WO2016071951A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2016071951A1
WO2016071951A1 PCT/JP2014/079199 JP2014079199W WO2016071951A1 WO 2016071951 A1 WO2016071951 A1 WO 2016071951A1 JP 2014079199 W JP2014079199 W JP 2014079199W WO 2016071951 A1 WO2016071951 A1 WO 2016071951A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
conditioning system
air conditioning
indoor
air
Prior art date
Application number
PCT/JP2014/079199
Other languages
French (fr)
Japanese (ja)
Inventor
守 濱田
正樹 豊島
勇人 堀江
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016557368A priority Critical patent/JP6490095B2/en
Priority to PCT/JP2014/079199 priority patent/WO2016071951A1/en
Publication of WO2016071951A1 publication Critical patent/WO2016071951A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to an air conditioning system provided with a ventilation device.
  • a ventilator that heats outdoor air by heating means and supplies the heated air to the room to heat the room.
  • a ventilator has a configuration in which the amount of heating is controlled based on, for example, the difference between the indoor set temperature and the outdoor temperature (see, for example, Patent Document 1).
  • the conventional air conditioning system when the room is heated by both the indoor unit and the ventilator, each of the indoor unit and the ventilator operates independently. For this reason, the conventional air conditioning system has a problem that efficiency is deteriorated when the room is heated by both the indoor unit and the ventilation device.
  • the outside air load is a heating load generated by ventilation.
  • Other heating loads are heating loads that occur due to heat leakage from walls, windows, etc., and heat leakage due to draft air.
  • Internal heat generation includes heat generation from a human body, equipment, lighting, solar heat, and the like.
  • the conventional air conditioning system operates the indoor unit and the ventilator independently, and therefore the ventilator has an external air load of 20 [kW]. Bear. Therefore, the indoor unit performs heating of 3 [kw].
  • the heating capacity of the indoor unit and the ventilation device increases as the air volume increases.
  • the larger the air volume the better the efficiency. This is because the temperature of the heating means for heating the air can be reduced.
  • the indoor unit has a larger air volume than the ventilator. This is because it is desired to keep the air volume of the ventilator to the minimum necessary to prevent the outdoor air from entering the room and the indoor temperature from dropping too much. Therefore, in the case of the above example, the ventilation device having a low heating capacity generates a larger heating amount than the indoor unit having a high heating capacity, and the efficiency of the air conditioning system is deteriorated.
  • the present invention has been made to solve the above-described problems, and provides an air-conditioning system that can improve the efficiency of the room when both the indoor unit and the ventilator are heated. For the purpose.
  • An air conditioning system includes a first refrigeration cycle circuit having a first compressor, a first outdoor heat exchanger, a first expansion device, and a first indoor heat exchanger, and the first indoor as a first heating means.
  • An indoor unit having a heat exchanger, heating indoor air by the first heating means and returning the indoor air to the room, and second heating means, and heating the outdoor air by the second heating means to
  • a control device for controlling the indoor unit and the ventilation device, wherein the control device is an air conditioning load estimating means for estimating the heating load in the room, and a storage means for storing a threshold value.
  • the heating amount of the device with the lower heating capability is controlled to be constant, and the heating amount of the device with the higher heating capability of the indoor unit and the ventilation device is variably controlled.
  • the air conditioning system controls the heating amount of a device having a lower heating capacity among the indoor unit and the ventilator when the room is heated by both the indoor unit and the ventilator.
  • the heating amount of the device having the higher heating capacity is variably controlled. For this reason, the air conditioning system which concerns on this invention can improve efficiency rather than before, when heating an indoor with both an indoor unit and a ventilator.
  • FIG. 1 is a schematic diagram of an air conditioning system according to an embodiment of the present invention.
  • FIG. 2 is a refrigerant circuit diagram showing a refrigeration cycle circuit of the air conditioning system.
  • FIG. 3 is the schematic which shows the ventilation apparatus of this air conditioning system.
  • the configuration of the air-conditioning system 100 according to the present embodiment will be described with reference to FIGS. 1 and 2, an air conditioning system 100 including a plurality of indoor units 1 and one ventilator 3 is described.
  • the number of indoor units 1 and ventilation devices 3 is merely an example, and the number of indoor units 1 may be one, or a plurality of ventilation devices 3 may be provided.
  • the air conditioning system 100 includes an indoor unit 1 and a ventilation device 3 installed in the same room 200.
  • the indoor unit 1 heats the air in the room 200 with the first heating means and returns it to the room 200.
  • the ventilator 3 heats the outdoor air with the second heating means and supplies it to the room 200.
  • the ventilation device 3 is provided with an OA temperature detection device 31 that detects the temperature of outdoor air (OA) and an RA temperature detection device 32 that detects the temperature of air (RA) in the room 200. It has been.
  • the OA temperature detection device 31 corresponds to the outdoor temperature detection device of the present invention.
  • the RA temperature detection device 32 corresponds to the indoor temperature detection device of the present invention.
  • the installation positions of the OA temperature detection device 31 and the RA temperature detection device 32 are arbitrary, and may be provided outside the ventilation device 3.
  • the air conditioning system 100 includes a first refrigeration cycle circuit 11 and a second refrigeration cycle circuit 21.
  • the indoor heat exchanger 16 of the first refrigeration cycle circuit 11 is used as the first heating means of the indoor unit 1
  • the indoor heat exchanger 26 of the second refrigeration cycle circuit 21 is used as the second heating means of the ventilation device 3. Yes.
  • the air conditioning system 100 according to Embodiment 1 includes the outdoor unit 2 that houses a part of the configuration of the first refrigeration cycle circuit 11, and the outdoor unit 2 and the indoor unit 1 are connected by the refrigerant pipe 101. Connected.
  • the air conditioning system 100 includes an outdoor unit 4 that houses a part of the configuration of the second refrigeration cycle circuit 21, and connects the outdoor unit 4 and the ventilator 3 with a refrigerant pipe 102. ing. That is, in the present embodiment, the indoor unit system is configured by the indoor unit 1 and the outdoor unit 2, and the ventilator system is configured by the ventilator 3 and the outdoor unit 4.
  • the first refrigeration cycle circuit 11 includes a compressor 12, an outdoor heat exchanger 14, an expansion device 15, and an indoor heat exchanger 16.
  • the first refrigeration cycle circuit 11 also includes a four-way valve 13 in order to realize both cooling and heating in the indoor unit 1.
  • the compressor 12 corresponds to the first compressor of the present invention.
  • the outdoor heat exchanger 14 corresponds to the first outdoor heat exchanger of the present invention.
  • the expansion device 15 corresponds to the first expansion device of the present invention.
  • the indoor heat exchanger 16 corresponds to the first indoor heat exchanger of the present invention.
  • the compressor 12 sucks refrigerant and compresses the refrigerant to a high temperature and high pressure state.
  • the kind of the compressor 12 is not specifically limited,
  • the compressor 12 can be comprised using various types of compression mechanisms, such as a reciprocating, a rotary, a scroll, or a screw.
  • the compressor 12 may be of a type that can be variably controlled by an inverter or the like.
  • a four-way valve 13 is connected to the discharge port and the suction port of the compressor 12.
  • the four-way valve 13 switches the connection destination of the discharge port of the compressor 12 to one of the outdoor heat exchanger 14 or the indoor heat exchanger 16, and the suction port of the compressor 12 is switched to the outdoor heat exchanger 14 or the indoor heat exchanger 16. Switch to the other.
  • the outdoor heat exchanger 14 is an air heat exchanger that exchanges heat between the refrigerant flowing inside and the outdoor air. In the vicinity of the outdoor heat exchanger 14, an outdoor blower 17 that supplies outdoor air to be heat exchanged to the outdoor heat exchanger 14 may be provided.
  • the outdoor heat exchanger 14 is connected to the indoor heat exchanger 16 via the expansion device 15.
  • the expansion device 15 is an expansion valve, for example, and expands the refrigerant by decompressing it.
  • the indoor heat exchanger 16 is an air heat exchanger that exchanges heat between the refrigerant flowing inside and the air in the room 200.
  • an indoor blower 18 that supplies the air in the room 200 to be heat exchanged to the indoor heat exchanger 16 may be provided.
  • the indoor blower 18 corresponds to the first blower of the present invention.
  • Each component of the first refrigeration cycle circuit 11 is housed in the indoor unit 1 and the outdoor unit 2.
  • the indoor unit 1 houses an expansion device 15, an indoor heat exchanger 16, and an indoor blower 18.
  • the outdoor unit 2 houses a compressor 12, a four-way valve 13, an outdoor heat exchanger 14, and an outdoor blower 17.
  • the installation position of the expansion device 15 is arbitrary and may be stored in the outdoor unit 2.
  • the second refrigeration cycle circuit 21 includes a compressor 22, an outdoor heat exchanger 24, an expansion device 25, and an indoor heat exchanger 26.
  • the second refrigeration cycle circuit 21 according to the present embodiment also includes a four-way valve 23 in order to realize both cooling and heating in the ventilation device 3.
  • the compressor 22 corresponds to the second compressor of the present invention.
  • the outdoor heat exchanger 24 corresponds to the second outdoor heat exchanger of the present invention.
  • the expansion device 25 corresponds to the second expansion device of the present invention.
  • the indoor heat exchanger 26 corresponds to the second indoor heat exchanger of the present invention.
  • the compressor 22 sucks the refrigerant and compresses the refrigerant to bring it into a high temperature and high pressure state.
  • the kind of the compressor 22 is not specifically limited,
  • the compressor 22 can be comprised using various types of compression mechanisms, such as a reciprocating, a rotary, a scroll, or a screw.
  • the compressor 22 may be of a type that can be variably controlled by an inverter or the like.
  • a four-way valve 23 is connected to the discharge port and the suction port of the compressor 22.
  • the four-way valve 23 switches the connection destination of the discharge port of the compressor 22 to one of the outdoor heat exchanger 24 or the indoor heat exchanger 26, and the suction port of the compressor 22 is switched to the outdoor heat exchanger 24 or the indoor heat exchanger 26. Switch to the other.
  • the outdoor heat exchanger 24 is an air heat exchanger that exchanges heat between the refrigerant flowing inside and the outdoor air.
  • an outdoor fan 27 that supplies outdoor air to be heat exchanged to the outdoor heat exchanger 24 may be provided.
  • This outdoor heat exchanger 24 is connected to an indoor heat exchanger 26 via an expansion device 25.
  • the expansion device 25 is an expansion valve, for example, and expands the refrigerant by decompressing it.
  • the indoor heat exchanger 26 is an air heat exchanger that exchanges heat between the refrigerant flowing inside and the outdoor air.
  • An air supply fan 28 that takes outdoor air to be heat exchanged into the ventilation device 3 and supplies it to the indoor heat exchanger 26 may be provided around the indoor heat exchanger 26.
  • the air supply fan 28 corresponds to the second fan of the present invention.
  • Each component of the second refrigeration cycle circuit 21 described above is housed in the ventilation device 3 and the outdoor unit 4.
  • the expansion device 25, the indoor heat exchanger 26, and the air supply blower 28 are accommodated in the ventilation device 3.
  • the outdoor unit 4 houses a compressor 22, a four-way valve 23, an outdoor heat exchanger 24, and an outdoor blower 27.
  • the installation position of the expansion device 25 is arbitrary and may be stored in the outdoor unit 4.
  • the air conditioning system 100 includes a control device 40 that controls the indoor unit 1 and the ventilation device 3.
  • the control device 40 is, for example, a microcomputer, and includes a storage unit 41, an air conditioning load estimation unit 42, and a condensation temperature control unit 43.
  • the storage unit 41 stores a set temperature that is a target temperature of the room 200, a threshold value used for heating amount control of the condensation temperature control unit 43, and the like.
  • the air conditioning load estimation means 42 is for estimating the heating load of the room 200.
  • the outside air load is a heating load generated by ventilation.
  • Other heating loads are heating loads that occur due to heat leakage from walls, windows, etc., and heat leakage due to draft air.
  • Internal heat generation includes heat generation from a human body, equipment, lighting, solar heat, and the like. When the heating load is negative, it is a cooling load.
  • the condensation temperature control means 43 compares the heating load estimated by the air conditioning load estimation means 42 with the threshold value L0 stored in the storage means 41, and controls the heating amounts of the indoor unit 1 and the ventilation device 3. Specifically, when the heating load is equal to or greater than the threshold value L0, the condensing temperature control means 43 controls the heating amount of the indoor unit 1 and the ventilation device 3 with the lower heating capacity to be constant, and the indoor unit 1 and the ventilation. Of the devices 3, the heating amount of the device having the higher heating capacity is variably controlled. Further, when the heating load is smaller than the threshold value L0, the condensation temperature control means 43 stops heating one of the indoor unit 1 and the ventilating device 3 and variably controls the other heating amount of the indoor unit 1 and the ventilating device 3. To do.
  • the condensing temperature control means 43 corresponds to the heating amount control means of the present invention.
  • the air conditioning system 100 uses the indoor heat exchanger 16 of the first refrigeration cycle circuit 11 as the first heating means of the indoor unit 1, and uses the second refrigeration cycle circuit 21.
  • the indoor heat exchanger 26 is used as the second heating means of the ventilation device 3.
  • the condensation temperature control means 43 which concerns on this Embodiment controls the heating amount of the indoor unit 1 by controlling the condensation temperature of the 1st freezing cycle circuit 11.
  • the condensing temperature control means 43 controls the first refrigeration cycle circuit 11 by controlling at least one of the rotational speed of the compressor 12, the opening degree of the expansion device 15, and the rotational speed of the indoor blower 18. To control the condensation temperature.
  • the condensing temperature control means 43 controls the heating amount of the ventilator 3 by controlling the condensing temperature of the second refrigeration cycle circuit 21. Specifically, the condensation temperature control means 43 controls the second refrigeration cycle by controlling at least one of the rotational speed of the compressor 22, the opening degree of the expansion device 25, and the rotational speed of the air supply blower 28. The condensing temperature of the circuit 21 is controlled. The condensing temperature control means 43 is configured to be able to control the driving and stopping of the compressor 12, the indoor fan 18, the compressor 22, and the air supply fan 28.
  • the heating capacity of the indoor unit and the ventilation device increases as the air volume increases. Moreover, when generating the same heating amount, the larger the air volume, the better the efficiency. This is because the temperature of the heating means for heating the air can be reduced.
  • the indoor unit 1 has a larger air volume than the ventilation device 3. This is to prevent outdoor air from entering the room 200 and causing the room temperature of the room 200 to decrease too much. Therefore, the condensation temperature control means 43 according to the present embodiment controls the heating amounts of the indoor unit 1 and the ventilation device 3 on the assumption that the indoor unit 1 is a device having a higher heating capacity than the ventilation device 3. Information about which apparatus has a higher heating capacity is stored in the storage means 41.
  • the condensing temperature control means 43 when variably controlling the heating amounts of the indoor unit 1 and the ventilating device 3, changes the set temperature and the detected value of the RA temperature detecting device 32 (in other words, the temperature of the indoor 200). The heating amount is controlled based on the difference from the room temperature.
  • the first refrigeration cycle circuit 11 When the room 200 is cooled by the indoor unit 1, the first refrigeration cycle circuit 11 operates as follows.
  • the refrigerant compressed by the compressor 12 becomes a high-temperature and high-pressure gas refrigerant and is sent to the outdoor heat exchanger 14.
  • the refrigerant that has flowed into the outdoor heat exchanger 14 is liquefied by releasing heat to the outdoor air.
  • the liquefied refrigerant is decompressed by the expansion device 15 and becomes a gas-liquid two-phase state.
  • the refrigerant that has been decompressed by the expansion device 15 and is in a gas-liquid two-phase state flows into the indoor heat exchanger 16 and absorbs heat from the air in the room 200 (by cooling the air in the room 200). Turn into.
  • the gasified refrigerant returns to the compressor 12.
  • the air cooled by the indoor heat exchanger 16 returns to the room 200 again. Thereby, the indoor unit 1 can cool the room 200.
  • the first refrigeration cycle circuit 11 operates as follows.
  • the refrigerant compressed by the compressor 12 becomes a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant compressed by the compressor 12 is sent to the indoor heat exchanger 16.
  • the refrigerant flowing into the indoor heat exchanger 16 is liquefied by releasing heat to the air in the room 200 (by heating the air in the room 200).
  • the liquefied refrigerant is decompressed by the expansion device 15 to be in a gas-liquid two-phase state, and is gasified by absorbing heat from the outdoor air in the outdoor heat exchanger 14.
  • the gasified refrigerant returns to the compressor 12.
  • the air heated by the indoor heat exchanger 16 returns to the room 200 again.
  • the indoor unit 200 can be heated by the indoor unit 1.
  • the second refrigeration cycle circuit 21 operates as follows.
  • the refrigerant compressed by the compressor 22 becomes a high-temperature and high-pressure gas refrigerant and is sent to the outdoor heat exchanger 24.
  • the refrigerant that has flowed into the outdoor heat exchanger 24 is liquefied by releasing heat to the outdoor air.
  • the liquefied refrigerant is decompressed by the expansion device 25 and becomes a gas-liquid two-phase state.
  • the refrigerant that has been decompressed by the expansion device 25 and is in a gas-liquid two-phase state flows into the indoor heat exchanger 26 and absorbs heat from the outdoor air taken into the ventilation device 3 (cools the outdoor air). Gasification).
  • the gasified refrigerant returns to the compressor 22.
  • the outdoor air cooled by the indoor heat exchanger 26 is supplied to the room 200. Thereby, the room 200 can be cooled by the ventilation device 3.
  • the second refrigeration cycle circuit 21 operates as follows.
  • the refrigerant compressed by the compressor 22 becomes a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant compressed by the compressor 22 is sent to the indoor heat exchanger 26.
  • the refrigerant flowing into the indoor heat exchanger 26 is liquefied by releasing heat to the outdoor air taken into the ventilation device 3 (by heating the outdoor air).
  • the liquefied refrigerant is decompressed by the expansion device 25 to be in a gas-liquid two-phase state, and is gasified by absorbing heat from outdoor air in the outdoor heat exchanger 24.
  • the gasified refrigerant returns to the compressor 22.
  • the outdoor air heated by the indoor heat exchanger 26 is supplied to the room 200. Thereby, the room 200 can be heated by the ventilation device 3.
  • the air conditioning system 100 varies the operation mode based on the heating load of the room 200 when the room 200 is heated.
  • the air conditioning load estimation means 42 of the control device 40 estimates the heating load of the room 200.
  • the condensing temperature control means 43 of the control device 40 compares the heating load estimated by the air conditioning load estimation means 42 with the threshold L0 stored in the storage means 41.
  • the condensation temperature control means 43 controls the indoor unit 1 and the ventilator 3 in the operation mode shown in FIG. Moreover, in the zone 2 where the heating load of the room 200 is equal to or higher than the threshold value L0, the condensation temperature control means 43 controls the indoor unit 1 and the ventilation device 3 in the operation mode shown in FIG.
  • the condensation temperature control means 43 stops heating the indoor unit 1,
  • the room 200 is heated by variably controlling the heating amount.
  • the condensation temperature control means 43 operates the second refrigeration cycle circuit 21 so that the condensation temperature of the second refrigeration cycle circuit 21 becomes CTmax when ⁇ T is ⁇ T> T1 [K].
  • the condensation temperature control means 43 changes the condensation temperature of the second refrigeration cycle circuit 21 in accordance with the magnitude of ⁇ T, and the second refrigeration cycle.
  • the circuit 21 is operated. Specifically, the condensation temperature control means 43 increases the condensation temperature of the second refrigeration cycle circuit 21 as ⁇ T increases, and operates the second refrigeration cycle circuit 21.
  • the condensation temperature control means 43 operates the second refrigeration cycle circuit 21 so that the condensation temperature of the second refrigeration cycle circuit 21 becomes CTmin when ⁇ T is T2 [K] ⁇ ⁇ T ⁇ 0 [K]. .
  • the condensation temperature control means 43 stops the heating of the ventilator 3 when ⁇ T is ⁇ T ⁇ T2 [K].
  • the indoor unit 200 performs the cooling operation of the room 200 because the room temperature of the room 200 is too high with respect to the set temperature.
  • CTmax shown in FIG. 5 is the maximum condensation temperature at which the second refrigeration cycle circuit 21 can operate. This CTmax is determined by the breakdown voltage or the like. Further, CTmin shown in FIG. 5 is the lowest condensation temperature at which the second refrigeration cycle circuit 21 can operate. This CTmin is determined from the lower limit value of the temperature of the air blown out from the ventilator 3 and the minimum high / low pressure difference of the refrigerant allowed when the second refrigeration cycle circuit 21 is operated. Further, T1 is a temperature difference allowed for comfort, and is set to 1 [K], for example. T2 is a temperature difference ⁇ T at which heating of the ventilator 3 is stopped, and corresponds to the thermo OFF point. T2 is also a temperature difference allowed for comfort, and is set to 1 [K], for example.
  • the insulation performance of buildings has improved.
  • the room often has a cooling load even in winter when the enthalpy of air introduced from outside air is low. That is, in the case of the conventional air conditioning system, there is a problem that if the room is heated by the ventilator, the room is excessively heated to increase the cooling load on the indoor unit side.
  • the outside air load is 10 [kw] and the internal heat generation is 5 [kw]. Further, it is assumed that the other heating load is 2 [kw] due to the improvement of the heat insulation performance of the building.
  • the heating amount of the ventilation device 3 is controlled based on the difference between the set temperature of the room 200 and the room temperature of the room 200 as described above. .
  • the ventilator 3 can be operated so as to bear a part of the outside air load (for example, heating of 7 [kw]).
  • the condensation temperature control means 43 controls the heating amounts of both the indoor unit 1 and the ventilator 3.
  • the ventilation device 3 having a low heating capacity is controlled to a constant heating amount as shown in FIG. That is, the condensation temperature control means 43 operates the second refrigeration cycle circuit 21 so that the condensation temperature of the second refrigeration cycle circuit 21 is constant at CTmin.
  • the condensation temperature of the second refrigeration cycle circuit 21 does not necessarily have to be CTmin, and may be any condensation temperature between CTmax and CTmin.
  • the condensing temperature control means 43 changes the condensing temperature of the first refrigeration cycle circuit 11 according to the magnitude of ⁇ Ti, and thereby the first refrigeration cycle.
  • the circuit 11 is operated. Specifically, the condensing temperature control means 43 increases the condensing temperature of the first refrigeration cycle circuit 11 as ⁇ Ti increases, and operates the first refrigeration cycle circuit 11. Further, the condensation temperature control means 43 operates the first refrigeration cycle circuit 11 so that the condensation temperature of the first refrigeration cycle circuit 11 becomes CTmini when ⁇ Ti is T2i [K] ⁇ ⁇ Ti ⁇ 0 [K]. . Moreover, the condensation temperature control means 43 stops the heating of the indoor unit 1 when ⁇ Ti is ⁇ Ti ⁇ T2i [K]. That is, at least the compressor 12 of the first refrigeration cycle circuit 11 is stopped.
  • CTmaxi shown in FIG. 7 is the maximum condensation temperature at which the first refrigeration cycle circuit 11 can operate. This CTmaxi is determined by the breakdown voltage or the like. Further, CTmini shown in FIG. 7 is the lowest condensation temperature at which the first refrigeration cycle circuit 11 can operate. This CTmini is determined from the lower limit value of the temperature of the air blown out from the indoor unit 1 and the minimum high / low pressure difference of the refrigerant allowed when the first refrigeration cycle circuit 11 is operated.
  • T1i is a temperature difference allowed for comfort, and is set to 1 [K], for example.
  • T2i is a temperature difference ⁇ Ti for stopping the heating of the indoor unit 1, and corresponds to the thermo OFF point.
  • T2i is also a temperature difference allowed for comfort, and is set to 1 [K], for example.
  • FIG. 8 is a flowchart showing operation mode switching control during heating operation in the air-conditioning system according to the present embodiment.
  • the air conditioning load estimation means 42 of the control device 40 estimates the heating load of the room 200 in step S2.
  • the condensation temperature control means 43 of the control device 40 compares the heating load estimated by the air conditioning load estimation means 42 with the threshold value L ⁇ b> 0 stored in the storage means 41.
  • step S3 When it is determined in step S2 that the heating load of the room 200 is smaller than the threshold L0, in step S3, the condensing temperature control means 43 performs the condensing temperature variable control (CT on the ventilator 3 side shown in FIG. 5 or FIG. 6. Variable control). Thereafter, the process proceeds to step S4, where the condensing temperature control means 43 determines whether or not the difference ⁇ T between the set temperature and the detected value of the RA temperature detecting device 32 is smaller than T2 [K].
  • step S4 When ⁇ T is ⁇ T ⁇ T2 [K] in step S4, the condensation temperature control means 43 performs the cooling operation of the room 200 by the indoor unit 1 in step S5, and returns to step S4. If T2 [K] ⁇ ⁇ T in step S4, the condensation temperature control means 43 returns to step S2.
  • step S6 the condensing temperature control means 43 causes the condensing temperature control (CT constant control) on the ventilator 3 side as shown in FIG. ), The indoor unit 1 side performs the condensation temperature variable control (CT variable control). Then, it returns to step S2.
  • CT constant control condensing temperature control
  • the efficiency of the air conditioning system 100 can be improved as compared with the conventional case.
  • the outside air load is 20 [kw]
  • the other heating load is 8 [kw]
  • the internal heat generation is 5 [kw].
  • the ventilator since the indoor unit and the ventilator are each independently operated, the ventilator whose heating amount is controlled based on the difference between the indoor set temperature and the outdoor temperature is determined by ventilation. It bears all of the outside air load that is the heating load that occurs.
  • the ventilation device 3 side performs constant condensation temperature control (CT constant control).
  • CT constant control constant condensation temperature control
  • the ventilator 3 can be operated so as to bear a part of the outside air load (for example, heating of 5 [kw]).
  • the condensing temperature control means 43 determines the condensing temperature on the ventilator 3 side (of the second refrigeration cycle circuit 21) according to the condensing temperature on the indoor unit 1 side (condensing temperature on the first refrigeration cycle circuit 11).
  • the condensing temperature) may be changed, and then the condensing temperature constant control (CT constant control) of the ventilation device 3 may be performed.
  • CT constant control condensing temperature constant control
  • the condensation temperature on the indoor unit 1 side is close to CTmaxi
  • the condensation temperature of the ventilator 3 is increased as shown in FIG. 9 (A), and the condensation on the indoor unit 1 side is shown in FIG. 9 (B).
  • the temperature may be lowered. Thereby, you may make the air conditioning system 100 highly efficient.
  • step S6 for example, the indoor unit 1 side
  • the condensation temperature on the ventilator 3 side may be lowered.
  • the air conditioning system 100 when the air conditioning system 100 according to the present embodiment heats the room 200 with both the indoor unit 1 and the ventilator 3, the heating amount of the ventilator 3 with a low heating capacity is controlled to be constant, and the heating capacity is The heating amount of the high indoor unit 1 is variably controlled. For this reason, the air conditioning system 100 which concerns on this Embodiment can improve efficiency rather than before, when heating the room
  • the ventilator 3 when the ventilator 3 is provided in a room such as a hall where people are crowded, a large amount of ventilation is required, and thus the ventilator 3 may have a larger air volume than the indoor unit 1. That is, the heating capacity of the ventilator 3 may be higher than the heating capacity of the indoor unit 1.
  • the heating amount of the indoor unit 1 having a low heating capacity is controlled to be constant. What is necessary is just to control the heating amount of the high ventilation apparatus 3 variably. By doing in this way, the efficiency of the air conditioning system 100 can be improved compared with the past.
  • the ventilation device 3 according to the present embodiment is not limited to the configuration shown in FIG. 3, and may be configured as shown in FIG. 10, for example.
  • FIG. 10 is a schematic diagram illustrating another example of the ventilation device of the air-conditioning system according to the embodiment of the present invention.
  • the ventilation device 3 shown in FIG. 10 includes an exhaust fan 29 and a total heat exchanger 30. That is, the ventilator 3 shown in FIG. 10 drives the exhaust fan 29 to take the air in the room 200 as the return air RA into the ventilator 3, passes the total heat exchanger 30, and then discharges the air EA. It is configured to discharge to the outside.
  • the ventilator 3 shown in FIG. 10 has a configuration in which the outdoor air taken into the ventilator 3 flows into the total heat exchanger 30, exchanges heat with the return air RA, and then flows into the indoor heat exchanger 26. ing. By using the ventilation device 3 shown in FIG. 10, the heat stored in the air in the room 200 can be effectively used.
  • the air conditioning load estimation unit 42 does not particularly limit the method of estimating the heating load of the room 200, but for example, the detection value of the RA temperature detection device 32 and the detection of the OA temperature detection device 31
  • the heating load may be estimated based on the difference between the two values (the detected value of the RA temperature detecting device 32 ⁇ the detected value of the OA temperature detecting device 31), that is, the difference between the indoor temperature and the outdoor temperature.
  • the heating load increases as the value of the room temperature-outdoor temperature increases.
  • the zone 1 is set.
  • the zone 2 is set.
  • the operation mode of the air conditioning system 100 is determined using one threshold value L0.
  • the operation mode of the air conditioning system 100 may be determined using a plurality of threshold values.
  • a plurality of threshold values may be stored in the storage unit 41, and the air conditioning load estimation unit 42 may determine the operation mode using different threshold values depending on the time zone.
  • two threshold values L0 and L1 may be stored in the storage unit 41 in consideration of solar heat as shown in FIG.
  • the air conditioning load estimation means 42 may determine the operation mode using L1 having a value larger than L0 by the amount of solar heat. By doing in this way, it becomes possible to consider the load fluctuation part with and without solar radiation.
  • the configuration in which the heating amount of the indoor unit 1 and the ventilating device 3 is controlled by controlling the condensation temperature has been described. It is not limited.
  • FIG. 13 is a schematic diagram illustrating an example of each air conditioning system according to the embodiment of the present invention.
  • the indoor unit 1 includes a blowing temperature detection device 33 that detects the temperature of air blown from the indoor unit 1.
  • the ventilator 3 includes a blowing temperature detection device 34 that detects the temperature of air blown from the ventilating device 3.
  • the air conditioning system 100 shown in FIG. 13 controls the temperature of the air blown out from the indoor unit 1 and the ventilation device 3 by the heating amount control means 44 (corresponding to the condensation temperature control means 43) of the control device 40. By doing so, the heating amount of the indoor unit 1 and the ventilation device 3 is controlled.
  • the condensation temperature of the first refrigeration cycle circuit 11 is increased, and by reducing the temperature of the air blown from the indoor unit 1, the first refrigeration cycle circuit is increased. 11 condensation temperature is lowered. Further, by increasing the temperature of the air blown from the ventilator 3, the condensation temperature of the second refrigeration cycle circuit 21 is increased, and by lowering the temperature of the air blown from the ventilator 3, the second refrigeration is performed. The condensation temperature of the cycle circuit 21 is lowered. For this reason, the heating amount of the indoor unit 1 and the ventilator 3 can be controlled by controlling the temperature of the air blown out from the indoor unit 1 and the ventilator 3.
  • the blowing temperature detecting device 33 corresponds to the first temperature detecting device of the present invention
  • the blowing temperature detecting device 34 corresponds to the second temperature detecting device of the present invention.
  • the second heating means provided in the ventilation device 3 may be other than the indoor heat exchanger 26 of the second refrigeration cycle circuit 21.
  • FIG. 14 is a schematic diagram illustrating still another example of the ventilation device of the air-conditioning system according to the embodiment of the present invention.
  • the ventilation device 3 shown in FIG. 14 includes an indoor heat exchanger 35 as the second heating means.
  • the indoor heat exchanger 35 heats outdoor air taken into the ventilator 3 by heat generated by burning gas or the like.
  • the heating amount of the ventilator 3 can be controlled by controlling the temperature of the air blown from the ventilator 3 as described in FIG.
  • the reason why the indoor heat exchanger 26 of the second refrigeration cycle circuit 21 is provided in the ventilation device 3 shown in FIG. 14 is to cool the room 200 with the ventilation device 3.
  • the room 200 is not cooled by the ventilator 3, there is no need to provide the indoor heat exchanger 26 in the ventilator 3 (that is, the air conditioning system 100 needs to be provided with the second refrigeration cycle circuit 21).

Abstract

This air conditioning system (100) is provided with an indoor unit (1) and a ventilation device (3). The air conditioning system (100) is configured such that, when both the indoor unit (1) and the ventilation device (3) are used to heat an interior (200), the heating amount of the device having the lowest heating capacity among the indoor unit (1) and the ventilation device (3) is controlled so as to be constant, and the heating amount of the device having the highest heating capacity among the indoor unit (1) and the ventilation device (3) is variably controlled.

Description

空気調和システムAir conditioning system
 本発明は、換気装置を備えた空気調和システムに関するものである。 The present invention relates to an air conditioning system provided with a ventilation device.
 従来、室外空気を加熱手段で加熱し、加熱した空気を室内に供給して該室内を暖房する換気装置が提案されている。このような換気装置は、例えば、室内の設定温度と室外温度との差に基づいて加熱量が制御される構成となっている(例えば特許文献1参照)。 Conventionally, there has been proposed a ventilator that heats outdoor air by heating means and supplies the heated air to the room to heat the room. Such a ventilator has a configuration in which the amount of heating is controlled based on, for example, the difference between the indoor set temperature and the outdoor temperature (see, for example, Patent Document 1).
 また、従来、室内空気を加熱する室内機を上記の換気装置と共に室内に設置する空気調和システムも提案されている。 In addition, conventionally, an air conditioning system in which an indoor unit that heats indoor air is installed in the room together with the ventilation device has been proposed.
特開2010-249378号公報JP 2010-249378 A
 従来の空気調和システムは、室内機及び換気装置の双方で室内を暖房する際、室内機及び換気装置が各々単独で動作していた。このため、従来の空気調和システムは、室内機及び換気装置の双方で室内を暖房する際、効率が悪化してしまうという課題があった。 In the conventional air conditioning system, when the room is heated by both the indoor unit and the ventilator, each of the indoor unit and the ventilator operates independently. For this reason, the conventional air conditioning system has a problem that efficiency is deteriorated when the room is heated by both the indoor unit and the ventilation device.
 詳しくは、換気装置が設置された室内の暖房負荷は、概略、「室内の暖房負荷=外気負荷+その他暖房負荷-内部発熱」となる。外気負荷とは、換気によって発生する暖房負荷である。その他暖房負荷とは、壁、窓等からの熱漏洩、及び、隙間風による熱漏洩等で発生する暖房負荷である。内部発熱とは、人体、機器、照明からの発熱、及び日射熱等である。 Specifically, the heating load in the room where the ventilation device is installed is roughly “indoor heating load = outside air load + other heating load−internal heat generation”. The outside air load is a heating load generated by ventilation. Other heating loads are heating loads that occur due to heat leakage from walls, windows, etc., and heat leakage due to draft air. Internal heat generation includes heat generation from a human body, equipment, lighting, solar heat, and the like.
 例えば、外気負荷が20[kw]、その他暖房負荷が8[kw]、及び、内部発熱が5[kw]の場合、室内の暖房負荷は、20[kw]+8[kw]-5[kw]=23[kw]となる。このとき、換気装置の加熱能力が20[kw]あるとした場合、従来の空気調和システムは、室内機及び換気装置が各々単独で動作していたため、換気装置が20[kw]の外気負荷を担う。したがって、室内機は、3[kw]の加熱を行うこととなる。 For example, when the outside air load is 20 [kW], the other heating load is 8 [kW], and the internal heat generation is 5 [kW], the indoor heating load is 20 [kW] +8 [kW] −5 [kW]. = 23 [kw]. At this time, assuming that the heating capacity of the ventilator is 20 [kW], the conventional air conditioning system operates the indoor unit and the ventilator independently, and therefore the ventilator has an external air load of 20 [kW]. Bear. Therefore, the indoor unit performs heating of 3 [kw].
 ここで、一般的に、室内機及び換気装置は、風量が大きい程、加熱能力が大きくなる。また、同一の加熱量を発生させる場合、風量が大きいほど、効率が良くなる。空気を加熱する加熱手段の温度を低減させられるからである。また、一般的に、室内機の方が、換気装置よりも風量が大きい。室外空気が室内に入って、室内温度が低下しすぎることを防止するため、換気装置の風量を必要最小限に抑えたいからである。したがって、上記の例の場合、加熱能力が低い換気装置の方が、加熱能力の高い室内機よりも大きな加熱量を発生することとなり、空気調和システムの効率が悪化してしまう。 Here, in general, the heating capacity of the indoor unit and the ventilation device increases as the air volume increases. Moreover, when generating the same heating amount, the larger the air volume, the better the efficiency. This is because the temperature of the heating means for heating the air can be reduced. In general, the indoor unit has a larger air volume than the ventilator. This is because it is desired to keep the air volume of the ventilator to the minimum necessary to prevent the outdoor air from entering the room and the indoor temperature from dropping too much. Therefore, in the case of the above example, the ventilation device having a low heating capacity generates a larger heating amount than the indoor unit having a high heating capacity, and the efficiency of the air conditioning system is deteriorated.
 本発明は、上述のような課題を解決するためになされたものであり、室内機及び換気装置の双方で室内を暖房する際、従来よりも効率を向上させることができる空気調和システムを提供することを目的とする。 The present invention has been made to solve the above-described problems, and provides an air-conditioning system that can improve the efficiency of the room when both the indoor unit and the ventilator are heated. For the purpose.
 本発明に係る空気調和システムは、第1圧縮機、第1室外熱交換器、第1膨張装置及び第1室内熱交換器を有する第1冷凍サイクル回路と、第1加熱手段として前記第1室内熱交換器を有し、室内の空気を該第1加熱手段で加熱して前記室内へ戻す室内機と、第2加熱手段を有し、室外空気を該第2加熱手段で加熱して前記室内へ供給する換気装置と、前記室内機及び前記換気装置を制御する制御装置と、を備え、前記制御装置は、前記室内の暖房負荷を推定する空調負荷推定手段と、閾値を記憶する記憶手段と、前記空調負荷推定手段が推定した前記暖房負荷と前記閾値とを比較し、前記室内機及び前記換気装置の加熱量を制御する加熱量制御手段と、を有し、該加熱量制御手段は、前記暖房負荷が前記閾値以上の場合、前記室内機及び前記換気装置のうちで加熱能力が低い方の装置の加熱量を一定に制御し、前記室内機及び前記換気装置のうちで加熱能力が高い方の装置の加熱量を可変に制御する構成である。 An air conditioning system according to the present invention includes a first refrigeration cycle circuit having a first compressor, a first outdoor heat exchanger, a first expansion device, and a first indoor heat exchanger, and the first indoor as a first heating means. An indoor unit having a heat exchanger, heating indoor air by the first heating means and returning the indoor air to the room, and second heating means, and heating the outdoor air by the second heating means to And a control device for controlling the indoor unit and the ventilation device, wherein the control device is an air conditioning load estimating means for estimating the heating load in the room, and a storage means for storing a threshold value. The heating load estimated by the air conditioning load estimation means and the threshold value, and a heating amount control means for controlling the heating amount of the indoor unit and the ventilator, the heating amount control means, When the heating load is equal to or greater than the threshold, the indoor unit and Among the ventilation devices, the heating amount of the device with the lower heating capability is controlled to be constant, and the heating amount of the device with the higher heating capability of the indoor unit and the ventilation device is variably controlled. .
 本発明に係る空気調和システムは、室内機及び換気装置の双方で室内を暖房する際、室内機及び換気装置のうちで加熱能力が低い方の装置の加熱量を一定に制御し、室内機及び換気装置のうちで加熱能力が高い方の装置の加熱量を可変に制御する構成となっている。このため、本発明に係る空気調和システムは、室内機及び換気装置の双方で室内を暖房する際、従来よりも効率を向上させることができる。 The air conditioning system according to the present invention controls the heating amount of a device having a lower heating capacity among the indoor unit and the ventilator when the room is heated by both the indoor unit and the ventilator. Of the ventilation devices, the heating amount of the device having the higher heating capacity is variably controlled. For this reason, the air conditioning system which concerns on this invention can improve efficiency rather than before, when heating an indoor with both an indoor unit and a ventilator.
本発明の実施の形態に係る空気調和システムの概略図である。It is the schematic of the air conditioning system which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和システムの冷凍サイクル回路を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the refrigerating cycle circuit of the air conditioning system which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和システムの換気装置を示す概略図である。It is the schematic which shows the ventilation apparatus of the air conditioning system which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和システムの運転モード決定方法を説明するための説明図である。It is explanatory drawing for demonstrating the operation mode determination method of the air conditioning system which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和システムにおける低暖房負荷時の運転モードを説明するための説明図である。It is explanatory drawing for demonstrating the operation mode at the time of the low heating load in the air conditioning system which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和システムにおける低暖房負荷時の運転モードの別の一例を説明するための説明図である。It is explanatory drawing for demonstrating another example of the operation mode at the time of the low heating load in the air conditioning system which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和システムにおける高暖房負荷時の運転モードを説明するための説明図である。It is explanatory drawing for demonstrating the operation mode at the time of the high heating load in the air conditioning system which concerns on embodiment of this invention. 本実施の形態に係る空気調和システムにおける暖房運転時の運転モードの切替制御を示すフローチャートである。It is a flowchart which shows the switching control of the operation mode at the time of the heating operation in the air conditioning system which concerns on this Embodiment. 本発明の実施の形態に係る空気調和システムにおける高暖房負荷時の運転モードの別の一例を説明するための説明図である。It is explanatory drawing for demonstrating another example of the operation mode at the time of the high heating load in the air conditioning system which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和システムの換気装置の別の一例を示す概略図である。It is the schematic which shows another example of the ventilation apparatus of the air conditioning system which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和システムの空調負荷推定手段における暖房負荷推定手段の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the heating load estimation means in the air-conditioning load estimation means of the air conditioning system which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和システムの運転モード決定方法の別の一例を説明するための説明図である。It is explanatory drawing for demonstrating another example of the operation mode determination method of the air conditioning system which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和システム別の一例を示す概略図である。It is the schematic which shows an example according to the air conditioning system which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和システムの換気装置のさらに別の一例を示す概略図である。It is the schematic which shows another example of the ventilation apparatus of the air conditioning system which concerns on embodiment of this invention.
実施の形態.
 図1は、本発明の実施の形態に係る空気調和システムの概略図である。図2は、この空気調和システムの冷凍サイクル回路を示す冷媒回路図である。また、図3は、この空気調和システムの換気装置を示す概略図である。
 以下、図1~図3を用いて、本実施の形態に係る空気調和システム100の構成について説明する。なお、図1及び図2では、複数台の室内機1と1台の換気装置3とを有する空気調和システム100が記載されている。しかしながら、室内機1及び換気装置3の台数はあくまでも一例であり、室内機1を1台にしてもよいし、換気装置3を複数台にしてもよい。
Embodiment.
FIG. 1 is a schematic diagram of an air conditioning system according to an embodiment of the present invention. FIG. 2 is a refrigerant circuit diagram showing a refrigeration cycle circuit of the air conditioning system. Moreover, FIG. 3 is the schematic which shows the ventilation apparatus of this air conditioning system.
Hereinafter, the configuration of the air-conditioning system 100 according to the present embodiment will be described with reference to FIGS. 1 and 2, an air conditioning system 100 including a plurality of indoor units 1 and one ventilator 3 is described. However, the number of indoor units 1 and ventilation devices 3 is merely an example, and the number of indoor units 1 may be one, or a plurality of ventilation devices 3 may be provided.
 本実施の形態に係る空気調和システム100は、同一の室内200に設置された室内機1及び換気装置3を備えている。室内機1は、室内200の空気を第1加熱手段で加熱して室内200へ戻すものである。また、換気装置3は、室外空気を第2加熱手段で加熱して室内200へ供給するものである。図3に示すように、換気装置3には、室外空気(OA)の温度を検知するOA温度検出装置31、及び、室内200の空気(RA)の温度を検知するRA温度検出装置32が設けられている。
 ここで、OA温度検出装置31が、本発明の室外温度検出装置に相当する。また、RA温度検出装置32が、本発明の室内温度検出装置に相当する。なお、OA温度検出装置31及びRA温度検出装置32の設置位置は任意であり、換気装置3の外部に設けてもよい。
The air conditioning system 100 according to the present embodiment includes an indoor unit 1 and a ventilation device 3 installed in the same room 200. The indoor unit 1 heats the air in the room 200 with the first heating means and returns it to the room 200. The ventilator 3 heats the outdoor air with the second heating means and supplies it to the room 200. As shown in FIG. 3, the ventilation device 3 is provided with an OA temperature detection device 31 that detects the temperature of outdoor air (OA) and an RA temperature detection device 32 that detects the temperature of air (RA) in the room 200. It has been.
Here, the OA temperature detection device 31 corresponds to the outdoor temperature detection device of the present invention. The RA temperature detection device 32 corresponds to the indoor temperature detection device of the present invention. The installation positions of the OA temperature detection device 31 and the RA temperature detection device 32 are arbitrary, and may be provided outside the ventilation device 3.
 また、詳細は後述するが、本実施の形態に係る空気調和システム100は、第1冷凍サイクル回路11及び第2冷凍サイクル回路21を備えている。そして、第1冷凍サイクル回路11の室内熱交換器16を室内機1の第1加熱手段として用い、第2冷凍サイクル回路21の室内熱交換器26を換気装置3の第2加熱手段として用いている。このため、本実施の形態1に係る空気調和システム100は、第1冷凍サイクル回路11の一部の構成を収納する室外機2を備え、当該室外機2と室内機1とを冷媒配管101で接続している。また、本実施の形態に係る空気調和システム100は、第2冷凍サイクル回路21の一部の構成を収納する室外機4を備え、当該室外機4と換気装置3とを冷媒配管102で接続している。すなわち、本実施の形態では、室内機系統が室内機1及び室外機2で構成され、換気装置系統が換気装置3及び室外機4で構成されている。 Although details will be described later, the air conditioning system 100 according to the present embodiment includes a first refrigeration cycle circuit 11 and a second refrigeration cycle circuit 21. The indoor heat exchanger 16 of the first refrigeration cycle circuit 11 is used as the first heating means of the indoor unit 1, and the indoor heat exchanger 26 of the second refrigeration cycle circuit 21 is used as the second heating means of the ventilation device 3. Yes. For this reason, the air conditioning system 100 according to Embodiment 1 includes the outdoor unit 2 that houses a part of the configuration of the first refrigeration cycle circuit 11, and the outdoor unit 2 and the indoor unit 1 are connected by the refrigerant pipe 101. Connected. The air conditioning system 100 according to the present embodiment includes an outdoor unit 4 that houses a part of the configuration of the second refrigeration cycle circuit 21, and connects the outdoor unit 4 and the ventilator 3 with a refrigerant pipe 102. ing. That is, in the present embodiment, the indoor unit system is configured by the indoor unit 1 and the outdoor unit 2, and the ventilator system is configured by the ventilator 3 and the outdoor unit 4.
 図2に示すように、第1冷凍サイクル回路11は、圧縮機12、室外熱交換器14、膨張装置15、及び、室内熱交換器16を備えている。また、本実施の形態に係る第1冷凍サイクル回路11は、室内機1において冷房及び暖房の双方を実現するため、四方弁13も備えている。
 ここで、圧縮機12が、本発明の第1圧縮機に相当する。室外熱交換器14が、本発明の第1室外熱交換器に相当する。膨張装置15が、本発明の第1膨張装置に相当する。また、室内熱交換器16が、本発明の第1室内熱交換器に相当する。
As shown in FIG. 2, the first refrigeration cycle circuit 11 includes a compressor 12, an outdoor heat exchanger 14, an expansion device 15, and an indoor heat exchanger 16. The first refrigeration cycle circuit 11 according to the present embodiment also includes a four-way valve 13 in order to realize both cooling and heating in the indoor unit 1.
Here, the compressor 12 corresponds to the first compressor of the present invention. The outdoor heat exchanger 14 corresponds to the first outdoor heat exchanger of the present invention. The expansion device 15 corresponds to the first expansion device of the present invention. The indoor heat exchanger 16 corresponds to the first indoor heat exchanger of the present invention.
 圧縮機12は、冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にするものである。圧縮機12の種類は特に限定されるものではなく、例えば、レシプロ、ロータリー、スクロール又はスクリュー等の各種タイプの圧縮機構を用いて圧縮機12を構成することができる。圧縮機12は、インバーター等により回転数が可変に制御可能なタイプのもので構成するとよい。この圧縮機12の吐出口及び吸入口には、四方弁13が接続されている。 The compressor 12 sucks refrigerant and compresses the refrigerant to a high temperature and high pressure state. The kind of the compressor 12 is not specifically limited, For example, the compressor 12 can be comprised using various types of compression mechanisms, such as a reciprocating, a rotary, a scroll, or a screw. The compressor 12 may be of a type that can be variably controlled by an inverter or the like. A four-way valve 13 is connected to the discharge port and the suction port of the compressor 12.
 四方弁13は、圧縮機12の吐出口の接続先を室外熱交換器14又は室内熱交換器16の一方に切り替え、圧縮機12の吸入口を室外熱交換器14又は室内熱交換器16の他方に切り替えるものである。 The four-way valve 13 switches the connection destination of the discharge port of the compressor 12 to one of the outdoor heat exchanger 14 or the indoor heat exchanger 16, and the suction port of the compressor 12 is switched to the outdoor heat exchanger 14 or the indoor heat exchanger 16. Switch to the other.
 室外熱交換器14は、内部を流れる冷媒と室外空気とを熱交換させる空気式熱交換器である。室外熱交換器14の周辺に、熱交換対象である室外空気を室外熱交換器14に供給する室外送風機17を設けるとよい。この室外熱交換器14は、膨張装置15を介して、室内熱交換器16と接続されている。 The outdoor heat exchanger 14 is an air heat exchanger that exchanges heat between the refrigerant flowing inside and the outdoor air. In the vicinity of the outdoor heat exchanger 14, an outdoor blower 17 that supplies outdoor air to be heat exchanged to the outdoor heat exchanger 14 may be provided. The outdoor heat exchanger 14 is connected to the indoor heat exchanger 16 via the expansion device 15.
 膨張装置15は、例えば膨張弁であり、冷媒を減圧して膨張させるものである。 The expansion device 15 is an expansion valve, for example, and expands the refrigerant by decompressing it.
 室内熱交換器16は、内部を流れる冷媒と室内200の空気とを熱交換させる空気式熱交換器である。室内熱交換器16の周辺に、熱交換対象である室内200の空気を室内熱交換器16に供給する室内送風機18を設けるとよい。
 ここで、室内送風機18が、本発明の第1送風機に相当する。
The indoor heat exchanger 16 is an air heat exchanger that exchanges heat between the refrigerant flowing inside and the air in the room 200. In the vicinity of the indoor heat exchanger 16, an indoor blower 18 that supplies the air in the room 200 to be heat exchanged to the indoor heat exchanger 16 may be provided.
Here, the indoor blower 18 corresponds to the first blower of the present invention.
 上述の第1冷凍サイクル回路11の各構成要素は、室内機1及び室外機2に収納されている。詳しくは、室内機1には、膨張装置15、室内熱交換器16及び室内送風機18が収納されている。また、室外機2には、圧縮機12、四方弁13、室外熱交換器14、及び室外送風機17が収納されている。なお、膨張装置15の設置位置は任意であり、室外機2に収納されてもよい。 Each component of the first refrigeration cycle circuit 11 is housed in the indoor unit 1 and the outdoor unit 2. Specifically, the indoor unit 1 houses an expansion device 15, an indoor heat exchanger 16, and an indoor blower 18. The outdoor unit 2 houses a compressor 12, a four-way valve 13, an outdoor heat exchanger 14, and an outdoor blower 17. The installation position of the expansion device 15 is arbitrary and may be stored in the outdoor unit 2.
 また、図2に示すように、第2冷凍サイクル回路21は、圧縮機22、室外熱交換器24、膨張装置25、及び、室内熱交換器26を備えている。また、本実施の形態に係る第2冷凍サイクル回路21は、換気装置3において冷房及び暖房の双方を実現するため、四方弁23も備えている。
 ここで、圧縮機22が、本発明の第2圧縮機に相当する。室外熱交換器24が、本発明の第2室外熱交換器に相当する。膨張装置25が、本発明の第2膨張装置に相当する。また、室内熱交換器26が、本発明の第2室内熱交換器に相当する。
As shown in FIG. 2, the second refrigeration cycle circuit 21 includes a compressor 22, an outdoor heat exchanger 24, an expansion device 25, and an indoor heat exchanger 26. The second refrigeration cycle circuit 21 according to the present embodiment also includes a four-way valve 23 in order to realize both cooling and heating in the ventilation device 3.
Here, the compressor 22 corresponds to the second compressor of the present invention. The outdoor heat exchanger 24 corresponds to the second outdoor heat exchanger of the present invention. The expansion device 25 corresponds to the second expansion device of the present invention. The indoor heat exchanger 26 corresponds to the second indoor heat exchanger of the present invention.
 圧縮機22は、冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にするものである。圧縮機22の種類は特に限定されるものではなく、例えば、レシプロ、ロータリー、スクロール又はスクリュー等の各種タイプの圧縮機構を用いて圧縮機22を構成することができる。圧縮機22は、インバーター等により回転数が可変に制御可能なタイプのもので構成するとよい。この圧縮機22の吐出口及び吸入口には、四方弁23が接続されている。 The compressor 22 sucks the refrigerant and compresses the refrigerant to bring it into a high temperature and high pressure state. The kind of the compressor 22 is not specifically limited, For example, the compressor 22 can be comprised using various types of compression mechanisms, such as a reciprocating, a rotary, a scroll, or a screw. The compressor 22 may be of a type that can be variably controlled by an inverter or the like. A four-way valve 23 is connected to the discharge port and the suction port of the compressor 22.
 四方弁23は、圧縮機22の吐出口の接続先を室外熱交換器24又は室内熱交換器26の一方に切り替え、圧縮機22の吸入口を室外熱交換器24又は室内熱交換器26の他方に切り替えるものである。 The four-way valve 23 switches the connection destination of the discharge port of the compressor 22 to one of the outdoor heat exchanger 24 or the indoor heat exchanger 26, and the suction port of the compressor 22 is switched to the outdoor heat exchanger 24 or the indoor heat exchanger 26. Switch to the other.
 室外熱交換器24は、内部を流れる冷媒と室外空気とを熱交換させる空気式熱交換器である。室外熱交換器24の周辺に、熱交換対象である室外空気を室外熱交換器24に供給する室外送風機27を設けるとよい。この室外熱交換器24は、膨張装置25を介して、室内熱交換器26と接続されている。 The outdoor heat exchanger 24 is an air heat exchanger that exchanges heat between the refrigerant flowing inside and the outdoor air. In the vicinity of the outdoor heat exchanger 24, an outdoor fan 27 that supplies outdoor air to be heat exchanged to the outdoor heat exchanger 24 may be provided. This outdoor heat exchanger 24 is connected to an indoor heat exchanger 26 via an expansion device 25.
 膨張装置25は、例えば膨張弁であり、冷媒を減圧して膨張させるものである。 The expansion device 25 is an expansion valve, for example, and expands the refrigerant by decompressing it.
 室内熱交換器26は、内部を流れる冷媒と室外空気とを熱交換させる空気式熱交換器である。室内熱交換器26の周辺に、熱交換対象である室外空気を換気装置3内に取り込んで室内熱交換器26に供給する給気用送風機28を設けるとよい。
 ここで、給気用送風機28が、本発明の第2送風機に相当する。
The indoor heat exchanger 26 is an air heat exchanger that exchanges heat between the refrigerant flowing inside and the outdoor air. An air supply fan 28 that takes outdoor air to be heat exchanged into the ventilation device 3 and supplies it to the indoor heat exchanger 26 may be provided around the indoor heat exchanger 26.
Here, the air supply fan 28 corresponds to the second fan of the present invention.
 上述の第2冷凍サイクル回路21の各構成要素は、換気装置3及び室外機4に収納されている。詳しくは、換気装置3には、膨張装置25、室内熱交換器26及び給気用送風機28が収納されている。また、室外機4には、圧縮機22、四方弁23、室外熱交換器24、及び室外送風機27が収納されている。なお、膨張装置25の設置位置は任意であり、室外機4に収納されてもよい。 Each component of the second refrigeration cycle circuit 21 described above is housed in the ventilation device 3 and the outdoor unit 4. In detail, the expansion device 25, the indoor heat exchanger 26, and the air supply blower 28 are accommodated in the ventilation device 3. The outdoor unit 4 houses a compressor 22, a four-way valve 23, an outdoor heat exchanger 24, and an outdoor blower 27. The installation position of the expansion device 25 is arbitrary and may be stored in the outdoor unit 4.
 また、図1に示すように、本実施の形態に係る空気調和システム100は、室内機1及び換気装置3を制御する制御装置40を備えている。この制御装置40は、例えばマイコンであり、記憶手段41、空調負荷推定手段42及び凝縮温度制御手段43を備えている。 Further, as shown in FIG. 1, the air conditioning system 100 according to the present embodiment includes a control device 40 that controls the indoor unit 1 and the ventilation device 3. The control device 40 is, for example, a microcomputer, and includes a storage unit 41, an air conditioning load estimation unit 42, and a condensation temperature control unit 43.
 記憶手段41は、室内200の目標温度である設定温度、及び、凝縮温度制御手段43の加熱量制御に用いる閾値等を記憶するものである。 The storage unit 41 stores a set temperature that is a target temperature of the room 200, a threshold value used for heating amount control of the condensation temperature control unit 43, and the like.
 空調負荷推定手段42は、室内200の暖房負荷を推定するものである。ここで、室内200の暖房負荷は、概略、「室内200の暖房負荷=外気負荷+その他暖房負荷-内部発熱」となる。外気負荷とは、換気によって発生する暖房負荷である。その他暖房負荷とは、壁、窓等からの熱漏洩、及び、隙間風による熱漏洩等で発生する暖房負荷である。内部発熱とは、人体、機器、照明からの発熱、及び日射熱等である。暖房負荷がマイナスの場合は、冷房負荷ということになる。 The air conditioning load estimation means 42 is for estimating the heating load of the room 200. Here, the heating load of the room 200 is roughly “heating load of the room 200 = outside air load + other heating load−internal heat generation”. The outside air load is a heating load generated by ventilation. Other heating loads are heating loads that occur due to heat leakage from walls, windows, etc., and heat leakage due to draft air. Internal heat generation includes heat generation from a human body, equipment, lighting, solar heat, and the like. When the heating load is negative, it is a cooling load.
 凝縮温度制御手段43は、空調負荷推定手段42が推定した暖房負荷と記憶手段41に記憶された閾値L0とを比較し、室内機1及び換気装置3の加熱量を制御するものである。詳しくは、凝縮温度制御手段43は、暖房負荷が閾値L0以上の場合、室内機1及び換気装置3のうちで加熱能力が低い方の装置の加熱量を一定に制御し、室内機1及び換気装置3のうちで加熱能力が高い方の装置の加熱量を可変に制御するものである。また、凝縮温度制御手段43は、暖房負荷が閾値L0よりも小さい場合、室内機1及び換気装置3の一方の加熱を停止させ、室内機1及び換気装置3の他方の加熱量を可変に制御するものである。
 ここで、凝縮温度制御手段43が、本発明の加熱量制御手段に相当する。
The condensation temperature control means 43 compares the heating load estimated by the air conditioning load estimation means 42 with the threshold value L0 stored in the storage means 41, and controls the heating amounts of the indoor unit 1 and the ventilation device 3. Specifically, when the heating load is equal to or greater than the threshold value L0, the condensing temperature control means 43 controls the heating amount of the indoor unit 1 and the ventilation device 3 with the lower heating capacity to be constant, and the indoor unit 1 and the ventilation. Of the devices 3, the heating amount of the device having the higher heating capacity is variably controlled. Further, when the heating load is smaller than the threshold value L0, the condensation temperature control means 43 stops heating one of the indoor unit 1 and the ventilating device 3 and variably controls the other heating amount of the indoor unit 1 and the ventilating device 3. To do.
Here, the condensing temperature control means 43 corresponds to the heating amount control means of the present invention.
 なお、上述のように、本実施の形態に係る空気調和システム100は、第1冷凍サイクル回路11の室内熱交換器16を室内機1の第1加熱手段として用い、第2冷凍サイクル回路21の室内熱交換器26を換気装置3の第2加熱手段として用いている。このため、本実施の形態に係る凝縮温度制御手段43は、第1冷凍サイクル回路11の凝縮温度を制御することにより、室内機1の加熱量を制御する。具体的には、凝縮温度制御手段43は、圧縮機12の回転数、膨張装置15の開度及び室内送風機18の回転数のうち、少なくとも1つを制御することにより、第1冷凍サイクル回路11の凝縮温度を制御する。また、凝縮温度制御手段43は、第2冷凍サイクル回路21の凝縮温度を制御することにより、換気装置3の加熱量を制御する。具体的には、凝縮温度制御手段43は、圧縮機22の回転数、膨張装置25の開度及び給気用送風機28の回転数のうち、少なくとも1つを制御することにより、第2冷凍サイクル回路21の凝縮温度を制御する。なお、凝縮温度制御手段43は、圧縮機12、室内送風機18、圧縮機22及び給気用送風機28の駆動及び停止も制御できる構成となっている。 As described above, the air conditioning system 100 according to the present embodiment uses the indoor heat exchanger 16 of the first refrigeration cycle circuit 11 as the first heating means of the indoor unit 1, and uses the second refrigeration cycle circuit 21. The indoor heat exchanger 26 is used as the second heating means of the ventilation device 3. For this reason, the condensation temperature control means 43 which concerns on this Embodiment controls the heating amount of the indoor unit 1 by controlling the condensation temperature of the 1st freezing cycle circuit 11. FIG. Specifically, the condensing temperature control means 43 controls the first refrigeration cycle circuit 11 by controlling at least one of the rotational speed of the compressor 12, the opening degree of the expansion device 15, and the rotational speed of the indoor blower 18. To control the condensation temperature. Further, the condensing temperature control means 43 controls the heating amount of the ventilator 3 by controlling the condensing temperature of the second refrigeration cycle circuit 21. Specifically, the condensation temperature control means 43 controls the second refrigeration cycle by controlling at least one of the rotational speed of the compressor 22, the opening degree of the expansion device 25, and the rotational speed of the air supply blower 28. The condensing temperature of the circuit 21 is controlled. The condensing temperature control means 43 is configured to be able to control the driving and stopping of the compressor 12, the indoor fan 18, the compressor 22, and the air supply fan 28.
 ここで、一般的に、室内機及び換気装置は、風量が大きい程、加熱能力が大きくなる。また、同一の加熱量を発生させる場合、風量が大きいほど、効率が良くなる。空気を加熱する加熱手段の温度を低減させられるからである。そして、本実施の形態に係る空気調和システム100は、室内機1の方が、換気装置3よりも風量が大きい。室外空気が室内200に入って、室内200の室温が低下しすぎることを防止するためである。したがって本実施の形態に係る凝縮温度制御手段43は、室内機1の方が換気装置3よりも加熱能力が高い装置であるとして、室内機1及び換気装置3の加熱量を制御している。どちらの装置の方が加熱能力が高いかという情報は、記憶手段41に記憶されている。 Here, in general, the heating capacity of the indoor unit and the ventilation device increases as the air volume increases. Moreover, when generating the same heating amount, the larger the air volume, the better the efficiency. This is because the temperature of the heating means for heating the air can be reduced. In the air conditioning system 100 according to the present embodiment, the indoor unit 1 has a larger air volume than the ventilation device 3. This is to prevent outdoor air from entering the room 200 and causing the room temperature of the room 200 to decrease too much. Therefore, the condensation temperature control means 43 according to the present embodiment controls the heating amounts of the indoor unit 1 and the ventilation device 3 on the assumption that the indoor unit 1 is a device having a higher heating capacity than the ventilation device 3. Information about which apparatus has a higher heating capacity is stored in the storage means 41.
 また、本実施の形態に係る凝縮温度制御手段43は、室内機1及び換気装置3の加熱量を可変に制御する際、設定温度とRA温度検出装置32の検出値(換言すると、室内200の室内温度)との差に基づいて加熱量を制御する構成となっている。 Further, the condensing temperature control means 43 according to the present embodiment, when variably controlling the heating amounts of the indoor unit 1 and the ventilating device 3, changes the set temperature and the detected value of the RA temperature detecting device 32 (in other words, the temperature of the indoor 200). The heating amount is controlled based on the difference from the room temperature.
 続いて、本実施の形態に係る空気調和システム100の動作について説明する。 Subsequently, the operation of the air conditioning system 100 according to the present embodiment will be described.
 室内機1で室内200を冷房する場合、第1冷凍サイクル回路11は次のように動作する。
 圧縮機12で圧縮された冷媒は、高温高圧のガス冷媒となり、室外熱交換器14に送り込まれる。室外熱交換器14に流れ込んだ冷媒は、室外空気に熱を放出することで液化する。液化した冷媒は、膨張装置15で減圧されて気液二相状態となる。膨張装置15で減圧されて気液二相状態となった冷媒は、室内熱交換器16に流入し、室内200の空気から熱を吸収することで(室内200の空気を冷却することで)ガス化する。ガス化した冷媒は圧縮機12に戻る。一方、室内熱交換器16で冷却された空気は、再び室内200へ戻る。これにより、室内機1で室内200を冷房することが可能となる。
When the room 200 is cooled by the indoor unit 1, the first refrigeration cycle circuit 11 operates as follows.
The refrigerant compressed by the compressor 12 becomes a high-temperature and high-pressure gas refrigerant and is sent to the outdoor heat exchanger 14. The refrigerant that has flowed into the outdoor heat exchanger 14 is liquefied by releasing heat to the outdoor air. The liquefied refrigerant is decompressed by the expansion device 15 and becomes a gas-liquid two-phase state. The refrigerant that has been decompressed by the expansion device 15 and is in a gas-liquid two-phase state flows into the indoor heat exchanger 16 and absorbs heat from the air in the room 200 (by cooling the air in the room 200). Turn into. The gasified refrigerant returns to the compressor 12. On the other hand, the air cooled by the indoor heat exchanger 16 returns to the room 200 again. Thereby, the indoor unit 1 can cool the room 200.
 また、室内機1で室内200を暖房する場合、第1冷凍サイクル回路11は次のように動作する。
 圧縮機12で圧縮された冷媒は、高温高圧のガス冷媒となる。圧縮機12で圧縮された高温高圧のガス冷媒は、室内熱交換器16に送り込まれる。室内熱交換器16に流れ込んだ冷媒は、室内200の空気に熱を放出することで(室内200の空気を加熱することで)液化する。液化した冷媒は、膨張装置15で減圧されて気液二相状態となり、室外熱交換器14にて室外空気から熱を吸収することでガス化する。ガス化した冷媒は圧縮機12に戻る。一方、室内熱交換器16で加熱された空気は、再び室内200へ戻る。これにより、室内機1で室内200を暖房することが可能となる。
Further, when the room 200 is heated by the indoor unit 1, the first refrigeration cycle circuit 11 operates as follows.
The refrigerant compressed by the compressor 12 becomes a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant compressed by the compressor 12 is sent to the indoor heat exchanger 16. The refrigerant flowing into the indoor heat exchanger 16 is liquefied by releasing heat to the air in the room 200 (by heating the air in the room 200). The liquefied refrigerant is decompressed by the expansion device 15 to be in a gas-liquid two-phase state, and is gasified by absorbing heat from the outdoor air in the outdoor heat exchanger 14. The gasified refrigerant returns to the compressor 12. On the other hand, the air heated by the indoor heat exchanger 16 returns to the room 200 again. As a result, the indoor unit 200 can be heated by the indoor unit 1.
 また、換気装置3で室内200を冷房する場合、第2冷凍サイクル回路21は次のように動作する。
 圧縮機22で圧縮された冷媒は、高温高圧のガス冷媒となり、室外熱交換器24に送り込まれる。室外熱交換器24に流れ込んだ冷媒は、室外空気に熱を放出することで液化する。液化した冷媒は、膨張装置25で減圧されて気液二相状態となる。膨張装置25で減圧されて気液二相状態となった冷媒は、室内熱交換器26に流入し、換気装置3内に取り込まれた室外空気から熱を吸収することで(室外空気を冷却することで)ガス化する。ガス化した冷媒は圧縮機22に戻る。一方、室内熱交換器26で冷却された室外空気は、室内200に供給される。これにより、換気装置3で室内200を冷房することが可能となる。
Further, when the room 200 is cooled by the ventilator 3, the second refrigeration cycle circuit 21 operates as follows.
The refrigerant compressed by the compressor 22 becomes a high-temperature and high-pressure gas refrigerant and is sent to the outdoor heat exchanger 24. The refrigerant that has flowed into the outdoor heat exchanger 24 is liquefied by releasing heat to the outdoor air. The liquefied refrigerant is decompressed by the expansion device 25 and becomes a gas-liquid two-phase state. The refrigerant that has been decompressed by the expansion device 25 and is in a gas-liquid two-phase state flows into the indoor heat exchanger 26 and absorbs heat from the outdoor air taken into the ventilation device 3 (cools the outdoor air). Gasification). The gasified refrigerant returns to the compressor 22. On the other hand, the outdoor air cooled by the indoor heat exchanger 26 is supplied to the room 200. Thereby, the room 200 can be cooled by the ventilation device 3.
 また、換気装置3で室内200を暖房する場合、第2冷凍サイクル回路21は次のように動作する。
 圧縮機22で圧縮された冷媒は、高温高圧のガス冷媒となる。圧縮機22で圧縮された高温高圧のガス冷媒は、室内熱交換器26に送り込まれる。室内熱交換器26に流れ込んだ冷媒は、換気装置3内に取り込まれた室外空気に熱を放出することで(室外空気を加熱することで)液化する。液化した冷媒は、膨張装置25で減圧されて気液二相状態となり、室外熱交換器24にて室外空気から熱を吸収することでガス化する。ガス化した冷媒は圧縮機22に戻る。一方、室内熱交換器26で加熱された室外空気は、室内200に供給される。これにより、換気装置3で室内200を暖房することが可能となる。
Further, when the room 200 is heated by the ventilator 3, the second refrigeration cycle circuit 21 operates as follows.
The refrigerant compressed by the compressor 22 becomes a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant compressed by the compressor 22 is sent to the indoor heat exchanger 26. The refrigerant flowing into the indoor heat exchanger 26 is liquefied by releasing heat to the outdoor air taken into the ventilation device 3 (by heating the outdoor air). The liquefied refrigerant is decompressed by the expansion device 25 to be in a gas-liquid two-phase state, and is gasified by absorbing heat from outdoor air in the outdoor heat exchanger 24. The gasified refrigerant returns to the compressor 22. On the other hand, the outdoor air heated by the indoor heat exchanger 26 is supplied to the room 200. Thereby, the room 200 can be heated by the ventilation device 3.
 ここで、上述のように、本実施の形態に係る空気調和システム100は、室内200を暖房する際、室内200の暖房負荷に基づいて、運転モードを異ならせている。 Here, as described above, the air conditioning system 100 according to the present embodiment varies the operation mode based on the heating load of the room 200 when the room 200 is heated.
 具体的には、制御装置40の空調負荷推定手段42は、室内200の暖房負荷を推定する。そして、制御装置40の凝縮温度制御手段43は、空調負荷推定手段42が推定した暖房負荷と記憶手段41に記憶された閾値L0とを比較する。 Specifically, the air conditioning load estimation means 42 of the control device 40 estimates the heating load of the room 200. The condensing temperature control means 43 of the control device 40 compares the heating load estimated by the air conditioning load estimation means 42 with the threshold L0 stored in the storage means 41.
 そして、図4に示すように、室内200の暖房負荷が閾値L0よりも小さいゾーン1の場合、凝縮温度制御手段43は図5に示す運転モードで室内機1及び換気装置3を制御する。また、室内200の暖房負荷が閾値L0以上となるゾーン2の場合、凝縮温度制御手段43は図7に示す運転モードで室内機1及び換気装置3を制御する。 And as shown in FIG. 4, when the heating load of the room 200 is the zone 1 smaller than the threshold value L0, the condensation temperature control means 43 controls the indoor unit 1 and the ventilator 3 in the operation mode shown in FIG. Moreover, in the zone 2 where the heating load of the room 200 is equal to or higher than the threshold value L0, the condensation temperature control means 43 controls the indoor unit 1 and the ventilation device 3 in the operation mode shown in FIG.
 具体的には、低暖房負荷時のゾーン1の場合、図5に示すように、室内200の暖房を行う際、凝縮温度制御手段43は、室内機1の加熱を停止させ、換気装置3の加熱量を可変に制御して、室内200を暖房する。詳しくは、凝縮温度制御手段43は、設定温度とRA温度検出装置32の検出値との差ΔT(=設定温度-RA温度検出装置32の検出値)を算出する。そして、凝縮温度制御手段43は、ΔTがΔT>T1[K]の場合、第2冷凍サイクル回路21の凝縮温度がCTmaxとなるように、第2冷凍サイクル回路21を動作させる。また、凝縮温度制御手段43は、ΔTが0[K]≦ΔT≦T1[K]の場合、ΔTの大きさに応じて第2冷凍サイクル回路21の凝縮温度を変化させて、第2冷凍サイクル回路21を動作させる。詳しくは、凝縮温度制御手段43は、ΔTが大きくなる程第2冷凍サイクル回路21の凝縮温度を大きくして、第2冷凍サイクル回路21を動作させる。また、凝縮温度制御手段43は、ΔTがT2[K]≦ΔT<0[K]の場合、第2冷凍サイクル回路21の凝縮温度がCTminとなるように、第2冷凍サイクル回路21を動作させる。また、凝縮温度制御手段43は、ΔTがΔT<T2[K]の場合、換気装置3の加熱を停止させる。つまり、第2冷凍サイクル回路21の少なくとも圧縮機22を停止させる。また、ΔTがΔT<T2[K]の場合、室内200の室温が設定温度に対して高くなりすぎているということで、室内機1で室内200の冷房運転を行う。 Specifically, in the case of zone 1 at a low heating load, as shown in FIG. 5, when heating the room 200, the condensation temperature control means 43 stops heating the indoor unit 1, The room 200 is heated by variably controlling the heating amount. Specifically, the condensing temperature control unit 43 calculates a difference ΔT (= set temperature−detected value of the RA temperature detecting device 32) between the set temperature and the detected value of the RA temperature detecting device 32. Then, the condensation temperature control means 43 operates the second refrigeration cycle circuit 21 so that the condensation temperature of the second refrigeration cycle circuit 21 becomes CTmax when ΔT is ΔT> T1 [K]. Further, when ΔT is 0 [K] ≦ ΔT ≦ T1 [K], the condensation temperature control means 43 changes the condensation temperature of the second refrigeration cycle circuit 21 in accordance with the magnitude of ΔT, and the second refrigeration cycle. The circuit 21 is operated. Specifically, the condensation temperature control means 43 increases the condensation temperature of the second refrigeration cycle circuit 21 as ΔT increases, and operates the second refrigeration cycle circuit 21. The condensation temperature control means 43 operates the second refrigeration cycle circuit 21 so that the condensation temperature of the second refrigeration cycle circuit 21 becomes CTmin when ΔT is T2 [K] ≦ ΔT <0 [K]. . Moreover, the condensation temperature control means 43 stops the heating of the ventilator 3 when ΔT is ΔT <T2 [K]. That is, at least the compressor 22 of the second refrigeration cycle circuit 21 is stopped. When ΔT is ΔT <T2 [K], the indoor unit 200 performs the cooling operation of the room 200 because the room temperature of the room 200 is too high with respect to the set temperature.
 ここで、図5に示すCTmaxは、第2冷凍サイクル回路21が動作可能な最高凝縮温度である。このCTmaxは耐圧等で決定される。また、図5に示すCTminは、第2冷凍サイクル回路21が動作可能な最低凝縮温度である。このCTminは、換気装置3から吹き出される空気の温度の下限値、及び、第2冷凍サイクル回路21の動作時に許容される冷媒の最小高低圧差等から決定される。また、T1は、快適性上許容される温度差であり、例えば1[K]に設定される。T2は、換気装置3の加熱を停止する温度差ΔTであり、サーモOFF点にあたる。T2も、快適性上許容される温度差であり、例えば1[K]に設定される。 Here, CTmax shown in FIG. 5 is the maximum condensation temperature at which the second refrigeration cycle circuit 21 can operate. This CTmax is determined by the breakdown voltage or the like. Further, CTmin shown in FIG. 5 is the lowest condensation temperature at which the second refrigeration cycle circuit 21 can operate. This CTmin is determined from the lower limit value of the temperature of the air blown out from the ventilator 3 and the minimum high / low pressure difference of the refrigerant allowed when the second refrigeration cycle circuit 21 is operated. Further, T1 is a temperature difference allowed for comfort, and is set to 1 [K], for example. T2 is a temperature difference ΔT at which heating of the ventilator 3 is stopped, and corresponds to the thermo OFF point. T2 is also a temperature difference allowed for comfort, and is set to 1 [K], for example.
 このような動作にすることで、室内200暖房負荷が小さい場合(低暖房負荷の場合)、換気装置3の暖房しすぎによる室内機1の冷房負荷増大を防止し、空気調和システム100の消費電力量を低減することが可能となる。 With this operation, when the indoor 200 heating load is small (in the case of a low heating load), an increase in the cooling load of the indoor unit 1 due to excessive heating of the ventilation device 3 is prevented, and the power consumption of the air conditioning system 100 is reduced. The amount can be reduced.
 近年、建物の断熱性能が向上している。このため、従来の空気調和システムの場合、外気から導入される空気のエンタルピーが低い冬期においても、室内は冷房負荷となるケースが多い。つまり、従来の空気調和システムの場合、換気装置で室内を暖房すると、室内を逆に暖め過ぎて室内機側の冷房負荷を増やしてしまうといった課題があった。例えば、外気負荷が10[kw]、内部発熱が5[kw]の場合を想定する。また、建物の断熱性能の向上により、その他暖房負荷が2[kw]であったとする。この場合、室内の暖房負荷(=外気負荷+その他暖房負荷-内部発熱)は、10[kw]+2[kw]-5[kw]=7[kw]となる。このとき、従来の空気調和システムにおいては、室内機及び換気装置が各々単独で動作していたため、室内の設定温度と室外温度との差に基づいて加熱量が制御される換気装置は、換気によって発生する暖房負荷である外気負荷の全てを担う。このため、室内の暖房負荷(=外気負荷+その他暖房負荷-内部発熱)は、0[kw]+2[kw]-5[kw]=-3[kw]となり、室内機で室内を冷房しなければならない。 In recent years, the insulation performance of buildings has improved. For this reason, in the case of a conventional air conditioning system, the room often has a cooling load even in winter when the enthalpy of air introduced from outside air is low. That is, in the case of the conventional air conditioning system, there is a problem that if the room is heated by the ventilator, the room is excessively heated to increase the cooling load on the indoor unit side. For example, it is assumed that the outside air load is 10 [kw] and the internal heat generation is 5 [kw]. Further, it is assumed that the other heating load is 2 [kw] due to the improvement of the heat insulation performance of the building. In this case, the indoor heating load (= outside air load + other heating load−internal heat generation) is 10 [kw] +2 [kw] −5 [kw] = 7 [kw]. At this time, in the conventional air conditioning system, since the indoor unit and the ventilator are each independently operated, the ventilator whose heating amount is controlled based on the difference between the indoor set temperature and the outdoor temperature is determined by ventilation. It bears all of the outside air load that is the heating load that occurs. For this reason, the indoor heating load (= outside air load + other heating load−internal heat generation) becomes 0 [kw] +2 [kw] −5 [kw] = − 3 [kw], and the room must be cooled with the indoor unit. I must.
 これに対して、本実施の形態に係る空気調和システム100は、上述のように、室内200の設定温度と室内200の室内温度との差に基づいて、換気装置3の加熱量が制御される。このため、外気負荷の一部を担うように換気装置3を動作させることができる(例えば7[kw]の加熱)。このため、本実施の形態に係る空気調和システム100においては、室内200の暖房負荷(=外気負荷+その他暖房負荷-内部発熱)を3[kw]+2[kw]-5[kw]=0[kw]とでき、室内機1での室内200の冷房を回避できる。したがって、空気調和システム100の消費電力量を低減することが可能となる。 On the other hand, in the air conditioning system 100 according to the present embodiment, the heating amount of the ventilation device 3 is controlled based on the difference between the set temperature of the room 200 and the room temperature of the room 200 as described above. . For this reason, the ventilator 3 can be operated so as to bear a part of the outside air load (for example, heating of 7 [kw]). For this reason, in the air conditioning system 100 according to the present embodiment, the heating load (= outside air load + other heating load−internal heat generation) of the room 200 is 3 [kw] +2 [kw] −5 [kw] = 0 [ kw], and cooling of the room 200 in the indoor unit 1 can be avoided. Therefore, the power consumption of the air conditioning system 100 can be reduced.
 なお、図5に示した運転モードにおいては、ΔTがΔT<T2[K]の場合、換気装置3の加熱を停止させる。この場合、温度の低い外気が直接室内200に供給され、室内200の快適性が低下するというということがあるかもしれない。このような場合、図6に示すように、ΔTがΔT<T2[K]の場合でも、第2冷凍サイクル回路21の凝縮温度がCTminとなるように、第2冷凍サイクル回路21を動作させてもよい。 In the operation mode shown in FIG. 5, when ΔT is ΔT <T2 [K], heating of the ventilator 3 is stopped. In this case, the outside air having a low temperature may be directly supplied to the room 200, and the comfort of the room 200 may be reduced. In such a case, as shown in FIG. 6, even when ΔT is ΔT <T2 [K], the second refrigeration cycle circuit 21 is operated so that the condensation temperature of the second refrigeration cycle circuit 21 becomes CTmin. Also good.
 一方、高暖房負荷時のゾーン2の場合、図7に示すように、室内200の暖房を行う際、凝縮温度制御手段43は、室内機1及び換気装置3の双方の加熱量を制御する。 On the other hand, in the case of zone 2 under a high heating load, as shown in FIG. 7, when heating the room 200, the condensation temperature control means 43 controls the heating amounts of both the indoor unit 1 and the ventilator 3.
 詳しくは、加熱能力が低い換気装置3は、図7(A)に示すように、一定の加熱量に制御される。つまり、凝縮温度制御手段43は、第2冷凍サイクル回路21の凝縮温度がCTminで一定となるように第2冷凍サイクル回路21を動作させる。なお、換気装置3の加熱量を一定にする当該動作では、第2冷凍サイクル回路21の凝縮温度は、必ずしもCTminである必要はなく、CTmaxとCTminとの間の凝縮温度であればよい。 Specifically, the ventilation device 3 having a low heating capacity is controlled to a constant heating amount as shown in FIG. That is, the condensation temperature control means 43 operates the second refrigeration cycle circuit 21 so that the condensation temperature of the second refrigeration cycle circuit 21 is constant at CTmin. In the operation for keeping the heating amount of the ventilation device 3 constant, the condensation temperature of the second refrigeration cycle circuit 21 does not necessarily have to be CTmin, and may be any condensation temperature between CTmax and CTmin.
 また、加熱能力が高い室内機1は、加熱量が可変に制御される。つまり、凝縮温度制御手段43は、設定温度とRA温度検出装置32の検出値との差ΔTi(=設定温度-RA温度検出装置32の検出値)を算出する。そして、凝縮温度制御手段43は、ΔTiがΔTi>T1i[K]の場合、第1冷凍サイクル回路11の凝縮温度がCTmaxiとなるように、第1冷凍サイクル回路11を動作させる。また、凝縮温度制御手段43は、ΔTiが0[K]≦ΔTi≦T1i[K]の場合、ΔTiの大きさに応じて第1冷凍サイクル回路11の凝縮温度を変化させて、第1冷凍サイクル回路11を動作させる。詳しくは、凝縮温度制御手段43は、ΔTiが大きくなる程第1冷凍サイクル回路11の凝縮温度を大きくして、第1冷凍サイクル回路11を動作させる。また、凝縮温度制御手段43は、ΔTiがT2i[K]≦ΔTi<0[K]の場合、第1冷凍サイクル回路11の凝縮温度がCTminiとなるように、第1冷凍サイクル回路11を動作させる。また、凝縮温度制御手段43は、ΔTiがΔTi<T2i[K]の場合、室内機1の加熱を停止させる。つまり、第1冷凍サイクル回路11の少なくとも圧縮機12を停止させる。 In the indoor unit 1 having a high heating capacity, the heating amount is controlled variably. That is, the condensing temperature control means 43 calculates the difference ΔTi (= set temperature−detected value of the RA temperature detecting device 32) between the set temperature and the detected value of the RA temperature detecting device 32. Then, the condensation temperature control means 43 operates the first refrigeration cycle circuit 11 so that the condensation temperature of the first refrigeration cycle circuit 11 becomes CTmaxi when ΔTi is ΔTi> T1i [K]. Further, when ΔTi is 0 [K] ≦ ΔTi ≦ T1i [K], the condensing temperature control means 43 changes the condensing temperature of the first refrigeration cycle circuit 11 according to the magnitude of ΔTi, and thereby the first refrigeration cycle. The circuit 11 is operated. Specifically, the condensing temperature control means 43 increases the condensing temperature of the first refrigeration cycle circuit 11 as ΔTi increases, and operates the first refrigeration cycle circuit 11. Further, the condensation temperature control means 43 operates the first refrigeration cycle circuit 11 so that the condensation temperature of the first refrigeration cycle circuit 11 becomes CTmini when ΔTi is T2i [K] ≦ ΔTi <0 [K]. . Moreover, the condensation temperature control means 43 stops the heating of the indoor unit 1 when ΔTi is ΔTi <T2i [K]. That is, at least the compressor 12 of the first refrigeration cycle circuit 11 is stopped.
 ここで、図7に示すCTmaxiは、第1冷凍サイクル回路11が動作可能な最高凝縮温度である。このCTmaxiは耐圧等で決定される。また、図7に示すCTminiは、第1冷凍サイクル回路11が動作可能な最低凝縮温度である。このCTminiは、室内機1から吹き出される空気の温度の下限値、及び、第1冷凍サイクル回路11の動作時に許容される冷媒の最小高低圧差等から決定される。また、T1iは、快適性上許容される温度差であり、例えば1[K]に設定される。T2iは、室内機1の加熱を停止する温度差ΔTiであり、サーモOFF点にあたる。T2iも、快適性上許容される温度差であり、例えば1[K]に設定される。 Here, CTmaxi shown in FIG. 7 is the maximum condensation temperature at which the first refrigeration cycle circuit 11 can operate. This CTmaxi is determined by the breakdown voltage or the like. Further, CTmini shown in FIG. 7 is the lowest condensation temperature at which the first refrigeration cycle circuit 11 can operate. This CTmini is determined from the lower limit value of the temperature of the air blown out from the indoor unit 1 and the minimum high / low pressure difference of the refrigerant allowed when the first refrigeration cycle circuit 11 is operated. T1i is a temperature difference allowed for comfort, and is set to 1 [K], for example. T2i is a temperature difference ΔTi for stopping the heating of the indoor unit 1, and corresponds to the thermo OFF point. T2i is also a temperature difference allowed for comfort, and is set to 1 [K], for example.
 最後に、本実施の形態に係る空気調和システム100における暖房運転時の運転モード切替制御フローを説明する。 Finally, the operation mode switching control flow during heating operation in the air-conditioning system 100 according to the present embodiment will be described.
 図8は、本実施の形態に係る空気調和システムにおける暖房運転時の運転モードの切替制御を示すフローチャートである。
 空気調和システム100において室内200の暖房運転が開始されると、(ステップS1)、ステップS2において、制御装置40の空調負荷推定手段42は、室内200の暖房負荷を推定する。また、ステップS2において、制御装置40の凝縮温度制御手段43は、空調負荷推定手段42が推定した暖房負荷と記憶手段41に記憶された閾値L0とを比較する。
FIG. 8 is a flowchart showing operation mode switching control during heating operation in the air-conditioning system according to the present embodiment.
When the heating operation of the room 200 is started in the air conditioning system 100 (step S1), the air conditioning load estimation means 42 of the control device 40 estimates the heating load of the room 200 in step S2. In step S <b> 2, the condensation temperature control means 43 of the control device 40 compares the heating load estimated by the air conditioning load estimation means 42 with the threshold value L <b> 0 stored in the storage means 41.
 ステップS2において室内200の暖房負荷が閾値L0よりも小さいと判断された場合、ステップS3において、凝縮温度制御手段43は、図5又は図6で示した換気装置3側の凝縮温度可変制御(CT可変制御)を実施する。その後、ステップS4に進み、凝縮温度制御手段43は、設定温度とRA温度検出装置32の検出値との差ΔTがT2[K]より小さいかどうかを判定する。 When it is determined in step S2 that the heating load of the room 200 is smaller than the threshold L0, in step S3, the condensing temperature control means 43 performs the condensing temperature variable control (CT on the ventilator 3 side shown in FIG. 5 or FIG. 6. Variable control). Thereafter, the process proceeds to step S4, where the condensing temperature control means 43 determines whether or not the difference ΔT between the set temperature and the detected value of the RA temperature detecting device 32 is smaller than T2 [K].
 ステップS4においてΔTがΔT<T2[K]の場合、凝縮温度制御手段43は、ステップS5で室内機1による室内200の冷房運転を実施し、ステップS4に戻る。また、ステップS4においてT2[K]≦ΔTの場合、凝縮温度制御手段43は、ステップS2に戻る。 When ΔT is ΔT <T2 [K] in step S4, the condensation temperature control means 43 performs the cooling operation of the room 200 by the indoor unit 1 in step S5, and returns to step S4. If T2 [K] ≦ ΔT in step S4, the condensation temperature control means 43 returns to step S2.
 一方、ステップS2において室内200の暖房負荷が閾値L0以上と判断された場合、ステップS6において、凝縮温度制御手段43は、図7に示すように換気装置3側は凝縮温度一定制御(CT一定制御)、室内機1側は凝縮温度可変制御(CT可変制御)を実施する。その後、ステップS2に戻る。 On the other hand, if it is determined in step S2 that the heating load of the room 200 is equal to or greater than the threshold value L0, in step S6, the condensing temperature control means 43 causes the condensing temperature control (CT constant control) on the ventilator 3 side as shown in FIG. ), The indoor unit 1 side performs the condensation temperature variable control (CT variable control). Then, it returns to step S2.
 このような動作にすることで、室内200暖房負荷が大きい場合(高暖房負荷の場合)、空気調和システム100の効率を従来よりも向上させることができる。 By performing such an operation, when the indoor 200 heating load is large (in the case of a high heating load), the efficiency of the air conditioning system 100 can be improved as compared with the conventional case.
 例えば、外気負荷が20[kw]、その他暖房負荷が8[kw]、及び、内部発熱が5[kw]の場合を想定する。この場合、室内の暖房負荷(=外気負荷+その他暖房負荷-内部発熱)は、20[kw]+8[kw]-5[kw]=23[kw]となる。このとき、従来の空気調和システムにおいては、室内機及び換気装置が各々単独で動作していたため、室内の設定温度と室外温度との差に基づいて加熱量が制御される換気装置は、換気によって発生する暖房負荷である外気負荷の全てを担う。このため、室内の暖房負荷(=外気負荷+その他暖房負荷-内部発熱)は、0[kw]+8[kw]-5[kw]=3[kw]となり、加熱能力の高い室内機は僅か3[kw]の加熱を行うこととなる。したがって、加熱能力が低い換気装置の方が、加熱能力の高い室内機よりも大きな加熱量を発生することとなり、空気調和システムの効率が悪化してしまう。 For example, it is assumed that the outside air load is 20 [kw], the other heating load is 8 [kw], and the internal heat generation is 5 [kw]. In this case, the indoor heating load (= outside air load + other heating load−internal heat generation) is 20 [kw] +8 [kw] −5 [kw] = 23 [kw]. At this time, in the conventional air conditioning system, since the indoor unit and the ventilator are each independently operated, the ventilator whose heating amount is controlled based on the difference between the indoor set temperature and the outdoor temperature is determined by ventilation. It bears all of the outside air load that is the heating load that occurs. For this reason, the indoor heating load (= outside air load + other heating load−internal heat generation) is 0 [kw] +8 [kw] −5 [kw] = 3 [kw], and only 3 indoor units with high heating capacity are used. [Kw] will be heated. Therefore, a ventilation device with a low heating capacity generates a larger heating amount than an indoor unit with a high heating capacity, and the efficiency of the air conditioning system is deteriorated.
 これに対して、本実施の形態に係る空気調和システム100は、上述のように、換気装置3側は凝縮温度一定制御(CT一定制御)となる。このため、外気負荷の一部を担うように換気装置3を動作させることができる(例えば5[kw]の加熱)。このため、本実施の形態に係る空気調和システム100においては、室内200の暖房負荷(=外気負荷+その他暖房負荷-内部発熱)を15[kw]+8[kw]-5[kw]=18[kw]とでき、加熱能力の高い室内機1が18[kw]の加熱を行うこととなる。したがって、空気調和システム100の効率を従来よりも向上させることができる。 In contrast, in the air conditioning system 100 according to the present embodiment, as described above, the ventilation device 3 side performs constant condensation temperature control (CT constant control). For this reason, the ventilator 3 can be operated so as to bear a part of the outside air load (for example, heating of 5 [kw]). For this reason, in the air conditioning system 100 according to the present embodiment, the heating load of the room 200 (= outside air load + other heating load−internal heat generation) is 15 [kw] +8 [kw] −5 [kw] = 18 [ kw], and the indoor unit 1 having a high heating capacity heats 18 [kw]. Therefore, the efficiency of the air conditioning system 100 can be improved as compared with the prior art.
 なお、ステップS6において、凝縮温度制御手段43は、室内機1側の凝縮温度(第1冷凍サイクル回路11の凝縮温度)に応じて、換気装置3側の凝縮温度(第2冷凍サイクル回路21の凝縮温度)を変化させ、その後に換気装置3の凝縮温度一定制御(CT一定制御)を行ってもよい。例えば、室内機1側の凝縮温度がCTmaxiに近い場合は、図9(A)に示すように換気装置3の凝縮温度を上昇させ、図9(B)に示すように室内機1側の凝縮温度を低下させてもよい。これにより、空気調和システム100を高効率化させてもよい。また例えば、ステップS6で換気装置3側の凝縮温度がCTmaxとCTminの間で一定運転している際に、室内機1の圧縮機12が停止及び駆動を繰り返すような場合(例えば室内機1側の凝縮温度がCTminiに近い場合等)、換気装置3側の凝縮温度を下げてもよい。 In step S6, the condensing temperature control means 43 determines the condensing temperature on the ventilator 3 side (of the second refrigeration cycle circuit 21) according to the condensing temperature on the indoor unit 1 side (condensing temperature on the first refrigeration cycle circuit 11). The condensing temperature) may be changed, and then the condensing temperature constant control (CT constant control) of the ventilation device 3 may be performed. For example, when the condensation temperature on the indoor unit 1 side is close to CTmaxi, the condensation temperature of the ventilator 3 is increased as shown in FIG. 9 (A), and the condensation on the indoor unit 1 side is shown in FIG. 9 (B). The temperature may be lowered. Thereby, you may make the air conditioning system 100 highly efficient. Further, for example, when the compressor 12 of the indoor unit 1 is repeatedly stopped and driven when the condensing temperature on the ventilator 3 side is constantly operated between CTmax and CTmin in step S6 (for example, the indoor unit 1 side) If the condensation temperature is close to CTmini), the condensation temperature on the ventilator 3 side may be lowered.
 以上、本実施の形態に係る空気調和システム100は、室内機1及び換気装置3の双方で室内200を暖房する際、加熱能力が低い換気装置3の加熱量を一定に制御し、加熱能力が高い室内機1の加熱量を可変に制御する構成となっている。このため、本実施の形態に係る空気調和システム100は、室内機1及び換気装置3の双方で室内200を暖房する際、従来よりも効率を向上させることができる。 As described above, when the air conditioning system 100 according to the present embodiment heats the room 200 with both the indoor unit 1 and the ventilator 3, the heating amount of the ventilator 3 with a low heating capacity is controlled to be constant, and the heating capacity is The heating amount of the high indoor unit 1 is variably controlled. For this reason, the air conditioning system 100 which concerns on this Embodiment can improve efficiency rather than before, when heating the room | chamber interior 200 by both the indoor unit 1 and the ventilation apparatus 3. FIG.
 なお、ホール等のような人が密集する室内に換気装置3が設けられる場合、大きな換気量が必要となるため、換気装置3の方が室内機1よりも風量が大きくなる場合がある。つまり、換気装置3の加熱能力の方が、室内機1の加熱能力よりも高くなる場合がある。このような場合には、室内機1及び換気装置3の双方で室内200を暖房する際、つまり上述のステップS6において、加熱能力が低い室内機1の加熱量を一定に制御し、加熱能力が高い換気装置3の加熱量を可変に制御すればよい。このようにすることで、空気調和システム100の効率を従来よりも向上させることができる。 In addition, when the ventilator 3 is provided in a room such as a hall where people are crowded, a large amount of ventilation is required, and thus the ventilator 3 may have a larger air volume than the indoor unit 1. That is, the heating capacity of the ventilator 3 may be higher than the heating capacity of the indoor unit 1. In such a case, when the room 200 is heated by both the indoor unit 1 and the ventilation device 3, that is, in the above-described step S6, the heating amount of the indoor unit 1 having a low heating capacity is controlled to be constant. What is necessary is just to control the heating amount of the high ventilation apparatus 3 variably. By doing in this way, the efficiency of the air conditioning system 100 can be improved compared with the past.
 また、本実施の形態に係る換気装置3は、図3に示した構成に限定されるものではなく、例えば図10のように構成してもよい。 Further, the ventilation device 3 according to the present embodiment is not limited to the configuration shown in FIG. 3, and may be configured as shown in FIG. 10, for example.
 図10は、本発明の実施の形態に係る空気調和システムの換気装置の別の一例を示す概略図である。
 図10に示す換気装置3は、排気用送風機29及び全熱交換器30を備えている。つまり、図10に示す換気装置3は、排気用送風機29を駆動させることにより、室内200の空気を戻り空気RAとして換気装置3内に取り込み、全熱交換器30を通過させた後に排出空気EAとして室外へ排出する構成となっている。そして、図10に示す換気装置3は、換気装置3に取り込まれた室外空気を全熱交換器30へ流入させ、戻り空気RAと熱交換させた後に室内熱交換器26へ流入させる構成となっている。図10に示す換気装置3を用いることにより、室内200の空気に貯えられた熱を有効活用できる。
FIG. 10 is a schematic diagram illustrating another example of the ventilation device of the air-conditioning system according to the embodiment of the present invention.
The ventilation device 3 shown in FIG. 10 includes an exhaust fan 29 and a total heat exchanger 30. That is, the ventilator 3 shown in FIG. 10 drives the exhaust fan 29 to take the air in the room 200 as the return air RA into the ventilator 3, passes the total heat exchanger 30, and then discharges the air EA. It is configured to discharge to the outside. The ventilator 3 shown in FIG. 10 has a configuration in which the outdoor air taken into the ventilator 3 flows into the total heat exchanger 30, exchanges heat with the return air RA, and then flows into the indoor heat exchanger 26. ing. By using the ventilation device 3 shown in FIG. 10, the heat stored in the air in the room 200 can be effectively used.
 また、本実施の形態に係る空調負荷推定手段42は、室内200の暖房負荷の推定方法を特に限定するものではないが、例えば、RA温度検出装置32の検出値とOA温度検出装置31の検出値との差(RA温度検出装置32の検出値-OA温度検出装置31の検出値)、つまり、室内温度と室外温度との差に基づいて暖房負荷を推定してもよい。この場合、図11に示すように、室内温度-室外温度の値が大きいほど、暖房負荷が大きいこととなる。そして、室内温度-室外温度の値が閾値L0よりも小さい場合にはゾーン1となり、室内温度-室外温度の値が閾値L0以上の場合にはゾーン2となる。 In addition, the air conditioning load estimation unit 42 according to the present embodiment does not particularly limit the method of estimating the heating load of the room 200, but for example, the detection value of the RA temperature detection device 32 and the detection of the OA temperature detection device 31 The heating load may be estimated based on the difference between the two values (the detected value of the RA temperature detecting device 32−the detected value of the OA temperature detecting device 31), that is, the difference between the indoor temperature and the outdoor temperature. In this case, as shown in FIG. 11, the heating load increases as the value of the room temperature-outdoor temperature increases. When the room temperature-outdoor temperature value is smaller than the threshold value L0, the zone 1 is set. When the room temperature-outdoor temperature value is equal to or higher than the threshold value L0, the zone 2 is set.
 また、本実施の形態では、1つの閾値L0を用いて空気調和システム100の運転モードを決定したが、複数の閾値を用いて空気調和システム100の運転モードを決定してもよい。詳しくは、複数の閾値を記憶手段41に記憶させ、空調負荷推定手段42は、時間帯に応じて異なる閾値を用いて運転モードを決定してもよい。例えば、図12に示すように日射熱を考慮して、2つの閾値L0,L1を記憶手段41に記憶させてもよい。そして、日中は日射による暖房負荷低減効果があるので、空調負荷推定手段42は、日射熱分だけL0よりも大きな値のL1を用いて運転モードを決定してもよい。このようにすることで、日射有り無しにおける負荷変動分を考慮することが可能となる。 In the present embodiment, the operation mode of the air conditioning system 100 is determined using one threshold value L0. However, the operation mode of the air conditioning system 100 may be determined using a plurality of threshold values. Specifically, a plurality of threshold values may be stored in the storage unit 41, and the air conditioning load estimation unit 42 may determine the operation mode using different threshold values depending on the time zone. For example, two threshold values L0 and L1 may be stored in the storage unit 41 in consideration of solar heat as shown in FIG. And since there is a heating load reduction effect due to solar radiation during the day, the air conditioning load estimation means 42 may determine the operation mode using L1 having a value larger than L0 by the amount of solar heat. By doing in this way, it becomes possible to consider the load fluctuation part with and without solar radiation.
 また、本実施の形態では、凝縮温度を制御することにより室内機1及び換気装置3の加熱量を制御する構成を説明したが、室内機1及び換気装置3の加熱量の制御方法はこれに限定されるものではない。 In the present embodiment, the configuration in which the heating amount of the indoor unit 1 and the ventilating device 3 is controlled by controlling the condensation temperature has been described. It is not limited.
 図13は、本発明の実施の形態に係る空気調和システム別の一例を示す概略図である。図13に示す空気調和システム100において、室内機1は、該室内機1から吹き出される空気の温度を検出する吹出温度検出装置33を備えている。また、換気装置3は、該換気装置3から吹き出される空気の温度を検出する吹出温度検出装置34を備えている。そして、図13に示す空気調和システム100は、制御装置40の加熱量制御手段44(上記の凝縮温度制御手段43に相当)によって、室内機1及び換気装置3から吹き出される空気の温度を制御することにより、室内機1及び換気装置3の加熱量を制御している。室内機1から吹き出される空気の温度を高くすることにより、第1冷凍サイクル回路11の凝縮温度が高くなり、室内機1から吹き出される空気の温度を低くすることにより、第1冷凍サイクル回路11の凝縮温度が低くなる。また、換気装置3から吹き出される空気の温度を高くすることにより、第2冷凍サイクル回路21の凝縮温度が高くなり、換気装置3から吹き出される空気の温度を低くすることにより、第2冷凍サイクル回路21の凝縮温度が低くなる。このため、室内機1及び換気装置3から吹き出される空気の温度を制御することにより、室内機1及び換気装置3の加熱量を制御することができる。
 ここで、吹出温度検出装置33が本発明の第1温度検出装置に相当し、吹出温度検出装置34が本発明の第2温度検出装置に相当する。
FIG. 13 is a schematic diagram illustrating an example of each air conditioning system according to the embodiment of the present invention. In the air conditioning system 100 shown in FIG. 13, the indoor unit 1 includes a blowing temperature detection device 33 that detects the temperature of air blown from the indoor unit 1. In addition, the ventilator 3 includes a blowing temperature detection device 34 that detects the temperature of air blown from the ventilating device 3. The air conditioning system 100 shown in FIG. 13 controls the temperature of the air blown out from the indoor unit 1 and the ventilation device 3 by the heating amount control means 44 (corresponding to the condensation temperature control means 43) of the control device 40. By doing so, the heating amount of the indoor unit 1 and the ventilation device 3 is controlled. By increasing the temperature of the air blown from the indoor unit 1, the condensation temperature of the first refrigeration cycle circuit 11 is increased, and by reducing the temperature of the air blown from the indoor unit 1, the first refrigeration cycle circuit is increased. 11 condensation temperature is lowered. Further, by increasing the temperature of the air blown from the ventilator 3, the condensation temperature of the second refrigeration cycle circuit 21 is increased, and by lowering the temperature of the air blown from the ventilator 3, the second refrigeration is performed. The condensation temperature of the cycle circuit 21 is lowered. For this reason, the heating amount of the indoor unit 1 and the ventilator 3 can be controlled by controlling the temperature of the air blown out from the indoor unit 1 and the ventilator 3.
Here, the blowing temperature detecting device 33 corresponds to the first temperature detecting device of the present invention, and the blowing temperature detecting device 34 corresponds to the second temperature detecting device of the present invention.
 また、換気装置3に設ける第2加熱手段は、第2冷凍サイクル回路21の室内熱交換器26以外でもよい。 Further, the second heating means provided in the ventilation device 3 may be other than the indoor heat exchanger 26 of the second refrigeration cycle circuit 21.
 図14は、本発明の実施の形態に係る空気調和システムの換気装置のさらに別の一例を示す概略図である。
 図14に示す換気装置3は、第2加熱手段として室内熱交換器35を備えている。この室内熱交換器35は、ガス等を燃焼させた熱により、換気装置3に取り込まれた室外空気を加熱するものである。図14に示す換気装置3を用いる場合には、図13で説明したように、換気装置3から吹き出される空気の温度を制御することにより、換気装置3の加熱量を制御できる。なお、図14に示す換気装置3に第2冷凍サイクル回路21の室内熱交換器26が設けられているのは、換気装置3で室内200を冷房するためである。換気装置3で室内200を冷房しない場合には、換気装置3に室内熱交換器26を設ける必要(つまり、空気調和システム100に第2冷凍サイクル回路21を設ける必要)はない。
FIG. 14 is a schematic diagram illustrating still another example of the ventilation device of the air-conditioning system according to the embodiment of the present invention.
The ventilation device 3 shown in FIG. 14 includes an indoor heat exchanger 35 as the second heating means. The indoor heat exchanger 35 heats outdoor air taken into the ventilator 3 by heat generated by burning gas or the like. When the ventilator 3 shown in FIG. 14 is used, the heating amount of the ventilator 3 can be controlled by controlling the temperature of the air blown from the ventilator 3 as described in FIG. The reason why the indoor heat exchanger 26 of the second refrigeration cycle circuit 21 is provided in the ventilation device 3 shown in FIG. 14 is to cool the room 200 with the ventilation device 3. When the room 200 is not cooled by the ventilator 3, there is no need to provide the indoor heat exchanger 26 in the ventilator 3 (that is, the air conditioning system 100 needs to be provided with the second refrigeration cycle circuit 21).
 1 室内機、2 室外機(室内機系統)、3 換気装置、4 室外機(換気装置系統)、11 第1冷凍サイクル回路、12 圧縮機、13 四方弁、14 室外熱交換器、15 膨張装置、16 室内熱交換器、17 室外送風機、18 室内送風機、21 第2冷凍サイクル回路、22 圧縮機、23 四方弁、24 室外熱交換器、25 膨張装置、26 室内熱交換器、27 室外送風機、28 給気用送風機、29 排気用送風機、30 全熱交換器、31 OA温度検出装置、32 RA温度検出装置、33 吹出温度検出装置、34 吹出温度検出装置、35 室内熱交換器、40 制御装置、41 記憶手段、42 空調負荷推定手段、43 凝縮温度制御手段、44 加熱量制御手段、100 空気調和システム、101 冷媒配管、102 冷媒配管、200 室内。 1 indoor unit, 2 outdoor unit (indoor unit system), 3 ventilator, 4 outdoor unit (ventilator system), 11 first refrigeration cycle circuit, 12 compressor, 13 four-way valve, 14 outdoor heat exchanger, 15 expansion device , 16 Indoor heat exchanger, 17 Outdoor fan, 18 Indoor fan, 21 Second refrigeration cycle circuit, 22 Compressor, 23 Four-way valve, 24 Outdoor heat exchanger, 25 Expansion device, 26 Indoor heat exchanger, 27 Outdoor fan, 28 Blower for air supply, 29 Blower for exhaust, 30 Total heat exchanger, 31 OA temperature detector, 32 RA temperature detector, 33 Air outlet temperature detector, 34 Air outlet temperature detector, 35 Indoor heat exchanger, 40 Controller , 41 storage means, 42 air conditioning load estimation means, 43 condensing temperature control means, 44 heating amount control means, 100 air conditioning system, 10 Refrigerant pipe, 102 refrigerant pipe, 200 room.

Claims (12)

  1.  第1圧縮機、第1室外熱交換器、第1膨張装置及び第1室内熱交換器を有する第1冷凍サイクル回路と、
     第1加熱手段として前記第1室内熱交換器を有し、室内の空気を該第1加熱手段で加熱して前記室内へ戻す室内機と、
     第2加熱手段を有し、室外空気を該第2加熱手段で加熱して前記室内へ供給する換気装置と、
     前記室内機及び前記換気装置を制御する制御装置と、
     を備え、
     前記制御装置は、
     前記室内の暖房負荷を推定する空調負荷推定手段と、
     閾値を記憶する記憶手段と、
     前記空調負荷推定手段が推定した前記暖房負荷と前記閾値とを比較し、前記室内機及び前記換気装置の加熱量を制御する加熱量制御手段と、
     を有し、
     該加熱量制御手段は、
     前記暖房負荷が前記閾値以上の場合、前記室内機及び前記換気装置のうちで加熱能力が低い方の装置の加熱量を一定に制御し、前記室内機及び前記換気装置のうちで加熱能力が高い方の装置の加熱量を可変に制御する構成である空気調和システム。
    A first refrigeration cycle circuit having a first compressor, a first outdoor heat exchanger, a first expansion device, and a first indoor heat exchanger;
    An indoor unit having the first indoor heat exchanger as first heating means, and heating indoor air by the first heating means and returning the indoor air to the room;
    A ventilator having second heating means, for heating outdoor air by the second heating means and supplying the air into the room;
    A control device for controlling the indoor unit and the ventilation device;
    With
    The controller is
    Air-conditioning load estimating means for estimating the indoor heating load;
    Storage means for storing a threshold;
    A heating amount control means for comparing the heating load estimated by the air conditioning load estimating means with the threshold value and controlling the heating amount of the indoor unit and the ventilation device;
    Have
    The heating amount control means includes:
    When the heating load is equal to or greater than the threshold value, the heating amount of the indoor unit and the ventilator having a lower heating capacity is controlled to be constant, and the heating capacity of the indoor unit and the ventilator is high. An air conditioning system that is configured to variably control the heating amount of the other apparatus.
  2.  前記加熱量制御手段は、
     前記暖房負荷が前記閾値よりも小さい場合、前記室内機及び前記換気装置の一方の加熱を停止させ、前記室内機及び前記換気装置の他方の加熱量を可変に制御する構成である請求項1に記載の空気調和システム。
    The heating amount control means includes
    The configuration according to claim 1, wherein when the heating load is smaller than the threshold value, heating of one of the indoor unit and the ventilator is stopped, and the other heating amount of the indoor unit and the ventilator is variably controlled. The air conditioning system described.
  3.  前記加熱量制御手段は、前記第1冷凍サイクル回路の凝縮温度を制御することにより、前記室内機の加熱量を制御する構成である請求項1又は請求項2に記載の空気調和システム。 The air conditioning system according to claim 1 or 2, wherein the heating amount control means is configured to control a heating amount of the indoor unit by controlling a condensation temperature of the first refrigeration cycle circuit.
  4.  前記室内機は、該室内機から吹き出される空気の温度を検出する第1温度検出装置を備え、
     前記加熱量制御手段は、該室内機から吹き出される空気の温度を制御することにより、前記室内機の加熱量を制御する構成である請求項1又は請求項2に記載の空気調和システム。
    The indoor unit includes a first temperature detection device that detects a temperature of air blown from the indoor unit,
    The air conditioning system according to claim 1 or 2, wherein the heating amount control means is configured to control a heating amount of the indoor unit by controlling a temperature of air blown from the indoor unit.
  5.  第2圧縮機、第2室外熱交換器、第2膨張装置及び第2室内熱交換器を有する第2冷凍サイクル回路を備え、
     前記第2加熱手段として前記第2室内熱交換器を用いた請求項1~請求項4のいずれか一項に記載の空気調和システム。
    A second refrigeration cycle circuit having a second compressor, a second outdoor heat exchanger, a second expansion device, and a second indoor heat exchanger;
    The air conditioning system according to any one of claims 1 to 4, wherein the second indoor heat exchanger is used as the second heating means.
  6.  前記換気装置は、該換気装置から吹き出される空気の温度を検出する第2温度検出装置を備え、
     前記加熱量制御手段は、該換気装置から吹き出される空気の温度を制御することにより、前記換気装置の加熱量を制御する構成である請求項1~請求項5のいずれか一項に記載の空気調和システム。
    The ventilation device includes a second temperature detection device that detects a temperature of air blown from the ventilation device,
    The heating amount control means is configured to control a heating amount of the ventilation device by controlling a temperature of air blown from the ventilation device. Air conditioning system.
  7.  前記加熱量制御手段は、前記第2冷凍サイクル回路の凝縮温度を制御することにより、前記換気装置の加熱量を制御する構成である請求項5に記載の空気調和システム。 The air conditioning system according to claim 5, wherein the heating amount control means is configured to control a heating amount of the ventilator by controlling a condensation temperature of the second refrigeration cycle circuit.
  8.  前記室内機は第1送風機を備え、
     前記換気装置は第2送風機を備え、
     前記室内機及び前記換気装置は、
     前記第1送風機及び前記第2送風機のうちで風量が大きい方の送風機を有する側が、前記加熱能力が高い方の装置であり、
     前記第1送風機及び前記第2送風機のうちで風量が小さい方の送風機を有する側が、前記加熱能力が低い方の装置である請求項1~請求項7のずれか一項に記載の空気調和システム。
    The indoor unit includes a first blower,
    The ventilation device includes a second blower,
    The indoor unit and the ventilator are
    Of the first blower and the second blower, the side having the larger blower is the device having the higher heating capacity,
    The air conditioning system according to any one of claims 1 to 7, wherein a side of the first blower and the second blower that has a blower having a smaller air volume is a device having a lower heating capacity. .
  9.  請求項1~請求項8のいずれか一項に記載の空気調和システムであって、
     当該空気調和システムは、前記室内の温度を検出する室内温度検出装置を備え、
     前記記憶手段は、前記室内の設定温度を記憶する構成であり、
     前記加熱量制御手段は、
     前記室内機及び前記換気装置の加熱量を可変に制御する際、前記設定温度と前記室内温度検出装置の検出値との差に基づいて当該加熱量を制御する構成である空気調和システム。
    The air conditioning system according to any one of claims 1 to 8,
    The air conditioning system includes an indoor temperature detection device that detects the temperature of the room,
    The storage means is configured to store a set temperature in the room,
    The heating amount control means includes
    An air conditioning system configured to control the heating amount based on a difference between the set temperature and a detection value of the indoor temperature detection device when the heating amount of the indoor unit and the ventilation device is variably controlled.
  10.  該加熱量制御手段は、前記加熱能力が低い方の装置の加熱量を一定に制御する際、当該装置が運転可能な最低加熱量で当該装置を運転する構成である請求項1~請求項9のいずれか一項に記載の空気調和システム。 The heating amount control means is configured to operate the apparatus at a minimum heating amount that can be operated when the heating amount of the apparatus having the lower heating capacity is controlled to be constant. The air conditioning system according to any one of the above.
  11.  請求項1~請求項10のいずれか一項に記載の空気調和システムであって、
     当該空気調和システムは、前記室内の温度を検出する室内温度検出装置と、室外空気の温度を検出する室外温度検出装置と、を備え、
     前記空調負荷推定手段は、前記室内温度検出装置の検出値と前記室外温度検出装置の検出値との差に基づいて、前記暖房負荷を推定する構成である空気調和システム。
    The air conditioning system according to any one of claims 1 to 10,
    The air conditioning system includes an indoor temperature detection device that detects the indoor temperature, and an outdoor temperature detection device that detects the temperature of outdoor air,
    The air conditioning system is configured to estimate the heating load based on a difference between a detection value of the indoor temperature detection device and a detection value of the outdoor temperature detection device.
  12.  前記記憶手段は複数の前記閾値を記憶する構成であり、
     前記加熱量制御手段は、時間帯に応じて異なる前記閾値を用いる構成である請求項1~請求項11に記載の空気調和システム。
    The storage means is configured to store a plurality of the threshold values,
    The air conditioning system according to any one of claims 1 to 11, wherein the heating amount control means uses a different threshold value depending on a time zone.
PCT/JP2014/079199 2014-11-04 2014-11-04 Air conditioning system WO2016071951A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016557368A JP6490095B2 (en) 2014-11-04 2014-11-04 Air conditioning system
PCT/JP2014/079199 WO2016071951A1 (en) 2014-11-04 2014-11-04 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079199 WO2016071951A1 (en) 2014-11-04 2014-11-04 Air conditioning system

Publications (1)

Publication Number Publication Date
WO2016071951A1 true WO2016071951A1 (en) 2016-05-12

Family

ID=55908708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079199 WO2016071951A1 (en) 2014-11-04 2014-11-04 Air conditioning system

Country Status (2)

Country Link
JP (1) JP6490095B2 (en)
WO (1) WO2016071951A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3961113A4 (en) * 2019-05-31 2023-01-11 Daikin Industries, Ltd. Air-conditioning system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145070A (en) * 2004-11-17 2006-06-08 Hitachi Ltd Air conditioning system and air conditioning system control method
JP2012042153A (en) * 2010-08-20 2012-03-01 Mitsubishi Heavy Ind Ltd Outdoor-air treating air conditioner and multi-air conditioning system using the same
JP2012063117A (en) * 2010-09-17 2012-03-29 Kajima Corp Air conditioning system
JP2013139905A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Air conditioning system
JP2014137207A (en) * 2013-01-18 2014-07-28 Daikin Ind Ltd Air conditioning system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004293810A (en) * 2003-03-25 2004-10-21 Mitsubishi Electric Corp Air conditioning system
JP5371575B2 (en) * 2009-06-23 2013-12-18 アズビル株式会社 Air conditioning operation device and air conditioning operation method
JP5328951B2 (en) * 2012-03-28 2013-10-30 三菱電機株式会社 Air conditioning system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145070A (en) * 2004-11-17 2006-06-08 Hitachi Ltd Air conditioning system and air conditioning system control method
JP2012042153A (en) * 2010-08-20 2012-03-01 Mitsubishi Heavy Ind Ltd Outdoor-air treating air conditioner and multi-air conditioning system using the same
JP2012063117A (en) * 2010-09-17 2012-03-29 Kajima Corp Air conditioning system
JP2013139905A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Air conditioning system
JP2014137207A (en) * 2013-01-18 2014-07-28 Daikin Ind Ltd Air conditioning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3961113A4 (en) * 2019-05-31 2023-01-11 Daikin Industries, Ltd. Air-conditioning system

Also Published As

Publication number Publication date
JPWO2016071951A1 (en) 2017-04-27
JP6490095B2 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
US9074787B2 (en) Operation controller for compressor and air conditioner having the same
JP6249932B2 (en) Air conditioning system
WO2009119023A1 (en) Freezing apparatus
US20150369498A1 (en) Air-conditioning apparatus
US10955160B2 (en) Air conditioner including a plurality of utilization units connected in parallel to a heat source unit
EP2806228B1 (en) Air conditioner
WO2015122171A1 (en) Air conditioning device
WO2013145844A1 (en) Heat source system, device for controlling same, and method for controlling same
JP5846226B2 (en) Air conditioner
JP2012141113A (en) Air conditioning/water heating device system
JP5642121B2 (en) Air conditioner
JPWO2015098157A1 (en) Outdoor unit and refrigeration cycle apparatus
WO2018164253A1 (en) Air-conditioning device
JP2016114286A (en) Air conditioner
JP2012202581A (en) Refrigeration cycle device and control method thereof
KR100575682B1 (en) Air conditioner with equalization pipe between out door units
JP2013253718A (en) Air conditioner control device
JP7316759B2 (en) Air conditioner and air conditioning system
JP6490095B2 (en) Air conditioning system
JP7438342B2 (en) air conditioner
JP6448658B2 (en) Air conditioning system
JPWO2020003490A1 (en) Air conditioner
US10914487B2 (en) Low load mode of HVAC system
JP6047381B2 (en) air conditioner
JP2019128085A (en) Air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557368

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905654

Country of ref document: EP

Kind code of ref document: A1