WO2016072319A1 - Light source device and image projection device - Google Patents

Light source device and image projection device Download PDF

Info

Publication number
WO2016072319A1
WO2016072319A1 PCT/JP2015/080224 JP2015080224W WO2016072319A1 WO 2016072319 A1 WO2016072319 A1 WO 2016072319A1 JP 2015080224 W JP2015080224 W JP 2015080224W WO 2016072319 A1 WO2016072319 A1 WO 2016072319A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
thz
emitting element
center frequency
light
Prior art date
Application number
PCT/JP2015/080224
Other languages
French (fr)
Japanese (ja)
Inventor
裕貴 山田
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2016072319A1 publication Critical patent/WO2016072319A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements

Definitions

  • the present invention relates to a light source device including a plurality of light emitting elements, and also relates to an image projection device including the light source device.
  • a light source device including a plurality of light emitting elements is known as a light source device (for example, Patent Document 1).
  • speckle noise can be reduced by making the center wavelength difference of the laser beam radiate
  • an object of the present invention is to provide a light source device and an image projection device that can sufficiently reduce specs noise.
  • the light source device includes a plurality of light emitting elements, and the plurality of light emitting elements are divided into a plurality of light emitting element groups for each central frequency of each light emitting element, and are adjacent to the center frequency of the light emitting element group.
  • the center frequency difference from the center frequency of the light emitting element group is larger than the average value of the full widths at half maximum of the plurality of light emitting element groups and smaller than 11.4 THz.
  • the center frequency difference between the center frequency of the light emitting element group and the center frequency of another adjacent light emitting element group is 3.3 THz or more and 10.4 THz or less. Good.
  • the image projection device includes the light source device, and uses light emitted from the light source device as projection light.
  • the light source device and the image projection device according to the present invention have an excellent effect that specks noise can be sufficiently reduced.
  • FIG. 1 is an overall schematic diagram of an image projection apparatus according to an embodiment. It is a principal part schematic diagram of the light source device which concerns on the embodiment. It is a figure which shows the relationship between the frequency and light intensity of the light source device which concern on the embodiment. It is a figure which shows the relationship between a center frequency difference and a speckle contrast reduction
  • the dimensional ratio in the drawing does not necessarily match the actual dimensional ratio.
  • an image projection apparatus 1 includes a plurality (three in the present embodiment) of light source devices 2 (2R, 2G, 2B) that emit light of different colors, and a light source.
  • An image projection unit 10 that generates an optical image with the light from the apparatus 2 and projects the optical image onto the screen 100 is provided.
  • the image projector 1 also includes a light guide (for example, an optical fiber) 20 that propagates the light emitted from the light source device 2 and enters the image projector 10.
  • the light source device 2 includes a first light source device 2R that emits light of a first color (for example, red), a second light source device 2G that emits light of a second color (for example, green), And a third light source device 2B that emits light of three colors (for example, blue).
  • the plurality of light source devices 2 emit light of the first to third colors toward the image projection unit 10 in a separated state.
  • the image projection unit 10 receives the light emitted from each light source device 2 and generates an optical image, and the projection that projects the light image emitted from the image optical system 11 onto the screen 100.
  • An optical system for example, a projection lens
  • the image projection unit 10 includes an image projection main body unit 13 that accommodates the optical systems 11 and 12.
  • the image projection main body 13 includes a connection portion 13 a that is connected to the other end of the light guide 20.
  • the image optical system 11 includes a polarization beam splitter 11a that transmits only a predetermined polarization component of the light emitted from the light source device 2, and spatial modulation that converts the light emitted from the polarization beam splitter 11a into an optical image. And an element 11b.
  • the image optical system 11 includes a dichroic prism 11c that synthesizes the light transmitted through each spatial modulation element 11b, and a reflection mirror 11d that reflects the laser light emitted from the first and third light source devices 2R and 2B. It has.
  • each spatial modulation element 11b is a transmissive liquid crystal element.
  • the image optical system 11 may include a spatial modulation element 11b that is a reflective liquid crystal element or a digital micromirror device.
  • the light source device 2 includes a plurality of light source units 3 that emit light, an optical system 4 that receives light emitted from the plurality of light source units 3, and a main body unit 5 that houses the plurality of light source units 3 and the optical system 4. And.
  • the main body 5 includes a connecting portion 5 a that is connected to one end of the light guide 20.
  • the light source unit 3 includes a light emitting element 6 that emits light and a collimator lens 7 that converts light emitted from the light emitting element 6 into substantially parallel light.
  • each light source device 2 includes nine light emitting elements 6, which are referred to as first to ninth light emitting elements 61 to 69, respectively.
  • the light emitting element 6 is a semiconductor laser that emits laser light.
  • the semiconductor laser may be a CAN type having one emitter or an array type having a plurality of emitters.
  • the plurality of light emitting elements 61 to 69 are divided into a plurality of light emitting element groups 8 for each of the center frequencies f61 to f69 of the light emitting elements 61 to 69.
  • three light emitting element groups 8 are provided, which are referred to as first to third light emitting element groups 81 to 83, respectively.
  • the first light emitting element group 81 includes first to third light emitting elements 61 to 63
  • the second light emitting element group 82 includes fourth to sixth light emitting elements 64 to 66.
  • the third light emitting element group 83 includes seventh to ninth light emitting elements 67 to 69.
  • FIG. 3 shows the spectral distribution of light intensity with respect to frequency.
  • Dashed lines S61 to S69 indicate the spectral distribution of the light emitting elements 61 to 69
  • solid lines S81 to 83 indicate the spectral distribution of the light emitting element groups 81 to 83.
  • the light emitting elements 61 to 69 are configured so that the spectral distributions are substantially the same.
  • Each light emitting element group 81 to 83 is composed of at least one light emitting element 61 to 69 having a center frequency in a predetermined 1 THz range.
  • each light emitting element group 81 to 83 has a spectral distribution in which the frequency range of the full width at half maximum of the spectrum (frequency width at which the relative light intensity is 50% of the peak value) is separated (ie, does not overlap). Each is divided.
  • the first light-emitting element group 81 is composed of first to third light-emitting elements 61 to 63 having a center frequency in the range of 19.5 Hz from 559.5 THz to 560.5 THz. Specifically, the center frequency of the first light emitting element 61 is 560 THz, the center frequency of the second light emitting element 62 is 559.5 THz, and the center frequency of the third light emitting element 63 is 560.Hz. 5 THz.
  • the second light emitting element group 82 is composed of fourth to sixth light emitting elements 64 to 66 having a center frequency in the range of 1 THz from 563.5 THz to 564.5 THz. Specifically, the center frequency of the fourth light emitting element 64 is 564 THz, the center frequency of the fifth light emitting element 65 is 563.5 THz, and the center frequency of the sixth light emitting element 66 is 564. 5 THz.
  • the third light emitting element group 83 is composed of seventh to ninth light emitting elements 67 to 69 having a center frequency in the range of 1 THz from 567.5 THz to 568.5 THz. Specifically, the center frequency of the seventh light emitting element 67 is 568 THz, the center frequency of the eighth light emitting element 68 is 567.5 THz, and the center frequency of the ninth light emitting element 69 is 568. 5 THz.
  • the center frequency of each of the light emitting elements 61 to 69 is a frequency that is the center of the full width at half maximum of the spectrum (frequency width at which the relative light intensity is 50% of the peak value) in the spectrum distribution.
  • the center frequency of each of the light emitting elements 61 to 69 may be a peak frequency (frequency at which the relative light intensity becomes a peak value) in the spectrum distribution.
  • the center frequency differences ⁇ S12 f82c ⁇ f81c
  • ⁇ S23 the center frequencies f81c to f83c of the respective light emitting element groups 81 to 83 and the center frequencies f81c to f83c of the other adjacent light emitting element groups 81 to 83
  • ⁇ S23 the center frequencies f81c to f83c of the respective light emitting element groups 81 to 83 and the center frequencies f81c to f83c of the other adjacent light emitting element groups 81 to 83
  • F83c ⁇ f82c is 4 THz respectively.
  • the average value of the spectrum half widths ⁇ f81 to ⁇ f83 in the plurality of light emitting element groups 81 to 83 is 1.5 THz.
  • the maximum center frequency difference ⁇ W1 is a frequency difference between the maximum center frequency f83 and the minimum center frequency f81 among the center frequencies f81 to f83 of the plurality of light emitting element groups 81 to 83.
  • the configurations of the image projection device 1 and the light source device 2 according to the present embodiment are as described above. Next, with reference to FIGS. 4 to 17, regarding the operation of the image projection device 1 and the light source device 2 according to the present embodiment. To explain.
  • the speckle contrast reduction rate is the speckle contrast reduction rate with respect to the speckle contrast of one light emitting element group having a full spectrum half width of 0.2 THz.
  • the speckle contrast is calculated based on the following formula using a simulation value when the screen is irradiated with a gain of 2.4.
  • Kg represents the autocorrelation function of the spectrum
  • represents the correlation function of speckle at two different wavelengths
  • represents the frequency difference.
  • the full width at half maximum of each light emitting element group is the same as 0.2 THz, and the maximum center frequency difference is also the same as 30 THz.
  • the speckle contrast reduction rate was calculated by changing the center frequency difference. For example, when the center frequency difference is 15 THz, there are three light emitting element groups. When the center frequency difference is 10 THz, there are four light emitting element groups. When the center frequency difference is 5 THz, the light emitting element groups There will be seven groups.
  • FIG. 4 shows a case of 637 THz (471 nm) to 667 THz (449 nm) which is a frequency region of blue light
  • FIG. 5 shows a case of 454 THz (660 nm) to 484 THz (619 nm) of a frequency region of red light
  • FIG. 6 shows a case of 541 THz (554 nm) to 571 THz (525 nm), which is a frequency region of green light. As shown in FIGS. 4 to 6, the frequency region has little influence on the speckle contrast reduction rate.
  • the maximum center frequency difference is the same as 30 THz, and the frequency region is also the same as 541 THz to 571 THz. Under such conditions, the speckle contrast reduction rate was calculated by changing the center frequency difference.
  • FIG. 6 shows a case where the full width at half maximum of each light emitting element group is 0.2 THz
  • FIG. 7 shows a case where the full width at half maximum of each light emitting element group is 0.1 THz
  • FIG. The case where the full width at half maximum of each light emitting element group is 1.0 THz is shown.
  • FIGS. 6 to 8 there is almost no influence of the full width at half maximum of each light emitting element group on the speckle contrast reduction rate.
  • the full width at half maximum of each light emitting element group is the same as 0.2 THz.
  • the speckle contrast reduction rate was calculated by changing the center frequency difference at various maximum center frequency differences.
  • FIG. 9 shows a case where the maximum center frequency difference is 20 THz (546 THz to 566 THz).
  • the reduction rate is improved with respect to the speckle contrast reduction rate D1 of the invention according to Patent Document 1 (the invention in which the maximum center frequency difference is equal to or less than the full width at half maximum of the light emitting element). Therefore, the center frequency difference needs to be larger than 0.2 THz (average value of spectral full widths at half maximum ⁇ f81 to ⁇ f83 of the light emitting element groups 81 to 83) and smaller than 17.3 THz.
  • the center frequency difference should be 3.3 THz or more and 13.8 THz or less.
  • FIG. 10 shows a case where the maximum center frequency difference is 30 THz (541 THz to 571 THz).
  • the center frequency difference is 0.2 THz (each light emitting element group 81 to The spectral full width at half maximum ⁇ f81 to ⁇ f83 of 83 is required to be smaller than 14.7 THz.
  • the center frequency difference should be 3.2 THz or more and 12.3 THz or less.
  • FIG. 11 shows a case where the maximum center frequency difference is 35 THz (542 THz to 577 THz).
  • the center frequency difference is 0.2 THz (each light emitting element group 81 to The spectral full width at half maximum ⁇ f81 to ⁇ f83 of 83 is required to be larger than 14.0 THz.
  • the center frequency difference should be 3.3 THz or more and 12.2 THz or less.
  • FIG. 12 shows a case where the maximum center frequency difference is 50 THz (533 THz to 583 THz).
  • the center frequency difference is 0.2 THz (each of the light emitting element groups 81 to The spectral full width at half maximum ⁇ f81 to ⁇ f83 of 83 is required to be larger than 13.0 THz.
  • the center frequency difference should be 3.3 THz or more and 11.4 THz or less.
  • FIG. 13 shows a case where the maximum center frequency difference is 70 THz (518 THz to 588 THz).
  • the center frequency difference is 0.2 THz (each light emitting element group 81 to The spectral full width at half maximum ⁇ f81 to ⁇ f83 of 83 is required to be smaller than 12.1 THz.
  • the center frequency difference should be 3.2 THz or more and 10.9 THz or less.
  • FIG. 14 shows a case where the maximum center frequency difference is 90 THz (510 THz to 600 THz).
  • the center frequency difference is 0.2 THz (each of the light emitting element groups 81 to The spectral full width at half maximum ⁇ f81 to ⁇ f83 of 83 is required to be larger than 11.5 THz.
  • the center frequency difference should be 3.0 THz or more and 10.5 THz or less.
  • FIG. 15 shows a case where the maximum center frequency difference is 100 THz (500 THz to 600 THz).
  • the center frequency difference is 0.2 THz (each light emitting element group 81 to The spectral full width at half maximum ⁇ f81 to ⁇ f83 of 83 is required to be larger than 11.4 THz.
  • the center frequency difference should be 2.7 THz or more and 10.4 THz or less.
  • FIG. 16 shows the range of the center frequency difference having a reduction rate larger than the speckle contrast reduction rate D1 of the invention according to Patent Document 1 in a hatched area.
  • the center frequency difference ⁇ S12, ⁇ S23 between the adjacent light emitting element groups 81, 82 (82, 83) is: What is necessary is just to be larger than the average value (0.2 THz) of spectral full widths at half maximum ⁇ f81 to ⁇ f83 in the plurality of light emitting element groups 81 to 83 and smaller than 11.4 THz.
  • the center frequency differences ⁇ S12 and ⁇ S23 are preferably 11.0 THz or less.
  • FIG. 17 shows the range of the center frequency difference satisfying the speckle contrast reduction rate D3 of 50% improvement rate by the hatched area.
  • the center frequency differences ⁇ S12 and ⁇ S23 between the other adjacent light emitting element groups 81 and 82 (82 and 83) are 3.3 THz or more. And 10.4 THz or less.
  • the center frequency differences ⁇ S12 and ⁇ S23 are preferably set to 3.5 THz or more, and the center frequency differences ⁇ S12 and ⁇ S23 are preferably set to 10.0 THz or less.
  • the speckle contrast reduction rate can be increased to 50% or more by setting the maximum center frequency difference ⁇ W1 to 35 THz or more.
  • the maximum center frequency difference ⁇ W1 is preferably 35 THz or more.
  • the maximum center frequency difference ⁇ W1 is greater than 100 THz, the chromaticity of light emitted from the light emitting element group having the minimum center frequency and the light emitting element group having the maximum center frequency is different.
  • the light source device 2 includes the plurality of light emitting elements 61 to 69, and the plurality of light emitting elements 61 to 69 includes a plurality of light emitting element groups 81 for each central frequency of the light emitting elements 61 to 69.
  • the center frequency differences ⁇ S12 and ⁇ S23 between the center frequencies f81 to f83 of the light emitting element groups 81 to 83 and the center frequencies f81 to f83 of other adjacent light emitting element groups 81 to 83 are divided into the plurality of light emitting elements. It is larger than the average value of the full spectrum half widths ⁇ f81 to ⁇ f83 in the element groups 81 to 83 and smaller than 11.4 THz.
  • the center frequency difference ⁇ S12 between the center frequencies f81 to f83 of the light emitting element groups 81 to 83 and the center frequencies f81 to f83 of other adjacent light emitting element groups 81 to 83, ⁇ S23 is 3.3 THz or more and 10.4 THz or less.
  • the speckle contrast has a 50% improvement rate.
  • the image projection apparatus 1 includes the light source device 2 and uses light emitted from the light source device 2 as projection light.
  • the light source device and the image projection device are not limited to the configuration of the above-described embodiment, and are not limited to the above-described effects. It goes without saying that the light source device and the image projection device can be variously modified without departing from the gist of the present invention. For example, it is needless to say that configurations, methods, and the like according to various modifications described below may be arbitrarily selected and employed in the configurations, methods, and the like according to the above-described embodiments.
  • the center frequency between the center frequencies f81 to f83 of the light emitting element groups 81 to 83 and the center frequencies f81 to f83 of other adjacent light emitting element groups 81 to 83 is configured to be 4.0 THz.
  • the light source device is not limited to such a configuration.
  • the center frequency differences ⁇ S12 and ⁇ S23 between the center frequencies f81 to f83 of the light emitting element groups 81 to 83 and the center frequencies f81 to f83 of other adjacent light emitting element groups 81 to 83 are a plurality of light emitting elements. Any configuration that is larger than the average value of the spectrum full widths at half maximum ⁇ f81 to ⁇ f83 in the element groups f81 to f83 and smaller than 11.4 THz may be used.
  • the light source device 2 (see FIG. 2) according to the above embodiment, nine light emitting elements 61 to 69 are provided, and three light emitting element groups 81 to 83 are provided.
  • the light source device is not limited to such a configuration.
  • the image projection device 1 (see FIG. 1) according to the above-described embodiment, there are three light source devices 2 provided.
  • the image projector is not limited to such a configuration.
  • the image projection apparatus may be configured such that one, two, or four or more light source devices 2 are provided.
  • SYMBOLS 1 ... Image projector, 2, 2R, 2G, 2B ... Light source device, 3 ... Light source part, 4 ... Optical system, 5 ... Main part, 5a ... Connection part, 6 ... Light emitting element, 7 ... Collimator lens, 8 ... Light emission Element group, 10 ... image projection unit, 11 ... image optical system, 11a ... polarization beam splitter, 11b ... spatial modulation element, 11c ... dichroic prism, 11d ... reflection mirror, 12 ... projection optical system, 13 ... image projection main body, 13a ... connecting portion, 20 ... light guide, 61-69 ... (first to ninth) light emitting elements, 81-83 ... (first to third) light emitting element groups, 100 ... screen

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Semiconductor Lasers (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

An image projection device is provided with a light source device and uses light output from the light source device as projection light. The light source device is provided with a plurality of light-emitting elements. The plurality of light-emitting elements is divided into a plurality of light-emitting element groups according to the center frequency of each light-emitting element. The center frequency difference between the center frequency of a light-emitting element group and the center frequency of a neighboring light-emitting element group is larger than the average value of the full width at half maximum of spectrum in the plurality of light-emitting element groups, and is smaller than 11.4 THz.

Description

光源装置及び画像投影装置Light source device and image projection device
 本発明は、複数の発光素子を備える光源装置に関し、また、該光源装置を備える画像投影装置に関する。 The present invention relates to a light source device including a plurality of light emitting elements, and also relates to an image projection device including the light source device.
 従来、光源装置として、複数の発光素子を備える光源装置が、知られている(例えば、特許文献1)。そして、特許文献1には、一つの発光素子における複数のエミッタから出射されるレーザ光の中心波長差を、当該レーザ光のスペクトル半値全幅以下にすることで、スペックルノイズを低減することができる、と記載されている。しかしながら、斯かる構成では、スペックルノイズを充分に低減することができないことが分かった。 Conventionally, a light source device including a plurality of light emitting elements is known as a light source device (for example, Patent Document 1). And in patent document 1, speckle noise can be reduced by making the center wavelength difference of the laser beam radiate | emitted from the some emitter in one light emitting element below the full width at half maximum of the spectrum of the said laser beam. , And is described. However, it has been found that such a configuration cannot sufficiently reduce speckle noise.
日本国特表2004-503923号公報Japanese National Table 2004-503923
 よって、本発明は、斯かる事情に鑑み、スペックスノイズを充分に低減することができる光源装置及び画像投影装置を提供することを課題とする。 Therefore, in view of such circumstances, an object of the present invention is to provide a light source device and an image projection device that can sufficiently reduce specs noise.
 本発明に係る光源装置は、複数の発光素子を備え、前記複数の発光素子は、各発光素子の中心周波数ごとに複数の発光素子群に区分けされ、前記発光素子群の中心周波数と隣接する他の発光素子群の中心周波数との中心周波数差は、前記複数の発光素子群におけるスペクトル半値全幅の平均値よりも大きく且つ11.4THzよりも小さい。 The light source device according to the present invention includes a plurality of light emitting elements, and the plurality of light emitting elements are divided into a plurality of light emitting element groups for each central frequency of each light emitting element, and are adjacent to the center frequency of the light emitting element group. The center frequency difference from the center frequency of the light emitting element group is larger than the average value of the full widths at half maximum of the plurality of light emitting element groups and smaller than 11.4 THz.
 また、光源装置においては、前記発光素子群の中心周波数と隣接する他の発光素子群の中心周波数との中心周波数差は、3.3THz以上であって且つ10.4THz以下である、という構成でもよい。 In the light source device, the center frequency difference between the center frequency of the light emitting element group and the center frequency of another adjacent light emitting element group is 3.3 THz or more and 10.4 THz or less. Good.
 また、画像投影装置は、前記光源装置を備え、前記光源装置から出射される光を投射光として用いる。 Also, the image projection device includes the light source device, and uses light emitted from the light source device as projection light.
 以上の如く、本発明に係る光源装置及び画像投影装置は、スペックスノイズを充分に低減することができる、という優れた効果を奏する。 As described above, the light source device and the image projection device according to the present invention have an excellent effect that specks noise can be sufficiently reduced.
一実施形態に係る画像投影装置の全体概要図である。1 is an overall schematic diagram of an image projection apparatus according to an embodiment. 同実施形態に係る光源装置の要部概要図である。It is a principal part schematic diagram of the light source device which concerns on the embodiment. 同実施形態に係る光源装置の周波数と光強度との関係を示す図である。It is a figure which shows the relationship between the frequency and light intensity of the light source device which concern on the embodiment. 中心周波数差とスペックルコントラスト減少率との関係を示す図であって、周波数領域の関係を説明する図である。It is a figure which shows the relationship between a center frequency difference and a speckle contrast reduction | decrease rate, Comprising: It is a figure explaining the relationship of a frequency domain. 中心周波数差とスペックルコントラスト減少率との関係を示す図であって、周波数領域の関係を説明する図である。It is a figure which shows the relationship between a center frequency difference and a speckle contrast reduction | decrease rate, Comprising: It is a figure explaining the relationship of a frequency domain. 中心周波数差とスペックルコントラスト減少率との関係を示す図であって、周波数領域の関係、及び発光素子群のスペクトル半値全幅の関係を説明する図である。It is a figure which shows the relationship between a center frequency difference and a speckle contrast reduction | decrease rate, Comprising: It is a figure explaining the relationship of a frequency domain, and the relationship of the spectrum half width of a light emitting element group. 中心周波数差とスペックルコントラスト減少率との関係を示す図であって、発光素子群のスペクトル半値全幅の関係を説明する図である。It is a figure which shows the relationship between a center frequency difference and a speckle contrast reduction | decrease rate, Comprising: It is a figure explaining the relationship of the spectrum half value full width of a light emitting element group. 中心周波数差とスペックルコントラスト減少率との関係を示す図であって、発光素子群のスペクトル半値全幅の関係を説明する図である。It is a figure which shows the relationship between a center frequency difference and a speckle contrast reduction | decrease rate, Comprising: It is a figure explaining the relationship of the spectrum half value full width of a light emitting element group. 中心周波数差とスペックルコントラスト減少率との関係を示す図であって、発光素子群の最大中心周波数差の関係を説明する図である。It is a figure which shows the relationship between a center frequency difference and a speckle contrast reduction | decrease rate, Comprising: It is a figure explaining the relationship of the largest center frequency difference of a light emitting element group. 中心周波数差とスペックルコントラスト減少率との関係を示す図であって、発光素子群の最大中心周波数差の関係を説明する図である。It is a figure which shows the relationship between a center frequency difference and a speckle contrast reduction | decrease rate, Comprising: It is a figure explaining the relationship of the largest center frequency difference of a light emitting element group. 中心周波数差とスペックルコントラスト減少率との関係を示す図であって、発光素子群の最大中心周波数差の関係を説明する図である。It is a figure which shows the relationship between a center frequency difference and a speckle contrast reduction | decrease rate, Comprising: It is a figure explaining the relationship of the largest center frequency difference of a light emitting element group. 中心周波数差とスペックルコントラスト減少率との関係を示す図であって、発光素子群の最大中心周波数差の関係を説明する図である。It is a figure which shows the relationship between a center frequency difference and a speckle contrast reduction | decrease rate, Comprising: It is a figure explaining the relationship of the largest center frequency difference of a light emitting element group. 中心周波数差とスペックルコントラスト減少率との関係を示す図であって、発光素子群の最大中心周波数差の関係を説明する図である。It is a figure which shows the relationship between a center frequency difference and a speckle contrast reduction | decrease rate, Comprising: It is a figure explaining the relationship of the largest center frequency difference of a light emitting element group. 中心周波数差とスペックルコントラスト減少率との関係を示す図であって、発光素子群の最大中心周波数差の関係を説明する図である。It is a figure which shows the relationship between a center frequency difference and a speckle contrast reduction | decrease rate, Comprising: It is a figure explaining the relationship of the largest center frequency difference of a light emitting element group. 中心周波数差とスペックルコントラスト減少率との関係を示す図であって、発光素子群の最大中心周波数差の関係を説明する図である。It is a figure which shows the relationship between a center frequency difference and a speckle contrast reduction | decrease rate, Comprising: It is a figure explaining the relationship of the largest center frequency difference of a light emitting element group. 最大中心周波数差に対して、特許文献1に係る発明のスペックルコントラスト減少率よりも大きいスペックルコントラスト減少率を有する中心周波数差の範囲を示す図である。It is a figure which shows the range of the center frequency difference which has a speckle contrast reduction rate larger than the speckle contrast reduction rate of the invention which concerns on patent document 1 with respect to the largest center frequency difference. 最大中心周波数差に対して、50%向上率のスペックルコントラスト減少率以上のスペックルコントラスト減少率を有する中心周波数差の範囲を示す図である。It is a figure which shows the range of the center frequency difference which has the speckle contrast reduction rate more than the speckle contrast reduction rate of 50% improvement rate with respect to the maximum center frequency difference.
 以下、光源装置及び画像投影装置における一実施形態について、図1~図3を参酌して説明する。なお、各図において、図面の寸法比と実際の寸法比とは、必ずしも一致していない。 Hereinafter, an embodiment of the light source device and the image projection device will be described with reference to FIGS. In each figure, the dimensional ratio in the drawing does not necessarily match the actual dimensional ratio.
 図1に示すように、本実施形態に係る画像投影装置1は、それぞれ異なる色の光を出射する複数(本実施形態においては3つ)の光源装置2(2R,2G,2B)と、光源装置2からの光で光画像を生成し、スクリーン100に投影する画像投影部10とを備えている。また、画像投影装置1は、光源装置2から出射された光を伝搬して画像投影部10に入射する導光体(例えば、光ファイバ)20を備えている。 As shown in FIG. 1, an image projection apparatus 1 according to the present embodiment includes a plurality (three in the present embodiment) of light source devices 2 (2R, 2G, 2B) that emit light of different colors, and a light source. An image projection unit 10 that generates an optical image with the light from the apparatus 2 and projects the optical image onto the screen 100 is provided. The image projector 1 also includes a light guide (for example, an optical fiber) 20 that propagates the light emitted from the light source device 2 and enters the image projector 10.
 光源装置2は、第1の色(例えば、赤色)の光を出射する第1の光源装置2Rと、第2の色(例えば、緑色)の光を出射する第2の光源装置2Gと、第3の色(例えば、青色)の光を出射する第3の光源装置2Bとを備えている。本実施形態においては、複数の光源装置2は、第1~第3の色の光を分離した状態で画像投影部10に向けて出射している。 The light source device 2 includes a first light source device 2R that emits light of a first color (for example, red), a second light source device 2G that emits light of a second color (for example, green), And a third light source device 2B that emits light of three colors (for example, blue). In the present embodiment, the plurality of light source devices 2 emit light of the first to third colors toward the image projection unit 10 in a separated state.
 画像投影部10は、各光源装置2から出射された光が入射されて光画像を生成する画像光学系11と、画像光学系11から出射された光画像を入射してスクリーン100に投影する投影光学系(例えば、投影レンズ)12とを備えている。また、画像投影部10は、各光学系11,12を収容する画像投影本体部13を備えている。なお、画像投影本体部13は、導光体20の他端部と接続される接続部13aを備えている。 The image projection unit 10 receives the light emitted from each light source device 2 and generates an optical image, and the projection that projects the light image emitted from the image optical system 11 onto the screen 100. An optical system (for example, a projection lens) 12 is provided. Further, the image projection unit 10 includes an image projection main body unit 13 that accommodates the optical systems 11 and 12. The image projection main body 13 includes a connection portion 13 a that is connected to the other end of the light guide 20.
 画像光学系11は、光源装置2から出射された光のうち所定の偏光成分のみを透過する偏光ビームスプリッタ11aと、偏光ビームスプリッタ11aから出射された光を変調することで光画像にする空間変調素子11bとを備えている。また、画像光学系11は、各空間変調素子11bで透過された光を合成するダイクロイックプリズム11cと、第1及び第3の光源装置2R,2Bから出射されたレーザ光を反射する反射ミラー11dとを備えている。 The image optical system 11 includes a polarization beam splitter 11a that transmits only a predetermined polarization component of the light emitted from the light source device 2, and spatial modulation that converts the light emitted from the polarization beam splitter 11a into an optical image. And an element 11b. In addition, the image optical system 11 includes a dichroic prism 11c that synthesizes the light transmitted through each spatial modulation element 11b, and a reflection mirror 11d that reflects the laser light emitted from the first and third light source devices 2R and 2B. It has.
 本実施形態においては、各空間変調素子11bは、透過型液晶素子としている。なお、画像光学系11は、反射型液晶素子又はデジタルマイクロミラーデバイスである空間変調素子11bを備える、という構成でもよい。 In this embodiment, each spatial modulation element 11b is a transmissive liquid crystal element. Note that the image optical system 11 may include a spatial modulation element 11b that is a reflective liquid crystal element or a digital micromirror device.
 光源装置2は、光を出射する複数の光源部3と、複数の光源部3から出射された光が入射される光学系4と、複数の光源部3及び光学系4を収容する本体部5とを備えている。なお、本体部5は、導光体20の一端部と接続される接続部5aを備えている。 The light source device 2 includes a plurality of light source units 3 that emit light, an optical system 4 that receives light emitted from the plurality of light source units 3, and a main body unit 5 that houses the plurality of light source units 3 and the optical system 4. And. The main body 5 includes a connecting portion 5 a that is connected to one end of the light guide 20.
 図2に示すように、光源部3は、光を発する発光素子6と、発光素子6から出射される光を略平行光にするコリメータレンズ7とを備えている。本実施形態においては、各光源装置2において、発光素子6は、9つ備えられており、それぞれ第1~第9の発光素子61~69という。また、本実施形態においては、発光素子6は、レーザ光を出射する半導体レーザとしており、該半導体レーザは、1つのエミッタを有するCANタイプでもよく、複数のエミッタを有するアレイタイプでもよい。 As shown in FIG. 2, the light source unit 3 includes a light emitting element 6 that emits light and a collimator lens 7 that converts light emitted from the light emitting element 6 into substantially parallel light. In the present embodiment, each light source device 2 includes nine light emitting elements 6, which are referred to as first to ninth light emitting elements 61 to 69, respectively. In the present embodiment, the light emitting element 6 is a semiconductor laser that emits laser light. The semiconductor laser may be a CAN type having one emitter or an array type having a plurality of emitters.
 複数の発光素子61~69は、各発光素子61~69の中心周波数f61~f69ごとに複数の発光素子群8に区分けされている。本実施形態においては、発光素子群8は、3つ備えられており、それぞれ第1~第3の発光素子群81~83という。なお、第1の発光素子群81は、第1~第3の発光素子61~63を備えており、第2の発光素子群82は、第4~第6の発光素子64~66を備えており、第3の発光素子群83は、第7~第9の発光素子67~69を備えている。 The plurality of light emitting elements 61 to 69 are divided into a plurality of light emitting element groups 8 for each of the center frequencies f61 to f69 of the light emitting elements 61 to 69. In the present embodiment, three light emitting element groups 8 are provided, which are referred to as first to third light emitting element groups 81 to 83, respectively. Note that the first light emitting element group 81 includes first to third light emitting elements 61 to 63, and the second light emitting element group 82 includes fourth to sixth light emitting elements 64 to 66. The third light emitting element group 83 includes seventh to ninth light emitting elements 67 to 69.
 まず、本実施形態に係る各発光素子群81~83の区分けについて、説明する。 First, the division of the light emitting element groups 81 to 83 according to the present embodiment will be described.
 図3は、周波数に対する光強度のスペクトル分布を示している。破線S61~S69は、各発光素子61~69のスペクトル分布を示しており、実線S81~83は、各発光素子群81~83のスペクトル分布を示している。本実施形態においては、各発光素子61~69は、スペクトル分布が略同じとなるように、構成されている。 FIG. 3 shows the spectral distribution of light intensity with respect to frequency. Dashed lines S61 to S69 indicate the spectral distribution of the light emitting elements 61 to 69, and solid lines S81 to 83 indicate the spectral distribution of the light emitting element groups 81 to 83. In the present embodiment, the light emitting elements 61 to 69 are configured so that the spectral distributions are substantially the same.
 各発光素子群81~83は、所定の1THzの範囲に中心周波数を有する少なくとも1つの発光素子61~69から構成されている。また、各発光素子群81~83は、スペクトル分布において、スペクトル半値全幅(相対光強度がピーク値の50%になる周波数幅)の周波数範囲が離間するように(即ち、重ならないように)、それぞれ区分けされている。 Each light emitting element group 81 to 83 is composed of at least one light emitting element 61 to 69 having a center frequency in a predetermined 1 THz range. In addition, each light emitting element group 81 to 83 has a spectral distribution in which the frequency range of the full width at half maximum of the spectrum (frequency width at which the relative light intensity is 50% of the peak value) is separated (ie, does not overlap). Each is divided.
 第1の発光素子群81は、559.5THz~560.5THzの1THzの範囲に中心周波数を有する第1~第3の発光素子61~63で構成されている。具体的には、第1の発光素子61の中心周波数は、560THzであり、第2の発光素子62の中心周波数は、559.5THzであり、第3の発光素子63の中心周波数は、560.5THzである。 The first light-emitting element group 81 is composed of first to third light-emitting elements 61 to 63 having a center frequency in the range of 19.5 Hz from 559.5 THz to 560.5 THz. Specifically, the center frequency of the first light emitting element 61 is 560 THz, the center frequency of the second light emitting element 62 is 559.5 THz, and the center frequency of the third light emitting element 63 is 560.Hz. 5 THz.
 第2の発光素子群82は、563.5THz~564.5THzの1THzの範囲に中心周波数を有する第4~第6の発光素子64~66で構成されている。具体的には、第4の発光素子64の中心周波数は、564THzであり、第5の発光素子65の中心周波数は、563.5THzであり、第6の発光素子66の中心周波数は、564.5THzである。 The second light emitting element group 82 is composed of fourth to sixth light emitting elements 64 to 66 having a center frequency in the range of 1 THz from 563.5 THz to 564.5 THz. Specifically, the center frequency of the fourth light emitting element 64 is 564 THz, the center frequency of the fifth light emitting element 65 is 563.5 THz, and the center frequency of the sixth light emitting element 66 is 564. 5 THz.
 第3の発光素子群83は、567.5THz~568.5THzの1THzの範囲に中心周波数を有する第7~第9の発光素子67~69で構成されている。具体的には、第7の発光素子67の中心周波数は、568THzであり、第8の発光素子68の中心周波数は、567.5THzであり、第9の発光素子69の中心周波数は、568.5THzである。 The third light emitting element group 83 is composed of seventh to ninth light emitting elements 67 to 69 having a center frequency in the range of 1 THz from 567.5 THz to 568.5 THz. Specifically, the center frequency of the seventh light emitting element 67 is 568 THz, the center frequency of the eighth light emitting element 68 is 567.5 THz, and the center frequency of the ninth light emitting element 69 is 568. 5 THz.
 本実施形態においては、各発光素子61~69の中心周波数は、スペクトル分布において、スペクトル半値全幅(相対光強度がピーク値の50%になる周波数幅)の中心となる周波数としている。なお、各発光素子61~69の中心周波数は、スペクトル分布において、ピーク周波数(相対光強度がピーク値となる周波数)としてもよい。 In the present embodiment, the center frequency of each of the light emitting elements 61 to 69 is a frequency that is the center of the full width at half maximum of the spectrum (frequency width at which the relative light intensity is 50% of the peak value) in the spectrum distribution. The center frequency of each of the light emitting elements 61 to 69 may be a peak frequency (frequency at which the relative light intensity becomes a peak value) in the spectrum distribution.
 次に、本実施形態に係る各発光素子群81~83のスペクトル分布について、説明する。 Next, the spectral distribution of each of the light emitting element groups 81 to 83 according to this embodiment will be described.
 第1の発光素子群81のスペクトル半値全幅Δf81(=f81b-f81a)は、1.5THzであって、第1の発光素子群81の中心周波数f81cは、560THzである。なお、各発光素子群81~83の中心周波数f81c~f83cは、スペクトル分布において、スペクトル半値全幅の中心となる周波数(例えば、第1の発光素子群81の中心周波数f81cにおいては、f81c=f81a+(f81b-f81a)/2)としている。 The full width at half maximum Δf81 (= f81b−f81a) of the first light emitting element group 81 is 1.5 THz, and the center frequency f81c of the first light emitting element group 81 is 560 THz. The center frequencies f81c to f83c of the light emitting element groups 81 to 83 are frequencies that are the center of the spectrum full width at half maximum in the spectrum distribution (for example, f81c = f81a + (in the center frequency f81c of the first light emitting element group 81). f81b-f81a) / 2).
 第2の発光素子群82のスペクトル半値全幅Δf82(=f82b-f82a)は、1.5THzであって、第2の発光素子群82の中心周波数f82cは、564THzである。また、第3の発光素子群83のスペクトル半値全幅Δf83(=f83b-f83a)は、1.5THzであって、第3の発光素子群83の中心周波数f83cは、568THzである。 The full width at half maximum Δf82 (= f82b−f82a) of the second light emitting element group 82 is 1.5 THz, and the center frequency f82c of the second light emitting element group 82 is 564 THz. The full width at half maximum Δf83 (= f83b−f83a) of the third light emitting element group 83 is 1.5 THz, and the center frequency f83c of the third light emitting element group 83 is 568 THz.
 このように、各発光素子群81~83の中心周波数f81c~f83cと、隣接する他の発光素子群81~83の中心周波数f81c~f83cとの中心周波数差ΔS12(=f82c-f81c),ΔS23(=f83c-f82c)は、それぞれ4THzである。そして、複数の発光素子群81~83におけるスペクトル半値全幅Δf81~Δf83の平均値は、1.5THzである。 Thus, the center frequency differences ΔS12 (= f82c−f81c), ΔS23 (the center frequencies f81c to f83c of the respective light emitting element groups 81 to 83 and the center frequencies f81c to f83c of the other adjacent light emitting element groups 81 to 83) = F83c−f82c) is 4 THz respectively. The average value of the spectrum half widths Δf81 to Δf83 in the plurality of light emitting element groups 81 to 83 is 1.5 THz.
 また、最大中心周波数差ΔW1(=f83c-f81c)は、8THzである。なお、最大中心周波数差ΔW1は、複数の発光素子群81~83の中心周波数f81~f83のうち、最大の中心周波数f83と最小の中心周波数f81との周波数差をいう。 Also, the maximum center frequency difference ΔW1 (= f83c−f81c) is 8 THz. The maximum center frequency difference ΔW1 is a frequency difference between the maximum center frequency f83 and the minimum center frequency f81 among the center frequencies f81 to f83 of the plurality of light emitting element groups 81 to 83.
 本実施形態に係る画像投影装置1及び光源装置2の構成については以上の通りであり、次に、本実施形態に係る画像投影装置1及び光源装置2の作用について、図4~図17を参酌して説明する。 The configurations of the image projection device 1 and the light source device 2 according to the present embodiment are as described above. Next, with reference to FIGS. 4 to 17, regarding the operation of the image projection device 1 and the light source device 2 according to the present embodiment. To explain.
 図4~図15において、スペックルコントラスト減少率は、スペクトル半値全幅が0.2THzである1つの発光素子群のスペックルコントラストに対する、スペックルコントラストの減少率である。なお、スペックルコントラストは、ゲイン2.4のスクリーンに照射した場合のシミュレーション値を用いており、下記の数式に基づいて算出している。
Figure JPOXMLDOC01-appb-I000001
 ただし、Kgはスペクトルの自己相関関数を表し、μは2つの異なる波長でのスペックルの相関関数を表し、Δνは周波数差を表す。
4 to 15, the speckle contrast reduction rate is the speckle contrast reduction rate with respect to the speckle contrast of one light emitting element group having a full spectrum half width of 0.2 THz. The speckle contrast is calculated based on the following formula using a simulation value when the screen is irradiated with a gain of 2.4.
Figure JPOXMLDOC01-appb-I000001
Where Kg represents the autocorrelation function of the spectrum, μ represents the correlation function of speckle at two different wavelengths, and Δν represents the frequency difference.
 まず、周波数の領域がスペックルコントラスト減少率に与える影響を、図4~図6を参酌して説明する。 First, the influence of the frequency region on the speckle contrast reduction rate will be described with reference to FIGS.
 図4~図6において、各発光素子群のスペクトル半値全幅は、0.2THzと同じであり、また、最大中心周波数差も、30THzと同じである。斯かる条件において、中心周波数差を変化させて、スペックルコントラスト減少率を算出した。例えば、中心周波数差が15THzである場合は、発光素子群は3つとなり、中心周波数差が10THzである場合は、発光素子群は4つとなり、中心周波数差が5THzである場合は、発光素子群は、7つとなる。 4 to 6, the full width at half maximum of each light emitting element group is the same as 0.2 THz, and the maximum center frequency difference is also the same as 30 THz. Under such conditions, the speckle contrast reduction rate was calculated by changing the center frequency difference. For example, when the center frequency difference is 15 THz, there are three light emitting element groups. When the center frequency difference is 10 THz, there are four light emitting element groups. When the center frequency difference is 5 THz, the light emitting element groups There will be seven groups.
 そして、図4は、青色の光の周波数領域である637THz(471nm)~667THz(449nm)の場合を示し、図5は、赤色の光の周波数領域である454THz(660nm)~484THz(619nm)の場合を示し、図6は、緑色の光の周波数領域である541THz(554nm)~571THz(525nm)の場合を示している。図4~図6に示すように、周波数の領域がスペックルコントラスト減少率に与える影響は、殆どない。 4 shows a case of 637 THz (471 nm) to 667 THz (449 nm) which is a frequency region of blue light, and FIG. 5 shows a case of 454 THz (660 nm) to 484 THz (619 nm) of a frequency region of red light. FIG. 6 shows a case of 541 THz (554 nm) to 571 THz (525 nm), which is a frequency region of green light. As shown in FIGS. 4 to 6, the frequency region has little influence on the speckle contrast reduction rate.
 次に、各発光素子群のスペクトル半値全幅がスペックルコントラスト減少率に与える影響を、図6~図8を参酌して説明する。 Next, the effect of the full width at half maximum of each light emitting element group on the speckle contrast reduction rate will be described with reference to FIGS.
 図6~図8において、最大中心周波数差は、30THzと同じであり、また、周波数領域も、541THz~571THzと同じである。斯かる条件において、中心周波数差を変化させて、スペックルコントラスト減少率を算出した。 6 to 8, the maximum center frequency difference is the same as 30 THz, and the frequency region is also the same as 541 THz to 571 THz. Under such conditions, the speckle contrast reduction rate was calculated by changing the center frequency difference.
 そして、図6は、各発光素子群のスペクトル半値全幅が0.2THzである場合を示し、図7は、各発光素子群のスペクトル半値全幅が0.1THzである場合を示し、図8は、各発光素子群のスペクトル半値全幅が1.0THzである場合を示している。図6~図8に示すように、各発光素子群のスペクトル半値全幅がスペックルコントラスト減少率に与える影響は、殆どない。 6 shows a case where the full width at half maximum of each light emitting element group is 0.2 THz, FIG. 7 shows a case where the full width at half maximum of each light emitting element group is 0.1 THz, and FIG. The case where the full width at half maximum of each light emitting element group is 1.0 THz is shown. As shown in FIGS. 6 to 8, there is almost no influence of the full width at half maximum of each light emitting element group on the speckle contrast reduction rate.
 そこで、最大中心周波数差がスペックルコントラスト減少率に与える影響を、図9~図17を参酌して説明する。 Therefore, the influence of the maximum center frequency difference on the speckle contrast reduction rate will be described with reference to FIGS.
 図9~図15において、各発光素子群のスペクトル半値全幅は、0.2THzと同じである。斯かる条件で、さまざまな最大中心周波数差において、中心周波数差を変化させて、スペックルコントラスト減少率を算出した。 9 to 15, the full width at half maximum of each light emitting element group is the same as 0.2 THz. Under such conditions, the speckle contrast reduction rate was calculated by changing the center frequency difference at various maximum center frequency differences.
 図9は、最大中心周波数差が20THz(546THz~566THz)である場合を示している。斯かる場合、図9に示すように、特許文献1に係る発明(最大中心周波数差が発光素子のスペクトル半値全幅以下である発明)のスペックルコントラスト減少率D1に対して当該減少率を向上させるには、中心周波数差が0.2THz(各発光素子群81~83のスペクトル半値全幅Δf81~Δf83の平均値)よりも大きく且つ17.3THzよりも小さい必要がある。 FIG. 9 shows a case where the maximum center frequency difference is 20 THz (546 THz to 566 THz). In such a case, as shown in FIG. 9, the reduction rate is improved with respect to the speckle contrast reduction rate D1 of the invention according to Patent Document 1 (the invention in which the maximum center frequency difference is equal to or less than the full width at half maximum of the light emitting element). Therefore, the center frequency difference needs to be larger than 0.2 THz (average value of spectral full widths at half maximum Δf81 to Δf83 of the light emitting element groups 81 to 83) and smaller than 17.3 THz.
 また、特許文献1に係る発明のスペックルコントラスト減少率D1に対して、最大のスペックルコントラスト減少率D2が100%向上率とした際に、50%向上率のスペックルコントラスト減少率D3(=D1+(D1+D2)/2)以上を満たすには、中心周波数差が3.3THz以上であり且つ13.8THz以下であればよい。 Further, when the maximum speckle contrast reduction rate D2 of the invention according to Patent Document 1 is set to 100% improvement rate, the speckle contrast reduction rate D3 (= 3% = 50% improvement rate). In order to satisfy D1 + (D1 + D2) / 2) or more, the center frequency difference should be 3.3 THz or more and 13.8 THz or less.
 図10は、最大中心周波数差が30THz(541THz~571THz)である場合を示している。斯かる場合、図10に示すように、特許文献1に係る発明のスペックルコントラスト減少率D1に対して該減少率を向上させるには、中心周波数差が0.2THz(各発光素子群81~83のスペクトル半値全幅Δf81~Δf83の平均値)よりも大きく且つ14.7THzよりも小さい必要がある。また、50%向上率のスペックルコントラスト減少率D3以上を満たすには、中心周波数差が3.2THz以上であり且つ12.3THz以下であればよい。 FIG. 10 shows a case where the maximum center frequency difference is 30 THz (541 THz to 571 THz). In such a case, as shown in FIG. 10, in order to improve the reduction rate relative to the speckle contrast reduction rate D1 of the invention according to Patent Document 1, the center frequency difference is 0.2 THz (each light emitting element group 81 to The spectral full width at half maximum Δf81 to Δf83 of 83 is required to be smaller than 14.7 THz. Further, in order to satisfy the speckle contrast reduction rate D3 or more of 50% improvement rate, the center frequency difference should be 3.2 THz or more and 12.3 THz or less.
 図11は、最大中心周波数差が35THz(542THz~577THz)である場合を示している。斯かる場合、図11に示すように、特許文献1に係る発明のスペックルコントラスト減少率D1に対して該減少率を向上させるには、中心周波数差が0.2THz(各発光素子群81~83のスペクトル半値全幅Δf81~Δf83の平均値)よりも大きく且つ14.0THzよりも小さい必要がある。また、50%向上率のスペックルコントラスト減少率D3以上を満たすには、中心周波数差が3.3THz以上であり且つ12.2THz以下であればよい。 FIG. 11 shows a case where the maximum center frequency difference is 35 THz (542 THz to 577 THz). In such a case, as shown in FIG. 11, in order to improve the reduction rate relative to the speckle contrast reduction rate D1 of the invention according to Patent Document 1, the center frequency difference is 0.2 THz (each light emitting element group 81 to The spectral full width at half maximum Δf81 to Δf83 of 83 is required to be larger than 14.0 THz. Further, in order to satisfy the speckle contrast reduction rate D3 or more of 50% improvement rate, the center frequency difference should be 3.3 THz or more and 12.2 THz or less.
 図12は、最大中心周波数差が50THz(533THz~583THz)である場合を示している。斯かる場合、図12に示すように、特許文献1に係る発明のスペックルコントラスト減少率D1に対して該減少率を向上させるには、中心周波数差が0.2THz(各発光素子群81~83のスペクトル半値全幅Δf81~Δf83の平均値)よりも大きく且つ13.0THzよりも小さい必要がある。また、50%向上率のスペックルコントラスト減少率D3以上を満たすには、中心周波数差が3.3THz以上であり且つ11.4THz以下であればよい。 FIG. 12 shows a case where the maximum center frequency difference is 50 THz (533 THz to 583 THz). In such a case, as shown in FIG. 12, in order to improve the reduction rate relative to the speckle contrast reduction rate D1 of the invention according to Patent Document 1, the center frequency difference is 0.2 THz (each of the light emitting element groups 81 to The spectral full width at half maximum Δf81 to Δf83 of 83 is required to be larger than 13.0 THz. Further, in order to satisfy the speckle contrast reduction rate D3 or more of 50% improvement rate, the center frequency difference should be 3.3 THz or more and 11.4 THz or less.
 図13は、最大中心周波数差が70THz(518THz~588THz)である場合を示している。斯かる場合、図13に示すように、特許文献1に係る発明のスペックルコントラスト減少率D1に対して該減少率を向上させるには、中心周波数差が0.2THz(各発光素子群81~83のスペクトル半値全幅Δf81~Δf83の平均値)よりも大きく且つ12.1THzよりも小さい必要がある。また、50%向上率のスペックルコントラスト減少率D3以上を満たすには、中心周波数差が3.2THz以上であり且つ10.9THz以下であればよい。 FIG. 13 shows a case where the maximum center frequency difference is 70 THz (518 THz to 588 THz). In such a case, as shown in FIG. 13, in order to improve the reduction rate relative to the speckle contrast reduction rate D1 of the invention according to Patent Document 1, the center frequency difference is 0.2 THz (each light emitting element group 81 to The spectral full width at half maximum Δf81 to Δf83 of 83 is required to be smaller than 12.1 THz. Further, in order to satisfy the speckle contrast reduction rate D3 or more of 50% improvement rate, the center frequency difference should be 3.2 THz or more and 10.9 THz or less.
 図14は、最大中心周波数差が90THz(510THz~600THz)である場合を示している。斯かる場合、図14に示すように、特許文献1に係る発明のスペックルコントラスト減少率D1に対して該減少率を向上させるには、中心周波数差が0.2THz(各発光素子群81~83のスペクトル半値全幅Δf81~Δf83の平均値)よりも大きく且つ11.5THzよりも小さい必要がある。また、50%向上率のスペックルコントラスト減少率D3以上を満たすには、中心周波数差が3.0THz以上であり且つ10.5THz以下であればよい。 FIG. 14 shows a case where the maximum center frequency difference is 90 THz (510 THz to 600 THz). In such a case, as shown in FIG. 14, in order to improve the reduction rate relative to the speckle contrast reduction rate D1 of the invention according to Patent Document 1, the center frequency difference is 0.2 THz (each of the light emitting element groups 81 to The spectral full width at half maximum Δf81 to Δf83 of 83 is required to be larger than 11.5 THz. Further, in order to satisfy the speckle contrast reduction rate D3 of 50% improvement rate, the center frequency difference should be 3.0 THz or more and 10.5 THz or less.
 図15は、最大中心周波数差が100THz(500THz~600THz)である場合を示している。斯かる場合、図15に示すように、特許文献1に係る発明のスペックルコントラスト減少率D1に対して該減少率を向上させるには、中心周波数差が0.2THz(各発光素子群81~83のスペクトル半値全幅Δf81~Δf83の平均値)よりも大きく且つ11.4THzよりも小さい必要がある。また、50%向上率のスペックルコントラスト減少率D3以上を満たすには、中心周波数差が2.7THz以上であり且つ10.4THz以下であればよい。 FIG. 15 shows a case where the maximum center frequency difference is 100 THz (500 THz to 600 THz). In such a case, as shown in FIG. 15, in order to improve the reduction rate relative to the speckle contrast reduction rate D1 of the invention according to Patent Document 1, the center frequency difference is 0.2 THz (each light emitting element group 81 to The spectral full width at half maximum Δf81 to Δf83 of 83 is required to be larger than 11.4 THz. Further, in order to satisfy the speckle contrast reduction rate D3 or more of 50% improvement rate, the center frequency difference should be 2.7 THz or more and 10.4 THz or less.
 そして、図16は、特許文献1に係る発明のスペックルコントラスト減少率D1よりも大きい減少率を有する中心周波数差の範囲を斜線領域で示している。これにより、特許文献1に係る発明のスペックルコントラスト減少率D1よりも大きい減少率とするためには、隣接する発光素子群同士81,82(82,83)の中心周波数差ΔS12,ΔS23は、複数の発光素子群81~83におけるスペクトル半値全幅Δf81~Δf83の平均値(0.2THz)よりも大きく、11.4THzよりも小さくすればよい。なお、該中心周波数差ΔS12,ΔS23は、11.0THz以下とすることが、好ましい。 FIG. 16 shows the range of the center frequency difference having a reduction rate larger than the speckle contrast reduction rate D1 of the invention according to Patent Document 1 in a hatched area. Thus, in order to obtain a reduction rate larger than the speckle contrast reduction rate D1 of the invention according to Patent Document 1, the center frequency difference ΔS12, ΔS23 between the adjacent light emitting element groups 81, 82 (82, 83) is: What is necessary is just to be larger than the average value (0.2 THz) of spectral full widths at half maximum Δf81 to Δf83 in the plurality of light emitting element groups 81 to 83 and smaller than 11.4 THz. The center frequency differences ΔS12 and ΔS23 are preferably 11.0 THz or less.
 また、図17は、50%向上率のスペックルコントラスト減少率D3以上を満たす中心周波数差の範囲を斜線領域で示している。これにより、50%向上率のスペックルコントラスト減少率D3以上とするためには、隣接する他の発光素子群同士81,82(82,83)の中心周波数差ΔS12,ΔS23は、3.3THz以上であって且つ10.4THz以下とすればよい。なお、該中心周波数差ΔS12,ΔS23は、3.5THz以上とすることが、好ましく、また、該中心周波数差ΔS12,ΔS23は、10.0THz以下とすることが好ましい。 Further, FIG. 17 shows the range of the center frequency difference satisfying the speckle contrast reduction rate D3 of 50% improvement rate by the hatched area. Thereby, in order to make the speckle contrast reduction rate D3 or more of 50% improvement rate, the center frequency differences ΔS12 and ΔS23 between the other adjacent light emitting element groups 81 and 82 (82 and 83) are 3.3 THz or more. And 10.4 THz or less. The center frequency differences ΔS12 and ΔS23 are preferably set to 3.5 THz or more, and the center frequency differences ΔS12 and ΔS23 are preferably set to 10.0 THz or less.
 また、図11~図15に示すように、最大中心周波数差ΔW1を35THz以上にすることで、スペックルコントラスト減少率を50%以上にすることができる。これにより、最大中心周波数差ΔW1は、35THz以上であることが好ましい。なお、最大中心周波数差ΔW1が100THzよりも大きくなると、最小の中心周波数の発光素子群と最大の中心周波数の発光素子群とが発する光の色度は、異なってしまう。 As shown in FIGS. 11 to 15, the speckle contrast reduction rate can be increased to 50% or more by setting the maximum center frequency difference ΔW1 to 35 THz or more. Thus, the maximum center frequency difference ΔW1 is preferably 35 THz or more. When the maximum center frequency difference ΔW1 is greater than 100 THz, the chromaticity of light emitted from the light emitting element group having the minimum center frequency and the light emitting element group having the maximum center frequency is different.
 以上より、本実施形態に係る光源装置2は、複数の発光素子61~69を備え、前記複数の発光素子61~69は、各発光素子61~69の中心周波数ごとに複数の発光素子群81~83に区分けされ、前記発光素子群81~83の中心周波数f81~f83と隣接する他の発光素子群81~83の中心周波数f81~f83との中心周波数差ΔS12,ΔS23は、前記複数の発光素子群81~83におけるスペクトル半値全幅Δf81~Δf83の平均値よりも大きく且つ11.4THzよりも小さい。 As described above, the light source device 2 according to the present embodiment includes the plurality of light emitting elements 61 to 69, and the plurality of light emitting elements 61 to 69 includes a plurality of light emitting element groups 81 for each central frequency of the light emitting elements 61 to 69. The center frequency differences ΔS12 and ΔS23 between the center frequencies f81 to f83 of the light emitting element groups 81 to 83 and the center frequencies f81 to f83 of other adjacent light emitting element groups 81 to 83 are divided into the plurality of light emitting elements. It is larger than the average value of the full spectrum half widths Δf81 to Δf83 in the element groups 81 to 83 and smaller than 11.4 THz.
 斯かる構成によれば、特許文献1に係る発明のスペックルコントラスト減少率D1よりも、大きいスペックルコントラスト減少率を有することができる。これにより、スペックスノイズを充分に低減することができる、 According to such a configuration, it is possible to have a speckle contrast reduction rate larger than the speckle contrast reduction rate D1 of the invention according to Patent Document 1. As a result, specs noise can be sufficiently reduced.
 また、本実施形態に係る光源装置2においては、前記発光素子群81~83の中心周波数f81~f83と隣接する他の発光素子群81~83の中心周波数f81~f83との中心周波数差ΔS12,ΔS23は、3.3THz以上であって且つ10.4THz以下である。 In the light source device 2 according to the present embodiment, the center frequency difference ΔS12 between the center frequencies f81 to f83 of the light emitting element groups 81 to 83 and the center frequencies f81 to f83 of other adjacent light emitting element groups 81 to 83, ΔS23 is 3.3 THz or more and 10.4 THz or less.
 斯かる構成によれば、特許文献1に係る発明のスペックルコントラスト減少率D1に対して、最大のスペックルコントラスト減少率D2が100%向上率とした際に、50%向上率のスペックルコントラスト減少率D3(=D1+(D1+D2)/2)以上を満たすことができる。これにより、スペックスノイズをさらに充分に低減することができる。 According to such a configuration, when the maximum speckle contrast reduction rate D2 is 100% improvement rate with respect to the speckle contrast reduction rate D1 of the invention according to Patent Document 1, the speckle contrast has a 50% improvement rate. The reduction rate D3 (= D1 + (D1 + D2) / 2) or more can be satisfied. Thereby, specs noise can be further sufficiently reduced.
 また、本実施形態に係る画像投影装置1は、前記光源装置2を備え、前記光源装置2から出射される光を投射光として用いる。 Further, the image projection apparatus 1 according to the present embodiment includes the light source device 2 and uses light emitted from the light source device 2 as projection light.
 斯かる構成によれば、特許文献1に係る発明のスペックルコントラスト減少率D1よりも、大きいスペックルコントラスト減少率を有することができる。これにより、スペックスノイズを充分に低減することができる、 According to such a configuration, it is possible to have a speckle contrast reduction rate larger than the speckle contrast reduction rate D1 of the invention according to Patent Document 1. As a result, specs noise can be sufficiently reduced.
 なお、光源装置及び画像投影装置は、上記した実施形態の構成に限定されるものではなく、また、上記した作用効果に限定されるものではない。また、光源装置及び画像投影装置は、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、下記する各種の変更例に係る構成や方法等を任意に選択して、上記した実施形態に係る構成や方法等に採用してもよいことは勿論である。 Note that the light source device and the image projection device are not limited to the configuration of the above-described embodiment, and are not limited to the above-described effects. It goes without saying that the light source device and the image projection device can be variously modified without departing from the gist of the present invention. For example, it is needless to say that configurations, methods, and the like according to various modifications described below may be arbitrarily selected and employed in the configurations, methods, and the like according to the above-described embodiments.
 上記実施形態に係る光源装置2(図3参照)においては、発光素子群81~83の中心周波数f81~f83と、隣接する他の発光素子群81~83の中心周波数f81~f83との中心周波数差ΔS12,ΔS23は、4.0THzである、という構成である。しかしながら、光源装置は、斯かる構成に限られない。例えば、光源装置においては、発光素子群81~83の中心周波数f81~f83と、隣接する他の発光素子群81~83の中心周波数f81~f83との中心周波数差ΔS12,ΔS23は、複数の発光素子群f81~f83におけるスペクトル半値全幅Δf81~Δf83の平均値よりも大きく且つ11.4THzよりも小さい、という構成であればよい。 In the light source device 2 (see FIG. 3) according to the above embodiment, the center frequency between the center frequencies f81 to f83 of the light emitting element groups 81 to 83 and the center frequencies f81 to f83 of other adjacent light emitting element groups 81 to 83. The difference ΔS12, ΔS23 is configured to be 4.0 THz. However, the light source device is not limited to such a configuration. For example, in the light source device, the center frequency differences ΔS12 and ΔS23 between the center frequencies f81 to f83 of the light emitting element groups 81 to 83 and the center frequencies f81 to f83 of other adjacent light emitting element groups 81 to 83 are a plurality of light emitting elements. Any configuration that is larger than the average value of the spectrum full widths at half maximum Δf81 to Δf83 in the element groups f81 to f83 and smaller than 11.4 THz may be used.
 また、上記実施形態に係る光源装置2(図2参照)においては、発光素子61~69は、9つ備えられ、発光素子群81~83は、3つ備えられている、という構成である。しかしながら、光源装置は、斯かる構成に限られない。例えば、光源装置においては、発光素子6は、複数備えられていればよく、特に数量を限定されず、また、発光素子群8も、複数備えられていればよく、特に数量を限定されない。 In the light source device 2 (see FIG. 2) according to the above embodiment, nine light emitting elements 61 to 69 are provided, and three light emitting element groups 81 to 83 are provided. However, the light source device is not limited to such a configuration. For example, in the light source device, it is only necessary that a plurality of light emitting elements 6 are provided, and the number is not particularly limited, and it is only necessary that a plurality of light emitting element groups 8 are provided, and the number is not particularly limited.
 また、上記実施形態に係る画像投影装置1(図1参照)においては、光源装置2は、3つ備えられている、という構成である。しかしながら、画像投影装置は、斯かる構成に限られない。例えば、画像投影装置においては、光源装置2は、1つ、2つ、又は4つ以上備えられている、という構成でもよい。 Further, in the image projection device 1 (see FIG. 1) according to the above-described embodiment, there are three light source devices 2 provided. However, the image projector is not limited to such a configuration. For example, the image projection apparatus may be configured such that one, two, or four or more light source devices 2 are provided.
 1…画像投影装置、2,2R,2G,2B…光源装置、3…光源部、4…光学系、5…本体部、5a…接続部、6…発光素子、7…コリメータレンズ、8…発光素子群、10…画像投影部、11…画像光学系、11a…偏光ビームスプリッタ、11b…空間変調素子、11c…ダイクロイックプリズム、11d…反射ミラー、12…投影光学系、13…画像投影本体部、13a…接続部、20…導光体、61~69…(第1~第9の)発光素子、81~83…(第1~第3の)発光素子群、100…スクリーン
 
DESCRIPTION OF SYMBOLS 1 ... Image projector, 2, 2R, 2G, 2B ... Light source device, 3 ... Light source part, 4 ... Optical system, 5 ... Main part, 5a ... Connection part, 6 ... Light emitting element, 7 ... Collimator lens, 8 ... Light emission Element group, 10 ... image projection unit, 11 ... image optical system, 11a ... polarization beam splitter, 11b ... spatial modulation element, 11c ... dichroic prism, 11d ... reflection mirror, 12 ... projection optical system, 13 ... image projection main body, 13a ... connecting portion, 20 ... light guide, 61-69 ... (first to ninth) light emitting elements, 81-83 ... (first to third) light emitting element groups, 100 ... screen

Claims (3)

  1.  複数の発光素子を備え、
     前記複数の発光素子は、各発光素子の中心周波数ごとに複数の発光素子群に区分けされ、
     前記発光素子群の中心周波数と隣接する他の発光素子群の中心周波数との中心周波数差は、前記複数の発光素子群におけるスペクトル半値全幅の平均値よりも大きく且つ11.4THzよりも小さい光源装置。
    Comprising a plurality of light emitting elements,
    The plurality of light emitting elements are divided into a plurality of light emitting element groups for each central frequency of the light emitting elements,
    A light source device in which a center frequency difference between a center frequency of the light emitting element group and a center frequency of another light emitting element group adjacent to the light emitting element group is larger than an average value of full widths at half maximum of the plurality of light emitting element groups and smaller than 11.4 THz. .
  2.  前記発光素子群の中心周波数と隣接する他の発光素子群の中心周波数との中心周波数差は、3.3THz以上であって且つ10.4THz以下である請求項1に記載の光源装置。 The light source device according to claim 1, wherein a center frequency difference between a center frequency of the light emitting element group and a center frequency of another adjacent light emitting element group is 3.3 THz or more and 10.4 THz or less.
  3.  請求項1又は2に記載の光源装置を備え、
     前記光源装置から出射される光を投射光として用いる画像投影装置。
     
    The light source device according to claim 1 or 2,
    An image projection device that uses light emitted from the light source device as projection light.
PCT/JP2015/080224 2014-11-04 2015-10-27 Light source device and image projection device WO2016072319A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-224334 2014-11-04
JP2014224334A JP5930233B2 (en) 2014-11-04 2014-11-04 Light source device and image projection device

Publications (1)

Publication Number Publication Date
WO2016072319A1 true WO2016072319A1 (en) 2016-05-12

Family

ID=55909045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080224 WO2016072319A1 (en) 2014-11-04 2015-10-27 Light source device and image projection device

Country Status (2)

Country Link
JP (1) JP5930233B2 (en)
WO (1) WO2016072319A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004503923A (en) * 2000-07-10 2004-02-05 コーポレーション フォー レーザー オプティックス リサーチ System and method for speckle reduction by bandwidth enhancement
WO2010029817A1 (en) * 2008-09-10 2010-03-18 日本電気株式会社 Light source device and image display device
JP2010212257A (en) * 1999-11-22 2010-09-24 Sony Corp Display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212257A (en) * 1999-11-22 2010-09-24 Sony Corp Display
JP2004503923A (en) * 2000-07-10 2004-02-05 コーポレーション フォー レーザー オプティックス リサーチ System and method for speckle reduction by bandwidth enhancement
WO2010029817A1 (en) * 2008-09-10 2010-03-18 日本電気株式会社 Light source device and image display device

Also Published As

Publication number Publication date
JP5930233B2 (en) 2016-06-08
JP2016090779A (en) 2016-05-23

Similar Documents

Publication Publication Date Title
CN107329356B (en) Illumination system and projection apparatus
JP6596505B2 (en) Light emitting apparatus and projection display device
US9348204B2 (en) Light source module with wavelength conversion module and projection apparatus
JP2016224304A (en) Light source device, projection type display device and light generation method
WO2016157365A1 (en) Projector and image light projection method
JP2016014855A (en) Projector, and illuminator thereof
KR100682902B1 (en) Illumination system eliminating laser speckle and projection TV employing the same
US20150185598A1 (en) Laser projection apparatus
JP2008041513A (en) Lighting apparatus and projector
JP6512919B2 (en) Image display device
JP6942510B2 (en) Projection type display device
JP5798216B2 (en) Blue light synthesis method and blue light synthesis apparatus
CN105511091B (en) Light splitting and combining device and projection display system
JP2017504833A (en) Scanning ray video projection system and method, automotive head-up display using the system, and automotive adaptive lighting device
JP5930233B2 (en) Light source device and image projection device
KR100682903B1 (en) Illumination system eliminating laser speckle and projection TV employing the same
US9554101B2 (en) Shared-path illumination and excitation optics apparatus and systems
CN109459908B (en) Light source light path system of laser projector
US9860497B2 (en) Illumination device and projector
US11940719B2 (en) Light source device, projector and light intensity distribution uniformization method
JP7165267B2 (en) Light source device, projector, and method for equalizing light intensity distribution
JP2010054767A (en) Projection type image display device
JP2020020962A (en) Optical unit and image projection device
JP2016021014A (en) Illumination apparatus and image display apparatus including the same
WO2017012828A1 (en) A digital image projection device with a fiber laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856663

Country of ref document: EP

Kind code of ref document: A1