WO2016070899A1 - Procédé de mise en service d'un réseau industriel d'automatisation ainsi qu'appareil de terrain - Google Patents
Procédé de mise en service d'un réseau industriel d'automatisation ainsi qu'appareil de terrain Download PDFInfo
- Publication number
- WO2016070899A1 WO2016070899A1 PCT/EP2014/073576 EP2014073576W WO2016070899A1 WO 2016070899 A1 WO2016070899 A1 WO 2016070899A1 EP 2014073576 W EP2014073576 W EP 2014073576W WO 2016070899 A1 WO2016070899 A1 WO 2016070899A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- field device
- simulation
- edd
- simulation model
- field
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000004088 simulation Methods 0.000 claims abstract description 61
- 230000008569 process Effects 0.000 claims description 28
- 230000006854 communication Effects 0.000 claims description 14
- 238000004891 communication Methods 0.000 claims description 13
- 230000003542 behavioural effect Effects 0.000 claims description 3
- 238000009434 installation Methods 0.000 abstract description 2
- 230000006399 behavior Effects 0.000 description 13
- 230000010354 integration Effects 0.000 description 11
- 230000008901 benefit Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011989 factory acceptance test Methods 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 2
- 238000011217 control strategy Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000590629 Biblis Species 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004801 process automation Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/4185—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Definitions
- the invention relates to a method for starting an industrial automation network with several Feldge ⁇ boards, which are interconnected by a network for data communication, wherein a configuration and parameterization of the field devices in the automation network is performed by a software tool according to the preamble of claim 1 Furthermore, the invention relates to a field device for supporting the implementation of the commissioning method according to claim 4.
- the commissioning phase of the plant's automation equipment is of particular importance.
- the pressure prevailing during the commissioning ⁇ sioning time and cost pressures is enormous high, as is to be started rapidly with the actual operating phase, in which the production is running at the plant and the respective plant overall gains generated.
- the previously selected and in the engineering phase from ⁇ placed in the system plan components of the automation equipment such as programmable logic controllers, so-called controllers, input / output devices, so-called remote IOs, transmitters, z.
- controllers input / output devices
- remote IOs transmitters
- transmitters z.
- control valves and motors which are generally referred to in the present application as field devices, put into operation.
- the field devices are connected by a network for data communication, frequently using fieldbuses that operate, for example, according to the protocols PROFIBUS, HART (Highway Addressable Remote Transducer) or FF (Fieldbus Foundation).
- the respective functionality of the field device eg. B. the provision of a measured value for ei ⁇ nen pressure by a pressure transducer, in each SCADA (Supervisory Control And Data Acquisition) system, eg. B WinCC (Windows Control Center), or PCS (Process Control System) z.
- SCADA Supervisory Control And Data Acquisition
- B WinCC Windows Control Center
- PCS Process Control System
- the simulation is to ensure there, that the measures for a particular field device ⁇ intended function blocks can also be loaded into this field device and run properly in this.
- a virtual field device is subdivided into a memory management, a processor management and a communication interface. So ⁇ with in particular the processing power and storage cherplatz of the field device involved in the simulation to ensure that sufficient to the real field devices of the respective storage space and each processor ⁇ stays awhile real performance of the machine when loading a control strategy to carry out the control strategy.
- EDDL Electronic Device Description Language
- FDT / DTM Field Device Tool / Device Type Manager
- EDD Electronic De ⁇ vice Description
- GSD General Station Description
- FDI Field Device Integration
- the FDI basic concept defines the Components ⁇ th FDI package, FDI server and FDI client.
- FDI packages ⁇ the supplied by the device manufacturer and contain all the information necessary for device integration .
- the device definition includes management information and the device model. the consistency is done securing this device model and the communication logic to the device via the Bu siness ⁇ logic the description of the presentation of the device parameters and device functions is the responsibility of the user interface. Description.
- FDI Server import FDI Device Packages.
- the device definition and business logic of the FDI package are executed via an EDD interpreter.
- the programmed user interface plug-ins are only managed by the server but not executed. They are transferred to clients on request. FDI clients rea ⁇ taping the interface to the user.
- the client-server concept allows both the distribution of the clients to different computers as well as the coordinated and authorized access of several clients to the common information model.
- sensors are usually modeled at best as delay and / or measured value scaling elements in order to couple data obtained from a process simulation via simulated measuring transducers to a control system.
- Actuators such.
- the actual parameterization of field devices and their testing by tests can not be done virtually before commissioning of the real devices. For example, parameter variations, display, mode and scaling switches are not simulated.
- the invention has for its object to provide a method for commissioning an industrial automation network and a field device to assist in the implementation of the method, with which reduces the cost of commissioning and the risk of errors in the closing on ⁇ operating phase of an industrial plant become.
- the new method for starting up an industrial automation network as defined in claim 1 the new field device for supporting the
- the invention has the advantage that due to the READY ⁇ development of a model which is provided for simulating the behavior ei ⁇ nes field device, for access by a software tool, which is used for startup of an indus- rush automation network by a user, the Commissioning effort is significantly reduced.
- the Simu ⁇ lationsmodell is the manufacturer of the field device he puts ⁇ and is therefore - can be expected by the manufacturer as a result of its creation - of particularly high quality and reliability.
- special developer tools can be used to create the simulation model, which facilitate the creation of a standard compliant EDD.
- the EDD containing a simulation model is already part of the scope of delivery of the manufacturer of the field device is particularly advantageous.
- the EDD can be stored in a memory of the field device electronically readable and / or delivered in a separately transported file, eg. By authorized download from a server at the manufacturer.
- an output of the field device as a function of at least one predetermined Field device parameter and one of the process simulation ge ⁇ supplied process value is calculated.
- FIG. 1 shows an automation installation is Darge ⁇ provides, in which a process 1 by an automation ⁇ approximately network 2 is controlled.
- a process 1 by an automation ⁇ approximately network 2 is controlled.
- an engineering station 3 In the factory automation network 2 ⁇ an engineering station 3, a server 4 FDI and field devices 5, 6 and 7 for the data communication through an ether net-based communication network 8 are connected together. Since the FDI concept is independent of the existing type of the communication network 8, it may be in the kommu ⁇ 8 nikationsnetz be any such. With PROFIBUS, PROFINET, HART or FF protocol.
- the field devices 5, 6 and 7 are close to the process components such as a SpeI ⁇ logic controller, which is often as a controller ⁇ be distinguished, a transmitter for sensing a physical variable in the process to be automated 1, z. B. a pressure, or an actuator for influencing the process ses 1 depending on the detected physical variable, eg. B. a control valve.
- a configuration and parameterization of the field devices 5, 6 and 7 located in the automation network 2 is performed during startup.
- FDI packages 4 are respectively stored on the FDI server 4, on the information content of which a software tool 9, which runs on the engineering station 3, can access as an FDI client.
- the FDI packages are, as explained later is models for the behavior of the field devices 5, 6 and 7 as ⁇ models for sub-aspects of the process for the software tool 9 accessible.
- Inbe ⁇ sioning phase performed by the software tool 9 in one of the preceding operating phase, a simulation on the basis of these models by ⁇ . Commissioning thus takes place virtually and without a real-time process 1.
- the software tool is drawn 9 for better Anschau ⁇ friendliness as a block on an engineering station. 3 This is not to be understood that the software tool 9 can run only on a computing unit. Of course, the software tool 9 can be divided at a Realisie ⁇ tion into various sub-tasks, then, wel ⁇ che called on different processing units, including station can run.
- a FDI package 20 according to Figure 2 includes a Device Defini ⁇ tion 21, a User Interface Description 22, a Business Logic 23 and a user interface plug-in corresponding to 24.
- the lower limb ⁇ tion of the FDI package 20 in the above-mentioned components the well-known FDI concept.
- FIG. 3 shows a Simulationsmo ⁇ dell 30 is embedded in a delivered to the field device 31 EDD 32 for the behavior of a field device 31st
- the EDD 32 with the simulation model 30 is created like a GSD 33 by the manufacturer of the field device 31 and provided for use by a user. Due to the Ready Stel ⁇ development by the manufacturer, an accuracy of the simulation model 30 can be ensured ⁇ efficiency even at this exemplary example.
- a virtual field device 35 is formed. This step is symbolized by an arrow 40 in FIG.
- the simulation performed by the virtual field device 35 during the commissioning ⁇ sioning of the automation network is based on the Be ⁇ scription of the functional simulation model 30 with means of EDDL in the EDD 32.
- values of output onto the external communication interfaces 36 and 37 signaled be len which are described in the GSD 33, calculated and output as a function of the parameterization of the field device 35 with parameters 38 and as a function of the process values 39 obtained during the system simulation.
- output signals guided on the external communication interfaces 36 and 37 are denoted by GSD.Outl or GSD.Out2. Accordingly ⁇ the input signals GSD. In called. This designation is used to establish the reference to identifiers in the GSD.
- a simulation model or simulation part model which is part of the simulation model 30 for the field device 31, can be described by:
- GSD. Out f (GSD in, parameters, process value), with f - model function,
- Process value - value of a process variable obtained from the process simulation eg B. a pressure.
- GSD.0ut2 process value * (EDD_ParameterScale) / 100
- GSD.0ut2 process value * (EDD___ParameterScale)
- the software tool (9 in Figure 1) the two files EDD 32 and GSD 33 and specifically the 32 is ⁇ passed in the EDD methods of the simulation model 30.
- a generates corresponding behavioral model of the field device 31, which can be referred to as a virtual field device 35 and represents a now executable simulation model.
- discrete-time simulation of a cyclic recalculation of the values of Trustsig ⁇ dimensional virtual field device 35 is performed based on the sacredsmo ⁇ dells.
- a simulation symbol may also be generated, which may be stored as part of a bibli ⁇ othek in a simulation tool and represents the behavior model of the field device.
- the appearance of such a simulation symbol may, for example, DEM Float the virtual field device 35 with its input parameters 38 and 39 and its communication process values ⁇ interfaces 36 and 37 for the signals and GSD.Outl
- GSD.Out2 be executed.
- the EDD 32 is thus used by a simulation transform to generate one or more specific fish simulation models, which then as Example ⁇ can be used by the simulation tool SIMIT.
- Parameters 38 of the virtual field device 35 correspond exactly to those that can be set with previous tools for field device integration. The parameters can thus be taken from the engineering data of these tools and returned to the tools after a successful test of the system model. Thus, a porting, ie an automatic transmission, the parameters obtained by simulation and tested on the real plant possible.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
L'invention a trait à un procédé de mise en service d'un réseau industriel d'automatisation (2) ainsi qu'à un appareil de terrain (5, 6, 7, 31) destiné à fournir une assistance pour l'exécution du procédé. Pour faciliter une mise en service virtuelle d'au moins un appareil de terrain (5, 6, 7), on dispose d'une description EDD (32) ou d'un ensemble FDI (20) qui comprend un modèle de simulation (25, 30) pour le comportement d'au moins un appareil de terrain (5, 6, 7, 31). Lors de la mise en service virtuelle, le comportement fonctionnel du ou des appareils de terrain (5, 6, 7, 31) est reproduit au moyen du modèle de simulation (25, 30). Étant donné que le modèle (25, 30) est fourni par le fabricant des appareils de terrain avec la description EDD (32) ou l'ensemble FDI (20), on peut s'attendre à une simulation correcte et, ainsi, à une minimisation des risques lors de la mise en service d'installations industrielles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2014/073576 WO2016070899A1 (fr) | 2014-11-03 | 2014-11-03 | Procédé de mise en service d'un réseau industriel d'automatisation ainsi qu'appareil de terrain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2014/073576 WO2016070899A1 (fr) | 2014-11-03 | 2014-11-03 | Procédé de mise en service d'un réseau industriel d'automatisation ainsi qu'appareil de terrain |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016070899A1 true WO2016070899A1 (fr) | 2016-05-12 |
Family
ID=51862294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2014/073576 WO2016070899A1 (fr) | 2014-11-03 | 2014-11-03 | Procédé de mise en service d'un réseau industriel d'automatisation ainsi qu'appareil de terrain |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016070899A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3252553A1 (fr) * | 2016-06-03 | 2017-12-06 | Siemens Aktiengesellschaft | Procédé et outil d'ingenierie pour une installation technique de procédé ou de processus |
DE102018131701A1 (de) * | 2018-12-11 | 2020-06-18 | Endress+Hauser Conducta Gmbh+Co. Kg | Verfahren zur Parametrierung eines Feldgeräts |
DE102019129816A1 (de) * | 2019-11-05 | 2021-05-06 | Endress+Hauser SE+Co. KG | Verfahren zum Parametrieren eines Feldgeräts |
US11940778B2 (en) * | 2018-11-14 | 2024-03-26 | Abb Schweiz Ag | Method of commissioning a field device in an industrial system network |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100114548A1 (en) * | 2008-11-06 | 2010-05-06 | Honeywell International Inc. | Systems and methods for simulating fieldbus devices |
US20130006399A1 (en) * | 2011-06-30 | 2013-01-03 | Honeywell International Inc. | Apparatus for automating field device operations by capturing device method execution steps for later use and related method |
-
2014
- 2014-11-03 WO PCT/EP2014/073576 patent/WO2016070899A1/fr active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100114548A1 (en) * | 2008-11-06 | 2010-05-06 | Honeywell International Inc. | Systems and methods for simulating fieldbus devices |
US20130006399A1 (en) * | 2011-06-30 | 2013-01-03 | Honeywell International Inc. | Apparatus for automating field device operations by capturing device method execution steps for later use and related method |
Non-Patent Citations (4)
Title |
---|
"Betriebsanleitung iTEMP TMT85 - Temperaturkopftransmitter mit FOUNDATION Fieldbus - Protokoll", 1 October 2007 (2007-10-01), XP055179862, Retrieved from the Internet <URL:https://portal.endress.com/wa001/dla/5000174/6472/000/00/BA251rde_1007.pdf> [retrieved on 20150327] * |
"Mit PACTware effizient konfigurieren", 1 November 2009 (2009-11-01), XP055179588, Retrieved from the Internet <URL:http://industrial.softing.com/uploads/softing_downloads/PACTware.pdf> [retrieved on 20150326] * |
DELIVERABLE D1: "AVANTI - Test methodology for virtual commissioning based on behaviour simulation of production systems", 30 April 2014 (2014-04-30), XP055179868, Retrieved from the Internet <URL:http://www.avanti-project.de/files/AVANTI_D1 1_State_of_the_Art_public.pdf> [retrieved on 20150327] * |
RUNDE STEFAN ET AL: "EDDL and semantic web - From field device integration (FDI) to Future Device Management (", 2013 IEEE 18TH CONFERENCE ON EMERGING TECHNOLOGIES & FACTORY AUTOMATION (ETFA), IEEE, 10 September 2013 (2013-09-10), pages 1 - 8, XP032516963, ISSN: 1946-0740, [retrieved on 20131024], DOI: 10.1109/ETFA.2013.6647962 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3252553A1 (fr) * | 2016-06-03 | 2017-12-06 | Siemens Aktiengesellschaft | Procédé et outil d'ingenierie pour une installation technique de procédé ou de processus |
US11940778B2 (en) * | 2018-11-14 | 2024-03-26 | Abb Schweiz Ag | Method of commissioning a field device in an industrial system network |
DE102018131701A1 (de) * | 2018-12-11 | 2020-06-18 | Endress+Hauser Conducta Gmbh+Co. Kg | Verfahren zur Parametrierung eines Feldgeräts |
CN111309434A (zh) * | 2018-12-11 | 2020-06-19 | 恩德莱斯和豪瑟尔分析仪表两合公司 | 参数化现场设备的方法 |
CN111309434B (zh) * | 2018-12-11 | 2023-12-05 | 恩德莱斯和豪瑟尔分析仪表两合公司 | 参数化现场设备的方法 |
DE102019129816A1 (de) * | 2019-11-05 | 2021-05-06 | Endress+Hauser SE+Co. KG | Verfahren zum Parametrieren eines Feldgeräts |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2911024B1 (fr) | Procédé de mise en service d'un réseau d'automatisation industriel | |
DE102018124411A1 (de) | I/o-virtualisierung für die inbetriebnahme | |
EP1558975B1 (fr) | Procede de parametrage hors ligne d'un appareil de terrain de la technique d'automatisation des processus | |
EP1543391B1 (fr) | Procede de simulation d'un appareil de champ dans un reseau relevant de la technique d'automation des processus industriels | |
DE102005063162A1 (de) | Verfahren zum Testen von Gerätebeschreibungen für Feldgeräte der Automatisierungstechnik | |
WO2006018410A1 (fr) | Identification de parametres d'appareils de terrain dans la technique d'automatisation | |
DE102009046806A1 (de) | Verfahren zum Bereitstellen von gerätespezifischen Informationen eines Feldgeräts der Automatisierungstechnik | |
DE102011079890A1 (de) | System und Verfahren zur Bedienung von Feldgeräten in einer Automatisierungsanlage | |
EP3650970B1 (fr) | Procédé et dispositif de simulation assistée par ordinateur d'un système technique modulaire | |
DE102007058606A1 (de) | Verfahren zur Integration von Geräteobjekten in ein objektbasiertes Managementsystem für Feldgeräte in der Automatisierungstechnik | |
EP3246773B1 (fr) | Procede de paramétrage d'une installation technique de processus ou de procede | |
WO2016070899A1 (fr) | Procédé de mise en service d'un réseau industriel d'automatisation ainsi qu'appareil de terrain | |
DE102014111733A1 (de) | Verfahren zum Parametrieren eines Feldgerätes | |
EP4213469A1 (fr) | Procédé d'établissement de communication réseau en utilisant opc ua | |
EP3916493B1 (fr) | Prévision d'un état d'un système technique | |
EP2446331A1 (fr) | Émulation d'un système d'automatisation | |
WO2008058991A1 (fr) | Procédé d'exploitation d'un appareil modulaire de terrain qui fonctionne selon le modèle des blocs dans la technique de l'automatisation | |
DE102009000052A1 (de) | Verfahren zur Integration von Geräteobjekten in ein objektbasiertes Managementsystem für Feldgeräte in der Automatisierungstechnik | |
DE102018130649A1 (de) | Verfahren zum Analysieren des Messverhaltens eines Feldgeräts der Automatisierungstechnik in Abhängigkeit der Parametrierung des Feldgeräts | |
WO2017029087A1 (fr) | Procédé de création automatique d'un modèle de processus et dispositif pour mettre en œuvre le procédé | |
DE102013010783A1 (de) | Verfahren und Steuergerät zum Testen einer Automatisierungslösung basierend auf einer PLC-Steuerung | |
EP3696621A1 (fr) | Procédé et appareil mis en uvre par ordinateur permettant de commander un système technique modulaire | |
EP3830652B1 (fr) | Procédé de synchronisation et de fonctionnement d'une installation industrielle, dispositif, produit programme informatique et support lisible par ordinateur | |
WO2023117310A1 (fr) | Procédé de remplacement d'un dispositif de terrain par un dispositif de terrain de remplacement dans une station de mesure d'un système de technologie d'automatisation | |
EP3931644A1 (fr) | Procédé d'essai virtuel d'une commande d'équipement ainsi que dispositif de simulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14793533 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14793533 Country of ref document: EP Kind code of ref document: A1 |