WO2016072273A1 - Eyesight examination device - Google Patents

Eyesight examination device Download PDF

Info

Publication number
WO2016072273A1
WO2016072273A1 PCT/JP2015/079780 JP2015079780W WO2016072273A1 WO 2016072273 A1 WO2016072273 A1 WO 2016072273A1 JP 2015079780 W JP2015079780 W JP 2015079780W WO 2016072273 A1 WO2016072273 A1 WO 2016072273A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
display
optical system
subject
diopter
Prior art date
Application number
PCT/JP2015/079780
Other languages
French (fr)
Japanese (ja)
Inventor
井上 智
健三 山中
伸司 木村
Original Assignee
株式会社クリュートメディカルシステムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クリュートメディカルシステムズ filed Critical 株式会社クリュートメディカルシステムズ
Publication of WO2016072273A1 publication Critical patent/WO2016072273A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/024Subjective types, i.e. testing apparatus requiring the active assistance of the patient for determining the visual field, e.g. perimeter types
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus

Definitions

  • the present invention relates to a visual inspection apparatus used when inspecting the visual function of an eye.
  • One of the eye tests is a visual test that tests the visual function of the eye.
  • a visual inspection is a typical visual inspection.
  • the visual field inspection is performed for diagnosis of visual field constriction, visual field defect, etc. caused by glaucoma or retinal detachment, for example.
  • Some conventional visual field inspection devices display (present) a visual target on a dome-shaped screen to inspect the visual field of a subject (see, for example, Patent Document 1).
  • test eye when the subject's eyeball (hereinafter also referred to as “test eye”) is placed at the center of the dome, and the subject looks at the screen from there, for example, how much It is inspected whether the target can be seen up to the range of, or at which position the target is not visible.
  • Patent Document 2 describes a perimeter equipped with a mechanism for moving a display element that displays a visual target.
  • the diopter is adjusted by moving a display element installed in front of the eye to be examined toward and away from the eye to be examined.
  • the mechanism for moving the display element becomes large.
  • Patent Document 3 describes a perimeter that enables a correction lens for diopter adjustment to be attached in front of the eye to be examined.
  • the diopter can be adjusted by inputting the diopter of the eye to be examined and attaching a correction lens suitable for the diopter.
  • the main object of the present invention is to provide a visual inspection apparatus capable of adjusting the diopter without affecting the observation optical system.
  • a first aspect of the present invention includes a display element for displaying a visual target on a subject, A display optical system in which a first lens, a mirror having wavelength selectivity, and a second lens group are sequentially arranged on the optical axis from the eyeball position where the eyeball of the subject is arranged to the display element.
  • An imaging device for imaging the eyeball of the subject arranged at the eyeball position;
  • An observation optical system disposed on the optical axis from the eyeball position to the image sensor;
  • Diopter adjustment means for adjusting the diopter of the subject;
  • the display optical system and the observation optical system share an optical axis from the eyeball position to the mirror,
  • the second lens group is disposed on an optical axis not shared with the observation optical system,
  • the diopter adjustment means adjusts the diopter by moving a lens belonging to the second lens group in the optical axis direction.
  • the diopter adjusting means adjusts the diopter by moving the lens closest to the display element among the lenses belonging to the second lens group. It is a visual inspection apparatus as described in 1 aspect.
  • the third aspect of the present invention is characterized in that the diopter adjusting means adjusts the diopter by moving a lens having a focal length of more than 10 mm and less than 50 mm among the lenses belonging to the second lens group.
  • the visual inspection device according to the first or second aspect.
  • the display optical system displays the display from the display optical system when the subject views the target through the display optical system from the eyeball position, at least within the range of visual inspection.
  • the visual inspection apparatus according to any one of the first to third aspects, characterized in that all chief rays incident on the display surface of the element have telecentricity parallel to the optical axis. is there.
  • a change in pupil position is detected based on an eyeball image picked up by the image pickup device, and a position of a visual target displayed on the display device is corrected according to the detection result.
  • the visual inspection apparatus according to any one of the first to fourth aspects, further comprising a mark display position correcting unit.
  • the diopter can be adjusted without affecting the observation optical system.
  • FIG. 1 is a schematic diagram showing a configuration example of a visual inspection apparatus according to an embodiment of the present invention.
  • the illustrated visual inspection apparatus 1 is a head-mounted visual inspection apparatus that is used by being mounted on the head 3 of a subject 2.
  • the visual inspection device 1 generally includes a device main body 5 and a mounting tool 6 mechanically connected to the device main body 5.
  • the apparatus body 5 includes a housing 7 having a space inside.
  • the internal space of the housing 7 is divided into left and right. This is because the visual inspection is performed separately for the left eye 8L and the right eye 8R of the subject 2.
  • the subject 2 sees the target through the pupil 9L of the left eye 8L
  • the right eye 8R is the eye to be examined
  • the subject 2 sees the target through the pupil 9R of the right eye 8R.
  • the “target” described here is displayed in order to give light stimulation to the eyeball of the subject when examining the subject's vision.
  • the size, shape, etc. of the visual target There are no particular restrictions on the size, shape, etc. of the visual target.
  • the point of light is displayed as a target with a predetermined size, and the position of the point of light is changed to examine the presence or absence of the missing visual field and the location of the defect (specific) can do.
  • a display optical system 11L and a display element 12L are provided in one space of the housing 7.
  • a display optical system 11R and a display element 12R are provided in the other internal space of the housing 7.
  • the display optical system 11L and the display element 12L are provided for visual inspection of the left eye 8L of the subject 2.
  • the display optical system 11R and the display element 12R are provided for visual inspection of the right eye 8R of the subject 2.
  • the mounting tool 6 is for mounting and fixing the apparatus body 5 to the head 3 of the subject 2.
  • the wearing tool 6 includes a belt 13 that is stretched in a U-shape from both sides of the subject 2 to the back of the head, and a belt 14 that is stretched over the top of the subject 2. Then, in a state where the length of the belt 14 is appropriately adjusted, the mechanism 13 can be mounted on the head 3 of the subject 2 by pulling and tightening the belt 13 from the back head side.
  • the symbols L and R are omitted, and the eyeball 8 and the pupil 9 are collectively referred to.
  • the display optical systems 11L and 11R and the display elements 12L and 12R are described without distinction for the left eye and the right eye, the reference optical systems 11 and 11 are omitted by omitting the symbols L and R, respectively.
  • the display element 12 Collectively referred to as the display element 12.
  • FIG. 2 is a schematic diagram including configurations of an optical system and a control system of the visual inspection apparatus according to the embodiment of the present invention.
  • the visual inspection apparatus 1 includes an observation optical system 15 for observing the eyeball 8 of the subject and the test optical system 15 in addition to the display optical system 11 and the display element 12 described above.
  • An imaging device 16 that images the eyeball 8 of the person, an infrared light source 17 that irradiates infrared rays to the eyeball 8 of the subject, a control unit 30, and a response switch 31.
  • the observation optical system 15, the image sensor 16, and the infrared light source 17 are provided separately for the left eye and the right eye of the subject, respectively, similarly to the display optical system 11 and the display element 12 described above, and the control unit 30.
  • One response switch 31 is provided for each visual inspection device 1.
  • the display optical system 11 is provided on the optical axis 18 between the eyeball position where the eyeball 8 of the subject is placed and the display surface 12 a of the display element 12.
  • the display optical system 11 has a configuration in which a first lens 19, a mirror 20, and a second lens group 21 are arranged in order from the eyeball position side of the subject.
  • a first lens 19, a mirror 20, and a second lens group 21 are arranged in order from the eyeball position side of the subject.
  • each component will be described.
  • the optical axis 18 from the eyeball position of the subject to the display element 12 is the optical axis 18a
  • the optical axis from the mirror 20 to the display element 12 is the optical axis. Is the optical axis 18b.
  • the first lens 19 is disposed on the optical axis 18 a from the eyeball position to the mirror 20.
  • the first lens 19 is configured using an aspherical lens (convex lens) having positive power.
  • the first lens 19 converges the light reflected by the mirror 20 and incident on the first lens 19 onto the pupil 9 of the subject, while the light divergence occurs when the subject views an object through the pupil 9 at a wide angle. It is to suppress.
  • FIG. 2 when a point of light serving as a target is displayed on the display surface 12a of the display element 12, and the subject views the target through the display optical system 11 from the eyeball position, the center of the pupil of the subject is displayed.
  • the incident angle of the chief ray incident on the first lens 19 from is represented by the symbol ⁇ .
  • the incident angle ⁇ is an angle with respect to the optical axis 18a (an angle formed between the principal ray passing through the center of the pupil and the optical axis 18a).
  • the outer diameter (diameter) and position of the first lens 19 on the optical axis 18a are set under conditions that can secure at least a viewing angle necessary for visual inspection.
  • the maximum viewing angle (maximum value of ⁇ ) of the display optical system 11 using the first lens 19 is preferably 30 degrees or more and 60 degrees or less at a half field angle (60 degrees or more at all angles). , 120 degrees or less).
  • the mirror 20 is disposed on the opposite side of the eyeball position on the optical axis 18a from the eyeball position to the mirror 20 with the first lens 19 interposed therebetween.
  • the mirror 20 is configured using a mirror having wavelength selectivity.
  • the mirror 20 is configured using a cold mirror that reflects visible light and transmits infrared rays.
  • the inclination of the reflecting surface of the mirror 20 with respect to the optical axis 18a is such that the angle ⁇ formed by the optical axis 18a and the optical axis 18b bent by the mirror 20 is preferably less than 90 degrees, more preferably less than 80 degrees, and still more preferably. It is set to be in the range of “40 degrees ⁇ ⁇ 70 degrees”.
  • the display element 12 and the second lens group 21 are too close to the head of the subject, and they may interfere with the head.
  • ⁇ > 40 ° it is possible to avoid the display element 12 and the second lens group 21 from interfering with the head.
  • ⁇ ⁇ 90 ° the visual inspection device 1 is likely to slip off the head when the subject tilts the head forward.
  • ⁇ ⁇ 90 ° the visual inspection device 1 is less likely to slip off the head when the subject tilts the head forward.
  • the second lens group 21 is disposed on the optical axis 18b from the mirror 20 to the display element 12.
  • the second lens group 21 is configured by using three lenses 21a, 21b, and 21c.
  • the three lenses 21a, 21b, and 21c are sequentially arranged from the mirror 20 side toward the display element 12 side. That is, the lens 21a is disposed at a position closest to the mirror 20 on the optical axis 18b, and the lens 21c is disposed at a position closest to the display element 12 on the optical axis 18b.
  • a lens 21b is disposed between the two lenses 21a and 21c.
  • the lens 21b is arranged near the lens 21c in a state of being separated from the lens 21a.
  • the lens 21a is configured using an aspherical lens (convex lens) having positive power.
  • the lens 21b is configured by using an aspheric lens (concave lens) having negative power, and the lens 21c is configured by using an aspheric lens (convex meniscus lens) having positive power.
  • the outer diameter (diameter) of the lens 21a is larger than the outer diameters of the other lenses 21b and 21c, and the outer diameters of the lenses 21b and 21c are substantially equal to each other.
  • the first lens 19 is made of a material (glass, plastic, etc.) that satisfies the relational expression “45 ⁇ v1 ⁇ 80”.
  • the Abbe numbers of the lenses 21a and 21c having positive power among the lenses 21a to 21c constituting the second lens group 21 are both v2, each of the lenses 21a and 21c is “45 ⁇ v2 ⁇ 80”. It is comprised with the material which satisfy
  • the Abbe number of the lens 21b having negative power is v3
  • the lens 21b is made of a material that satisfies the relational expression “15 ⁇ v3 ⁇ 30”.
  • the focal length of the first lens 19 is f1
  • the focal length of the second lens group 21 is f2
  • the focal length f1 of the first lens 19 is the sum (a + b) of the optical distance a from the first lens 19 to the mirror 20 and the optical distance b from the mirror 20 to the second lens group 21 (lens 21a). ) And shorter than that.
  • the display element 12 is disposed on the optical axis 18b from the mirror 20 to the display element 12 so as to face the lens 21c of the second lens group 21.
  • the display element 12 is configured using, for example, a flat display element such as a liquid crystal display element having a backlight.
  • the display surface 12a of the display element 12 has a configuration in which a large number of pixels are arranged in a matrix. When an image (including a visual target) is actually displayed on the display surface 12a, display and non-display (on / off) of the image can be controlled in units of pixels.
  • the display surface 12a of the display element 12 preferably has a display size with a diagonal length of 1.5 inches or less, more preferably a display size with a diagonal length of 1 inch or less.
  • the optical axis 18b is aligned at the center.
  • the subject 2 moves the first lens 19, the mirror 20, and the second lens from the eyeball position.
  • the target is viewed through the group 21.
  • the outer diameter of the first lens 19 closest to the eyeball position is increased, visual inspection can be performed in a wider range.
  • the outer diameter of the first lens 19 is increased, the principal ray passing through the lens end is largely inclined with respect to the optical axis 18 (18a). Therefore, when the power of the first lens 19 is low, the chief ray passing through the lens end is diverged.
  • the principal ray passing through the lens end of the first lens 19 is increased.
  • the light is refracted and stored on the reflection surface of the mirror 20.
  • the high-power first lens 19 is used in this way, the main light beam is condensed and focused in the middle of the optical path from the first lens 19 to the second lens group 21.
  • the second lens group 21 is disposed on the optical axis 18b in order to condense (image) the principal ray bundle focused in the middle of the optical path on the display surface 12a of the display element 12 again.
  • the second lens group 21 is composed of three lenses 21a, 21b, and 21c.
  • the observation optical system 15 is for observing, for example, the anterior part of the eye including the pupil 9, the iris, the sclera, or the fundus of the eye including the retina 10 with the eyeball 8 of the subject as an observation target.
  • the observation optical system 15 is provided on the optical axis 18 from the eyeball position of the subject to the image sensor 16.
  • the observation optical system 15 has a configuration in which a first lens 19, a mirror 20, and a third lens 22 are arranged in order from the eyeball position side of the subject.
  • the first lens 19 and the mirror 20 are common (shared) with the display optical system 11 described above, including the optical axis 18a. If the optical axis from the mirror 20 to the image sensor 16 is the optical axis 18c, the optical axis 18c is substantially parallel to the optical axis 18a described above.
  • the third lens 22 is disposed on the optical axis 18 c from the mirror 20 to the image sensor 16.
  • the third lens 22 is configured using an aspherical lens (convex lens) having positive power.
  • the third lens 22 transmits light that enters the first lens 19 from the eyeball 8 and passes through the mirror 20 to the imaging surface 16 a of the imaging device 16. The image is formed.
  • the imaging element 16 images an eyeball (anterior eye part, fundus oculi part, etc.) 8 to be examined.
  • the image sensor 16 is configured using a CCD (Charge Coupled Device) image sensor having sensitivity to infrared rays, a CMOS (Complementary Metal Oxide Semiconductor) image sensor, or the like.
  • the image pickup surface 16a of the image pickup device 16 is disposed on the optical axis 18c so as to face the eyeball 8, and the optical axis 18c is aligned with the center of the image pickup surface 16a.
  • the infrared light source 17 irradiates infrared rays toward the eyeball position of the subject.
  • the infrared light source 17 is configured using a pair of infrared light emitting diodes 17a and 17b.
  • the pair of infrared light emitting diodes 17a and 17b are arranged in an obliquely upward and obliquely downward direction with respect to the eyeball position of the subject so as not to disturb the visual field of the subject.
  • One infrared light-emitting diode 17a irradiates the subject's eyeball 8 with infrared rays obliquely from above, and the other infrared light-emitting diode 17b irradiates the subject's eyeball 8 with infrared rays obliquely from below. It is configured to do.
  • the eyeball 8 is irradiated via the first lens 19, the mirror 20, and the third lens 22 while irradiating the eyeball 8 of the subject with infrared rays from the infrared light source 17.
  • the image is picked up by the image pickup device 16.
  • the visual inspection device 1 detects (tracks) a change in the pupil position accompanying the rotational movement of the eyeball 8 based on the image of the eyeball 8 thus imaged, and according to the detection result, A target display position correcting means (also called a tracking function) for correcting the position of the target displayed on the display element 12 is provided.
  • the visual target display position correcting means is one of the functions realized by the control unit 30 described later.
  • the target display position correcting means is configured so that the light from the target displayed on the display element 12 is focused on the same measurement point on the retina 10 even when the eyeball 8 that should be in a fixation state slightly rotates. This corrects the display position of the target.
  • the control unit 30 realizes various functions (means) for visual inspection.
  • the control unit 30 has, for example, a housing structure smaller than the apparatus main body 5 and is mounted on the rear head side of the mounting tool 6 and arranged. Thereby, the weight balance before and behind the apparatus main body 5 and the control part 30 can be maintained.
  • the control unit 30 is configured by a computer including a combination of CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), HDD (Hard Disk Drive), various interfaces, and the like. And the control part 30 is comprised so that various functions may be implement
  • the control unit 30 has a function of controlling the operation of each unit such as the display element 12, the imaging element 16, and the infrared light source 17 incorporated in the apparatus main body 5 as an example of a function (means) realized by executing the program. .
  • the predetermined program for realizing each function is used by being installed in a computer, but may be provided by being stored in a computer-readable storage medium prior to the installation, or the computer It may be provided through a communication line connected to.
  • the response switch 31 is a switch operated by the subject. When the subject presses down the response switch 31, an ON signal is output from the response switch 31 at that moment. This ON signal is taken into the control unit 30.
  • the response switch 31 is a manual type that the subject holds and operates. However, the present invention is not limited to this, and a stepping switch may be used.
  • the visual inspection apparatus 1 includes a diopter adjustment mechanism 32 as an example of diopter adjustment means, as shown in FIG.
  • the diopter adjustment mechanism 32 adjusts the appearance of the visual target in accordance with the visual acuity of the eyeball 8 of the subject 2. More specifically, when the eye to be examined is a myopic eye or a hyperopic eye, the image of the optotype displayed on the display element 12 is not formed on the retina 10 of the eyeball 8 and is blurred.
  • a diopter adjustment mechanism 32 is a mechanism that adjusts the lens so that it can be clearly seen.
  • the diopter adjustment mechanism 32 adjusts the diopter by moving at least one of the lenses (21a to 21c) belonging to the second lens group 21 in the direction of the optical axis 18b.
  • the second lens group 21 is disposed on the optical axis 18 b that is not shared with the observation optical system 15 among the optical axes 18 a and 18 b belonging to the display optical system 11. Therefore, any of the lenses 21a to 21c belonging to the second lens group 21 is moved, and the observation optical system 15 is not optically affected.
  • a configuration is adopted in which only one of the lenses 21a to 21c belonging to the second lens group 21 is moved, preferably only the lens 21c closest to the optical axis 18b is moved.
  • Various mechanisms for moving the lens 21c are conceivable.
  • a lens holder that holds the lens 21c is mounted on the movable portion of the linear guide, and the lens 21c is guided by the linear guide using a power transmission mechanism such as a ball screw mechanism or a gear mechanism.
  • a mechanism for moving in the direction of the optical axis 18b may be employed.
  • the diopter adjustment mechanism 32 has a rotary adjustment dial (not shown), for example. This adjustment dial is rotated by the subject 2 who adjusts the diopter. When the subject 2 actually rotates the adjustment dial in one direction or the other, the lens 21c moves to one or the other in the optical axis direction according to the rotation direction and the rotation amount at that time.
  • the focal length of the lens 21c is preferably more than 10 mm and less than 50 mm, more preferably more than 15 mm and less than 40 mm, still more preferably more than 18 mm and less than 30 mm.
  • the diopter changes greatly only by moving the lens 21c slightly in the optical axis direction.
  • the diopter adjustment amount is relatively large with respect to the movement amount of the lens 21c.
  • the present inventor has adopted a configuration in which the lens 21c having a short focal length is intentionally moved. The reason will be described later.
  • the diopter adjustment sensitivity increases too much, so the diopter changes greatly due to some adjustment error or position error, and the image observed by the subject is reduced. It becomes difficult to set the distance optimally.
  • the focal length of the lens 21c is 50 mm or more, the amount of movement due to diopter adjustment becomes large, and the magnification of the optical system changes greatly, so that it is observed by the subject of the target displayed on the display element. The angle that varies depends on the diopter.
  • FIG. 4 is a diagram for explaining the characteristics of the display optical system.
  • the pupil 9 of the eyeball 8 is used as the exit pupil, and the chief ray passes through the center of the exit pupil (center of the pupil), while the luminous flux of the chief ray is focused on the display surface 12a of the display element 12.
  • the subject 2 views the display surface 12a using the display surface 12a as the image formation surface of the light beam of each principal ray.
  • the first lens 19, the mirror 20, and the second lens group 21 constituting the display optical system 11 are replaced with one virtual lens 11v for display.
  • the focal length of the lens 11v is f
  • the incident angle of the principal ray with respect to the lens 11v is ⁇
  • the image height on the display surface 12a is Y.
  • the incident angle ⁇ corresponds to the incident angle ⁇ shown in FIG. 2
  • the focal length f of the lens 11v corresponds to the focal length of the entire lens including the first lens 19 and the second lens group 21.
  • the display optical system 11 is the display optical system 11 when the subject views the visual target from the eyeball position through the display optical system 11 as shown in FIG. All the chief rays incident on the display surface 12a of the display element 12 have telecentricity that is parallel to the optical axis 18b.
  • the display position of the target is “when the display surface 12a is at the center (on the optical axis)”.
  • each of the lenses 21a, 21b, and 21c of the first lens 19 and the second lens group 21 is an aspheric lens having a predetermined refractive index, and the display optical system is obtained by combining these lenses. 11 as a whole achieves telecentricity.
  • the display optical system 11 it is not necessary that all lenses constituting the display optical system 11 be aspherical lenses, for example, a combination of a plurality of spherical lenses or a spherical surface It can also be realized by a combination of a lens and an aspheric lens.
  • At least the lens closest to the eyeball position (in the present embodiment, the first lens 19) among the plurality of lenses constituting the display optical system 11 is formed of an aspheric lens.
  • the lens closest to the eyeball position is configured by an aspherical lens
  • the number of lenses can be reduced by increasing the degree of freedom in optical design compared to the case where it is configured by a spherical lens. This is because the size and weight of 1 can be reduced.
  • an increase in the optical path from the eyeball position to the mirror 20 corresponds to an increase in the length of the apparatus main body 5 in front of the subject, resulting in a problem that it is difficult to ensure a weight balance.
  • the lens closest to the eyeball position is an aspherical lens and the forward projection amount is as small as possible.
  • Visual inspection method If the visual inspection apparatus 1 having the above configuration is used, dynamic quantitative visual field inspection (Goldman visual field inspection), static quantitative visual field inspection, fundus visual field inspection (microperimetry), electroretinography (ERG) and others It is possible to perform the inspection.
  • dynamic quantitative visual field inspection Goldman visual field inspection
  • static quantitative visual field inspection static quantitative visual field inspection
  • fundus visual field inspection microperimetry
  • electroretinography EMG
  • others It is possible to perform the inspection.
  • a static quantitative visual field inspection is performed is described as an example.
  • Static quantitative visual field inspection is performed as follows. First, a target is presented at one point in the field of view, and its brightness is gradually increased. Then, when the target has a certain brightness, the target can be seen from the subject. Therefore, the value corresponding to the brightness when the subject can see the target is set as the retina sensitivity at the point where the target is presented at that time. Then, the same measurement is performed for each point in the field of view, thereby quantitatively examining the difference in retinal sensitivity in the field of view and creating a map. There are a subjective examination and an objective examination in the static quantitative visual field examination. If the visual inspection apparatus 1 of the present embodiment is used, any type of inspection can be performed. This will be described below.
  • Self-aware inspection is performed as follows. First, the head-mounted visual inspection apparatus 1 is attached to the subject's head. Further, the response switch 31 is held in the hand of the subject. Next, based on a command from the control unit 30, a visual field inspection target is displayed at one point on the display surface 12 a of the display element 12. At this time, the brightness of the target is initially darkened, and then the brightness of the target is gradually increased. Then, even if it is dark at first and the target is not visible to the subject, when the target reaches a certain brightness, the subject's retina responds to the light stimulus so that the subject can see the target. become. For this reason, when the target can be seen from the subject, the subject presses the response switch 31.
  • an ON signal is sent to the control unit 30.
  • the control unit 30 performs a predetermined process, and sets the value corresponding to the brightness of the point of the target at that time as the sensitivity of the retina of that point. Thereafter, the same measurement is performed for each point in the field of view, thereby quantitatively examining the difference in retinal sensitivity in the field of view and creating a sensitivity map of the retina.
  • the objective test is performed as follows. First, the head-mounted visual inspection apparatus 1 is attached to the subject's head. In this case, it is not necessary for the subject to have the response switch 31. Next, based on a command from the control unit 30, a visual field inspection target is displayed at one point on the display surface 12 a of the display element 12. At this time, the brightness of the target is initially darkened, and then the brightness of the target is gradually increased. Then, even if it is dark at first and the target is not visible to the subject, when the target reaches a certain brightness, the subject's retina responds to the light stimulus so that the subject can see the target. become.
  • the size of the pupil 9 (pupil diameter) of the subject changes according to the brightness of the target. Specifically, the diameter of the pupil 9 of the subject is reduced.
  • the state change of the eyeball 8 at this time is imaged.
  • the imaging of the eyeball 8 is performed by irradiating infrared rays from the infrared light source 17 toward the eyeball 8, and the image light of the eyeball 8 obtained thereby is transmitted to the imaging element 16 via the observation optical system 15 (19, 20, 22). This is performed by forming an image on the imaging surface 16a.
  • the timing for starting imaging of the eyeball 8 may be set, for example, before the display of the visual target on the display surface 12a or simultaneously with the display of the visual target. Incidentally, since the human retina has no sensitivity to infrared rays, it does not affect the state change of the eyeball 8.
  • the image data of the eyeball 8 imaged using the image sensor 16 is taken into the control unit 30.
  • Image data sent from the imaging device 16 indicates whether the pupil diameter of the subject has changed (reduced) in response to the brightness of the target in the process of gradually increasing the brightness of the target. Judgment based on.
  • the value corresponding to the brightness of the point of the target at that time is set as the sensitivity on the retina at that point. Thereafter, the same measurement is automatically performed one after another for each point in the field of view to quantitatively check the difference in sensitivity on the retina in the field of view, and a sensitivity map on the retina is automatically created.
  • the objective test uses a single upper threshold stimulation method in which a bright target is displayed on one point of the display surface 12a of the flat display element 12 and a sensitivity map is created by observing the degree of reduction of the pupil diameter. May be.
  • the subject 2 adjusts the diopter using the diopter adjustment mechanism 32 as necessary. Diopter adjustment is performed for each eye.
  • the control unit 30 displays an image stored in the ROM or the like on the display element 12 for diopter adjustment.
  • the image displayed on the display element 12 is not particularly limited, but an image having a shape and size that is easy to understand visually (for example, a Landolt ring, a hiragana, and the like) when viewed from the subject 2. Katakana, Romaji, etc.) are good.
  • the measurer may determine the diopter with reference to the diopter measured by the optometry apparatus or the like.
  • the initial position of the lens 21c of the second lens group 21 is that light rays from an image displayed on the display element 12 when the eyeball 8 of the subject 2 is a normal eye that is neither a myopic eye nor a hyperopic eye, The focus is set at the retina 10 of the eyeball 8. For this reason, when the eyeball 8 of the subject 2 is a myopic eye or a farsighted eye, the light beam from the image displayed on the display element 12 is not focused on the retina 10 of the eyeball 8, and the image is obtained from the subject 2. The image looks blurry. In this case, the subject 2 moves the lens 21c in the direction of the optical axis 18b by rotating the adjustment dial.
  • the lens 21c is moved closer to the display element 12 than the initial position by rotating the adjustment dial.
  • the lens 21c is moved away from the display element 12 from the initial position by rotating the adjustment dial.
  • the second lens group 21 is disposed on the optical axis 18b that is not shared with the observation optical system 15 among the optical axes 18a and 18b of the display optical system 11, and this second lens group 21 is disposed.
  • a configuration is adopted in which the diopter is adjusted by moving the lens 21c belonging to the lens group 21. For this reason, the diopter can be adjusted without affecting the observation optical system 15.
  • the following effects can be obtained. That is, if a correction lens for diopter adjustment is inserted between the eyeball position and the first lens 19, the focal position of the observation optical system 15 changes. For this reason, a clear image cannot be obtained when the eyeball 8 is imaged by the image sensor 16 through the observation optical system 15.
  • the photographing magnification changes when the correction lens is inserted, the correspondence between the displacement amount of the pupil 9 calculated from the image of the eyeball 8 and the correction amount of the display position of the target is broken. For this reason, the correction amount (hereinafter referred to as “tracking correction amount”) for correcting the display position of the visual target deviates from an appropriate range, and stable visual inspection cannot be performed.
  • the tracking correction amount is less likely to shift. Accordingly, it is possible to stably perform visual inspection while suppressing the shift of the tracking correction amount within an appropriate range.
  • the visual inspection device 1 it is effective to reduce the moving amount of the lens 21c as much as possible when adjusting the diopter.
  • the visual inspection device 1 employs a configuration in which only the lens 21c closest to the display element 12 among the three lenses 21a to 21c belonging to the second lens group 21 is moved.
  • the amount of movement of the lens 21c itself is directly related to the change in diopter, so that it is necessary for diopter adjustment compared to the case where the other lenses 21a and 21b belonging to the second lens group 21 are moved.
  • the amount of lens movement is relatively small. Therefore, an error in the display position of the target can be suppressed to a small value.
  • each principal ray is parallel to the optical axis 18b between the lens 21c and the display element 12, and therefore the lens 21c is directed in the direction of the optical axis 18b. Even if moved, the position of the chief ray hardly changes. Therefore, the error in the display position of the target can be further reduced.
  • the visual inspection device 1 among the lenses belonging to the second lens group 21, a configuration is adopted in which a lens 21c having a focal length of more than 10 mm and less than 50 mm is moved. For this reason, the diopter can be greatly changed by moving the lens 21c slightly in the direction of the optical axis 18b. Therefore, the amount of movement of the lens 21c for diopter adjustment can be reduced. As a result, the correspondence between the angle ⁇ and the display position of the visual target can be maintained with high accuracy.
  • the mounting tool 6 of the visual inspection device 1 is configured using the belts 13 and 14, but if the device main body 5 can be mounted on the head 3 of the subject 2, You may employ
  • the present invention is not limited to this, and may be applied to a visual inspection apparatus other than the head-mounted type. .
  • the display element 12 is configured using a liquid crystal display element.
  • the present invention is not limited to this, and an organic EL (Electro Luminescence) display element may be used.
  • the display optical system 11 is configured with a total of four lenses
  • the observation optical system 15 is configured with a total of two lenses (one of which is shared with the display optical system 11).
  • the number and shape of the lenses constituting each optical system can be changed as necessary.
  • the second lens group 21 is preferably composed of a plurality of lenses in order to correct chromatic aberration and image magnification by combining a lens having a positive power and a lens having a negative power.
  • the mirror 20 may be constituted by a dichroic mirror.
  • the second lens group 21 of the display optical system 11 is configured by using a total of four lenses 21a to 21d by adding a lens (convex lens) 21d, and the size of the display surface 12a of the flat display element 12. This is different from the above embodiment in that the height is reduced.
  • the visual target can be displayed more clearly to the subject. Also in this configuration, it is possible to adjust the diopter according to the visual acuity of the subject by making the lens 21c movable in the optical axis direction.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

When a corrective lens for diopter adjustment is attached in front of an eye under test, the focal position of an observation optical system for observing an eye and an image pickup magnification ratio undergo an unwanted change. In the present invention, the following are provided: a display element 12 for displaying a visual target for a testee; a display optical system 11 in which disposed, in the order given and on an optical axis 18 which extends from an eye position at which a testee'e eye 8 is located to the display element 12, are a first lens, a mirror 20 that has wavelength selectability, and a second lens group 21; an image pickup element 16 for picking up an image of the eye 8 of the testee which is located at the eye position; an observation optical system 15 that is disposed on an optical axis which extends from the eye position to the image pickup element; and a diopter adjustment mechanism for adjusting the diopter of the testee. The display optical system 11 and the observation optical system 15 share an optical axis 18a which extends from the eye position to the mirror 20. The second lens group 21 is disposed on an optical axis 18b which is not shared with the observation optical system 15. The diopter adjusting means adjusts diopter by causing the lenses belonging to the second lens group to move in the optical axis direction.

Description

視覚検査装置Visual inspection device
 本発明は、眼の視覚機能を検査する際に用いられる視覚検査装置に関する。 The present invention relates to a visual inspection apparatus used when inspecting the visual function of an eye.
 眼検査の一つに、眼の視覚機能を検査する視覚検査がある。また、視覚検査の代表的なものに視野検査がある。視野検査は、たとえば緑内障や網膜剥離などが原因で起こる視野狭窄、視野欠損などの診断のために行われるものである。 One of the eye tests is a visual test that tests the visual function of the eye. A visual inspection is a typical visual inspection. The visual field inspection is performed for diagnosis of visual field constriction, visual field defect, etc. caused by glaucoma or retinal detachment, for example.
 従来の視野検査装置には、ドーム型のスクリーンに視標を表示(呈示)して被検者の視野を検査するものがある(たとえば、特許文献1を参照)。この種の視野検査装置では、被検者の眼球(以下、「被検眼」ともいう。)をドームの球心に配置し、そこから被検者がスクリーンを見たときに、たとえば、どの程度の範囲まで視標が見えるか、あるいは、どの位置に表示した視標が見えないか、などを検査する。 Some conventional visual field inspection devices display (present) a visual target on a dome-shaped screen to inspect the visual field of a subject (see, for example, Patent Document 1). In this type of visual field inspection apparatus, when the subject's eyeball (hereinafter also referred to as “test eye”) is placed at the center of the dome, and the subject looks at the screen from there, for example, how much It is inspected whether the target can be seen up to the range of, or at which position the target is not visible.
 その際、被検眼が近視眼や遠視眼であると、スクリーン等に表示した視標の像が被検眼の網膜上で焦点を結ばず、そこからずれたところで焦点を結ぶ。このため、被検者が認識する視標の像がぼやけてしまう。そこで、特許文献2には、視標を表示する表示素子を移動させる機構を備えた視野計が記載されている。この視野計においては、被検眼の前方に設置された表示素子を、被検眼に対して接近離間する方向に移動させることにより、視度を調整するようになっている。ただし、この視野計では、表示素子を移動させるための機構が大掛かりなものになってしまう。 At this time, if the eye to be examined is a myopic eye or a hyperopic eye, the image of the target displayed on the screen or the like is not focused on the retina of the eye to be examined, but is focused when it is deviated from it. For this reason, the target image recognized by the subject is blurred. Therefore, Patent Document 2 describes a perimeter equipped with a mechanism for moving a display element that displays a visual target. In this perimeter, the diopter is adjusted by moving a display element installed in front of the eye to be examined toward and away from the eye to be examined. However, in this perimeter, the mechanism for moving the display element becomes large.
 一方、特許文献3には、視度調整のための矯正レンズを被検眼の眼前に取付可能とした視野計が記載されている。この視野計においては、被検眼の視度を入力し、この視度に適合する矯正レンズを取り付けることにより、視度を調整することができる。 On the other hand, Patent Document 3 describes a perimeter that enables a correction lens for diopter adjustment to be attached in front of the eye to be examined. In this perimeter, the diopter can be adjusted by inputting the diopter of the eye to be examined and attaching a correction lens suitable for the diopter.
特開2012-20196号公報JP 2012-20196 A 特許第4518077号公報Japanese Patent No. 4518077 特開2003-164425号公報JP 2003-164425 A
 従来の視覚検査装置のなかには、上記特許文献3に記載の視野計を含めて、被検者に視標を呈示するための表示光学系と、被検者の眼球を観察するための観察光学系とを備えたものがある。
 この種の視覚検査装置では、被検者の眼球を観察光学系を通して撮像素子により撮像しているため、上記特許文献3に記載されているように被検眼の眼前に矯正レンズを取り付けると、この矯正レンズが観察光学系の一部を構成することになる。このため、観察光学系への影響が避けられない。具体的には、観察光学系において、たとえば、焦点位置が眼球位置からずれてしまう、あるいは、撮影倍率が変わってしまう、などの影響がでる。
Among conventional visual inspection apparatuses, including the perimeter described in Patent Document 3, a display optical system for presenting a visual target to the subject and an observation optical system for observing the eyeball of the subject There is something with.
In this type of visual inspection apparatus, the subject's eyeball is imaged by the imaging element through the observation optical system. Therefore, when a correction lens is attached in front of the eye of the subject eye as described in Patent Document 3, The correcting lens constitutes a part of the observation optical system. For this reason, the influence on the observation optical system is inevitable. Specifically, in the observation optical system, for example, the focus position is shifted from the eyeball position, or the photographing magnification is changed.
 本発明の主な目的は、観察光学系に影響を及ぼすことなく、視度を調整することができる視覚検査装置を提供することにある。 The main object of the present invention is to provide a visual inspection apparatus capable of adjusting the diopter without affecting the observation optical system.
 本発明の第1の態様は、被検者に視標を表示するための表示素子と、
 前記被検者の眼球が配置される眼球位置から前記表示素子までの光軸上に、第1レンズと、波長選択性を有するミラーと、第2レンズ群とを順に配置してなる表示光学系と、
 前記眼球位置に配置された前記被検者の眼球を撮像するための撮像素子と、
 前記眼球位置から前記撮像素子までの光軸上に配置された観察光学系と、
 前記被検者の視度を調整する視度調整手段と、
 を備え、
 前記表示光学系と前記観察光学系とは、前記眼球位置から前記ミラーまでの光軸を共用し、
 前記第2レンズ群は、前記観察光学系とは共用しない光軸上に配置され、
 前記視度調整手段は、前記第2レンズ群に属するレンズを光軸方向に移動させて視度を調整する
 ことを特徴とする視覚検査装置である。
A first aspect of the present invention includes a display element for displaying a visual target on a subject,
A display optical system in which a first lens, a mirror having wavelength selectivity, and a second lens group are sequentially arranged on the optical axis from the eyeball position where the eyeball of the subject is arranged to the display element. When,
An imaging device for imaging the eyeball of the subject arranged at the eyeball position;
An observation optical system disposed on the optical axis from the eyeball position to the image sensor;
Diopter adjustment means for adjusting the diopter of the subject;
With
The display optical system and the observation optical system share an optical axis from the eyeball position to the mirror,
The second lens group is disposed on an optical axis not shared with the observation optical system,
The diopter adjustment means adjusts the diopter by moving a lens belonging to the second lens group in the optical axis direction.
 本発明の第2の態様は、前記視度調整手段は、前記第2レンズ群に属するレンズのうち、前記表示素子に最も近いレンズを移動させて視度を調整する
 ことを特徴とする上記第1の態様に記載の視覚検査装置である。
According to a second aspect of the present invention, the diopter adjusting means adjusts the diopter by moving the lens closest to the display element among the lenses belonging to the second lens group. It is a visual inspection apparatus as described in 1 aspect.
 本発明の第3の態様は、前記視度調整手段は、前記第2レンズ群に属するレンズのうち、焦点距離が10mm超、50mm未満のレンズを移動させて視度を調整する
 ことを特徴とする上記第1または第2の態様に記載の視覚検査装置である。
The third aspect of the present invention is characterized in that the diopter adjusting means adjusts the diopter by moving a lens having a focal length of more than 10 mm and less than 50 mm among the lenses belonging to the second lens group. The visual inspection device according to the first or second aspect.
 本発明の第4の態様は、前記表示光学系は、少なくとも視覚検査の範囲内において、前記被検者が前記眼球位置から当該表示光学系を通して視標を見るときに当該表示光学系から前記表示素子の表示面へと入射するすべての主光線が、前記光軸に対して平行になるテレセントリック性を有する
 ことを特徴とする上記第1~第3の態様のいずれかに記載の視覚検査装置である。
According to a fourth aspect of the present invention, the display optical system displays the display from the display optical system when the subject views the target through the display optical system from the eyeball position, at least within the range of visual inspection. The visual inspection apparatus according to any one of the first to third aspects, characterized in that all chief rays incident on the display surface of the element have telecentricity parallel to the optical axis. is there.
 本発明の第5の態様は、前記撮像素子で撮像した眼球の画像に基づいて瞳孔位置の変化を検出し、この検出結果に応じて、前記表示素子に表示する視標の位置を補正する視標表示位置補正手段を具備する
 ことを特徴とする上記第1~第4の態様のいずれかに記載の視覚検査装置である。
According to a fifth aspect of the present invention, a change in pupil position is detected based on an eyeball image picked up by the image pickup device, and a position of a visual target displayed on the display device is corrected according to the detection result. The visual inspection apparatus according to any one of the first to fourth aspects, further comprising a mark display position correcting unit.
 本発明によれば、観察光学系に影響を及ぼすことなく、視度を調整することができる。 According to the present invention, the diopter can be adjusted without affecting the observation optical system.
本発明の実施の形態に係る視覚検査装置の構成例を示す概略図である。It is the schematic which shows the structural example of the visual inspection apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る視覚検査装置の光学系と制御系の構成を含む概略図である。It is the schematic including the structure of the optical system and control system of the visual inspection apparatus which concerns on embodiment of this invention. 本発明の実施の形態における表示光学系と視度調整機構の関係を示す図である。It is a figure which shows the relationship between the display optical system and diopter adjustment mechanism in embodiment of this invention. 表示光学系の特性を説明するための図である。It is a figure for demonstrating the characteristic of a display optical system. 表示光学系の他の構成例を示す概略図である。It is the schematic which shows the other structural example of a display optical system.
 以下、本発明の実施の形態について図面を参照しつつ詳細に説明する。
 本実施の形態においては、本発明をヘッドマウント型の視覚検査装置に適用した場合を例に挙げて説明する。
 また、本発明の実施の形態においては、次の順序で説明を行う。
 1.視覚検査装置の構成
 2.表示光学系の特性
 3.視覚検査方法
 4.実施の形態の効果
 5.変形例等
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In the present embodiment, a case where the present invention is applied to a head-mounted visual inspection apparatus will be described as an example.
In the embodiment of the present invention, description will be given in the following order.
1. 1. Configuration of visual inspection device 2. Characteristics of display optical system Visual inspection method 4. 4. Effects of the embodiment Modifications etc.
<1.視覚検査装置の構成>
 図1は本発明の実施の形態に係る視覚検査装置の構成例を示す概略図である。
 図示した視覚検査装置1は、被検者2の頭部3に装着して用いられるヘッドマウント型の視覚検査装置である。視覚検査装置1は、大きくは、装置本体5と、この装置本体5に機械的に接続された装着具6と、を備えている。
<1. Configuration of visual inspection device>
FIG. 1 is a schematic diagram showing a configuration example of a visual inspection apparatus according to an embodiment of the present invention.
The illustrated visual inspection apparatus 1 is a head-mounted visual inspection apparatus that is used by being mounted on the head 3 of a subject 2. The visual inspection device 1 generally includes a device main body 5 and a mounting tool 6 mechanically connected to the device main body 5.
 装置本体5は、内部に空間を有する筐体7を備えている。筐体7の内部空間は、左右に分かれている。その理由は、被検者2の左眼8Lと右眼8Rで別々に視覚検査を行うためである。この視覚検査において、左眼8Lを被検眼とする場合は、被検者2が左眼8Lの瞳孔9Lを通して視標を見ることになり、右眼8Rを被検眼とする場合は、被検者2が右眼8Rの瞳孔9Rを通して視標を見ることになる。 The apparatus body 5 includes a housing 7 having a space inside. The internal space of the housing 7 is divided into left and right. This is because the visual inspection is performed separately for the left eye 8L and the right eye 8R of the subject 2. In this visual inspection, when the left eye 8L is the eye to be examined, the subject 2 sees the target through the pupil 9L of the left eye 8L, and when the right eye 8R is the eye to be examined, the subject 2 sees the target through the pupil 9R of the right eye 8R.
 ここで記述する「視標」とは、被検者の視覚を検査するにあたって、被検者の眼球に光による刺激を与えるために表示されるものである。視標に関しては、特に大きさ、形状等の制限はない。たとえば、緑内障検査の際には、所定の大きさで光の点を視標として表示するとともに、その光の点の位置を変化させることにより、欠損した視野の有無や欠損場所を検査(特定)することができる。 The “target” described here is displayed in order to give light stimulation to the eyeball of the subject when examining the subject's vision. There are no particular restrictions on the size, shape, etc. of the visual target. For example, in the case of glaucoma examination, the point of light is displayed as a target with a predetermined size, and the position of the point of light is changed to examine the presence or absence of the missing visual field and the location of the defect (specific) can do.
 筐体7の一方の空間には、表示光学系11Lと表示素子12Lが設けられている。筐体7の他方の内部空間には、表示光学系11Rと表示素子12Rが設けられている。表示光学系11Lと表示素子12Lは、被検者2の左眼8Lの視覚検査を行うために設けられたものである。表示光学系11Rと表示素子12Rは、被検者2の右眼8Rの視覚検査を行うために設けられたものである。 In one space of the housing 7, a display optical system 11L and a display element 12L are provided. In the other internal space of the housing 7, a display optical system 11R and a display element 12R are provided. The display optical system 11L and the display element 12L are provided for visual inspection of the left eye 8L of the subject 2. The display optical system 11R and the display element 12R are provided for visual inspection of the right eye 8R of the subject 2.
 装着具6は、装置本体5を被検者2の頭部3に装着し固定するためのものである。装着具6は、被検者2の両側頭部から後頭部にかけてU字形に掛け渡されるベルト13と、被検者2の頭頂部に掛け渡されるベルト14とを備えている。そして、ベルト14の長さを適度に調整した状態で、ベルト13を後頭部側から引っ張って締め付けることにより、被検者2の頭部3に装置本体5を装着可能な機構になっている。 The mounting tool 6 is for mounting and fixing the apparatus body 5 to the head 3 of the subject 2. The wearing tool 6 includes a belt 13 that is stretched in a U-shape from both sides of the subject 2 to the back of the head, and a belt 14 that is stretched over the top of the subject 2. Then, in a state where the length of the belt 14 is appropriately adjusted, the mechanism 13 can be mounted on the head 3 of the subject 2 by pulling and tightening the belt 13 from the back head side.
 なお、以降の説明では、被検者2の左眼8Lと右眼8Rを左右の区別なく記載する場合は、符号L,Rを省略して眼球8、瞳孔9と総称する。これと同様に、上述した表示光学系11L,11Rと表示素子12L,12Rについても左眼用と右眼用の区別なく記載する場合は、それぞれ符号L,Rを省略して表示光学系11、表示素子12と総称する。 In the following description, when the left eye 8L and the right eye 8R of the subject 2 are described without distinction between left and right, the symbols L and R are omitted, and the eyeball 8 and the pupil 9 are collectively referred to. Similarly, when the display optical systems 11L and 11R and the display elements 12L and 12R are described without distinction for the left eye and the right eye, the reference optical systems 11 and 11 are omitted by omitting the symbols L and R, respectively. Collectively referred to as the display element 12.
 図2は本発明の実施の形態に係る視覚検査装置の光学系と制御系の構成を含む概略図である。
 図示のように、視覚検査装置1は、上述した表示光学系11と表示素子12の他に、被検者の眼球8を観察するための観察光学系15と、この観察光学系15を通して被検者の眼球8を撮像する撮像素子16と、被検者の眼球8に赤外線を照射する赤外光源17と、制御部30と、応答スイッチ31と、を備えている。観察光学系15、撮像素子16および赤外光源17は、上述した表示光学系11や表示素子12と同様に、被検者の左眼用と右眼用でそれぞれ別々に設けられ、制御部30および応答スイッチ31は、1つの視覚検査装置1につき一つずつ設けられるものである。
FIG. 2 is a schematic diagram including configurations of an optical system and a control system of the visual inspection apparatus according to the embodiment of the present invention.
As shown in the figure, the visual inspection apparatus 1 includes an observation optical system 15 for observing the eyeball 8 of the subject and the test optical system 15 in addition to the display optical system 11 and the display element 12 described above. An imaging device 16 that images the eyeball 8 of the person, an infrared light source 17 that irradiates infrared rays to the eyeball 8 of the subject, a control unit 30, and a response switch 31. The observation optical system 15, the image sensor 16, and the infrared light source 17 are provided separately for the left eye and the right eye of the subject, respectively, similarly to the display optical system 11 and the display element 12 described above, and the control unit 30. One response switch 31 is provided for each visual inspection device 1.
 表示光学系11は、被検者の眼球8が配置される眼球位置と表示素子12の表示面12aとの間の光軸18上に設けられている。具体的には、表示光学系11は、被検者の眼球位置側から順に、第1レンズ19と、ミラー20と、第2レンズ群21とを配置した構成になっている。以下、各構成要素について説明する。なお、以降の説明では、被検者の眼球位置から表示素子12までの光軸18のうち、眼球位置からミラー20までの光軸を光軸18aとし、ミラー20から表示素子12までの光軸を光軸18bとする。 The display optical system 11 is provided on the optical axis 18 between the eyeball position where the eyeball 8 of the subject is placed and the display surface 12 a of the display element 12. Specifically, the display optical system 11 has a configuration in which a first lens 19, a mirror 20, and a second lens group 21 are arranged in order from the eyeball position side of the subject. Hereinafter, each component will be described. In the following description, among the optical axes 18 from the eyeball position of the subject to the display element 12, the optical axis from the eyeball position to the mirror 20 is the optical axis 18a, and the optical axis from the mirror 20 to the display element 12 is the optical axis. Is the optical axis 18b.
 第1レンズ19は、眼球位置からミラー20までの光軸18a上に配置されている。第1レンズ19は、正のパワーを有する非球面のレンズ(凸レンズ)を用いて構成されている。第1レンズ19は、ミラー20で反射して第1レンズ19に入射した光を被検者の瞳孔9に収束させる一方、被検者が瞳孔9を通して広角に物を見るときの光の発散を抑制するものである。図2においては、表示素子12の表示面12aに視標となる光の点を表示し、この視標を被検者が眼球位置から表示光学系11を通して見るときに、被検者の瞳孔中心から第1レンズ19へと入射する主光線の入射角度を符号θで表している。この入射角度θは、光軸18aを基準とする角度(瞳孔中心を通る主光線と光軸18aとがなす角度)である。光軸18a上における第1レンズ19の外径(直径)や位置は、少なくとも視覚検査に必要な視野角を確保し得る条件で設定されている。具体的には、第1レンズ19を用いた表示光学系11の最大視野角(θの最大値)は、好ましくは、半画角で30度以上、60度以下(全画角では60度以上、120度以下)の範囲に設定するとよい。 The first lens 19 is disposed on the optical axis 18 a from the eyeball position to the mirror 20. The first lens 19 is configured using an aspherical lens (convex lens) having positive power. The first lens 19 converges the light reflected by the mirror 20 and incident on the first lens 19 onto the pupil 9 of the subject, while the light divergence occurs when the subject views an object through the pupil 9 at a wide angle. It is to suppress. In FIG. 2, when a point of light serving as a target is displayed on the display surface 12a of the display element 12, and the subject views the target through the display optical system 11 from the eyeball position, the center of the pupil of the subject is displayed. The incident angle of the chief ray incident on the first lens 19 from is represented by the symbol θ. The incident angle θ is an angle with respect to the optical axis 18a (an angle formed between the principal ray passing through the center of the pupil and the optical axis 18a). The outer diameter (diameter) and position of the first lens 19 on the optical axis 18a are set under conditions that can secure at least a viewing angle necessary for visual inspection. Specifically, the maximum viewing angle (maximum value of θ) of the display optical system 11 using the first lens 19 is preferably 30 degrees or more and 60 degrees or less at a half field angle (60 degrees or more at all angles). , 120 degrees or less).
 ミラー20は、眼球位置からミラー20までの光軸18a上において、第1レンズ19を間に挟んで眼球位置とは反対側に配置されている。ミラー20は、波長選択性を有するミラーを用いて構成されている。具体的には、ミラー20は、可視光を反射し、赤外線を透過するコールドミラーを用いて構成されている。光軸18aに対するミラー20の反射面の傾きは、このミラー20によって屈曲される光軸18aと光軸18bとのなす角度αが、好ましくは90度未満、より好ましくは80度未満、さらに好ましくは「40度<α<70度」の範囲となるように設定されている。 The mirror 20 is disposed on the opposite side of the eyeball position on the optical axis 18a from the eyeball position to the mirror 20 with the first lens 19 interposed therebetween. The mirror 20 is configured using a mirror having wavelength selectivity. Specifically, the mirror 20 is configured using a cold mirror that reflects visible light and transmits infrared rays. The inclination of the reflecting surface of the mirror 20 with respect to the optical axis 18a is such that the angle α formed by the optical axis 18a and the optical axis 18b bent by the mirror 20 is preferably less than 90 degrees, more preferably less than 80 degrees, and still more preferably. It is set to be in the range of “40 degrees <α <70 degrees”.
 ここで、α≦40°である場合は、表示素子12や第2レンズ群21が被検者の頭部に接近しすぎて、それらが頭部と干渉してしまうおそがある。これに対して、α>40°である場合は、表示素子12や第2レンズ群21が頭部と干渉することを回避することができる。一方、α≧90°である場合は、被検者が頭部を前方に傾けた際に、視覚検査装置1が頭部からずれ落ちやすくなる。これに対して、α<90°である場合は、被検者が頭部を前方に傾けた際に、視覚検査装置1が頭部からずれ落ちにくくなる。 Here, when α ≦ 40 °, the display element 12 and the second lens group 21 are too close to the head of the subject, and they may interfere with the head. On the other hand, when α> 40 °, it is possible to avoid the display element 12 and the second lens group 21 from interfering with the head. On the other hand, when α ≧ 90 °, the visual inspection device 1 is likely to slip off the head when the subject tilts the head forward. On the other hand, when α <90 °, the visual inspection device 1 is less likely to slip off the head when the subject tilts the head forward.
 第2レンズ群21は、ミラー20から表示素子12までの光軸18b上に配置されている。第2レンズ群21は、3つのレンズ21a,21b,21cを用いて構成されている。3つのレンズ21a,21b,21cは、ミラー20側から表示素子12側に向かって順に配置されている。すなわち、レンズ21aは、光軸18b上でミラー20に最も近い位置に配置され、レンズ21cは、光軸18b上で表示素子12に最も近い位置に配置されている。そして、これら2つのレンズ21a、21cの間にレンズ21bが配置されている。レンズ21bは、レンズ21aから離間した状態で、レンズ21cの近くに配置されている。 The second lens group 21 is disposed on the optical axis 18b from the mirror 20 to the display element 12. The second lens group 21 is configured by using three lenses 21a, 21b, and 21c. The three lenses 21a, 21b, and 21c are sequentially arranged from the mirror 20 side toward the display element 12 side. That is, the lens 21a is disposed at a position closest to the mirror 20 on the optical axis 18b, and the lens 21c is disposed at a position closest to the display element 12 on the optical axis 18b. A lens 21b is disposed between the two lenses 21a and 21c. The lens 21b is arranged near the lens 21c in a state of being separated from the lens 21a.
 レンズ21aは、正のパワーを有する非球面のレンズ(凸レンズ)を用いて構成されている。また、レンズ21bは、負のパワーを有する非球面のレンズ(凹レンズ)を用いて構成され、レンズ21cは、正のパワーを有する非球面のレンズ(凸メニスカスレンズ)を用いて構成されている。また、レンズ21aの外径(直径)は他のレンズ21b,21cの外径よりも大きく、レンズ21b,21cの外径は互いにほぼ等しくなっている。 The lens 21a is configured using an aspherical lens (convex lens) having positive power. The lens 21b is configured by using an aspheric lens (concave lens) having negative power, and the lens 21c is configured by using an aspheric lens (convex meniscus lens) having positive power. The outer diameter (diameter) of the lens 21a is larger than the outer diameters of the other lenses 21b and 21c, and the outer diameters of the lenses 21b and 21c are substantially equal to each other.
 ここで、上記第1レンズ19を構成する材料のアッベ数をv1とすると、第1レンズ19は、「45<v1<80」の関係式を満たす材料(ガラス、プラスチックなど)で構成されている。一方、第2レンズ群21を構成するレンズ21a~21cのうち、正のパワーを有するレンズ21a,21cのアッベ数を共にv2とすると、各々のレンズ21a,21cは、「45<v2<80」の関係式を満たす材料で構成されている。また、負のパワーを有するレンズ21bのアッベ数をv3とすると、レンズ21bは、「15<v3<30」の関係式を満たす材料で構成されている。
 また、第1レンズ19の焦点距離をf1とし、第2レンズ群21の焦点距離をf2とすると、これらは「0<f1/f2<1.0」の関係を満たしている。さらに、第1レンズ19の焦点距離f1は、第1レンズ19からミラー20までの光学距離aと、ミラー20から第2レンズ群21(レンズ21a)までの光学距離bとの和(a+b)に比べて、それよりも短くなっている。
Here, when the Abbe number of the material constituting the first lens 19 is v1, the first lens 19 is made of a material (glass, plastic, etc.) that satisfies the relational expression “45 <v1 <80”. . On the other hand, when the Abbe numbers of the lenses 21a and 21c having positive power among the lenses 21a to 21c constituting the second lens group 21 are both v2, each of the lenses 21a and 21c is “45 <v2 <80”. It is comprised with the material which satisfy | fills the relational expression. When the Abbe number of the lens 21b having negative power is v3, the lens 21b is made of a material that satisfies the relational expression “15 <v3 <30”.
Further, when the focal length of the first lens 19 is f1, and the focal length of the second lens group 21 is f2, these satisfy the relationship of “0 <f1 / f2 <1.0”. Further, the focal length f1 of the first lens 19 is the sum (a + b) of the optical distance a from the first lens 19 to the mirror 20 and the optical distance b from the mirror 20 to the second lens group 21 (lens 21a). ) And shorter than that.
 表示素子12は、ミラー20から表示素子12までの光軸18b上で、第2レンズ群21のレンズ21cと対向するように配置されている。表示素子12は、たとえば、バックライトを備える液晶表示素子等の平面型表示素子を用いて構成されている。表示素子12の表示面12aは、多数のピクセルをマトリクス状に配置した構成になっている。そして、実際に表示面12aに画像(視標を含む)を表示するときには、ピクセル単位で画像の表示と非表示(オン/オフ)を制御できるようになっている。また、表示素子12の表示面12aは、好ましくは、対角長が1.5インチ以下の表示サイズ、より好ましくは対角長が1インチ以下の表示サイズになっており、この表示面12aの中心に光軸18bが位置合わせされている。 The display element 12 is disposed on the optical axis 18b from the mirror 20 to the display element 12 so as to face the lens 21c of the second lens group 21. The display element 12 is configured using, for example, a flat display element such as a liquid crystal display element having a backlight. The display surface 12a of the display element 12 has a configuration in which a large number of pixels are arranged in a matrix. When an image (including a visual target) is actually displayed on the display surface 12a, display and non-display (on / off) of the image can be controlled in units of pixels. The display surface 12a of the display element 12 preferably has a display size with a diagonal length of 1.5 inches or less, more preferably a display size with a diagonal length of 1 inch or less. The optical axis 18b is aligned at the center.
 上記構成からなる表示光学系11および表示素子12においては、表示素子12の表示面12aに視標を表示したときに、被検者2が眼球位置から第1レンズ19、ミラー20および第2レンズ群21を介して視標を見ることになる。その場合、眼球位置に最も近い第1レンズ19の外径を大きくすれば、より広い範囲で視覚検査を行うことができる。ただし、第1レンズ19の外径を大きくすると、そのレンズ端を通る主光線が光軸18(18a)に対して大きく傾くことになる。そのため、第1レンズ19のパワーが低いと、レンズ端を通る主光線が発散してしまう。 In the display optical system 11 and the display element 12 having the above-described configuration, when the visual target is displayed on the display surface 12a of the display element 12, the subject 2 moves the first lens 19, the mirror 20, and the second lens from the eyeball position. The target is viewed through the group 21. In that case, if the outer diameter of the first lens 19 closest to the eyeball position is increased, visual inspection can be performed in a wider range. However, when the outer diameter of the first lens 19 is increased, the principal ray passing through the lens end is largely inclined with respect to the optical axis 18 (18a). Therefore, when the power of the first lens 19 is low, the chief ray passing through the lens end is diverged.
 そこで本実施の形態においては、第1レンズ19に高いパワー(好ましくは、パワーが20D(dioptre)以上、60D以下)のレンズを用いることにより、第1レンズ19のレンズ端を通る主光線を大きく屈折させてミラー20の反射面に収めている。ただし、このように高パワーの第1レンズ19を用いると、第1レンズ19から第2レンズ群21に至る光路の途中で主光線の光束が集光し焦点を結んでしまう。このため、光路の途中で焦点を結んだ主光線の光束を、表示素子12の表示面12aで再度集光(結像)させるために、光軸18b上に第2レンズ群21を配置している。また、色収差や像倍率を補正するために、第2レンズ群21を3つのレンズ21a,21b,21cで構成している。 Therefore, in the present embodiment, by using a lens with high power (preferably, power is 20D (dioptre) or more and 60D or less) for the first lens 19, the principal ray passing through the lens end of the first lens 19 is increased. The light is refracted and stored on the reflection surface of the mirror 20. However, when the high-power first lens 19 is used in this way, the main light beam is condensed and focused in the middle of the optical path from the first lens 19 to the second lens group 21. For this reason, the second lens group 21 is disposed on the optical axis 18b in order to condense (image) the principal ray bundle focused in the middle of the optical path on the display surface 12a of the display element 12 again. Yes. In order to correct chromatic aberration and image magnification, the second lens group 21 is composed of three lenses 21a, 21b, and 21c.
 観察光学系15は、被検者の眼球8を観察対象として、たとえば、瞳孔9、虹彩、強膜などを含む眼前部、あるいは網膜10を含む眼底部などを観察するためのものである。観察光学系15は、被検者の眼球位置から撮像素子16までの光軸18上に設けられている。具体的には、観察光学系15は、被検者の眼球位置側から順に、第1レンズ19と、ミラー20と、第3レンズ22とを配置した構成になっている。このうち、第1レンズ19とミラー20は、光軸18aを含めて、上述した表示光学系11と共通(共用)になっている。また、ミラー20から撮像素子16までの光軸を光軸18cとすると、この光軸18cは、上述した光軸18aと略平行になっている。 The observation optical system 15 is for observing, for example, the anterior part of the eye including the pupil 9, the iris, the sclera, or the fundus of the eye including the retina 10 with the eyeball 8 of the subject as an observation target. The observation optical system 15 is provided on the optical axis 18 from the eyeball position of the subject to the image sensor 16. Specifically, the observation optical system 15 has a configuration in which a first lens 19, a mirror 20, and a third lens 22 are arranged in order from the eyeball position side of the subject. Among these, the first lens 19 and the mirror 20 are common (shared) with the display optical system 11 described above, including the optical axis 18a. If the optical axis from the mirror 20 to the image sensor 16 is the optical axis 18c, the optical axis 18c is substantially parallel to the optical axis 18a described above.
 第3レンズ22は、ミラー20から撮像素子16までの光軸18c上に配置されている。第3レンズ22は、正のパワーを有する非球面のレンズ(凸レンズ)を用いて構成されている。第3レンズ22は、第1レンズ19を対物レンズとして眼球8を観察する場合に、眼球8から第1レンズ19に入射し、かつミラー20を透過する光を、撮像素子16の撮像面16aに結像させるものである。 The third lens 22 is disposed on the optical axis 18 c from the mirror 20 to the image sensor 16. The third lens 22 is configured using an aspherical lens (convex lens) having positive power. When observing the eyeball 8 using the first lens 19 as an objective lens, the third lens 22 transmits light that enters the first lens 19 from the eyeball 8 and passes through the mirror 20 to the imaging surface 16 a of the imaging device 16. The image is formed.
 撮像素子16は、被検眼となる眼球(前眼部、眼底部など)8を撮像するものである。撮像素子16は、赤外線に対して感度を有するCCD(Charge Coupled Device)撮像素子、CMOS(Complementary Metal Oxide Semiconductor)撮像素子などを用いて構成されている。撮像素子16の撮像面16aは、光軸18c上で眼球8に正対する向きに配置され、この撮像面16aの中心に光軸18cが位置合わせされている。 The imaging element 16 images an eyeball (anterior eye part, fundus oculi part, etc.) 8 to be examined. The image sensor 16 is configured using a CCD (Charge Coupled Device) image sensor having sensitivity to infrared rays, a CMOS (Complementary Metal Oxide Semiconductor) image sensor, or the like. The image pickup surface 16a of the image pickup device 16 is disposed on the optical axis 18c so as to face the eyeball 8, and the optical axis 18c is aligned with the center of the image pickup surface 16a.
 赤外光源17は、被検者の眼球位置に向けて赤外線を照射するものである。赤外光源17は、一対の赤外線発光ダイオード17a,17bを用いて構成されている。一対の赤外線発光ダイオード17a,17bは、被検者の視野を妨げないように、被検者の眼球位置に対して斜め上方と斜め下方に分けて配置されている。そして、一方の赤外線発光ダイオード17aは、被検者の眼球8に対して斜め上方から赤外線を照射し、他方の赤外線発光ダイオード17bは、被検者の眼球8に対して斜め下方から赤外線を照射する構成になっている。 The infrared light source 17 irradiates infrared rays toward the eyeball position of the subject. The infrared light source 17 is configured using a pair of infrared light emitting diodes 17a and 17b. The pair of infrared light emitting diodes 17a and 17b are arranged in an obliquely upward and obliquely downward direction with respect to the eyeball position of the subject so as not to disturb the visual field of the subject. One infrared light-emitting diode 17a irradiates the subject's eyeball 8 with infrared rays obliquely from above, and the other infrared light-emitting diode 17b irradiates the subject's eyeball 8 with infrared rays obliquely from below. It is configured to do.
 上記構成からなる観察光学系15および撮像素子16においては、被検者の眼球8に赤外光源17から赤外線を照射しつつ、第1レンズ19、ミラー20および第3レンズ22を介して眼球8の画像を撮像素子16で撮像することになる。また、本実施の形態に係る視覚検査装置1は、こうして撮像される眼球8の画像に基づいて眼球8の回転運動にともなう瞳孔位置の変化を検出(追尾)し、この検出結果に応じて、表示素子12に表示する視標の位置を補正する視標表示位置補正手段(トラッキング機能とも呼ばれる。)を備えている。視標表示位置補正手段は、後述する制御部30によって実現される機能の一つである。視標表示位置補正手段は、固視状態にあるべき眼球8が少し回転運動したときでも、表示素子12に表示した視標からの光が網膜10上の同じ測定点に焦点を結ぶように、視標の表示位置を補正するものである。 In the observation optical system 15 and the image sensor 16 having the above-described configuration, the eyeball 8 is irradiated via the first lens 19, the mirror 20, and the third lens 22 while irradiating the eyeball 8 of the subject with infrared rays from the infrared light source 17. The image is picked up by the image pickup device 16. In addition, the visual inspection device 1 according to the present embodiment detects (tracks) a change in the pupil position accompanying the rotational movement of the eyeball 8 based on the image of the eyeball 8 thus imaged, and according to the detection result, A target display position correcting means (also called a tracking function) for correcting the position of the target displayed on the display element 12 is provided. The visual target display position correcting means is one of the functions realized by the control unit 30 described later. The target display position correcting means is configured so that the light from the target displayed on the display element 12 is focused on the same measurement point on the retina 10 even when the eyeball 8 that should be in a fixation state slightly rotates. This corrects the display position of the target.
 制御部30は、視覚検査に際して各種の機能(手段)を実現するものである。制御部30は、たとえば、装置本体5よりも小さい筐体構造を有するもので、装着具6の後頭部側に装着して配置される。これにより、装置本体5と制御部30との前後の重量バランスを保つことができる。 The control unit 30 realizes various functions (means) for visual inspection. The control unit 30 has, for example, a housing structure smaller than the apparatus main body 5 and is mounted on the rear head side of the mounting tool 6 and arranged. Thereby, the weight balance before and behind the apparatus main body 5 and the control part 30 can be maintained.
 制御部30は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard disk drive)、各種インタフェース等の組み合わせからなるコンピュータによって構成される。そして、制御部30は、CPUがROMまたはHDDに格納された所定のプログラムを実行することにより、各種の機能を実現するように構成されている。制御部30は、プログラムの実行によって実現される機能(手段)の一例として、装置本体5に内蔵された表示素子12や撮像素子16、赤外光源17などの各部の動作を制御する機能を有する。各機能を実現するための所定のプログラムは、コンピュータにインストールして用いられるが、そのインストールに先立ち、コンピュータで読み取り可能な記憶媒体に格納して提供されるものであってもよいし、あるいはコンピュータと接続する通信回線を通じて提供されるものであってもよい。 The control unit 30 is configured by a computer including a combination of CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), HDD (Hard Disk Drive), various interfaces, and the like. And the control part 30 is comprised so that various functions may be implement | achieved, when CPU runs the predetermined program stored in ROM or HDD. The control unit 30 has a function of controlling the operation of each unit such as the display element 12, the imaging element 16, and the infrared light source 17 incorporated in the apparatus main body 5 as an example of a function (means) realized by executing the program. . The predetermined program for realizing each function is used by being installed in a computer, but may be provided by being stored in a computer-readable storage medium prior to the installation, or the computer It may be provided through a communication line connected to.
 応答スイッチ31は、被検者がスイッチング操作するものである。この応答スイッチ31を被検者が押下操作すると、その瞬間に応答スイッチ31からオン信号が出力される。このオン信号は制御部30に取り込まれる。応答スイッチ31は、被検者が手に持って操作する手動式とする。ただし、これに限らず、足踏み式のスイッチでもよい。 The response switch 31 is a switch operated by the subject. When the subject presses down the response switch 31, an ON signal is output from the response switch 31 at that moment. This ON signal is taken into the control unit 30. The response switch 31 is a manual type that the subject holds and operates. However, the present invention is not limited to this, and a stepping switch may be used.
 以上の構成に加えて、本実施の形態に係る視覚検査装置1は、図3に示すように、視度調整手段の一例となる視度調整機構32を備えている。視度調整機構32は、被検者2の眼球8の視力に合わせて視標の見え方を調整するものである。より具体的に記述すると、被検眼が近視眼あるいは遠視眼である場合は、表示素子12に表示した視標の像が眼球8の網膜10に結像せずにぼやけてしまうため、この視標を明瞭に見えるように調整する機構が視度調整機構32である。 In addition to the above configuration, the visual inspection apparatus 1 according to the present embodiment includes a diopter adjustment mechanism 32 as an example of diopter adjustment means, as shown in FIG. The diopter adjustment mechanism 32 adjusts the appearance of the visual target in accordance with the visual acuity of the eyeball 8 of the subject 2. More specifically, when the eye to be examined is a myopic eye or a hyperopic eye, the image of the optotype displayed on the display element 12 is not formed on the retina 10 of the eyeball 8 and is blurred. A diopter adjustment mechanism 32 is a mechanism that adjusts the lens so that it can be clearly seen.
 視度調整機構32は、第2レンズ群21に属するレンズ(21a~21c)のうち、少なくとも一つを光軸18bの方向に移動させることによって視度を調整する。第2レンズ群21は、表示光学系11に属する光軸18a,18bのうち、観察光学系15とは共用しない光軸18b上に配置されている。このため、第2レンズ群21に属するレンズ21a~21cのいずれを移動させても、観察光学系15には光学的な影響を及ぼさない。 The diopter adjustment mechanism 32 adjusts the diopter by moving at least one of the lenses (21a to 21c) belonging to the second lens group 21 in the direction of the optical axis 18b. The second lens group 21 is disposed on the optical axis 18 b that is not shared with the observation optical system 15 among the optical axes 18 a and 18 b belonging to the display optical system 11. Therefore, any of the lenses 21a to 21c belonging to the second lens group 21 is moved, and the observation optical system 15 is not optically affected.
 第2レンズ群21に属するレンズ21a~21cを光軸18bの方向に移動させるにあたっては、それらすべてのレンズ21a~21cを移動させてもよいし、一部のレンズのみを移動させてもよい。ただし、複数のレンズを移動させて視度を調整するとなると、各々のレンズの移動量や位置関係を精密に制御する必要がある。このため、視度調整機構32全体が複雑化したり大型化したりすることが懸念される。 In moving the lenses 21a to 21c belonging to the second lens group 21 in the direction of the optical axis 18b, all of the lenses 21a to 21c may be moved, or only a part of the lenses may be moved. However, when the diopter is adjusted by moving a plurality of lenses, it is necessary to precisely control the moving amount and positional relationship of each lens. For this reason, there is a concern that the diopter adjustment mechanism 32 as a whole becomes complicated or large.
 そこで、本実施の形態においては、第2レンズ群21に属するレンズ21a~21cのうち、いずれか一つのレンズのみ、好ましくは、光軸18b上で最も近いレンズ21cのみを移動させる構成を採用している。レンズ21cを移動させる機構は種々考えられる。たとえば図示はしないが、レンズ21cを保持するレンズホルダーを、直動ガイドの可動部に実装し、ボールネジ機構や歯車機構などの動力伝達機構を利用して、レンズ21cを直動ガイドで案内しつつ光軸18bの方向に移動させる機構を採用すればよい。 Therefore, in the present embodiment, a configuration is adopted in which only one of the lenses 21a to 21c belonging to the second lens group 21 is moved, preferably only the lens 21c closest to the optical axis 18b is moved. ing. Various mechanisms for moving the lens 21c are conceivable. For example, although not shown, a lens holder that holds the lens 21c is mounted on the movable portion of the linear guide, and the lens 21c is guided by the linear guide using a power transmission mechanism such as a ball screw mechanism or a gear mechanism. A mechanism for moving in the direction of the optical axis 18b may be employed.
 また、視度調整機構32は、たとえば図示しない回転式の調整ダイヤルを有する。この調整ダイヤルは、視度の調整を行う被検者2によって回転操作されるものである。実際に被検者2が調整ダイヤルを一方向または他方に回転操作すると、そのときの回転方向および回転量にしたがってレンズ21cが光軸方向の一方または他方に移動する。 The diopter adjustment mechanism 32 has a rotary adjustment dial (not shown), for example. This adjustment dial is rotated by the subject 2 who adjusts the diopter. When the subject 2 actually rotates the adjustment dial in one direction or the other, the lens 21c moves to one or the other in the optical axis direction according to the rotation direction and the rotation amount at that time.
 レンズ21cの焦点距離は、好ましくは、10mm超、50mm未満、より好ましくは15mm超、40mm未満、さらに好ましくは18mm超、30mm未満とする。このように焦点距離の短いレンズ21cを視度調整のためのレンズとした場合は、レンズ21cを光軸方向に少し移動させただけで視度が大きく変化することになる。このため、レンズ21cの移動量に対して視度の調整量が相対的に大きくなる。この場合、視度の微調整がしづらくなることが懸念されるものの、本発明者は、あえて焦点距離の短いレンズ21cを移動させる構成を採用している。その理由については後述する。
 ちなみに、レンズ21cの焦点距離が10mm以下の場合は、視度の調整感度が上がりすぎてしまうため、多少の調整誤差や位置誤差によって視度が大きく変化し、被検者に観察される映像の距離を最適に設定しづらくなる。また、レンズ21cの焦点距離が50mm以上の場合、視度調整による移動量が大きくなってしまい、光学系の倍率が大きく変化するため、表示素子上に表示した視標の被検者に観察される角度が視度によって異なってしまう。
The focal length of the lens 21c is preferably more than 10 mm and less than 50 mm, more preferably more than 15 mm and less than 40 mm, still more preferably more than 18 mm and less than 30 mm. Thus, when the lens 21c with a short focal length is used as a lens for diopter adjustment, the diopter changes greatly only by moving the lens 21c slightly in the optical axis direction. For this reason, the diopter adjustment amount is relatively large with respect to the movement amount of the lens 21c. In this case, although it is feared that it is difficult to finely adjust the diopter, the present inventor has adopted a configuration in which the lens 21c having a short focal length is intentionally moved. The reason will be described later.
Incidentally, when the focal length of the lens 21c is 10 mm or less, the diopter adjustment sensitivity increases too much, so the diopter changes greatly due to some adjustment error or position error, and the image observed by the subject is reduced. It becomes difficult to set the distance optimally. In addition, when the focal length of the lens 21c is 50 mm or more, the amount of movement due to diopter adjustment becomes large, and the magnification of the optical system changes greatly, so that it is observed by the subject of the target displayed on the display element. The angle that varies depends on the diopter.
<2.表示光学系の特性>
 図4は表示光学系の特性を説明するための図である。
 この図4においては、眼球8の瞳孔9を射出瞳とし、この射出瞳の中心(瞳孔中心)を主光線が通過する一方、その主光線の光束が表示素子12の表示面12aに焦点を結んで結像し、その表示面12aを各主光線の光束の結像面として、被検者2が表示面12aを見る場合を想定している。また、表示光学系11を構成する第1レンズ19、ミラー20および第2レンズ群21を、一つの仮想的なレンズ11vに置き換えて表示している。そして、レンズ11vの焦点距離をf、レンズ11vに対する主光線の入射角度をθ、表示面12aにおける像高をYとしている。この場合、入射角度θは、上記図2に示す入射角度θに相当し、レンズ11vの焦点距離fは、第1レンズ19および第2レンズ群21を含むレンズ全体の焦点距離に相当する。
<2. Characteristics of display optical system>
FIG. 4 is a diagram for explaining the characteristics of the display optical system.
In FIG. 4, the pupil 9 of the eyeball 8 is used as the exit pupil, and the chief ray passes through the center of the exit pupil (center of the pupil), while the luminous flux of the chief ray is focused on the display surface 12a of the display element 12. It is assumed that the subject 2 views the display surface 12a using the display surface 12a as the image formation surface of the light beam of each principal ray. In addition, the first lens 19, the mirror 20, and the second lens group 21 constituting the display optical system 11 are replaced with one virtual lens 11v for display. The focal length of the lens 11v is f, the incident angle of the principal ray with respect to the lens 11v is θ, and the image height on the display surface 12a is Y. In this case, the incident angle θ corresponds to the incident angle θ shown in FIG. 2, and the focal length f of the lens 11v corresponds to the focal length of the entire lens including the first lens 19 and the second lens group 21.
 本実施の形態に係る表示光学系11は、少なくとも視覚検査の範囲内において、上記図4に示すように、被検者が眼球位置から表示光学系11を通して視標を見るときに表示光学系11から表示素子12の表示面12aへと入射するすべての主光線が、光軸18bに対して平行になるテレセントリック性を有している。これにより、表示素子12の表示面12aに表示された視標を被検者がレンズ11vを通して見る場合に、たとえば視標の表示位置が、「表示面12aの中心(光軸上)にあるとき」、「表示面12aの一方端にあるとき」および「表示面12aの他方端にあるとき」のいずれにおいても、レンズ11v(レンズ21c)から表示面12aに入射する主光線は、光軸18(18b)に対して平行になる。なお、ここで記述する「平行」とは、理想的には、表示面12aに入射する主光線と光軸18bとのなす角度が0度の場合をいうが、本明細書では、当該角度が10度以下、より好ましくは5度以下の場合についても「平行」の概念に含むものとする。 The display optical system 11 according to the present embodiment is the display optical system 11 when the subject views the visual target from the eyeball position through the display optical system 11 as shown in FIG. All the chief rays incident on the display surface 12a of the display element 12 have telecentricity that is parallel to the optical axis 18b. Thus, when the subject views the target displayed on the display surface 12a of the display element 12 through the lens 11v, for example, the display position of the target is “when the display surface 12a is at the center (on the optical axis)”. ”,“ When it is at one end of the display surface 12 a ”, and“ when it is at the other end of the display surface 12 a ”, the principal ray incident on the display surface 12 a from the lens 11 v (lens 21 c) is the optical axis 18. Parallel to (18b). “Parallel” described here means ideally the case where the angle formed between the principal ray incident on the display surface 12a and the optical axis 18b is 0 degree. In this specification, the angle is The case of 10 degrees or less, more preferably 5 degrees or less is also included in the concept of “parallel”.
 本実施の形態においては、第1レンズ19と第2レンズ群21の各レンズ21a,21b,21cをそれぞれ所定の屈折率を有する非球面レンズとし、これら複数のレンズを組み合わせることにより、表示光学系11全体でテレセントリック性を実現している。ただし、表示光学系11にこのような光学特性を持たせるためには、表示光学系11を構成するすべてのレンズを非球面レンズとする必要はなく、たとえば、複数の球面レンズの組み合わせ、あるいは球面レンズと非球面レンズの組み合わせによって実現することも可能である。その場合、表示光学系11を構成する複数のレンズのなかで、少なくとも眼球位置に最も近いレンズ(本形態例であれば、第1レンズ19)を非球面レンズによって構成することが好ましい。その理由は、眼球位置に最も近いレンズを非球面レンズによって構成した場合は、これを球面レンズで構成した場合に比べて光学設計の自由度が増すことでレンズ枚数の削減が見込め、視覚検査装置1の小型化および軽量化を図ることが可能になるためである。特に眼球位置からミラー20までの光路が長くなることは、装置本体5が被検者の前方に長くなることに相当し、重量バランスが確保しづらくなるという問題が発生する。このため、眼球位置に最も近いレンズを非球面レンズとし前方への突出量を出来るだけ小さくすることが好ましい。 In the present embodiment, each of the lenses 21a, 21b, and 21c of the first lens 19 and the second lens group 21 is an aspheric lens having a predetermined refractive index, and the display optical system is obtained by combining these lenses. 11 as a whole achieves telecentricity. However, in order for the display optical system 11 to have such optical characteristics, it is not necessary that all lenses constituting the display optical system 11 be aspherical lenses, for example, a combination of a plurality of spherical lenses or a spherical surface It can also be realized by a combination of a lens and an aspheric lens. In that case, it is preferable that at least the lens closest to the eyeball position (in the present embodiment, the first lens 19) among the plurality of lenses constituting the display optical system 11 is formed of an aspheric lens. The reason is that when the lens closest to the eyeball position is configured by an aspherical lens, the number of lenses can be reduced by increasing the degree of freedom in optical design compared to the case where it is configured by a spherical lens. This is because the size and weight of 1 can be reduced. In particular, an increase in the optical path from the eyeball position to the mirror 20 corresponds to an increase in the length of the apparatus main body 5 in front of the subject, resulting in a problem that it is difficult to ensure a weight balance. For this reason, it is preferable that the lens closest to the eyeball position is an aspherical lens and the forward projection amount is as small as possible.
<3.視覚検査方法>
 上記構成からなる視覚検査装置1を使用すれば、動的量的視野検査(ゴールドマン視野検査)、静的量的視野検査、眼底視野検査(マイクロペリメトリー)、網膜電図検査(ERG)その他の検査を行うことが可能である。ここでは一例として、静的量的視野検査を行う場合について説明する。
<3. Visual inspection method>
If the visual inspection apparatus 1 having the above configuration is used, dynamic quantitative visual field inspection (Goldman visual field inspection), static quantitative visual field inspection, fundus visual field inspection (microperimetry), electroretinography (ERG) and others It is possible to perform the inspection. Here, the case where a static quantitative visual field inspection is performed is described as an example.
 静的量的視野検査は、次のように行われる。まず、視野内の一点に視標を呈示し、その明るさを徐々に増していく。すると、視標がある明るさになると、被検者から視標が見えるようになる。そこで、被検者が視標を見えるようになったときの明るさに対応する値を、そのときに視標を呈示している点での網膜感度とする。そして、視野内の各点について同様の測定を行うことにより、視野内の網膜感度の相違を量的に調べ、マップを作成する。このような静的量的視野検査には、自覚式検査と他覚式検査がある。本実施の形態の視覚検査装置1を使用すれば、いずれの方式の検査も行うことができる。以下、説明する。 Static quantitative visual field inspection is performed as follows. First, a target is presented at one point in the field of view, and its brightness is gradually increased. Then, when the target has a certain brightness, the target can be seen from the subject. Therefore, the value corresponding to the brightness when the subject can see the target is set as the retina sensitivity at the point where the target is presented at that time. Then, the same measurement is performed for each point in the field of view, thereby quantitatively examining the difference in retinal sensitivity in the field of view and creating a map. There are a subjective examination and an objective examination in the static quantitative visual field examination. If the visual inspection apparatus 1 of the present embodiment is used, any type of inspection can be performed. This will be described below.
 自覚式検査は、次のように行われる。まず、ヘッドマウント型の視覚検査装置1を被検者の頭部に装着する。また、被検者の手に応答スイッチ31を持たせる。次に、制御部30の指令に基づき、表示素子12の表示面12aの一点に視野検査用の視標を表示する。このとき、最初は視標の明るさを暗くしておき、その後、徐々に視標の明るさを増していく。そうすると、最初のうちは暗くて被検者から視標が見えなくても、視標がある明るさになると被検者の網膜が光の刺激に反応し、被検者から視標が見えるようになる。このため、被検者から視標が見えるようになったときに、被検者に応答スイッチ31を押してもらう。被検者が応答スイッチ31を押すと、制御部30にオン信号が送られる。このオン信号を受けて、制御部30は、所定の処理を行い、そのときの視標の点の明るさに対応する値をその点の網膜の感度とする。以降は、視野内の各点について同様の測定を行うことにより、視野内の網膜感度の相違を量的に調べ、網膜の感度マップを作成する。 Self-aware inspection is performed as follows. First, the head-mounted visual inspection apparatus 1 is attached to the subject's head. Further, the response switch 31 is held in the hand of the subject. Next, based on a command from the control unit 30, a visual field inspection target is displayed at one point on the display surface 12 a of the display element 12. At this time, the brightness of the target is initially darkened, and then the brightness of the target is gradually increased. Then, even if it is dark at first and the target is not visible to the subject, when the target reaches a certain brightness, the subject's retina responds to the light stimulus so that the subject can see the target. become. For this reason, when the target can be seen from the subject, the subject presses the response switch 31. When the subject presses the response switch 31, an ON signal is sent to the control unit 30. Upon receiving this ON signal, the control unit 30 performs a predetermined process, and sets the value corresponding to the brightness of the point of the target at that time as the sensitivity of the retina of that point. Thereafter, the same measurement is performed for each point in the field of view, thereby quantitatively examining the difference in retinal sensitivity in the field of view and creating a sensitivity map of the retina.
 他覚式検査は、次のように行われる。まず、ヘッドマウント型の視覚検査装置1を被検者の頭部に装着する。この場合は、被検者に応答スイッチ31を持たせる必要はない。次に、制御部30の指令に基づき、表示素子12の表示面12aの一点に視野検査用の視標を表示する。このとき、最初は視標の明るさを暗くしておき、その後、徐々に視標の明るさを増していく。そうすると、最初のうちは暗くて被検者から視標が見えなくても、視標がある明るさになると被検者の網膜が光の刺激に反応し、被検者から視標が見えるようになる。 The objective test is performed as follows. First, the head-mounted visual inspection apparatus 1 is attached to the subject's head. In this case, it is not necessary for the subject to have the response switch 31. Next, based on a command from the control unit 30, a visual field inspection target is displayed at one point on the display surface 12 a of the display element 12. At this time, the brightness of the target is initially darkened, and then the brightness of the target is gradually increased. Then, even if it is dark at first and the target is not visible to the subject, when the target reaches a certain brightness, the subject's retina responds to the light stimulus so that the subject can see the target. become.
 その際、被検者の瞳孔9の大きさ(瞳孔径)が視標の明るさに応じて変化する。具体的には、被検者の瞳孔9の径が縮小する。このときの眼球8の状態変化を撮像する。眼球8の撮像は、赤外光源17から眼球8に向けて赤外線を照射し、これによって得られる眼球8の像光を、観察光学系15(19,20,22)を介して撮像素子16の撮像面16aに結像させることにより行う。眼球8の撮像を開始するタイミングは、たとえば、表示面12aに視標を表示する前のタイミング、あるいは、視標の表示と同時に設定すればよい。ちなみに、人間の網膜は、赤外線に対して感度を持たないため、眼球8の状態変化に影響を与えることはない。 At that time, the size of the pupil 9 (pupil diameter) of the subject changes according to the brightness of the target. Specifically, the diameter of the pupil 9 of the subject is reduced. The state change of the eyeball 8 at this time is imaged. The imaging of the eyeball 8 is performed by irradiating infrared rays from the infrared light source 17 toward the eyeball 8, and the image light of the eyeball 8 obtained thereby is transmitted to the imaging element 16 via the observation optical system 15 (19, 20, 22). This is performed by forming an image on the imaging surface 16a. The timing for starting imaging of the eyeball 8 may be set, for example, before the display of the visual target on the display surface 12a or simultaneously with the display of the visual target. Incidentally, since the human retina has no sensitivity to infrared rays, it does not affect the state change of the eyeball 8.
 撮像素子16を用いて撮像された眼球8の画像データは、制御部30に取り込まれる。制御部30は、視標の明るさを徐々に増やす過程で、被検者の瞳孔径が視標の明るさに反応して変化(縮小)したかどうかを、撮像素子16から送り込まれる画像データに基づいて判断する。そして、被検者の瞳孔径が変化したと判断すると、そのときの視標の点の明るさに対応する値をその点の網膜上の感度とする。以降は、視野内の各点について同様の測定を自動的に次々と行うことにより、視野内の網膜上の感度の相違を量的に調べ、網膜上の感度マップを自動的に作成する。 The image data of the eyeball 8 imaged using the image sensor 16 is taken into the control unit 30. Image data sent from the imaging device 16 indicates whether the pupil diameter of the subject has changed (reduced) in response to the brightness of the target in the process of gradually increasing the brightness of the target. Judgment based on. When it is determined that the pupil diameter of the subject has changed, the value corresponding to the brightness of the point of the target at that time is set as the sensitivity on the retina at that point. Thereafter, the same measurement is automatically performed one after another for each point in the field of view to quantitatively check the difference in sensitivity on the retina in the field of view, and a sensitivity map on the retina is automatically created.
 また他覚式検査は、平面型表示素子12の表示面12aの一点に明るい視標を表示し、瞳孔径の縮小の度合いを観察することにより感度マップを作成する単一閾上刺激法を用いても良い。 The objective test uses a single upper threshold stimulation method in which a bright target is displayed on one point of the display surface 12a of the flat display element 12 and a sensitivity map is created by observing the degree of reduction of the pupil diameter. May be.
 このような視覚検査を行う場合は、必要に応じて、被検者2が視度調整機構32を用いて視度の調整を行う。視度の調整は、左右片眼ずつ行う。その際、制御部30は、視度調整のためにROM等に記憶されている画像を表示素子12に表示する。このとき表示素子12に表示する画像に特に制限はないが、被検者2から見て像のボケ具合や明瞭さが感覚的に分かりやすい形状や大きさの画像(たとえば、ランドルド環、ひらがな、カタカナ、ローマ字など)がよい。 When such a visual inspection is performed, the subject 2 adjusts the diopter using the diopter adjustment mechanism 32 as necessary. Diopter adjustment is performed for each eye. At that time, the control unit 30 displays an image stored in the ROM or the like on the display element 12 for diopter adjustment. At this time, the image displayed on the display element 12 is not particularly limited, but an image having a shape and size that is easy to understand visually (for example, a Landolt ring, a hiragana, and the like) when viewed from the subject 2. Katakana, Romaji, etc.) are good.
 また、検眼装置等により測定された視度を参考に、測定者が視度を決定しても良い。 Also, the measurer may determine the diopter with reference to the diopter measured by the optometry apparatus or the like.
 ここで、第2レンズ群21のレンズ21cの初期位置は、被検者2の眼球8が近視眼でも遠視眼でもない正常眼であるときに、表示素子12に表示された画像からの光線が、眼球8の網膜10で焦点を結ぶように設定されている。このため、被検者2の眼球8が近視眼あるいは遠視眼であると、表示素子12に表示された画像からの光線が眼球8の網膜10で焦点を結ばず、その画像は被検者2から見てぼやけた画像になる。この場合、被検者2は、調整ダイヤルを回転操作することにより、レンズ21cを光軸18bの方向に移動させる。具体的には、被検者2の眼球8が近視眼である場合は、調整ダイヤルの回転操作によってレンズ21cを初期位置よりも表示素子12に近づく方向に移動させる。また、被検者2の眼球8が遠視眼である場合は、調整ダイヤルの回転操作によってレンズ21cを初期位置よりも表示素子12から遠ざかる方向に移動させる。これにより、被検者2の眼球8が近視眼や遠視眼であっても、表示素子12に表示された画像からの光線が眼球8の網膜10で焦点を結ぶようになる。このため、被検者2の眼球8に画像が明瞭に見える状態になる。 Here, the initial position of the lens 21c of the second lens group 21 is that light rays from an image displayed on the display element 12 when the eyeball 8 of the subject 2 is a normal eye that is neither a myopic eye nor a hyperopic eye, The focus is set at the retina 10 of the eyeball 8. For this reason, when the eyeball 8 of the subject 2 is a myopic eye or a farsighted eye, the light beam from the image displayed on the display element 12 is not focused on the retina 10 of the eyeball 8, and the image is obtained from the subject 2. The image looks blurry. In this case, the subject 2 moves the lens 21c in the direction of the optical axis 18b by rotating the adjustment dial. Specifically, when the eyeball 8 of the subject 2 is a myopic eye, the lens 21c is moved closer to the display element 12 than the initial position by rotating the adjustment dial. When the eyeball 8 of the subject 2 is a hyperopic eye, the lens 21c is moved away from the display element 12 from the initial position by rotating the adjustment dial. Thereby, even if the eyeball 8 of the subject 2 is a myopic eye or a farsighted eye, the light beam from the image displayed on the display element 12 is focused on the retina 10 of the eyeball 8. Therefore, the image is clearly visible on the eyeball 8 of the subject 2.
<4.実施の形態の効果>
 本発明の実施の形態に係る視覚検査装置1によれば、以下に記述する効果の少なくとも一つが得られる。
<4. Effects of the embodiment>
According to the visual inspection device 1 according to the embodiment of the present invention, at least one of the effects described below can be obtained.
 本実施の形態に係る視覚検査装置1では、表示光学系11の光軸18a,18bのうち、観察光学系15とは共用しない光軸18b上に第2レンズ群21を配置し、この第2レンズ群21に属するレンズ21cを移動させて視度を調整する構成を採用している。このため、観察光学系15に影響を及ぼすことなく、視度を調整することができる。 In the visual inspection apparatus 1 according to the present embodiment, the second lens group 21 is disposed on the optical axis 18b that is not shared with the observation optical system 15 among the optical axes 18a and 18b of the display optical system 11, and this second lens group 21 is disposed. A configuration is adopted in which the diopter is adjusted by moving the lens 21c belonging to the lens group 21. For this reason, the diopter can be adjusted without affecting the observation optical system 15.
 また、上述した視標表示位置補正手段を備える場合は、次のような効果が得られる。
 すなわち、仮に、視度調整のための矯正レンズを、眼球位置と第1レンズ19との間に挿入すると、観察光学系15の焦点位置が変わってしまう。このため、観察光学系15を通して眼球8を撮像素子16で撮像するときに明瞭な画像が得られなくなる。また、矯正レンズを挿入すると撮影倍率が変わるため、眼球8の画像から計算される瞳孔9の変位量と視標の表示位置の補正量との対応関係が崩れてしまう。このため、視標の表示位置を補正するときの補正量(以下、「トラッキング補正量」という。)が適正な範囲からずれてしまい、安定した視覚検査を行うことができなくなる。
 これに対して、本実施の形態では、矯正レンズを挿入するのではなく、レンズ21cの移動によって視度を調整するため、トラッキング補正量にずれが生じにくくなる。したがって、トラッキング補正量のずれを適正な範囲に抑えつつ、視覚検査を安定的に行うことができる。
Further, when the above-described target display position correcting means is provided, the following effects can be obtained.
That is, if a correction lens for diopter adjustment is inserted between the eyeball position and the first lens 19, the focal position of the observation optical system 15 changes. For this reason, a clear image cannot be obtained when the eyeball 8 is imaged by the image sensor 16 through the observation optical system 15. In addition, since the photographing magnification changes when the correction lens is inserted, the correspondence between the displacement amount of the pupil 9 calculated from the image of the eyeball 8 and the correction amount of the display position of the target is broken. For this reason, the correction amount (hereinafter referred to as “tracking correction amount”) for correcting the display position of the visual target deviates from an appropriate range, and stable visual inspection cannot be performed.
On the other hand, in this embodiment, since the diopter is adjusted not by inserting a correction lens but by moving the lens 21c, the tracking correction amount is less likely to shift. Accordingly, it is possible to stably perform visual inspection while suppressing the shift of the tracking correction amount within an appropriate range.
 また、視覚検査装置1においては、視度調整に際して、レンズ21cの移動量をなるべく少なくすることが有効である。その理由は、以下のとおりである。
 すなわち、視覚検査装置1では、被検者2の眼球8がどの程度の角度θ(図2参照)の範囲まで視標を見ることができるか確認する場合に、光軸18aを基準とした角度θと光軸18bを基準とした視標の表示位置との対応関係を予め規定している。そして、被検者2の眼球8に対して、たとえばθ=30°のところに視標が呈示する場合は、θ=30°に対応付けて表示素子12の表示面12aに設定されている位置に視標を表示している。その場合、視度調整機構32によりレンズ21cを光軸18bの方向に移動させると、その移動前後で、レンズ21cに入射する主光線の位置や角度が変わるため、像面の位置が変化してしまう。そうすると、上記の角度θと視標の表示位置との対応関係が崩れるため、本来であればθ=30°のところに呈示されるはずの視標が、そこからずれたところに呈示され、検査の正確性を欠いてしまう。したがって、上記の角度θと視標の表示位置との対応関係を精度良く維持するには、レンズ21cの移動量をなるべく少なくすることが有効である。
In the visual inspection device 1, it is effective to reduce the moving amount of the lens 21c as much as possible when adjusting the diopter. The reason is as follows.
That is, in the visual inspection apparatus 1, when confirming to what extent the angle θ (see FIG. 2) the eyeball 8 of the subject 2 can see the visual target, the angle based on the optical axis 18a A correspondence relationship between θ and the display position of the target with respect to the optical axis 18b is defined in advance. For example, when the target is presented at θ = 30 ° with respect to the eyeball 8 of the subject 2, the position set on the display surface 12 a of the display element 12 in association with θ = 30 °. The target is displayed on the screen. In that case, if the diopter adjustment mechanism 32 moves the lens 21c in the direction of the optical axis 18b, the position and angle of the principal ray incident on the lens 21c change before and after the movement, so the position of the image plane changes. End up. Then, since the correspondence between the angle θ and the display position of the target is broken, the target that is supposed to be originally displayed at θ = 30 ° is displayed at a position deviated from the target. Lack of accuracy. Therefore, in order to maintain the correspondence between the angle θ and the display position of the target with high accuracy, it is effective to reduce the moving amount of the lens 21c as much as possible.
 この点、本実施の形態に係る視覚検査装置1では、第2レンズ群21に属する3つのレンズ21a~21cのうち、表示素子12に最も近いレンズ21cのみを移動させる構成を採用している。この構成では、レンズ21cの移動量自体が視度の変化に直結することになるため、第2レンズ群21に属する他のレンズ21a,21bを移動させる場合に比べて、視度調整に必要なレンズ移動量が相対的に少なくなる。したがって、視標の表示位置の誤差を小さく抑えることができる。特に、表示光学系11が上記のテレセントリック性を有する場合は、レンズ21cと表示素子12との間で各主光線が光軸18bと平行になっているため、レンズ21cを光軸18bの方向に移動させても、主光線の位置がほとんど変化しない。したがって、視標の表示位置の誤差をより一層小さく抑えることができる。 In this regard, the visual inspection device 1 according to the present embodiment employs a configuration in which only the lens 21c closest to the display element 12 among the three lenses 21a to 21c belonging to the second lens group 21 is moved. In this configuration, the amount of movement of the lens 21c itself is directly related to the change in diopter, so that it is necessary for diopter adjustment compared to the case where the other lenses 21a and 21b belonging to the second lens group 21 are moved. The amount of lens movement is relatively small. Therefore, an error in the display position of the target can be suppressed to a small value. In particular, when the display optical system 11 has the telecentricity described above, each principal ray is parallel to the optical axis 18b between the lens 21c and the display element 12, and therefore the lens 21c is directed in the direction of the optical axis 18b. Even if moved, the position of the chief ray hardly changes. Therefore, the error in the display position of the target can be further reduced.
 また、本実施の形態に係る視覚検査装置1では、第2レンズ群21に属するレンズの中でも、焦点距離が10mm超、50mm未満のレンズ21cを移動させる構成を採用している。このため、光軸18bの方向にレンズ21cを少し移動させるだけで視度を大きく変化させることができる。したがって、視度調整のためのレンズ21cの移動量が少なくて済む。その結果、上記の角度θと視標の表示位置との対応関係を精度良く維持することができる。 Also, in the visual inspection device 1 according to the present embodiment, among the lenses belonging to the second lens group 21, a configuration is adopted in which a lens 21c having a focal length of more than 10 mm and less than 50 mm is moved. For this reason, the diopter can be greatly changed by moving the lens 21c slightly in the direction of the optical axis 18b. Therefore, the amount of movement of the lens 21c for diopter adjustment can be reduced. As a result, the correspondence between the angle θ and the display position of the visual target can be maintained with high accuracy.
<5.変形例等>
 本発明の技術的範囲は上述した実施の形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。
<5. Modified example>
The technical scope of the present invention is not limited to the above-described embodiments, and includes various modifications and improvements as long as the specific effects obtained by the constituent elements of the invention and combinations thereof can be derived.
 たとえば、上記実施の形態においては、視覚検査装置1の装着具6をベルト13,14を用いて構成したが、被検者2の頭部3に装置本体5を装着可能な構成であれば、どのような構成の装着具6を採用してもかまわない。ただし、視覚検査中に装置本体5の位置が動いてしまうと、正しい検査結果が得られなくなる。このため、装着具6の構成としては、被検者2の頭部3に装置本体5をきちんと固定できる構成であることが好ましい。 For example, in the above embodiment, the mounting tool 6 of the visual inspection device 1 is configured using the belts 13 and 14, but if the device main body 5 can be mounted on the head 3 of the subject 2, You may employ | adopt the mounting tool 6 of what kind of structure. However, if the position of the apparatus body 5 moves during the visual inspection, a correct inspection result cannot be obtained. For this reason, as a structure of the mounting tool 6, it is preferable that it is a structure which can fix the apparatus main body 5 to the head 3 of the subject 2 properly.
 また、上記実施の形態においては、本発明をヘッドマウント型の視覚検査装置に適用した場合について説明したが、本発明はこれに限らず、ヘッドマウント型以外の視覚検査装置に適用してもよい。 In the above embodiment, the case where the present invention is applied to a head-mounted visual inspection apparatus has been described. However, the present invention is not limited to this, and may be applied to a visual inspection apparatus other than the head-mounted type. .
 また、上記実施の形態においては、液晶表示素子を用いて表示素子12を構成するとしたが、本発明はこれに限らず、有機EL(Electro Luminescence)表示素子を用いてもよい。 In the above embodiment, the display element 12 is configured using a liquid crystal display element. However, the present invention is not limited to this, and an organic EL (Electro Luminescence) display element may be used.
 また、上記実施の形態においては、表示光学系11を合計4つのレンズで構成するとともに、観察光学系15を合計2つのレンズ(そのうちの一つは表示光学系11と共用)で構成したが、各々の光学系を構成するレンズの個数や形状などは、必要に応じて変更可能である。ただし、第2レンズ群21については、正のパワーを有するレンズと負のパワーを有するレンズを組み合わせて色収差や像倍率を補正するため、複数個のレンズで構成することが好ましい。また、ミラー20をダイクロイックミラーで構成してもよい。 In the above embodiment, the display optical system 11 is configured with a total of four lenses, and the observation optical system 15 is configured with a total of two lenses (one of which is shared with the display optical system 11). The number and shape of the lenses constituting each optical system can be changed as necessary. However, the second lens group 21 is preferably composed of a plurality of lenses in order to correct chromatic aberration and image magnification by combining a lens having a positive power and a lens having a negative power. Further, the mirror 20 may be constituted by a dichroic mirror.
 一例として、表示光学系の他の構成例を図5に示す。
 図5においては、表示光学系11の第2レンズ群21をレンズ(凸レンズ)21dの追加により計4つのレンズ21a~21dを用いて構成した点と、平面型表示素子12の表示面12aの大きさを小さくした点が、上記実施の形態と異なっている。この構成を採用した場合は、被検者に対して、より鮮明に視標を表示することが可能となる。また、この構成においても、レンズ21cを光軸方向に移動可能な構成とすることにより、被検者の視力に合わせて視度を調整することが可能となる。
As an example, another configuration example of the display optical system is shown in FIG.
In FIG. 5, the second lens group 21 of the display optical system 11 is configured by using a total of four lenses 21a to 21d by adding a lens (convex lens) 21d, and the size of the display surface 12a of the flat display element 12. This is different from the above embodiment in that the height is reduced. When this configuration is adopted, the visual target can be displayed more clearly to the subject. Also in this configuration, it is possible to adjust the diopter according to the visual acuity of the subject by making the lens 21c movable in the optical axis direction.
 1…視覚検査装置
 2…被検者
 3…頭部
 5…装置本体
 6…装着具
 7…筐体
 8…眼球
 9…瞳孔
 11…表示光学系
 12…表示素子
 12a…表示面
 15…観察光学系
 16…撮像素子
 17…赤外光源
 18…光軸(18a,18b,18c)
 19…第1レンズ
 20…ミラー
 21…第2レンズ群
 21c…レンズ
 22…第3レンズ
 32…視度調整機構
DESCRIPTION OF SYMBOLS 1 ... Visual test | inspection apparatus 2 ... Subject 3 ... Head 5 ... Apparatus main body 6 ... Wearing tool 7 ... Housing 8 ... Eyeball 9 ... Pupil 11 ... Display optical system 12 ... Display element 12a ... Display surface 15 ... Observation optical system 16 ... Image sensor 17 ... Infrared light source 18 ... Optical axis (18a, 18b, 18c)
DESCRIPTION OF SYMBOLS 19 ... 1st lens 20 ... Mirror 21 ... 2nd lens group 21c ... Lens 22 ... 3rd lens 32 ... Diopter adjustment mechanism

Claims (5)

  1.  被検者に視標を表示するための表示素子と、
     前記被検者の眼球が配置される眼球位置から前記表示素子までの光軸上に、第1レンズと、波長選択性を有するミラーと、第2レンズ群とを順に配置してなる表示光学系と、
     前記眼球位置に配置された前記被検者の眼球を撮像するための撮像素子と、
     前記眼球位置から前記撮像素子までの光軸上に配置された観察光学系と、
     前記被検者の視度を調整する視度調整手段と、
     を備え、
     前記表示光学系と前記観察光学系とは、前記眼球位置から前記ミラーまでの光軸を共用し、
     前記第2レンズ群は、前記観察光学系とは共用しない光軸上に配置され、
     前記視度調整手段は、前記第2レンズ群に属するレンズを光軸方向に移動させて視度を調整する
     ことを特徴とする視覚検査装置。
    A display element for displaying an optotype on the subject;
    A display optical system in which a first lens, a mirror having wavelength selectivity, and a second lens group are sequentially arranged on the optical axis from the eyeball position where the eyeball of the subject is arranged to the display element. When,
    An imaging device for imaging the eyeball of the subject arranged at the eyeball position;
    An observation optical system disposed on the optical axis from the eyeball position to the image sensor;
    Diopter adjustment means for adjusting the diopter of the subject;
    With
    The display optical system and the observation optical system share an optical axis from the eyeball position to the mirror,
    The second lens group is disposed on an optical axis not shared with the observation optical system,
    The diopter adjusting means adjusts the diopter by moving a lens belonging to the second lens group in an optical axis direction.
  2.  前記視度調整手段は、前記第2レンズ群に属するレンズのうち、前記表示素子に最も近いレンズを移動させて視度を調整する
     ことを特徴とする請求項1に記載の視覚検査装置。
    The visual inspection apparatus according to claim 1, wherein the diopter adjusting unit adjusts the diopter by moving a lens closest to the display element among the lenses belonging to the second lens group.
  3.  前記視度調整手段は、前記第2レンズ群に属するレンズのうち、焦点距離が10mm超、50mm未満のレンズを移動させて視度を調整する
     ことを特徴とする請求項1または2に記載の視覚検査装置。
    3. The diopter adjusting unit according to claim 1, wherein the diopter adjusting unit adjusts the diopter by moving a lens having a focal length of more than 10 mm and less than 50 mm among the lenses belonging to the second lens group. Visual inspection device.
  4.  前記表示光学系は、少なくとも視覚検査の範囲内において、前記被検者が前記眼球位置から当該表示光学系を通して視標を見るときに当該表示光学系から前記表示素子の表示面へと入射するすべての主光線が、前記光軸に対して平行になるテレセントリック性を有する
     ことを特徴とする請求項1~3のいずれかに記載の視覚検査装置。
    The display optical system is, at least in the range of visual inspection, all incident from the display optical system to the display surface of the display element when the subject views the target from the eyeball position through the display optical system. The visual inspection apparatus according to any one of claims 1 to 3, wherein said principal ray has telecentricity parallel to said optical axis.
  5.  前記撮像素子で撮像した眼球の画像に基づいて瞳孔位置の変化を検出し、この検出結果に応じて、前記表示素子に表示する視標の位置を補正する視標表示位置補正手段を具備する
     ことを特徴とする請求項1~4のいずれかに記載の視覚検査装置。
     
    A target display position correcting unit that detects a change in pupil position based on an eyeball image captured by the image sensor and corrects the position of the target displayed on the display element according to the detection result; The visual inspection apparatus according to any one of claims 1 to 4, wherein:
PCT/JP2015/079780 2014-11-04 2015-10-22 Eyesight examination device WO2016072273A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-224182 2014-11-04
JP2014224182A JP2017225469A (en) 2014-11-04 2014-11-04 Visual examination apparatus

Publications (1)

Publication Number Publication Date
WO2016072273A1 true WO2016072273A1 (en) 2016-05-12

Family

ID=55909000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079780 WO2016072273A1 (en) 2014-11-04 2015-10-22 Eyesight examination device

Country Status (2)

Country Link
JP (1) JP2017225469A (en)
WO (1) WO2016072273A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110833388A (en) * 2018-08-15 2020-02-25 碁音数码(厦门)电子科技有限公司 Subjective optometry system
WO2021072154A1 (en) * 2019-10-11 2021-04-15 Vision For Mars Technologies Llc Visual field test device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779914A (en) * 1993-06-30 1995-03-28 Canon Inc Perimeter and device for controlling sight line

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779914A (en) * 1993-06-30 1995-03-28 Canon Inc Perimeter and device for controlling sight line

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110833388A (en) * 2018-08-15 2020-02-25 碁音数码(厦门)电子科技有限公司 Subjective optometry system
WO2021072154A1 (en) * 2019-10-11 2021-04-15 Vision For Mars Technologies Llc Visual field test device

Also Published As

Publication number Publication date
JP2017225469A (en) 2017-12-28

Similar Documents

Publication Publication Date Title
KR100729889B1 (en) Optometric device
US10349827B2 (en) Vision testing device and head-mount type display device
JP6479842B2 (en) Visual inspection device and head-mounted display device
US7364299B2 (en) Integral apparatus for testing twilight vision and glare sensitivity and a method for operating the apparatus
JP4699069B2 (en) Optometry equipment
JP5011144B2 (en) Ophthalmic measuring device
WO2016072273A1 (en) Eyesight examination device
JP6574434B2 (en) Visual inspection device
JP6529862B2 (en) Eye inspection device
JP2018038788A (en) Subjective optometer and subjective optometry program
JP6431443B2 (en) Visual inspection device
CN107788946B (en) Subjective optometry device and subjective optometry program
JP6467293B2 (en) Visual inspection device
WO2016167091A1 (en) Vision examination device, visual target correction method for vision examination device, and display device
WO2016063601A1 (en) Vision examination device
JP2016087173A (en) Visual inspection apparatus and visual inspection method
WO2023195404A1 (en) Vision testing device and vision testing device set
WO2024121350A1 (en) Apparatus and method for determining refraction error of at least an eye of a subject
JP2020202904A (en) Optometer
JP2017108775A (en) Ophthalmologic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP