embodiment of a transmission interval allocation apparatus using a distributed multi-coloring algorithm of a human body wireless network according to the present invention.
도 1을 참조하면, 본 발명에 따른 인체 무선 네트워크의 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 장치(100)는 중첩정보 수집부(110), 우선순위 산출부(120) 및 전송구간 할당부(130)를 포함한다.Referring to FIG. 1, the apparatus for allocating a transmission interval 100 using a distributed multi-coloring algorithm of a human body wireless network according to the present invention includes an overlapping information collecting unit 110, a priority calculating unit 120, and a transmission interval allocating unit 130. ).
그래프 컬러링(Graph Coloring) 알고리즘은 그래프의 꼭짓점이나 변과 같은 부분에 각각 색을 칠하는 문제로 이 때 색을 칠하는 방법에 여러 가지 제약이 가해진다. 그래프 컬러링 알고리즘에서, 각 노드가 이웃하는 노드의 정보를 가지고 있다면, 이 정보를 취합하여 공존 상황을 그래프로 정의할 수 있다. 분산 멀티 컬러링(Distributed Multi-Coloring Algorithm) 알고리즘은 다수의 WBAN 상황에서 그래프 컬러링 알고리즘을 통해 인접하지 않아 간섭이 적은 WBAN의 집합을 구성한다. 표준에서 WBAN들의 집합은 활성화 시간(Active Time) 동기에 맞추어 활성화(Active) 구간과 비활성화(Inactive) 구간을 번갈아 실행한다. 본 발명에 따른 인체 무선 네트워크의 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 장치(100)에서, 중첩된 N개의 WBAN은 시각표(Timeline)를 기준으로 동작한다. 그리고, 각 WBAN의 코디네이터는 동기화 진행 시 1-홉(hop) 및 2-홉(hop)간 메시지 교환을 하며, 모든 컬러는 1로 시작되는 정수로 매핑한다. The Graph Coloring algorithm is a problem in which each part of the graph is colored, such as vertices or sides, and there are various restrictions on the method of coloring. In the graph coloring algorithm, if each node has information of neighboring nodes, this information can be collected to define the coexistence situation as a graph. The Distributed Multi-Coloring Algorithm algorithm constructs a set of WBANs with low interference because they are not adjacent through a graph coloring algorithm in a plurality of WBAN situations. In the standard, a set of WBANs alternates between an active section and an inactive section in accordance with an active time synchronization. In the transmission section allocating apparatus 100 using the distributed multi-coloring algorithm of the human body wireless network according to the present invention, the overlapping N WBANs operate based on a timeline. The coordinator of each WBAN exchanges messages between 1-hop and 2-hop during synchronization, and all colors are mapped to integers starting with 1.
중첩정보 산출부(110)는 둘 이상의 WBAN 사이의 중첩정보를 수집한다. 둘 이상의 WBAN 사이의 중첩정보는 WBAN 사이의 2-홉 정보로부터 수집이 가능하다. 각각의 WBAN을 하나의 노드로 가정할 때, 하나의 WBAN에서 자신의 정보를 이웃 간 노드(다른 WBAN)에게 전달(Broadcast)한다. 그리고, 정보를 수신 받은 WBAN은 수신된 정보를 다시 전달한다. 이를 통해, 각 노드는 2-홉간 중첩정보를 얻게 된다. 중첩정보 산출부(110)는 둘 이상의 WBAN 사이의 정보 교환을 통해 2-홉간 중첩정보를 수집한다. 중첩정보 산출부(110)는 수집된 중첩정보를 통해, 둘 이상의 WBAN 사이의 중첩 상태(간섭 여부)를 확인할 수 있다. 중첩 상태가 의미하는 것은 완전히 겹친 형태의 개수다. 중첩정보 산출부(110)는 중첩 정보를 통해 파악된 중첩 상태에 따라 중첩 다이어그램을 생성할 수 있다. 중첩정보 산출부(110)가 중첩정보를 통해 중첩 상태를 설정하는 과정은 후술하는 도 2a 및 도 2b에서 추가적으로 설명하도록 한다.The overlapping information calculating unit 110 collects overlapping information between two or more WBANs. Overlapping information between two or more WBANs can be collected from 2-hop information between WBANs. Assuming each WBAN is one node, one WBAN broadcasts its information to a neighboring node (another WBAN). Then, the WBAN receiving the information transfers the received information again. Through this, each node gets two-hop overlap information. The overlapping information calculating unit 110 collects overlapping information between two hops through information exchange between two or more WBANs. The overlapping information calculator 110 may check the overlapping state (interference) between two or more WBANs through the collected overlapping information. The overlap state means the number of completely overlapping forms. The overlapping information calculator 110 may generate an overlapping diagram according to the overlapping state identified through the overlapping information. The process of setting the overlapping state through the overlapping information calculating unit 110 through the overlapping information will be described later in FIGS. 2A and 2B.
우선순위 산출부(120)는 트래픽 유형 우선순위 레벨 및 트래픽 볼륨 우선순위 레벨에 기초하여 둘 이상의 WBAN 사이의 우선순위를 산출한다. The priority calculator 120 calculates a priority between two or more WBANs based on the traffic type priority level and the traffic volume priority level.
표 1 트래픽 유형 우선 순위 레벨의 일례
등급(Degree) 트래픽 유형 우선 순위(Traffic Type Priority) 트래픽 유형(Traffic Type)
LowHigh 0 Backgtound(BK)
1 Best Effort(BE)
2 Excellent Effort(EE)
3 Control Load(CL)
4 Video(VI)
5 Voice(VO)
6 Medical data/Network Control
7 Emergency/Medical Event Report
Table 1 Example of traffic type priority level
Degree Traffic Type Priority Traffic Type
Lowhigh
0 Backgtound (BK)
One Best Effort (BE)
2 Excellent Effort (EE)
3 Control Load (CL)
4 Video (VI)
5 Voice (VO)
6 Medical data / Network Control
7 Emergency / Medical Event Report
표 1은 WBAN을 구성하는 노드의 트래픽 유형 우선 순위 레벨의 일례를 나타낸다. 하나의 WBAN은 하나 이상의 노드로 구성될 수 있다. 사용자는 WBAN의 종류 및 현재 장소의 종류에 따라 트래픽 유형의 우선 순위 레벨을 설정하는 과정에 반영할 수 있다. 표 1의 일례와 같이, 트래픽 유형 우선 순위는 WBAN에서 전달하는 데이터의 종류에 따라 부여된 가중치를 통해 설정될 수 있다. 예를 들어, 응급상황이나 의료 관련 이벤트를 전달하거나, 의학 데이터 또는 네트워크 콘트롤 데이터를 전달하는 WBAN은 높은 우선 순위를 부여할 수 있다. 반면에, 백그라운드 데이터나 최적 노력(Best Effort) 데이터의 경우 낮은 우선 순위를 부여할 수 있다. 표 1의 트래픽 유형 우선 순위 레벨은 본 발명에서 한정되는 사항이 아닌 하나의 일례로서, WBAN의 종류 및 환경에 따라 다른 우선 순위로 설정이 가능하다.Table 1 shows an example of traffic type priority levels of nodes constituting the WBAN. One WBAN may consist of one or more nodes. The user may reflect the process of setting the priority level of the traffic type according to the type of the WBAN and the type of the current place. As in the example of Table 1, the traffic type priority may be set through weights given according to the type of data delivered by the WBAN. For example, a WBAN that delivers an emergency or medical event, or delivers medical data or network control data can be given a high priority. On the other hand, low priority may be given to background data or best effort data. The traffic type priority level shown in Table 1 is one example that is not limited to the present invention, and may be set to another priority according to the type and environment of the WBAN.
표 2 트래픽 볼륨 우선 순위 레벨의 일례
등급(Degree) 트래픽 볼륨 우선 순위(Traffic Volume Priority) 트래픽 볼륨(Traffic Volume)
LowHigh 0 0-50kb
1 51-100kb
2 101-150kb
3 151-200kb
4 201-250kb
TABLE 2 Example of traffic volume priority levels
Degree Traffic Volume Priority Traffic Volume
Lowhigh
0 0-50kb
One 51-100kb
2 101-150kb
3 151-200kb
4 201-250kb
표 2는 트래픽 볼륨 우선 순위 레벨의 일례를 나타낸다. 표 2의 트래픽 볼륨 우선 순위 레벨은 WBAN를 구성하는 각각의 노드에서 전송되는 데이터의 양에 기반하여 설정된 우선 순위 레벨이다. 표 2의 트래픽 볼륨 우선 순위 레벨은 하나의 실시예로서 설정된 것으로, WBAN의 종류 및 환경에 따라 다르게 설정될 수 있다.Table 2 shows an example of traffic volume priority levels. The traffic volume priority level shown in Table 2 is a priority level set based on the amount of data transmitted from each node constituting the WBAN. The traffic volume priority levels of Table 2 are set as one embodiment and may be set differently according to the type and environment of the WBAN.
수학식 1
Figure PCTKR2015001594-appb-M000001
Equation 1
Figure PCTKR2015001594-appb-M000001
각각의 WBAN 우선 순위는 수학식 1에 의해 산출될 수 있다. 수학식 1에서 Wn은 우선 순위, m은 WBAN을 구성하는 센서(노드)의 개수, p1i는 개별 노드의 트래픽 유형 우선 순위 레벨, p2i는 개별 노드의 트래픽 볼륨 우선 순위 레벨을 나타낸다. 우선순위 산출부(120)는 개별 노드의 트래픽 유형 우선순위 레벨(p1i) 및 개별 노드의 트래픽 볼륨 우선순위 레벨(p2i)의 합산의 평균에 기초하여 WBAN의 우선순위를 산출한다.Each WBAN priority may be calculated by Equation 1. In Equation 1, Wn represents a priority, m represents the number of sensors (nodes) constituting the WBAN, p1 i represents a traffic type priority level of an individual node, and p2 i represents a traffic volume priority level of an individual node. The priority calculator 120 calculates a priority of the WBAN based on an average of the sum of the traffic type priority level p1 i of each node and the traffic volume priority level p2 i of each node.
전송구간 할당부(130)는 그래프 컬러링 알고리즘을 이용하여 둘 이상의 WBAN에 전송 구간을 할당하기 전에 먼저, 정보 교환 없이 둘 이상의 WBAN 각각에 컬러 팔레트(Color Palette)에 포함된 컬러를 무작위로 할당하는 초기 컬러링 과정을 수행한다. 컬러 팔레트는 시스템에서 가용한 각각의 전송구간을 하나의 컬러로 대응시켜 나타내는 것으로, 컬러 팔레트에 포함된 서로 다른 컬러는 가용한 각각의 전송구간을 나타낸다. 가용 전송 구간을 나타내는 컬러 팔레트는 편의를 위하여 컬러를 나타내는 약어로 나타낼 수 있다. 컬러가 담겨있는 집합인 컬러 팔레트의 크기는 주어진 컬러 개수인 k로 고정된다. 그리고, 컬러 팔레트는 컬러가 1부터 시작하는 정수로 매핑되어 나타내어질 수 있다. 주어진 컬러의 개수 k는 전체 네트워크가 데이터를 1번 전송하는데 걸리는 총 타임, 즉 타임슬롯의 개수를 의미한다. 그리고, 컬러 팔레트에 포함된 각각의 컬러는 하나의 타임슬롯을 의미한다. 예를 들어, WBAN이 시분할 다원접속(Time Division Multiple Access, TDMA)인 경우, 각각의 컬러(예를 들어, R/G/B/Y)는 TDMA의 하나의 타임 슬롯으로, R이 time1, G가 time2를 써서 서로 중첩되지 않는 것을 나타낸다.Before allocating the transmission interval to the two or more WBANs using the graph coloring algorithm, the transmission section allocator 130 first allocates the colors included in the color palette to each of the two or more WBANs without information exchange. Perform the coloring process. The color palette represents each transmission section available in the system in one color, and different colors included in the color palette represent each transmission section available. The color palette indicating the available transmission interval may be represented by an abbreviation indicating color for convenience. The size of a color palette, which is a collection of colors, is fixed at k, the number of colors given. In addition, the color palette may be represented by mapping the color to an integer starting from 1. The number k of a given color means the total time for the entire network to transmit data once, i.e. the number of timeslots. Each color included in the color palette means one timeslot. For example, if the WBAN is Time Division Multiple Access (TDMA), each color (e.g., R / G / B / Y) is one time slot of TDMA, where R is time1, G Indicates that they do not overlap with each other using time2.
이 과정에서, 전송구간 할당부(130)는 1홉 이웃 간에 동일한 컬러가 할당된 경우, 수학식 1에 의해 산출된 우선순위를 비교하여 높은 우선순위를 가지는 WBAN이 할당된 색을 가지고, 색을 할당받지 못한 WBAN에 다시 무작위로 컬러를 할당한다. 일례로서, 전송구간 할당부(130)이 1-홉 이웃간에 동일한 컬러가 할당되고 우선순위가 동일한 경우, 동일한 컬러가 할당된 WBAN에 1부터 100까지의 숫자를 각각 무작위로 배정하여, 숫자가 낮은 WBAN에 새로운 컬러를 할당할 수 있다. 만약, 동일한 정수가 배정되면 이전 범위의 2배내에서 다시 반복 수행할 수 있다. 전송구간 할당부(130)는 이와 같은 과정을 반복하여, 중첩되는 WBAN에 서로 다른 컬러를 할당함으로써, 모든 WBAN에 초기 컬러를 할당한다.In this process, when the same color is allocated between one-hop neighbors, the transmission section allocator 130 compares the priority calculated by Equation 1 to have a color assigned with a WBAN having a high priority, Randomly assigns colors back to unassigned WBANs. As an example, when the transmission section allocator 130 assigns the same color to 1-hop neighbors and has the same priority, randomly assigns numbers 1 to 100 to the WBANs to which the same color is assigned, respectively, so that the number is low. You can assign a new color to the WBAN. If the same integer is assigned, it can be repeated again within twice the previous range. The transmission section allocator 130 repeats the above process and allocates initial colors to all WBANs by allocating different colors to overlapping WBANs.
다음으로, 전송구간 할당부(130)는 분산 멀티 컬러링 알고리즘을 이용하여 초기 컬러가 할당된 둘 이상의 WBAN에 전송구간을 동적으로 할당하는 멀티 컬러링 과정을 수행한다. 전송구간 할당부(130)는 둘 이상의 WBAN에서 수집된 1-홉 정보와 2-홉 정보의 교집합의 개수를 중첩도로 정의한다. 전송구간 할당부(130)는 이를 기반으로 각 WBAN의 컬러 시퀀스를 생성하고, 생성된 시퀀스의 순서대로 컬러의 순서를 설정하여 WBAN에 할당한다. 컬러 시퀀스는 타임 슬롯을 의미하는 컬러를 동일한 순서로 반복하여 나열한 것을 의미한다. 컬러 시퀀스에 따라 컬러를 할당하는 과정에서, 1-홉간 WBAN 사이에 동일한 컬러가 할당되면, 우선순위를 비교하여 우위를 가린다. 그리고, 전송구간 할당부(130)는 우선순위가 높은 WBAN에서 할당된 컬러를 사용하도록 하고, 우선순위가 낮은 WBAN은 해당 시퀀스에서 컬러를 할당 받지 못하고 데이터 전송을 일시 정지 한다. 예외적으로, 1-홉간 WBAN의 초기 컬러가 자신이 속한 중첩도와 같다면 다시 무작위로 컬러를 할당할 수 있다. Next, the transmission section allocator 130 performs a multi-coloring process of dynamically allocating a transmission section to two or more WBANs to which an initial color is allocated using a distributed multi-coloring algorithm. The transmission section allocator 130 defines the number of intersections of 1-hop information and 2-hop information collected from two or more WBANs in an overlapping degree. The transmission section allocator 130 generates the color sequence of each WBAN based on this, sets the color order in the order of the generated sequence, and assigns the color sequence to the WBAN. The color sequence means that the colors representing the time slots are repeatedly listed in the same order. In the process of assigning colors according to the color sequence, if the same color is allocated between 1-hop WBANs, priority is compared to occupy an advantage. Then, the transmission section allocator 130 uses the color assigned in the high priority WBAN, and the low priority WBAN does not receive the color in the sequence and pauses data transmission. Exceptionally, if the initial color of the 1-hop WBAN is the same as the overlap to which it belongs, it may be randomly assigned colors again.
표 3
Figure PCTKR2015001594-appb-T000001
TABLE 3
Figure PCTKR2015001594-appb-T000001
Figure PCTKR2015001594-appb-I000002
Figure PCTKR2015001594-appb-I000002
표 3은 전송구간 할당부(130)의 분산 멀티 컬러링 알고리즘을 나타낸다. 분산 멀티 컬러링 알고리즘은 n번 WBAN의 초기 색을 c로 결정(1)하고, 카운트 변수를 0으로 초기화(2)하고, 계산을 위한 변수 또한 0으로 초기화(3)한다. 그리고, 초기값에 중첩도 만큼 뛴 숫자를 배정(5)하여, 자신의 중첩도 만큼 기다렸다가 컬러를 배정받도록 한다. 예를 들어, C1=2, O1=4 -> 2,6,10,14,18. 보다 세부적인 분산 멀티 컬러링 알고리즘과 이를 적용한 전송구간 할당 과정은 후술하는 도 2a 및 도 2b에서 추가적으로 설명하도록 한다.Table 3 shows a distributed multi-coloring algorithm of the transmission section allocator 130. The distributed multi-coloring algorithm determines (1) the initial color of the nth WBAN by c, initializes the count variable to zero (2), and initializes the variable for calculation to zero (3). Then, the number jumped by the degree of overlap to the initial value is assigned (5) so that it waits for the degree of its own overlap and is assigned a color. For example, C1 = 2, O1 = 4-> 2,6,10,14,18. A more detailed distributed multi-coloring algorithm and a transmission interval allocation process using the same will be described later in FIGS. 2A and 2B.
본 발명에 따른 전송구간 할당 장치(100)는 상술한 과정을 통해 서로 중첩된 WBAN에 서로 다른 컬러를 할당한다. 그리고, 각각의 컬러는 서로 다른 하나의 타임슬롯을 의미한다. 그리고, 본 발명에 따른 전송구간 할당 장치(100)는 상술한 분산 컬러링 알고리즘을 통해 중첩된 WBAN 사이에 항상 서로 다른 전송구간이 할당되도록 한다. 따라서, 각각의 WBAN은 서로 간섭하는 상태 없이 패킷을 전달할 수 있다.The transmission section allocating apparatus 100 according to the present invention allocates different colors to the overlapping WBANs through the above-described process. Each color represents one different time slot. In addition, the transmission interval allocation apparatus 100 according to the present invention allows different transmission intervals to be always allocated between overlapping WBANs through the above-described distributed coloring algorithm. Thus, each WBAN can forward packets without interfering with each other.
도 2a는 본 발명의 일 실시예에 따른 인체 무선 네트워크의 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 장치의 중첩 상태의 일례를 나타내는 구성도이다.2A is a block diagram illustrating an example of an overlapping state of a transmission interval allocation apparatus using a distributed multi-coloring algorithm of a human body wireless network according to an embodiment of the present invention.
도 2b는 본 발명의 일 실시예에 따른 인체 무선 네트워크의 분산 멀티 컬러링 알고리즘을 도 2a의 일례에 적용하는 과정을 설명하기 위한 도면이다. FIG. 2B is a diagram for explaining a process of applying a distributed multi-coloring algorithm of a human body wireless network according to an embodiment of the present invention to the example of FIG. 2A.
도 2a 및 도 2b를 참조하면, 도 2a의 일례는 총 11개의 WBAN을 포함하고 있으며, 각각의 원은 각각의 WBAN의 네트워크 범위를 나타낸다. 중첩정보 수집부(110)는 WBAN의 2-홉 간 메시지 교환을 통해 중첩정보를 수집하여, 11개의 WBAN 사이의 중첩 상태를 확인할 수 있다.2A and 2B, the example of FIG. 2A includes a total of 11 WBANs, with each circle representing the network range of each WBAN. The overlapping information collecting unit 110 collects overlapping information through two-hop message exchange of the WBAN, and checks the overlapping state between 11 WBANs.
표 4 중첩정보의 활용
1-hop 2-hop 중첩된 WBAN 중첩도
1번 WBAN 2,3,4 2,3,4,5 2,3,4 4
2번 WBAN 1,3,4 1,3,4,5 1,3,4 4
3번 WBAN 1,2,4,5 1,2,4,6,7 1,2,4 4
4번 WBAN 1,2,3 1,2,3,4,5 1,2,3 4
5번 WBAN 6,7,3 5,6,7,8,1,2,4 6,7 3
6번 WBAN 5,7,8 3,5,7,9,10,11 5,7 3
7번 WBAN 5,6 3,5,6,8 5,6 3
8번 WBAN 6,9,10,11 5,7,9,10,11 9,10,11 4
9번 WBAN 8,10,11 6,8,10,11 8,10,11 4
10번 WBAN 8,9,11 6,8,9,11 8,9,11 4
11번 WBAN 8,9,10 6,8,9,10 8,9,10 4
Table 4 Use of Overlapping Information
1-hop 2-hop Nested WBAN Nesting
WBAN No. 1 2,3,4 2,3,4,5 2,3,4 4
No. 2 WBAN 1,3,4 1,3,4,5 1,3,4 4
3 WBAN 1,2,4,5 1,2,4,6,7 1,2,4 4
4th WBAN 1,2,3 1,2,3,4,5 1,2,3 4
WBAN No. 5 6,7,3 5,6,7,8,1,2,4 6,7 3
WBAN No. 6 5,7,8 3,5,7,9,10,11 5,7 3
7 WBAN 5,6 3,5,6,8 5,6 3
No. 8 WBAN 6,9,10,11 5,7,9,10,11 9,10,11 4
WBAN No. 9 8,10,11 6,8,10,11 8,10,11 4
WBAN No. 10 8,9,11 6,8,9,11 8,9,11 4
11 WBAN 8,9,10 6,8,9,10 8,9,10 4
표 4는 도 2a의 일례에서, 중첩정보 산출부(110)에 의해 산출된 중첩정보 및 중첩도를 나타낸다. 표 4에서 1번 WBAN을 살펴보면, 1번 WBAN의 1 홉 거리에는 2,3,4번 WBAN이 존재하고, 2 홉 거리에는 2,3,4,5번 WBAN이 존재한다. 1,2,3번 WBAN은 1번 WBAN과 1 홉 거리 및 2 홉 거리에 동시에 존재한다. 1번 WBAN과 1 홉/2 홉 거리 모두에 위치하기 위해서는 상호 중첩된 상태여야 한다. 따라서, 1번 WBAN과 2,3,4번 WBAN은 중첩 상태(중첩 관계)임을 알 수 있다. 즉, 중첩정보 산출부(110)는 중첩정보에 따라 1 홉 및 2 홉의 교집합에 해당하는 WBAN을 중첩 상태에 있는 것으로 판단할 수 있다. 1번 WBAN은 2,3,4번 WBAN가 중첩 상태이기 때문에 중첩도는 3+1=4가 될 수 있다. 이와 동일한 과정을 통해 11개의 WBAN 사이의 중첩도를 알 수 있다.In the example of FIG. 2A, Table 4 shows overlapping information and a degree of overlap calculated by the overlapping information calculating unit 110. Looking at WBAN No. 1 in Table 4, WBAN Nos. 2, 3, and 4 exist at 1 hop distance of WBAN No. 1, and WBANs 2, 3, 4, and 5 exist at 2 hop distances. WBANs 1, 2, and 3 exist simultaneously at 1 hop distance and 2 hop distance from WBAN 1. In order to be in both WBAN 1 and 1 hop / 2 hop distances, they must overlap each other. Therefore, it can be seen that WBAN No. 1 and WBAN Nos. 2, 3, and 4 are overlapping states (overlapping relationships). That is, the overlapping information calculating unit 110 may determine that the WBAN corresponding to the intersection of 1 hop and 2 hop is in the overlapping state according to the overlapping information. Since WBAN 1, 2, 3, and 4 are overlapped, the overlap may be 3 + 1 = 4. Through this same process, the degree of overlap between the 11 WBANs can be known.
표 2b는 표 4에 따른 중첩도에 기초하여 11개의 WBAN 사이의 중첩도를 다이어그램 형태로 표현한 도면이다. 도 2b에서 WBAN 사이의 연결선은 두 WBAN이 서로 중첩된 것을 나타낸다.Table 2b is a diagram showing the degree of overlap between the 11 WBAN in the form of diagram based on the degree of overlap according to Table 4. In FIG. 2B, a connection line between WBANs indicates that two WBANs overlap each other.
전송구간 할당부(130)는 초기 컬러링 과정을 통해 1번부터 11번까지의 WBAN 각각에 초기 컬러를 할당한다. 도 2b 에서, 컬러 팔레트에 포함된 컬러의 수 k는 4로 가정하고, 컬러 팔레트에 포함된 색상은 적색(R), 녹색(G), 청색(B) 및 황색(Y)으로 가정한다.The transmission section allocator 130 assigns initial colors to each of the WBANs 1 to 11 through an initial coloring process. In FIG. 2B, the number k of colors included in the color palette is assumed to be 4, and the colors included in the color palette are assumed to be red (R), green (G), blue (B), and yellow (Y).
표 5 분산 멀티 컬러링 알고리즘 테이블
시퀀스 R G B Y R G B Y R G B Y R G B Y
제1 그룹 4 2 1 3 4 2 1 3 4 2 1 3 4 2 1 3
제2 그룹 6 7 5 6 7 5 6 7 5 7 6 7 5 6
제3 그룹 11 8 9 10 11 8 9 10 11 8 9 10 11 8 9 10
Table 5 Distributed Multi-Coloring Algorithm Table
sequence R G B Y R G B Y R G B Y R G B Y
First group 4 2 One 3 4 2 One 3 4 2 One 3 4 2 One 3
Second group 6 7 5 6 7 5 6 7 5 7 6 7 5 6
Third group 11 8 9 10 11 8 9 10 11 8 9 10 11 8 9 10
표 5는 분산 멀티 컬러링 알고리즘을 적용하여 1번부터 11번까지의 WBAN에 할당된 컬러를 나타내는 분산 멀티 컬러링 알고리즘 테이블을 나타낸다. 설명의 편의를 위하여 중첩도에 따라 1/2/3/4번 WBAN의 제1 그룹, 5/6/7번 WBAN의 제2 그룹 및 8/9/10/11번 WBAN의 제3 그룹으로 구분하였다.Table 5 shows a distributed multi-coloring algorithm table indicating colors assigned to WBANs 1 to 11 by applying the distributed multi-coloring algorithm. For convenience of description, it is divided into the first group of 1/2/3/4 WBAN, the second group of 5/6/7 WBAN and the third group of 8/9/10/11 WBAN according to the overlapping degree. It was.
전송구간 할당부(130)는 그룹을각 WBAN의 컬러 시퀀스를 생성하고, 생성된 컬러 시퀀스의 순서대로 컬러의 순서를 할당한다. 전송구간 할당부(130)는 그룹 별로 상기 타임 슬롯에 대응하는 컬러를 반복적으로 매핑하여 할당한다.The transmission section allocator 130 generates a color sequence of each WBAN in the group, and allocates the order of colors in the order of the generated color sequences. The transmission section allocator 130 repeatedly allocates a color corresponding to the time slot for each group.
전송구간 할당부(130)는 먼저 무작위 선택을 통해 초기 컬러링 과정을 수행한다. 전송구간 할당부(130)는 주어진 컬러의 수(k) 내에서 이루어진 컬러 팔레트에서 모든 WBAN에 임의로 컬러를 할당한다. 컬러를 가진 후에, 각 WBAN은 자신의 색을 전송구간 할당부(130)에 방송(Broadcasting)할 수 있다. 그리고, 전송구간 할당부(130)는 WBAN의 1 홉 이웃하는 WBAN에 동일한 컬러가 할당된 경우 우선순위 산출부(120)에서 산출된 WBAN의 우선순위를 비교하여 우선순위가 낮은 WBAN에 새로운 컬러를 할당할 수 있다. 동일한 과정을 반복하여, 전송구간 할당부(130)는 서로 중첩된 WBAN에 동일한 컬러가 할당되지 않도록 모든 WBAN에 초기 컬러를 할당할 수 있다.The transmission section allocator 130 first performs an initial coloring process through random selection. The transmission section allocating unit 130 arbitrarily assigns colors to all WBANs in a color palette made within a given number of colors k. After having the color, each WBAN may broadcast its color to the transmission section allocator 130. And, if the same color is allocated to the 1-hop neighboring WBAN of the WBAN, the transmission section allocator 130 compares the priorities of the WBANs calculated by the priority calculator 120 to assign a new color to the WBAN having a lower priority. Can be assigned. By repeating the same process, the transmission section allocator 130 may assign initial colors to all WBANs so that the same colors are not allocated to the overlapping WBANs.
초기 컬러링 과정을 통해 제1 그룹그룹에 포함된 1번부터 4번까지의 WBAN은 B, G, Y 및 R의 순서로 초기 컬러가 할당된다. 그리고 제2 그룹에 포함된 5번부터 7번까지의 WBAN은 B, R, G의 순서로 초기 컬러가 할당되고, 제3 그룹그룹에 포함된 8번부터 11번까지의 WBAN은 G, B, Y, R의 순서로 초기 컬러가 할당된다. 그리고, 전송구간 할당부(130)는 중첩도에 기반하여 컬러 팔레트에 포함된 컬러를 순차적으로 반복하여 나열한 테이블과 각 그룹 별 WBAN을 매칭하여 표 5와 같이 분산 멀티 컬러링 알고리즘 테이블을 생성한다.Through the initial coloring process, the first to fourth WBANs included in the first group group are assigned initial colors in the order of B, G, Y, and R. WBANs 5 to 7 included in the second group are assigned initial colors in the order of B, R, and G. BBs 8 to 11 included in the third group group are G, B, Initial colors are assigned in the order of Y and R. Then, the transmission section allocator 130 generates a distributed multi-coloring algorithm table as shown in Table 5 by matching WBAN for each group with a table that sequentially repeats the colors included in the color palette based on the overlapping degree.
표 5의 컬러 시퀀스를 살펴보면, 컬러 팔레트에 포함된 컬러가 R, G, B, Y의 순서로 반복 나열되어 컬러 테이블이 생성된다. 즉, R,G,B,Y의 순서로 네 개의 컬러가 하나의 컬러 주기를 형성하여 반복적으로 할당된다. 컬러의 순서는 설명의 편의를 위하여 임의로 가정한 것으로, 컬러의 순서를 자유롭게 설정이 가능하다. 그리고, 전송구간 할당부(130)는 표 5와 같이, 컬러 시퀀스(컬러의 순서)에 따라 해당 WBAN의 중첩도 만큼 대기한 후 계속해서 컬러를 할당한다.Looking at the color sequence of Table 5, the colors included in the color palette are repeatedly arranged in the order of R, G, B, and Y to generate a color table. In other words, four colors are repeatedly assigned by forming one color period in the order of R, G, B, and Y. The order of colors is arbitrarily assumed for convenience of description, and the order of colors can be freely set. Then, as shown in Table 5, the transmission section allocator 130 waits for the overlapping degree of the corresponding WBAN according to the color sequence (color order), and then continuously assigns colors.
1번 WBAN 내지 4번 WBAN은 각각 B, G, Y, R의 순서로 초기 컬러가 할당되어 있다. 이를 R, G, B, Y의 순서로 반복 나열된 컬러 테이블과 매칭하면, 4번-2번-1번-3번 WBAN의 순서로 R, G, B, Y 컬러가 매칭된다. 1번 WBAN 내지 4번 WBAN의 중첩도는 4로 컬러의 수 k(=4)와 동일하기 때문에, 하나의 컬러 주기에서 동일한 컬러가 할당됩니다.5번 내지 7번 WBAN은 각각 B, R, G의 순서로 초기 컬러가 할당되어 있다. 이를 R, G, B, Y의 순서로 반복 나열된 컬러 테이블과 매칭하면, 6번-7번-5번 WBAN의 순서로 R, G, B, Y 컬러가 매칭된다. 5번 내지 7번 WBAN의 중첩도는 3으로 컬러의 수 k(=4)보다 작기 때문에, 하나의 컬러 주기에서 멀티 컬러 할당이 가능합니다. 표 5를 살펴보면, 6번 WBAN는 하나의 컬러 주기 내에서 R 및 Y가 할당된 것을 확인할 수 있다.The first color WBAN to the fourth WBAN are assigned initial colors in the order of B, G, Y, and R, respectively. When this is matched with the color tables repeatedly listed in the order of R, G, B, and Y, the colors R, G, B, and Y are matched in the order of No. 4, No. 2, No. 1, No. 3, and WBAN. Since the overlap of WBAN Nos. 1 to 4 is 4, which is equal to the number of colors k (= 4), the same color is allocated in one color period. WBAN Nos. 5 to 7 are respectively assigned to B, R, and G. The initial colors are assigned in the order of. If this is matched with the color tables repeatedly listed in the order of R, G, B, and Y, the colors R, G, B, and Y are matched in the order of WBAN Nos. 6-7. Since the superposition of WBAN Nos. 5 to 7 is 3, which is smaller than the number of colors k (= 4), multi-color assignment is possible in one color period. Looking at Table 5, it can be seen that WBAN No. 6 is assigned R and Y within one color period.
표 5의 테이블에서, 제2 그룹의 10번째 및 12번째에서는 제2 그룹의 WBAN에 컬러가 매칭되지 않았다. 제2 그룹의 10번째 위치는 6번 WBAN에 컬러 G가 할당되어야 하지만, 6번 WBAN과 1-홉 관계에 있는 8번 WBAN이 지속적으로 G를 할당 받는다. 따라서, 1-홉 관계에 위치한 6번 WBAN과 8번 WBAN 중에서 어느 하나의 WBAN만이 컬러 G를 할당받을 수 있다. 만약. 6번 WBAN의 우선순위가 8번WBAN의 우선순위보다 낮다고 가정하면, 전송구간 할당부(130)는 우선순위가 높은 8번 WBAN에 컬러 G를 할당한다. 그리고, 전송구간 할당부(130)는 6번 WBAN에는 컬러를 할당하지 않아 한 시퀀스 동안 6번 WBAN은 데이터를 전송하지 않는 휴식상태를 만든다. 5번 WBAN도 컬러 Y를 할당 받아야 하는 시퀀스에서, 3번 WBAN이 동일한 컬러 Y를 할당 받기 때문에, 전송구간 할당부(130)는 우선순위 비교를 통해, 우선순위가 높은 3번 WBAN에 Y를 할당하고, 해당 시퀀스 동안 5번 WBAN은 데이터를 전송하지 않는 휴식상태로 만든다. 이와 같은 과정을 통해, 본 발명에 따른 전송구간 할당 장치(100)는 한정된 전송 구간을 분산 멀티 컬러링 알고리즘을 통해 할당하여, 다수의 WBAN 사이에 중첩을 예방하고, WBAN의 휴식상태를 최소화할 수 있다.In the table of Table 5, the colors did not match the WBAN of the second group in the 10th and 12th of the second group. The 10th position of the second group should be assigned color G to WBAN No. 6, but WBAN No. 8, which is in a 1-hop relationship with WBAN No. 6, is continuously assigned G. Therefore, only one WBAN among WBAN # 6 and # 8 WBAN located in the 1-hop relationship may be assigned the color G. if. Assuming that the priority of WBAN No. 6 is lower than the priority of WBAN No. 8, the transmission section allocator 130 assigns color G to WBAN having a high priority. In addition, the transmission section allocator 130 does not assign color to the WBAN No. 6 so that the WBAN No. 6 does not transmit data during a sequence, thereby creating a rest state. In the sequence in which WBAN # 5 also needs to be assigned color Y, since WBAN # 3 is assigned the same color Y, the transmission section allocator 130 allocates Y to # 3 WBAN having a higher priority by comparing the priorities. During the sequence, WBAN # 5 makes no data at rest. Through such a process, the transmission interval allocation apparatus 100 according to the present invention may allocate a limited transmission interval through a distributed multi-coloring algorithm to prevent overlap between a plurality of WBANs and to minimize a rest state of the WBANs. .
표 6 컬러 시퀀스의 일례
# of WBAN(vertex) Sequence
k = 4(R,G,B,Y) k = 5(R,G,B,Y,O)
1번 B-B-B-B B-G-R-O-Y
2번 G-G-G-G G-R-O-Y-B
3번 Y-Y-Y-Y Y-B-G-R-O
4번 R-R-R-R R-O-Y-B-G
5번 B-G-R-Y B-R-Y-O-G
6번 R-Y-B-G R-Y-G-O-B
7번 G-R-Y-B G-O-B-R-Y
8번 G-G-G-G G-R-O-Y-B
9번 B-B-B-B B-G-R-O-Y
10번 Y-Y-Y-Y Y-B-G-R-O
11번 R-R-R-R R-O-Y-B-G
Table 6 Example of color sequence
# of WBAN (vertex) Sequence
k = 4 (R, G, B, Y) k = 5 (R, G, B, Y, O)
no. 1 BBBB BGROY
No.2 GGGG GROYB
number
3 YYYY YBGRO
4 times RRRR ROYBG
5 times BGRY BRYOG
6th RYBG RYGOB
7th GRYB GOBRY
8th GGGG GROYB
9th BBBB BGROY
10th YYYY YBGRO
11th RRRR ROYBG
표 6은 도 2의 실시예에서, 컬러 팔레트의 컬러 수(k)가 4일 경우 및 5일 경우에 전송구간 할당부(130)에서 생성되는 컬러 시퀀스의 일례를 나타낸다. 컬러 팔레트의 컬러 수(k)가 4인 경우, 전술한 내용과 같은 컬러 시퀀스로 컬러가 할당된다. 컬러 수(k)가 4인 경우, 제1 그룹에 속하는 1/2/3/4번 WBAN 및 제3 그룹에 속하는 8/9/10/11번 WBAN은 컬러 수와 동일한 숫자를 가지기 때문에, 컬러의 변화 없이 동일한 컬러가 고정적으로 할당될 수 있다. 반면에, 제2 그룹에 속하는 5/6/7번 WBAN은 계속적으로 컬러가 변경되어 할당될 수 있다.컬러 팔레트의 컬러 수(k)가 5인 경우, 표 5의 컬러 시퀀스에 따라 WBAN에 컬러가 할당될 수 있다.도 3은 본 발명의 일 실시예에 따른 인체 무선 네트워크의 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 장치의 분산 멀티 컬러링 알고리즘과 종래의 컬러링 알고리즘을 비교하기 위한 도면이다.Table 6 shows an example of the color sequence generated in the transmission section allocator 130 when the color number k of the color palette is 4 and 5 in the embodiment of FIG. When the color number k of the color palette is 4, colors are assigned to the same color sequence as described above. When the color number k is 4, the color 1/2/3/4 WBAN belonging to the first group and the 8/9/10/11 WBAN belonging to the third group have the same number as the color number, The same color can be fixedly assigned without changing. On the other hand, WBANs 5/6/7 belonging to the second group may be assigned with the color continuously changed. When the number of colors (k) of the color palette is 5, the colors are assigned to the WBANs according to the color sequence of Table 5. 3 is a diagram illustrating a comparison between a distributed multi-coloring algorithm and a conventional coloring algorithm of a transmission section allocation apparatus using a distributed multi-coloring algorithm of a human body wireless network according to an embodiment of the present invention.
도 3을 살펴보면, 본 발명에 따른 분산 멀티 컬러링 알고리즘과 종래의 컬러링 알고리즘을 적용한 결과의 차이를 비교하기 위해 컬라 팔레트의 컬러 수 k=4로 가정한다. 본 발명에 따른 인체 무선 네트워크의 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 장치는 분산 멀티 컬러링 알고리즘을 이용하여 둘 이상의 WBAN에 컬러(전송구간)을 할당함으로써, 공간 활용률(Spatial Utilization Ratio)을 증가시킬 수 있다.Referring to FIG. 3, it is assumed that the color number k = 4 of the color palette in order to compare the difference between the results of applying the distributed multi-coloring algorithm and the conventional coloring algorithm according to the present invention. A transmission interval allocation apparatus using a distributed multi-coloring algorithm of a human body wireless network according to the present invention can increase spatial utilization ratio by allocating colors (transmission intervals) to two or more WBANs using a distributed multi-coloring algorithm. have.
본 발명에 따른 분산 멀티 컬러링 알고리즘을 적용한 컬러 테이블(301)은 전술한 도 2에 기재된 바와 같이, 제2 그룹의 10번째 위치는 6번 WBAN에 컬러 G가 할당되어야 하지만, 6번 WBAN과 1-홉 관계에 있는 8번 WBAN이 지속적으로 G를 할당 받는다. 따라서, 1-홉 관계에 위치한 6번 WBAN과 8번 WBAN 중에서 어느 하나의 WBAN만이 컬러 G를 할당받을 수 있다. 만약. 제2 그룹에 포함된 WBAN이 제1 그룹 및 제3 그룹에 포함된 WBAN에 비해 산출된 우선순위가 낮다고 가정하면, 전송구간 할당부는 6번 WBAN이 8번 WBAN과 비교하여 우선순위가 낮기 때문에, 컬러 G를 8번 WBAN에 할당한다. 그리고, 전송구간 할당부는 6번 WBAN에는 컬러를 할당하지 않아 한 시퀀스 동안 6번 WBAN은 데이터를 전송하지 않는 휴식상태를 만든다. 5번 WBAN도 컬러 Y를 할당 받아야 하는 시퀀스에서, 3번 WBAN이 동일한 컬러 Y를 할당 받기 때문에, 전송구간 할당부(130)는 우선순위 비교를 통해, 3번 WBAN에 Y를 할당하고, 해당 시퀀스 동안 5번 WBAN은 데이터를 전송하지 않는 휴식상태로 만든다. 즉, 제2 그룹의 10번째의 6번 WBAN과 12번째의 5번 WBAN은 1-홉 관계에 있는 WBAN과 동일한 컬러를 가지기 때문에 우선순위에 따라 컬러가 할당되지 않고 해당 시퀀스에 데이터를 전송하지 않는다.In the color table 301 to which the distributed multi-coloring algorithm according to the present invention is applied, as shown in FIG. 2, the 10th position of the second group should be assigned color G to WBAN No. 6, but WBAN No. 6 and 1- WBAN No. 8 in a hop relationship is continuously assigned G. Therefore, only one WBAN among WBAN # 6 and # 8 WBAN located in the 1-hop relationship may be assigned the color G. if. Assuming that the WBAN included in the second group has a lower priority than the WBAN included in the first group and the third group, the transmission section allocator has a lower priority than that of the WBAN 6 in comparison with the 8 WBAN. Assign color G to WBAN # 8. And, the transmission section allocator does not assign color to WBAN No. 6, so that WBAN No. 6 during a sequence does not transmit data. In the sequence where WBAN No. 5 also needs to be assigned color Y, since WBAN No. 3 is assigned the same color Y, the transmission section allocator 130 allocates Y to WBAN No. 3 by comparing the priorities and corresponding sequence. 5 times, WBAN puts the data in a restless state. That is, the 10th WBAN of the second group and the 5th WBAN of the 12th group have the same color as the WBANs in the 1-hop relationship, and therefore, colors are not assigned according to priority and do not transmit data in the sequence. .
동일한 조건에서, 컴플리트 컬러링(Complete Coloring)을 적용한 컬러 테이블(302)은 제1 그룹 및 제3 그룹과 동일한 주기로 제2 그룹이 반복됨으로써, 매 주기의 4번째 시퀀스에서 제2 그룹에 포함된 WBAN에 컬러가 할당되지 않고 데이터를 전송하지 않는다. 본 발명의 분산 멀티 컬러링 알고리즘과 비교할 때, 컴플리트 컬러링은 동일한 시퀀스 내에서 할당되지 않은 컬러(전송구간의 유휴자원)이 발생된다. 인컴플리트 컬러링(Incomplete Coloring)을 적용한 컬러 테이블(303)의 경우도 마찬가지로 컴플리트 컬러링과 같이 할당되지 않은 컬러가 발생된다. 특히, 인컴플리트 컬러링의 경우 컬러의 개수 k가 네트워크에서 요구하는 최소 색의 수와 동일하면, 컴플리트 컬러링과 동일한 결과가 나타난다.컴플리트 컬러링을 적용한 컬러 테이블(302) 및 인컴플리트 컬러링을 적용한 컬러 테이블(303)은 처음 할당된 컬러가 고정적으로 할당된다. 따라서, 컬러의 수보다 중첩도가 작은 제2 그룹의 경우, 3개의 WBAN만이 존재하기 때문에, 하나의 컬러가 남게 되어 전송구간의 유휴자원이 발생된다. 반면에, 본 발명에 따른 분산 멀티 컬러링 알고리즘을 적용한 컬러 테이블(301)에서는 처음 정해진 컬러가 고정되어 진행되는 것이 아니라, 컬러 시퀀스에 의해 진행된다. 따라서, 컬러의 수보다 중첩도가 작은 제2 그룹의 경우, 6번 WBAN에 R 및 Y 컬러가 할당될 수 있다. 즉, 본 발명에서는 컴플리트 컬러링을 적용한 컬러 테이블(302) 및 인컴플리트 컬러링(Incomplete Coloring)을 적용한 컬러 테이블(303)에서와 같이 고정적인 유휴자원이 발생하지 않으며, 1-홉 거리에서 컬러가 중첩되는 10번째/12번째에서만 컬러가 할당되지 않는다. 따라서, 본 발명에 따른 전송구간 할당장치(100)는 분산 멀티 컬러링 알고리즘을 이용하여 전송구간의 유휴 자원을 최소화함으로써, WBAN 전송구간의 공간활용률을 증가시킬 수 있다.도 4는 본 발명의 일 실시예에 따른 인체 무선 네트워크의 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 방법을 나타내는 흐름도이다.Under the same conditions, the color table 302 to which Complete Coloring is applied is repeated in the same group as the first group and the third group, thereby repeating the second group in the WBAN included in the second group in the fourth sequence of every period. No color is assigned and no data is sent. Compared with the distributed multi-coloring algorithm of the present invention, complete coloring results in unallocated colors (idle resources in the transmission section) within the same sequence. Similarly, in the case of the color table 303 to which Incomplete Coloring is applied, unallocated colors are generated like Complete Coloring. In particular, in the case of incomplete coloring, if the number of colors k is the same as the minimum number of colors required by the network, the same result as the complete coloring is obtained. The color table 302 with complete coloring and the color table with incomplete coloring ( 303) is the first assigned color is fixedly assigned. Therefore, in the second group where the degree of overlap is smaller than the number of colors, since only three WBANs exist, one color remains and an idle resource of a transmission section is generated. On the other hand, in the color table 301 to which the distributed multi-coloring algorithm according to the present invention is applied, the predetermined color is not fixed but progressed by a color sequence. Therefore, in the case of the second group in which the degree of overlap is smaller than the number of colors, R and Y colors may be allocated to WBAN No. 6. That is, in the present invention, as in the color table 302 to which the complete coloring is applied and the color table 303 to which the incomplete coloring is applied, fixed idle resources do not occur, and colors are overlapped at a one-hop distance. Colors are not assigned only in the 10th / 12th. Accordingly, the transmission section allocating apparatus 100 according to the present invention can increase the space utilization rate of the WBAN transmission section by minimizing idle resources in the transmission section by using a distributed multi-coloring algorithm. 4 is a flowchart illustrating a transmission section allocation method using a distributed multi-coloring algorithm of a human body wireless network according to an example.
도 4를 참조하면, 본 발명의 일 실시예에 따른 인체 무선 네트워크의 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 방법은 먼저, 전송구간 할당 장치는 둘 이상의 WBAN 사이의 중첩정보를 수집한다(401). 둘 이상의 WBAN 사이의 중첩정보는 WBAN 사이의 2-홉 정보로부터 수집이 가능하다. 각각의 WBAN을 하나의 노드로 가정할 때, 하나의 WBAN에서 자신의 정보를 이웃 간 노드(다른 WBAN)에게 전달(Broadcast)한다. 그리고, 정보를 수신 받은 WBAN은 수신된 정보를 다시 전달한다. 이를 통해, 각 노드는 2-홉간 중첩정보를 얻게 된다. 전송구간 할당 장치는 둘 이상의 WBAN 사이의 정보 교환을 통해 2-홉간 중첩정보를 수집한다. 그리고, 전송구간 할당 장치는 수집된 중첩정보를 통해, 둘 이상의 WBAN 사이의 중첩도를 산출한다(402).Referring to FIG. 4, in the transmission section allocation method using the distributed multi-coloring algorithm of the human body wireless network according to an embodiment of the present invention, the transmission section allocation apparatus first collects overlapping information between two or more WBANs (401). Overlapping information between two or more WBANs can be collected from 2-hop information between WBANs. Assuming each WBAN is one node, one WBAN broadcasts its information to a neighboring node (another WBAN). Then, the WBAN receiving the information transfers the received information again. Through this, each node gets two-hop overlap information. The transmission section allocation apparatus collects two-hop overlapping information through information exchange between two or more WBANs. The apparatus for allocating transmission intervals calculates an overlapping degree between two or more WBANs through the collected overlapping information (402).
다음으로, 전송구간 할당 장치는 기 설정된 트래픽 유형 우선순위 레벨 및 트래픽 볼륨 우선순위 레벨에 기초하여 둘 이상의 WBAN 사이의 우선순위를 산출한다(403). 트래픽 유형 우선순위 레벨 및 트래픽 볼륨 우선순위 레벨은 전술한 표 1 및 표 2에 일례가 기재되어 있다. 사용자는 WBAN의 종류 및 현재 장소의 종류에 따라 트래픽 유형의 우선 순위 레벨을 설정하는 과정에 반영할 수 있다. 표 1의 일례와 같이, 트래픽 유형 우선 순위는 WBAN에서 전달하는 데이터의 종류에 따라 부여된 가중치를 통해 설정될 수 있다. 표 2의 트래픽 볼륨 우선 순위 레벨은 WBAN를 구성하는 각각의 노드에서 전송되는 데이터의 양에 기반하여 설정된 우선 순위 레벨이다. 전송구간 할당 장치는 전술한 수학식 1에 기반하여 우선순위를 산출할 수 있다. 전송구간 할당 장치는 개별 노드의 트래픽 유형 우선순위 레벨 및 개별 노드의 트래픽 볼륨 우선순위 레벨의 합산의 평균에 기초하여 개별 WBAN의 우선순위를 산출한다.Next, the transmission section allocation apparatus calculates a priority between two or more WBANs based on a preset traffic type priority level and a traffic volume priority level (403). Traffic type priority levels and traffic volume priority levels are described in Table 1 and Table 2 above. The user may reflect the process of setting the priority level of the traffic type according to the type of the WBAN and the type of the current place. As in the example of Table 1, the traffic type priority may be set through weights given according to the type of data delivered by the WBAN. The traffic volume priority level shown in Table 2 is a priority level set based on the amount of data transmitted from each node constituting the WBAN. The transmission section allocation apparatus may calculate the priority based on Equation 1 described above. The transmission section allocation apparatus calculates the priority of each WBAN based on an average of the sum of the traffic type priority levels of the individual nodes and the traffic volume priority level of the individual nodes.
다음으로, 전송구간 할당 장치는 중첩도에 기초하여 정보 교환 없이 둘 이상의 WBAN 각각에 컬러 팔레트(Color Palette)에 포함된 컬러를 무작위로 할당하는 초기 컬러링 과정을 수행한다(404). 컬러 팔레트는 시스템에서 가용한 각각의 전송구간을 하나의 컬러로 대응시켜 나타내는 것으로, 컬러 팔레트에 포함된 서로 다른 컬러는 가용한 각각의 전송구간을 나타낸다. 가용 전송 구간을 나타내는 컬러 팔레트는 편의를 위하여 컬러를 나타내는 약어로 나타낼 수 있다. 컬러가 담겨있는 집합인 컬러 팔레트의 크기는 주어진 컬러 개수인 k로 고정된다. 그리고, 컬러 팔레트는 컬러가 1부터 시작하는 정수로 매핑되어 나타내어질 수 있다.Next, the transmission section allocating apparatus performs an initial coloring process of randomly allocating colors included in a color palette to each of two or more WBANs based on the degree of overlap (404). The color palette represents each transmission section available in the system in one color, and different colors included in the color palette represent each transmission section available. The color palette indicating the available transmission interval may be represented by an abbreviation indicating color for convenience. The size of a color palette, which is a collection of colors, is fixed at k, the number of colors given. In addition, the color palette may be represented by mapping the color to an integer starting from 1.
*이 과정에서, 전송구간 할당 장치는 중첩도에 기초하여 1홉 이웃 간에 동일한 컬러가 할당된 경우, 수학식 1에 의해 산출된 우선순위를 비교하여 높은 우선순위를 가지는 WBAN이 할당된 색을 가지고, 색을 할당 받지 못한 WBAN에 다시 무작위로 컬러를 할당한다. 일례로서, 전송구간 할당 장치는 1-홉 이웃간에 동일한 컬러가 할당되고 우선순위가 동일한 경우, 동일한 컬러가 할당된 WBAN에 1부터 100까지의 숫자를 각각 무작위로 배정하여, 숫자가 낮은 WBAN에 새로운 컬러를 할당할 수 있다. 만약, 동일한 정수가 배정되면 이전 범위의 2배내에서 다시 반복 수행할 수 있다. 전송구간 할당 장치는 이와 같은 과정을 반복하여, 중첩되는 WBAN에 서로 다른 컬러를 할당함으로써, 모든 WBAN에 초기 컬러를 할당한다.In this process, the transmission section allocating apparatus has a color assigned with a WBAN having a high priority by comparing the priority calculated by Equation 1 when the same color is allocated among one-hop neighbors based on the overlapping degree. In addition, randomly assigns colors back to WBANs that have not been assigned a color. As an example, the transmission section allocation apparatus randomly assigns a number from 1 to 100 to each WBAN assigned the same color when the same color is assigned among the 1-hop neighbors and has the same priority, so that a new WBAN is assigned to the lower number. You can assign colors. If the same integer is assigned, it can be repeated again within twice the previous range. The transmission section allocating apparatus repeats this process and allocates initial colors to all WBANs by allocating different colors to overlapping WBANs.
다음으로, 전송구간 할당 장치는 분산 멀티 컬러링 알고리즘을 이용하여 초기 컬러가 할당된 둘 이상의 WBAN에 전송구간을 동적으로 할당하는 멀티 컬러링 과정을 수행한다(405). 전송구간 할당 장치는 둘 이상의 WBAN에서 수집된 1-홉 정보와 2-홉 정보가 교집하는 경우를 중첩도로 정의한다. 전송구간 할당 장치는 이를 기반으로 각 WBAN의 컬러 시퀀스를 생성하고, 생성된 시퀀스의 순서대로 컬러의 순서를 설정하여 WBAN에 할당한다. 시퀀스에 따라 컬러를 할당하는 과정에서, 1-홉간 WBAN 사이에 동일한 컬러가 할당되면, 우선순위를 비교하여 우위를 가린다. 그리고, 전송구간 할당 장치는 우선순위가 높은 WBAN에서 할당된 컬러를 사용하도록 하고, 우선순위가 낮은 WBAN은 해당 시퀀스에서 컬러를 할당 받지 못하고 데이터 전송을 일시 정지 한다. 예외적으로, 1-홉간 WBAN의 초기 컬러가 자신이 속한 중첩도와 같다면 다시 무작위로 컬러를 할당할 수 있다. 보다 세부적인 분산 멀티 컬러링 알고리즘과 이를 적용한 전송구간 할당 과정은 전술한 도 2a 및 도 2b에서 설명된 기술이 동일하게 적용된다. 컬러가 할당된 WBAN은 컬러 시퀀스에 따라 할당된 컬러에 대응하는 전송구간을 통해 데이터를 송수신한다. 본 발명에서 서로 다른 컬러는 서로 다른 하나의 타임슬롯을 의미한다. 그리고, 본 발명에 따른 전송구간 할당 방법은 상술한 분산 컬러링 알고리즘을 통해 중첩된 WBAN 사이에 항상 서로 다른 전송구간이 할당되도록 한다. 따라서, 각각의 WBAN은 서로 간섭하는 상태 없이 패킷을 전달할 수 있다.Next, the transmission section allocation apparatus performs a multi-coloring process of dynamically allocating a transmission section to two or more WBANs to which an initial color is allocated using a distributed multi-coloring algorithm (405). The transmission section allocation apparatus defines a case where the 1-hop information and 2-hop information collected from two or more WBANs intersect. The transmission section allocation apparatus generates a color sequence of each WBAN based on this, and assigns the color sequence to the WBAN by setting the color order in the order of the generated sequence. In the process of assigning colors according to a sequence, if the same color is allocated between 1-hop WBANs, the priority is compared to occupy an advantage. In addition, the transmission section allocator uses the color assigned in the high priority WBAN, and the low priority WBAN does not receive the color in the sequence and pauses data transmission. Exceptionally, if the initial color of the 1-hop WBAN is the same as the overlap to which it belongs, it may be randomly assigned colors again. The more detailed distributed multi-coloring algorithm and the transmission interval allocation process using the same are applied to the techniques described in FIGS. 2A and 2B. The WBAN to which color is assigned transmits and receives data through a transmission section corresponding to the assigned color according to the color sequence. In the present invention, different colors mean different timeslots. In addition, the transmission interval allocation method according to the present invention allows different transmission intervals to be always allocated between overlapping WBANs through the above-described distributed coloring algorithm. Thus, each WBAN can forward packets without interfering with each other.
상술한 내용을 포함하는 본 발명은 컴퓨터 프로그램으로 작성이 가능하다. 그리고 상기 프로그램을 구성하는 코드 및 코드 세그먼트는 당분야의 컴퓨터 프로그래머에 의하여 용이하게 추론될 수 있다. 또한, 상기 작성된 프로그램은 컴퓨터가 읽을 수 있는 기록매체 또는 정보저장매체에 저장되고, 컴퓨터에 의하여 판독되고 실행함으로써 본 발명의 방법을 구현할 수 있다. 그리고 상기 기록매체는 컴퓨터가 판독할 수 있는 모든 형태의 기록매체를 포함한다.The present invention including the above-described contents can be produced by a computer program. And code and code segments constituting the program can be easily inferred by a computer programmer in the art. In addition, the written program may be stored in a computer-readable recording medium or information storage medium, and read and executed by a computer to implement the method of the present invention. The recording medium may include any type of computer readable recording medium.
이상 바람직한 실시예를 들어 본 발명을 상세하게 설명하였으나, 본 발명은 전술한 실시예에 한정되지 않고, 본 발명의 기술적 사상의 범위 내에서 당분야에서 통상의 지식을 가진자에 의하여 여러 가지 변형이 가능하다.Although the present invention has been described in detail with reference to preferred embodiments, the present invention is not limited to the above-described embodiments, and various modifications may be made by those skilled in the art within the scope of the technical idea of the present invention. It is possible.

Claims (13)

  1. 둘 이상의 무선 신체 영역 네트워크(Wireless Body Area Network, WBAN) 사이의 중첩정보를 수집하여, 상기 둘 이상의 무선 신체 영역 네트워크 사이의 중첩 상태를 파악하는 중첩정보 수집부;An overlapping information collecting unit configured to collect overlapping information between two or more Wireless Body Area Networks (WBANs) and determine an overlapping state between the two or more Wireless Body Area Networks;
    기 설정된 트래픽 유형 우선순위 레벨 및 트래픽 볼륨 우선순위 레벨에 기초하여 상기 둘 이상의 무선 신체 영역 네트워크의 우선순위를 산출하는 우선순위 산출부; 및A priority calculator configured to calculate priorities of the two or more wireless body area networks based on a preset traffic type priority level and a traffic volume priority level; And
    상기 파악된 중첩 상태에 기초하여 상기 무선 신체 영역 네트워크의 타임 슬롯에 대응하는 컬러를 중첩된 무선 신체 영역 네트워크가 서로 다른 컬러를 가지도록 반복적으로 매핑하여 할당하는 전송구간 할당부;A transmission section allocator for repetitively mapping and assigning colors corresponding to time slots of the wireless body area network to have different colors based on the identified overlap state;
    를 포함하는 것을 특징으로 하는 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 장치.Transmission section allocation apparatus using a distributed multi-coloring algorithm, characterized in that it comprises a.
  2. 제1항에 있어서,The method of claim 1,
    상기 중첩정보 수집부는 상기 둘 이상의 무선 신체 영역 네트워크 사이의 2-홉간 메시지 교환을 통해, 2-홉간 중첩정보를 수집하고, 수집된 중첩정보에 따라 1-홉 및 2-홉 거리에 동시에 존재하는 무선 신체 영역 네트워크는 중첩 상태인 것으로 판단하는 것을 특징으로 하는 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 장치. The overlapping information collecting unit collects 2-hop overlapping information through 2-hop message exchange between the two or more wireless body area networks, and simultaneously wirelessly exists at 1-hop and 2-hop distances according to the collected overlapping information. Transmission area allocation apparatus using a distributed multi-coloring algorithm, characterized in that the body area network is determined to be in an overlapping state.
  3. 제1항에 있어서,The method of claim 1,
    상기 트래픽 유형 우선 순위 레벨은 무선 신체 영역 네트워크에서 전달하는 데이터의 종류에 따라 부여된 가중치를 통해 설정될 수 있는 것을 특징으로 하는 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 장치.The traffic type priority level is a transmission interval allocation apparatus using a distributed multi-coloring algorithm, characterized in that it can be set through a weight given according to the type of data to be transmitted in the wireless body area network.
  4. 제1항에 있어서,The method of claim 1,
    상기 우선순위 산출부는 The priority calculation unit
    상기 둘 이상의 무선 신체 영역 네트워크 각각에 포함된 하나 이상의 센서의 트래픽 유형 우선순위 레벨 및 트래픽 볼륨 우선순위 레벨을 평균하여 상기 우선순위를 산출하는 것을 특징으로 하는 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 장치.And calculating the priority by averaging the traffic type priority level and the traffic volume priority level of one or more sensors included in each of the two or more wireless body area networks.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 우선순위는The priority is
    Figure PCTKR2015001594-appb-I000003
    에 의해 산출되며,
    Figure PCTKR2015001594-appb-I000003
    Is calculated by
    상기 Wn은 우선 순위, 상기 m은 무선 신체 영역 네트워크에 포함된 센서의 개수, p1i는 개별 노드의 트래픽 유형 우선 순위 레벨, p2i는 개별 노드의 트래픽 볼륨 우선 순위 레벨을 나타내는 것을 특징으로 하는 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 장치.Wn is a priority, m is the number of sensors included in a wireless body area network, p1 i is a traffic type priority level of an individual node, p2 i is a traffic volume priority level of an individual node Transmission section allocation device using multi-coloring algorithm.
  6. 제1항에 있어서,The method of claim 1,
    상기 전송구간 할당부는 상기 무작위로 할당된 컬러 및 상기 중첩정보에 따라 상기 무선 신체 영역 네트워크를 컬러 시퀀스와 매핑하여 분산 멀티 컬러링 알고리즘 테이블을 생성하고, 상기 생성된 분산 멀티 컬러링 알고리즘 테이블에 기초하여 상기 둘 이상의 무선 신체 영역 네트워크에 컬러를 할당하며, 1-홉 사이의 무선 신체 영역 네트워크에 동일한 컬러가 할당되면, 상기 우선순위에 기초하여 어느 하나의 무선 신체 영역 네트워크를 휴식 상태로 만드는 것을 특징으로 하는 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 장치.The transmission section allocator generates a distributed multi-coloring algorithm table by mapping the wireless body area network with a color sequence according to the randomly allocated color and the overlapping information, and generates the distributed multi-coloring algorithm table based on the generated distributed multi-coloring algorithm table. And assigning colors to the above wireless body area networks, and if the same colors are assigned to 1-hop wireless body area networks, putting one wireless body area network into a resting state based on the priority. Transmission section allocation device using multi-coloring algorithm.
  7. 제1항에 있어서,The method of claim 1,
    상기 전송구간 할당부는 상기 중첩 상태에 기초하여 상기 타임 슬롯에 대응하는 컬러를 중첩된 무선 신체 영역 네트워크가 서로 다른 컬러를 가지도록 초기 컬러링을 수행하는 것을 특징으로 하는 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 장치.The transmission section allocator allocates the transmission section using the distributed multi-coloring algorithm, wherein the initial coloring is performed so that the colors corresponding to the time slots have different colors based on the overlapping state. Device.
  8. 둘 이상의 무선 신체 영역 네트워크(Wireless Body Area Network, WBAN) 사이의 중첩정보를 수집하는 단계;Collecting overlapping information between two or more Wireless Body Area Networks (WBANs);
    기 설정된 트래픽 유형 우선순위 레벨 및 트래픽 볼륨 우선순위 레벨에 기초하여 상기 둘 이상의 무선 신체 영역 네트워크의 우선순위를 산출하는 단계;Calculating priorities of the at least two wireless body area networks based on a preset traffic type priority level and a traffic volume priority level;
    둘 이상의 무선 신체 영역 네트워크 각각에 타임 슬롯에 대응하는 컬러를 1-홉 사이의 무선 신체 영역 네트워크가 서로 다른 컬러를 가지도록 무작위로 할당하는 단계; 및Randomly assigning a color corresponding to the time slot to each of the two or more wireless body area networks such that the one-hop wireless body area network has different colors; And
    중첩된 무선 신체 영역 네트워크가 서로 다른 컬러를 가지도록 상기 타임 슬롯에 대응하는 컬러를 반복적으로 매핑하여 상기 무선 신체 영역 네트워크에 할당하는 단계;Iteratively mapping colors corresponding to the time slots and assigning them to the wireless body area network so that the overlapping wireless body area networks have different colors;
    를 포함하는 것을 특징으로 하는 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 방법.Transmission interval allocation method using a distributed multi-coloring algorithm, characterized in that it comprises a.
  9. 제8항에 있어서,The method of claim 8,
    상기 중첩정보를 수집하는 단계는 상기 둘 이상의 무선 신체 영역 네트워크 사이의 2-홉간 메시지 교환을 통해, 2-홉간 중첩정보를 수집하고, 수집된 중첩정보에 따라 1-홉 및 2-홉 거리에 동시에 존재하는 무선 신체 영역 네트워크는 중첩 상태인 것으로 판단하는 것을 특징으로 하는 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 방법. The collecting of the overlapping information may be performed by collecting two-hop overlapping information through a two-hop message exchange between the two or more wireless body area networks, and simultaneously, at one-hop and two-hop distances according to the collected overlapping information. A transmission interval allocation method using a distributed multi-coloring algorithm, wherein the existing wireless body area network is determined to be in an overlapping state.
  10. 제8항에 있어서,The method of claim 8,
    상기 트래픽 유형 우선 순위 레벨은 무선 신체 영역 네트워크에서 전달하는 데이터의 종류에 따라 부여된 가중치를 통해 설정될 수 있는 것을 특징으로 하는 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 방법.The traffic type priority level may be set by a weight given according to a type of data transmitted from a wireless body area network.
  11. 제8항에 있어서,The method of claim 8,
    상기 우선순위를 산출하는 단계는 상기 둘 이상의 무선 신체 영역 네트워크 각각에 포함된 하나 이상의 센서의 트래픽 유형 우선순위 레벨 및 트래픽 볼륨 우선순위 레벨을 평균하여 상기 우선순위를 산출하는 것을 특징으로 하는 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 방법.The calculating of the priority may include calculating the priority by averaging the traffic type priority level and the traffic volume priority level of one or more sensors included in each of the two or more wireless body area networks. Transmission section allocation method using algorithm.
  12. 제11항에 있어서,The method of claim 11,
    상기 우선순위는The priority is
    Figure PCTKR2015001594-appb-I000004
    에 의해 산출되며,
    Figure PCTKR2015001594-appb-I000004
    Is calculated by
    상기 Wn은 우선 순위, 상기 m은 무선 신체 영역 네트워크에 포함된 센서의 개수, p1i는 개별 노드의 트래픽 유형 우선 순위 레벨, p2i는 개별 노드의 트래픽 볼륨 우선 순위 레벨을 나타내는 것을 특징으로 하는 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 방법.Wn is a priority, m is the number of sensors included in a wireless body area network, p1 i is a traffic type priority level of an individual node, p2 i is a traffic volume priority level of an individual node Transmission section allocation method using multi-coloring algorithm.
  13. 제8항에 있어서,The method of claim 8,
    상기 컬러를 반복적으로 매핑하여 할당하는 단계는;Iteratively mapping and assigning the color;
    상기 무작위로 할당된 컬러 및 상기 중첩정보에 따른 둘 이상의 그룹을 매핑하여 분산 멀티 컬러링 알고리즘 테이블을 생성하고, 상기 생성된 분산 멀티 컬러링 알고리즘 테이블에 기초하여 상기 둘 이상의 무선 신체 영역 네트워크에 컬러를 할당하며, 1-홉 사이의 무선 신체 영역 네트워크에 동일한 컬러가 할당되면, 상기 우선순위에 기초하여 어느 하나의 무선 신체 영역 네트워크를 휴식 상태로 만드는 것을 특징으로 하는 분산 멀티 컬러링 알고리즘을 이용한 전송구간 할당 방법.Generating a distributed multi-coloring algorithm table by mapping two or more groups according to the randomly allocated color and the overlapping information, and assigning colors to the two or more wireless body area networks based on the generated distributed multi-coloring algorithm table. And if the same color is allocated to the 1-hop wireless body area network, putting one wireless body area network into a rest state based on the priority.
PCT/KR2015/001594 2014-11-03 2015-02-17 Transmission section allocation device and allocation method using distributed multi-coloring algorithm of wireless body area network WO2016072564A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0151550 2014-11-03
KR1020140151550A KR101577783B1 (en) 2014-11-03 2014-11-03 Apparatus and method for allocating transmission line using distributed multi coloring algorithm in wireless body area network

Publications (1)

Publication Number Publication Date
WO2016072564A1 true WO2016072564A1 (en) 2016-05-12

Family

ID=55021368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001594 WO2016072564A1 (en) 2014-11-03 2015-02-17 Transmission section allocation device and allocation method using distributed multi-coloring algorithm of wireless body area network

Country Status (2)

Country Link
KR (1) KR101577783B1 (en)
WO (1) WO2016072564A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080059963A (en) * 2006-12-26 2008-07-01 재단법인서울대학교산학협력재단 Wireless network channel allocation method and multi-hop wireless network system using the same
US20090257380A1 (en) * 2008-04-14 2009-10-15 Meier Robert C Channel assignment protocol
KR20140011500A (en) * 2012-06-13 2014-01-29 경희대학교 산학협력단 Control system of the priority-based contention period channel access for the complexity reduction in wireless body area network mac protocol and method thereof
KR20140037683A (en) * 2012-09-19 2014-03-27 경희대학교 산학협력단 Coexistence problem modeling by cournot copetition in overlapped wban environment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080059963A (en) * 2006-12-26 2008-07-01 재단법인서울대학교산학협력재단 Wireless network channel allocation method and multi-hop wireless network system using the same
US20090257380A1 (en) * 2008-04-14 2009-10-15 Meier Robert C Channel assignment protocol
KR20140011500A (en) * 2012-06-13 2014-01-29 경희대학교 산학협력단 Control system of the priority-based contention period channel access for the complexity reduction in wireless body area network mac protocol and method thereof
KR20140037683A (en) * 2012-09-19 2014-03-27 경희대학교 산학협력단 Coexistence problem modeling by cournot copetition in overlapped wban environment

Also Published As

Publication number Publication date
KR101577783B1 (en) 2015-12-15

Similar Documents

Publication Publication Date Title
US11950217B2 (en) Data transmission method and apparatus
US6600754B1 (en) Method and apparatus for managing communication resources using standby slots
US7046639B2 (en) System and method for ad hoc network access employing the distributed election of a shared transmission schedule
US6504829B1 (en) Method and apparatus for managing communication resources using channelized neighborhoods
EP1290529B1 (en) Method for dynamically allocating time slots of a common tdma broadcast channel to a network of transceiver nodes
CN111818652B (en) Channel resource allocation method of multi-transceiver multi-channel wireless Ad Hoc network
US6574206B2 (en) Method and apparatus for managing communication resources upon speculation slots
Bao et al. A new approach to channel access scheduling for ad hoc networks
US6628636B1 (en) Method and apparatus for managing communication resources using neighbor segregation
US7042897B1 (en) Medium access control layer protocol in a distributed environment
Sagduyu et al. The problem of medium access control in wireless sensor networks
US6487186B1 (en) Method and apparatus for managing communication resources using bootstrap slots
WO2014084463A1 (en) Time division multiple access frame structure for ad-hoc network and method for allocating dynamic time slots using same
CN112188563A (en) Cooperative communication method, device and system
US6810022B1 (en) Full duplex communication slot assignment
US7382799B1 (en) On-demand broadcast protocol
US6574199B1 (en) Unifying slot assignment protocol logical neighborhooding
KR101511150B1 (en) Media access control method using channel preemption in distributed cognitive radio network
KR20050070153A (en) Telecommunication system with non-(re)allocatable and (re)allocatable timeslots
WO2016072564A1 (en) Transmission section allocation device and allocation method using distributed multi-coloring algorithm of wireless body area network
CN102427592A (en) Centralized link scheduling method for multi-channel wireless network
WO2011049250A1 (en) Wireless communication system and method
US9980154B2 (en) Directional broadcasting method
WO2011021744A1 (en) Multicast system and method using abbreviated address based on near field communication, and device applied thereto
US7385999B1 (en) Heuristics for combining inter-channel and intra-channel communications in a wireless communications environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15857998

Country of ref document: EP

Kind code of ref document: A1